
30 Days with LAST Stack



Chapter 1: Hello LAST Stack!

Hey everyone! Welcome to 30 days of LAST Stack! I gotta say, this might be my favorite tutorial

ever. I had an absolute blast building this, because unlike usual around here, I'm going to go a

little bit less into teaching deep concepts and instead focus on making a rich, polished, beautiful

product. And I think you're going to love it.

But first, LAST Stack, what the heck is that? It's an acronym that... I made up. I wanted

something fun to match a whole new paradigm. It stands for Live Components, AssetMapper,

Stimulus, and Turbo. It's a front-end stack that'll let us build a truly rich user interface - like a

single-page application, with modals and AJAX everywhere - but entirely with Symfony, Twig...

and just a bit of JavaScript. Oh, and this will require no build step and no Node.js. Woo!

By the end of this tutorial, we're going to have reusable patterns that we can leverage in on our

projects to get things done really quickly but that work and feel incredible.

At the core of this whole system is Hotwire: a collection of libraries that include Turbo, Stimulus

and Strada. Strada is the new kid on the block and it looks cool. We won't have time to talk

about it, but it promises to let you take the same project that we're about to build and use it to

power a mobile app. Woh.

One other cool things about Hotwire is that... it's not unique to Symfony. It's used, for example,

by the Ruby on Rails community. And many of the things that we're going to build come from

patterns I learned from people in that community. The fact that we're all using the same tool

means we get to share libraries, share ideas and build on top of each other's shoulders. That's

massive.

Project Setup

So let's get into this! Because it's fun to make pretty things that pop onto the screen, you should

absolutely download the course code and code along with me. When you unzip the file, you'll

find a start/  directory, which has the same files that you see here, including the all-important

README.md! This tells you all about how to get the project set up.

The last step will be to open a terminal, move into the project, and run:



symfony serve -d

To start a local web server at ... oh, in my case, 127.0.0.1:8001 . I must already have

something running on port 8000. I'll click the link to see a big, ugly page of... nothing! That's on

purpose!

What we're starting with is a Symfony 6.4 project. I've pre-installed Twig and we have two

different entities - Planet  and Voyage  - because we're going to build a trip-planning site for

aliens. I also have some data fixtures and I used MakerBundle to generate a CRUD for each

entity. This PlanetController , VoyageController  and these templates come from

MakerBundle, with just a few styling adjustments.

But basically... there's nothing special going on! We do have a MainController , which

powers this homepage:

src/Controller/MainController.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

It contains a query that will help us later... but the template, right now, is doing a whole lot of

nothing:

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

        VoyageRepository $voyageRepository,

        PlanetRepository $planetRepository,

        #[MapQueryParameter('query')] string $query = null,

        #[MapQueryParameter('planets', \FILTER_VALIDATE_INT)] array 

$searchPlanets = [],

    ): Response

    {

        $voyages = $voyageRepository->findBySearch($query, 

$searchPlanets);

        return $this->render('main/homepage.html.twig', [

            'voyages' => $voyages,

            'planets' => $planetRepository->findAll(),

            'searchPlanets' => $searchPlanets,

        ]);

    }

}



templates/main/homepage.html.twig

1

2

3

4

5

6

7

No CSS, no JavaScript, no assets of any kind... and the site doesn't do anything. But in 30 short

lessons, we'll transform this into a small digital masterpiece.

That's it for day 1. Tomorrow, we'll install AssetMapper: a system for handling CSS, JavaScript

and other frontend assets with batteries include... but absolutely no build step.

{% extends 'base.html.twig' %}

{% block title %}Space Inviters!{% endblock %}

{% block body %}

    <h1>Space Inviters: Plan your voyage and come in peace!</h1>

{% endblock %}



Chapter 2: Asset Mapper

Okay, so how are we going to bring CSS and JavaScript into our app? Are we going to add a

build system like Vite or Webpack? Heck no! That's one of the fun things about all of this! We're

going to create something amazing with zero build system. To do that, let's install a new

Symfony component called AssetMapper.

Installing AssetMapper

Spin over to our terminal and run:

composer require symfony/asset-mapper

This is the new alternative to Webpack Encore. It can do pretty much everything that Encore

can do and more... but it's way simpler. You should definitely use it on new projects.

When I run:

git status

We see that its Flex recipe made a number of changes. For example, .gitignore  is ignoring

a public/assets/  directory and assets/vendor/ :

.gitignore

 // ... lines 1 - 11

12

13

14

15

###> symfony/asset-mapper ###

/public/assets/

/assets/vendor

###

        



We'll talk more about those later. But on production, this is where your assets will be written to

and, when we install third-party JavaScript libraries, they'll live in that vendor/  directory.

It also updated base.html.twig  and added an importmap.php  file. But put those on the

back burner for now: we'll talk about them tomorrow.

The "Mapped Paths"

For today's adventure, pretend that, when we installed this, all it gave us was a new

asset_mapper.yaml  file and an assets/  directory. Let's go check out that config file:

config/packages/asset_mapper.yaml :

config/packages/asset_mapper.yaml

1

2

3

4

5

The idea behind AssetMapper couldn't be simpler: you define paths - like the assets/

directory - and AssetMapper makes every file inside available publicly... as if they lived in the

public/  directory.

Referencing an Asset File

Let's see it in action you. If you downloaded the course code, you should have a tutorial/

directory, which I added so we can copy a few things out of it. Copy logo.png . Inside

assets/ , we can make this look however we want. So let's create a new directory called

images/  and paste that in.

Since this new files lives inside the assets/  directory, we should be able to reference it

publicly. Let's do that in our base layout: templates/base.html.twig . Anywhere, say

<img src=""> , {{  and then use the normal asset()  function. For the argument, pass the

path relative to the assets/  directory. This is called the logical path: images/logo.png :

framework:

    asset_mapper:

        # The paths to make available to the asset mapper.

        paths:

            - assets/



templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

 // ... lines 17 - 18

19

20

Before we try this, an easy way to see every asset that's available is via:

php bin/console debug:asset

Very simply: this looks through all of your mapped paths - just assets/  for us - finds every file

then lists them with their logical path. So I can be lazy and copy that, paste it here.... and done.

Now, when we try this, it doesn't work! The asset()  function is still its own component, so let's

get that installed:

composer require symfony/asset

And now.... cool logo!

Instant Asset Versioning

To see the really neat thing, inspect the image and look at the filename. It's

/assets/images/logo-  and then this long hash. This hash comes from the file's contents. If

we updated logo.png , it would automatically generate a new hash. And that is super

important for two, related, reasons. First, because when we deploy, the new filename will bust

the browser cache for our users so that they see the new file immediately. And second, because

of this, we can configure our production web server to serve all the assets with long-lived

Expiration headers. That maximizes that caching & performance.

<!DOCTYPE html>

<html>

    <body>

        <img src="{{ asset('images/logo.png') }}" alt="Space Inviters 

Logo" />

    </body>

</html>



Serving Assets in Dev vs Prod

Now in the dev  environment, there is no physical file with this filename. Instead, the request for

this asset is processed through Symfony and intercepted by a core listener. That listener looks

at the URL, finds the matching logo.png  inside the assets/images/  directory and returns

it.

But on production, that's not fast enough. So, when you deploy, you'll run:

php bin/console asset-map:compile

Very simply: this writes all the files into the public/assets/  directory. Look: in

public/assets/ , we now have real, physical files! So when I go over and refresh, this file

isn't being processed by Symfony, it's loading one of those real files.

Now, if you ever run this command locally, make sure to delete that directory after... so it stops

using the compiled versions:

rm -rf public/assets/

Wow! Day 2 is already done! We now have a way to serve images, CSS or any file publicly with

automatic file versioning. The second part of AssetMapper  is all about JavaScript modules.

And that's tomorrow's topic.



Chapter 3: JavaScript Modules

Inspect element on this page and head over to the browser console. Ah, we've got a console log

that says it comes from assets/app.js . And sure enough, if we spin over and open that file...

there it is!

assets/app.js

1

2

3

4

5

6

7

8

9

But how is this file being loaded? To answer that, view the page source. There's some

interesting stuff going on here, but I want to zoom in on one part:

<script type="module"> , import 'app'; .

ECMAScript Modules

It turns out that all modern browsers - basically everything except for IE 11... and you should not

be supporting IE 11 anymore - ahem all modern browsers support JavaScript modules, also

known as ECMAScript modules or ESM. But they're nothing fancy: a JavaScript module is any

JavaScript file that uses the import  or export  statements that you probably grew

accustomed to in Webpack Encore.

The big news is that: browsers understand import  and export  all by themselves! No build

step needed. If you open any HTML page and say <script type="module"> , the code

inside is allowed to use import  and export  statements.

/*

 * Welcome to your app's main JavaScript file!

 *

 * This file will be included onto the page via the importmap() Twig 

function,

 * which should already be in your base.html.twig.

 */

import './styles/app.css'

console.log('This log comes from assets/app.js - welcome to AssetMapper! 

🎉')



Importmaps

So... the second question is: what the heck is app? How does app  ultimately refer to

assets/app.js? This is also a new trick of browsers called importmaps. And this has nothing

to do with Symfony or AssetMapper. If, on your page, you have a

<script type="importmap"> , this becomes a key value map that's used by your browser

when it loads modules. So if we say import 'app' , it looks inside of this list, sees app  and

ultimately loads this file... which is served by AssetMapper. It's a nice bit of teamwork!

Importmaps are supported by all modern browsers... though it has slightly less support than

JavaScript modules. Fortunately, there's a shim or polyfill so that if your user happens to use a

browser that doesn't support importmaps, that shim will add it and everything will work.

The importmap() Function

The final question on my mind is: where the heck is this all coming from? To answer that, open

templates/base.html.twig . It's entirely coming from this one line right here:

{{ importmap('app') }} :

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

13

14

 // ... lines 15 - 19

20

Because we passed app , this will generate a <script type="module">  with

import 'app'  inside. But this also dumps the polyfill, some preloads - those are good for

performance, but not required - and, of course, the importmap itself. The importmap is primarily,

though not entirely (we'll get to that), generated from this importmap.php  file:

<!DOCTYPE html>

<html>

    <head>

        {% block javascripts %}

            {{ importmap('app') }}

        {% endblock %}

    </head>

</html>



importmap.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

The importmap.php File

When we installed AssetMapper, its recipe gave us this file. And this is the reason that the

importmap  in our HTML has an app  key that points to assets/app.js .

Writing Some JavaScript Modules

So I want to play a bit with this new system. Inside the assets/  directory - we can organize

this however we want - create a lib/  directory with an alien-greeting.js  file. Inside, I'm

going to write some awesome, modern JavaScript: export default  a function, give it

message  and inPeace  arguments... then I'll log a message using a template literal - the fancy

backticks - and some emojis:

assets/lib/alien-greeting.js

1

2

3

/**

 * Returns the import map for this application.

 *

 * - "path" is a path inside the asset mapper system. Use the

 *     "debug:asset-map" command to see the full list of paths.

 *

 *  - "entrypoint" (JavaScript only) set to true for any module that will

 *      be used as an "entrypoint" (and passed to the importmap() Twig 

function).

 *

 * The "importmap:require" command can be used to add new entries to this 

file.

 *

 * This file has been auto-generated by the importmap commands.

 */

return [

    'app' => [

        'path' => './assets/app.js',

        'entrypoint' => true,

    ],

];

export default function (message, inPeace = false) {

    console.log(`${message}! ${inPeace ? '👽' : '👾'}`);

}



Cool! This new file lives inside assets/  so, technically, it's publicly available. But... nobody is

using it yet.

Let's try something non-traditional, but fun to start. Go into the base layout and, anywhere, say

<script type="module"> . Inside, import alienGreeting ... and I'll hit tab:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

13

14

15

 // ... lines 16 - 17

18

19

20

 // ... lines 21 - 25

26

Hmm: PhpStorm used ../assets  for the path. That's not going to work. Instead, we can use

the asset()  function and the logical path: lib/alien-greeting.js . Then below, use that:

alienGreeting() , a message and we will not come in peace!

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

 // ... lines 21 - 25

26

<!DOCTYPE html>

<html>

    <head>

        {% block javascripts %}

            {{ importmap('app') }}

            <script type="module">

                import alienGreeting from '{{ asset('lib/alien-

greeting.js') }}';

            </script>

        {% endblock %}

    </head>

</html>

<!DOCTYPE html>

<html>

    <head>

        {% block javascripts %}

            <script type="module">

                import alienGreeting from '{{ asset('lib/alien-

greeting.js') }}';

                alienGreeting('Give us all your candy!', false);

            </script>

        {% endblock %}

    </head>

</html>



Let's see if it works! Close that, and... it doesn't? I actually thought it would! We get a 404 for

lib/alien-greeing.js  - with no "t"...! Boop!

templates/base.html.twig

 // ... lines 1 - 14

15

 // ... lines 16 - 27

Now it works! No build, nice code, nothing special.

If you view the page source, we, of course, have this nice versioned filename in the import .

So you can import simple things like app  and rely on the importmap  to point to the true

filename, or you can include full paths.

Importing from JS Files

As fun as it was to hack this into the HTML, in reality, we're not usually going to write in-line

code like this. Copy this, get rid of the <script type="module"> :

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

13

14

 // ... lines 15 - 19

20

Then go into app.js . Paste the code here:

assets/app.js

 // ... lines 1 - 6

7

8

9

10

                import alienGreeting from '{{ asset('lib/alien-

greeting.js') }}';

<!DOCTYPE html>

<html>

    <head>

        {% block javascripts %}

            {{ importmap('app') }}

        {% endblock %}

    </head>

</html>

import './styles/app.css'

import alienGreeting from './lib/alien-greeting.js';

alienGreeting('Give us all your candy!', false);



And now that we're inside JavaScript, when we refer to a path, we can write it with normal,

relative paths: ./alien-greeting.js :

assets/app.js

 // ... lines 1 - 7

8

 // ... lines 9 - 11

This is the exact code that we would have in Webpack Encore, with one small difference. In

Webpack, you don't need to have the .js  on the end. It turns out that leaving off the extension

is a Node-specific thing. In real JavaScript, you do need to have the extension. So you do need

to add the .js .

And... it works!

PhpStorm: Auto-add Extension

By the way, if you let PhpStorm auto-complete the path to the imported JavaScript file, by

default, it will not include the .js  on the end. To fix that, open the settings... and search for

"extensions". There we go: "Editor"=>"Code Style"=> "JavaScript". Right here, change this "use

file extension" to "always".

Ok, day 3 is in the books! Tomorrow, we'll make our JavaScript set up much more powerful by

learning how to install 3rd-party packages!

import alienGreeting from './lib/alien-greeting.js';



Chapter 4: 3rd Party JavaScript Packages

Welcome to the fabulous day 4! Where we're already creating JavaScript modules... a fancy

term that means we're writing import statements and export statements. And we're pulling this

off entirely without a build system. Time for a happy dance!

But what about third-party packages? Head over to https://npmjs.com and search for a very

important package called js-confetti . This package is all about celebrating, which... is

exactly what we're doing during these 30 days! In the README, it says to use Yarn to install it.

We are not going to do that. Instead, skip right down to the usage example. Copy that, head

over to our app.js ... and paste that in:

assets/app.js

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 15

Side note: import  statements always go at the top of your file. If you don't do that - if you do

something weird like this, well, you can, but your browser will move this up to the top when it

executes the code anyway. So we'll avoid being troublemakers.

Missing JavaScript Module Error

Ok: is this going to work? I mean... probably not because we haven't installed anything. But let's

live recklessly and try it anyway! Error! A very important error:

“Failed to resolve module specifier js-confetti . Relative references must start with either

/ , ./  or ../ .”

So what this is saying is that your browser found an import  statement... and has no idea how

to load that file. If an import statement starts with ./  or ../ , your browser knows how to

handle that: it looks for a file relative to this file. Easy peasy.

import JSConfetti from 'js-confetti';

const jsConfetti = new JSConfetti();

jsConfetti.addConfetti();

https://npmjs.com/


But if there is no ./  or ../ , it's called a bare module. In that case, your browser looks for a

match in the importmap. Right now, our importmap looks like it did before. Notably, we do not

have a js-confetti  key. And that's why we get this error.

This is one of the most important errors you'll see when coding with modules. And it'll look a bit

different based on which browser you're using. Firefox, for example, phrases this error

differently.

But regardless of the wording, this error almost always means the same thing: you're trying to

use a third party package, but it's not installed.

Installing Packages with importmap:require

How do we install it? Glad you asked! Copy the package name, spin over and run:

php bin/console importmap:require js-confetti

That's it! Spin back over and... celebration! It works! Mad refreshing!

How does that work? Karma? Well, not surprisingly, if you view the page source, we have a new

entry inside our importmap  with a js-confetti  key. And it points to a file in an

assets/vendor/  directory. Interesting.

When we ran that command, it really did just one thing. It updated our importmap.php  file. It

added this entry right here:

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 20

21

22

23

24

Behind the scenes, it went out and found what the latest version was and put that here. And

because we have a js-confetti  item in importmap.php , it means that we're going to have

a matching js-confetti  key inside of the importmap on the page.

return [

    'js-confetti' => [

        'version' => '0.11.0',

    ],

];



The assets/vendor/ Directory

Where does that file actually live? Up here in a new assets/vendor/  directory. If you dig,

here is the actual file that's being loaded.

Two juicy details about this vendor/  directory. The first is: it's ignored from Git: you can see

/assets/vendor/ :

.gitignore

 // ... lines 1 - 11

12

 // ... line 13

14

15

Just like the composer vendor/  directory, this is not something that you should commit to your

repository.

The second is more of a question: how do I get these files if I clone or update a project and

some or all of the files are missing?

To find out, get crazy and destroy that directory. Muwahahaha. And now, to increase our

reckless streak, try to refresh the page. Error! Awesome error!

“The js-confetti  vendor asset is missing: try running the importmap:install

command.”

Lovely idea! Spin over and try that:

php bin/console importmap:install

Just like composer install , that downloads whatever you need into assets/vendor/ ...

and now it just works.

That's it! By day 4, we've already solved 3rd party packages! We don't even need a giant

node_modules/  directory! I'm going to have to find some other way to fill my hard drive.

Maybe, more Docker containers?

###> symfony/asset-mapper ###

/assets/vendor

###

        



Ok, for tomorrow's adventure, we'll jazz up our site with some CSS. Stay tuned!



Chapter 5: CSS

Day 5 already? We're flying! It's time to add some CSS to our site. So how does that work inside

AssetMapper?

Including a Manual link Tag?

Well, we already have an assets/styles/app.css  file. And... there's nothing stopping us

from going into base.html.twig , and adding a link tag: link , rel="stylesheet" , href

then asset()  and the logical path: styles/app.css .

Swell! When we refresh... and look at the page source, there it is! It works great and it's super

boring. The kind of boring I like.

However, if we remove this line... and go and refresh the page. Huh, we still have this blue

background: a blue background that's coming from app.css :

assets/styles/app.css

1

2

3

Take another peek at the page source. There is still a link  tag pointing to that file? Back over

in base.html.twig , hmm, nothing here. Where is that coming from?

The answer - I bet you guessed - is the importmap()  function:

body {

    background-color: skyblue;

}



templates/base.html.twig

 // ... line 1

2

3

 // ... lines 4 - 10

11

12

13

14

 // ... lines 15 - 19

20

And it's because it's being imported from app.js :

assets/app.js

 // ... lines 1 - 6

7

 // ... lines 8 - 15

How CSS Works

Importing a CSS file from JavaScript is probably something you got used to with Webpack

Encore. You import a CSS file... and ultimately, it's rendered on the page as a link  tag.

However, this is not something that ECMAScript modules actually support. The only thing you

can import are JavaScript files. So this should fail spectacularly: like it should download the

CSS file and try to parse it as JavaScript.

However, as you may have noticed, it doesn't fail! I love mysteries!

This is a totally extra feature that we added to AssetMapper. Here's how it works. In

base.html.twig , we say importmap('app') . The app  is known as the entrypoint: the

one file the browser will execute directly. And we know that refers to assets/app.js .

So what AssetMapper does is, it goes into this file and finds all the import  statements for

JavaScript and CSS files. For every CSS import it finds, it adds that as a link  tag. It's...

basically just that simple.

The CSS Importmap Trick

<html>

    <head>

        {% block javascripts %}

            {{ importmap('app') }}

        {% endblock %}

    </head>

</html>

import './styles/app.css';



Well, there is one little, fascinating complication. Go to the network tab in your browser and

search for app . This is the app.js  file that's being executed by the browser. Notice: it does

still have the import statement to the CSS file! If you think about it, when our browser executes

this line, it should fail! It should download the CSS file, try to parse it as JavaScript & hit a

syntax error. But it doesn't.

The reason is a trick inside AssetMapper. When you import a CSS file, AssetMapper adds an

importmap entry for it. So even though this starts with ./ , our browser does look to see if

there's a matching path inside the importmap. And there is. Because of that, it downloads this

file.... which is not a real file. It's a fake file that does.... absolutely nothing. So it makes that line

not error out and... not do anything.

Importing CSS from Other JavaScript Files

To see how powerful this is, let's create a second CSS file to support our alien greeting. Call it

alien-greeting.css  and make the body background darkgreen . Though, personally, I'm

hoping aliens are rainbow colored:

assets/styles/alien-greeting.css

1

2

3

Over in alien-greeting.js , import that: ../styles/alien-greeting.css :

assets/lib/alien-greeting.js

1

 // ... lines 2 - 6

Will this work? Try it! Refresh and... green background! In the source, we have a second link

tag and a second new item in the importmap . So that's awesome! Because app.js  imports

alien-greeting.js , AssetMapper also finds any CSS files that it imports.

Lazy-Loading CSS

Here's where things get really spooky-cool. JavaScript modules have a dynamic import syntax

that allows you to import modules asynchronously. That lets us load a file later when we need it,

instead of on page load. And we can use this trick with CSS.

body {

    background: darkgreen;

}

import '../styles/alien-greeting.css';



Copy this. Pretend that we only want to load that CSS file when inPeace  equals false. So I'll

say, if not inPeace , then use setTimeout()  to wait for 4 seconds. After 4 seconds, import

the CSS file. Except, as soon as you need an import to not live at the top of your file, you need

to call it like a function:

assets/lib/alien-greeting.js

1

2

3

4

5

6

 // ... lines 7 - 8

9

That's pretty cool. Try it. At first, blue background! 2, 3, 4, green background! The CSS file

loaded lazily. How? Well, there's no alien-greeting.css  link tag in the page source

anymore. Instead, we wait for the browser to execute this JavaScript line. When it does, it looks

for this in the importmap, finds it and downloads this fake file. But this time, instead of it being a

line that does nothing, this fake file adds a new link  tag to the head  section with

rel="stylesheet"  and href  set to alien-greeting.css .

Heck, we can watch this in real time! Over here, under the head  tag, we see the stylesheet. If I

refresh and quickly open that, it's not there. And... then it gets added. So stinkin' cool.

Now that we've conquered how CSS works, tomorrow, we'll use it to bring our site to life! But I

want to do it with an extra fun angle: I want to use Tailwind CSS.

export default function (message, inPeace = false) {

    if (!inPeace) {

        setTimeout(() => {

            import('../styles/alien-greeting.css');

        }, 4000);

    }

}



Chapter 6: Tailwind CSS

I love using Tailwind for CSS. If you've never used it before, or maybe only heard of it, you

might... hate it at first. That's because you use classes inside of HTML to define everything. And

so your HTML can end up looking, well, a bit crazy. But give it a chance. I've absolutely fallen in

love with it. And, instead of this looking ugly to me, it looks descriptive.

Tailwind Requires Building!

Tailwind isn't your traditional CSS behemoth where you download a giant CSS file and include

it. Instead, Tailwind has a binary that parses all of your templates, finds the classes you're using,

and then dumps a final CSS containing just those classes. So it keeps your final CSS as small

as possible.

But to do this, duh duh duh! Tailwind requires a build step. And that's okay. Just because we

don't have a build step for our entire JavaScript system doesn't mean we can't opt into a small

one for a specific purpose.

Installing symfonycasts/tailwind-bundle

And there's a super-easy bundle to help us do this with AssetMapper. It's called

symfonycasts/tailwind-bundle . Hey, I've heard of them!

Head down here, go to the documentation... and I'll copy the composer require  line. Spin

over and run that:

composer require symfonycasts/tailwind-bundle

This bundle will help us run the build command in the background and serve up the final file. We

point it at a real CSS file, then it'll sneak in the dynamic content. You'll see.

While we're here, run:



php bin/console debug:config symfonycasts_tailwind

to see the default configuration for the bundle. By default, the file that it "builds" is

assets/styles/app.css ... which is great because we already have an

assets/styles/app.css  file!

To get things set up, run a command from the bundle:

php bin/console tailwind:init

 Tip

If using the Symfony CLI, you can add a build command as a worker to be started whenever

you run the Symfony web server:

# .symfony.local.yaml

workers:

    tailwind:

        cmd: ['symfony', 'console', 'tailwind:build', '--watch']

See the docs for more information.

This downloads the Tailwind binary in the background, which is awesome. That binary is

standalone and doesn't require Node. It just works. The command also did two other things.

First: it added the three lines needed inside of app.css :

assets/styles/app.css

1

2

3

 // ... lines 4 - 8

When this file is built, these will be replaced by the actual CSS we need. Second, this created a

tailwind.config.js  file:

@tailwind base;

@tailwind components;

@tailwind utilities;

https://symfony.com/bundles/TailwindBundle/current/index.html#symfony-cli


tailwind.config.js

1

2

3

4

5

6

7

8

9

10

11

This tells Tailwind where to look for all the classes we'll use. This will find any classes in our

JavaScript files or our templates.

To execute Tailwind, run:

php bin/console tailwind:build -w

For watch. That builds... then hangs out, waiting for future changes.

So... what did that do? Remember: we're already including app.css  on our page. When we

refresh, woh! It looks a bit different! The reason is, if you view the page source, and click to

open the app.css  file, it's full of Tailwind code! Our app.css  file is no longer this exact

source file! Behind the scenes, the Tailwind binary parses our templates, dumps a final version

of this file, which is then returned. This file already contains a bunch of code because I filled the

CRUD templates with Tailwind classes before we started the tutorial.

Using Tailwind

But let's see this in action for real. If we refresh the page, this is my h1 . It's small and sad.

Open templates/main/homepage.html.twig . On the h1 , add class="text-3xl" :

/** @type {import('tailwindcss').Config} */

module.exports = {

  content: [

    "./assets/**/*.js",

    "./templates/**/*.html.twig",

  ],

  theme: {

    extend: {},

  },

  plugins: [],

}



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

7

Now, refresh. It works! If that text-3xl  wasn't in the app.css  file before, Tailwind just added

it because it's running in the background.

Pasting in The Layout

So Tailwind is working! To celebrate, let's paste in a proper layout. If you downloaded the course

code, you should have a tutorial/  directory with a couple of files. Move base.html.twig

into templates:

{% block body %}

    <h1 class="text-3xl">Space Inviters: Plan your voyage and come in 

peace!</h1>

{% endblock %}



templates/base.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

<!DOCTYPE html>

<html>

    <head>

        <meta charset="UTF-8">

        <meta name="viewport" content="width=device-width, initial-

scale=1">

        <title>{% block title %}Space Inviters!{% endblock %}</title>

        <link rel="icon" href="data:image/svg+xml,<svg 

xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 128 128%22><text 

y=%221.2em%22 font-size=%2296%22>⚫️</text></svg>">

        {% block stylesheets %}

        {% endblock %}

        {% block javascripts %}

            {{ importmap('app') }}

        {% endblock %}

    </head>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <div class="flex items-center">

                        <a href="{{ path('app_homepage') }}">

                            <img src="{{ asset('images/logo.png') }}" 

width="50" alt="Space Inviters Logo" >

                        </a>

                        <a href="{{ path('app_homepage') }}" class="text-

xl ml-3">Space Inviters</a>

                        <a href="{{ path('app_voyage_index') }}" 

class="ml-6 hover:text-gray-400">Voyages</a>

                        <a href="{{ path('app_planet_index') }}" 

class="ml-4 hover:text-gray-400">Planets</a>

                    </div>

                    <div

                        class="hidden md:flex pr-10 items-center space-x-2 

border-2 border-gray-900 rounded-lg p-2 bg-gray-800 text-white cursor-

pointer"

                    >

                        <svg xmlns="http://www.w3.org/2000/svg" class="h-5 

w-5 text-gray-500" stroke-width="2" stroke="currentColor" fill="none" 

stroke-linecap="round" stroke-linejoin="round"><path stroke="none" d="M0 

0h24v24H0z" fill="none"/><path d="M10 10m-7 0a7 7 0 1 0 14 0a7 7 0 1 0 -14 

0"/><path d="M21 21l-6 -6"/></svg>

                        <span class="pl-2 pr-10 text-gray-500">Search 

Cmd+K</span>

                    </div>

                </nav>



34

35

36

37

38

39

40

41

42

43

44

45

46

47

And these other two go into the main/  directory:

            </header>

            <!-- Make sure the main tag takes up the remaining height -->

            <main class="flex-grow">{% block body %}{% endblock %}</main>

            <!-- Footer -->

            <footer class="py-4 mt-6 bg-gray-800 text-center">

                <div class="text-sm">

                    With <svg class="inline-block w-4 h-4 text-red-600 

fill-current" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20"><path 

d="M10 3.22l-.61-.6a5.5 5.5 0 00-7.78 7.78l7.39 7.4 7.39-7.4a5.5 5.5 0 00-

7.78-7.78l-.61.61z"/></svg> from Symfonycasts.

                </div>

            </footer>

        </div>

    </body>

</html>



templates/main/homepage.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

{% extends 'base.html.twig' %}

{% block title %}Space Inviters!{% endblock %}

{% block body %}

    <div class="flex">

        <aside class="hidden md:block md:w-64 bg-gray-900 px-2 py-6">

            <h2 class="text-xl text-white font-semibold mb-6 px-

2">Planets</h2>

            <div>

                {{ include('main/_planet_list.html.twig') }}

            </div>

        </aside>

        <section class="flex-1 ml-10">

            <form

                method="GET"

                action="{{ path('app_homepage') }}"

                class="mb-6 flex justify-between"

            >

                <input

                    type="search"

                    name="query"

                    value="{{ app.request.query.get('query') }}"

                    aria-label="Search voyages"

                    placeholder="Search voyages"

                    class="w-1/3 px-4 py-2 rounded bg-gray-800 text-white 

placeholder-gray-400"

                >

                <div class="whitespace-nowrap m-2 mr-4">{{ voyages|length 

}} results</div>

            </form>

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <thead>

                        <tr>

                            <th class="text-left py-2">Purpose</th>

                            <th class="text-left py-2 pr-4">Planet</th>

                            <th class="text-left py-2">Departing</th>

                        </tr>

                    </thead>

                    <tbody>

                        {% for voyage in voyages %}

                        <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                            <td class="p-4">{{ voyage.purpose }}</td>



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

                            <td class="px-2 whitespace-nowrap">

                                <img

                                    src="{{ 

asset('images/'~voyage.planet.imageFilename) }}"

                                    alt="Image of {{ voyage.planet.name 

}}"

                                    class="inline-block w-8 h-8 rounded-

full bg-gray-600 ml-2"

                                >

                            </td>

                            <td class="px-2 whitespace-nowrap">{{ 

voyage.leaveAt|date('Y-m-d') }}</td>

                        </tr>

                        {% endfor %}

                    </tbody>

                </table>

            </div>

            <div class="flex items-center mt-6 space-x-4">

                <a href="#" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Previous</a>

                <a href="#" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Next</a>

            </div>

        </section>

    </div>

{% endblock %}



templates/main/_planet_list.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Refresh. Huh, no difference. That's because, at least on a Mac, because I moved and overwrote

those files, Twig didn't notice that they were updated... so its cache is out-of-date.

Open a fresh terminal tab and run:

php bin/console cache:clear

Then... woo! Welcome to Space Inviters! Styled up and ready to go! But there's nothing special

about the new templates. We do have a list of voyages... but it's all boring, normal Twig code

with Tailwind classes.

Referencing Assets Dynamically

We do have some broken planet images though. To fix those, go into the tutorial/assets/

directory... and move all of those planets into assets/images/ . Delete the tutorial/

<ul>

    {% for planet in planets %}

        <li class="mb-4 group">

            <a href="{{ path('app_planet_show', {

                'id': planet.id,

            }) }}" class="block transform transition duration-300 ease-in-

out hover:translate-x-1 hover:bg-gray-700 rounded">

                <div class="flex justify-between items-start p-2">

                    <div class="pr-3">

                        <span class="text-white">{{ planet.name }}</span>

                        <span class="block text-gray-400 text-sm">{{ 

planet.lightYearsFromEarth|round|number_format }} light years</span>

                    </div>

                    <img

                        class="flex-shrink-0 w-8 h-8 bg-gray-600 rounded-

full group-hover:bg-gray-500 transition duration-300 ease-in-out"

                        src="#"

                        alt="Image of {{ planet.name }}"

                    >

                </div>

            </a>

        </li>

    {% endfor %}

</ul>



folder.

That broken img  tag comes from the _planet_list.html.twig  partial. Here it is:

templates/main/_planet_list.html.twig

1

2

3

4

5

6

7

 // ... lines 8 - 11

12

 // ... line 13

14

 // ... line 15

16

17

18

19

20

21

I left it for us to finish! How nice of me! We know that we can do {{ assets() }}  then

something like images/planets-1.png . That would work. But this time, the planet-1.png

part is a dynamic property on the Planet  entity. So, instead say ~  then

planet.imageFilename :

<ul>

    {% for planet in planets %}

        <li class="mb-4 group">

            <a href="{{ path('app_planet_show', {

                'id': planet.id,

            }) }}" class="block transform transition duration-300 ease-in-

out hover:translate-x-1 hover:bg-gray-700 rounded">

                <div class="flex justify-between items-start p-2">

                    <img

                        src="#"

                    >

                </div>

            </a>

        </li>

    {% endfor %}

</ul>



templates/main/_planet_list.html.twig

1

2

3

4

5

6

7

 // ... lines 8 - 11

12

 // ... line 13

14

 // ... line 15

16

17

18

19

20

21

And... pretty! Yea, I know that's not what Earth and Saturn look like - I've got some randomness

in my fixtures - but they're fun to look at!

Using KnpTimeBundle

Since day 6 is the "making everything look awesome day", let's do two more things. To start, I

don't love this date. It's boring! I want a cool looking date.

So, install one of my favorite bundles:

composer require knplabs/knp-time-bundle

This gives us a handy ago  filter. So as soon as this finishes, spin over and open

homepage.html.twig . Search for leaveAt , here we go. Replace that date  filter with ago :

<ul>

    {% for planet in planets %}

        <li class="mb-4 group">

            <a href="{{ path('app_planet_show', {

                'id': planet.id,

            }) }}" class="block transform transition duration-300 ease-in-

out hover:translate-x-1 hover:bg-gray-700 rounded">

                <div class="flex justify-between items-start p-2">

                    <img

                        src="{{ asset('images/'~planet.imageFilename) }}"

                    >

                </div>

            </a>

        </li>

    {% endfor %}

</ul>



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 38

39

40

41

 // ... lines 42 - 49

50

51

52

53

54

55

 // ... lines 56 - 59

60

61

62

And... much cooler!

What else? Go check out the CRUD areas. These were generated via MakerBundle... but... I

did preload them with Tailwind classes so they look good. Wow, there is a lot of celebrating right

now. I'm not complaining.

But... if you go to a form, it looks terrible! Why? The form markup comes from Symfony's form

theme... which outputs the fields without Tailwind classes.

Flowbite for Tailwind Examples

So what do we do? Do we need to create a form theme? Fortunately, no. One of the great

things about Tailwind is there's an entire ecosystem set up around it. For example, Flowbite is a

site with a mixture of open source examples and pro, paid features. On the open source side of

things, you can, for example, find an "Alert" page with different markup to make great-looking

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <tbody>

                        {% for voyage in voyages %}

                        <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                            <td class="px-2 whitespace-nowrap">{{ 

voyage.leaveAt|ago }}</td>

                        </tr>

                        {% endfor %}

                    </tbody>

                </table>

            </div>

        </section>

    </div>

{% endblock %}



alerts. And, you don't need to install anything with Flowbite. These classes are all native

Tailwind. You can copy this markup into your project and refresh. Nothing special. And I love it.

 Tip

Flowbite does also come with some JavaScript & a Tailwind Plugin. Check out the bonus

chapter for the details!

This also has a forms section where it shows how we can make forms look really nice. In theory,

if we could make our forms output like this, they would look great.

Adding a Tailwind Form Theme

And fortunately, there's a bundle that can help us. It's called

tales-from-a-dev/flowbite-bundle . Click "Installation" and copy the

composer require  line. Then run it:

composer require tales-from-a-dev/flowbite-bundle

We're getting a lot of stuff installed today! This asks if we want to install the contrib recipe. Let's

say yes, permanently. Cool!

Back on the installation instructions, we don't need to register the bundle - that happens

automatically - but we do need to copy this line for the tailwind configuration file.

Open up tailwind.config.js , and paste that:

tailwind.config.js

1

2

3

 // ... lines 4 - 5

6

7

 // ... lines 8 - 11

12

/** @type {import('tailwindcss').Config} */

module.exports = {

  content: [

    "./vendor/tales-from-a-dev/flowbite-bundle/templates/**/*.html.twig",

  ],

}

https://symfonycasts.com/screencast/last-stack/flowbite
https://symfonycasts.com/screencast/last-stack/flowbite


This bundle comes with its own form theme template with its own Tailwind classes. So we want

to make sure that Tailwind sees those and outputs the CSS for them.

The last step over on the docs is to tell our system to use this form theme by default. This

happens over in config/packages/twig.yaml . I'll paste... then fix the indentation:

 Tip

Starting in version 0.4.0, use @TalesFromADevFlowbite/form/default.html.twig .

config/packages/twig.yaml

1

 // ... line 2

3

 // ... lines 4 - 8

That's it. Go back, refresh and eureka! In just over 10 minutes, we installed Tailwind and started

using it everywhere.

Tomorrow, we'll turn back to JavaScript and leverage Stimulus to write reliable JavaScript code

that we can love.

twig:

    form_themes: ['@Flowbite/form/default.html.twig']



Chapter 7: Stimulus

Welcome to lucky day number 7. Today we're talking about Stimulus: a small, easy-to-

understand JavaScript library that lets us create super-organized code that... just always works.

It is one of my favorite reasons to use the Internet.

Installing StimulusBundle

But even though Stimulus is a JavaScript library... Symfony has a bundle to help us load it, get it

set up, and use it. So, find your terminal and run:

composer require symfony/stimulus-bundle

One of the most important things about StimulusBundle is its recipe. After it finishes, run:

git status

The Recipe Changes

Oooh. It made a number of changes. The first is over here in assets/app.js . On top - I'll

remove that comment - we're now importing a new bootstrap.js :

assets/app.js

1

 // ... lines 2 - 16

That file starts the Stimulus application.

Notice that this imports an @symfony/stimulus-bundle  module:

import './bootstrap.js';



assets/bootstrap.js

1

 // ... lines 2 - 6

The @  symbol isn't important: that's just a character namespaced JavaScript packages use. The

important thing is that this is a bare import, which means the browser will try to find this package

by looking at our importmap.

Ok! Open up importmap.php . The recipe added two new entries here:

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 23

24

25

26

27

28

29

30

The first is for Stimulus itself - that now lives in the assets/vendor/  directory. The second

is... a kind of "fake" 3rd party package. It says that @symfony/stimulus-bundle  should

resolve to a file in our vendor/  directory. This is a bit of fanciness: we say

import '@symfony/stimulus-bundle' ... and that will ultimately import this loader.js

file from vendor/ .

The recipe also added a controllers/  directory - the home for our custom Stimulus

controllers - and a controllers.json  file, which we'll talk about tomorrow.

Oh, and in base.html.twig , it added this ux_controller_link_tags()  line:

import { startStimulusApp } from '@symfony/stimulus-bundle';

return [

    '@hotwired/stimulus' => [

        'version' => '3.2.2',

    ],

    '@symfony/stimulus-bundle' => [

        'path' => './vendor/symfony/stimulus-

bundle/assets/dist/loader.js',

    ],

];



templates/base.html.twig

1

2

3

 // ... lines 4 - 7

8

9

10

 // ... lines 11 - 14

15

 // ... lines 16 - 47

48

Delete it! That was needed with AssetMapper 6.3, but not anymore. We'll talk about what that

did tomorrow anyway.

Using Stimulus

Ok: so, all we've done is composer require  this new bundle. And yet, when we refresh the

page and look at the console, Stimulus is already working! This application #starting

and application #start  come from Stimulus. That's awesome.

With StimulusBundle, anything we put into the controllers/  directory will automatically be

available as a Stimulus controller. So, the fact that we have a hello_controller.js  means

that we can use a controller named hello :

<!DOCTYPE html>

<html>

    <head>

        {% block stylesheets %}

            {{ ux_controller_link_tags() }}

        {% endblock %}

    </head>

</html>



assets/controllers/hello_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

In fact, we can see it right now. When this controller is activated, it replaces the text of the

element it's attached to. To prove Stimulus is working, inspect any element on the page... and

hack in a data-controller="hello" .

When I hit enter, boom! It activates the controller.

Creating a Custom Controller

That was fun, but let's create our own, real controller. Copy hello_controller.js  and

create a new file called celebrate_controller.js . I'll remove the comments and the

connect method:

assets/controllers/celebrate_controller.js

1

 // ... lines 2 - 3

4

 // ... lines 5 - 8

9

Here's the goal: when we hover over the logo, I want to call a method on the controller that

triggers the js-confetti  library. Start by creating the method. It could be called anything, but

poof()  sure is a fun name!

import { Controller } from '@hotwired/stimulus';

/*

 * This is an example Stimulus controller!

 *

 * Any element with a data-controller="hello" attribute will cause

 * this controller to be executed. The name "hello" comes from the 

filename:

 * hello_controller.js -> "hello"

 *

 * Delete this file or adapt it for your use!

 */

export default class extends Controller {

    connect() {

        this.element.textContent = 'Hello Stimulus! Edit me in 

assets/controllers/hello_controller.js';

    }

}

import { Controller } from '@hotwired/stimulus';

export default class extends Controller {

}



Head over to app.js , copy the js-confetti  code and delete it:

assets/app.js

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 16

Pop that into celebrate  controller... and move the import statement to the top:

assets/controllers/celebrate_controller.js

1

2

3

4

5

6

7

8

9

Cool! The last step is to activate this on an element. Do that in base.html.twig . Let's see...

here's the logo. Add data-controller="celebrate" . And to trigger the action on hover,

say data-action="" ... and the suggestion is almost correct. The format is, first: the

JavaScript event that we want to listen to. Instead of click , we want mouseover . Then -> ,

the name of our controller, #  and the method name: poof :

import JSConfetti from 'js-confetti';

const jsConfetti = new JSConfetti();

jsConfetti.addConfetti();

import { Controller } from '@hotwired/stimulus';

import JSConfetti from 'js-confetti';

export default class extends Controller {

    poof() {

        const jsConfetti = new JSConfetti();

        jsConfetti.addConfetti();

    }

}



templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 29

30

 // ... lines 31 - 36

37

38

 // ... lines 39 - 48

49

50

51

That's it! Refresh and celebrate!!! Each time we mouseover , it calls the method. You can see

this liberally in the console.

Wow, so, as soon as we add a controller to the controllers/  directory, it's loaded and ready

to go. Remember, all with no build.

Lazy-Loading Controllers

But sometimes you might have a controller that's only used on certain pages... so you don't

want to force your user to download it immediately on every page. If you have that situation, you

can make your controller lazy. It's the best.

To do that, add this special comment above it: stimulusFetch: 'lazy' :

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <div class="flex items-center">

                        <a

                            href="{{ path('app_homepage') }}"

                            data-controller="celebrate"

                            data-action="mouseover->celebrate#poof"

                        >

                            <img src="{{ asset('images/logo.png') }}" 

width="50" alt="Space Inviters Logo" >

                        </a>

                    </div>

                </nav>

            </header>

        </div>

    </body>

</html>



assets/controllers/celebrate_controller.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 9

10

Yes, that is pretty crazy. But as soon as we do that, instead of downloading this file on page

load, it will wait until it sees an element on the page with data-controller"celebrate" .

Watch: delete the data-controller  temporarily. Then go over, refresh, and on the network

tools, if I search for celebrate , there's nothing there. If I search for confetti  - since our

controller imports - js-confetti , that's also not there. Those have not been downloaded.

Clear out your network tools. Then go up to the logo and hack in that data-controller .

We're imitating what would happen if we loaded some fresh HTML via AJAX and... that fresh

HTML includes an element with data-controller"celebrate" .

As soon as that appears on the page, go back to the network tools. Two new items showed up!

It noticed the data-controller  and downloaded the controller and js-confetti ... since

that's imported from the controller. And it works brilliantly. I absolutely love this.

Keep this controller lazy, but back in base.html.twig , re-add data-controller .

One of the great things about Stimulus is that it's used by people all over the Interwebs! And

there are many pre-made Stimulus controllers out there to help us solve problems. One group

of them is called Symfony-UX. We'll dive into one of its packages tomorrow.

/* stimulusFetch: 'lazy' */

export default class extends Controller {

}



Chapter 8: Symfony UX Packages

Head over to https://ux.symfony.com. This is the site for the Symfony UX Initiative: a group of

PHP and JavaScript packages that give us free Stimulus controllers. There's a Stimulus

controller that can render chart.js, one that can add an image cropper, and so on.

Today we're going to focus on grabbing a free Stimulus controller that will give us a fancy

autocomplete select  element. You can search, select - it's all very nice.

On our site, head to the voyages section and hit edit. The form has a planet dropdown, which is

fine... but I want to give it more awesomeness!

Installing UX Autocomplete

So let's get this package installed. The UX Autocomplete library is a mixture of PHP with a

Stimulus controller inside. Copy the composer require  line and paste:

composer require symfony/ux-autocomplete

When that finishes... run:

git status

Oooh: the recipe modified two interesting things: controllers.json  and importmap.php

We know that everything in the assets/controllers/  directory will be available as a

Stimulus controller. In addition, anything in controllers.json  will also be registered as a

Stimulus controller:

https://ux.symfony.com/


assets/controllers.json

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

It's a way for third-party PHP packages to add more controllers. The recipe added this entry,

which basically means that it'll grab some code from the package we just installed and register it

as a Stimulus controller.

The point is, we now have a third Stimulus controller in our app! The other change the recipe

made is in importmap.php : it added a new entry for tom-select :

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 29

30

31

32

33

tom-select  is a JavaScript package... and it's actually what does the heavy lifting for the

autocomplete functionality. This stimulus controller is just a small wrapper around

tom-select . And so, since that controller needs tom-select , it was added!

UX "autoimport" CSS

But when we refresh the page, we are greeted with a lovely error. It says

{

    "controllers": {

        "@symfony/ux-autocomplete": {

            "autocomplete": {

                "enabled": true,

                "fetch": "eager",

                "autoimport": {

                    "tom-select/dist/css/tom-select.default.css": true,

                    "tom-select/dist/css/tom-select.bootstrap5.css": false

                }

            }

        }

    },

    "entrypoints": []

}

return [

    'tom-select' => [

        'version' => '2.3.1',

    ],

];



“The autoimport  tom-select.default.css  could not be found in importmap.php .

Try running importmap:require  and then that path.”

Look back into controllers.json . Sometimes, these controllers have an extra section

called autoimport :

assets/controllers.json

1

2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

13

 // ... line 14

15

The idea is that a Stimulus controller might have a CSS file that goes along with it. This section

allows you to activate or deactivate those CSS files. For example, with tom-select , there's a

default CSS file. Or if you're using Bootstrap, you can use the Bootstrap 5 CSS file. We could

set this to false  and this to true .

One difference between using JavaScript modules in a browser versus Node & Webpack is how

much of the package you get. With Node, when you npm add tom-select , that downloads

the entire package: the JavaScript files, CSS files and anything else. But with AssetMapper &

the browser environment in general, when you importmap:require tom-select , that

downloads a single file: just the JavaScript file. The CSS files are not there.

However, with importmap:require , we can, of course, grab a package with its name, like

this:

php bin/console importmap:require tom-select

{

    "controllers": {

        "@symfony/ux-autocomplete": {

            "autocomplete": {

                "autoimport": {

                    "tom-select/dist/css/tom-select.default.css": true,

                    "tom-select/dist/css/tom-select.bootstrap5.css": false

                }

            }

        }

    },

}



Cool. But we can also import a specific file path within that package. And, because

AssetMapper support CSS files, that path can be to a CSS file.

In other words, if we need this vendor CSS file, we can get it with:

php bin/console importmap:require tom-select/dist/css/tom-select.default.css

Got it! Over in the assets/vendor/  directory... there it is! And in importmap.php , it's there

too. This means it's available for our Stimulus controller to import.

The end result? Error gone! And in the page source, there's the CSS file.

Applying Autocomplete to a Field

Ok, after one composer require  call, one importmap:require  call and a ton of me

yapping, we have a new autocomplete Stimulus controller ready to go.

We could add a data-controller  to the select  element. But remember: UX packages are

usually a mixture of Stimulus controllers and PHP code. In this case, the PHP code allows us to

activate the controller directly in our form. Open up src/Form/VoyageType.php . The

planet  field is an EntityType :

src/Form/VoyageType.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 19

20

21

22

23

24

25

 // ... lines 26 - 32

33

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder

            ->add('planet', null, [

                'choice_label' => 'name',

                'placeholder' => 'Choose a planet',

            ])

        ;

    }

}



And, thanks to the new package, any EntityType  or ChoiceType  now has an

autocomplete  option. Set it to true :

src/Form/VoyageType.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 19

20

 // ... lines 21 - 22

23

24

25

26

 // ... lines 27 - 33

34

And now... Ta-da! Well, the fashion police might not love this, but it works! That option activated

the Stimulus controller: you can even see it on the page. Here's the select  now with a

data-controller  followed by that controller's long name.

Customizing the CSS

How can we make this look better? Thanks to the autoimport , the

tom-select.default.css  at least makes it look okay. If we were using Bootstrap, I'd

change this to true , this to false , importmap:require  the Bootstrap file and we'd be

good.

Right now, there's no official support for Tailwind, so we'll style it manually. Over in

assets/styles/app.css , I'll remove the body . In addition to the Tailwind stuff, you can

paste in whatever custom styling you need. These override some of the default styles to look

nice in our space-themed, dark mode:

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder

            ->add('planet', null, [

                'autocomplete' => true,

            ])

        ;

    }

}



assets/styles/app.css

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

@tailwind base;

@tailwind components;

@tailwind utilities;

body {

    background-color: skyblue;

}

/* tom-select custom styling */

/* Base Styles for Dark Mode */

.ts-wrapper {

  @apply border-gray-600;

}

.ts-wrapper .ts-control,

.ts-wrapper.single .ts-control,

.ts-wrapper.single.input-active .ts-control,

.full .ts-control,

.ts-dropdown {

  @apply bg-gray-800 text-white !important;

  box-shadow: none !important;

  background-image: none !important;

  border: none !important;

}

/* Specific Style for the Input Field */

.ts-wrapper .ts-control > input,

.ts-wrapper.single .ts-control > input {

  @apply bg-transparent text-white;

}

.ts-wrapper .ts-dropdown .option {

  @apply bg-gray-800 text-white;

}

/* Active and Hover States for Dropdown Items */

.ts-wrapper .ts-dropdown .active,

.ts-wrapper .ts-dropdown [data-selectable]:hover {

  @apply bg-gray-700 text-white;

}

/* Disabled and Focus States */

.ts-wrapper.disabled .ts-control,

.ts-wrapper.focus .ts-control {

  @apply bg-gray-700 text-gray-400 border-gray-500;

}



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

And now... love it!

Making UX Controllers Lazy

Oh, and remember how we can make our controllers lazy by adding a special comment? We

can do the same thing with controllers loaded in controllers.json  by setting fetch  to

lazy :

assets/controllers.json

1

2

3

4

 // ... line 5

6

 // ... lines 7 - 10

11

12

13

 // ... line 14

15

Check it out. Go to the voyages page. I'll go to my network tools, refresh and search for

"autocomplete"... and "TomSelect". Nothing! But as soon as we go to the edit page where that's

being used: search for autocomplete. There it is! "TomSelect" and the CSS file were also loaded

lazily, only when we needed them.

/* Multi-select Tags Style */

.ts-wrapper.multi .ts-control > div {

  @apply bg-gray-600 text-white;

}

/* Border Radius Adjustments */

.ts-wrapper .ts-control,

.ts-wrapper .ts-dropdown,

.ts-wrapper .ts-control > div {

  @apply rounded-md;

}

/* Dropdown Box Shadow */

.ts-wrapper .ts-dropdown {

  @apply shadow-md;

}

{

    "controllers": {

        "@symfony/ux-autocomplete": {

            "autocomplete": {

                "fetch": "lazy",

            }

        }

    },

}



We're now done with day 8! A full week and day into LAST stack! Tomorrow, we're going to

crank it up to eleven and transform our app into a sleek, single-page wonder with Turbo! Over

the next 7 days... things wil start to get crazy.



Chapter 9: Turbo Drive

It's day 9! Beautiful day 9 where we start to make our app shine. All the fundamentals are in

place - AssetMapper, Tailwind & Stimulus - so today is... almost a victory lap. We're about to get

a huge bang for our buck thanks to a library called Turbo.

Right now, our site, of course, has full page refreshes. Keep an eye on the logo in the address

bar. When I click, everything is done with a full page refresh. That's fine. Never mind, that's not

fine! I want our site to have a devastatingly great user experience.

Luckily, we have Turbo on our team: a JavaScript library forged from the depths of the internet,

bent on destroying all full page refreshes. Watch on their site: you won't see any full page

reloads as we navigate. And check out how fast that feels. It feels like a single page application,

because, well, it is, it's just not one that we need to build with a frontend framework like React.

Installing Turbo

Like Stimulus, Symfony has a package that helps us work with this Turbo. Find your terminal,

and run:

composer require symfony/ux-turbo

When that finishes, do:

git status

Like the other UX package, this modified controllers.json  and importmap.php . In

assets/controllers.json , it added two new controllers:



assets/controllers.json

1

2

 // ... lines 3 - 12

13

14

15

16

17

18

19

20

21

22

23

 // ... line 24

25

The first is... kind of a fake controller. It loads and activates Turbo - you'll see what that does in a

moment - but it's not a Stimulus controller that we'll ever use directly. The second controller is

optional - we're not going to talk about it, and it's disabled by default.

The other change, in importmap.php  is, no surprise: it added @hotwired/turbo :

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 36

37

38

39

40

The result of this single command is amazing. When I refresh, watch the address bar: we're not

going to see any more full page reloads! And everything feels super-duper fast. Uh, I love it.

Even the forms! Click edit. Watch: this submits via AJAX. Or, if I go and create a new one, hit

enter, that submits via AJAX. Our site just got transformed into a single page app with one

command!

Turbo: What's the Catch?

You might be thinking:

{

    "controllers": {

        "@symfony/ux-turbo": {

            "turbo-core": {

                "enabled": true,

                "fetch": "eager"

            },

            "mercure-turbo-stream": {

                "enabled": false,

                "fetch": "eager"

            }

        }

    },

}

return [

    '@hotwired/turbo' => [

        'version' => '7.3.0',

    ],

];



“This is too good to be true, Ryan. What's the catch?”

Ok, there is a catch, but minor for new projects: your JavaScript must be written to work without

full page refreshes. Historically, we've written our JavaScript to execute on page load... or run

on document.ready . And those things just don't happen after the first page load. But as long

as you have everything written in Stimulus, you're good.

For example: our celebrate  controller: it doesn't matter how many pages I click around to,

that just keeps on rolling.

If your app isn't ready for Turbo yet - because of the JavaScript problem - you can disable it. In

app.js , import * as Turbo  from '@hotwired/turbo' . Below, say

Turbo.session.drive = false . I'm not going to do that... so I'll comment it out:

assets/app.js

1

 // ... lines 2 - 5

6

 // ... lines 7 - 8

But why would I install Turbo... just to disable it? Because Turbo is actually three parts. The first

is called Turbo Drive. That's the part that gives us free AJAX navigation on all link clicks and

form submits. And that's what this disables.

But even if you're not ready for Drive, you can still use the two other parts: Turbo Frames and

Turbo Streams. These are powerful and we'll spend a lot of time in this tutorial doing some wild

things with them.

Preloading Links

Turbo Drive itself is pretty simple, but it does have a few other tricks up its sleeve. And they're

constantly adding new things. For example, one feature is called preloading. To show this off, go

into templates/base.html.twig . If you're ever on a page... and you're really sure that you

know what link the user is going to click next, you can preload that.

For example, on the "voyages" link, add data-turbo-preload :

import * as Turbo from '@hotwired/turbo';

//Turbo.session.drive = false;



templates/base.html.twig

 // ... lines 1 - 14

15

16

17

18

19

 // ... lines 20 - 27

28

 // ... line 29

30

 // ... lines 31 - 36

37

38

 // ... lines 39 - 48

49

50

51

Refresh, inspect element, then go to network tools, XHR... and clear the filter. When I refresh,

we immediately see an AJAX request made for the voyages page! Because of this, when we

click this link, watch: it's going to be instant. Boom!

Use this only when you're quite sure what the next page will be. We don't want to trigger a

bunch of unnecessary traffic to your site that won't be used.

Oh, and see these JavaScript errors? These come from Symfony's web debug toolbar and

profiler. I'm not sure why... but it doesn't like the preloading. That's something we need to fix, but

the preloading itself works fine. You can ignore these.

Back in the template, remove the data-turbo-preload ... because we don't really know what

page the user will click to next.

Today was great. With one library, we eliminated all full page reloads. What could be next?

Tomorrow we'll talk about Turbo Frames: a way for us to create Ajax-loading "portions" of our

page, without writing a single line of JavaScript.

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <div class="flex items-center">

                        <a href="{{ path('app_voyage_index') }}" data-

turbo-preload class="ml-6 hover:text-gray-400">Voyages</a>

                    </div>

                </nav>

            </header>

        </div>

    </body>

</html>



Chapter 10: Turbo Frames

On this, day 10: we're going to talk about an ancient concept: frames. If you're old enough on

the Internet, like me, you might remember iframes. They were these weird things where you

could separate your site into different pieces. And when you clicked a link inside a frame, the

navigation stayed inside that frame. It was like having separate web pages that you cobbled

together into one.

The second part of Turbo is Turbo Frames... which is a not weird, modern way to break your

page down into parts... kinda similar to iframes.

See this left sidebar? When we click a planet, it takes us to the show page for that planet. Cool.

But not cool enough! Instead, when I click a planet, I want that content to load right inside of this

sidebar without changing pages.

Adding the <turbo-frame>

To do that, find the sidebar: it's over in templates/main/homepage.html.twig ... up near

the top. This partial renders that planet list. To make this a frame, find the element that

surrounds it and change it to <turbo-frame> . And the one rule of frames is that each needs

to have an id  attribute. It should be something unique that describes what it holds. How about

planet-info :

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

7

 // ... line 8

9

10

11

12

 // ... lines 13 - 60

61

62

{% block body %}

    <div class="flex">

        <aside class="hidden md:block md:w-64 bg-gray-900 px-2 py-6">

            <turbo-frame id="planet-info">

                {{ include('main/_planet_list.html.twig') }}

            </turbo-frame>

        </aside>

    </div>

{% endblock %}



Ok: what does that do? At first, nothing. A <turbo-frame>  is just an HTML element like a

div , and so it renders normally. Though, for styling purpose, turbo-frame  is an inline

element by default.

However, when we click a link... it's busted! It says "Content missing". And in the console:

“The response did not contain the expected <turbo-frame id="planet-info"> .”

When we click this link, it makes an Ajax request to the show page... like it normally would with

Turbo. But because the link is inside a <turbo-frame> , it grabs the HTML and looks for a

matching <turbo-frame>  with id="planet-info" . If it finds that, it grabs the content

inside and puts just that in the <turbo-frame>  over here.

Adding the Matching <turbo-frame>

This means that each link inside a <turbo-frame>  - whatever page it goes to - that page

must have a matching <turbo-frame> .

Copy this <turbo-frame id="planet-info">  and then open

planet/show.html.twig . Put this around the content that we want to load into the sidebar. I

don't really want the h1 ... so put it around this table. Add the closing </turbo-frame>  at the

bottom:

templates/planet/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 33

34

35

 // ... lines 36 - 47

48

49

Refresh! And click. How cool is that? It makes an AJAX request to this page, grabs just the

<turbo-frame>  content and puts it here.

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <turbo-frame id="planet-info">

        <table class="min-w-full bg-gray-800 text-white">

        </table>

    </turbo-frame>

</div>

{% endblock %}



You know what else would be great? A "back" link! To add that, still inside the

<turbo-frame> , add a <div class="mt-2">  then an a , href  set to {{ path() }} .

Link to the homepage:

templates/planet/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 33

34

35

36

37

38

39

 // ... lines 40 - 51

52

53

Try it! We don't even need to refresh. Behold! A back link! Whoops, let's make that more of an

arrow. When we click it... it goes back! That made an AJAX request to the homepage and

looked for a matching <turbo-frame id="planet-info"> . And guess what that holds?

This list of planets.

We're on a roll! Before we finish today, add one more link: an edit link. The route is

app_planet_edit ... with id  set to planet.id :

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <turbo-frame id="planet-info">

        <table class="min-w-full bg-gray-800 text-white">

        </table>

        <div class="mt-2">

            <a href="{{ path('app_homepage') }}">&lt;-- Back</a>

        </div>

    </turbo-frame>

</div>

{% endblock %}



templates/planet/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 35

36

37

38

39

40

41

 // ... lines 42 - 53

54

55

Cool! this time, if we click a planet... then edit... it doesn't work! And I bet you can guess why. It

made an AJAX request to the edit page.... but there is no matching <turbo-frame>  on that

page. And so, we get this error.

But... I don't want to add a <turbo-frame>  to the edit page. The form wouldn't fit into the

sidebar anyway. Nope, when I click this link, I want it to result in a "full page" Turbo navigation.

As soon as you add a <turbo-frame> , you need to keep track of the links that you have

inside of it and either make sure that each goes to a page that has a matching

<turbo-frame> .... or that you target the link or form to do a full visit.

Targeting Links to the Full Page

How do you do that? Find the link, and add data-turbo-frame  - that's a typo Ryan - set to

_top :

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <turbo-frame id="planet-info">

        <div class="mt-2">

            <a href="{{ path('app_homepage') }}">&lt;-- Back</a>

            <a href="{{ path('app_planet_edit', {'id': planet.id}) 

}}">Edit</a>

        </div>

    </turbo-frame>

</div>

{% endblock %}



templates/planet/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 35

36

 // ... lines 37 - 38

39

40

41

 // ... lines 42 - 53

54

55

Now, without refreshing, hit edit. It still breaks. I did the wrong thing. It's

data-turbo-frame="_top" . There we go.

Now hit edit. Full page navigation! It's still Ajax-powered, but the whole page changes.

The other way to target links or forms to the full page is on the <turbo-frame>  itself. You

might say:

“Hey! I want all links in this <turbo-frame>  to be full page navigation by default.”

To do that, set target  to _top . Then, if you have a specific link that you want to load in this

frame, add data-turbo-frame  equals and then the id: planet-info .

Both approaches are fine: your call. But adding target="_top"  to each frame is a bit safer.

Hiding Content Not in a Frame

So this is working super well! Except for the fact that if the user does ever get to the planet

show page, we have an extra set of links. We really only want to show those when we're inside

the <turbo-frame> . How can we do that?

When Turbo sends an Ajax request for a <turbo-frame> , it does add a request header that

tells your app that this is a Turbo Frame request. You can use that inside Symfony to

conditionally do different things... like conditionally render these links.

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <turbo-frame id="planet-info">

        <div class="mt-2">

            <a data-turbo-frame="_top" href="{{ path('app_planet_edit', 

{'id': planet.id}) }}">Edit</a>

        </div>

    </turbo-frame>

</div>

{% endblock %}



We are going to do that one time later in the tutorial. However, I try to minimize this: it adds

complexity. Another option is to hide extra stuff with CSS! For example, we could add a class

onto the sidebar... then only show these links if we're inside that class.

However, Tailwind doesn't really work like that. In Tailwind, you can't change styling conditionally

based on your parent. At least not out-of-the-box. But we can do this with a trick called a variant.

The first thing to notice is that a <turbo-frame> , by default, looks like this: exactly like we

have in our template. But as soon as we click a link, it has a src  attribute. We can take

advantage of that by adding a way inside of Tailwind to style elements conditionally based on

whether they are inside of a <turbo-frame>  that has a src  attribute. Because, it will have a

src  over here... but won't have a src  inside of this <turbo-frame> ... because it never

navigates. In fact, it would be a good idea to add a target="_top'  to this frame, since we

don't need fancy frame navigation on this page.

Anyway, Tailwind variants are a bit more advanced, but simple enough. Import this plugin

module, then go down to plugins . I'll paste in some code:

tailwind.config.js

1

2

3

4

 // ... lines 5 - 12

13

14

15

16

17

18

This adds a variant called turbo-frame : you'll see how we use that in a second. It basically

applies to an element that's inside a <turbo-frame>  that has a src  attribute.

Because we called this turbo-frame , copy that. Now, in show.html.twig , add a hidden

class to hide this div  by default.

When we refresh, it's gone. But then, if we match our turbo-frame  variant, change to display

block :

const plugin = require('tailwindcss/plugin');

/** @type {import('tailwindcss').Config} */

module.exports = {

  plugins: [

    plugin(function({ addVariant }) {

      addVariant('turbo-frame', 'turbo-frame[src] &')

    }),

  ],

}



templates/planet/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 35

36

37

38

39

40

41

 // ... lines 42 - 53

54

55

Check it out. When we refresh, those links are still hidden. But over here... we've got them!

Because we're inside a turbo-frame  with a src  attribute, our variant activates and the

display block  takes over.

Turbo Frames do add some complexity, but we've only started to scratch the surface on what

they make possible.

Tomorrow, when I hover over each planet, I want to add a cool popover with more planet info.

To make that happen, we're going to install another third-party Stimulus controller.

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <turbo-frame id="planet-info">

        <div class="mt-2 hidden turbo-frame:block" >

            <a href="{{ path('app_homepage') }}">&lt;-- Back</a>

            <a data-turbo-frame="_top" href="{{ path('app_planet_edit', 

{'id': planet.id}) }}">Edit</a>

        </div>

    </turbo-frame>

</div>

{% endblock %}



Chapter 11: Popover!

On the menu for day 11 is our first big, beautiful, fully-functional feature: a popover. But, like a

gorgeous, reusable, lazy-loading popover!

Open source Stimulus controllers already exist to solve lots of different problems. And one of

the best sources for them is Stimulus Components: a rich collection of controllers. We're going

to work with the one called popover.

If you don't know, a popover is a friendly box that pops over to say hello when you hover on an

element. It's like a tooltip, except they're usually bigger and you can hover over the box itself.

Installing & Setting up stimulus-popover

This is a pure JavaScript library. But we're not going to install it with yarn  or npm . Instead, you

know, run:

php bin/console importmap:require stimulus-popover

Since we're dealing with a pure JavaScript package, there's no Flex recipe. The only change

this made was to importmap.php :

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 39

40

41

42

43

So we have access to the code, but this time, we need to register the controller manually.

return [

    'stimulus-popover' => [

        'version' => '6.2.0',

    ],

];



That's okay! Copy these lines from the documentation... then open assets/bootstrap.js .

Paste this on top. We don't need Application.start() ... and move

application.register()  after... and call it app :

assets/bootstrap.js

 // ... line 1

2

3

4

5

Congrats! We have a shiny new controller named popover .

Using the Controller

The goal is to hover over this planet and show a popover with extra info. To get that working,

head down on the docs. There's some Rails documentation for server-side stuff.... we don't

need that. Here we go. So we need an element with data-controller"popover"  and,

inside, a link that, on mouseenter  calls a show  method and, on mouseleave  calls hide .

Below, this is the content that will be shown in the popover.

Copy this then, head to homepage.html.twig , and search for planets. Here's the td  and

here's the planet image. Paste... then I'll move my img  inside.

Lovely! Then we need to put this data-action  somewhere. It's tempting to put it on the img

itself. But, the library adds the popover content inside the element that triggers it... and since

you can't put content inside an img , it's a no-go. Instead, put it directly on the parent div :

import Popover from 'stimulus-popover';

const app = startStimulusApp();

app.register('popover', Popover);



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 38

39

40

41

 // ... line 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 // ... line 62

63

64

65

66

67

 // ... lines 68 - 71

72

73

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <tbody>

                        {% for voyage in voyages %}

                        <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                            <td class="px-2 whitespace-nowrap">

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                >

                                    <img

                                        src="{{ 

asset('images/'~voyage.planet.imageFilename) }}"

                                        alt="Image of {{ 

voyage.planet.name }}"

                                        class="inline-block w-8 h-8 

rounded-full bg-gray-600 ml-2"

                                    >

                                    <template data-popover-

target="content">

                                        <div data-popover-target="card">

                                            <p>This content is in a hidden

                                                template.</p>

                                        </div>

                                    </template>

                                </div>

                            </td>

                        </tr>

                        {% endfor %}

                    </tbody>

                </table>

            </div>

        </section>

    </div>



74

So on mouseenter  of this div, show the popover, on mouseleave  of this div, hide the

popover.

That ought to do the trick! It might look a bit wild at first... but hey, let's dive in and see what

happens. And, it... works! It's weird and jumpy, but functional!

Styling the Popover

Time to make it look better. I'll select this entire div  and paste:

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 38

39

40

41

 // ... line 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <tbody>

                        {% for voyage in voyages %}

                        <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                            <td class="px-2 whitespace-nowrap">

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                    class="relative"

                                >

                                    <img

                                        src="{{ 

asset('images/'~voyage.planet.imageFilename) }}"

                                        alt="Image of {{ 

voyage.planet.name }}"

                                        class="inline-block w-8 h-8 

rounded-full bg-gray-600 ml-2"

                                    >

                                    <template data-popover-

target="content">

                                        <div

                                            data-popover-target="card"

                                            class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                        >

                                            <div class="px-6 py-4">

                                                <h4>

                                                    <a class="hover:text-

blue-300 transition-colors duration-100" href="{{ path('app_planet_show', 

{ id: voyage.planet.id }) }}">

                                                        {{ 

voyage.planet.name }}

                                                    </a>

                                                </h4>



66

67

68

69

70

71

 // ... line 72

73

74

75

76

77

 // ... lines 78 - 81

82

83

84

That didn't do anything too big: I added a relative  class on the outer div ... and down here,

made the popover absolutely positioned and printed out some planet info.

Now... look at that! You know what would be cool? A little arrow! We can add one in pure CSS

with an :after  pseudo-element on the popover card  target. This is a standard CSS strategy

for adding arrows, and you can find it on the web, or you use AI to help generate it.

Open app.css  and I'll paste in some code. You can also do this with Tailwind classes:

assets/styles/app.css

 // ... lines 1 - 63

64

65

66

67

68

69

70

71

Go check it out! Love it!

Lazy-Loading with a Turbo Frame

                                                <small>{{ 

voyage.planet.lightYearsFromEarth|round|number_format }} ly</small>

                                            </div>

                                        </div>

                                    </template>

                                </div>

                            </td>

                        </tr>

                        {% endfor %}

                    </tbody>

                </table>

            </div>

        </section>

    </div>

{% endblock %}

[data-popover-target=card]:after {

    content: "";

    position: absolute;

    top: 100%;

    left: 1rem;

    border-width: .75rem;

    @apply border-t-white dark:border-t-gray-900 border-transparent;

}



At this point, the popover works great and looks great. Are you up for a challenge? Instead of

loading all of this markup on page load, I want to load it via Ajax only once the user hovers. The

popover library does have a way to do this. But as an extra, extra challenge, I want to do it with

regular ol ' Turbo frames. Because, Frames are really good at loading stuff via AJAX! Plus,

we'll see a couple of extra frames features that we haven't talked about yet.

To start, we need an endpoint that renders this planet info. In the homepage template, copy that

code, then delete it:

templates/main/homepage.html.twig

 // ... lines 1 - 59

60

61

62

63

64

65

66

67

 // ... lines 68 - 85

In templates/planet/ , create a new file called _card.html.twig , and paste:

templates/planet/_card.html.twig

 // ... line 1

2

3

4

5

6

7

8

9

 // ... lines 10 - 11

Next, create an endpoint for this. In src/Controller/PlanetController.php , anywhere,

I'll paste in a route and controller:

                                            <div class="px-6 py-4">

                                                <h4>

                                                    <a class="hover:text-

blue-300 transition-colors duration-100" href="{{ path('app_planet_show', 

{ id: voyage.planet.id }) }}">

                                                        {{ 

voyage.planet.name }}

                                                    </a>

                                                </h4>

                                                <small>{{ 

voyage.planet.lightYearsFromEarth|round|number_format }} ly</small>

                                            </div>

    <div class="px-6 py-4">

        <h4>

            <a class="hover:text-blue-300 transition-colors duration-100" 

href="{{ path('app_planet_show', { id: voyage.planet.id }) }}">

                {{ voyage.planet.name }}

            </a>

        </h4>

        <small>{{ voyage.planet.lightYearsFromEarth|round|number_format }} 

ly</small>

    </div>



src/Controller/PlanetController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 54

55

56

57

58

59

60

61

 // ... lines 62 - 94

95

Nothing special: it queries for the Planet  and passes it to the template. In that template, adjust

the variables. Instead of voyage.planet , use planet  in each spot:

templates/planet/_card.html.twig

 // ... line 1

2

3

4

5

6

7

8

9

 // ... lines 10 - 11

We now have an AJAX endpoint that returns the content. Here's the magic part. Over in

homepage.html.twig , we want to load that content right here. Do that by adding a

turbo-frame  with id  set to planet-card-  then {{ voyage.planet.id }}  so it's

unique on the page:

class PlanetController extends AbstractController

{

    #[Route('/{id}/card', name: 'app_planet_show_card', methods: ['GET'])]

    public function showCard(Planet $planet): Response

    {

        return $this->render('planet/_card.html.twig', [

            'planet' => $planet,

        ]);

    }

}

    <div class="px-6 py-4">

        <h4>

            <a class="hover:text-blue-300 transition-colors duration-100" 

href="{{ path('app_planet_show', { id: planet.id }) }}">

                {{ planet.name }}

            </a>

        </h4>

        <small>{{ planet.lightYearsFromEarth|round|number_format }} 

ly</small>

    </div>



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 38

39

40

41

 // ... line 42

43

44

45

46

47

48

 // ... lines 49 - 54

55

56

57

58

59

60

61

62

63

64

65

66

 // ... line 67

68

69

70

71

72

 // ... lines 73 - 76

77

78

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <tbody>

                        {% for voyage in voyages %}

                        <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                            <td class="px-2 whitespace-nowrap">

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                    class="relative"

                                >

                                    <template data-popover-

target="content">

                                        <div

                                            data-popover-target="card"

                                            class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                        >

                                            <turbo-frame id="planet-card-

{{ voyage.planet.id }}" src="{{ path('app_planet_show_card', {

                                                'id': voyage.planet.id,

                                            }) }}"></turbo-frame>

                                        </div>

                                    </template>

                                </div>

                            </td>

                        </tr>

                        {% endfor %}

                    </tbody>

                </table>

            </div>

        </section>

    </div>



79

Add this same frame in _card.html.twig ... with the closing tag:

templates/planet/_card.html.twig

1

2

3

4

5

6

7

8

9

10

Usually, a <turbo-frame>  will be one part of a whole page. But it's perfectly ok to make an

endpoint that just returns a single frame.

Back over in homepage.html.twig , we have the basic setup. The trick is that... we're not

waiting for somebody to click a link inside this frame that will then load the card page. Nope, we

want it to load immediately.

To do that, add a src  attribute set to {{ path() }} ... and... that's almost correct. The route

is app_planet_show_card :

{% endblock %}

<turbo-frame id="planet-card-{{ planet.id }}">

    <div class="px-6 py-4">

        <h4>

            <a class="hover:text-blue-300 transition-colors duration-100" 

href="{{ path('app_planet_show', { id: planet.id }) }}">

                {{ planet.name }}

            </a>

        </h4>

        <small>{{ planet.lightYearsFromEarth|round|number_format }} 

ly</small>

    </div>

</turbo-frame>



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 38

39

40

41

 // ... line 42

43

44

45

46

47

48

 // ... lines 49 - 54

55

56

57

58

59

60

61

62

63

64

65

66

 // ... line 67

68

69

70

71

72

 // ... lines 73 - 76

77

78

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <tbody>

                        {% for voyage in voyages %}

                        <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                            <td class="px-2 whitespace-nowrap">

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                    class="relative"

                                >

                                    <template data-popover-

target="content">

                                        <div

                                            data-popover-target="card"

                                            class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                        >

                                            <turbo-frame id="planet-card-

{{ voyage.planet.id }}" src="{{ path('app_planet_show_card', {

                                                'id': voyage.planet.id,

                                            }) }}"></turbo-frame>

                                        </div>

                                    </template>

                                </div>

                            </td>

                        </tr>

                        {% endfor %}

                    </tbody>

                </table>

            </div>

        </section>

    </div>



79

Done! When a turbo frame appears that already has a src  attribute, it will make the AJAX call

to load that content immediately.

Try it. Refresh and... content missing. I mucked something up. That's ok - we can debug! The

call failed with a 500 error. This is where the web debug toolbar comes in handy. We can't see

the error easily... but via the Ajax toolbar element, we can click to see the big beautiful exception

page. Ah:

“Variable voyage  does not exist.”

Because I need to adjust that to planet.id :

templates/planet/_card.html.twig

1

 // ... lines 2 - 9

10

All right. And now... got it! There is a moment when the popover is empty... but we'll fix that

soon.

Lazy-Loading Turbo Frames

By complete accident, our Turbo Frame is even being loaded lazily. What I mean is: when we

have a <turbo-frame>  with a src  attribute, the AJAX call will be made immediately. With

that in mind, shouldn't we see 30 Ajax calls happening all at once? Yea... but we don't! It only

happens once we hover. Why?

Inspect that element. Ah. It's by accident thanks to the template  element. The template

element is special in your browser: anything inside it behaves... as if it's not on the page at all:

almost like it's a string instead of an element. So, when we first load, the <turbo-frame>  is

technically not part of the page. But the moment we hover, it copies that onto the page, the

turbo-frame  comes alive and the Ajax call is made. Pretty cool!

But there will be other situations when we want a turbo-frame  to load its content only once

that frame becomes visible. And we can do that! To show this off, change the template  to a

div  temporarily:

{% endblock %}

<turbo-frame id="planet-card-{{ planet.id }}">

</turbo-frame>



templates/main/homepage.html.twig

 // ... lines 1 - 43

44

45

46

47

48

 // ... lines 49 - 54

55

56

57

58

59

60

61

62

63

64

65

 // ... lines 66 - 80

This is going to look awful... because every card will be visible all at once. Yup! They're all on

the page and it made 30 Ajax calls immediately! Yikes! To tell these frames to not load until they

become visible on the page, add loading="lazy" :

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                    class="relative"

                                >

                                    <div data-popover-target="content">

                                        <div

                                            data-popover-target="card"

                                            class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                        >

                                            <turbo-frame id="planet-card-

{{ voyage.planet.id }}" target="_top" src="{{ path('app_planet_show_card', 

{

                                                'id': voyage.planet.id,

                                            }) }}"></turbo-frame>

                                        </div>

                                    </div>

                                </div>



templates/main/homepage.html.twig

 // ... lines 1 - 43

44

45

46

47

48

 // ... lines 49 - 54

55

56

57

58

59

60

61

62

63

64

65

 // ... lines 66 - 80

Refresh now. 3 ajax calls... because only 3 frames are visible! The other elements are all on the

page... but below the scroll. Watch this number as I scroll. See that? As they become visible,

each makes its AJAX call. So cool.

Change the element back to a template  so that things work nicely again:

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                    class="relative"

                                >

                                    <div data-popover-target="content">

                                        <div

                                            data-popover-target="card"

                                            class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                        >

                                            <turbo-frame loading="lazy" 

id="planet-card-{{ voyage.planet.id }}" target="_top" src="{{ 

path('app_planet_show_card', {

                                                'id': voyage.planet.id,

                                            }) }}"></turbo-frame>

                                        </div>

                                    </div>

                                </div>



templates/main/homepage.html.twig

 // ... lines 1 - 43

44

45

46

47

48

 // ... lines 49 - 54

55

56

57

58

59

60

61

62

63

64

65

 // ... lines 66 - 80

Adding Loading Content

Ok, I'm really happy. But I want to perfect this new feature. One thing I don't like is that it's

empty before the Ajax call finishes. I'd like to add some loading content.

This is easy: when you have a turbo-frame  with a src  attribute, whatever content is inside

will be shown by default while it loads. I'll paste in a div  with an SVG:

                                <div

                                    data-controller="popover"

                                    data-action="mouseenter->popover#show 

mouseleave->popover#hide"

                                    class="relative"

                                >

                                    <template data-popover-

target="content">

                                        <div

                                            data-popover-target="card"

                                            class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                        >

                                            <turbo-frame loading="lazy" 

id="planet-card-{{ voyage.planet.id }}" target="_top" src="{{ 

path('app_planet_show_card', {

                                                'id': voyage.planet.id,

                                            }) }}"></turbo-frame>

                                        </div>

                                    </template>

                                </div>



templates/main/homepage.html.twig

 // ... lines 1 - 59

60

61

62

63

64

65

66

67

68

69

 // ... lines 70 - 87

This SVG comes from Tabler Icons. That's a great source to find an icon that you copy into your

project. I've coupled that with an animate-spin  class from Tailwind.

Let's check it. Quick, spinny and lovely!

Remembering the Ajax Call

Do we have time for one more thing? When we hover over the element, it makes the AJAX call.

And... it repeats that every time we hover. It doesn't remember the content from the AJAX call.

That's due to how the popover controller works... and if I had been less stubborn and used its

way of Ajax-loading content, it wouldn't be a problem. Anyway, each time we hover, it creates

the turbo-frame , destroys it, creates a new one, destroys it, etc.

So: how can we make the controller remember the content? I have no idea! But let's go look

inside the code. In assets/vendor/stimulus-popover/ , open this file. The contents are

minified... but a quick Cmd+L  to reformat the code fixes that. How cool is this? We can now

read this vendor file - and even add temporary debugging code if we needed to. And... I think I

see a way that we can make this work.

                                            <turbo-frame loading="lazy" 

id="planet-card-{{ voyage.planet.id }}" target="_top" src="{{ 

path('app_planet_show_card', {

                                                'id': voyage.planet.id,

                                            }) }}">

                                                <div class="p-10">

                                                    <svg 

xmlns="http://www.w3.org/2000/svg" class="animate-spin" width="24" 

height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" 

fill="none" stroke-linecap="round" stroke-linejoin="round">

                                                       <path stroke="none" 

d="M0 0h24v24H0z" fill="none"></path>

                                                       <path d="M12 3a9 9 

0 1 0 9 9"></path>

                                                    </svg>

                                                </div>

                                            </turbo-frame>



Just like with Symfony controllers, we can override Stimulus controllers. Inside the

controllers/  directory, create our own popover_controller.js . Then I'll paste in some

code:

assets/controllers/popover_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Normally we import Controller  from Stimulus and extend that. But in this case, I'm importing

the popover controller directly and extending that. Then we override the show  method and

hide  method to toggle a hidden  class instead of fully destroying the element.

And now that we have our own controller named popover , in bootstrap.js , we don't need

to register the one from Stimulus components. The popover  controller will be our controller...

then we leverage the Stimulus components controller via inheritance.

assets/bootstrap.js

 // ... lines 1 - 3

4

Moment of truth! It loads once... then remembers its content!

Not only did we create the perfect popover, we can now easily repeat this on other parts of our

site. If you're wondering if we could reuse some of the popover markup... stay tuned for Day 23

when we talk about Twig Components.

That's a wrap for today! Get some well-deserved rest, because tomorrow we'll write a tiny, yet

mighty, Stimulus controller called auto-submit.

import Popover from 'stimulus-popover';

export default class extends Popover {

    async show(t) {

        if (this.hasCardTarget) {

            this.cardTarget.classList.remove('hidden');

            return;

        }

        super.show(t);

    }

    hide() {

        this.hasCardTarget && this.cardTarget.classList.add('hidden');

    }

}

// app.register('popover', Popover);



Chapter 12: Auto-Submitting Forms

Day 12 already? Over the next 3 days, we're going to work on one, big goal: transforming this

table into a rich data-table setup, with searching, column filtering, pagination, all happening with

beautiful AJAX. This is one of the parts I'm most excited to dive into.

Our homepage does have a search. And there's nothing particularly special about it. I hit enter

to submit the form, the query parameter is in the URL, and it filters the results. Naturally, thanks

to Turbo Drive, it all happens via AJAX.

For our first trick, watch as we make the search update automatically as we type. So we type

and, without hitting enter, the list should update.

To do this, we're going to borrow a controller from a 30 Days of Hotwire repository. This comes

from a fantastic 30 Days of Hotwire challenge that someone from the Rails community did. I

love this series and it has a ton of good stuff. I highly recommend checking it out.

The autosubmit Stimulus Controller

Anyway, I'm going to borrow this great "auto-submit" controller. It's dead-simple: it gives us a

way to submit a form... with optional debouncing. If I type really quickly, I don't want to submit

the form four times. I want it to wait for a slight pause... and then submit. That's called

debouncing. This waits for a 300 millisecond pause.

So let's roll up our sleeves and get this into our app. Create a new file called

autosubmit_controller.js ... then paste:

https://github.com/ilrock/thirty_days_of_hotwire
https://twitter.com/ilrock__/status/1631315562390519809


assets/controllers/autosubmit_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Then head to the homepage to use it. Near the top... here's our search form. On the form, add

data-controller"autosubmit" :

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 30

31

 // ... lines 32 - 85

86

87

88

Notice I'm getting auto-complete on that. That's thanks to a Stimulus plugin I have for

PhpStorm.

Next, down on the input, say data-action  equals autosubmit#debouncedSubmit :

import { Controller } from "@hotwired/stimulus"

import debounce from 'debounce'

// Connects to data-controller="autosubmit"

export default class extends Controller {

  initialize() {

    this.debouncedSubmit = debounce(this.debouncedSubmit.bind(this), 300)

  }

  submit(e) {

    this.element.requestSubmit()

  }

  debouncedSubmit() {

    this.submit()

  }

}

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                data-controller="autosubmit"

            >

            </form>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 18

19

20

21

 // ... lines 22 - 27

28

29

 // ... line 30

31

 // ... lines 32 - 85

86

87

88

In the controller, you can call submit  to submit the form immediately or

debouncedSubmit()  to wait for the pause. And we don't need to include the event name this

time - like input->  to listen to the input  event. When you apply a data-action  to an

input , a button  or a link , Stimulus figures out which event you want to listen to. Most of

the time, life will be simple like this.

Installing the Missing Package

Does it work? No! Because we have an error... an error that I hope will feel familiar!

“Failed to resolve module specifier debounce .”

This comes from our code! Our copied code is using a debounce  package... and we don't

have that installed! Cool! Copy debounce , spin over and run:

php bin/console importmap:require debounce

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                data-controller="autosubmit"

            >

                <input

                    data-action="autosubmit#debouncedSubmit"

                >

            </form>

        </section>

    </div>

{% endblock %}



Now it's in our project... and now the error is gone. Ready for the magic? Hey, it's working! Just

one request after I finished typing thanks to debounce!

The only bummer is that we're losing focus when it reloads the entire page. As a workaround -

this is not going to be our final solution - we can try putting autofocus :

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 18

19

20

21

 // ... lines 22 - 28

29

30

 // ... line 31

32

 // ... lines 33 - 86

87

88

89

This... almost works... except we're losing the cursor location: it puts us back at the beginning.

That's okay: we're going to solve this in a much better way soon. And when we do, we're not

even going to need the autofocus.

Tomorrow, let's make this richer by adding pagination and column sorting.

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                data-controller="autosubmit"

            >

                <input

                    autofocus

                >

            </form>

        </section>

    </div>

{% endblock %}



Chapter 13: Pagination & Column Sorting

Welcome to Day 13! We're going to tap the breaks on Stimulus and Turbo and only work with

Symfony and Twig today. Our goal is to add pagination and column sorting to this list.

Adding Pagination

I like to add pagination with Pagerfanta. I love this library, though I do get a bit lost in its

documentation. But hey: it's open source, if you're not happy, go fix it!

To use Pagerfanta, we'll install three libraries:

composer require babdev/pagerfanta-bundle pagerfanta/doctrine-orm-adapter pager

Cool beans! Let's get the PHP side working first. Open

src/Controller/MainController.php . The current page will be stored on the URL as

?page=1  or ?page=2 , so we need to read that page  query parameter. I'll do that with a cool

newish #[MapQueryParameter]  attribute. And actually, before... I was doing too much work.

If your query parameter matches your argument name, you don't need to specify it there. So, I'll

remove it on those two. It is different for searchPlanet : a parameter we'll use later.

Anyway, this will read the ?page=  and we'll default it to 1. Oh, and the order of these doesn't

matter:



src/Controller/MainController.php

 // ... lines 1 - 12

13

14

15

16

17

18

 // ... lines 19 - 20

21

22

23

24

25

 // ... lines 26 - 37

38

Below, copy the $voyageRepository->findBySearch()  line, and replace it with a Pager

object: $pager  equals Pagerfanta::createForCurrentPageWithMaxPerPage() :

src/Controller/MainController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 14

15

16

 // ... line 17

18

 // ... lines 19 - 23

24

25

26

 // ... lines 27 - 29

30

 // ... lines 31 - 36

37

38

The first argument is an adapter: new QueryAdapter  then paste in the code from before. But,

that's not quite right: this method returns an array of voyages:

use Symfony\Component\Routing\Annotation\Route;

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

        #[MapQueryParameter] int $page = 1,

        #[MapQueryParameter] string $query = null,

        #[MapQueryParameter('planets', \FILTER_VALIDATE_INT)] array 

$searchPlanets = [],

    ): Response

    {

}

use Pagerfanta\Pagerfanta;

class MainController extends AbstractController

{

    public function homepage(

    ): Response

    {

        $pager = Pagerfanta::createForCurrentPageWithMaxPerPage(

        );

    }

}



src/Repository/VoyageRepository.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 // ... lines 40 - 60

61

but we now need a QueryBuilder . Fortunately, I already set things up so that we can get this

same result, but as a QueryBuilder  via: findBySearchQueryBuilder :

class VoyageRepository extends ServiceEntityRepository

{

    /**

     * @return Voyage[]

     */

    public function findBySearch(?string $query, array $searchPlanets, int 

$limit = null): array

    {

        $qb =  $this->findBySearchQueryBuilder($query, $searchPlanets);

        if ($limit) {

            $qb->setMaxResults($limit);

        }

        return $qb

            ->getQuery()

            ->getResult();

    }

}



src/Repository/VoyageRepository.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Paste that method name in.

The next argument is the current page - $page  - then max per page. How about 10?

class VoyageRepository extends ServiceEntityRepository

{

    public function findBySearchQueryBuilder(?string $query, array 

$searchPlanets, ?string $sort = null, string $direction = 'DESC'): 

QueryBuilder

    {

        $qb = $this->createQueryBuilder('v');

        if ($query) {

            $qb->andWhere('v.purpose LIKE :query')

                ->setParameter('query', '%' . $query . '%');

        }

        if ($searchPlanets) {

            $qb->andWhere('v.planet IN (:planets)')

                ->setParameter('planets', $searchPlanets);

        }

        if ($sort) {

            $qb->orderBy('v.' . $sort, $direction);

        }

        return $qb;

    }

}



src/Controller/MainController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

16

 // ... line 17

18

 // ... lines 19 - 23

24

25

26

27

28

29

30

 // ... lines 31 - 36

37

38

Pass $pager  to the template as the voyages  variable:

src/Controller/MainController.php

 // ... lines 1 - 14

15

16

 // ... line 17

18

 // ... lines 19 - 23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 35

36

37

38

That... should just work because we can loop over $pager  to get the voyages.

use Pagerfanta\Doctrine\ORM\QueryAdapter;

class MainController extends AbstractController

{

    public function homepage(

    ): Response

    {

        $pager = Pagerfanta::createForCurrentPageWithMaxPerPage(

            new QueryAdapter($voyageRepository-

>findBySearchQueryBuilder($query, $searchPlanets)),

            $page,

            10

        );

    }

}

class MainController extends AbstractController

{

    public function homepage(

    ): Response

    {

        $pager = Pagerfanta::createForCurrentPageWithMaxPerPage(

            new QueryAdapter($voyageRepository-

>findBySearchQueryBuilder($query, $searchPlanets)),

            $page,

            10

        );

        return $this->render('main/homepage.html.twig', [

            'voyages' => $pager,

        ]);

    }

}



Rendering the Pagination Links

Next up, in homepage.html.twig , we need pagination links! Down at the bottom, I already

have a spot for this with hardcoded previous and next links:

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 82

83

84

85

86

87

88

89

The way you're supposed to render Pagerfanta links is by saying {{ pagerfanta() }}  and

then passing voyages :

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 82

83

84

85

86

87

88

89

 // ... lines 90 - 91

When we try this - let me clear my search out - the pagination looks awful... but it is working! As

we click, the results are changing.

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="flex items-center mt-6 space-x-4">

                <a href="#" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Previous</a>

                <a href="#" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Next</a>

            </div>

        </section>

    </div>

{% endblock %}

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="flex items-center mt-6 space-x-4">

                {{ pagerfanta(voyages) }}

                <a href="#" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Previous</a>

                <a href="#" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Next</a>

            </div>

        </section>

    </div>



So... how can we change these pagination links from "blah" to "ah"? There is a built-in Tailwind

template that you can tell Pagerfanta to use. That involves creating a

babdev_pagerfanta.yaml  file and a bit of configuration. I haven't used this before - so let

me know how it goes!

babdev_pagerfanta:

    # The default Pagerfanta view to use in your application

    default_view: twig

    # The default Twig template to use when using the Twig Pagerfanta view

    default_twig_template: '@BabDevPagerfanta/tailwind.html.twig'

Because... I'm going to be stubborn. I want to just have previous & next buttons... and I want to

style them exactly like this. So let's go rogue!

The first thing we need to do is render these links conditionally, only if there is a previous page.

To do that, say if voyages.hasPreviousPage , then render. And, if we have a next page,

render that:

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 82

83

84

85

86

87

88

89

90

91

92

93

For the URLs, use a helper called pagerfanta_page_url() . Pass it the pager, voyages ,

then which page we want to go to: voyages.previousPage . Copy that, then repeat it below

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="flex items-center mt-6 space-x-4">

                {% if voyages.hasPreviousPage %}

                    <a href="#" class="block py-2 px-4 bg-gray-700 text-

white rounded hover:bg-gray-600">Previous</a>

                {% endif %}

                {% if voyages.hasNextPage %}

                    <a href="#" class="block py-2 px-4 bg-gray-700 text-

white rounded hover:bg-gray-600">Next</a>

                {% endif %}

            </div>

        </section>

    </div>

{% endblock %}



with voyages.nextPage :

templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 82

83

84

85

86

87

88

89

 // ... lines 90 - 92

93

94

95

96

Lovely! Let's give that a try. Refresh. Love it! The previous page is missing, we click next, and

it's there. Click next again. Page 3 is the last one. We got it!

For extra credit, let's even print the current page. Add a div... then print

voyages.currentPage , a slash and voyages.nbPages :

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="flex items-center mt-6 space-x-4">

                {% if voyages.hasPreviousPage %}

                    <a href="{{ pagerfanta_page_url(voyages, 

voyages.previousPage) }}" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Previous</a>

                {% endif %}

                {% if voyages.hasNextPage %}

                    <a href="{{ pagerfanta_page_url(voyages, 

voyages.nextPage) }}" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Next</a>

                {% endif %}

            </div>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Good job, AI!

And... there we go. Page 1 of 3. Page 2 of 3.

Column Sorting

What about column sorting? I want to be able to click each column to sort by that. For this, we

need two new query parameters. A sort  column name and sortDirection . Back to PHP!

Add #[MapQueryParameter]  on a string  argument called $sort . Default it to leaveAt .

That's the property name for this departing column. Then, do #[MapQueryParameter]  again

to add a string $sortDirection  that defaults to ascending:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="flex items-center mt-6 space-x-4">

                {% if voyages.hasPreviousPage %}

                    <a href="{{ pagerfanta_page_url(voyages, 

voyages.previousPage) }}" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Previous</a>

                {% endif %}

                {% if voyages.hasNextPage %}

                    <a href="{{ pagerfanta_page_url(voyages, 

voyages.nextPage) }}" class="block py-2 px-4 bg-gray-700 text-white 

rounded hover:bg-gray-600">Next</a>

                {% endif %}

                <div class="ml-4">

                    Page {{ voyages.currentPage }}/{{ voyages.nbPages }}

                </div>

            </div>

        </section>

    </div>

{% endblock %}



src/Controller/MainController.php

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 21

22

23

 // ... lines 24 - 25

26

27

 // ... lines 28 - 42

43

44

Inside the method, I'll paste 2 boring lines that validate that sort  is a real column:

src/Controller/MainController.php

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 25

26

27

28

29

 // ... lines 30 - 42

43

44

We could probably do the same for $sortDirection , but I'll skip and go to

findBySearchQueryBuilder() . This is already set up to expect the sort arguments. So

pass $sort  and $sortDirection ... and it should be happy!

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

        #[MapQueryParameter] string $sort = 'leaveAt',

        #[MapQueryParameter] string $sortDirection = 'ASC',

    ): Response

    {

    }

}

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

    ): Response

    {

        $validSorts = ['purpose', 'leaveAt'];

        $sort = in_array($sort, $validSorts) ? $sort : 'leaveAt';

    }

}



src/Controller/MainController.php

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 25

26

27

28

29

30

31

 // ... lines 32 - 33

34

 // ... lines 35 - 42

43

44

Finally, we're going to need this info in the template to help render the sort links. Pass sort  set

to $sort  and sortDirection  set to $sortDirection :

src/Controller/MainController.php

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 25

26

27

 // ... lines 28 - 35

36

 // ... lines 37 - 39

40

41

42

43

44

Adding the Column Sorting Links

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

    ): Response

    {

        $validSorts = ['purpose', 'leaveAt'];

        $sort = in_array($sort, $validSorts) ? $sort : 'leaveAt';

        $pager = Pagerfanta::createForCurrentPageWithMaxPerPage(

            new QueryAdapter($voyageRepository-

>findBySearchQueryBuilder($query, $searchPlanets, $sort, $sortDirection)),

        );

    }

}

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

    ): Response

    {

        return $this->render('main/homepage.html.twig', [

            'sort' => $sort,

            'sortDirection' => $sortDirection,

        ]);

    }

}



The most tedious part is transforming each th  into the proper sort link. Add an a  tag and break

it onto multiple lines. Set the href  to this page - the homepage - with an extra sort  set to

purpose : the name of this column. For sortDirection , this is more complex: if sort

equals purpose  and sortDirection  is asc , then we want desc . Otherwise, use asc .

Finally, in addition to the sort  and sortDirection  query parameters, we need to keep any

existing query parameters that might be present - like the search query. And there's a cool way

to do this: ...  then app.request.query.all :

templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 55

56

57

58

59

60

61

62

63

64

65

 // ... line 66

67

68

 // ... lines 69 - 78

79

80

 // ... lines 81 - 119

120

121

 // ... lines 122 - 132

133

134

135

Done! Oh, but after the word Purpose, let's add a nice down or up arrow. To help, I'll paste a

Twig macro. I don't often use macros... but this will help us figure out the direction, then print the

correct SVG: a down arrow, an up arrow, or an up and down arrow:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <thead>

                        <tr>

                            <th class="text-left py-2">

                                <a href="{{ path('app_homepage', {

                                    ...app.request.query.all(),

                                    sort: 'purpose',

                                    sortDirection: sort == 'purpose' and 

sortDirection == 'asc' ? 'desc' : 'asc',

                                }) }}">

                                </a>

                            </th>

                        </tr>

                    </thead>

                </table>

            </div>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 136

Down here... use this with {{ _self.sortArrow() }}  passing 'purpose' , sort  and

sortDirection :

{% macro sortArrow(sortName, sort, sortDirection) %}

    {% if sort == sortName %}

        {% if sortDirection == 'asc' %}

            <svg xmlns="http://www.w3.org/2000/svg" class="inline-block w-

4 h-4" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" 

stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round">

               <path stroke="none" d="M0 0h24v24H0z" fill="none"></path>

               <path d="M6 15l6 -6l6 6"></path>

            </svg>

        {% else %}

            <svg xmlns="http://www.w3.org/2000/svg" class="inline-block w-

4 h-4" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" 

stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round">

               <path stroke="none" d="M0 0h24v24H0z" fill="none"></path>

               <path d="M6 9l6 6l6 -6"></path>

            </svg>

        {% endif %}

    {% else %}

        <!-- up and down arrow svg -->

        <svg xmlns="http://www.w3.org/2000/svg" class="inline-block w-4 h-

4 text-slate-300" width="24" height="24" viewBox="0 0 24 24" stroke-

width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round">

           <path stroke="none" d="M0 0h24v24H0z" fill="none"></path>

           <path d="M8 9l4 -4l4 4"></path>

           <path d="M16 15l-4 4l-4 -4"></path>

        </svg>

    {% endif %}

{% endmacro %}



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 55

56

57

58

59

60

61

62

63

64

65

66

67

68

 // ... lines 69 - 78

79

80

 // ... lines 81 - 119

120

121

 // ... lines 122 - 132

133

134

135

Phew! Let's repeat all of this for the departing column. Paste, change purpose  to leaveAt ,

the text to Departing ... then use leaveAt  in the other two spots:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <thead>

                        <tr>

                            <th class="text-left py-2">

                                <a href="{{ path('app_homepage', {

                                    ...app.request.query.all(),

                                    sort: 'purpose',

                                    sortDirection: sort == 'purpose' and 

sortDirection == 'asc' ? 'desc' : 'asc',

                                }) }}">

                                    Purpose {{ _self.sortArrow('purpose', 

sort, sortDirection) }}

                                </a>

                            </th>

                        </tr>

                    </thead>

                </table>

            </div>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 55

56

57

58

59

 // ... lines 60 - 69

70

71

72

73

74

75

76

77

78

79

80

 // ... lines 81 - 119

120

121

 // ... lines 122 - 132

133

134

135

So, all pretty boring code, though it was a bit of work to get this set up. Could we have some

tools in the Symfony world to make this all easier to build? Probably. That would be a cool thing

for someone to work on.

Moment of truth! Refresh. That looks good. And it works great! We can sort by each column...

we can paginate. Filtering keeps our page... and keeps the search parameter. It's everything I

want! And it's all happening via Ajax! Life is good!

The only hiccup now? That awkward scrolling whenever we do anything. I want this to feel like a

standalone app that doesn't jump around. Tomorrow: we'll polish this thanks to Turbo Frames.

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <div class="bg-gray-800 p-4 rounded">

                <table class="w-full text-white">

                    <thead>

                        <tr>

                            <th class="text-left py-2">

                                <a href="{{ path('app_homepage', {

                                    ...app.request.query.all(),

                                    sort: 'leaveAt',

                                    sortDirection: sort == 'leaveAt' and 

sortDirection == 'asc' ? 'desc' : 'asc',

                                }) }}">

                                    Departing {{ 

_self.sortArrow('leaveAt', sort, sortDirection) }}

                                </a>

                            </th>

                        </tr>

                    </thead>

                </table>

            </div>

        </section>

    </div>

{% endblock %}



Chapter 14: Data Tables with Turbo Frames

Our data tables-like setup is working. And it's almost awesome. What I don't love is how it jumps

around. Every time we click a link, it jumps back to the top of the page. Boo.

That's because Turbo is reloading the full page. And when it does that, it scrolls to the top...

because that's usually what we want! But not this time. I want our data table to work like a little

application: where the content changes without moving around.

Turbo 8 Morphing?

There are two great ways to solve this. In Turbo 8 - which is not released yet, it's Beta 1 at the

time of recording this - there's a new feature called page refreshes that leverages morphing.

Without nerding out too much - and I want to - when navigating to the same page - like our

search form, column sorting and pagination links all do - we can tell Turbo to only update the

content on the page that changed... and to preserve the scroll position. So, keep an eye out for

that.

Adding a Turbo Frame

The second way - which works fantastically today - is to surround this entire table with a

<turbo-frame> . In homepage.html.twig , find the table . Here it is: this div  represents

the table. Above it, add <turbo-frame id="voyage-list"> . Indent this div ... and also

these pagination links: we want those to be inside the Turbo frame so that when we click on

them, they advance the frame & update:



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 55

56

57

58

 // ... lines 59 - 120

121

122

123

 // ... lines 124 - 132

133

134

135

136

137

Let's try this. Zap that search clear. And oh... beautiful. Look at that! Everything moves within

the frame. Try pagination. That too! All of our links point back to the homepage... and the

homepage, of course, has this frame.

But remember: now that this table lives inside a Turbo frame, if we have any links inside, they'll

stop working. Again, to fix that, on each link, add data-turbo-frame="_top" . Or to be more

conservative, go up to the new <turbo-frame>  and add target="_top" . If you do that,

you'll also need to find the sorting and pagination links that should navigate the frame and add

data-turbo-frame="voyage-list" .

But I'll remove those... because we don't have any links in the table.

Targeting the Search on the Form

At this point, the pagination and sorting links work perfectly! But... the search? The search is still

a full page reload. That makes sense! I didn't put that inside the frame. Why? Because, if we

had, when we typed and the frame reloaded, it would have also reloaded the search box...

which would still reset my cursor position. So we don't want the form to reload.

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list">

                <div class="bg-gray-800 p-4 rounded">

                    <table class="w-full text-white">

                    </table>

                </div>

                <div class="flex items-center mt-6 space-x-4">

                </div>

            </turbo-frame>

        </section>

    </div>

{% endblock %}



Can we... keep this outside of the frame but target the frame when the form submits? We can!

Up on the form  element that submits, add data-turbo-frame="voyage-list" :

templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

 // ... lines 39 - 42

43

44

 // ... lines 45 - 55

56

 // ... lines 57 - 135

136

137

138

Isn't that cool? Now when we refresh: watch. It's perfect! The table loads, but I keep my input

focus. This is gorgeous.

Adding a Loading Screen

And now we have time to make things extra fancy! What about a loading indicator on the table

while it's navigating? To make this obvious, go to our controller and add a sleep()  for one

second:

src/Controller/MainController.php

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 25

26

27

 // ... lines 28 - 29

30

 // ... lines 31 - 43

44

45

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                data-turbo-frame="voyage-list"

            >

            </form>

        </section>

    </div>

{% endblock %}

class MainController extends AbstractController

{

    #[Route('/', name: 'app_homepage')]

    public function homepage(

    ): Response

    {

        sleep(1);

    }

}



Now... it's slow... and when we click or search, we don't even getting any feedback that the site

is doing anything.

How can we add a loading indicator? This is a spot where Turbo has our back. So here's the

<turbo-frame>  element. Watch the attributes at the end when I navigate. Did you see that?

Turbo added an aria-busy="true"  attribute while it was loading. That's there for

accessibility, but it's also something that we can leverage within Tailwind!

Over on that <turbo-frame>  element, here it is, say class=""  with

aria-busy:opacity-50 .

This special syntax says that, if this element has an aria-busy  attribute, apply the

opacity-50 . Add one more aria-busy:  with blur-sm  to blur the background. And for

extra points, include transition-all  so that the opacity and blur transition instead of

happening abruptly:

templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 56

57

 // ... lines 58 - 134

135

136

137

138

 Tip

For an even nicer effect, you can also change the opacity & blur only if loading takes longer

than, for example, 700ms. Do that by adding an aria-busy:delay-700  class.

Refresh that and watch. Oh, that's lovely! And it all happens thanks to 3 CSS classes. And,

though I love watching that, in MainController , remove the sleep.

Advancing the Frame

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list" class="aria-busy:opacity-50 

aria-busy:blur-sm transition-all">

            </turbo-frame>

        </section>

    </div>

{% endblock %}



Is this mission accomplished? Nearly. There's one gigantic, horrible problem... with an easy

solution. When we search or sort or paginate, the URL doesn't change. That's the default

behavior of Turbo frames: when they navigate, they don't update the URL. However, we can tell

Turbo that we want this. On the Turbo Frame, add data-turbo-action="advance" :

templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 56

57

 // ... lines 58 - 134

135

136

137

138

Advance means that it will update the URL and advance the browser history so that if we hit the

"Back" button, it'll go the previous URL. You can also use replace  to change the URL, but

without adding to the history.

Watch: this time when we search... the URL updates! And as we navigate to page two or three...

it updates... and we can hit back, back, and forward, forward.

We now have a truly fantastic data tables setup... entirely written without any custom JavaScript

inside of Twig and Symfony. What a time to be alive.

The final teensy problem is this "30 results". As we search, that never changes: it's stuck on

whatever number was there when the original page loaded. That's because this lives outside

the Turbo frame. The easiest fix would be to move it into the frame... but I don't want it there!

Visually, I want it up here!

We're going to leave that for now. But we'll fix it in a few days with Turbo Streams.

Tomorrow, we're going to dive into a brand-new browser feature! It's called View Transitions,

and it'll let us apply visual transitions to any navigation.

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list" data-turbo-action="advance" 

class="aria-busy:opacity-50 aria-busy:blur-sm transition-all">

            </turbo-frame>

        </section>

    </div>

{% endblock %}



Chapter 15: View Transitions

Day 15! We're already halfway through our adventure. And it only gets cooler from here.

To celebrate, today we'll work on something sparkly & new: the View Transitions API. This nifty

new feature is supported in most browsers and allows us to have smooth transitions whenever

any HTML changes on our page.

 Tip

Actually, as of Dec 2023, view transitions are supported only in Chrome with support in

Firefox and Safari reportedly planned.

And if your user has a browser that doesn't support it, that's ok! The transition is just skipped,

but everything keeps working. No biggie.

Oh, and, View Transitions will come Standard in Turbo 8 for full page navigation. Though, we'll

take them even a bit further.

Evil Martians & Demoing View Transitions

To use View Transitions, you do not need any external library. But we're going to use one called

"turbo view transitions". This came out of a blog series where the author built a neat project

called Turbo Music Drive. In two blog posts on Evil Martians, they talk all about morphing and

doing crazy stuff with it in Turbo. They even created a live demo!

In the simplest form, view transitions adds a crossfade as you navigate. But you can also get

more specific and connect elements between pages to give them a special transition. Watch:

when I click this album, it moves up to the left. There's also a nice crossfade for the rest of the

page.

Installing turbo-view-transitions

https://github.com/palkan/turbo-music-drive


So let's try this out! Step one, get the turbo-view-transitions  library. At your terminal,

run:

php bin/console importmap:require turbo-view-transitions

Lovely! To activate transitions, we need to do two things. First, in base.html.twig , add a

meta  tag with name="view-transition" :

templates/base.html.twig

1

2

3

 // ... lines 4 - 6

7

 // ... lines 8 - 14

15

 // ... lines 16 - 51

52

That's how you tell your browser you want these!

Second, in Turbo 7, we need to activate transitions in JavaScript. Head to app.js . This will be

a rare time when we write JavaScript that doesn't need to live in a Stimulus controller. Copy

from their example, paste... and move the import  to the top:

<!DOCTYPE html>

<html>

    <head>

        <meta name="view-transition">

    </head>

</html>



assets/app.js

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Done! That should be enough to make the Turbo Drive navigations use view transitions! This

leverages an event from Turbo called turbo:before-render . The

shouldPerformTransition()  function checks to see if the user's browser supports

transitions. If they don't, it's normal behavior. But if it does, then performTransition()  will

transition between the old and new body. There's also a little code down here to avoid the turbo

page cache. I think that's something that'll work better in Turbo 8 when this is official.

Time for the big reveal! Hit refresh and watch. Oooooh. A smooth crossfade transition! So not

only did we eliminate full page reloads, we now have a transition between our pages. Watch out

Powerpoint, we're coming for you!

Transition Turbo Frames

But what about Turbo frames? When we click, that still happens instantly. We activated

transitions for full page navigations, but not for frames. Can we? Sure!

Copy this listener, and paste below. This time, listen to turbo:before-frame-render ... and

adjust this part. Instead of document.body , use event.target . That will be the

<turbo-frame> . And then the new element will be event.detail.newFrame :

import { shouldPerformTransition, performTransition } from 'turbo-view-

transitions';

document.addEventListener('turbo:before-render', (event) => {

    if (shouldPerformTransition()) {

        event.preventDefault();

        performTransition(document.body, event.detail.newBody, async () => 

{

            await event.detail.resume();

        });

    }

});

document.addEventListener('turbo:load', () => {

    // View Transitions don't play nicely with Turbo cache

    if (shouldPerformTransition()) Turbo.cache.exemptPageFromCache();

});



assets/app.js

 // ... lines 1 - 24

25

26

27

28

29

30

31

32

33

Done! Refresh and.... click. Transition, check!

Debugging Transitions

And if the transition isn't obvious enough, you can open up your browser tools, click the little

"...", go to "more tools", then Animations. It looks like I already had it open. Here, you can

change the speed of your animations.

Now... it's super obvious. You can even see how it works. If you scroll during the transition, you

can kind of see how it takes a screenshot of the old HTML and blends it with the new. This weird

effect isn't normally a problem because it happens so fast, but it's cool to see.

Edge Case: Frames that Advance

To show a problem, let's remove the CSS transition on the table that we just added. So spin

over to that template... and take of the class :

document.addEventListener('turbo:before-frame-render', (event) => {

    if (shouldPerformTransition()) {

        event.preventDefault();

        performTransition(event.target, event.detail.newFrame, async () => 

{

            await event.detail.resume();

        });

    }

});



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 56

57

 // ... lines 58 - 134

135

136

137

138

Refresh... and try it. Huh. Nothing happens. I mean, it works... but there was no view transition.

Why?

This is subtle. The transition breaks when you have a frame that advances the URL. The

problem is that, in this situation, Turbo calls turbo:before-frame-render ... then also calls

turbo:before-render  right after. These two, sort of, collide.

But it's an easy fix. Create a variable: let skipNextRenderTransition  and set it to

false . Below, if shouldPerformTransition()  and not skipNextRenderTransition ,

then do it:

assets/app.js

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 17

18

19

 // ... lines 20 - 42

Finally, when our frame starts its transition, set this variable to true. Also include a

setTimeout() , set that back to false  and delay this for 100 milliseconds:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list" data-turbo-action="advance">

            </turbo-frame>

        </section>

    </div>

{% endblock %}

let skipNextRenderTransition = false;

document.addEventListener('turbo:before-render', (event) => {

    if (shouldPerformTransition() && !skipNextRenderTransition) {

    }

});



assets/app.js

 // ... lines 1 - 25

26

27

 // ... lines 28 - 29

30

31

32

33

34

35

 // ... lines 36 - 39

40

41

It's a bit weird. But hey, that's programming! We set this to true, Turbo triggers the other listener

almost immediately... then 100 milliseconds we reset it. We could probably also replace the

setTimeout()  by setting skipNextRenderTransition = false  up in the

turbo:before-render  listener.

The most important thing is that... now we have a transition! Let's set that back to full speed. I

like it!

Disabling Transitions

Try the planet popover frame. Woh! That was weird. To be fully honest, I do not know what's

happening here. For some reason, the view transition causes the popover to disappear... which

is... let's say... not ideal. There's probably a way to fix that, but I couldn't crack it.

That's ok... and I think this weirdness is isolated to the popover behavior. Instead, we'll add a

way to disable the transitions on a frame.

On the homepage, search for turbo-frame . Here it is. Add a new attribute called

data-skip-transition :

document.addEventListener('turbo:before-frame-render', (event) => {

    if (shouldPerformTransition()) {

        // workaround for data-turbo-action="advance", which triggers

        // turbo:before-render (and we want THAT to not try to transition)

        skipNextRenderTransition = true;

        setTimeout(() => {

            skipNextRenderTransition = false;

        }, 100);

    }

});



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 56

57

58

59

 // ... lines 60 - 82

83

84

85

 // ... line 86

87

88

89

90

91

92

 // ... lines 93 - 98

99

100

101

102

103

104

105

106

 // ... lines 107 - 112

113

114

115

116

117

 // ... line 118

119

120

121

122

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list" data-turbo-action="advance">

                <div class="bg-gray-800 p-4 rounded">

                    <table class="w-full text-white">

                        <tbody>

                            {% for voyage in voyages %}

                            <tr class="border-b border-gray-700 {% if 

loop.index is odd %} bg-gray-800 {% else %} bg-gray-700 {% endif %}">

                                <td class="px-2 whitespace-nowrap">

                                    <div

                                        data-controller="popover"

                                        data-action="mouseenter-

>popover#show mouseleave->popover#hide"

                                        class="relative"

                                    >

                                        <template data-popover-

target="content">

                                            <div

                                                data-popover-target="card"

                                                class="max-w-sm rounded 

shadow-lg bg-gray-900 absolute left-0 bottom-10"

                                            >

                                                <turbo-frame data-skip-

transition id="planet-card-{{ voyage.planet.id }}" target="_top" src="{{ 

path('app_planet_show_card', {

                                                    'id': 

voyage.planet.id,

                                                }) }}">

                                                </turbo-frame>

                                            </div>

                                        </template>

                                    </div>

                                </td>

                            </tr>

                            {% endfor %}

                        </tbody>

                    </table>



123

 // ... lines 124 - 134

135

136

137

138

I totally made that up. Over an app.js , we can look for that. If

shouldPerformTransition()  and not

event.target.hasAttribute('data-skip-transition') , then do the transition:

assets/app.js

 // ... lines 1 - 25

26

27

 // ... lines 28 - 39

40

41

Now... fixed! And we have transitions on... virtually every type of navigation on our site. And in

only about 10 minutes! It's crazy!

Now to tomorrow's mission: crafting a dazzling toast notification system that's easy to activate

no matter where and how we need to add them. Seeya then!

                </div>

            </turbo-frame>

        </section>

    </div>

{% endblock %}

document.addEventListener('turbo:before-frame-render', (event) => {

    if (shouldPerformTransition() && !event.target.hasAttribute('data-

skip-transition')) {

    }

});



Chapter 16: Toast Notifications

An important part of any functional beautiful site is a notification system. In Symfony, we often

think of flash messages: messages that we render near the top of the page, for example, after

the user submits a form. And yes, that is what I'm talking about. But just rendering them at the

top of the page isn't good enough for us. Instead, I want to render them as rich, toast-style

notifications in the upper right that disappear automatically with CSS transitions and can tie my

shoes for me.

Rendering Flash Messages

On our CRUD controllers, I'm already setting a success  flash message... but I'm not rendering

it anywhere. In the templates/  directory, create a new _flashes.html.twig . To start, just

loop over the success messages with for message in  app.flashes('success') ... and

endfor :

templates/_flashes.html.twig

1

 // ... lines 2 - 4

5

Inside, I'll paste a very simple flash message, which will start fixed to the bottom of the page:

templates/_flashes.html.twig

1

2

3

4

5

Next, in base.html.twig , instead of rendering the flashes somewhere near the top of the

body, put them at the bottom. Say <div id="flash-container">  then

{{ include('_flashes.html.twig') }} :

{% for message in app.flashes('success') %}

{% endfor %}

{% for message in app.flashes('success') %}

    <div class="fixed bottom-0 right-0 m-4 p-4 bg-green-500 text-white 

rounded shadow">

        {{ message }}

    </div>

{% endfor %}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 51

52

53

54

55

56

The id="flash-container"  isn't important yet, but it will be useful later when we talk about

Turbo streams.

So let's see if this works! Hit "Save" and... there we go! It's in a weird spot, but it shows up.

Making the Notification Pretty!

To make this look nicer, let's take a trip to Flowbite. Search for "toast". Ah, this has some great

examples for different styles of toast notifications. This has me feeling dangerous!

 Tip

I also recommend adding a data-turbo-temporary  attribute to the root <div> . This

will remove the flash message before Turbo takes its "snapshot" for caching, This means

that if the user clicks "Back" to a page, the toast won't still be visible.

Back in _flashes.html.twig , I'll paste in some content:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div id="flash-container">

            {{ include('_flashes.html.twig') }}

        </div>

    </body>

</html>



templates/_flashes.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

This is heavily inspired by the Flowbite examples. But nothing really changed: we're still looping

over the same collection and still dumping out the message. We've just got nice markup around

this.

And I can't want to see it! I'll go to edit and "Save". Oh, that is wonderful! In the upper right

where I want it and all done with CSS.

{% for message in app.flashes('success') %}

    <div

        class="fixed top-5 right-5 flex items-center w-full max-w-xs p-4 

mb-4 text-gray-500 bg-white rounded-lg shadow dark:text-gray-400 dark:bg-

gray-800"

        role="alert"

    >

        <div class="inline-flex items-center justify-center flex-shrink-0 

w-8 h-8 text-green-500 bg-green-100 rounded-lg dark:bg-green-800 

dark:text-green-200">

            <svg class="w-5 h-5" aria-hidden="true" 

xmlns="http://www.w3.org/2000/svg" fill="currentColor" viewBox="0 0 20 

20">

                <path d="M10 .5a9.5 9.5 0 1 0 9.5 9.5A9.51 9.51 0 0 0 10 

.5Zm3.707 8.207-4 4a1 1 0 0 1-1.414 0l-2-2a1 1 0 0 1 1.414-1.414L9 

10.586l3.293-3.293a1 1 0 0 1 1.414 1.414Z"/>

            </svg>

            <span class="sr-only">Check icon</span>

        </div>

        <div class="ms-3 text-sm font-normal">{{ message }}</div>

        <button

            type="button"

            class="ms-auto -mx-1.5 -my-1.5 bg-white text-gray-400 

hover:text-gray-900 rounded-lg focus:ring-2 focus:ring-gray-300 p-1.5 

hover:bg-gray-100 inline-flex items-center justify-center h-8 w-8 

dark:text-gray-500 dark:hover:text-white dark:bg-gray-800 dark:hover:bg-

gray-700"

            aria-label="Close"

        >

            <span class="sr-only">Close</span>

            <svg class="w-3 h-3" aria-hidden="true" 

xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 14 14">

                <path stroke="currentColor" stroke-linecap="round" stroke-

linejoin="round" stroke-width="2" d="m1 1 6 6m0 0 6 6M7 7l6-6M7 7l-6 6"/>

            </svg>

        </button>

    </div>

{% endfor %}



Making the Toast Closeable

Though, it doesn't auto close yet. Heck, it doesn't close at all! Since "closing" things will be a

common problem, let's create a reusable Stimulus controller that can do that.

In assets/controller/ , add a new closeable_controller.js . I'll cheat and grab the

code from another controller... clear it out... then add a close()  method. When this is called,

it'll remove the entire element that the controller is attached to:

assets/controllers/closeable_controller.js

1

2

3

4

5

6

7

To use this, in _flashes.html.twig , attach the controller to the top level element because

that's what should be removed on close. Then, down on the button, say

data-action="closeable#close" :

templates/_flashes.html.twig

1

2

 // ... lines 3 - 4

5

6

 // ... lines 7 - 13

14

 // ... lines 15 - 17

18

19

 // ... lines 20 - 23

24

25

26

We don't need the click  because this is a button , so Stimulus already knows that we want

this to trigger on the click  event.

Let's try it! Hit edit and Save. It's there... it's gone.

import { Controller } from '@hotwired/stimulus';

export default class extends Controller {

    close() {

        this.element.remove();

    }

}

{% for message in app.flashes('success') %}

    <div

        data-controller="closeable"

    >

        <button

            data-action="closeable#close"

        >

        </button>

    </div>

{% endfor %}



In just a few minutes of work, we created a beautiful and functional toast notification system!

But, darn it, this is not cool enough for our 30 Days of LAST Stack mission! So tomorrow, we'll

fancy-ify this with auto-close, CSS transitions and an animated timer bar.



Chapter 17: Fancier Toasts: Auto-close & Fading

Yesterday, we cooked up a beautiful Toast notification system that's powered entirely with CSS

and Symfony's normal flash system. Ok, and just a tiny bit of JavaScript to, boop, close it.

Today we're going to take this to the next level. I want these toasts to be amazing.

Adding Auto-Close

The first feature we'll add is auto-close: a classic in the toast world where the message graces

our screen, then closes automatically after a few seconds. But I also want to keep our closeable

controller reusable. There may be other parts of the site where we want to be able to close

something... but not have it close itself automatically.

So, we need a way to activate the auto-close on a case-by-case basis. The way to pass info

into a controller is via values. Add static values  equals... and I'll invent a new one called

autoClose , which will be a Number :

assets/controllers/closeable_controller.js

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 18

19

Next, add a connect()  method. The idea is that if we have this.autoCloseValue  - that's

how you reference that - then... that's actually perfect! We'll use setTimeout  to close after

that many milliseconds:

export default class extends Controller {

    static values = {

        autoClose: Number,

    };

}



assets/controllers/closeable_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 18

19

To finish, go to where we use this controller - _flashes.html.twig  - to pass in the new

autoClose  value. We do that on the same element as the data-controller . Add

data-closeable-auto-close-value  equals and use 5,000 for 5 seconds:

templates/_flashes.html.twig

1

2

 // ... lines 3 - 6

7

8

 // ... lines 9 - 26

27

28

The format is data-  the name of the controller, auto-close  - that's the name of the value

autoClose ... but because we're in an HTML attribute, we use the "dash case" - then the word

value  equals and finally what we want to pass in. This format is harder to remember than just

data-controller . But as you saw, if you have this Stimulus plugin for PhpStorm, it auto-

completes it, which helps a lot.

Let's do this! Edit this record, save and 1, 2, 3, 4, 5... whoosh! It vanishes.

Auto-close Timer Bar

What's next on our quest for toast greatness? What about a timer bar that shows when the toast

will close? A little bar that animates smaller and smaller, then finally disappears right as the

toast auto-closes itself.

export default class extends Controller {

    connect() {

        if (this.autoCloseValue) {

            setTimeout(() => {

                this.close();

            }, this.autoCloseValue);

        }

    }

}

{% for message in app.flashes('success') %}

    <div

        data-closeable-auto-close-value="5000"

    >

    </div>

{% endfor %}



That sounds cool! Here's the plan: we're going to add an element down here then animate its

width from 100% to 0% over those 5 seconds. To be able to find that element, inside the

controller, we're going to use a target. Add static targets = ['timerbar'] :

assets/controllers/closeable_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 26

27

Then down in connect() , check for that: if this.hasTimerbarTarget , then

this.timerbarTarget.style.width = 0 :

assets/controllers/closeable_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 15

16

 // ... line 17

18

 // ... line 19

20

21

22

 // ... lines 23 - 26

27

Assuming we've added a CSS transition to this element, that should animate the change from

full width to 0. Oh, but one other detail: add a setTimeout  and put this inside with a 10-

millisecond delay:

export default class extends Controller {

    static targets = ['timerbar']

}

export default class extends Controller {

    connect() {

        if (this.autoCloseValue) {

            if (this.hasTimerbarTarget) {

                    this.timerbarTarget.style.width = 0;

            }

        }

    }

}



assets/controllers/closeable_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

21

22

 // ... lines 23 - 26

27

This will allow the element to establish itself on the page with a full 100% width, before changing

it to 0. This is a CSS transition trick. If you add or unhide an element and immediately change

its width to 0... the CSS transition won't work. You need to let the element be on the page with

100% width for 1 animation frame, then change it.

Alrighty, with the stage set, time to add the timer bar. At the bottom of _flashes.html.twig ,

I'll paste it in:

templates/_flashes.html.twig

1

2

 // ... lines 3 - 7

8

 // ... lines 9 - 27

28

29

 // ... line 30

31

32

33

This has an absolute position on the bottom, left of the parent with a height and green

background. It also has an explicit width: that's the w-full . That's important for the transition.

To make this a target, add data-closeable-target="timerbar" :

export default class extends Controller {

    connect() {

        if (this.autoCloseValue) {

            if (this.hasTimerbarTarget) {

                setTimeout(() => {

                    this.timerbarTarget.style.width = 0;

                }, 10);

            }

        }

    }

}

{% for message in app.flashes('success') %}

    <div

    >

        <div

            class="absolute bottom-0 left-0 h-1 bg-green-500 w-full 

transition-all duration-[5000ms] ease-linear"

        ></div>

    </div>

{% endfor %}



templates/_flashes.html.twig

1

2

 // ... lines 3 - 7

8

 // ... lines 9 - 27

28

29

30

31

32

33

Ok! Let's see what this looks like. Hit edit, save, and it opens... but no animation. Let's do some

debugging! No errors in my console. Ah... here's the problem: I should have listened to my

editor: timerbarTarget .

Let's close this. Save and... that's what I want to see! And right as it gets to 0, boop, it closes.

Ok, I love how this looks. But our toast deserves one last detail: a graceful fade out... instead of

this abrupt exit.

CSS Transition on Close

Fading things out is a bit tricky. You can use CSS transitions - and we will - to go from opacity

100 to 0. But then you also need some JavaScript to wait for that CSS transition to finish so that

it can finally remove the element from the page or at least set its display to none.

To help us with this, we're going to use a library called stimulus-use . Stimulus Components -

as we saw earlier - are a list of reusable stimulus controllers. stimulus-use  is a group of

behaviors that you can add to your Stimulus controllers. And there are a lot of interesting tools

here.

The one we're going to use is called useTransition . So step one, let's get this installed.

Run:

php bin/console importmap:require stimulus-use

{% for message in app.flashes('success') %}

    <div

    >

        <div

            class="absolute bottom-0 left-0 h-1 bg-green-500 w-full 

transition-all duration-[5000ms] ease-linear"

            data-closeable-target="timerbar"

        ></div>

    </div>

{% endfor %}



Awesome! Then over in the controller, import that with

import { useTransition } from 'stimulus-use' :

assets/controllers/closeable_controller.js

 // ... line 1

2

 // ... lines 3 - 36

To activate a behavior, you call it from connect() : useTransition(this)  then pass any

options you need. I'll paste a few in:

assets/controllers/closeable_controller.js

 // ... lines 1 - 3

4

 // ... lines 5 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 29

30

 // ... lines 31 - 34

35

Here's what this means. While this element is "leaving" or hiding, the library will add these three

classes. This establishes that, in case any CSS properties change on this element, we want to

have a 200 millisecond transition. The leaveFrom  means that, at the moment it starts hiding,

the library will give it this class: setting its opacity to 100. Then, one millisecond later, it will

remove this class and add opacity-0 . That change will trigger the 200 millisecond transition.

Finally, transitioned  true is a way for us to tell the library that we are starting in a visible

state... because you can also use this library to start hidden and then transition in to make your

element visible.

Now that we've initialized the behavior, our controller magically has two new methods:

leave()  and enter() . Down here in close() , instead of removing the element ourselves,

say this.leave() :

import { useTransition } from 'stimulus-use';

export default class extends Controller {

    connect() {

        useTransition(this, {

            leaveActive: 'transition ease-in duration-200',

            leaveFrom: 'opacity-100',

            leaveTo: 'opacity-0',

            transitioned: true,

        });

    }

}



assets/controllers/closeable_controller.js

 // ... lines 1 - 3

4

 // ... lines 5 - 31

32

33

34

35

Let's try this! Spin over, refresh, and save. Watch. Ah, it was quick, but that is exactly what we

wanted! Our toast notification is polished and done.

Tomorrow's adventure: diving into the third and final part of Turbo: Streams. These are the

Swiss army knife of Turbo, and will let us solve a whole new set of problems.

export default class extends Controller {

    close() {

        this.leave();

    }

}



Chapter 18: Turbo Streams: Update any Element

Today, we're diving headfirst into the finale of the Turbo trilogy: Turbo Streams. Streams allow

us to solve problems that we... just don't have a solution for yet.

Take, for instance, our homepage: we have this really nice data tables system... with one teeny

tiny problem. When we type into this box, that number of results doesn't change. It's stuck at

whatever it was on page load. The Turbo Frame is around this table, so the result count is

outside of that.

This is where Turbo Streams comes in. When you're dealing with a Turbo Frame and you need

to update something outside of it, you need a stream. Streams have a fancy name, but it's a

simple idea. A Turbo Stream is actually a custom HTML element. I could take this, put it onto my

page, and it would instantly execute. It would find the element on the page whose id  is

messages  and append this content. And there are actions for everything: prepend, replace,

update, etc. We can use a Turbo Stream to make any change we want to any element on the

page... from anywhere. The power!

Adding a <turbo-stream>  Right on the Page

To prove this, copy the Turbo Stream that's an update. Back on our site, inspect element on the

"Space Inviters" name. Temporarily, give this an id  called company_name  so we can target it.

Now, anywhere else on the page - so how about down here in the footer - edit as HTML and

paste that Turbo Stream. In this case, we want the target to be company_name  and inside the

template element, say "Space Invaders!". Now, check this out. As soon as I click out of this, the

<turbo-stream>  custom element will become active and will execute its action. Watch.

Boom! It found that element and updated it!

Take a peek back at the footer: that <turbo-stream>  is gone! It executes, then self-destructs

and removes itself from the page. It's the most noble of custom elements.

And even if it were on the page for a moment, remember: all <turbo-streams>  have a

template  element inside. We talked about that element on Day 11: anything inside a



<template> ... isn't really on the page at all: it's completely hidden and inactive. So even if this

were on the page for a moment, it would be invisible.

Streams just work.

Updating the Result Count with a Stream

So let's use them to solve our problem! Open templates/main/homepage.html.twig  and

search for "results". Here's the element we need to update. To target this, give it an id : how

about voyage-result-count :

templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

 // ... lines 39 - 54

55

56

 // ... lines 57 - 141

142

143

144

Copy that. When we search on the page, it's actually this <turbo-frame>  that's navigating.

So anywhere inside this - I'll go to the bottom - we can add a <turbo-stream> . Say:

<turbo-stream action="replace" , target=""  and paste. Then add the <template>

element - don't forget that - and I'll hard-code a message to start:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                <div id="voyage-result-count" class="whitespace-nowrap m-2 

mr-4">{{ voyages|length }} results</div>

            </form>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 56

57

 // ... lines 58 - 135

136

137

138

139

140

141

142

143

144

Ok, watch what happens when I refresh. Boom! Because the <turbo-stream>  element exists

on page load, it immediately executes and replaces the element with the custom content.

Replacing the Real Content with a Block

So now... let's put in the real content. Essentially, we want to copy this entire div... and paste it

down here. Except... without actually duplicating this.

To do this, we'll use a trick with Twig blocks. Surround the result count with a new block called

result_count ... then endblock  below:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list" data-turbo-action="advance">

                <turbo-stream action="replace" target="voyage-result-

count">

                    <template>

                        Is this thing on?

                    </template>

                </turbo-stream>

            </turbo-frame>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

 // ... lines 39 - 43

44

 // ... lines 45 - 54

55

56

57

58

 // ... lines 59 - 143

144

145

146

In Twig, you're free to add blocks wherever you want. When you do, they don't do anything

immediately. When this renders, Twig will see this block.... ignore it... and render the div  like

normal.

But now, we can go down inside our <turbo-stream>  and say

{{ block('result_count') }} :

templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 58

59

 // ... lines 60 - 137

138

139

140

141

142

143

144

145

146

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

            >

                {% block result_count %}

                    <div id="voyage-result-count" class="whitespace-nowrap 

m-2 mr-4">{{ voyages|length }} results</div>

                {% endblock %}

            </form>

        </section>

    </div>

{% endblock %}

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <turbo-frame id="voyage-list" data-turbo-action="advance">

                <turbo-stream action="replace" target="voyage-result-

count">

                    <template>

                        {{ block('result_count') }}

                    </template>

                </turbo-stream>

            </turbo-frame>

        </section>

    </div>

{% endblock %}



I think we're ready! Start by going to the homepage so we see the full 30 results. And then as

we type... ah, beautiful! The count updates as the results reload. Dang, that was easy!

For those of you that are nerds for details, first, we love you, and second, yes, on page load,

we're rendering the result count twice: here... and, even though we can't see it, we're also

rendering it down here inside the Turbo Stream. So it's being rendered twice inside the HTML.

And that's not a problem at all, unless, for some reason, calculating the result count takes a lot

of work. If you had that situation, you could set the count to a Twig variable, then render in both

spots.

All right, tomorrow we'll start into the biggest, boldest part of this entire series: building a

reusable modal system that just absolutely rocks. I'm so excited!



Chapter 19: HTML dialog for Modals

Welcome to day 19. Today we have the luck to play around with a little-known HTML element

that absolutely rocks when it comes to building modals. The <dialog>  element. If you're in a

hurry for modal magnificence, you can skip ahead to snag the final markup and Stimulus

controller. But I promise that today's journey is going to be fun.

Open up templates/voyage/index.html.twig . For the h1 , I'm going to paste some new

content:

templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 45

46

47

This adds a "New voyage" button.

At the bottom, I'll remove the old button. There's nothing special with this new code: it's just... a

button. And when we go to the right page... there it is! But it doesn't do anything yet.

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <h1 class="text-xl font-semibold text-white mb-4">Voyages</h1>

        <button

            class="flex items-center space-x-1 bg-blue-500 hover:bg-blue-

700 text-white text-sm font-bold px-4 rounded"

        >

            <span>New Voyage</span>

            <svg xmlns="http://www.w3.org/2000/svg" class="w-4 inline" 

viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" 

stroke-linecap="round" stroke-linejoin="round"><path stroke="none" d="M0 

0h24v24H0z" fill="none"/><path d="M3 12a9 9 0 1 0 18 0a9 9 0 0 0 -18 0" />

<path d="M9 12h6" /><path d="M12 9v6" /></svg>

        </button>

    </div>

</div>

{% endblock %}



Hello <dialog>

Back in the template, right after the button, add a <dialog>  element. Inside I'll proclaim "I am

a dialog". Also add an open  attribute:

templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 17

18

19

20

21

 // ... lines 22 - 49

50

51

Hit refresh and behold the dialog  element. It's... interesting. The dialog  is absolutely

positioned on the page, centered horizontally and near, but not at the top vertically. That's

because the <dialog>  element is designed for modals... or really any dialog, like a

dismissable alert or any sub window. It's a normal HTML element, but with a bunch of

superpowers that we're going to experience.

Making a Pretty dialog

But first, we gotta make it prettier. Back in the template, I'll paste over that dialog:

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <dialog open>

            I am a dialog!

        </dialog>

    </div>

</div>

{% endblock %}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

 // ... lines 47 - 74

75

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <dialog

            open

            class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-

full md:w-fit md:max-w-[50%] md:min-w-[50%]"

        >

            <div class="flex grow p-5">

                <div class="grow overflow-auto p-1">

                    <div class="text-white space-y-4">

                        <div class="flex justify-between items-center">

                            <h2 class="text-xl font-bold">Create new 

Voyage</h2>

                            <button class="text-lg absolute top-5 right-

5">

                                <svg xmlns="http://www.w3.org/2000/svg" 

class="w-4" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" 

fill="none" stroke-linecap="round" stroke-linejoin="round"><path 

stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M18 6l-12 12"/><path 

d="M6 6l12 12"/></svg>

                            </button>

                        </div>

                        <p class="text-gray-400">

                            Join us on an exciting journey through the 

cosmos! Discover the

                            mysteries of the universe and explore distant 

galaxies.

                        </p>

                        <div class="flex justify-end">

                            <button

                                class="bg-blue-500 hover:bg-blue-700 text-

white font-bold py-2 px-4 rounded">

                                Let's Go!

                            </button>

                        </div>

                    </div>

                </div>

            </div>

        </dialog>

    </div>

</div>



76

This is adapted from Flowbite with some AI help. And a designer could create this no problem.

Because, there's nothing special: we still have a dialog , it's still open ... and even the Tailwind

classes are pretty boring. I set a width... and round the corners. But most of the positioning

details are already built into the element. And most of the code is dummy modal content to get

us started.

The result... is awesome. Though... the close button doesn't do its job yet! No worries: this is a

great opportunity to show off one of dialog's superpowers!

Find the close button. Around it, add a <form method="dialog"> :

{% endblock %}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 18

19

20

21

22

23

24

25

26

 // ... line 27

28

29

30

31

32

33

 // ... lines 34 - 43

44

45

46

47

48

 // ... lines 49 - 76

77

78

This is a normal button: it will naturally submit the form when we click it, but the button doesn't

have anything special on it.

But now when we click X... it closes!

Opening with a modal Stimulus Controller

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <dialog

            open

            class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-

full md:w-fit md:max-w-[50%] md:min-w-[50%]"

        >

            <div class="flex grow p-5">

                <div class="grow overflow-auto p-1">

                    <div class="text-white space-y-4">

                        <div class="flex justify-between items-center">

                            <form method="dialog">

                                <button class="text-lg absolute top-5 

right-5">

                                    <svg 

xmlns="http://www.w3.org/2000/svg" class="w-4" viewBox="0 0 24 24" stroke-

width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round"><path stroke="none" d="M0 0h24v24H0z" fill="none"/><path 

d="M18 6l-12 12"/><path d="M6 6l12 12"/></svg>

                                </button>

                            </form>

                        </div>

                    </div>

                </div>

            </div>

        </dialog>

    </div>

</div>

{% endblock %}



To really make the <dialog>  element shine, we need a bit of JavaScript. Head up to

assets/controllers/  and create a new file called modal_controller.js . I'll cheat,

steal some content from another controller... and clear it out. This controller will be simple. Start

by adding a static targets = ['dialog']  so we can quickly find the <dialog>

element. Next add an open  method. Here, say this.dialogTarget.show() :

assets/controllers/modal_controller.js

1

2

3

4

5

6

7

8

9

This is another superpower of the <dialog>  element: it has a show()  method! Built into the

<dialog>  element is this core idea of showing and hiding.

To use the new controller, over in index.html.twig , find the div  that holds the button

and the dialog  and add data-controller="modal" . Then, on the button, say

data-action="modal#open" :

import { Controller } from '@hotwired/stimulus';

export default class extends Controller {

    static targets = ['dialog'];

    open() {

        this.dialogTarget.show();

    }

}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 12

13

14

15

16

 // ... lines 17 - 18

19

 // ... lines 20 - 49

50

 // ... lines 51 - 78

79

80

Finally, we need to set the <dialog>  as a target. Remove the open  attribute so it starts

closed and replace it with data-modal-target="dialog" :

templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 20

21

22

23

24

 // ... lines 25 - 49

50

 // ... lines 51 - 78

79

80

I like it! Over here, it starts closed. And when we click, open! Close, open, close!

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-controller="modal"

        class="flex justify-between"

    >

        <button

            data-action="modal#open"

            class="flex items-center space-x-1 bg-blue-500 hover:bg-blue-

700 text-white text-sm font-bold px-4 rounded"

        >

        </button>

    </div>

</div>

{% endblock %}

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-controller="modal"

        class="flex justify-between"

    >

        <dialog

            class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-

full md:w-fit md:max-w-[50%] md:min-w-[50%]"

            data-modal-target="dialog"

        >

    </div>

</div>

{% endblock %}



Opening as a Modal

A <dialog>  element has two modes: the normal mode that we've been using and a modal

mode... which is much more useful. To use the modal mode, instead of show() , use

showModal() :

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

Now when we click, it still opens, but there are some subtle differences. The first is that we can

close it by hitting Esc . Cool! The second is that it has a backdrop. Watch: when I click, the

screen will get just a little bit darker. Did you see that? This also blocks me from interacting with

the rest of the page. And we get this for free thanks to <dialog> . That's huge.

Styling the Backdrop

Inspect and find the <dialog>  element - there it is. The backdrop is added via a pseudo-

element called backdrop . So it takes care of adding that for us... but it's a real element that

can style. And I do want to style it!

Back in the template, find the dialog  element. Thanks to Tailwind, we can style the backdrop

pseudo-element directly. Add backdrop:bg-slate-600  and backdrop:opacity-80 :

export default class extends Controller {

    open() {

        this.dialogTarget.showModal();

    }

}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 20

21

22

23

24

 // ... lines 25 - 48

49

50

 // ... lines 51 - 78

79

80

Watch the effect. That is starting to feel really, really smooth.

Removing Background Page Scroll

One thing the dialog  element doesn't handle automatically is... the page in the background

still scrolls. It doesn't hurt anything... but it's not the behavior we expect.

To fix this, over in the open()  method, say document.body  to get the body element,

.classList.add('overflow-hidden') :

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

 // ... line 7

8

9

10

And now... that's what we want!

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-controller="modal"

        class="flex justify-between"

    >

        <dialog

            class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-

full md:w-fit md:max-w-[50%] md:min-w-[50%] backdrop:bg-slate-600 

backdrop:opacity-80"

            data-modal-target="dialog"

        >

        </dialog>

    </div>

</div>

{% endblock %}

export default class extends Controller {

    open() {

        document.body.classList.add('overflow-hidden');

    }

}



Cleaning up on Close

Though... if we close, I still can't scroll! We need to remove that class.

To do that, copy the open()  method, paste and name it close() . To close the dialog, call

close() ... then remove overflow-hidden :

 Tip

To code more defensively (Firefox may need this), use:

if (this.hasDialogTarget) {

    this.dialogTarget.close();

}

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 10

11

12

13

14

15

I like it! There's just one tiny problem: we're not calling the close()  method! If we hit X or

press Esc, the dialog is closing, yes, but I still can't scroll because nothing calls this close()

method on our controller.

Fortunately, the dialog  element has our back. Whenever a dialog  element closes - for any

reason - it dispatches an event called close . We can listen to that.

On the <dialog>  element, add a data-action  set to close->modal#close :

export default class extends Controller {

    close() {

        this.dialogTarget.close();

        document.body.classList.remove('overflow-hidden');

    }

}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 20

21

 // ... lines 22 - 23

24

25

 // ... lines 26 - 49

50

51

 // ... lines 52 - 79

80

81

So no matter how the dialog  closes - I'll press Escape - we can now scroll because the

close()  method on our controller was called.

Blurring the Background

 Tip

Thanks to help from Rob Meijer, you can do this in pure CSS. On the <dialog>  element

use backdrop:bg-opacity-80  instead of backdrop:opacity-80  then add

backdrop:backdrop-blur-sm . No JS needed!

Ok, I'm excited. What else can we do? How about blurring the background? You might try to do

this by blurring the backdrop. I totally tried that... but couldn't make it work. That's ok. What we

can blur is the body. Add one more class: blur-sm  and remove the blur-sm  in close() :

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-controller="modal"

        class="flex justify-between"

    >

        <dialog

            data-action="close->modal#close"

        >

        </dialog>

    </div>

</div>

{% endblock %}



assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

 // ... line 7

8

9

10

11

 // ... line 12

13

14

15

Let's see how this look. That is really cool!

Close on Click Outside

But if I try to click outside the modal, it doesn't close. That's another thing the dialog  element

doesn't handle. Fortunately, there's a quick one-time fix.

Up on the root element of our controller... Actually, we can put it down here on the dialog . Add

a new action: click->modal#clickOutside :

templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 20

21

 // ... lines 22 - 23

24

25

 // ... lines 26 - 49

50

51

 // ... lines 52 - 79

80

 // ... lines 81 - 82

export default class extends Controller {

    open() {

        document.body.classList.add('overflow-hidden', 'blur-sm');

    }

    close() {

        document.body.classList.remove('overflow-hidden', 'blur-sm');

    }

}

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-controller="modal"

        class="flex justify-between"

    >

        <dialog

            data-action="close->modal#close click->modal#clickOutside"

        >

        </dialog>

    </div>

</div>



I bet that looks odd - it'll be called whenever we click anywhere in the dialog - so let's go write

that method. Say clickOutside() , give it an event  argument, then if

event.target === this.dialogTarget , this.dialogTarget.close() :

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 15

16

17

18

19

20

21

 Tip

To make the "click outside" work perfectly, instead of adding padding directly to the

dialog , add an element inside and give it the padding. We've done that already - but it's

an important detail.

event.target  will be the actual element that received the click. It turns out, the only way to

click exactly on the dialog  element itself is if you click the backdrop. If you click anywhere

else inside, event.target  will be one of these elements. So it's a clever three lines of code,

but the result is perfect. Click in here, no problem. Click out there, closed.

CSS Animation to Fade In

At this point, I am happy! But this tutorial isn't about making good things, it's about making great

things. Next up: I want the dialog  element to fade in. We could do this with a CSS transition.

But another option is a CSS animation. I know, transitions, animations - CSS has a lot.

An animation is something you apply to an element and... it'll just... do that animation forever. Or

you can make it animate just once. Like, we can make this button animate up and down forever.

One of the nice things about animations is that you can make an animation only happen once...

and it won't start until the element becomes visible on the page. For example, we could create

an animation from opacity 0 to opacity 100, which would execute as soon as our dialog

becomes visible.

export default class extends Controller {

    clickOutside(event) {

        if (event.target === this.dialogTarget) {

            this.dialogTarget.close();

        }

    }

}



Tailwind does have some built-in animations, but not one for fading in. So, we'll add it. Down in

tailwind.config.js , I'll paste over the theme  key:

tailwind.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 27

28

This is mostly CSS animation stuff: it adds a new one called fade-in  that will go from opacity

0 to 100 in 1/2 a second.

To use this, find the dialog  element and add animate-fade-in :

module.exports = {

  theme: {

    extend: {

      animation: {

        'fade-in': 'fadeIn .5s ease-out;',

      },

      keyframes: {

        fadeIn: {

          '0%': { opacity: 0 },

          '100%': { opacity: 1 },

        },

      },

    },

  },

}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 20

21

22

 // ... lines 23 - 24

25

 // ... lines 26 - 49

50

51

 // ... lines 52 - 79

80

81

Try it out. Gorgeous! Could we fade out? Sure, but I actually like that it closes immediately. So

I'm going to skip that.

Modals & Turbo Page Cache

Ok, I have one last detail before I let you go for the day. When we added view transitions, in

app.js , we disabled a feature in Turbo called page cache... because it apparently doesn't

always play nicely with view transitions. When view transitions become standard in Turbo 8, I'm

guessing this won't be a problem.

Anyway, when caching is enabled:

assets/app.js

 // ... lines 1 - 20

21

22

23

24

 // ... lines 25 - 42

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-controller="modal"

        class="flex justify-between"

    >

        <dialog

            class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-

full md:w-fit md:max-w-[50%] md:min-w-[50%] animate-fade-in backdrop:bg-

slate-600 backdrop:opacity-80"

        >

        </dialog>

    </div>

</div>

{% endblock %}

document.addEventListener('turbo:load', () => {

    // View Transitions don't play nicely with Turbo cache

    // if (shouldPerformTransition()) Turbo.cache.exemptPageFromCache();

});



the moment you click away from a page, Turbo takes a snapshot of the page before navigating

away. When we click back, it's instant: boom! Instead of making a network request, it uses the

cached version of this page. There's more to it than that, but you get the idea.

With caching enabled, one thing we need to worry about is removing any temporary elements

from the page before the snapshot is taken, like toast messages or modals. Because, when you

click "Back", you don't want a toast notification to be sitting up here.

The way that we normally solve this, for example in _flashes.html.twig , is to add a

data-turbo-temporary  attribute:

templates/_flashes.html.twig

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 7

8

 // ... lines 9 - 31

32

33

That tells Turbo to remove this element before it takes the snapshot.

Let's try adding this to our dialog  so it's not in the snapshot. To see what happens, open the

modal and click back. That just took a snapshot of the previous page. Now click forward. Woh.

We're in a strange state. It looks like the dialog is gone... but we can't scroll and the page is

blurred.

That's because we need to do more than just hide the dialog : we need to remove these

classes from the body. Basically, before Turbo takes the snapshot, we need something to call

the close()  method!

And we can do that! In index.html.twig , on the root controller element - though this could

go anywhere - add a data-action="" . Right before Turbo takes its snapshot, it dispatches

an event called turbo:before-cache . We can listen to that and then call modal#close .

The only detail is that the turbo:before-cache  event isn't dispatched on a specific element.

So listening to it on this element won't work. It's dispatched above us, on the window. It's a

global event.

Fortunately, Turbo gives us a simple way to listen to global events by adding @window :

{% for message in app.flashes('success') %}

    <div

        data-turbo-temporary

    >

    </div>

{% endfor %}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

 // ... line 8

9

 // ... line 10

11

 // ... lines 12 - 51

52

 // ... lines 53 - 80

81

82

It's a little technical, but with this one-time fix, we can open the modal, go back, forward, and the

page looks beautiful.

Wowza! Today was a huge day, but look what we accomplished! A beautiful modal system that

we have total control over. Tomorrow is going to be just as big as we bring this modal to life with

real dynamic content and forms. See you then.

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        data-action="turbo:before-cache@window->modal#close"

    >

    </div>

</div>

{% endblock %}



Chapter 20: AJAX Modal!

Yesterday we built a killer modal system thanks to the dialog  element. With just this markup

and a small Stimulus controller, I'm feeling dangerous.

So let me tell you about today's goal, which is big and bold! When I click "New Voyage", I want

to AJAX-load the "new modal form" and pop it into the modal. But more than that! When I

submit the form, validation errors should stay in the modal, it should close on success & we

should see toast notifications. And, maybe most importantly, I want this entire system to be

reusable so that we can quickly load any form on our site in a modal. We're going to do it, or die

trying. Hopefully we'll do it... I think we'll do it.

Adding a modal Frame to the Layout

To get this going, copy the entire modal markup. There we go. Then go into base.html.twig

and, all the way at the bottom, before the closing body  tag, paste:



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

 // ... lines 18 - 70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <dialog

                class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 

w-full md:w-fit md:max-w-[50%] md:min-w-[50%] animate-fade-in backdrop:bg-

slate-600 backdrop:opacity-80"

                data-modal-target="dialog"

                data-action="close->modal#close click->modal#clickOutside"

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <div class="text-white space-y-4">

                            <div class="flex justify-between items-

center">

                                <h2 class="text-xl font-bold">Create new 

Voyage</h2>

                                <form method="dialog">

                                    <button class="text-lg absolute top-5 

right-5">

                                        <svg 

xmlns="http://www.w3.org/2000/svg" class="w-4" viewBox="0 0 24 24" stroke-

width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round"><path stroke="none" d="M0 0h24v24H0z" fill="none"/><path 

d="M18 6l-12 12"/><path d="M6 6l12 12"/></svg>

                                    </button>

                                </form>

                            </div>

                            <p class="text-gray-400">

                                Join us on an exciting journey through the 

cosmos! Discover the

                                mysteries of the universe and explore 

distant galaxies.

                            </p>

                            <div class="flex justify-end">

                                <button

                                    class="bg-blue-500 hover:bg-blue-700 

text-white font-bold py-2 px-4 rounded">

                                    Let's Go!

                                </button>

                            </div>

                        </div>

                    </div>

                </div>



100

101

102

103

Back in index.html.twig , remove the dialog ... and we don't need the modal controller

stuff anymore:

templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... line 13

14

15

 // ... lines 16 - 17

18

19

 // ... lines 20 - 47

48

49

This is now a normal h1  and a normal button... that doesn't do anything. In base.html.twig ,

do the opposite: remove the button , the h1  and the class on the div:

            </dialog>

        </div>

    </body>

</html>

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <h1 class="text-xl font-semibold text-white mb-4">Voyages</h1>

        <button

            class="flex items-center space-x-1 bg-blue-500 hover:bg-blue-

700 text-white text-sm font-bold px-4 rounded"

        >

        </button>

    </div>

</div>

{% endblock %}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

            data-controller="modal"

            data-action="turbo:before-cache@window->modal#close"

        >

            <dialog

                class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 

w-full md:w-fit md:max-w-[50%] md:min-w-[50%] animate-fade-in backdrop:bg-

slate-600 backdrop:opacity-80"

                data-modal-target="dialog"

                data-action="close->modal#close click->modal#clickOutside"

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <div class="text-white space-y-4">

                            <div class="flex justify-between items-

center">

                                <h2 class="text-xl font-bold">Create new 

Voyage</h2>

                                <form method="dialog">

                                    <button class="text-lg absolute top-5 

right-5">

                                        <svg 

xmlns="http://www.w3.org/2000/svg" class="w-4" viewBox="0 0 24 24" stroke-

width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round"><path stroke="none" d="M0 0h24v24H0z" fill="none"/><path 

d="M18 6l-12 12"/><path d="M6 6l12 12"/></svg>

                                    </button>

                                </form>

                            </div>

                            <p class="text-gray-400">

                                Join us on an exciting journey through the 

cosmos! Discover the

                                mysteries of the universe and explore 

distant galaxies.

                            </p>

                            <div class="flex justify-end">

                                <button

                                    class="bg-blue-500 hover:bg-blue-700 

text-white font-bold py-2 px-4 rounded">

                                    Let's Go!

                                </button>

                            </div>



86

87

88

89

90

91

92

It's now a div that contains a dialog ... that's closed.

Now for the magic touch: remove the guts of the dialog : only keep these two divs: they help

give us padding and nice scroll behavior. Inside, add a <turbo-frame>  with id="modal" :

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

That, my friends, was a coding power move. On every page, we now have a

<turbo-frame id="modal">  that we can dynamically load content into! And, it lives inside

a dialog!

                        </div>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

            data-controller="modal"

            data-action="turbo:before-cache@window->modal#close"

        >

            <dialog

                class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 

w-full md:w-fit md:max-w-[50%] md:min-w-[50%] animate-fade-in backdrop:bg-

slate-600 backdrop:opacity-80"

                data-modal-target="dialog"

                data-action="close->modal#close click->modal#clickOutside"

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame id="modal"></turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>



Loading Content into the modal Frame

Watch: on the index page, change the new voyage button to an a  tag and set its href  to the

app_voyage_new  route. It's a normal tag that would take us to that page. But now add

data-turbo-frame="modal" :

templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 18

19

20

 // ... lines 21 - 48

49

50

Check it out. Refresh and click. Instead of changing the page, it loaded the content into the

modal  frame. But... nothing happened.

Ok, it did make an AJAX call to the new voyage page. But if we open that up in a new tab,

there's no modal  frame on this page. Well, actually there is. Like every page, at the bottom, it

has an empty modal  frame. So when we click that link, it does work... but the result is that the

Turbo frame stays empty. Not super helpful.

To fix this, in new.html.twig , add a <turbo-frame id="modal">  around everything...

with a closing tag at the bottom:

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <h1 class="text-xl font-semibold text-white mb-4">Voyages</h1>

        <a

            href="{{ path('app_voyage_new') }}"

            data-turbo-frame="modal"

            class="flex items-center space-x-1 bg-blue-500 hover:bg-blue-

700 text-white text-sm font-bold px-4 rounded"

        >

        </a>

    </div>

</div>

{% endblock %}



templates/voyage/new.html.twig

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 22

23

24

25

Check it out. When we click now, yes! Inside the <turbo-frame> , we have the form! The

modal isn't opening yet, but it's ready.

Adding the modal Base Layout

Now, before we figure out how to open the modal, we have a problem... and an opportunity. If

we went directly to the new voyage page, we would have two <turbo-frame id="modal">

elements: the one around the form, and the empty one on the bottom. That's... kind of invalid.

Also, even though I want to be able to load this form inside the modal, I also want it to behave

like normal if we go to the page directly. Watch: right now, if I fill this out successfully and save,

weird things happen! I submitted that into a <turbo-frame id="modal"> ... it redirected to

the index page... which has that matching frame... but it's empty.

That's not what I want. If I go to this page directly, I want it to act like normal.

We're going to handle this with a trick. In new.html.twig , remove the <turbo-frame> ...

and extend a new base template called modalBase.html.twig :

templates/voyage/new.html.twig

1

 // ... lines 2 - 24

Ooh. Copy that name and in the templates/  directory, create it: modalBase.html.twig .

This will have one line: an extends tag that's dynamic. If

app.request.headers.get('turbo-frame')  equals modal  - so if an AJAX request is

being made to this page from the modal  turbo frame, extend a new

modalFrame.html.twig . Else, extend the normal base.html.twig :

{% block body %}

    <turbo-frame id="modal">

    <div class="m-4 p-4 bg-gray-800 rounded-lg">

    </div>

    </turbo-frame>

{% endblock %}

{% extends 'modalBase.html.twig' %}



templates/modalBase.html.twig

1

If we go to the page like normal, it will extend base.html.twig . There's no turbo frame here,

it's completely normal, and it will submit like normal.

Let's create that other base template. Copy its name and, in templates/ , create

modalFrame.html.twig . All this needs is a <turbo-frame id="modal"> ... with

{% block body %}  and {% endblock %}  inside:

templates/modalFrame.html.twig

1

2

3

So if we make a request to this page from the modal  frame, the entire response will be this

single frame with the page's content inside. That solves our problem. And it means that if we

want a page to be able to load its form inside a modal... the only line we to need to change is

right here. I'll prove that on Day 23.

Auto-Opening the Modal

But right now, we're back to the situation where we click this link and... if I dig into the modal

elements, it is loading the form into the turbo-frame ... but the modal isn't opening. How can

we do that?

Well, I have 2 requirements for opening the modal. The first is that I want it to be super easy to

open. If HTML appears inside this turbo-frame  - no matter how it's added - I want the system

to be smart enough to see that and open the modal. And second, I want the modal to open

instantly. I don't want to click this button... then wait for 500 milliseconds before I see the modal.

That's not a good user experience.

For part one - opening this modal as soon as there's content in the turbo-frame  - we're going

to use a trick inside our Stimulus controller. Let me close a few files. In base.html.twig ,

make this turbo-frame  a target: data-modal-target="dynamicContent" :

{% extends app.request.headers.get('turbo-frame') == 'modal' ? 

'modalFrame.html.twig' : 'base.html.twig' %}

<turbo-frame id="modal">

    {% block body %}{% endblock %}

</turbo-frame>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

 // ... lines 57 - 58

59

60

 // ... lines 61 - 63

64

65

66

67

68

69

70

71

72

73

Here's the idea: if a modal has this target and HTML gets inside of this element for any reason, I

want our code to notice that and open the modal. To do that, in modal_controller.js , add

that target:

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 51

52

And then I'll paste in the most complex code that we're going to see in this tutorial:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame id="modal" data-modal-

target="dynamicContent"></turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>

export default class extends Controller {

    static targets = ['dialog', 'dynamicContent'];

}



assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 // ... lines 36 - 51

52

But, hold on: even if it looks complex, what it's doing is simple. If we have a dynamicContent

target, this code watches that element for any changes. Anytime there is a change, it calls our

function. Then we check to see if the dynamicContentTarget  element has any HTML. If it

does, open it! If it doesn't, close it. It's that simple.

In disconnect() , we deactivate that system. And also, just in case, if our modal controller

element is ever removed from the page for any reason, this will close the dialog and do the

export default class extends Controller {

    observer = null;

    connect() {

        if (this.hasDynamicContentTarget) {

            // when the content changes, call this.open()

            this.observer = new MutationObserver(() => {

                const shouldOpen = 

this.dynamicContentTarget.innerHTML.trim().length > 0;

                if (shouldOpen && !this.dialogTarget.open) {

                    this.open();

                } else if (!shouldOpen && this.dialogTarget.open) {

                    this.close();

                }

            });

            this.observer.observe(this.dynamicContentTarget, {

                childList: true,

                characterData: true,

                subtree: true

            });

        }

    }

    disconnect() {

        if (this.observer) {

            this.observer.disconnect();

        }

        if (this.dialogTarget.open) {

            this.close();

        }

    }

}



cleanup.

The result of this is... pretty incredible. Refresh the page. Let's play. I'm going to edit the

<turbo-frame>  as HTML and type: "will this open?". Boom! It does! And if we empty the

content... it closes.

And, more importantly, when we click the "New" link, it pops open with the form! Amazing!

Ok, I think that's enough for today. Tomorrow, we're going to make sure this form submits. And

because I can't help myself, we'll add a few more goodies: like opening the modal instantly

instead of waiting for the AJAX call to finish.



Chapter 21: Fantastic Modal UX with a Loading
State

Let's pick up where we left off yesterday. The Ajax-powered modal loads! Try to submit it. Uh oh

- something went wrong. It went to some page that didn't have a

<turbo-frame id="modal"> ... which is odd, because every page now has one. That's

because... the response was an error. If we look down on the web debug toolbar, there was a

405 status code. Open that up. Interesting:

“No route found for POST  /voyage/”

That's weird because we're submitting the new voyage form... so the URL should be

/voyage/new .

Adding action Attributes to the Forms

Here's the problem: when I generated the voyage crud from MakerBundle, it created forms that

don't have an action  attribute. That's fine when the form lives on /voyage/new  because no

action  means it submits back to the current URL. But as soon as we decide to embed our

forms on other pages, we need to be responsible and always set the action  attribute.

To do that, open up src/Controller/VoyageController.php . At the bottom, I'll paste in

a simple private method. Hit Okay to add the use  statement:



src/Controller/VoyageController.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

 // ... lines 18 - 88

89

90

91

92

93

94

95

96

97

We can pass a voyage or not... and this creates the form but sets the action . If the voyage

has an id, it sets the action to the edit page, else it sets it to the new page.

Thanks to this, up in the new  action, we can say this->createVoyageForm($voyage) .

Copy that... because we need the exact line down in edit :

use Symfony\Component\Form\FormInterface;

class VoyageController extends AbstractController

{

    private function createVoyageForm(Voyage $voyage = null): 

FormInterface

    {

        $voyage = $voyage ?? new Voyage();

        return $this->createForm(VoyageType::class, $voyage, [

            'action' => $voyage->getId() ? $this-

>generateUrl('app_voyage_edit', ['id' => $voyage->getId()]) : $this-

>generateUrl('app_voyage_new'),

        ]);

    }

}



src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 26

27

28

 // ... line 29

30

 // ... lines 31 - 45

46

 // ... lines 47 - 56

57

58

59

 // ... lines 60 - 73

74

 // ... lines 75 - 96

97

Lovely. Back over, we don't even need to refresh. Open the modal, save and... Ah, that is

absolutely lovely! It's submitted and we got the response right back inside the modal. Because...

of course! That's the whole point of a Turbo frame. It keeps the navigation inside itself.

Loading the Modal Instantly

Before we talk about what happens on success, I want to perfect this. My second requirement

for opening the modal was that it needs to open immediately. Over in the new  action, add a

sleep(2) ... to pretend our site is getting slammed by aliens planning their spring break trips:

class VoyageController extends AbstractController

{

    public function new(Request $request, EntityManagerInterface 

$entityManager): Response

    {

        $form = $this->createVoyageForm($voyage);

    }

    public function edit(Request $request, Voyage $voyage, 

EntityManagerInterface $entityManager): Response

    {

        $form = $this->createVoyageForm($voyage);

    }

}



src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 26

27

28

 // ... lines 29 - 31

32

 // ... lines 33 - 46

47

 // ... lines 48 - 97

98

When we click the button now... nothing happens. No user feedback at all until the Ajax request

finishes. That is not good enough. Instead, I want the modal to open immediately with a loading

animation.

Over in the modal controller, add a new target called loadingContent :

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 60

61

Here's my idea: if you want some loading content, you'll define what that looks like in Twig and

set this target on it. We'll do that in a moment.

At the bottom, create a new method called showLoading() . If this.dialogTarget.open ,

so if the dialog is already open, we don't need to show the loading, so return. Otherwise, say

this.dynamicContentTarget  - for us, that's the <turbo-frame>  that the Ajax content

will eventually be loaded into - .innerHTML  equals

this.loadingContentTarget.innerHTML :

class VoyageController extends AbstractController

{

    public function new(Request $request, EntityManagerInterface 

$entityManager): Response

    {

        sleep(2);

    }

}

export default class extends Controller {

    static targets = ['dialog', 'dynamicContent', 'loadingContent'];

}



assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 52

53

54

55

56

57

58

59

60

61

Finally, add that target. In base.html.twig , after the dialog , I'll add a template  element.

Yes, my beloved template  element: it's perfect for this situation because anything inside won't

be visible or active on the page. It's a template we can steal from. Add a

data-modal-target="loadingContent" . I'll paste some content inside:

export default class extends Controller {

    showLoading() {

        // do nothing if the dialog is already open

        if (this.dialogTarget.open) {

            return;

        }

        this.dynamicContentTarget.innerHTML = 

this.loadingContentTarget.innerHTML;

    }

}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

 // ... lines 57 - 58

59

 // ... lines 60 - 75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Nothing special here: just some Tailwind classes with a cool pulse animation.

If we try this now... no loading content! That's because nothing is calling the new

showLoading()  method. Over in base.html.twig , find the frame. I'll break this onto

multiple lines. Let's think: as soon as the turbo-frame  starts loading, we want to call

showLoading() . Fortunately, Turbo dispatches an event when it starts an AJAX request. And

we can listen to that.

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <template data-modal-target="loadingContent">

                <div class="bg-space-pattern bg-cover rounded-lg p-8">

                    <div class="space-y-2">

                        <div class="h-4 bg-gray-700 rounded w-3/4 animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded w-1/2 animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded w-3/4 animate-

pulse"></div>

                        <div class="h-4"></div>

                        <div class="h-4 bg-gray-700 rounded w-1/2 animate-

pulse"></div>

                    </div>

                </div>

            </template>

        </div>

    </body>

</html>



Add a data-action  to listen to turbo:before-fetch-request  - that's the name of the

event - then ->modal#showLoading :

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

 // ... lines 57 - 58

59

60

 // ... lines 61 - 63

64

65

66

67

68

69

70

71

72

73

74

 // ... lines 75 - 90

91

92

93

All right, let's check out the effect! Refresh the page and... oh, it's wonderful! It opens instantly,

we see that loading content... and it's replaced when the frame finishes!

I love how this works. When this calls showLoading() , that method puts content into

dynamicContentTarget . And... do you remember what happens the moment any HTML

goes into that? Our controller notices it, and opens the dialog. That's some great teamwork!

Loading Indication on Form Submit

We're nearly there to making this perfect, but I'm not satisfied! While we still have the sleep ,

submit the form. Nothing happens! There's no feedback while that's loading.

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                            id="modal"

                            data-modal-target="dynamicContent"

                            data-action="turbo:before-fetch-request-

>modal#showLoading"

                        ></turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>



 Tip

For an even nicer effect, you can also change the opacity only if loading takes longer than,

for example, 700ms. Do that by adding an aria-busy:delay-700  class.

Lucky for us, we've been down this road before with a different Turbo frame. Add class

aria-busy:opacity-50 , and transition-opacity :

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

 // ... lines 57 - 58

59

60

 // ... lines 61 - 63

64

65

66

67

 // ... lines 68 - 70

71

72

73

74

75

 // ... lines 76 - 91

92

93

94

I'll reload... click, loading animation and submit. Yes! The low opacity tells us that something is

happening.

And with that, I will happily remove our sleep :

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                            class="aria-busy:opacity-50 transition-

opacity"

                        ></turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>



src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 26

27

28

 // ... lines 29 - 31

32

 // ... lines 33 - 46

47

 // ... lines 48 - 97

98

Conditional Modal Styling

Ok, one final detail that I want to get right: this extra padding. This exists because the content

from the new  page has an element with m-4  and p-4 . So the modal has some padding... and

then extra padding comes from that page.

On the page, the margin and padding make sense. It comes from over here in

new.html.twig . So we do want this on the full page... but not in the modal.

To help us do this, we're going to use a Tailwind trick. In tailwind.config.js , add one

more variant. Call this modal , and activate it whenever we are inside a dialog  element:

tailwind.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 22

23

24

 // ... line 25

26

27

28

29

Now, in new.html.twig , keep the margin and padding for the normal situation. But if we're in

a modal, use modal:m-0 , and modal:p-0 :

class VoyageController extends AbstractController

{

    public function new(Request $request, EntityManagerInterface 

$entityManager): Response

    {

        sleep(2);

    }

}

module.exports = {

  plugins: [

    plugin(function({ addVariant }) {

      addVariant('modal', 'dialog &');

    }),

  ],

}



templates/voyage/new.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 21

22

23

Back on the new page, this shouldn't change. Looks good! But in the modal... that is what we

want.

Our modal system now opens instantly, AJAX-loads content, we can submit it and even closes

itself on success! Watch: fill in a purpose, select a planet... and... the modal closed!

How? It's cool! The new  action redirects to the index page. And because index.html.twig

extends the normal base.html.twig , it does have a modal  frame... but it's that empty one

at the bottom. That causes the turbo-frame  on the page to become empty. And thanks to our

modal controller, we notice that and close the dialog.

The only thing we're missing now, if you were watching closely, is the toast notification!

Tomorrow, we'll talk all about handling success when a form is submitted inside a frame...

including doing cool things like automatically adding the new row to the table on this page. See

ya tomorrow.

{% block body %}

    <div class="m-4 p-4 modal:m-0 modal:p-0 bg-gray-800 rounded-lg">

    </div>

{% endblock %}



Chapter 22: Fancy things on Modal Form Success

We have been busy. We've cooked up a reusable AJAX-powered modal system that I love.

Submitting with validation errors already works. And success? It's nearly there. We when save...

no toast notification, but the modal did close.

The reason it closed is important. In the new()  action, we redirect to the index page. That page

extends the normal base.html.twig ... so it does have a <turbo-frame id="modal">  on

it... but it's this empty one. This means the modal frame becomes empty, our modal Stimulus

controller notices that then closes it.

Planning: When Forms are in Frames

In general, when you add a <turbo-frame>  around something - like on the homepage with

our planets sidebar - you need to think about where the links inside point to. We need to make

sure each goes to a page that has a matching <turbo-frame> .

When a form lives inside a <turbo-frame> , we need to think about what happens on submit.

The error case is easy: it always renders the same page that has the same frame with the

errors inside. But on success, we need to think about where the form redirects to and ask: does

that page have a matching <turbo-frame>  and does it contain the right content?

In the case of this modal and the index page, it's perfect: there is a matching frame, it's empty

and the modal closes.

Rendering Success Flashes with a Turbo Streams

Ok, back to the missing toast notification! This is a situation where we need to update the

<turbo-frame>  - to empty it - and we also need to update another area on the page: we

need to render the success flash messages into the flash container.

This is a super common need when a form submits inside a <turbo-frame> . So we're going

to solve this, I think, in a cool and global way. When we redirect on success, this



<turbo-frame>  is ultimately loaded on the page, which causes the modal to close. Inside it,

add a <turbo-stream>  with action="append"  and target="flash-container" :

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

 // ... lines 57 - 58

59

60

 // ... lines 61 - 63

64

65

66

67

68

 // ... lines 69 - 71

72

73

 // ... line 74

75

76

77

78

79

 // ... lines 80 - 95

96

97

98

When we added the toast system, we added an element with id="flash-container :

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                            id="modal"

                        >

                            <turbo-stream action="append" target="flash-

container">

                            </turbo-stream>

                        </turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 51

52

53

54

 // ... lines 55 - 96

97

98

We didn't need that then, but now it's going to come in handy because we can target that to add

flash messages into it.

Inside the stream, add the template  tag, of course, then

{{ include('_flashes.html.twig') }} :

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div id="flash-container">

            {{ include('_flashes.html.twig') }}

        </div>

    </body>

</html>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 55

56

 // ... lines 57 - 58

59

60

 // ... lines 61 - 63

64

65

66

67

68

 // ... lines 69 - 71

72

73

74

75

76

77

78

79

 // ... lines 80 - 95

96

97

98

This will render the flash messages... and the stream will append them into that container.

Let's try it! Fill out a new voyage, submit and... absolutely nothing happens. The problem... is

subtle. When we redirect to the index page, Symfony renders that entire page... even though

Turbo will only use the <turbo-frame id="modal"> . This means that, right before we

render this code, our flash container renders the flash messages... which removes them from

the flash system. So the flashes messages are in the HTML that we return from the Ajax call...

but because they're not inside the <turbo-frame> , they don't make it onto the page.

The fix is easy: make sure your flash container is after the modal:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                            id="modal"

                        >

                            <turbo-stream action="append" target="flash-

container">

                                <template>{{ include('_flashes.html.twig') 

}}</template>

                            </turbo-stream>

                        </turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 51

52

53

54

55

 // ... lines 56 - 91

92

93

94

95

96

97

98

Give this a go. Refresh... and fill in the form. Got it! The Modal closes, then the

<turbo-stream>  triggers the toast!

And this is really neat! When we redirect, the <turbo-frame>  is now not empty: it contains

the flash <turbo-stream> . But remember: as soon as a <turbo-stream>  activates, it

executes itself and then disappears. Once that happens, the <turbo-frame>  becomes empty

and the modal closes. I really dig that.

Stream Extras: Prepending the Table

What I love about the modal system is that it works... and we haven't needed to make any

changes to our controller. But now, we get to think about any optional extra behavior that we

might want.

For example, could we prepend the table with the new voyage? Because, right now we don't

see it until after we refresh. Let's try!

In index.html.twig , find the table . We need to prepend into the tbody . To target this, on

the table , add an id="voyage-list" :

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

            data-controller="modal"

            data-action="turbo:before-cache@window->modal#close"

        >

        </div>

        <div id="flash-container">

            {{ include('_flashes.html.twig') }}

        </div>

    </body>

</html>



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 21

22

 // ... lines 23 - 39

40

41

42

Let's think: this is another case where we need to update something that lives outside the

<turbo-frame> . So, we need a stream.

Open new.html.twig  and after the body  block, add a new block called stream_success ,

then endblock . Inside, we'll add any Turbo streams we need to make the submit really shine.

Add a <turbo-stream>  action="prepend"  then targets="" . The "s" on targets means

we can use a CSS selector: #voyage-list tbody . Add the <template>  element... and, for

now, a <tr><td>  {{ voyage.purpose }} :

templates/voyage/new.html.twig

 // ... lines 1 - 24

25

26

27

28

29

30

31

Ok, so we have a new block in our template... that nobody is using. Somehow, we need to grab

this Turbo stream... and, after the redirect, render it on the next page in the modal

<turbo-frame> .

How do we do that? We have two options - and I'll show the second on Day 24. But here's the

system I like.

First, we only need to worry about prepending the table row when we're submitting inside a

<turbo-frame> . If we went to the new voyage page directly - which doesn't have a frame -

and submitted, we wouldn't need any Turbo Stream stuff. This would navigate the full page and

render normally. Nice & simple.

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <table class="min-w-full bg-gray-800 text-white" id="voyage-list">

    </table>

</div>

{% endblock %}

{% block stream_success %}

    <turbo-stream action="prepend" targets="#voyage-list tbody">

        <template>

            <tr><td>{{ voyage.purpose }}</td></tr>

        </template>

    </turbo-stream>

{% endblock %}



So, in the controller, start with if $request->headers->has('turbo-frame') . So if this

form submit is happening inside a <turbo-frame> , then we want to use our stream. Render

that block with $stream  equals then a relatively new controller method:

$this->renderBlockView()  passing voyage/new.html.twig . Instead of rendering the

entire template, to render a single block pass this, you guessed it, stream_success .

Actually... I think I'm missing an "s". I am! Better.

Pass the template a voyage  variable.

To pass the <turbo-stream>  string to the next page add it to a new flash called stream :

src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 25

26

27

28

 // ... lines 29 - 32

33

 // ... lines 34 - 38

39

40

41

42

43

44

45

 // ... lines 46 - 47

48

 // ... lines 49 - 53

54

 // ... lines 55 - 104

105

Finally, when we redirect to the index page and this <turbo-frame>  is rendered, output that

flash: for stream in app.flashes('stream') , endfor  with {{ stream|raw }}  so

it renders the raw HTML elements:

class VoyageController extends AbstractController

{

    #[Route('/new', name: 'app_voyage_new', methods: ['GET', 'POST'])]

    public function new(Request $request, EntityManagerInterface 

$entityManager): Response

    {

        if ($form->isSubmitted() && $form->isValid()) {

            if ($request->headers->has('turbo-frame')) {

                $stream = $this->renderBlockView('voyage/new.html.twig', 

'stream_success', [

                    'voyage' => $voyage

                ]);

                $this->addFlash('stream', $stream);

            }

        }

    }

}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 51

52

 // ... lines 53 - 54

55

56

 // ... lines 57 - 59

60

61

62

63

64

 // ... lines 65 - 67

68

 // ... lines 69 - 71

72

73

74

75

76

77

78

 // ... lines 79 - 94

95

 // ... lines 96 - 99

100

101

I think we're ready! Refresh... add a new voyage and... that's incredible! The Ajax call redirected

to the index page, where the modal frame had 2 Turbo streams: one to render the toast and the

other to prepend the table.

Prepending with Real Content

Last step, prepend the real content. What we want is this tr . To get that from inside of

new.html.twig , we need to isolate it into its own template. Copy that, delete it, then include

voyage/_row.html.twig :

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                            id="modal"

                        >

                            {% for stream in app.flashes('stream') %}

                                {{ stream|raw }}

                            {% endfor %}

                        </turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 21

22

 // ... lines 23 - 30

31

32

33

34

35

36

37

38

39

40

41

42

Go create that template... then paste:

templates/voyage/_row.html.twig

1

2

3

4

5

6

7

8

9

Easy.

Copy the include()  statement and, in new.html.twig , use that for the stream:

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

    <table class="min-w-full bg-gray-800 text-white" id="voyage-list">

        <tbody class="divide-y divide-gray-600">

            {% for voyage in voyages %}

                {{ include('voyage/_row.html.twig') }}

            {% else %}

                <tr>

                    <td colspan="4" class="px-6 py-4 whitespace-nowrap 

text-center text-gray-400">No records found</td>

                </tr>

            {% endfor %}

        </tbody>

    </table>

</div>

{% endblock %}

<tr class="even:bg-gray-700 odd:bg-gray-600">

    <td class="px-6 py-4 whitespace-nowrap">{{ voyage.id }}</td>

    <td class="px-6 py-4">{{ voyage.purpose }}</td>

    <td class="px-6 py-4 whitespace-nowrap">{{ voyage.leaveAt ? 

voyage.leaveAt|date('Y-m-d H:i:s') : '' }}</td>

    <td class="px-6 py-4 whitespace-nowrap">

        <a href="{{ path('app_voyage_show', {'id': voyage.id}) }}" 

class="text-blue-400 hover:text-blue-600">show</a>

        <a href="{{ path('app_voyage_edit', {'id': voyage.id}) }}" 

class="ml-4 text-yellow-400 hover:text-yellow-600">edit</a>

    </td>

</tr>



templates/voyage/new.html.twig

 // ... lines 1 - 24

25

26

27

28

29

30

31

Let's try this! Create another voyage and... beautiful! Modal closes, toast notification renders &

the page updates. It's everything we want.

Tomorrow we're going to put our new modal system to the test by opening the edit link inside a

modal. I promised it would be reusable, and tomorrow we'll prove it... with a few curve balls to

make it more realistic.

{% block stream_success %}

    <turbo-stream action="prepend" targets="#voyage-list tbody">

        <template>

            {{ include('voyage/_row.html.twig') }}

        </template>

    </turbo-stream>

{% endblock %}



Chapter 23: More with fun Modals! Editing &
Deleting

Welcome to day 23 - the grand finale in our modal system saga. Though, we will revisit it in a

few days when we talk about Twig components.

So if our new modal system is as reusable as I've promised, we should be able to easily open

the edit form in a modal too, right?

Opening the Edit Form in a Modal

To opt into the modal system, the only thing we need to change - in edit.html.twig  - is to

extend modalBase.html.twig . And while we're here, take out the extra padding with

modal:m-0  and modal:p-0 :

templates/voyage/edit.html.twig

1

 // ... lines 2 - 4

5

6

 // ... lines 7 - 22

23

24

Next, make the edit link target the modal  frame. This lives in _row.html.twig . I'll break this

onto multiple lines.... then add data-turbo-frame="modal" :

{% extends 'modalBase.html.twig' %}

{% block body %}

    <div class="m-4 p-4 modal:m-0 modal:p-0 bg-gray-800 rounded-lg">

    </div>

{% endblock %}



templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... line 6

7

8

9

10

11

12

13

Moment of truth. Refresh. And... darn it! It just works! Even if we save successfully, that works.

We get the toast, the modal closes, my goodness!

This works because, in VoyageController , the edit  action, like new , redirects to the

index  page:

src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 74

75

76

 // ... lines 77 - 81

82

 // ... lines 83 - 104

105

That has an empty modal frame, so the modal closes.

When the Modal Doesn't Close

But... I want to be tricky. The edit form now appears in two contexts, the modal, but also on its

standalone page. What if, when we're on this page, on success, we want to redirect right back

<tr class="even:bg-gray-700 odd:bg-gray-600">

    <td class="px-6 py-4 whitespace-nowrap">

        <a

            href="{{ path('app_voyage_edit', {'id': voyage.id}) }}"

            class="ml-4 text-yellow-400 hover:text-yellow-600"

            data-turbo-frame="modal"

        >edit</a>

    </td>

</tr>

class VoyageController extends AbstractController

{

    public function edit(Request $request, Voyage $voyage, 

EntityManagerInterface $entityManager): Response

    {

        if ($form->isSubmitted() && $form->isValid()) {

            return $this->redirectToRoute('app_voyage_index', [], 

Response::HTTP_SEE_OTHER);

        }

    }

}



here so we can keep editing.

Easy! Change the route to app_voyage_edit  and set id  to $voyage->getId() :

src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 74

75

76

 // ... lines 77 - 81

82

 // ... lines 83 - 104

105

Cool. Now when we save, it works! But... how did that affect the form in the modal? When we

edit and save... nothing happens. The modal is still here and no toast notification.

Rendering the "Frame Streams" in all Frames

Let's work on the missing toast notification first. In base.html.twig , inside of the modal

frame, we render the flash messages in a <turbo-stream> . The problem is... when we

redirect to the edit page, because it extends modalBase.html.twig , the frame that's

returned is this one. And this <turbo-frame>  does not render these streams.

It turns out, these lines should really live inside any <turbo-frame>  that might be rendered

after a form submit.

To help with that, copy this and, inside the templates/  directory, create a new file called

_frameSuccessStreams.html.twig . Paste inside:

class VoyageController extends AbstractController

{

    public function edit(Request $request, Voyage $voyage, 

EntityManagerInterface $entityManager): Response

    {

        if ($form->isSubmitted() && $form->isValid()) {

            return $this->redirectToRoute('app_voyage_edit', ['id' => 

$voyage->getId()], Response::HTTP_SEE_OTHER);

        }

    }

}



templates/_frameSuccessStreams.html.twig

1

2

3

4

5

6

But before we use this, I want to add one other detail:

if app.request.headers.get('turbo-frame')  equals a new frame  variable, then

render this, else, do nothing:

templates/_frameSuccessStreams.html.twig

1

2

3

4

5

6

7

8

I'm coding for an edge-case, so let me explain. Imagine we have two <turbo-frame>

elements on the same page: id="login"  and id="registration" . And they both include

this partial. In this case, the <turbo-frame id="login">  would always render the flash

messages... leaving nothing for the poor registration  frame. And so, when we are

submitting inside the registration  Turbo Frame... we wouldn't see the toast notifications.

To fix this, when we use this partial - include('_frameSuccessStreams.html.twig')  -

pass the name of the frame you're inside: modal :

<turbo-stream action="append" target="flash-container">

    <template>{{ include('_flashes.html.twig') }}</template>

</turbo-stream>

{% for stream in app.flashes('stream') %}

    {{ stream|raw }}

{% endfor %}

{% if app.request.headers.get('turbo-frame') == frame %}

    <turbo-stream action="append" target="flash-container">

        <template>{{ include('_flashes.html.twig') }}</template>

    </turbo-stream>

    {% for stream in app.flashes('stream') %}

        {{ stream|raw }}

    {% endfor %}

{% endif %}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 51

52

 // ... lines 53 - 54

55

56

 // ... lines 57 - 59

60

61

62

63

 // ... lines 64 - 67

68

69

70

71

72

73

 // ... lines 74 - 89

90

 // ... lines 91 - 94

95

96

That way, if the current frame is something else, this won't eat the flash messages.

Copy this, and in modalFrame.html.twig , paste that here too:

templates/modalFrame.html.twig

1

2

3

4

Let's do this! Refresh, Edit... and save. The modal still stays open, but look back there: we see

the toast!

Closing the Modal when it wants to stay open

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

        >

            <dialog

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                        >

                            {{ include('_frameSuccessStreams.html.twig', { 

frame: 'modal' }) }}

                        </turbo-frame>

                    </div>

                </div>

            </dialog>

        </div>

    </body>

</html>

<turbo-frame id="modal">

    {% block body %}{% endblock %}

    {{ include('_frameSuccessStreams.html.twig', { frame: 'modal' }) }}

</turbo-frame>



Now: how can we close this pesky modal. When we put a form inside a frame, our Symfony

controller might not need to change. Flash messages will work and, depending on where you

redirect, the modal might even close.

But you do need to ask yourself: where are all the places my form will be used? And: am I

returning the right response for each situation? Right now, in the modal situation, our response

isn't what we want: it doesn't cause the modal to close.

And that's okay! Remember: in addition to letting the Turbo frame update with the content after

the redirect, we can also use streams to do anything extra.

In new.html.twig , steal the stream_success  from the bottom. In edit.html.twig ,

paste. This time, we want to update the <turbo-frame id="modal">  element to empty its

content so the modal will close. Do that with action="update" , target="modal" , and set

the <template>  to nothing:

templates/voyage/edit.html.twig

 // ... lines 1 - 25

26

27

28

29

30

In the controller, to add the "extra stuff", copy the if statement from new ... paste it down here,

change the template to edit.html.twig  and... we should be good!

{% block stream_success %}

    <turbo-stream action="update" target="modal">

        <template></template>

    </turbo-stream>

{% endblock %}



src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 73

74

75

76

77

78

79

80

 // ... lines 81 - 82

83

 // ... lines 84 - 88

89

 // ... lines 90 - 111

112

Ok, hit "Edit" and save. Hmm, I saw the toast, but the modal didn't close. Let me look at the

stream to make sure I have everything. Ah! With targets , you use a CSS selector. But with

target , it's just the id:

templates/voyage/edit.html.twig

 // ... lines 1 - 25

26

27

 // ... line 28

29

30

So the Turbo Stream was executing... but wasn't matching anything.

Let's try that again. When we hit save, that will redirect back to the edit page, and that is going

have a <turbo-frame id="modal">  with content: it won't be empty. But then, our stream

should empty it and the modal should close.

And... gorgeous!

class VoyageController extends AbstractController

{

    public function edit(Request $request, Voyage $voyage, 

EntityManagerInterface $entityManager): Response

    {

        if ($form->isSubmitted() && $form->isValid()) {

            if ($request->headers->has('turbo-frame')) {

                $stream = $this->renderBlockView('voyage/edit.html.twig', 

'stream_success', [

                    'voyage' => $voyage

                ]);

                $this->addFlash('stream', $stream);

            }

        }

    }

}

{% block stream_success %}

    <turbo-stream action="update" target="modal">

    </turbo-stream>

{% endblock %}



Updating the Row in Edit

Can I add one last polishing detail to edit? It would be so cool if, when we change a voyage, it

updated the row instantly. This is another "extra", and... it's going to be easy.

First, to target this, in _row.html.twig , add an id , voyage-list-item- ,

{{ voyage.id }} :

templates/voyage/_row.html.twig

1

 // ... lines 2 - 12

13

Copy that, head over to edit.html.twig  and add one more Turbo Stream:

action="replace"  and target="voyage-list-item-"  voyage.id . Add the

<template>  and then include voyage/_row.html.twig :

templates/voyage/edit.html.twig

 // ... lines 1 - 25

26

 // ... lines 27 - 29

30

31

32

33

This is where things really start to shine. Edit, remove those exclamation points and... the page

updates instantly. Our edit modal - even with all the complications I threw in - is done!

Handling Delete

With our last 3 minutes, let's make sure the "delete" button is working. Oh... it is! The modal

closes and the toast renders! Like the other actions, after deleting, it redirects to the index

page and the empty modal  frame closes the modal. It's brilliant!

Except... that the row I deleted is still there until we refresh.

But hold up. The delete button is a form that submits. And the only reason this submits into a

<turbo-frame>  is because it happens to live inside the modal frame.

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

</tr>

{% block stream_success %}

    <turbo-stream action="replace" target="voyage-list-item-{{ voyage.id 

}}">

        <template>{{ include('voyage/_row.html.twig') }}</template>

    </turbo-stream>

{% endblock %}



But the delete action doesn't need to submit into a frame. We're never going to click "Delete"

then want to show something in the modal. A full page navigation would be fine.

To do that, in _delete_form.html.twig , on the frame, add data-turbo-frame="_top" :

templates/voyage/_delete_form.html.twig

1

 // ... lines 2 - 5

6

Now, edit, delete, and... the redirect causes a full page navigation, which is fine.

Extra-Fancy Delete

Though, yes, it could be smoother. Scroll down a bit... and delete one. The page scrolls back to

the top.

Like with anything, if this is important to us, we can improve it. Remove the

data-turbo-frame="_top" :

templates/voyage/_delete_form.html.twig

1

 // ... lines 2 - 5

6

When a form - even our delete form - exists inside a <turbo-frame> , we need to ask: where

is this being used and what do I need to update to make the page perfect after success? In this

case, we need to remove the row. So we need to do something extra, outside the frame. And

we know how to do that!

In edit.html.twig , steal the stream_success  block. Then create a new template called

delete.html.twig . Delete doesn't normally have its own template... and we're going to use

this just for the stream_success . Use this one, change action  to remove  and target

voyage-list-item-  but just use an id  variable. And for remove, we don't need the

<template>  at all:

<form method="post" data-turbo-frame="_top" action="{{ 

path('app_voyage_delete', {'id': voyage.id}) }}" onsubmit="return 

confirm('Are you sure you want to delete this item?');">

</form>

<form method="post" action="{{ path('app_voyage_delete', {'id': 

voyage.id}) }}" onsubmit="return confirm('Are you sure you want to delete 

this item?');">

</form>



templates/voyage/delete.html.twig

1

2

3

In VoyageController , scroll up, steal the if statement.... and down in delete, paste that.

Change the template to delete.html.twig  and pass an id  variable set to $id . We can't

use $voyage->getId()  because it'll already be empty since we deleted it. Instead, pass

$id ... and before we delete, set that: $id = $voyage->getId() :

src/Controller/VoyageController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 91

92

93

94

95

 // ... lines 96 - 100

101

102

103

104

105

106

107

108

 // ... lines 109 - 110

111

 // ... lines 112 - 120

121

Let's do this! Scroll way down here and delete ID 22. Watch. Boom. The row is gone, we get the

toast notification and the page doesn't budge.

Ok, the last few days have been... wow. Tomorrow, we're going to take it easier and learn one

other way we can use Turbo Streams. See you then!

{% block success_stream %}

    <turbo-stream action="remove" target="voyage-list-item-{{ id }}">

</turbo-stream>

{% endblock %}

class VoyageController extends AbstractController

{

    public function delete(Request $request, Voyage $voyage, 

EntityManagerInterface $entityManager): Response

    {

        if ($this->isCsrfTokenValid('delete'.$voyage->getId(), $request-

>request->get('_token'))) {

            $id = $voyage->getId();

            if ($request->headers->has('turbo-frame')) {

                $stream = $this-

>renderBlockView('voyage/delete.html.twig', 'success_stream', [

                    'id' => $id,

                ]);

                $this->addFlash('stream', $stream);

            }

        }

    }

}



Chapter 24: Turbo Stream Responses

For day 24, strap in for a quick adventure. We've learned that Turbo Streams are custom HTML

elements that you can throw onto the page anywhere... and they execute! But there's another

way to use Streams that's actually more commonly-documented, even if I'm using it a bit less

lately.

In VoyageController , scroll up to find the new()  action. Instead of redirecting, like we

normally do for a form submit, the other option is to return a response that is entirely filled with

Turbo streams.

Returning a Response of Streams

Watch: remove the flash and return $this->renderBlockView() ... except change it to

renderBlock() . That does the same thing, but returns a Response  object instead of a

string. The last detail is $request->setRequestFormat()

TurboBundle::STREAM_FORMAT :



src/Controller/VoyageController.php

 // ... lines 1 - 13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 27

28

29

 // ... lines 30 - 33

34

 // ... lines 35 - 39

40

41

42

43

44

45

46

 // ... lines 47 - 48

49

 // ... lines 50 - 54

55

 // ... lines 56 - 121

122

It's a bit techy, but this will set a Content-Type  header on the response that tells Turbo:

“Hey! This is not a normal full page response. I'm returning just a set of Turbo Streams that I

want you to process.”

Drumroll, please. Refresh, go to New Voyage... fill out the fields... and save. What happened?

The modal is still open and no Toast notification. But if you were watching closely, the row in the

table did prepend!

In the network tools, find the POST request. Look at that! The response is nothing more than

the <turbo-stream> : that's the only thing our app returned.

Returning All the Streams Needed

use Symfony\UX\Turbo\TurboBundle;

class VoyageController extends AbstractController

{

    public function new(Request $request, EntityManagerInterface 

$entityManager): Response

    {

        if ($form->isSubmitted() && $form->isValid()) {

            if ($request->headers->has('turbo-frame')) {

                $request->setRequestFormat(TurboBundle::STREAM_FORMAT);

                return $this->renderBlock('voyage/new.html.twig', 

'stream_success', [

                    'voyage' => $voyage

                ]);

            }

        }

    }

}



The takeaway is: because we're not redirecting to another page, we no longer get the normal

<turbo-frame>  behavior where it finds the frame on the next page and renders that. In our

case, the empty <turbo-frame>  is what closed the modal and rendered the flash messages.

When you decide to return a stream response, you are 100% responsible for updating

everything on the page. So, in new.html.twig , down here, we need a couple more streams!

Open edit.html.twig  and steal the one that closes the modal. Pop that here.... then, from

_frameSuccessStreams.html.twig , steal the stream that appends to the flash container:

templates/voyage/new.html.twig

 // ... lines 1 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

I think that's all we need! Give this another shot. Here's our toast notification finally from the

previous submit. Create a new voyage... and ... save. That's it! Toast notification, modal closed,

row prepended.

Turbo Mercure

This idea of returning just a <turbo-stream>  is similar to how the Turbo and Mercure

integration works. If you don't know, Mercure is a tool that allows you to get real-time updates

on your front end... kind of like web sockets, but cooler. And Mercure pairs really well with

Turbo. From inside your controller, you publish an Update  to Mercure... which will be sent to

the frontends of every browser that's listening to this chat  topic.

The content of that Update  is a set of Turbo Streams. I'll scroll down to that template. So we

publish streams... those streams are sent to frontend via Mercure, and Turbo processes them.

{% block stream_success %}

    <turbo-stream action="prepend" targets="#voyage-list tbody">

        <template>

            {{ include('voyage/_row.html.twig') }}

        </template>

    </turbo-stream>

    <turbo-stream action="update" target="modal">

        <template></template>

    </turbo-stream>

    <turbo-stream action="append" target="flash-container">

        <template>{{ include('_flashes.html.twig') }}</template>

    </turbo-stream>

{% endblock %}



On the frontend, it might look like this. We edit a voyage, add a few exclamation points and hit

save. Of course, our page updates thanks to the normal Turbo mechanisms we've talked about.

But, if we were using Mercure, we could make it so that anyone else on this page could receive

a Stream update that also says to prepend this row. So I add the exclamation points, and you

suddenly also see them on your screen, without refreshing.

It's super cool and powered via Streams.

Ok, even though this is working nicely, let's go back to our old way... which was also working

nicely. Remove the new Turbo Streams... and undo the code in the controller.

Tomorrow, we move on to one of my favorite parts of LAST Stack - and the key to organizing

your site into reusable chunks: Twig Components.



Chapter 25: Twig Components

Today, we get to talk about one of my favorite new-ish PHP libraries: Twig Components. They...

do kind of what their name sounds like. But let's dive in and see them in action.

Installing Twig Components

Find your terminal and install the package with:

composer require symfony/ux-twig-component

Twig Components is a pure PHP library... and an easy way to think about it is: a fancier and

more powerful way to do a Twig include() .

Over in our browser, open the edit page in a new tab so we can see the full page. Then open

the form for this: _form.html.twig . When you use Tailwind, creating a button is... kind of a

lot of work. Twig Components will help us centralize this.

make:twig-component

Because this is our first Twig Component, let's be lazy and generate it. Run:

php bin/console make:twig-component

Call it Button... and say no to a live component. We get to talk about those in 2 days.

This created two files. The first lives in src/Twig/Components/Button.php :



src/Twig/Components/Button.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

It's... an empty class. And it's not even needed yet! In fact, we could delete this and the first half

of today would work fine without it. We'll come back to this later.

The more important thing is: templates/components/Button.html.twig . A pretty boring-

looking Twig template. Change the div to be a <button> , and inside, I'll say, "Press me!":

templates/components/Button.html.twig

1

To use this, over in _form.html.twig , say {{ component('Button') }} :

templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 11

12

If we just did that, it would work. We get a button that says, "press me".

Passing Attributes to a Component

One of the first interesting things about Twig Components is that you can pass attributes into

them. As a second argument, pass formnovalidate  set to true , then class ... copy this

long class list... and paste:

namespace App\Twig\Components;

use Symfony\UX\TwigComponent\Attribute\AsTwigComponent;

#[AsTwigComponent]

class Button

{

}

<button {{ attributes }}>Press me!</button>

{{ form_start(form) }}

    {{ component('Button', {

    }) }}

{{ form_end(form) }}



templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

5

6

7

 // ... lines 8 - 11

12

When we do that, we get an error... because I forgot my closing comma. Better. As I was saying,

when we do that... we see a button with those Tailwind classes! This is thanks to a cool

attributes  variable that we have in any Twig Component template. It collects what we pass

into the component - called props  - and renders them.

The Optional HTML Syntax

One of my favorite features of Twig Components is that it has an optional, but wonderful, HTML

syntax. Instead of the Twig function, we can say <twig:Button> . Now props are passed like

normal HTML attributes. I'll copy them from the real <button>  tag and paste:

templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

5

6

7

 // ... lines 8 - 11

12

What does it look like? The same darn thing! This special syntax comes from Twig Components

and is for rendering Twig Components. Some people are "meh" on this syntax, while others love

it. Choose whatever you want. I like it because it feels like a native HTML element. And if you've

ever used a front-end framework like React, it will feel natural.

Passing Content to the Twig Component

{{ form_start(form) }}

    {{ component('Button', {

        formnovalidate: true,

        class: 'px-4 py-2 border border-transparent text-sm font-medium 

rounded-md text-white bg-green-600 hover:bg-green-700',

    }) }}

{{ form_end(form) }}

{{ form_start(form) }}

    <twig:Button

        formnovalidate

        class="px-4 py-2 border border-transparent text-sm font-medium 

rounded-md text-white bg-green-600 hover:bg-green-700"

    />

{{ form_end(form) }}



But, we still have hard-coded "Press me!" content. That's not very helpful. To make this

dynamic, we can use a block. That's right, a good old-fashioned Twig block! I called this one

content :

templates/components/Button.html.twig

1

To pass in that block, copy the button label below, change this to a not self-closing tag, paste...

then add the closing tag:

templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

5

6

7

8

9

 // ... lines 10 - 13

14

And... it works! What!? When you put content between the Twig component HTML tags, it

becomes a block called content . That's just built in. If you also had other blocks in your

component and needed to pass those in too, you can do that. And you would specify those

using the normal block , endblock  syntax. But you get this content  block for free, which

looks fantastic.

Celebrate by removing our old HTML button:

templates/voyage/_form.html.twig

1

2

3

4

5

6

7

8

9

10

<button {{ attributes }}>{% block content %}{% endblock %}</button>

{{ form_start(form) }}

    <twig:Button

        formnovalidate

        class="px-4 py-2 border border-transparent text-sm font-medium 

rounded-md text-white bg-green-600 hover:bg-green-700"

    >

        {{ button_label|default('Save') }}

    </twig:Button>

{{ form_end(form) }}

{{ form_start(form) }}

    {{ form_widget(form) }}

    <twig:Button

        formnovalidate

        class="px-4 py-2 border border-transparent text-sm font-medium 

rounded-md text-white bg-green-600 hover:bg-green-700"

    >

        {{ button_label|default('Save') }}

    </twig:Button>

{{ form_end(form) }}



Default Component Attributes

But remember: the goal is to make buttons easier to create. And needing to specify all of these

classes is... entirely the problem we want to fix! Copy those and delete the class  attribute

entirely:

templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

5

6

7

In the component template, we could add a class  attribute right here and paste. But instead,

call attributes.defaults , pass that an array with class:  then the class string:

templates/components/Button.html.twig

1

2

3

This will let us add more classes when we use this component. We'll do that in minute.

Over on the site... it still looks great! Now suppose, in this one situation, we need an extra class

- hover:animate-wiggle  - to make our button more fun:

templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

 // ... line 5

6

7

This is a custom CSS animation I invented... so down in tailwind.config.js , I'll paste the

wiggle ... and its keyframe:

{{ form_start(form) }}

    <twig:Button formnovalidate>

        {{ button_label|default('Save') }}

    </twig:Button>

{{ form_end(form) }}

<button {{ attributes.defaults({

    class: 'px-4 py-2 border border-transparent text-sm font-medium 

rounded-md text-white bg-green-600 hover:bg-green-700',

}) }}>{% block content %}{% endblock %}</button>

{{ form_start(form) }}

    <twig:Button formnovalidate class="hover:animate-wiggle">

    </twig:Button>

{{ form_end(form) }}



tailwind.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 9

10

11

12

 // ... line 13

14

15

16

 // ... lines 17 - 20

21

22

23

24

25

26

27

 // ... lines 28 - 33

34

Ok, refresh and hover! Pointless... but so fun! The important part is that we see the normal

classes that come from the component template and the extra class at the end.

Passing Variables to a Component

Could we now reuse the component for the delete button? Let's try! This lives in

_delete_form.html.twig . Change this to <twig:  big "B" Button . Then most of these

classes are in the component already. We only need the ones related to color:

templates/voyage/_delete_form.html.twig

1

 // ... lines 2 - 3

4

5

6

7

module.exports = {

  theme: {

    extend: {

      animation: {

        wiggle: 'wiggle 1s ease-in-out infinite',

      },

      keyframes: {

        wiggle: {

          '0%, 100%': { transform: 'rotate(-3deg)' },

          '50%': { transform: 'rotate(3deg)' },

        }

      },

    },

  },

}

<form method="post" action="{{ path('app_voyage_delete', {'id': 

voyage.id}) }}" onsubmit="return confirm('Are you sure you want to delete 

this item?');">

    <twig:Button class="text-white bg-red-600 hover:bg-red-700 focus:ring-

4 focus:ring-red-300 focus:outline-none">

        Delete

    </twig:Button>

</form>



And... it works! But... kind of by accident. If we inspect that element, it has the bg-green-600

from the twig component template and the bg-red-600 . You might think... that makes sense!

The later one overrides the earlier one right?

Actually, no. There's no rule that says that this one should win over this one or the green should

win over the red. The reason red is winning is... luck! By chance, when Tailwind generated the

CSS file, the bg-red-600  was, apparently, generated later in the file. So, it's winning. In

Tailwind, you need to avoid competing classes because the result isn't guaranteed.

What we really want to do is create different variants of the button. I'd like to be able to say

something like variant="danger" :

templates/voyage/_delete_form.html.twig

1

 // ... lines 2 - 3

4

 // ... line 5

6

7

And... over in the other template, variant="success" :

templates/voyage/_form.html.twig

1

 // ... lines 2 - 3

4

 // ... line 5

6

 // ... line 7

8

 // ... line 9

10

11

Right now, no surprise, that adds a variant="danger"  attribute. That's not what I want: I

want to use this value in my component to conditionally render different classes.

This is finally where our PHP class comes in handy. To convert a prop that we pass into our

component from an attribute to a variable, we can add a public property with the same name:

public string $variant = 'default'; :

<form method="post" action="{{ path('app_voyage_delete', {'id': 

voyage.id}) }}" onsubmit="return confirm('Are you sure you want to delete 

this item?');">

    <twig:Button variant="danger" class="text-white bg-red-600 hover:bg-

red-700 focus:ring-4 focus:ring-red-300 focus:outline-none">

    </twig:Button>

</form>

{{ form_start(form) }}

    <twig:Button

        variant="success"

    >

    </twig:Button>

{{ form_end(form) }}



src/Twig/Components/Button.php

 // ... lines 1 - 6

7

8

9

10

11

And now that we have a public property called variant , we get a local variable inside of Twig

called variant . Watch {{ variant }} :

templates/components/Button.html.twig

1

2

3

And now... we see it in both spots! Danger up here, success down there.

Adding a Component PHP Method

Ok: we now need to use the variant  variable to conditionally render different classes. We

need... kind of a switch-case statement to map each variant to a set of classes. Writing

something like that in Twig... isn't super fun.

But remember: we have a Twig component PHP class that's bound to this template. And we can

add methods there! I'll paste in a new public function called getVariantClasses() :

#[AsTwigComponent]

class Button

{

    public string $variant = 'default';

}

<button {{ attributes.defaults({

    class: 'px-4 py-2 border border-transparent text-sm font-medium 

rounded-md text-white bg-green-600 hover:bg-green-700',

}) }}>{{ variant }}{% block content %}{% endblock %}</button>



src/Twig/Components/Button.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 11

12

13

14

15

16

17

18

19

20

21

It has a match  statement... which based on $this->variant , returns a different set of

classes.

One of the superpowers of Twig components is that this Button  object is available inside the

component template as a variable called this . That means we can go to the end of the

class  list, remove the color-specific ones, then concatenate with a ~  and

this.variantClasses :

templates/components/Button.html.twig

1

2

3

Go check it. Yes! We have green down here... and red up there! To really prove it's working, on

the delete button, remove the extra classes:

templates/voyage/_delete_form.html.twig

1

 // ... lines 2 - 3

4

5

6

7

class Button

{

    public function getVariantClasses(): string

    {

        return match ($this->variant) {

            'default' => 'text-white bg-blue-500 hover:bg-blue-700',

            'success' => 'text-white bg-green-600 hover:bg-green-700',

            'danger' => 'text-white bg-red-600 hover:bg-red-700 

focus:ring-4 focus:ring-red-300 focus:outline-none',

            default => throw new \LogicException(sprintf('Unknown button 

type "%s"', $this->variant)),

        };

    }

}

<button {{ attributes.defaults({

    class: 'px-4 py-2 border border-transparent text-sm font-medium 

rounded-md '~this.variantClasses,

}) }}>{% block content %}{% endblock %}</button>

<form method="post" action="{{ path('app_voyage_delete', {'id': 

voyage.id}) }}" onsubmit="return confirm('Are you sure you want to delete 

this item?');">

    <twig:Button variant="danger">

        Delete

    </twig:Button>

</form>



I love the way that looks in code... and on the site.

Pointing Tailwind at your Component PHP Classes

Though, one detail. Tailwind scans our source files, finds all the Tailwind classes we're using

and includes those in the final CSS file. And because we're now including classes inside PHP,

we need to make sure Tailwind sees those.

In tailwind.config.js , on top, I'll paste in one more line to make it scan our Twig

component PHP classes:

tailwind.config.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 34

35

Changing the Component Tag Name

Ok, we're nearly done for today - but I want to celebrate and use the new component in one

more spot: on the voyage index page, for the "New Voyage" button.

Open index.html.twig ... change this to a <twig:Button> ... then we can remove most of

these classes. The bold is specific to this spot I think:

module.exports = {

  content: [

    "./src/Twig/Components/**/*.php"

  ],

}



templates/voyage/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 40

41

42

When we refresh... it renders! Though... when I click... nothing happens! You probably saw why:

this is now a button, not an a  tag.

That's okay: we can make our component just a bit more flexible. In Button.php , add another

property: string $tag  defaulting to button :

src/Twig/Components/Button.php

 // ... lines 1 - 7

8

9

 // ... line 10

11

 // ... lines 12 - 21

22

Then in the template, use {{ tag }}  for the starting tag and the ending tag:

templates/components/Button.html.twig

1

 // ... line 2

3

{% block body %}

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <twig:Button

            href="{{ path('app_voyage_new') }}"

            data-turbo-frame="modal"

            class="flex items-center space-x-1 font-bold"

        >

            <span>New Voyage</span>

            <svg xmlns="http://www.w3.org/2000/svg" class="w-4 inline" 

viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" fill="none" 

stroke-linecap="round" stroke-linejoin="round"><path stroke="none" d="M0 

0h24v24H0z" fill="none"/><path d="M3 12a9 9 0 1 0 18 0a9 9 0 0 0 -18 0" />

<path d="M9 12h6" /><path d="M12 9v6" /></svg>

        </twig:Button>

    </div>

</div>

{% endblock %}

class Button

{

    public string $tag = 'button';

}

<{{ tag }} {{ attributes.defaults({

}) }}>{% block content %}{% endblock %}</{{ tag }}>



Finish in index.html.twig : pass tag="a" :

templates/voyage/index.html.twig

 // ... lines 1 - 5

6

7

8

9

 // ... lines 10 - 11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 19

20

21

 // ... lines 22 - 41

42

43

Now over here... when we click... got it!

That's it! I hope you love Twig components as much as I do. But they can do even more! I didn't

tell you how you can prefix any attribute with :  to pass dynamic Twig variables or expressions

to a prop. We also didn't discuss that the component PHP classes are services. Yea, you can

add an __construct()  function, autowire other services, like VoyageRepository , then

use those to provide data to your template... making the entire component standalone and self-

sufficient. That's one of my favorite features.

Tomorrow we're going to keep leveraging Twig components to create a modal component...

then see just how easily we can use modals whenever we want.

<div class="m-4 p-4 bg-gray-800 rounded-lg">

    <div

        class="flex justify-between"

    >

        <twig:Button

            tag="a"

        >

        </twig:Button>

    </div>

</div>

{% endblock %}



Chapter 26: Modal Twig Component

Today is a good day. Today we get to combine our modal system with Twig components to

achieve a goal! I want to be able to quickly add a modal anywhere in our app.

Creating the Modal Component

Start in base.html.twig . All the way at the bottom, copy the modal markup. You can see...

it's quite a bit: not something we want to copy and paste somewhere else:



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div

            data-controller="modal"

            data-action="turbo:before-cache@window->modal#close"

        >

            <dialog

                class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 

w-full md:w-fit md:max-w-[50%] md:min-w-[50%] animate-fade-in backdrop:bg-

slate-600 backdrop:opacity-80"

                data-modal-target="dialog"

                data-action="close->modal#close click->modal#clickOutside"

            >

                <div class="flex grow p-5">

                    <div class="grow overflow-auto p-1">

                        <turbo-frame

                            id="modal"

                            data-modal-target="dynamicContent"

                            data-action="turbo:before-fetch-request-

>modal#showLoading"

                            class="aria-busy:opacity-50 transition-

opacity"

                        >

                            {{ include('_frameSuccessStreams.html.twig', { 

frame: 'modal' }) }}

                        </turbo-frame>

                    </div>

                </div>

            </dialog>

            <template data-modal-target="loadingTemplate">

                <div class="bg-space-pattern bg-cover rounded-lg p-8">

                    <div class="space-y-2">

                        <div class="h-4 bg-gray-700 rounded w-3/4 animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded w-1/2 animate-

pulse"></div>



84

85

86

87

88

89

90

 // ... lines 91 - 94

95

96

Copy, then delete it. Let's craft a Modal  component, this time by hand. Create a new file in

templates/components/  called Modal.html.twig , and paste:

                        <div class="h-4 bg-gray-700 rounded w-3/4 animate-

pulse"></div>

                        <div class="h-4"></div>

                        <div class="h-4 bg-gray-700 rounded w-1/2 animate-

pulse"></div>

                    </div>

                </div>

            </template>

        </div>

    </body>

</html>



templates/components/Modal.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

<div

    data-controller="modal"

    data-action="turbo:before-cache@window->modal#close"

>

    <dialog

        class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-full 

md:w-fit md:max-w-[50%] md:min-w-[50%] animate-fade-in backdrop:bg-slate-

600 backdrop:opacity-80"

        data-modal-target="dialog"

        data-action="close->modal#close click->modal#clickOutside"

    >

        <div class="flex grow p-5">

            <div class="grow overflow-auto p-1">

                <turbo-frame

                    id="modal"

                    data-modal-target="dynamicContent"

                    data-action="turbo:before-fetch-request-

>modal#showLoading"

                    class="aria-busy:opacity-50 transition-opacity"

                >

                    {{ include('_frameSuccessStreams.html.twig', { frame: 

'modal' }) }}

                </turbo-frame>

            </div>

        </div>

    </dialog>

    <template data-modal-target="loadingTemplate">

        <div class="bg-space-pattern bg-cover rounded-lg p-8">

            <div class="space-y-2">

                <div class="h-4 bg-gray-700 rounded w-3/4 animate-pulse">

</div>

                <div class="h-4 bg-gray-700 rounded animate-pulse"></div>

                <div class="h-4 bg-gray-700 rounded animate-pulse"></div>

                <div class="h-4"></div>

                <div class="h-4 bg-gray-700 rounded animate-pulse"></div>

                <div class="h-4 bg-gray-700 rounded w-1/2 animate-pulse">

</div>

                <div class="h-4 bg-gray-700 rounded w-3/4 animate-pulse">

</div>

                <div class="h-4"></div>

                <div class="h-4 bg-gray-700 rounded w-1/2 animate-pulse">

</div>

            </div>

        </div>

    </template>

</div>



Like I said with the Button , we don't need a PHP class for a component. Because we don't

have one, we call this an "anonymous component".

On top, render attributes ... then add .defaults()  so we can move these two attributes

into that. Paste... then each of these needs a makeover to fit as Twig keys and values instead of

HTML attributes:

templates/components/Modal.html.twig

1

2

3

4

5

6

 // ... lines 7 - 40

41

I like it! Over in base.html.twig , render this with <twig:Modal> . Easy!

Adding Blocks to the Component

However, look closer at Modal.html.twig : there are some things that shouldn't be here. For

example, the <turbo-frame> ! Not every modal needs a frame. A lot of times, we'll render a

modal with simple, hardcoded content inside.

Copy this, and replace it with, of course, {% block content %}  and {% endblock %} :

templates/components/Modal.html.twig

1

 // ... lines 2 - 5

6

7

 // ... lines 8 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 33

34

<div

    {{ attributes.defaults({

        'data-controller': 'modal',

        'data-action': 'turbo:before-cache@window->modal#close',

    }) }}

>

</div>

<div

>

    <dialog

    >

        <div class="flex grow p-5">

            <div class="grow overflow-auto p-1">

                {% block content %}{% endblock %}

            </div>

        </div>

    </dialog>

</div>



In base.html.twig , paste the frame... and add a closing tag:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 54

55

56

57

58

59

60

61

62

63

64

65

66

Let's keep going! The loading template down here? Yea, that's also something that specific to

this one modal. If our modal is a hardcoded message, it won't need this at all!

Copy the loading div , delete, then around the <template>  add: if

block('loading_template') :

templates/components/Modal.html.twig

1

 // ... lines 2 - 5

6

 // ... lines 7 - 18

19

20

21

22

23

24

So if we pass the block, render it inside the <template> .

Back in base.html.twig , anywhere, define that block. But instead of the normal

{% block %}  tag - which would work - when you're inside a Twig component, you can use a

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <twig:Modal>

            <turbo-frame

                id="modal"

                data-modal-target="dynamicContent"

                data-action="turbo:before-fetch-request-

>modal#showLoading"

                class="aria-busy:opacity-50 transition-opacity"

            >

                {{ include('_frameSuccessStreams.html.twig', { frame: 

'modal' }) }}

            </turbo-frame>

        </twig:Modal>

    </body>

</html>

<div

>

    {% if block('loading_template') %}

        <template data-modal-target="loadingTemplate">

            {% block loading_template %}{% endblock %}

        </template>

    {% endif %}

</div>



special <twig:block>  syntax with name="loading_template" . Then, paste:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 54

55

56

 // ... lines 57 - 62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

We just moved around a lot of stuff. And yet... the existing modal still works! And now, we have

a leaner, meaner modal component that we can reuse in other places.

Delete Modal with Custom Content

Let's do exactly that. I want to add a delete link on each row that, on click, opens a modal with a

confirmation. Open _row.html.twig . Copy the edit link, paste, and call it delete:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <twig:Modal>

            <turbo-frame

            </turbo-frame>

            <twig:block name="loading_template">

                <div class="bg-space-pattern bg-cover rounded-lg p-8">

                    <div class="space-y-2">

                        <div class="h-4 bg-gray-700 rounded w-3/4 animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4"></div>

                        <div class="h-4 bg-gray-700 rounded animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded w-1/2 animate-

pulse"></div>

                        <div class="h-4 bg-gray-700 rounded w-3/4 animate-

pulse"></div>

                        <div class="h-4"></div>

                        <div class="h-4 bg-gray-700 rounded w-1/2 animate-

pulse"></div>

                    </div>

                </div>

            </twig:block>

        </twig:Modal>

    </body>

</html>



templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 11

12

13

14

15

16

17

18

To get this to work, one option is to create a new, standalone delete confirmation page, point to

that and... done! The data-turbo-frame="modal"  would load that page into the modal.

But since we've done that before, let's try something different. Delete the href , change this to

a button , remove the data-turbo-frame  attribute... and change the yellow colors to red:

templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 11

12

13

14

15

16

Let's go check out the look. Nice!

Back over, I'll paste in a modal:

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap">

        <a

            href="{{ path('app_voyage_edit', {'id': voyage.id}) }}"

            class="ml-4 text-yellow-400 hover:text-yellow-600"

            data-turbo-frame="modal"

        >edit</a>

    </td>

</tr>

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap">

        <button

            class="ml-4 text-red-400 hover:text-red-600"

        >delete</button>

    </td>

</tr>



templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 14

15

16

17

18

19

20

21

22

23

There's nothing special here. The big difference is, instead of a <turbo-frame> , the content

we need is right here. When we refresh, every row now has a delete dialog inside of it. But

that's totally okay! It's not open, so it's invisible.

Opening the Modal

Now for the tricky part. When we click this button, we need to open this modal. To make this

happen, we need the button to physically live inside the data-controller="modal"

element so that it can call the open  action on the modal Stimulus controller.

To allow that, inside the modal template, add a new block called trigger , endblock :

templates/components/Modal.html.twig

1

 // ... lines 2 - 5

6

7

 // ... lines 8 - 25

26

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap">

        <twig:Modal>

            <svg class="mx-auto mb-4 text-gray-400 w-12 h-12 dark:text-

gray-200" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" stroke-

width="2" stroke="currentColor" fill="none" stroke-linecap="round" stroke-

linejoin="round"><path stroke="none" d="M0 0h24v24H0z" fill="none"/><path 

d="M12 12m-9 0a9 9 0 1 0 18 0a9 9 0 1 0 -18 0" /><path d="M12 9v4" /><path 

d="M12 16v.01" /></svg>

            <h3 class="mb-5 text-lg font-normal text-gray-500 dark:text-

gray-400">

                Delete this thrilling voyage???

            </h3>

        </twig:Modal>

    </td>

</tr>

<div

>

    {% block trigger %}{% endblock %}

</div>



Now, if you have a button that triggers the modal to open, you can put that right here! Over in

_row.html.twig , copy the button, remove it, say <twig:block name="trigger">  and

paste.

And because we're inside the modal, add data-action="modal#open" :

templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 25

26

27

28

Let's try this! So excited! Refresh! The styling got weird. Before, we had three a  tags, which are

inline elements. Now we have two inline elements and a block element. So that is something

that changes slightly, but it's an easy fix. Up on the <td> , add a flex  class:

templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 26

27

28

Modal Conditional Size & the props Tag

And now... much better. Most importantly, when we hit Delete, the modal opens! However, you

know me, I want this to be perfect. And I'm not happy with how big this is. When I open the edit

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap flex">

        <twig:Modal>

            <twig:block name="trigger">

                <button

                    class="ml-4 text-red-400 hover:text-red-600"

                    data-action="modal#open"

                >delete</button>

            </twig:block>

        </twig:Modal>

    </td>

</tr>

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap flex">

    </td>

</tr>



form, it makes sense to be half the screen width. But when I open the delete, we should let it

shrink down to the size of the content inside.

To do that, in this one case, I want to be pass a new flag called allowSmallWidth  set to

true :

templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 25

26

27

28

I added this :  because, if I pass allowSmallWidth="true" , that will pass the string true .

By adding a colon, this becomes Twig code, so that will pass the Boolean true . They would

both work... but I like being stricter.

With the Button , we learned that if you want this to become a variable instead of an attribute,

you can add a public property with that same name. And we could create a new Modal.php

file.

But there's another way to convert from an attribute into a variable when using an anonymous

component. At the top of Modal.html.twig , add a props  tag that's special to Twig

components. Add allowSmallWidth  and default it to false :

templates/components/Modal.html.twig

1

 // ... lines 2 - 28

Cool, huh? Below, we want to make this min-width conditional. Say

{{ allowSmallWidth }}  - if that is true, render nothing, else render the

md:min-w-[50%] :

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap flex">

        <twig:Modal :allowSmallWidth="true">

        </twig:Modal>

    </td>

</tr>

{% props allowSmallWidth=false %}



templates/components/Modal.html.twig

1

2

 // ... lines 3 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 13

14

 // ... lines 15 - 19

20

 // ... lines 21 - 26

27

Back on the page, the edit link still opens with half width... but that delete link, ah, it's nice and

small! Now it deserves some real content! In _row.html.twig , after the <h3> , I'll add some

styling... then I want a cancel button that closes the modal. For that, we can go old-school. Add

a <form method="dialog"> , and inside a <twig:Button>  that says Cancel. And I want

the button to look like a link, so add variant="link" :

templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 26

27

28

29

30

 // ... line 31

32

33

34

35

That doesn't exist yet, so in the Button  class, add it: variant  and it just needs

text-white :

{% props allowSmallWidth=false %}

<div

>

    <dialog

        class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-full 

md:w-fit md:max-w-[50%] {{ allowSmallWidth ? '' : 'md:min-w-[50%] ' 

}}animate-fade-in backdrop:bg-slate-600 backdrop:opacity-80"

    >

    </dialog>

</div>

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap flex">

        <twig:Modal :allowSmallWidth="true">

            <div class="flex justify-between">

                <form method="dialog">

                    <twig:Button variant="link">Cancel</twig:Button>

                </form>

            </div>

        </twig:Modal>

    </td>

</tr>



src/Twig/Components/Button.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 12

13

14

15

 // ... lines 16 - 18

19

 // ... line 20

21

22

23

After the form, to render the delete button, include voyage/_delete_form.html.twig :

templates/voyage/_row.html.twig

1

 // ... lines 2 - 4

5

 // ... lines 6 - 12

13

 // ... lines 14 - 26

27

28

29

30

31

32

33

34

35

Oh, and that template has a built-in confirm . Delete that because we have something way

nicer now.

Moment of truth! Refresh and delete. It looks great! Cancel closes the modal... and deleting

works. And it shouldn't be a surprise that it works. The delete form is not inside a

<turbo-frame> . So when we click delete, that triggers a normal form submit that redirects

and causes a normal full page navigation.

class Button

{

    public function getVariantClasses(): string

    {

        return match ($this->variant) {

            'link' => 'text-white',

        };

    }

}

<tr class="even:bg-gray-700 odd:bg-gray-600" id="voyage-list-item-{{ 

voyage.id }}">

    <td class="px-6 py-4 whitespace-nowrap flex">

        <twig:Modal :allowSmallWidth="true">

            <div class="flex justify-between">

                <form method="dialog">

                    <twig:Button variant="link">Cancel</twig:Button>

                </form>

                {{ include('voyage/_delete_form.html.twig') }}

            </div>

        </twig:Modal>

    </td>

</tr>



Hiding Search Options in a Modal

Ok, I know this is already a full day, but I really want to use the modal in one more spot. And it's

a cool use-case.

On the homepage, in my PHP & Symfony code, I won't show it, but I already added logic to filter

this list by the planets. I only didn't add any planet checkboxes to the page because... we don't

really have space for them.

So here's my idea: add a link here that opens a modal that holds the extra filtering options.

Open up main/homepage.html.twig  and find that input. Start by adding a

<div class="w-1/3 flex"> ... add the closing on the other side of the input... then remove

w-1/3  from the input. We're making space for that link:



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 // ... lines 57 - 59

60

 // ... lines 61 - 145

146

147

148

But I'll paste in a full modal:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                method="GET"

                action="{{ path('app_homepage') }}"

                class="mb-6 flex justify-between"

                data-controller="autosubmit"

                data-turbo-frame="voyage-list"

            >

                <div class="w-1/3 flex">

                    <input

                        type="search"

                        name="query"

                        value="{{ app.request.query.get('query') }}"

                        aria-label="Search voyages"

                        placeholder="Search voyages"

                        class="px-4 py-2 rounded bg-gray-800 text-white 

placeholder-gray-400"

                        data-action="autosubmit#debouncedSubmit"

                        autofocus

                    >

                </div>

            </form>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

                method="GET"

                action="{{ path('app_homepage') }}"

                class="mb-6 flex justify-between"

                data-controller="autosubmit"

                data-turbo-frame="voyage-list"

            >

                <div class="w-1/3 flex">

                    <input

                        type="search"

                        name="query"

                        value="{{ app.request.query.get('query') }}"

                        aria-label="Search voyages"

                        placeholder="Search voyages"

                        class="px-4 py-2 rounded bg-gray-800 text-white 

placeholder-gray-400"

                        data-action="autosubmit#debouncedSubmit"

                        autofocus

                    >

                    <twig:Modal>

                        <twig:block name="trigger">

                            <twig:Button

                                variant="link"

                                type="button"

                                data-action="modal#open"

                            >Options</twig:Button>

                        </twig:block>

                        <h3 class="text-white text-lg font-semibold mb-

2">Search Options</h3>

                        <hr class="mb-4">

                        <div class="flex justify-end">

                            <twig:Button

                                variant="success"

                                data-action="modal#close"

                            >See Results</twig:Button>

                        </div>

                    </twig:Modal>

                </div>



 // ... lines 77 - 79

80

 // ... lines 81 - 165

166

167

168

This will be invisible except for the trigger. So we basically just added a button that says

"options". But it's already set up to open the modal. Inside, to start, we have an h3  and a

<twig:Button>  that closes the modal.

Adding a Modal Close Button

But the result when I click options... is nice! Though, it needs a close button on the upper right.

We could add it to just this modal... but it might be nice if it were an option in the modal

component.

Let's do it! In Modal.html.twig , add one more prop called closeButton  defaulting to

false :

templates/components/Modal.html.twig

1

 // ... lines 2 - 37

If that's true, at the end of the dialog , I'll paste in a close button:

            </form>

        </section>

    </div>

{% endblock %}

{% props allowSmallWidth=false, closeButton=false %}



templates/components/Modal.html.twig

1

2

 // ... lines 3 - 6

7

 // ... lines 8 - 9

10

 // ... lines 11 - 13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 35

36

Again, nothing special here: some absolute styling, an icon... and the important part: it calls

modal#close .

In homepage.html.twig  find that modal and add closeButton="true" ... but with the :

like last time:

{% props allowSmallWidth=false, closeButton=false %}

<div

>

    <dialog

    >

        {% if closeButton %}

            <button

                class="absolute right-4 top-3 text-white flex items-center 

opacity-70 transition-opacity hover:opacity-100"

                data-action="modal#close"

                type="button"

            >

                <svg xmlns="http://www.w3.org/2000/svg" width="24" 

height="24" viewBox="0 0 24 24" stroke-width="2" stroke="currentColor" 

fill="none" stroke-linecap="round" stroke-linejoin="round"><path 

stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M18 6l-12 12" />

<path d="M6 6l12 12" /></svg>

            </button>

        {% endif %}

    </dialog>

</div>



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

 // ... lines 39 - 43

44

45

 // ... lines 46 - 56

57

 // ... lines 58 - 74

75

76

 // ... lines 77 - 79

80

 // ... lines 81 - 165

166

167

168

Let's check it out! I love that!

Finally, let's frost this cake. Near the bottom of the content, I'll paste in the planet checkboxes:

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

            >

                <div class="w-1/3 flex">

                    <twig:Modal :closeButton="true">

                    </twig:Modal>

                </div>

            </form>

        </section>

    </div>

{% endblock %}



templates/main/homepage.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 36

37

38

 // ... lines 39 - 43

44

45

 // ... lines 46 - 56

57

 // ... lines 58 - 65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

 // ... lines 84 - 89

90

91

 // ... lines 92 - 94

95

 // ... lines 96 - 180

181

182

183

{% block body %}

    <div class="flex">

        <section class="flex-1 ml-10">

            <form

            >

                <div class="w-1/3 flex">

                    <twig:Modal :closeButton="true">

                        <h3 class="text-white text-lg font-semibold mb-

2">Search Options</h3>

                        <hr class="mb-4">

                        <h4 class="text-white text-sm font-semibold mb-2">

                            Planets

                        </h4>

                        {% for planet in planets %}

                            <div class="flex items-center mb-4">

                                <input

                                    type="checkbox"

                                    class="w-4 h-4 text-blue-600 bg-gray-

100 border-gray-300 rounded focus:ring-blue-500 dark:focus:ring-blue-600 

dark:ring-offset-gray-800 focus:ring-2 dark:bg-gray-700 dark:border-gray-

600"

                                    name="planets[]"

                                    value="{{ planet.id }}"

                                    id="planet-search-{{ planet.id }}"

                                    {{ planet.id in searchPlanets ? 

'checked' : '' }}

                                >

                                <label for="planet-search-{{ planet.id }}" 

class="ms-2 text-sm font-medium text-gray-900 dark:text-gray-300">{{ 

planet.name }}</label>

                            </div>

                        {% endfor %}

                    </twig:Modal>

                </div>

            </form>

        </section>

    </div>

{% endblock %}



This is more boring code! I loop over the planets and render input check boxes. My Symfony

controller is already set up to read the planets  parameter and filter the query.

Final test. Open it up. Lovely! Now watch: click a few. When I press "See Results", the table

should update. Boom. It did!

But the coolest part is... how this worked! Think about it: I click this button... and the table

reloads. That means the form is submitting. But... what caused that? Look at the button: there's

no code to submit the form. So what's going on?

Remember: this button , the planet checkboxes and this modal physically live inside the

<form>  element. And what happens when you press a button that lives inside a form? It

submits the form! We run the modal#close , but we also allow the browser to do the default

behavior: submitting the form. This is ancient alien technology at work!

On the close button, I was a bit sneaky. When I added that, I included a type="button" . That

tells the browser to not submit any form that it might be inside. That's why when we click "X",

nothing updates. But when we click "see results", the form submits.

Woh! Best day ever! Tomorrow, it's time to look at Live components, where we take Twig

components and let them re-render on the page via Ajax as the user interacts when them.



Chapter 27: Live Components

Happy Day 27 of Last Stack! We've accomplished a lot during the first 26 days with just three

letters of LAST Stack: Asset Mapper, Stimulus, and Turbo. Today we crack the code on the L of

LAST Stack: Live components. Live components let us take a Twig component... then re-render

it via Ajax as the user interacts with it.

Our goal is this global search. When I click nothing happens! What I want to do is open a modal

with a search box that, as we type, loads a live search.

Opening the Search Modal

Start inside templates/base.html.twig . Search for search! Perfect: this is the fake search

input we just saw. Add a <twig:Modal>  with :closeButton="true" , then a

<twig:block>  with name="trigger" . Put the fake input inside that. To make this open the

modal, we need data-action="modal#open" :



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

33

34

35

36

37

38

39

40

41

42

43

44

 // ... lines 45 - 54

55

 // ... lines 56 - 84

85

86

Cool! If we refresh, nothing changes: the only visible part of the modal is the trigger. For the

modal content, after the Twig block, I'll paste in a div:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true">

                        <twig:block name="trigger">

                            <div

                                class="hidden md:flex pr-10 items-center 

space-x-2 border-2 border-gray-900 rounded-lg p-2 bg-gray-800 text-white 

cursor-pointer"

                                data-action="modal#open"

                            >

                                <svg xmlns="http://www.w3.org/2000/svg" 

class="h-5 w-5 text-gray-500" stroke-width="2" stroke="currentColor" 

fill="none" stroke-linecap="round" stroke-linejoin="round"><path 

stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M10 10m-7 0a7 7 0 1 

0 14 0a7 7 0 1 0 -14 0"/><path d="M21 21l-6 -6"/></svg>

                                <span class="pl-2 pr-10 text-gray-

500">Search Cmd+K</span>

                            </div>

                        </twig:block>

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 // ... lines 57 - 66

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true">

                        <twig:block name="trigger">

                            <div

                                class="hidden md:flex pr-10 items-center 

space-x-2 border-2 border-gray-900 rounded-lg p-2 bg-gray-800 text-white 

cursor-pointer"

                                data-action="modal#open"

                            >

                                <svg xmlns="http://www.w3.org/2000/svg" 

class="h-5 w-5 text-gray-500" stroke-width="2" stroke="currentColor" 

fill="none" stroke-linecap="round" stroke-linejoin="round"><path 

stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M10 10m-7 0a7 7 0 1 

0 14 0a7 7 0 1 0 -14 0"/><path d="M21 21l-6 -6"/></svg>

                                <span class="pl-2 pr-10 text-gray-

500">Search Cmd+K</span>

                            </div>

                        </twig:block>

                        <div class="relative">

                            <div class="absolute inset-y-0 left-0 pl-3 

flex items-center pointer-events-none">

                                <svg xmlns="http://www.w3.org/2000/svg" 

class="h-5 w-5 text-gray-500" stroke-width="2" stroke="currentColor" 

fill="none" stroke-linecap="round" stroke-linejoin="round"><path 

stroke="none" d="M0 0h24v24H0z" fill="none"/><path d="M10 10m-7 0a7 7 0 1 

0 14 0a7 7 0 1 0 -14 0"/><path d="M21 21l-6 -6"/></svg>

                            </div>

                            <input

                                type="search"

                                aria-label="Search site"

                                placeholder="Search for anything"

                                class="px-4 py-2 pl-10 rounded bg-gray-800 

text-white placeholder-gray-400 w-full outline-none"

                            />

                        </div>

                    </twig:Modal>

                </nav>

            </header>



67

 // ... lines 68 - 96

97

98

Nothing special here: just a real search input.

Back at the browser, when I click... uh oh. Nothing happens! Debugging always starts in the

console. No errors, but when I click, watch: there's no log that says that the action is being

triggered. We've got something wrong with that and maybe you saw my mistake? We added the

data-action  to a div . Unlike a button  or a form , Stimulus doesn't have a default event

for a div . Add click-> :

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

33

34

 // ... line 35

36

37

 // ... lines 38 - 39

40

41

 // ... lines 42 - 53

54

55

56

 // ... lines 57 - 66

67

 // ... lines 68 - 96

97

98

And now... got it!

Oh, and it auto-focused the input! That's.... just a feature of dialogs! They work like a mini page

within a page: it autofocuses the first tabbable element... or you can use the normal

        </div>

    </body>

</html>

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true">

                        <twig:block name="trigger">

                            <div

                                data-action="click->modal#open"

                            >

                            </div>

                        </twig:block>

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



autofocus  attribute for more control. It just works how you want it to.

Modal: Control the Padding

Anyway, I'm picky: this is more padding than I want. But that's ok! We can make our Modal

component just a bit more flexible. In components/Modal.html.twig , the extra padding is

this p-5 . On top, add a third prop : padding='p-5' . Copy that. And down here, render

padding :

templates/components/Modal.html.twig

1

2

 // ... lines 3 - 6

7

 // ... lines 8 - 9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 18

19

 // ... lines 20 - 28

29

 // ... lines 30 - 35

36

Over in base.html.twig , on the modal, add padding  equals empty quotes:

{% props allowSmallWidth=false, closeButton=false, padding="p-5" %}

<div

>

    <dialog

    >

        <div class="flex grow {{ padding }}">

        </div>

    </dialog>

</div>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

 // ... lines 33 - 53

54

55

56

 // ... lines 57 - 66

67

 // ... lines 68 - 96

97

98

Let's check it! And... much neater.

Creating the Twig Component

To bring the results to life, we could repeat the data-tables setup from the homepage. We could

add a <turbo-frame>  with the results right here and make the input autosubmit into that

frame.

Another option is to build this with a live component. But before we talk about that, let's first

organize the modal contents into a twig component.

In templates/components/ , create a new file called SearchSite.html.twig . I'll add a

div with {{ attributes }} . Then go steal the entire body of the modal, and paste it here:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true" padding="">

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



templates/components/SearchSite.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

Over in base.html.twig , it's easy, right? <twig:SearchSite />  and done:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 40

41

42

43

44

45

46

 // ... lines 47 - 56

57

 // ... lines 58 - 86

87

88

<div {{ attributes }}>

    <div class="relative">

        <div class="absolute inset-y-0 left-0 pl-3 flex items-center 

pointer-events-none">

            <svg xmlns="http://www.w3.org/2000/svg" class="h-5 w-5 text-

gray-500" stroke-width="2" stroke="currentColor" fill="none" stroke-

linecap="round" stroke-linejoin="round"><path stroke="none" d="M0 

0h24v24H0z" fill="none"/><path d="M10 10m-7 0a7 7 0 1 0 14 0a7 7 0 1 0 -14 

0"/><path d="M21 21l-6 -6"/></svg>

        </div>

        <input

            type="search"

            aria-label="Search site"

            placeholder="Search for anything"

            class="px-4 py-2 pl-10 rounded bg-gray-800 text-white 

placeholder-gray-400 w-full outline-none"

        />

    </div>

</div>

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true" padding="">

                        <twig:block name="trigger">

                        </twig:block>

                        <twig:SearchSite />

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



At the browser, we get the same result.

Fetching Data with a Twig Component

The site search is really going to be a voyage search. To render the results, we have two

options. First, we could... somehow get the voyages that we want to show inside of

base.html.twig  and pass them into SearchSite  as a prop. But... fetching data from our

base layout is tricky... we'd probably need a custom Twig function.

The second option is to leverage our Twig component! One of its superpowers is the ability to

fetch its own data: to be standalone.

To do that, this Twig component now needs a PHP class. In src/Twig/Components/ , create

a new PHP class called SearchSite . The only thing that this needs to be recognized as a

Twig component is an attribute: #[AsTwigComponent] :

src/Twig/Components/SearchSite.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

9

10

11

 // ... lines 12 - 22

23

This is exactly what we saw inside the Button  class. A few days ago, I quickly mentioned that

Twig component classes are services, which means we can autowire other services like

VoyageRepository , $voyageRepository :

namespace App\Twig\Components;

use Symfony\UX\TwigComponent\Attribute\AsTwigComponent;

#[AsTwigComponent]

class SearchSite

{

}



src/Twig/Components/SearchSite.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

14

 // ... lines 15 - 22

23

To provide the data to the template, create a new method called voyages() ! This will return an

array... which will really be an array of Voyage[] . Inside

return $this->voyageRepository->findBySearch() . That's the same method we're

using on the homepage. Pass null , an empty array, and limit to 10 results:

src/Twig/Components/SearchSite.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

 // ... lines 12 - 15

16

17

18

19

20

21

22

23

The search query isn't dynamic yet, but we do now have a voyages()  method that we can

use in the template. I'll start with a bit of styling, then it's normal twig code:

{% for voyage in this  - that's our component object - .voyages . Add endfor , and in

the middle, I'll paste that in:

use App\Repository\VoyageRepository;

#[AsTwigComponent]

class SearchSite

{

    public function __construct(private VoyageRepository 

$voyageRepository)

    {

    }

}

use App\Entity\Voyage;

#[AsTwigComponent]

class SearchSite

{

    /**

     * @return Voyage[]

     */

    public function voyages(): array

    {

        return $this->voyageRepository->findBySearch(null, [], 10);

    }

}



templates/components/SearchSite.html.twig

1

 // ... lines 2 - 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Nothing special: an anchor tag, an image tag, and some info.

Let's try it. Open! Sweet! Though, of course, when we type, nothing updates! Lame!

Installing & Upgrading to a LiveComponent

This is where live components comes in handy. So let's get it installed!

composer require symfony/ux-live-component

To upgrade our Twig component to a Live component, we only need to do two things. First, it's

#[AsLiveComponent] . And second, use DefaultActionTrait :

<div {{ attributes }}>

    <div class="text-white py-2 rounded-lg">

        {% for voyage in this.voyages %}

            <a href="{{ path('app_voyage_show', { id: voyage.id }) }}" 

class="flex items-center space-x-4 px-4 p-2 hover:bg-gray-700 cursor-

pointer">

                <img

                    class="h-10 w-10 rounded-full"

                    src="{{ asset('images/'~voyage.planet.imageFilename) 

}}"

                    alt="{{ voyage.planet.name }} planet"

                >

                <div>

                    <p class="text-sm font-medium text-white">{{ 

voyage.purpose }}</p>

                    <p class="text-xs text-gray-400">{{ voyage.leaveAt|ago 

}}</p>

                </div>

            </a>

        {% endfor %}

    </div>

</div>



src/Twig/Components/SearchSite.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

 // ... lines 14 - 25

26

That's an internal detail... but needed.

So far, nothing will change. It's still a Twig component... and we haven't added any live

component superpowers.

Adding a Writable Prop

One of the key concepts with a Live Component is that you can add a property and allow the

user to change that property from the frontend. For example, create a

public string $query  to represent the search string:

src/Twig/Components/SearchSite.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 29

30

Below, use that when we call the repository:

use Symfony\UX\LiveComponent\Attribute\AsLiveComponent;

use Symfony\UX\LiveComponent\DefaultActionTrait;

#[AsLiveComponent]

class SearchSite

{

    use DefaultActionTrait;

}

#[AsLiveComponent]

class SearchSite

{

    public string $query = '';

}



src/Twig/Components/SearchSite.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 25

26

27

28

29

30

To allow the user to modify this property, we need to give it an attribute: #[LiveProp]  with

writeable: true :

src/Twig/Components/SearchSite.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

13

 // ... lines 14 - 15

16

17

 // ... lines 18 - 29

30

Finally, to bind this property to the input - so that the query  property changes as the user types

- add data-model="query" :

templates/components/SearchSite.html.twig

1

2

 // ... lines 3 - 5

6

7

8

 // ... lines 9 - 11

12

13

 // ... lines 14 - 30

31

#[AsLiveComponent]

class SearchSite

{

    public string $query = '';

    public function voyages(): array

    {

        return $this->voyageRepository->findBySearch($this->query, [], 

10);

    }

}

use Symfony\UX\LiveComponent\Attribute\LiveProp;

#[AsLiveComponent]

class SearchSite

{

    #[LiveProp(writable: true)]

    public string $query = '';

}

<div {{ attributes }}>

    <div class="relative">

        <input

            type="search"

            data-model="query"

        />

    </div>

</div>



That's it! Check out the result. We start with everything, but when we type... it filters! It even has

built-in debouncing.

Backstage, it makes an AJAX request, populates the query  property with this string, re-renders

the Twig template and pops it right here.

Now that this is working, I don't think we need to load all the results at first. And, look, it's just

PHP, so this is easy. If not $this->query , then return an empty array:

src/Twig/Components/SearchSite.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 25

26

27

28

29

30

 // ... lines 31 - 32

33

34

And in SearchSite.html.twig , add an if statement around this: if this.voyages  is not

empty, render that... with the endif  at the bottom:

templates/components/SearchSite.html.twig

1

 // ... lines 2 - 14

15

16

17

 // ... lines 18 - 29

30

31

32

33

For those of you that are sticklers for details, yes, with this.voyages , we're calling the

method twice. But there are ways around this - and my favorite is called

#[ExposeInTemplate] . I won't show it, but it's a quick change.

#[AsLiveComponent]

class SearchSite

{

    public function voyages(): array

    {

        if (!$this->query) {

            return [];

        }

    }

}

<div {{ attributes }}>

    {% if this.voyages is not empty %}

    <div class="text-white py-2 rounded-lg">

        {% for voyage in this.voyages %}

        {% endfor %}

    </div>

    {% endif %}

</div>



Fixing the Modal to the Top

So, I'm happy! But, this isn't perfect... and I want that. One thing that bothers me is the position:

it looks low when it's empty. And as we type, it jumps around. That's the native <dialog>

positioning, which is normally great, but not when our content is changing. So in this one case,

let's fix the position near the top.

In Modal.html.twig , add one last piece of flexibility to our component: a prop called

fixedTop = false :

templates/components/Modal.html.twig

1

 // ... lines 2 - 3

4

5

6

 // ... lines 7 - 42

Then, at the end of the dialog  classes, if fixedTop , render mt-14  to set the top margin.

Else do nothing:

templates/components/Modal.html.twig

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

 // ... lines 13 - 14

15

16

 // ... lines 17 - 18

19

 // ... lines 20 - 33

34

 // ... lines 35 - 40

41

Over in base.html.twig , on the modal... it's time to break this onto multiple lines. Then pass

:fixedTop="true" :

{% props

    padding="p-5",

    fixedTop=false

%}

<div

>

    <dialog

        class="open:flex bg-gray-800 rounded-lg shadow-xl inset-0 w-full 

md:w-fit md:max-w-[50%] {{ allowSmallWidth ? '' : 'md:min-w-[50%] ' 

}}animate-fade-in backdrop:bg-slate-600 backdrop:opacity-80{{ fixedTop ? ' 

mt-14' : '' }}"

    >

    </dialog>

</div>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

 // ... lines 33 - 43

44

45

46

 // ... lines 47 - 56

57

 // ... lines 58 - 86

87

88

And now, ah. Much nicer and no more jumping around.

Setting the Search as Turbo Permanent

What else? Pressing up and down on my keyboard to go through the results is needed, though

I'll save that for another time. But watch this. If I search, then click out and navigate to another

page, not surprisingly, when we open the search modal, it's empty. It would be really cool if it

remembered the search.

And we can do that with a trick from Turbo. In base.html.twig , on the modal, add

data-turbo-permanent :

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true" padding="" 

:fixedTop="true">

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

 // ... lines 33 - 43

44

45

46

 // ... lines 47 - 56

57

 // ... lines 58 - 86

87

88

That tells Turbo to keep this on the page when it navigates. When you use this, it needs an id.

Let's see how this feels. Open the search, type something, click off, go to the homepage and

open it again. So darn cool!

Opening Search on Ctrl+K

Ok, final thing! Up here, I'm advertising that you open the search with a keyboard shortcut.

That's a lie! But we can add this... and, again, it's easy.

On the modal, add a data-action . Stimulus has built-in support for doing things on

keydown . So we can say keydown. , then whatever key we want, like K . Or in this case,

Ctrl+K .

If we stopped now, this would only trigger if the modal were focused and then someone pressed

Ctrl+K . That's... not going to happen. Instead, we want this to open no matter what is

focused. We want a global listener. Do that by adding @window .

Copy that, add a space, paste and also trigger on meta+k . Meta is the command key on a

Mac:

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal :closeButton="true" padding="" 

:fixedTop="true" data-turbo-permanent id="global-search-modal">

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

 // ... lines 20 - 31

32

 // ... lines 33 - 37

38

39

 // ... lines 40 - 50

51

52

53

 // ... lines 54 - 63

64

 // ... lines 65 - 93

94

95

Testing time! I'll move over and... keyboard! I love it! Done!

Lazy-Loading Live Component

Oh, and Live Components can also be loaded lazily via AJAX! Watch: add a defer  attribute.

When we refresh, we won't see any difference... because that component is hidden on page

load anyway. But in reality, it just loaded empty then immediately made an Ajax call to load for

real. We can see that down here in the web debug toolbar! This is a great way to defer loading

something heavy, so it doesn't slow down your page.

It's not particularly useful in our case because the SearchSite component is so lightweight, so I'll

remove it.

Tomorrow, we'll spend one more day with Live Components - this time to give a form real-time-

validation superpowers and solve the age-old pesky problem of dynamic or dependent form

fields.

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

        <div class="container mx-auto min-h-screen flex flex-col">

            <header class="my-8 px-4">

                <nav class="flex items-center justify-between mb-4">

                    <twig:Modal

                        data-action="keydown.meta+k@window->modal#open 

keydown.ctrl+k@window->modal#open"

                    >

                    </twig:Modal>

                </nav>

            </header>

        </div>

    </body>

</html>



Chapter 28: Real-Time Validation & Dependent
Form Fields

For day 28, I want to show you one of the most common ways that people are using Live

Components: forms. Because Live Components have this power to reload as you type, they

give us interesting possibilities with forms, like real-time validation! So here's today's goal:

convert the Voyage form into a Live Component and see some cool real-time validation for

ourselves!

We already have a controller that takes care of creating the Voyage form and handles this

submit. What we're going to do is wrap the frontend part of the form inside a Live Component so

that as we type, it re-renders. But ultimately, when we save, it'll save like normal through the

controller.

Moving the Form into a Twig Component

For step one, forget about Live Components: let's just convert the form rendering into a Twig

Component. In this case, I know we're going to need a PHP class, so create a new one called

VoyageForm  and make it a Twig Component with #[AsTwigComponent] :

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

10

 // ... line 11

12

Perfect! The form itself lives in templates/voyage/_form.html.twig  and uses a form

variable, which we'll need to pass into the Twig component.

namespace App\Twig\Components;

use Symfony\UX\TwigComponent\Attribute\AsTwigComponent;

#[AsTwigComponent]

class VoyageForm

{

}



In the VoyageForm  class, add a public property for this: public FormView $form ,

because FormView  is the object type for the form  variable:

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

Next, in templates/components/ , create the component template:

VoyageForm.html.twig . Copy the entire form, paste it here:

templates/components/VoyageForm.html.twig

1

2

3

4

5

6

7

8

9

10

11

And then in _form.html.twig , it's simple: <twig:VoyageForm /> :

templates/voyage/_form.html.twig

1

And over at the browser... bah! We get:

“Variable form  does not exist.”

Let's think about this. We do have a public property in the component class called form ... so

we should have a local variable with that name. But, the property is uninitialized because I

forgot to pass in that value. My bad! Pass :form="form"  - using :  so that the value - form  -

is Twig code: that's the form  variable:

use Symfony\Component\Form\FormView;

#[AsTwigComponent]

class VoyageForm

{

    public FormView $form;

}

{{ form_start(form) }}

    {{ form_widget(form) }}

    <twig:Button

        formnovalidate

        variant="success"

        class="hover:animate-wiggle"

    >

        {{ button_label|default('Save') }}

    </twig:Button>

{{ form_end(form) }}

<twig:VoyageForm :form="form" />



templates/voyage/_form.html.twig

1

And now... got it! Before we keep going, inside the template, remember to render the

attributes  variable. The easiest is to wrap this in a div  and say {{ attributes }} . I'll

put the closing tag... then indent the entire form:

templates/components/VoyageForm.html.twig

1

2

 // ... lines 3 - 11

12

13

So the form rendering is now a Twig component. But to give it behavior, we need a Live

Component.

LiveComponent & Symfony Forms

Let's think. After changing any field, I want a Live Component to collect the value of every field

and send them to the Live Component system via an Ajax call. The Live Component will then

submit these values into the form object and rerender the template.

Using Symfony forms with Live Components is a bit more of a complex use-case than the

normal case of Live components: where we create some public properties and make them

writable.

Fortunately, Live Component ships with a trait to help. In VoyageForm , first, convert this to a

Live Component by saying #[AsLiveComponent]  then using the DefaultActionTrait :

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 9

10

 // ... line 11

12

13

14

15

16

17

 // ... lines 18 - 27

28

<twig:VoyageForm :form="form" />

<div {{ attributes }}>

    {{ form_start(form) }}

    {{ form_end(form) }}

</div>

use Symfony\UX\LiveComponent\Attribute\AsLiveComponent;

use Symfony\UX\LiveComponent\DefaultActionTrait;

#[AsLiveComponent]

class VoyageForm extends AbstractController

{

    use DefaultActionTrait;

}



Next, because we want to bind this component to a form object, use

ComponentWithFormTrait . When we do that, we don't need this public form  property

anymore because that lives inside the trait:

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

15

16

17

18

19

 // ... lines 20 - 27

28

However, this trait does require one new method. Go to "Code"->"Generate" - or Cmd+N  on a

Mac - and implement the one we need: instantiateForm() :

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 7

8

 // ... lines 9 - 14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 26

27

28

This might look strange at first. But remember, as we change fields in our form, the form values

will be sent via Ajax back to our Live component... which then needs to submit them into the

form object so it can re-render. This means that, during the Ajax call, our Live Component needs

to be able to create our form object. To do that, it calls this method.

To get the logic for this, in VoyageController , all the way at the bottom, copy the guts of

createVoyageForm() ... then paste them here. Hit okay to add the two use  statements:

use Symfony\UX\LiveComponent\ComponentWithFormTrait;

#[AsLiveComponent]

class VoyageForm extends AbstractController

{

    use DefaultActionTrait;

    use ComponentWithFormTrait;

}

use Symfony\Component\Form\FormInterface;

class VoyageForm extends AbstractController

{

    protected function instantiateForm(): FormInterface

    {

    }

}



src/Twig/Components/VoyageForm.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 14

15

16

 // ... lines 17 - 19

20

21

22

23

24

25

26

27

28

There's... just one problem: the createForm()  and generateUrl()  methods don't exist

here! But I haven't told you about a crazy, cool thing: Live Components are Symfony controllers

in disguise! And this means we can extend AbstractController :

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

16

 // ... lines 17 - 27

28

That's totally allowed and gives us access to all the shortcuts we know and love.

Ok, showtime! Move over. When I type, nothing happens. In this case, Live Components waits

for the field to change... so it waits for us to move off of the field. As soon as we do, we'll see an

Ajax request fire down here. Watch. Boom! See it? That sent the data back, submitted the form

and re-rendered the form.

To prove this, clear out the field and hit tab. A validation error! That's coming from Symfony and

the normal form validation rendering! Type something again, tab, it goes away. The best part?

The planet field down here is also required thanks to Symfony's validation constraints. But the

Live Component system is smart: it knows that the user hasn't changed this field yet, so it

use App\Entity\Voyage;

use App\Form\VoyageType;

class VoyageForm extends AbstractController

{

    protected function instantiateForm(): FormInterface

    {

        $voyage = $voyage ?? new Voyage();

        return $this->createForm(VoyageType::class, $voyage, [

            'action' => $voyage->getId() ? $this-

>generateUrl('app_voyage_edit', ['id' => $voyage->getId()]) : $this-

>generateUrl('app_voyage_new'),

        ]);

    }

}

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class VoyageForm extends AbstractController

{

}



shouldn't show the validation error. But if we do select a planet... then clear, when it re-renders,

it shows the error.

Passing the Initial Form Data

This also works fine for the edit form. Hit edit & clear out a field.

Though, check out instantiateForm() . Hmm, we're always instantiating a new Voyage

object: there's never a $voyage  variable. We change a field, Live Components sends an Ajax

request and, when it creates the form, it does it using a brand new Voyage  object, not the

existing Voyage  object from the database.

And... that's probably okay... because it submits all the data onto it, and it renders correctly.

However, one thing you can do with Live components is submit the form directly into the

Component object and handle the save logic there. We're not going to do that, but if we did, the

Voyage  object bound to the form would always be a new object... and it would always insert a

new row into the database.

Passing in the Initial Form Data

So even though this works, it's a bit weird.

To tighten this up, we can store the existing Voyage  object on the component and use that

during form creation. Add a public ?Voyage  $initialFormData  property. Above this, to

make the component system remember this value through all of its Ajax requests, add

#[LiveProp] :



src/Twig/Components/VoyageForm.php

 // ... lines 1 - 10

11

 // ... lines 12 - 14

15

16

17

 // ... lines 18 - 20

21

22

 // ... lines 23 - 31

32

This is now a non-writable prop that our component will keep track of. And yes, it's non-writable:

the user changes the form data directly, not this property. This is just here to help us create the

form object on each Ajax call.

Below, change this to $voyage  equals $this->initialFormData , else new Voyage() :

src/Twig/Components/VoyageForm.php

 // ... lines 1 - 14

15

16

17

 // ... lines 18 - 20

21

22

23

24

25

26

 // ... lines 27 - 30

31

32

Finally, pass in the initialFormData  by saying :initialFormData="voyage" , which is

a Twig variable that we already have:

templates/voyage/_form.html.twig

1

So we won't notice a difference, but when we hit edit and change a field, that Ajax request now

creates a Form object bound to this existing Voyage  object.

use Symfony\UX\LiveComponent\Attribute\LiveProp;

#[AsLiveComponent]

class VoyageForm extends AbstractController

{

    #[LiveProp]

    public ?Voyage $initialFormData = null;

}

#[AsLiveComponent]

class VoyageForm extends AbstractController

{

    #[LiveProp]

    public ?Voyage $initialFormData = null;

    protected function instantiateForm(): FormInterface

    {

        $voyage = $this->initialFormData ?? new Voyage();

    }

}

<twig:VoyageForm :form="form" :initialFormData="voyage" />



That got a bit technical, but let's zoom out. By rendering out form through a Live Component, we

get real-time validation for free! That's cool.

Dependent Form Fields

We're almost out of time, but I think we can tackle one more form problem today. In fact, maybe

the most painful form problem in all of Symfony.

On this form, if the planet is not in our solar system, I want to render a new dropdown for an

optional wormhole upgrade. This is the classic dependent form field problem. In Symfony, it's

hard because we need to leverage form events. On the frontend it's hard too! Historically, we

needed to write JavaScript to trigger an Ajax call to re-render the form.

But... that second part is now taken care of! Live Components is great at re-rendering the form

when fields change. And the first part? Yea, there's a new library that makes that easy too!

It's called symfonycasts/dynamic-forms ... created by us because this problem drove me

absolutely crazy. Hat tip to Symfony dev Ben Davies who really cracked the code on this.

Copy the composer require line, spin over, and run that:

composer require symfonycasts/dynamic-forms

Using this is really pleasant. Find the form class: src/Form/VoyageType.php . The library

uses decoration. At the top, say $builder  equals new DynamicFormBuilder()  and pass

in $builder :

src/Form/VoyageType.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 52

use Symfonycasts\DynamicForms\DynamicFormBuilder;

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder = new DynamicFormBuilder($builder);



This DynamicFormBuilder  has the same methods as the original, but one extra:

addDependent() . But before we use it, comment-out the 'autocomplete' => true :

src/Form/VoyageType.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 27

28

29

 // ... lines 30 - 41

42

43

 // ... lines 44 - 50

51

There's a bug with the autocomplete system and Live Components. It should be fixed soon, but

I don't want it to get in the way.

Anyway, the addDependent()  method takes three arguments. The first is the name of the

new field: wormholeUpgrade . The second is an array of fields that this field depends on. In

this case, that's only planet . The final argument is a callback function and its first argument

will always be a DependentField  object. We'll see how that's used in a minute. Then, this will

receive the value of every field that it depends on. Because we depend only on planet , the

callback will receive that as an argument: ?Planet  $planet :

use Symfonycasts\DynamicForms\DynamicFormBuilder;

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder = new DynamicFormBuilder($builder);

        $builder

            ->add('planet', null, [

                //'autocomplete' => true,

            ])

        ;

    }

}



src/Form/VoyageType.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 27

28

29

30

 // ... lines 31 - 40

41

42

43

 // ... lines 44 - 50

51

Inside, if we don't have a planet - because the user hasn't selected one yet or the planet is in

the Milky Way, just return. And yes, I borked up my space science: I meant for this to be

isInOurSolarSystem()  - not the milky way. Forgive me Data!

Anyway, because we're returning, there won't be a wormholeUpgrade  field at all. Else, add

one with $field->add() . This method is identical to the normal add()  method except that

we don't need to pass the name of the field... because we already pass it earlier. So skip

straight to ChoiceType::class ... then the options with choices  set to an array of "Yes" for

true, and "No" for false:

use Symfonycasts\DynamicForms\DynamicFormBuilder;

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder = new DynamicFormBuilder($builder);

        $builder

            ->add('planet', null, [

                //'autocomplete' => true,

            ])

            ->addDependent('wormholeUpgrade', ['planet'], function 

(DependentField $field, ?Planet $planet) {

            })

        ;

    }

}



src/Form/VoyageType.php

 // ... lines 1 - 7

8

 // ... lines 9 - 14

15

16

17

18

 // ... line 19

20

 // ... lines 21 - 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 // ... lines 44 - 50

51

Done! Go check out the result. Refresh, edit and change to a planet that's not in our system.

There it is! The field popped into existence! If we go back to a planet that is in our solar

system... gone! And... the field saves just fine. When we edit the voyage, the form starts with it.

It just works!

Ok, we're nearly at the end of our 30-day journey! Tomorrow, it's time to talk about how we can

test our beautiful new frontend features.

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder

            ->addDependent('wormholeUpgrade', ['planet'], function 

(DependentField $field, ?Planet $planet) {

                if (!$planet || $planet->isInMilkyWay()) {

                    return;

                }

                $field->add(ChoiceType::class, [

                    'choices' => [

                        'Yes' => true,

                        'No' => false,

                    ],

                ]);

            })

        ;

    }

}



Chapter 29: Testing Part 1: Twig & Live
Components

All these nifty gadgets that we've built are just toys, unless we can test them. So, that's today's

mission! Tons to tackle, so let's jump right in!

Run:

composer require phpunit

That installs the symfony/test-pack , gives us all the packages we need and puts them into

require-dev .

Testing a Twig Component

For our first act, let's test a Twig Component. This is pretty cool: we can create the component

object, call methods on it and assert how it's rendered, all in isolation. It's simple, but we'll test

the Button  component.

In the tests/  directory, create an Integration/  directory - because this will be an

integration test - then Twig/Components/ . If you're new to integration tests, check our

Integration Testing tutorial.

Inside, create a new ButtonTest  class... and extend the normal KernelTestCase  for

integration tests:

https://symfonycasts.com/screencast/phpunit-integration


tests/Integration/Twig/Components/ButtonTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 21

22

To help us work with the component, use a trait called InteractsWithTwigComponents ,

then add a new function: testButtonRendersWithVariants() :

tests/Integration/Twig/Components/ButtonTest.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

 // ... lines 15 - 20

21

22

Mounting the Component

The trait gives us two methods. The first lets us create the component object. Say

$this->mountTwigComponent()  passing the component name Button  and any props,

like variant  set to success .

This should give us a Button : assertInstanceOf , Button::class , $component .

Dump $component  then assertSame  that success  is equal to $component->variant :

namespace App\Tests\Integration\Twig\Components;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class ButtonTest extends KernelTestCase

{

}

use Symfony\UX\TwigComponent\Test\InteractsWithTwigComponents;

class ButtonTest extends KernelTestCase

{

    use InteractsWithTwigComponents;

    public function testButtonRendersWithVariants()

    {

    }

}



tests/Integration/Twig/Components/ButtonTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

20

21

22

Cool! To try this, run:

./vendor/bin/simple-phpunit tests/Integration

That'll download PHPUnit, and... it passes! We have some deprecation notices, but ignore

those.

Rendering the Component

The second thing we can do is render a component. Copy the top, paste on the bottom, rename

this to $rendered  and call renderTwigComponent() . This has almost the same

arguments, but we can also pass blocks. The third argument is a shortcut to pass the content

block.

Dump $rendered :

class ButtonTest extends KernelTestCase

{

    public function testButtonRendersWithVariants()

    {

        $component = $this->mountTwigComponent('Button', [

            'variant' => 'success',

        ]);

        dump($component);

        $this->assertInstanceOf(Button::class, $component);

        $this->assertSame('success', $component->variant);

    }

}



tests/Integration/Twig/Components/ButtonTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

And let's see what this looks like!

./vendor/bin/simple-phpunit tests/Integration

Awesome! An object with the HTML inside. With this, we can get the raw string... or we can

access a Crawler  object. This is cool: $this->assertSame()  that Click Me! , is equal to

$rendered->crawler()->filter()  - to find the span  - then ->text() :

class ButtonTest extends KernelTestCase

{

    public function testButtonRendersWithVariants()

    {

        $component = $this->mountTwigComponent('Button', [

            'variant' => 'success',

        ]);

        $this->assertInstanceOf(Button::class, $component);

        $this->assertSame('success', $component->variant);

        $rendered = $this->renderTwigComponent('Button', [

            'variant' => 'success',

        ], '<span>Click me!</span>');

        dump($rendered);

    }

}



tests/Integration/Twig/Components/ButtonTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Super sweet! My editor's yelling 'syntax error', but it's being dramatic. Watch:

./vendor/bin/simple-phpunit tests/Integration

It passes!

Testing a Live Component

So how about integration testing a live component... like our fancy SearchSite? In the same

directory, create a new class called SearchSiteTest , extend KernelTestCase  and... this

time use InteractsWithLiveComponents . Create a method:

testCanRenderAndReload() :

class ButtonTest extends KernelTestCase

{

    public function testButtonRendersWithVariants()

    {

        $component = $this->mountTwigComponent('Button', [

            'variant' => 'success',

        ]);

        $this->assertInstanceOf(Button::class, $component);

        $this->assertSame('success', $component->variant);

        $rendered = $this->renderTwigComponent('Button', [

            'variant' => 'success',

        ], '<span>Click me!</span>');

        $this->assertSame('Click me!', $rendered->crawler()-

>filter('span')->text());

    }

}



tests/Integration/Twig/Components/SearchSiteTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 15

16

17

With this trait, we can say $testComponent  equals $this->createLiveComponent() .

Pass the name - SearchSite ... and we can also pass any props, but I won't. We'll let the

$query  start empty. dd($testComponent) :

tests/Integration/Twig/Components/SearchSiteTest.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

When we run this:

./vendor/bin/simple-phpunit tests/Integration

The object is humongous... but it's a TestLiveComponent . And it has a ton of goodies. We

can say $testComponent->component()  to get the underlying component object, we can

namespace App\Tests\Integration\Twig\Components;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

use Symfony\UX\LiveComponent\Test\InteractsWithLiveComponents;

class SearchSiteTest extends KernelTestCase

{

    use InteractsWithLiveComponents;

    public function testCanRenderAndReload()

    {

    }

}

use Symfony\UX\LiveComponent\Test\InteractsWithLiveComponents;

class SearchSiteTest extends KernelTestCase

{

    use InteractsWithLiveComponents;

    public function testCanRenderAndReload()

    {

        $testComponent = $this->createLiveComponent('SearchSite');

        dd($testComponent);

    }

}



render it, and we can even mimic user behavior, like changing a model value, calling live

actions, emitting events or even logging in.

Test Database Setup

To test the search, we need to add some voyages to the database. On top,

use ResetDatabase  and use Factories :

tests/Integration/Twig/Components/SearchSiteTest.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

 // ... lines 16 - 26

27

Down here, use VoyageFactory::createMany()  to create 5 voyages... and give them all

the same purpose  so we can easily search for them. Then create one more Voyage  with any

other random purpose :

tests/Integration/Twig/Components/SearchSiteTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

19

20

21

22

23

24

25

26

27

Before we take advantage of these, try the test again:

use Zenstruck\Foundry\Test\Factories;

use Zenstruck\Foundry\Test\ResetDatabase;

class SearchSiteTest extends KernelTestCase

{

    use InteractsWithLiveComponents;

    use ResetDatabase;

    use Factories;

}

class SearchSiteTest extends KernelTestCase

{

    public function testCanRenderAndReload()

    {

        VoyageFactory::createMany(5, [

            'purpose' => 'first 5 voyages',

        ]);

        VoyageFactory::createOne();

        $testComponent = $this->createLiveComponent('SearchSite');

        dd($testComponent);

    }

}



./vendor/bin/simple-phpunit tests/Integration

A database connection error! I'm running the database via Docker & using the symfony  binary

to set the DATABASE_URL  environment variable. To inject that variable when running the test,

prefix the command with symfony php :

symfony php vendor/bin/simple-phpunit tests/Integration

And... we're back! One risky test because we don't have any assertions. Let's add those!

Remember: if there is no query , our component returns no voyages. And in the template:

templates/components/SearchSite.html.twig , when we do have results, each is an

a  tag.

In the test, $this->assertCount()  that 0 is equal to $testComponent->render() , then

use that same ->crawler()  to filter for a  tags.

Here's the really cool part: call $testComponent->set()  query  to first 5  to mimic the

user typing into the search box. And now we should have 5 results:

tests/Integration/Twig/Components/SearchSiteTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 23

24

25

26

27

28

29

30

Do it!

class SearchSiteTest extends KernelTestCase

{

    public function testCanRenderAndReload()

    {

        $testComponent = $this->createLiveComponent('SearchSite');

        $this->assertCount(0, $testComponent->render()->crawler()-

>filter('a'));

        $testComponent->set('query', 'first 5');

        $this->assertCount(5, $testComponent->render()->crawler()-

>filter('a'));

    }

}



symfony php vendor/bin/simple-phpunit tests/Integration

Green! Ok, today is a bit unorthodox because... we're out of time... but I have more to say! Next

up is part two where we take on functional tests for our JavaScript-powered frontend.



Chapter 30: Testing Part 2: Functional Testing

Welcome back to part 2 of day 29. I bent the rules today and made it a double feature. We

talked about testing Twig & Live components... but we also need to talk about functional - or

end-to-end - testing in general. That's where we programmatically control a browser, have it

click links, fill out forms, etc.

Two things about this. First, we're going to create a system that I really like. And second, the

road to get there is going to be... honestly, a bit bumpy. It's not a smooth process and that's

something we as a community should work on.

zenstruck/browser

Symfony has built-in functional testing tools, but I like to use another library. At your terminal,

install it with:

composer require zenstruck/browser --dev

Next, in the tests/  folder, I'll create a new directory called Functional/ ... then a new class

called VoyageControllerTest . And I guess I could put that into a Controller/  directory

also.

For the guts, I'll paste in a finished test:



tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Ok, we're using ResetDatabase  and Factories ... it extends the normal WebTestCase  for

functional tests... and then HasBrowser  comes from the Browser library and gives us the

ability to call $this->browser()  to control a browser with this really smooth API. This goes

through the flow of going to the voyage page, clicking "New voyage", filling out the form, saving

and asserting at the bottom. The test starts with a single Voyage  in the database, so after we

create a new one, we assert that there are two on the page.

To run this, use the same command, but target the Functional/  directory:

namespace App\Tests\Functional;

use App\Factory\PlanetFactory;

use App\Factory\VoyageFactory;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

use Zenstruck\Browser\Test\HasBrowser;

use Zenstruck\Foundry\Test\Factories;

use Zenstruck\Foundry\Test\ResetDatabase;

class VoyageControllerTest extends WebTestCase

{

    use ResetDatabase;

    use Factories;

    use HasBrowser;

    public function testCreateVoyage()

    {

        PlanetFactory::createOne([

            'name' => 'Earth',

        ]);

        VoyageFactory::createOne();

        $this->browser()

            ->visit('/')

            ->click('Voyages')

            ->click('New Voyage')

            ->fillField('Purpose', 'Test voyage')

            ->selectFieldOption('Planet', 'Earth')

            ->click('Save')

            ->assertElementCount('table tbody tr', 2)

            ->assertSee('Bon voyage')

        ;

    }

}



symfony php vendor/bin/simple-phpunit tests/Functional

And... it actually passes! Sweet!

Testing JavaScript with Panther

But hold your horses. Behind the scenes, this is not using a real browser: it's just making fake

requests in PHP. That means it doesn't execute JavaScript. We're testing the experience a user

would have if they had JavaScript disabled. That's fine for many situations. However, this time, I

want to test all the modal fanciness.

To run the test using a real browser that supports JavaScript - like Chrome - change to

$this->pantherBrowser() :

tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 24

25

 // ... lines 26 - 33

34

35

36

Try it:

symfony php vendor/bin/simple-phpunit tests/Functional

No dice! But a nice error: we need to install symfony/panther . Let's do that!

composer require symfony/panther --dev

class VoyageControllerTest extends WebTestCase

{

    public function testCreateVoyage()

    {

        $this->pantherBrowser()

        ;

    }

}



Panther is a PHP library that can programmatically control real browsers on your machine. To

use it, we also need to extend PantherTestCase :

tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

 // ... lines 14 - 35

36

Try it again:

symfony php vendor/bin/simple-phpunit tests/Functional

We don't see the browser - it opens invisibly in the background - but it's now using Chrome! And

the test fails - pretty early:

“Clickable element "New Voyage" not found.”

Hmm. It clicked "Voyages", but didn't find the "New Voyage" button. A fantastic feature of

zenstruck/browser  with Panther is that, when a test fails, it takes a screenshot of the

failure.

Inside the var/  directory... here it is. Huh, the screenshot shows that we're still on the

homepage - as if we never clicked "Voyages"... though you can kind of see that the voyages link

looks active.

The problem is that the page navigation happens via Ajax... and our tests don't know to wait for

that to finish. It clicks "Voyages"... then immediately tries to click "New Voyage". This will be the

main thing that we need to fix.

Loading a "test" Dev Server

But before that, I see a bigger problem! Look at the data: this is not coming from our test

database! This is coming from our dev site!

use Symfony\Component\Panther\PantherTestCase;

class VoyageControllerTest extends PantherTestCase

{

}



Even though we can't see it, Panther is controlling a real browser. And... a real browser needs to

access our site using a real web server via a real web address. Because we're using the

Symfony web server, Panther detected that and... used it!

But... that's not what we want! Why? Our server is using the dev  environment and the dev

database. Our tests should use the test  environment and the test  database.

To fix this, open up phpunit.xml.dist . I'll paste in two environment variables:

phpunit.xml.dist

 // ... lines 1 - 3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 17

18

19

20

 // ... lines 21 - 40

41

The first... is kind of a hack. That tells Panther to not use our server. Instead, Panther will now

silently start its own web server using the built-in PHP web server. The second line tells Panther

to use the test  environment when it does that.

Over in the test, to make it even easier to see if this is working, after we click voyages, call

ddScreenshot() :

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

    <php>

        <server name="SYMFONY_PROJECT_DEFAULT_ROUTE_URL" value="" />

        <server name="PANTHER_APP_ENV" value="test" />

    </php>

</phpunit>



tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 24

25

26

27

28

 // ... lines 29 - 34

35

36

37

Take a screenshot, then dump and die.

Run it:

symfony php vendor/bin/simple-phpunit tests/Functional

It hits that... and saved a screenshot! Cool! Find that in var/ . And... ok. It looks like the new

web server is being used... but it's missing all the styles!

Debugging by Opening the Browser

Time for some detective work! To understand what's going on, we can temporarily tell Panther to

actually open the browser, like, so we can see it and play with it.

After we visit, say ->pause() :

class VoyageControllerTest extends PantherTestCase

{

    public function testCreateVoyage()

    {

        $this->pantherBrowser()

            ->visit('/')

            ->click('Voyages')

            ->ddScreenshot()

        ;

    }

}



tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 24

25

26

27

 // ... lines 28 - 35

36

37

38

Then, to open the browser, prefix the test command with PANTHER_NO_HEADLESS=1 :

PANTHER_NO_HEADLESS=1 symfony php vendor/bin/simple-phpunit tests/Functional

And... woh! It popped up the browser then paused. Now we can view the page source. Here's

the CSS file. Open that. It's a 404 not found. Why?

In the dev environment, our assets are served through Symfony: they're not real, physical files.

If you prefix the URL with index.php , it works. Panther uses the built-in PHP web server...

and it needs a rewrite rule that tells it to send these URLs through Symfony. Honestly, it's an

annoying detail, but we can fix it.

Back at the terminal, hit enter to close the browser. In tests/ , create a new file called

router.php . I'll paste in the code:

class VoyageControllerTest extends PantherTestCase

{

    public function testCreateVoyage()

    {

        $this->pantherBrowser()

            ->visit('/')

            ->pause()

        ;

    }

}



tests/router.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

This is a "router" file that will be used by the built-in web server. To tell Panther to use it, in

phpunit.xml.dist , I'll paste in another env var: PANTHER_WEB_SERVER_ROUTER  set to

../tests/router.php :

phpunit.xml.dist

 // ... lines 1 - 3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 19

20

21

 // ... lines 22 - 41

42

Try it!

PANTHER_NO_HEADLESS=1 symfony php vendor/bin/simple-phpunit tests/Functional

And now... it works! Hit enter to finish. Then remove the pause() .

Run the test again, but without the env var:

if 

(is_file($_SERVER['DOCUMENT_ROOT'].\DIRECTORY_SEPARATOR.$_SERVER['SCRIPT_NAM

{

    return false;

}

$script = 'index.php';

$_SERVER = array_merge($_SERVER, $_ENV);

$_SERVER['SCRIPT_FILENAME'] = 

$_SERVER['DOCUMENT_ROOT'].\DIRECTORY_SEPARATOR.$script;

$_SERVER['SCRIPT_NAME'] = \DIRECTORY_SEPARATOR.$script;

$_SERVER['PHP_SELF'] = \DIRECTORY_SEPARATOR.$script;

require $script;

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

    <php>

        <server name="PANTHER_WEB_SERVER_ROUTER" 

value="../tests/router.php" />

    </php>

</phpunit>



symfony php vendor/bin/simple-phpunit tests/Functional

Waiting for the Turbo Page Load

Cool: it hit our screenshot line. Pop that open. Ok, we're back to the original problem: it's not

waiting for the page to load after we click the link.

Solving this... isn't as simple as it should be. Say $browser = , close that and start a new

chain with $browser  below. In between, I'll paste in two lines. This is lower-level, but waits for

the aria-busy  attribute to be added to the html  element, which Turbo does when it's

loading. Then it waits for it to go away:

tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Try the test now:

class VoyageControllerTest extends PantherTestCase

{

    public function testCreateVoyage()

    {

        $browser = $this->pantherBrowser()

            ->visit('/')

            ->click('Voyages')

        ;

        $browser->client()->waitFor('html[aria-busy="true"]');

        $browser->client()->waitFor('html:not([aria-busy])');

        $browser

            ->ddScreenshot()

            ->click('New Voyage')

            ->fillField('Purpose', 'Test voyage')

            ->selectFieldOption('Planet', 'Earth')

            ->click('Save')

            ->assertElementCount('table tbody tr', 2)

            ->assertSee('Bon voyage')

        ;

    }

}



symfony php vendor/bin/simple-phpunit tests/Functional

Then... pop open the screenshot. Woh! It is now waiting for the Ajax call to finish. But

remember: we're also using view transitions. The page loaded... but it's still in the middle of the

transition. We'll fix that in a minute.

Custom Browser & Base Test Class

But first, we need to clean this up: this is way too much work. What I would love is a new

method on the browser itself - like waitForPageLoad() . And we can do that with a custom

browser class!

In the tests/  directory, create a new class called AppBrowser . I'll paste in the guts:

tests/AppBrowser.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

This extends the normal PantherBrowser  and adds a new method which those same two

lines.

When we call $this->pantherBrowser() , we now want it to return our AppBrowser

instead of the normal PantherBrowser . To do that, you guessed it, it's an environment

variable: PANTHER_BROWSER_CLASS  set to App\Tests\AppBrowser :

namespace App\Tests;

use Zenstruck\Browser\PantherBrowser;

class AppBrowser extends PantherBrowser

{

    public function waitForPageLoad(): self

    {

        $this->client()->waitFor('html[aria-busy="true"]');

        $this->client()->waitFor('html:not([aria-busy])');

        return $this;

    }

}



phpunit.xml.dist

 // ... lines 1 - 3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 20

21

22

 // ... lines 23 - 42

43

To make sure this is working, dd(get_class($browser)); :

tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 24

25

26

27

28

29

 // ... lines 30 - 40

41

42

Run the test:

symfony php vendor/bin/simple-phpunit tests/Functional

And... yes! We get AppBrowser ! Unfortunately, while the new method would work, we don't

get autocompletion. Our editor has no idea that we swapped in a sub-class.

To improve this, let's do one last thing: in tests/ , create a new base test class:

AppPantherTestCase . I'll paste in the content:

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

    <php>

        <server name="PANTHER_BROWSER_CLASS" value="App\Tests\AppBrowser" 

/>

    </php>

</phpunit>

class VoyageControllerTest extends PantherTestCase

{

    public function testCreateVoyage()

    {

        $browser = $this->pantherBrowser()

            ->visit('/')

            ->click('Voyages')

        ;

        dd(get_class($browser));

    }

}



tests/AppPantherTestCase.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

It extends the normal PantherTestCase ... then overrides the pantherBrowser()  method,

calls the parent, but changes the return type to be our AppBrowser .

Over in VoyageControllerTest , change this to extend  AppPantherTestCase , then

make sure to remove use HasBrowser :

tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

13

14

15

 // ... lines 16 - 35

36

Then we can tighten things up: reconnect all of these spots... then use the new method:

->waitForPageLoad() ... with auto-complete! Remove the ddScreenshot() :

namespace App\Tests;

use Symfony\Component\Panther\PantherTestCase;

use Zenstruck\Browser\Test\HasBrowser;

class AppPantherTestCase extends PantherTestCase

{

    use HasBrowser {

        pantherBrowser as parentPantherBrowser;

    }

    protected function pantherBrowser(array $options = [], array 

$kernelOptions = [], array $managerOptions = []): AppBrowser

    {

        return $this->parentPantherBrowser($options, $kernelOptions, 

$managerOptions);

    }

}

use App\Tests\AppPantherTestCase;

class VoyageControllerTest extends AppPantherTestCase

{

    use ResetDatabase;

    use Factories;

}



tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

And let's see where we are!

symfony php vendor/bin/simple-phpunit tests/Functional

Further!

“Form field "Purpose" not found.”

So it clicked Voyages, clicked "New Voyage"... but couldn't find the form field. If we look down at

the error screenshot, we can see why: the modal content is still loading! You might see the form

in your screenshot - sometimes the screenshot happens just a moment later, so the form is

visible - but this is the problem.

Disabling View Transitions

Oh, but before we fix this, I also want to disable view transitions. In

templates/base.html.twig , the easiest way to make sure view transitions don't muck up

our tests is to remove them. Say if app.environment != 'test , then render this meta  tag:

class VoyageControllerTest extends AppPantherTestCase

{

    public function testCreateVoyage()

    {

        $this->pantherBrowser()

            ->visit('/')

            ->click('Voyages')

            ->waitForPageLoad()

            ->click('New Voyage')

            ->fillField('Purpose', 'Test voyage')

            ->selectFieldOption('Planet', 'Earth')

            ->click('Save')

            ->assertElementCount('table tbody tr', 2)

            ->assertSee('Bon voyage')

        ;

    }

}



templates/base.html.twig

1

2

3

 // ... lines 4 - 6

7

8

9

 // ... lines 10 - 16

17

 // ... lines 18 - 97

98

Waiting for the Modal to Load

Anyway, back to our failure. When we click to open the modal, what need wait for the modal to

open - that's actually instant - but also wait for the <turbo-frame>  inside to finish loading.

Open AppBrowser . I'll paste in two more methods:

<!DOCTYPE html>

<html>

    <head>

        {% if app.environment != 'test' %}

            <meta name="view-transition">

        {% endif %}

    </head>

</html>



tests/AppBrowser.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

The first - waitForDialog()  - waits until it sees a dialog on the page with an open  attribute.

And, if that open dialog  has a <turbo-frame> , it waits for that to load: it waits until there

aren't any aria-busy  frames on the page.

In VoyageControllerTest , after clicking "New Voyage", say ->waitForDialog() :

use Facebook\WebDriver\WebDriverBy;

class AppBrowser extends PantherBrowser

{

    public function waitForDialog(): self

    {

        $this->client()->wait()->until(function() {

            return $this->crawler()->filter('dialog[open]')->count() > 0;

        });

        if ($this->crawler()->filter('dialog[open] turbo-frame')->count() 

> 0) {

            $this->waitForTurboFrameLoad();

        }

        return $this;

    }

    public function waitForTurboFrameLoad(): self

    {

        $this->client()->wait()->until(function() {

            return $this->crawler()->filter('turbo-frame[aria-

busy="true"]')->count() === 0;

        });

        return $this;

    }

}



tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 22

23

 // ... lines 24 - 26

27

28

29

 // ... lines 30 - 33

34

35

36

And now:

symfony php vendor/bin/simple-phpunit tests/Functional

So close!

“table  tbody  tr  expected 2 elements on the page but only found 1.”

That comes from all the way down here! What's the problem this time? Back to the error

screenshot! Ah: we filled out the form, it looks like we even hit Save... but we're asserting too

quickly!

Remember: this submits into to a <turbo-frame> , so we need to wait for that frame to finish

loading. And we have a way to do this: ->waitForTurboFrameLoad() . I'll also add a line to

assert that we cannot see any open dialogs: to check that the modal closed:

class VoyageControllerTest extends AppPantherTestCase

{

    public function testCreateVoyage()

    {

        $this->pantherBrowser()

            ->click('New Voyage')

            ->waitForDialog()

            ->fillField('Purpose', 'Test voyage')

        ;

    }

}



tests/Functional/VoyageControllerTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Run the test one more time:

symfony php vendor/bin/simple-phpunit tests/Functional

It passes. Woo! I admit, that was some work, too much work! But I do love the end result.

Tomorrow - for our final day - we're going to talk about performance. And unlike today, things

are going to quickly fall into place - I promise.

class VoyageControllerTest extends AppPantherTestCase

{

    public function testCreateVoyage()

    {

        $this->pantherBrowser()

            ->visit('/')

            ->click('Voyages')

            ->waitForPageLoad()

            ->click('New Voyage')

            ->waitForDialog()

            ->fillField('Purpose', 'Test voyage')

            ->selectFieldOption('Planet', 'Earth')

            ->click('Save')

            ->waitForTurboFrameLoad()

            ->assertElementCount('table tbody tr', 2)

            ->assertNotSeeElement('dialog[open]')

            ->assertSee('Bon voyage')

        ;

    }

}



Chapter 31: Performance

We've made it to the last day of LAST Stack! I've been waiting for 30 days to say that.

Today is all about performance, starting with the things that we are not doing.

No File Combining or Minifying

For example, we are not combining files to reduce requests. And, we are not minifying files.

Nope, we're serving up raw source files from our assets/  directory.

And yet, our frontend is fast! Open your debugging tools and go to Lighthouse. Let's profile this

for performance on the desktop to keep things simple. Give this a few seconds to run and...

boom! 99! That's amazing!

On Production: Compression & Caching

Scroll down to see what we could improve. The number one problem is missing compression.

There are two things that you need to think about when you deploy your app with AssetMapper.

First: on your web server, enable compression, like gzip or Brotli. Or you can proxy your site

through Cloudflare and it can do compression for you. That's what we do. This is why we don't

need to worry about minification: if you just compress your CSS and JavaScript files, that does

almost as good of a job as minification.

The second thing you need to do - which should be mentioned down here, ah yes:

“Serve static assets with an efficient cache policy.”

Because all of our files have an automatic version hash in the filename, you should configure

your web server to cache everything from your assets/  directory... forever. This means that

when your user downloads a file, they'll cache it forever: they'll never need to download it again.

That's great for performance.



Unused CSS?

Let's see what else we have. Reduce unused CSS. That's probably not a problem. In fact, it's

one of the benefits of Tailwind: it only builds the CSS that we're actually using. My guess is that

the rest of the CSS is used on different pages. And the difference is even smaller than it looks.

This is 38 kilobytes... before compression. On production, the difference would be much

smaller.

Unused JavaScript

Under reduce unused JavaScript, there's one main item: it's the Live Components JavaScript,

which is fairly big. We are using it, but it's true that we're not using a lot of its features yet. On

production, due to compression, this would be smaller... and we are going to optimize it a bit.

Next is: eliminate render-blocking resources. This is important and it lists our CSS file. We'll

come back to this in a few minutes.

But really... there's nothing major. We could minify CSS, but it would barely make a difference.

Minifying JavaScript - 68 kilobytes looks good, but again, that's before it's compressed. And

remember our score of 99! Our frontend is zippy!

Oh, though apparently my images are way too big. There are still some things you need to

handle on your own.

Preloading

One of the main reasons that our app is already so fast is preloading. Look at the page source.

We have the importmap, a bunch of preloads, then the all-important:

<script type="module"> , import 'app' .

When our browser sees this, it connects app  to the real filename and starts downloading it.

Module script tags are not "render blocking". This means that the browser starts downloading

this file, but continues to render the page visually while it's doing that. But, of course, it can't

execute our JavaScript until it's done downloading app.js .

And there's a problem hiding. Only after it finishes downloading app.js  does it realize that... it

also needs to download this file, and this file, and this file, and this file, and this file. And it's only



after downloading bootstrap.js  that it realizes it needs to download this file. You can

imagine a big waterfall: it finishes one JavaScript file, starts a few more, finishes those, then

starts even more. It could take a long time for our JavaScript to finally execute.

This is where these preloads come in. This tells our browser:

“You don't realize it yet, but you should start downloading these files immediately.”

The way these are generated is really cool. Open templates/base.html.twig . All of this is

rendered thanks to importmap('app') :

templates/base.html.twig

1

2

3

 // ... lines 4 - 13

14

15

16

17

 // ... lines 18 - 97

98

By passing app , the main effect is that it adds the script tag at the bottom that imports app .

But this also tells AssetMapper to parse app.js , find all the files that it imports and add them

as preloads. And it does it recursively: it goes into bootstrap.js  and finds its import. It finds

all the JavaScript that's needed on page load and makes sure that every file is preloaded. It just

works.

And we can see this visually. In alien-greeting.js : comment-out the import for the CSS

file: the delay just makes the waterfall harder to see:

assets/lib/alien-greeting.js

1

2

3

4

5

6

 // ... lines 7 - 10

<!DOCTYPE html>

<html>

    <head>

        {% block javascripts %}

            {{ importmap('app') }}

        {% endblock %}

    </head>

</html>

export default function (message, inPeace = false) {

    if (!inPeace) {

        setTimeout(() => {

            //import('../styles/alien-greeting.css');

        }, 4000);

    }



Then go to the Network tab, look just at JavaScript and do a force refresh. Check it out! All the

JavaScript files start at the same time! It's not waiting for anything to download: they all start

immediately. That's what we want to see.

The only file that starts later is celebrate-controller.js ... because we set this up to be

lazy. This means our JavaScript initializes, then it downloads this controller only when it's

needed... which is always because it's on every page, but it's still delayed a bit.

Lazy-Loading Live Components

Sort this by filesize. The biggest file is the JavaScript for Live Components. This 123 kilobytes

isn't compressed, so it'll be smaller on production. But since we only need this on the global

search, we could choose to delay loading it.

To do that, inside assets/controllers.json , find the Live Component controller and set

fetch  to lazy :

assets/controllers.json

1

2

 // ... lines 3 - 12

13

14

 // ... line 15

16

 // ... lines 17 - 18

19

20

21

 // ... lines 22 - 31

32

 // ... line 33

34

Do a force refresh. It's still there, but check out the initiator: it's from a JavaScript file and starts

much later. In the source, search for live_controller . Previously, it was preloaded. When

we refresh now, it's still in the importmap, but no longer preloaded. We preload the really

important stuff, and let the live controller load itself later.

Preloading CSS with WebLink

{

    "controllers": {

        "@symfony/ux-live-component": {

            "live": {

                "fetch": "lazy",

                }

            }

        },

    },

}



Ok one last thing, magical thing. The most important thing that we saw inside Lighthouse was

the render-blocking resource for our CSS file. When your browser sees a

<link rel="stylesheet">  tag, it freezes rendering the page until it finishes downloading

the file. And that's a good thing: we don't want our page to render unstyled for a second.

And this is why we put our CSS link  tags up in the head  of the page: we want the browser to

notice that it needs to download the file as early as possible. However, there is a way to tell our

browser even earlier that it needs to download this file.

Find your terminal and run:

composer require symfony/web-link

This is a small package that can help add hints to your browser about what it needs to

download. AssetMapper comes with special integration for it.

Watch: just by installing that, go to the Network tab, filter all, refresh and go to the top to the

main request for the page. Look down here at the Response headers. There it is! Our app just

added a new response header called link  that points to the CSS file with rel="preload" .

This tells the browser that it should download this file. And it sees this header even earlier than

it sees line 11 of the HTML. This helps performance just a little bit more.

Now that we've made a few changes, let's run Lighthouse again. There is some variability in

these runs, so if your score doesn't change or even goes down a little, no worries. But a perfect

100! Woo!

More importantly.... we still have text compression... but we don't see the render-blocking

resource warning.

The moral of the story is this: using AssetMapper is fast out of the box. Other than adding

compression and caching to your web server, you can code in peace without worrying. And

sure, later, it is helpful to run Lighthouse and see how you can improve, but it doesn't need to be

something you think about day-by-day. Get your real work done instead.

And... we're finished! Thank you for spending these wild 30 days with me! It has been an

absolute pleasure and a heck of a ride. Please, go build things and let us know what they are!



And if you have any questions, comments, doubts or bad jokes, we're always here for you down

in the comments section.

Alright friends, see ya next time!



Chapter 32: Bonus: More on Flowbite

A bonus topic! Yeah, because I started to get questions - good questions - about Flowbite. On

day 5 we added Tailwind and I introduced Flowbite as a site where you can copy and paste

visual components. For example, you copy this markup, paste, and boom! You have a

dropdown. The classes are all standard Tailwind classes.

And so, I mentioned that you don't need to install anything. However, depending on what you

want, that's not the full story... and I confused people. So let's fix that!

Installing The Flowbite JavaScript

Beyond being a source to copy HTML, Flowbite itself has two other features. First, it has an

optional JavaScript library for powering things like tabs and dropdowns: a little JavaScript so

that when we click, this opens and closes.

We're not using this at SymfonyCasts... and it doesn't play well with Turbo. At least not out of

the box. We prefer to create tiny Stimulus controllers to power things like this. But, we can get

the Flowbite JavaScript to work.

Grab that dropdown markup and zip over to templates/base.html.twig . Just inside the

body , paste:



templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 // ... lines 42 - 120

121

122

If we go over and refresh, you can see what I mean: it just works. Well, visually. But if we click,

nothing happens.

To get the Flowbite JavaScript, find your terminal and run:

php bin/console importmap:require flowbite

This installs flowbite  and it dependency @popperjs/core . It also grabbed the Flowbite

CSS file... which is only needed if you didn't have Tailwind properly installed. Having it hanging

around in importmap.php  is harmless, but let's kick it out before it confuses me.

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

    <!-- Dropdown menu -->

    <div id="dropdown" class="z-10 hidden bg-white divide-y divide-gray-

100 rounded-lg shadow w-44 dark:bg-gray-700">

        <ul class="py-2 text-sm text-gray-700 dark:text-gray-200" aria-

labelledby="dropdownDefaultButton">

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Dashboard</a>

          </li>

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Settings</a>

          </li>

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Earnings</a>

          </li>

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Sign out</a>

          </li>

        </ul>

    </div>

    </body>

</html>



To use the JavaScript, open assets/app.js . On top import 'flowbite' :

assets/app.js

 // ... lines 1 - 5

6

 // ... lines 7 - 43

Ok, refresh and... it works!

But there are two... quirks. Check out the console. We have a bunch of errors about modal and

popover. If you use the modal component from Flowbite, it requires a data-modal-target

attribute to connect the button to the target. The problem is that we have a modal Stimulus

controller.... and we're using data-modal-target  to leverage a Stimulus target. Those two

ideas are colliding. You would need to work around this by using Flowbite's modal system or

renaming your modal controller to something else. The same is true for Popover.

Fixing Flowbite JS & Turbo

The second quirk is that, though the Flowbite JavaScript works right now, as soon as we

navigate, it breaks! Flowbite initializes the event listener on page load, but when we navigate

and new HTML is loaded onto the page, it's not smart enough to reinitialize that JavaScript.

That's why, in general, we write our JavaScript using Stimulus controllers.

Flowbite does ship with a version of itself for Turbo... but it doesn't quite work: it doesn't

reinitialize correctly on form submits.

That's ok! We've got the skills to patch this up ourselves. Import initFlowbite  from

flowbite :

assets/app.js

 // ... lines 1 - 5

6

 // ... lines 7 - 50

Then at the bottom, I'll paste in two event listeners:

import 'flowbite';

import { initFlowbite } from 'flowbite';



assets/app.js

 // ... lines 1 - 43

44

45

46

47

48

49

Flowbite handles initializing on the first page load. Then anytime we navigate with Turbo, this

method will be called and will reinitialize the listeners. Or if we do something inside a Turbo

frame, this will be called.

Let's try it. Refresh. And... it doesn't work: Look: initFlobite . Typo! Fix that then... ok. On

page load, it works. And if we navigate, it still works.

The Flowbite Tailwind Plugin

So the first installable feature of Flowbite is this JavaScript library. The second is a Tailwind

plugin. It adds extra styles if you use tooltips, forms, and charts.... as well as a few other things.

You can find the package on npmjs.com and navigate its files to find the plugin: plugin.js .

If you're using tooltips, it adds new styles, same thing for forms... then all the way at the bottom,

it tweaks some theme styles. This isn't necessarily something that you need, even if you're

using some of the JavaScript from Flowbite.

But if you do want this plugin, you need to install it with npm. So far, we haven't had to do

anything with npm... and that's been great! But if you do need a few JavaScript libraries, that's

ok: that's npm's job. The most important thing is that we don't have a giant build system: we're

just grabbing a library here or there that we need.

Find your terminal and run npm init  to create a package.json  file.

npm init

I'll hit Enter  for all the questions. Then run:

document.addEventListener('turbo:render', () => {

    initFlowbite();

});

document.addEventListener('turbo:frame-render', () => {

    initFlowbite();

});



npm add flowbite

To use this, open tailwind.config.js ... here it is. Down in the plugins  section,

require('flowbite/plugin') :

tailwind.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 28

29

30

 // ... lines 31 - 34

35

36

This is straight from their docs.

Whe we refresh, it works... but we don't see any difference. Like I said, it's not something that

we necessarily need. Though if you open a form, huh: our labels are suddenly black! That's

because Tailwind now thinks we're in light mode... and I was a bit too lazy to style my site for

light mode.

By default, Tailwind reads whether you want light mode or dark mode from your operating

system preferences. But Flowbite overrides that and changes it to read a class  on your body

element. It has documentation on their site on how you can use this and even make a dark

mode, light mode switcher.

But I'm going to change this back to the old setting. Say darkMode , media :

tailwind.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 10

11

 // ... lines 12 - 36

37

Check it: refresh and... we're back to normal! So that's the Tailwind plugin.

module.exports = {

  plugins: [

    require('flowbite/plugin'),

  ],

}

module.exports = {

  darkMode: 'media',

}



The Datepicker

In addition to these 2 Flowbite features, I've also seen people wanting to use their cool

datepicker plugin. So let's get that working!

This datepicker is part of the main flowbite  library. But if you want to import it directly from

JavaScript... then, down here, you're supposed to install a different package. This confused me

to be honest. But copy that, spin over and run:

php bin/console importmap:require flowbite-datepicker

Back at the top of the docs, it says that you can use the datepicker simply by taking an input

and giving it a datepicker  attribute. And that's true... except once again, it won't work with

Turbo. It'll work at first... but stop after the first click.

Instead, we're going to initialize this with a Stimulus controller, and it's going to work great!

In assets/controllers/ , create a new datepicker_controller.js . I'll paste in the

contents:



assets/controllers/datepicker_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 25

We're going to attach this controller to an input  element. In connect() , this initializes the

date picker and passes this.element . The format  matches the default format that the

Symfony DateType  uses. And autohide  makes the date picker close when you choose a

date, which I like.

I'm also changing the type  attribute on the input  to text  so that we don't have both the

datepicker from Flowbite and the native browser date picker. In disconnect() , we do some

cleanup.

We're going to use this on the voyage form: for "Leave at". Open the form type for this:

VoyageType . Here's the field. Pass an attr  option with data-controller  set to

datepicker :

import { Controller } from '@hotwired/stimulus';

import { Datepicker } from 'flowbite-datepicker';

/* stimulusFetch: 'lazy' */

export default class extends Controller {

    datepicker;

    connect() {

        this.element.type = 'text';

        this.datepicker = new Datepicker(this.element, {

            format: 'yyyy-mm-dd',

            autohide: true,

        });

    }

    disconnect() {

        if (this.datepicker) {

            this.datepicker.destroy();

        }

        this.element.type = 'date';

    }

}



src/Form/VoyageType.php

 // ... lines 1 - 14

15

16

17

18

 // ... line 19

20

 // ... line 21

22

 // ... line 23

24

25

26

27

 // ... lines 28 - 44

45

46

 // ... lines 47 - 53

54

Let's try this! Refresh and... that's fantastic!

Fixing the Datepicker in a Modal

Though... there's a catch. Go back and open this form in the modal. It doesn't work! Well, it kind

of does. See it? It's hiding behind the modal. The datepicker works by appending HTML at the

bottom of the body . But because that's not inside the dialog , it correctly appears behind the

modal. It's kind of a shame that it doesn't work better with the beautiful native dialog  element,

but we can fix this.

In datepicker_controller.js , add a new option called container. This tells the datepicker

which element it should add its custom HTML into. Say document.querySelector()  and

look for a dialog[open] . So if there's a dialog  on the page that's open, then use that as

the container. Else use the normal body :

class VoyageType extends AbstractType

{

    public function buildForm(FormBuilderInterface $builder, array 

$options): void

    {

        $builder

            ->add('leaveAt', DateType::class, [

                'attr' => [

                    'data-controller' => 'datepicker',

                ]

            ])

        ;

    }

}



assets/controllers/datepicker_controller.js

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 13

14

15

16

 // ... lines 17 - 24

25

 // ... lines 26 - 27

Making the Modal Click Outside Smarter

And that little detail takes care of our problem! Though... it does expose one other small issue.

See how the datepicker extends the dialog vertically? If we click here, we're technically clicking

on the dialog  element directly... which triggers our click outside logic.

To fix that, let's make our modal  controller just a bit smarter. At the bottom, I'll paste in a new

private method called isClickInElement() :

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 65

66

67

68

69

70

71

72

73

74

75

If you pass this a click event, it will look at the physical dimensions of this element and see if the

click was inside.

export default class extends Controller {

    connect() {

        this.datepicker = new Datepicker(this.element, {

            container: document.querySelector('dialog[open]') ? 

'dialog[open]' : 'body'

        });

    }

}

export default class extends Controller {

    #isClickInElement(event, element) {

        const rect = element.getBoundingClientRect();

        return (

            rect.top <= event.clientY &&

            event.clientY <= rect.top + rect.height &&

            rect.left <= event.clientX &&

            event.clientX <= rect.left + rect.width

        );

    }

}



Up here in clickOutside() , let's change things. Copy this, then if the event.target  is not

the dialog , we're definitely not clicking outside. So, return.

And if not, this.isClickInElement()  - passing event  and this.dialogTarget  - so if

we did not click inside the dialogTarget  - then we definitely want to close:

assets/controllers/modal_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 46

47

48

49

50

51

52

53

54

55

 // ... lines 56 - 74

75

A bit more logic, but a bit smarter. Try it. Open the modal and if we click down here... the

calendar closes - which is correct - but the modal stays open. Love that!

So I hope that explains Flowbite a bit more. Personally, I don't want most of this stuff, so I'm

going to remove it. Inside tailwind.config.js , remove the plugin:

tailwind.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 29

30

31

 // ... lines 32 - 35

36

37

Then delete package.json  and package-lock.json .

I also don't want the JavaScript. In importmap.php , remove flowbite  and

@popperjs/core :

export default class extends Controller {

    clickOutside(event) {

        if (event.target !== this.dialogTarget) {

            return;

        }

        if (!this.#isClickInElement(event, this.dialogTarget)) {

            this.dialogTarget.close();

        }

    }

}

module.exports = {

  plugins: [

    require('flowbite/plugin'),

  ],

}



importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 51

52

53

54

55

56

57

 // ... lines 58 - 60

61

But that datepicker is cool, so let's keep that.

In app.js , remove the import from flowbite  and the two functions at the bottom:

assets/app.js

 // ... lines 1 - 5

6

 // ... lines 7 - 43

44

45

46

47

48

49

Finally, in base.html.twig , get rid of that random dropdown:

return [

    'flowbite' => [

        'version' => '2.2.1',

    ],

    '@popperjs/core' => [

        'version' => '2.11.8',

    ],

];

import { initFlowbite } from 'flowbite';

document.addEventListener('turbo:render', () => {

    initFlowbite();

});

document.addEventListener('turbo:frame-render', () => {

    initFlowbite();

});



templates/base.html.twig

1

2

 // ... lines 3 - 17

18

 // ... lines 19 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 // ... lines 42 - 120

121

122

Now... no more JavaScript errors! But because that datepicker was pretty cool, we still have it.

Ok, bonus chapter done! Now back to work - seeya later!

<!DOCTYPE html>

<html>

    <body class="bg-black text-white font-mono">

    <!-- Dropdown menu -->

    <div id="dropdown" class="z-10 hidden bg-white divide-y divide-gray-

100 rounded-lg shadow w-44 dark:bg-gray-700">

        <ul class="py-2 text-sm text-gray-700 dark:text-gray-200" aria-

labelledby="dropdownDefaultButton">

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Dashboard</a>

          </li>

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Settings</a>

          </li>

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Earnings</a>

          </li>

          <li>

            <a href="#" class="block px-4 py-2 hover:bg-gray-100 

dark:hover:bg-gray-600 dark:hover:text-white">Sign out</a>

          </li>

        </ul>

    </div>

    </body>

</html>



With <3 from SymfonyCasts


