
API Platform 3 Part 1: Mythically
Good RESTful APIs

Chapter 1: Installing API Platform

Hello and welcome you beautiful people, to a tutorial that's near and dear to my heart: how to

build magnificent castles with Legos. Oh, that would be awesome, wouldn't it? But really, we're

here to talk about API Platform Version 3, which I promise is as fun as playing with Legos. Just

don't tell my son I said that.

API Platform is, very simply, a tool on top of Symfony that allows us to build powerful APIs and

love the process! It's been around for years and, honestly, it's crushing it. They have their own

dedicated conference and, they've really outdone themselves with the latest version 3.

If you're new to API Platform, I wouldn't blame you if you said:

“Come on Ryan... creating an API isn't that hard. It's just returning JSON: a bunch of

squigglies and brackets!”

Ok, that is true (at least for the first few endpoints). But wow are there a lot of little details to

keep track of. For example, if you have an API that returns product data, you'll want that product

JSON to be returned in the same way with the same fields, across all endpoints. That process is

called serialization. On top of that, a lot of APIs now return extra fields that describes what the

data means. We're going to see and talk about something called "JSON-LD", which does

exactly that.

What else? How about documentation? Ideally interactive documentation that's generated

automatically... because we do not want to build and maintain that by hand. Even if you're

building an API just for yourself, having documentation is awesome. Paginating collections is

also super important, filtering and searching collections, validation and content-type negotiation,

which is where that same product could be returned as JSON, CSV, or another format. So yes,

creating an API endpoint is easy. But creating a rich API is another thing entirely. And that's the

point of API Platform. Oh, and if you're familiar with API Platform Version 2, version 3 will feel

very familiar. It's just cleaner, more modern, and more powerful. So get out your Legos, and let's

do this!

The API Platform Distribution

There are two ways to install API Platform. If you find their site and click into the documentation,

you'll see them talk about the API Platform "Distribution". This is pretty cool! It's a completely

pre-made project with Docker that gives you a place to build your API with Symfony, a React

admin area, scaffolding to create a Next.js frontend and more. Heck, it even gives you a

production-ready web server with extra tools like Mercure for real-time updates. It's the most

powerful way to use API Platform.

But... in this tutorial, we're not going to use it. I hate nice things! No, we'll start our Lego project

from scratch: with a perfectly normal and boring Symfony app. Why? Because I want you to see

exactly how everything works under the hood. Then, if you want to use this Distribution later on,

you totally can.

Project Setup & Our Project

Okay, to be a true "API Platform JSON Returning Champion", you should code along with me!

Download the source code from this page. And after unzipping it, you'll find a start/ directory

with the same code that you see here. This is a brand new Symfony 6.2 project with...

absolutely nothing in it. Open up this README.md file for all the setup instructions. The last step

will be to open the project in a terminal and use the Symfony binary to run:

symfony serve -d

This starts a local web server at 127.0.0.1:8000 . I'll cheat and click that link to open up... a

completely empty Symfony 6.2 project. There's literally nothing here except for this demo

homepage.

What are we going to build? As we all know, the internet is missing something terribly important:

an application for dragons to boast about their stolen treasures! Because if there's one thing a

dragon likes more than treasure, it's bragging about it. Yup, we'll create a rich API that lets tech

savvy dragons post new treasures, fetch treasures, search treasures from other dragons, etc.

And yes, I did just finish reading the Hobbit.

Installing API Platform

So, let's get API Platform installed! Spin back over to your terminal and run:

composer require api

This is a Symfony Flex alias. Up here, you can see it's actually installing something called

api-platform/api-pack . If you're not familiar, a "pack" in Symfony is, kind of a fake

package, that allows you to easily install a set of packages. If you scroll down, it installed

api-platform itself, Doctrine, since I didn't already have that, and some other packages. At

the bottom... let's see... the doctrine-bundle recipe is asking us if we want to include a

docker-compose.yml file to help add a database to our project. How nice of it! This is

optional, but I'm going to say "p" for "Yes permanently". And... done!

The first thing to see is in the composer.json file:

composer.json

1

 // ... lines 2 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 83

84

As promised, that API Platform pack added a bunch of packages into our project. Technically,

these aren't all required, but this is going to give us a really rich experience building our API.

And if you run

git status

... yep! It updated the usual files... and also added a bunch of config files for the new packages.

It looks like there's a lot... but looks can be deceiving. All of these directories are empty... and

{

 "require": {

 "php": ">=8.1",

 "ext-ctype": "*",

 "ext-iconv": "*",

 "api-platform/core": "^3.0",

 "doctrine/annotations": "^1.0",

 "doctrine/doctrine-bundle": "^2.8",

 "doctrine/doctrine-migrations-bundle": "^3.2",

 "doctrine/orm": "^2.14",

 "nelmio/cors-bundle": "^2.2",

 "phpdocumentor/reflection-docblock": "^5.3",

 "phpstan/phpdoc-parser": "^1.15",

 "symfony/asset": "6.2.*",

 "symfony/console": "6.2.*",

 "symfony/dotenv": "6.2.*",

 "symfony/expression-language": "6.2.*",

 "symfony/flex": "^2",

 "symfony/framework-bundle": "6.2.*",

 "symfony/property-access": "6.2.*",

 "symfony/property-info": "6.2.*",

 "symfony/runtime": "6.2.*",

 "symfony/security-bundle": "6.2.*",

 "symfony/serializer": "6.2.*",

 "symfony/twig-bundle": "6.2.*",

 "symfony/validator": "6.2.*",

 "symfony/yaml": "6.2.*"

 },

}

the config files are small and simple. We also have some docker-compose files that we'll use

in a minute to spin up a database.

So... now that API Platform is installed... did that give us anything yet? It did! And it's cool! Go

back to the browser and head to /api . Whoa! We have an API documentation page! It's empty

because we don't, ya know, actually have an API just yet, but this is going to come to life very

soon.

Next: Let's create our first Doctrine entity and "expose" that as an API Resource. It's time for

some magic.

Chapter 2: Creating your First ApiResource

We're about to build an API for the very important job of allowing dragons to show off their

treasure. Right now, our project doesn't have a single database entity... but we're going to need

one to store all that treasure.

Generating our First Entity

Find your terminal and first run

composer require maker --dev

to install Maker Bundle. Then run:

php bin/console make:entity

Perfect! Let's call our entity DragonTreasure . Then it asks us a question that you maybe

haven't seen before - Mark this class as an API platform resource? It asks

because API Platform is installed. Say no because we're going to do this step manually in a

moment.

Okay, let's start adding properties. Start with name as a string, with a Length of the default 255,

and make it not nullable. Then, add description with a text type, and make that not

nullable. We also need a value , like... how much the treasure is worth. That will be an

integer not nullable. And we simply must have a coolFactor : dragons need to specify just

how awesome this treasure is. That'll be a number from 1 to 10, so make it an integer and

not nullable. Then, createdAt datetime_immutable that's not nullable... and Finally, add

an isPublished property, which will be a boolean type, also not nullable. Hit " enter" to

finish.

Phew! There's nothing very special so far. This created two classes:

DragonTreasureRepository (which we're not going to worry about), and the

DragonTreasure entity itself with $id , $name , $description , $value , etc

src/Entity/DragonTreasure.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 // ... lines 35 - 110

111

along with the getter and setter methods. Beautifully boring. There is one little bug in this

version of MakerBundle, though. It generated an isIsPublished() method. Let's change

that to getIsPublished() .

namespace App\Entity;

use App\Repository\DragonTreasureRepository;

use Doctrine\DBAL\Types\Types;

use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity(repositoryClass: DragonTreasureRepository::class)]

class DragonTreasure

{

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column]

 private ?int $id = null;

 #[ORM\Column(length: 255)]

 private ?string $name = null;

 #[ORM\Column(type: Types::TEXT)]

 private ?string $description = null;

 #[ORM\Column]

 private ?int $value = null;

 #[ORM\Column]

 private ?int $coolFactor = null;

 #[ORM\Column]

 private ?\DateTimeImmutable $plunderedAt = null;

 #[ORM\Column]

 private ?bool $isPublished = null;

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 99

100

101

102

103

104

105

106

 // ... lines 107 - 109

110

111

Setting up the Database

All right, so we have our entity. Now we need a migration for its table... but that might be a bit

difficult since we don't have our database set up yet! I'm going to use Docker for this. The

DoctrineBundle recipe gave us a nice docker-compose.yml file that boots up Postgres, so...

let's use that! Spin over to your terminal and run:

 Tip

In modern versions of Docker, run docker compose up -d instead of

docker-compose .

docker-compose up -d

If you don't want to use Docker, feel free to start your own database engine and then, in .env

or .env.local , configure DATABASE_URL. Because I'm using Docker as well as the

symfony binary, I don't need to configure anything. The Symfony web server will automatically

see the Docker database and set the DATABASE_URL environment variable for me.

Okay, to make the migration, run:

class DragonTreasure

{

 public function getIsPublished(): ?bool

 {

 return $this->isPublished;

 }

 public function setIsPublished(bool $isPublished): self

 {

 }

}

symfony console make:migration

This symfony console is just like ./bin/console except it injects the DATABASE_URL

environment variable so that the command can talk to the Docker database. Perfect! Spin over

and check out the new migration file... just to make sure it doesn't contain any weird surprises.

migrations/Version20230104160057.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Looks good! So spin back over and run this with:

namespace DoctrineMigrations;

use Doctrine\DBAL\Schema\Schema;

use Doctrine\Migrations\AbstractMigration;

/**

 * Auto-generated Migration: Please modify to your needs!

 */

final class Version20230104160057 extends AbstractMigration

{

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('CREATE SEQUENCE dragon_treasure_id_seq INCREMENT BY

1 MINVALUE 1 START 1');

 $this->addSql('CREATE TABLE dragon_treasure (id INT NOT NULL, name

VARCHAR(255) NOT NULL, description TEXT NOT NULL, value INT NOT NULL,

cool_factor INT NOT NULL, plundered_at TIMESTAMP(0) WITHOUT TIME ZONE NOT

NULL, is_published BOOLEAN NOT NULL, PRIMARY KEY(id))');

 $this->addSql('COMMENT ON COLUMN dragon_treasure.plundered_at IS

\'(DC2Type:datetime_immutable)\'');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('CREATE SCHEMA public');

 $this->addSql('DROP SEQUENCE dragon_treasure_id_seq CASCADE');

 $this->addSql('DROP TABLE dragon_treasure');

 }

}

symfony console doctrine:migrations:migrate

Done!

Exposing our First API Resource

We now have an entity and a database table. But if you go and refresh the documentation...

there's still nothing there. What we need to do is tell API Platform to expose our

DragonTreasure entity as an API resource. To do this, go above the class and add a new

attribute called ApiResource . Hit "tab" to add that use statement.

src/Entity/DragonTreasure.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

12

13

 // ... lines 14 - 112

113

Done! As soon as we do that... and refresh... whoa! The documentation is alive! It now shows

that we have six different endpoints: One to retrieve all of the DragonTreasure resources,

one to retrieve an individual DragonTreasure , one to create a DragonTreasure , two that

edit a DragonTreasure plus one to delete it. And this is more than just documentation. These

endpoints work.

Go over and click "Try it Out", then "Execute". It doesn't actually return anything because our

database is empty, but it does gives us a 200 status code with some empty JSON. We'll talk

about all of the other fancy keys in the response shortly.

Oh, but I do want to mention one thing. As we just saw, the easiest way to create a set of API

endpoints is by adding this ApiResource attribute above your entity class. But you can

actually add this attribute above any class: not just entities. That's something we're going to talk

about in a future tutorial: it can be a nice way to separate what your API looks like from what

use ApiPlatform\Metadata\ApiResource;

#[ORM\Entity(repositoryClass: DragonTreasureRepository::class)]

#[ApiResource]

class DragonTreasure

{

}

your entity looks like, especially in bigger APIs. But again, that's for later. Right now, using

ApiResource on top of our entity is going to work great.

Let's discover this cool, interactive documentation a bit more. Where did this come from? How

does our app magically have a bunch of new routes? And do dragons really love tacos? Let's

find out next!

Chapter 3: Swagger UI: Interactive Docs

The amazing interactive documentation that we've stumbled across is not something from API

platform! Nope, it's actually an open-source API documentation library called Swagger UI. And

the really cool thing about Swagger UI is that, if someone create a file that describes any API,

then that API can get all of this for free! I love free stuff! We get Swagger UI because API

platform provides that description file out of the box. But more on that in a minute.

Playing with our New API

Let's play around with this. Use the POST endpoint to create a new DragonTreasure . We've

recently plundered some "Gold coins"... which we got from "Scrooge McDuck". He's mad. For

our purposes, none of the other fields really matter. Down here, hit " Execute" and... boom!

When you scroll down, you can see that this made a POST request to

/api/dragon_treasures and sent all of that data as JSON! Then, our API returned a "201"

status code. A 201 status means that the request was successful and a resource was created.

Then it returned this JSON, which includes an id of 1 . So, as I said, this isn't just

documentation: we really do have a working API! There are a few extra fields here too:

@context , @id , and @type We'll talk about those soon.

Now that we have a DragonTreasure to work with, open up this "GET" endpoint, click "Try it

Out", then "Execute". Oh, I love it. Swagger just made a GET request to

/api/dragon_treasures - this ?page=1 is optional. Our API returned information inside

something called hydra:member , which isn't particularly important yet. What matters is that

our API did return a list of all of the DragonTreasures we currently have, which is just this

one.

So in just a few minutes of work, we have a fully featured API for our Doctrine entity. That is

cool.

Content Negotiation

Copy the URL to the API endpoint, open a new tab, and paste that in. Whoa! This... returned

HTML? But a second ago, Swagger said that it made a GET request to that URL... and it

returned JSON. What's going on?

One feature of API Platform is called "Content Negotiation". It means that our API can return the

same resource - like DragonTreasure - in multiple formats, like JSON, or HTML... or even

things like CSV. Oh, an ASCII format would be awesome. Anyways, we tell API Platform which

format we want by passing an Accept header in the request. When we use the interactive

docs, it passes this Accept header for us set to application/ld+json . We'll talk about the

ld+json part soon... but, thanks to this, our API returns JSON!

And even though we don't see it here, when you go to a page in your browser, your browser

automatically sends an Accept header that says we want text/html . So, this is API

Platform showing us the "HTML representation" of our dragon treasures..., which is just the

documentation. Watch: when I open the endpoint this URL is for, it automatically executed it.

The point is: if we want to see the JSON representation of our dragon treasures, we need to

pass this Accept header... which is super easy, for example, if you're writing JavaScript.

But passing a custom Accept header isn't so easy in a browser... and it would be nice to be

able to see the JSON version of this. Fortunately, API Platform gives us a way to cheat.

Remove the ?page=1 to simplify things. Then, at the end of any endpoint, you can add .

followed by the extension of the format you want: like .jsonld .

Now we see the DragonTreasure resource in that format. API Platform also supports normal

JSON out of the box, so we can see the same thing, but in pure, standard JSON.

Where do the new Routes Come From?

The fact that all of this works means that... we apparently have a new route for /api as well as

a bunch of other new routes for each operation - like GET /api/dragon_treasures . But...

where did these come from? How are they being dynamically added to our app?

To answer that, spin over to your terminal and run:

./bin/console debug:router

I'll make this a bit smaller so we can see everything. Yup! Each endpoint is represented by a

normal, traditional route. How are these being added? When we installed API Platform, its

recipe added a config/routes/api_platform.yaml file.

config/routes/api_platform.yaml

1

2

3

4

This is actually a route import. It looks a little weird, but it activates API Platform when the

routing system is loading. API Platform then finds all of the API resources in our app and

generates a route for every endpoint.

The point is that all we need to focus on is creating these beautiful PHP classes and decorating

them with ApiResource . API Platform takes care of all the heavy lifting of hooking up those

endpoints. Of course, we'll need to tweak the configuration and talk about more advanced

things, but hey! That's the point of this tutorial. And we're already off to an epic start.

Next: I want to talk about the secret behind how this Swagger UI documentation is generated.

It's called OpenAPI.

api_platform:

 resource: .

 type: api_platform

 prefix: /api

Chapter 4: The Powerful OpenAPI Spec

Earlier, I said that these interactive docs come from an open source library called Swagger UI.

And as long as you have some config that describes your API, like what endpoints it has and

what fields are used on each endpoint, then you can generate these rich Swagger docs

automatically.

Head to https://petstore3.swagger.io. This is really cool: it's is a demo project where Swagger UI

is being used on a demo API. And, it has a link to the API configuration file that's powering this!

Hello OpenAPI!

Let's... see what that looks like! Woh! Yea, this JSON file fully describes the API, from basic

information about the API itself, all the way down to the different URLs, like updating an existing

pet, adding a new pet to the store, the responses... everything. If you have one of these files,

then you can get Swagger instantly.

The format of this file is called OpenAPI, which is just a standard for how APIs should be

described.

 Tip

In newer projects, access the JSON docs at /api/docs.jsonopenapi .

Back over in our docs, we must have that same type of config file, right? We do! Head to

/api/docs.json to see our version. Yup! It looks very similar. It has paths, it describes the

different operations... everything. The best part is that API Platform reads our code and

generates this giant file for us. Then, because we have this giant file, we get Swagger UI.

In fact, if you click on "View Page Source", you can see that this page works by embedding the

actual JSON document right into the HTML. Then, there's some Swagger JavaScript that reads

that and boots things up.

https://petstore3.swagger.io/

OpenAPI & Free Tools

This idea of having an OpenAPI specification that describes your API is powerful... because

there are an increasing number of tools that can use it. For example, go back to the API

Platform documentation and click on "Schema Generator". This is pretty wild: you can use a

service called "Stoplight" to design your API. That will give you an OpenAPI specification

document... and then you can use the Schema Generator to generate your PHP classes from

that. We're not going to use that, but it's a cool idea.

There's also an admin generator built in React - we'll play with this later - and even ways to help

generate JavaScript that talks to your API. For example, you can generate a Next.js frontend by

having it read from your OpenAPI spec.

The point is, Swagger UI is awesome. But even more awesome is the OpenAPI spec document

behind this... which can be used for other stuff.

Models / Schema in OpenAPI

In addition to the endpoints in Swagger, it also has something called "Schemas". These are your

models... and there are two - one for JSON-LD and a normal one. We're going to talk about

JSON-LD in a minute, but these are basically the same.

If you open one up, wow, this is smart. It knows that our id is an integer, name is a string,

coolFactor is an integer, and isPublished is a boolean. All of this info is, once again,

coming from this spec document. If we search for isPublished in here... yep! There's the

model describing isPublished as type boolean . The best part is that API Platform is

generating this by... just looking at our code!

For example, it sees that coolFactor has an integer type:

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 28

29

 // ... lines 30 - 112

113

class DragonTreasure

{

 private ?int $coolFactor = null;

}

so it advertises it as an integer in OpenAPI. But it gets even better. Check out the id . It's set as

readOnly . How does it know that? Well, id is a private property and there's no setId()

method:

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 36

37

38

39

40

 // ... lines 41 - 112

113

And so, it correctly inferred that id must be readOnly .

We can also help API Platform. Find the $value property... there it is... and add a little

documentation above this so people know that

This is the estimated value of this treasure, in gold coins.

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 24

25

26

27

28

29

 // ... lines 30 - 115

116

Head over, refresh... and check out the model down here. For value ... it shows up! The point

is: if you do a good job writing your PHP code and documenting it, you're going to get rich API

documentation thanks to OpenAPI, with zero extra work.

Next: Let's talk about these weird @ fields, like @id , @type , and @context . These come

from something called JSON-LD: a powerful addition to JSON that API Platform leverages.

class DragonTreasure

{

 private ?int $id = null;

 public function getId(): ?int

 {

 return $this->id;

 }

}

class DragonTreasure

{

 /**

 * The estimated value of this treasure, in gold coins.

 */

 #[ORM\Column]

 private ?int $value = null;

}

Chapter 5: JSON-LD: Giving Meaning to your Data

I've just used the GET collection endpoint to fetch all of my resources... which shows that we

have a treasure with id=1 . I'll close up this operation... and use this other GET endpoint. Click

"Try it out", put "1" in for the ID, and click "Execute".

What does our Data Mean?

Beautiful! But... I have some questions. Specifically: what is the significance of these fields?

What do name or description or value actually mean? Is the description plain text?

HTML? Is name a short name for the item or a proper name? Is this value in dollars? Euros?

French fries? What the heck is coolFactor? And why am I asking you all of these unfair

questions?

If you're a human (you are... right?), then you can probably figure out a lot of the "meaning" of

these fields on your own. But machines - okay, maybe minus futuristic AIs - well, they can't

figure this out. They don't know what these keys mean. So... how can we give context and

meaning to our data?

RDF: Resource Description Framework

First, there's this thing called "RDF" or "Resource Description Framework", which is a set of

rules about how we describe the meaning of data so that computers can understand. It's...

boring and abstract, but basically a guide on how you can define that one piece of data has a

certain type, or one resource is a subclass of some other type. In HTML, you can add attributes

to your elements to add this RDF metadata. You could say that this <div> describes a

"person", and that this person's name and telephone are these other pieces of data. This makes

the random HTML in your site understandable by machines. It's even better if two different sites

use the exact same definition of "person", which is why the types are URLs... and sites try to

reuse existing types rather than invent new ones.

Hello JSON-LD

Why are we talking about this? Because JSON-LD attempts to do the same thing for our API.

Our API endpoints are returning JSON. But the content-type header in the response says

that this is application/ld+json .

When you see application/ld+json , it means that the data is JSON... but with extra fields

that have special meaning according to a giant JSON-LD spec document. So, quite literally,

JSON-LD is JSON... with extra goodies.

The @id Field

For example, every resource, like DragonTreasure , has three @ fields. The most important is

probably @id . This is the unique identifier to the resource. It's basically the same as id , but it's

even better because it's a URL. So instead of just saying "id": 1 , you have @id

/api/dragon_treasures/1 . That means that, first, the string will be unique across all of our

API resource classes and second, this URL is handy! You can pop this into your browser, and, if

you have the accept header or add .jsonld to the end... whoops... let me get rid of my extra

/ ... yeah! You can see that resource. So @id is just like id ... but better.

The @type and @context Fields

Another special field is @type . This describes the type of resource, like what fields it has. And if

we see two different resources that both have @type DragonTreasure , we know that they

represent the same thing.

You can think of @type almost like a class, which we can use to find out what fields it has and

the type of each field. Though... where can we actually see that info?

This is where @context comes in handy. Copy the context URL, paste it into your browser,

and... beautiful! We get this very simple document that says that DragonTreasure has name ,

description , value , coolFactor , createdAt , and isPublished fields. If we want

even more information about what those mean, we can follow the @vocab link... to get to

another page of info.

Here, we can see all the classes in our API - like DragonTreasure - and all of its properties,

like name . We can also see things like required: false , readable: true ,

writeable: true and also that it's a string . And we have this info for every field. Look:

down at value . We can see that this is an integer . This xmls:integer refers to another

document, up on top, which, if we followed it, would describe xmls:integer in more detail.

At this point, you might be saying:

“Hey! This seems a lot like the OpenAPI spec doc!”

And you're right. We'll talk more about that in a few minutes.

You also might be thinking:

“Um... I kind of get what you're saying... but this is confusing.”

And you would also be right! It's hard, as a mere human, to follow all of these links to find the

fields and their types. But imagine what this would look like to a machine. It's an information

gold mine!

Oh, and I want to mention that, if you look under value ... hydra:description ... it picked

up the PHP documentation that we added to that field earlier.

Adding Extra Info

We can also add extra information above the class to describe this model. We could do this via

PHP documentation like normal, but ApiResource also has some options we can pass. One

is description . Let's describe this as A rare and valuable treasure.

src/Entity/DragonTreasure.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 117

118

Now, when we refresh the page... and search for "rare" (I'll close a few things here...), yup! It

added the description to the DragonTreasure type. And, not surprisingly, this data also shows

up over here inside Swagger, because it was also added to the OpenAPI spec doc.

#[ApiResource(

 description: 'A rare and valuable treasure.'

)]

class DragonTreasure

{

}

The point is, thanks to JSON-LD, we have extra fields in every response that give each

resource a unique id and a way to discover exactly what that "type" looks like.

Next: we need to discuss one last piece of theory: what these hydra things mean.

Chapter 6: Hydra: Describing API Classes,
Operations & More

We're looking at the JSON-LD documentation that describes our API. Right now, we know that

we only have one API resource: DragonTreasure . But if you look down at the

supportedClasses section, there are actually a bunch of supported classes. There's one

called Entrypoint , another called ConstraintViolation , and another called

ConstraintViolationList . Those last two will come up later when we talk about validation

errors.

Entrypoint: Your API Homepage

But this Entrypoint is really interesting. It's called "The API entrypoint", and it's actually

describing what the homepage for our API looks like. We don't always think about our APIs

having a homepage, but they can and they should.

And, welcome to our API homepage - HTML style! If you scroll down to the bottom, you can see

other formats. Click "JSON-LD" and... say "hello" to the API homepage in JSON-LD format! This

returns an API resource called Entrypoint , whose whole job is to tell us where we can find

info about the other API resources. It's like links on a homepage! You can discover the API by

going to this Entrypoint and following the @context link... which points to this.

Hello Hydra

Anyways, the purpose of JSON-LD is to add those three extra fields to your API resources:

@id , @type , and @context . Then we can leverage @context to point to other

documentation to get more metadata or more context. For example, at the top of the JSON-LD

documentation, it points to several other documents that add more meaning to JSON-LD.

And, there's one really important one here called hydra . Hydra is, in short an extension to

JSON-LD: it describes even more fields that you can add to JSON-LD and what they mean.

Think about it: if we want to totally describe our API, we need to be able to communicate things

like what classes we have, their properties, whether each is readable or writeable, and what

operations each class supports. That communication is done down here... and it's actually part

of Hydra. Yup, if you use JSON-LD by itself... it doesn't have a predefined way to advertise what

your models look like. But then Hydra says:

“What if we allow the API classes to be described with a key called

hydra:supportedClasses?”

Here's the big picture: API Platform allows us to fetch JSON-LD API documentation that

contains extra hydra fields. The end result is a system that fully describes our API. They

describe the models we have, the operations... everything.

Why Hydra and OpenAPI?

And yes, if this sounds very similar to the point of OpenAPI, you're absolutely correct. Both of

them do the same thing: describe our API. In fact, if you go to /api/docs.json , this is the

OpenAPI description of our API. If we replace the .json with .jsonld , this is the JSON-LD

Hydra description of the same API. Why do we have both? Hydra is a bit more powerful: there

are certain things it can describe that OpenAPI can't. But OpenAPI is a lot more common and

has more tools built on top of it. API platform provides both... in case you need them!

Next: Let's add some serious debugging tools to our API Platform setup.

Chapter 7: API Debugging with the Profiler

We're going to be doing some seriously cool and complex stuff with API platform. So before we

get there, I want to make sure we have a really awesome debugging setup. Because...

sometimes debugging APIs can be a pain! Ever made an Ajax request from JavaScript... and

the endpoint explodes in a 500 error full of HTML? Yea, not super helpful.

Installing the Profiler

One of the best features of Symfony is its Web Debug Toolbar. But if we're building an API...

there's not going to be a Web Debug Toolbar on the bottom of these JSON responses. So

should we even bother installing that package? The answer is: absolutely!

Spin over to the terminal and run:

composer require debug

This is another Symfony Flex alias that installs symfony/debug-pack . If you pop over to your

composer.json file, this installed a bunch of good stuff: a logger... then down in

require-dev , it also added DebugBundle and WebProfilerBundle, which is the most

important thing for what we'll talk about.

composer.json

1

 // ... lines 2 - 83

84

85

 // ... line 86

87

88

89

90

91

{

 "require-dev": {

 "symfony/debug-bundle": "6.2.*",

 "symfony/monolog-bundle": "^3.0",

 "symfony/stopwatch": "6.2.*",

 "symfony/web-profiler-bundle": "6.2.*"

 }

}

AJAX Requests in the Web Debug Toolbar

Head back to our documentation homepage and refresh. Sweet! We get the Web Debug

Toolbar down on the bottom! Though... that doesn't really help us because... all of this info is

literally for the documentation page itself. Not particularly useful.

What we really want is all of this profiler info for any API request we make. And that's super

possible. Use the GET collection endpoint. Hit "Try it out" and then watch closely down here on

the Web Debug Toolbar. When I hit "Execute"... boom! Because that made an AJAX request the

AJAX icon on the Web Debug Toolbar showed up! Want to see all the deep profiler info for that

request? Just click the little link on that panel. Yup, as you can see here, we're now looking at

the profiler for the GET /api/dragon_treasures API call.

API Platform & Serializer in the Profiler

And there's lots of cool stuff in here. Obviously, there's the Performance section and all the

normal goodies. But one of my favorite parts is the "Exception" tab. If you have an API endpoint

and that API endpoint explodes with an error - it happens - you can open this part of the profiler

to see the full beautiful HTML exception: including the stack trace in all its glory. So handy.

I have two other favorite spots when working on an API. The first, no surprise, is the "API

Platform" tab. This gives us info about the configuration for all of our API resources. We're going

to talk more about this config, but this shows you the current and possible options that you

could put inside of this ApiResource attribute. That's pretty cool. For example, this shows a

description option...

src/Entity/DragonTreasure.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 117

118

and we already have that!

#[ApiResource(

 description: 'A rare and valuable treasure.'

)]

class DragonTreasure

{

}

The other really useful section in the profiler is relatively new: it's for the "Serializer". We're

going to be talking a lot about Symfony's serializer and this tool will help us get a look at what's

going on internally.

Finding the Profiler for an API Request

So the big takeaway is that every API request actually has a profiler! And there are a few ways

to find it. We just say the first: if you're making an AJAX request - even if it's via your own

JavaScript - then you can use the web debug toolbar.

And, if you look down here a bit, these are the response headers our API returned. One is

called X-Debug-Token-Link which offers us a second way to find the profiler for any API

request. This is exactly the URL we were just at.

The last way is... maybe the simplest. Suppose we go directly to

/api/dragon_treasure.json . From here, there's no easy way to get to the profiler. But

now, open up a new tab and manually go to /_profiler . Yup! This shows us a list of the

latest request to our app... include the GET request we just made! If you click the little token

link... boom! We're inside that profiler.

You can click this "Last 10" at any point to get back to that list... and find whichever request you

need.

Sweet debugging tools, check! Next: let's talk about the concept of "operations" in API platform,

which represent these six endpoints. How can we configure these? Or disable one? Or add

more? Let's find out!

Chapter 8: Operations / Endpoints

API Platform works by taking a class like DragonTreasure and saying that you want to

expose it as a resource in your API. We do that by adding the ApiResource attribute:

src/Entity/DragonTreasure.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 117

118

Right now, we're putting this above a Doctrine entity, though, in a future tutorial, we'll learn that

you can really put ApiResource above any class.

Hello Operations

Out-of-the-box, every ApiResource includes 6 endpoints, which API Platform calls operations.

You can actually see these in the profiler. This is the profiler for

GET /api/dragon_treasures.json . Click on the "API Platform" section. On top, we see

metadata for this API resource. Below, we see the operations. This... is more info than we need

right now, but there's Get , GetCollection , Post , Put , Patch and finally Delete . These

are the same things we see on the Swagger documentation.

Let's take a quick look at these. First, which operations return data? Actually, all of them -

except for Delete . This Get , the Post , Put and Patch endpoints all return a single

resource - so a single treasure. And GET /api/dragon_treasures returns a collection.

Which endpoints do we send data to when we use them? That's POST to create, and PUT and

PATCH to update. We don't send any data for DELETE or either GET operation.

PUT vs PATCH

#[ApiResource(

 description: 'A rare and valuable treasure.'

)]

class DragonTreasure

{

}

Most of the endpoints are pretty self-explanatory: get a collection of treasures, a single treasure,

create a treasure and delete a treasure. The only confusing ones are put versus patch. PUT

says "replaces" and PATCH says "updates". That... sounds like two ways of saying the same

thing!

 Tip

In API Platform 4, PUT will become a "replace": meaning if you only sent a single field, all of

the other fields in your resource will be set to null: your object is completely "replaced" by

the JSON you send. Starting in API Platform 3.1, you can "opt into" this new behavior by

adding an extraProperties option to every ApiResource :

#[ApiResource(

 // ...

 extraProperties: [

 'standard_put' => true,

],

)]#

The topic of PUT versus PATCH in APIs can get spicy. But in API Platform, at least today, PUT

and PATCH work the same: they're both used to update a resource. And we'll see them in action

along the way.

Customizing Operations

One of the things that you might want to do is customize or remove some of these operations...

or even add more operations. How could we do that? As we saw on the profiler, each operation

is backed by a class.

Back over above the DragonTreasure class, after description , add an operations key.

Notice that I'm getting auto-completion for the options because these are named arguments to

the constructor of the ApiResource class. I'll show you that in a minute.

Set this to an array and then repeat every operation we currently have. So, new Get() , hit tab

to auto-complete that, GetCollection , Post , Put , Patch and Delete .

src/Entity/DragonTreasure.php

 // ... lines 1 - 5

6

7

8

9

10

11

 // ... lines 12 - 16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 131

132

Now, if we move over to the Swagger documentation and refresh... absolutely nothing changes!

That's what we wanted. We've just repeated exactly the default configuration. But now we're

free to customize things. For example, suppose we don't want treasures to be deleted...

because a dragon would never allow their treasure to be stolen. Remove Delete .. and I'll even

remove the use statement.

use ApiPlatform\Metadata\Delete;

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

use ApiPlatform\Metadata\Post;

use ApiPlatform\Metadata\Put;

#[ApiResource(

 description: 'A rare and valuable treasure.',

 operations: [

 new Get(),

 new GetCollection(),

 new Post(),

 new Put(),

 new Patch(),

 new Delete(),

]

)]

class DragonTreasure

{

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 5

6

7

8

9

10

 // ... lines 11 - 15

16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 129

130

Now when we refresh, the DELETE operation is gone.

ApiResource Options

Ok, so every attribute we use is actually a class. And knowing that is powerful. Hold command

or control and click on ApiResource to open it. This is really cool. Every argument to the

constructor is an option that we can pass to the attribute. And almost all of these have a link to

the documentation where you can read more. We'll talk about the most important items, but this

is a great resource to know about.

Changing the shortName

One argument is called shortName . If you look over at Swagger, our "model" is currently

known as DragonTreasure , which obviously matches the class. This is called the "short

name". And by default, the URLs - /api/dragon_treasures - are generated from that.

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

use ApiPlatform\Metadata\Post;

use ApiPlatform\Metadata\Put;

#[ApiResource(

 description: 'A rare and valuable treasure.',

 operations: [

 new Get(),

 new GetCollection(),

 new Post(),

 new Put(),

 new Patch(),

]

)]

class DragonTreasure

{

}

Let's say that we instead want to shorten all of this to just "treasure". No problem: set

shortName to Treasure .

src/Entity/DragonTreasure.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 25

26

27

28

 // ... lines 29 - 130

131

As soon as we do that, watch the name and URLs. Nice. This resource is now known as

"Treasure" and the URLs updated to reflect that.

Operation Options

Though, that's not the only way to configure the URLs. Just like with ApiResource , each

operation is also a class. Hold Command (or Ctrl) and Click to open up the Get class. Once

again, these constructor arguments are options... and most have documentation.

One important argument is uriTemplate . Yup, we can control what the URL looks like on an

operation by operation basis.

Check it out. Remember, Get is how you fetch a single resource. Add uriTemplate set to

/dragon-plunder/{id} where that last part will be the placeholder for the dynamic id. For

GetCollection , let's also pass uriTemplate set to /dragon-plunder .

#[ApiResource(

 shortName: 'Treasure',

)]

class DragonTreasure

{

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 15

16

 // ... lines 17 - 18

19

20

21

 // ... lines 22 - 24

25

26

27

28

 // ... lines 29 - 130

131

Ok! Let's go check the docs! Beautiful! The other operations keep the old URL, but those use

the new style. Later, when we talk about subresources, we'll go deeper into uriTemplate and

its sister option uriVariables .

Ok... since it's a bit silly to have two operations with weird URLs, let's remove that

customization.

src/Entity/DragonTreasure.php

 // ... lines 1 - 15

16

 // ... lines 17 - 18

19

20

21

 // ... lines 22 - 24

25

26

27

28

 // ... lines 29 - 130

131

Now that we know a bunch about ApiResource and these operations, it's time to talk about

the heart of API Platform: Symfony's serializer. That's next.

#[ApiResource(

 operations: [

 new Get(uriTemplate: '/dragon-plunder/{id}'),

 new GetCollection(uriTemplate: '/dragon-plunder'),

]

)]

class DragonTreasure

{

}

#[ApiResource(

 operations: [

 new Get(),

 new GetCollection(),

]

)]

class DragonTreasure

{

}

Chapter 9: The Serializer

The key behind how API platform turns our objects into JSON... and also how it transforms

JSON back into objects is Symfony's Serializer. symfony/serializer is a standalone

component that you can use outside of API platform and it's awesome. You give it any input -

like an object or something else - and it transform that into any format, like JSON , XML or CSV .

The Internals of the Serializer

As you can see in this fancy diagram, it goes through two steps. First, it takes your data and

normalizes it into an array. Second, it encodes that into the final format. It can also do the same

thing in reverse. If we're starting with JSON, like we're sending JSON to our API, it first decodes

it to an array and then denormalizes it back into an object.

For all of this to happen, internally, there are many different normalizer objects that know how to

work with different data. For example, there's a DateTimeNormalizer that's really great at

handling DateTime objects. Check it out: our entity has a createdAt field, which is a

DateTime object:

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 48

49

50

 // ... lines 51 - 130

131

If you look at our API, when we try the GET endpoint, this is returned as a special date time

string. The DateTimeNormalizer is responsible for doing that.

Figuring out Which Fields to Serialize

class DragonTreasure

{

 #[ORM\Column]

 private ?\DateTimeImmutable $plunderedAt = null;

}

There's also another really important normalizer called the ObjectNormalizer . Its job is to

read properties off of an object so that those properties can be normalized. To do that, it uses

another component called property-access . That component is smart.

For example, looking at our API, when we make a GET request to the collection endpoint, one

of the fields it returns is name . But if we look at the class, name is a private property:

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 33

34

35

 // ... lines 36 - 130

131

So how the heck is it reading that?

That's where the PropertyAccess component comes in. It first looks to see if the name

property is public. And if it's not, it then looks for a getName() method:

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 33

34

35

 // ... lines 36 - 59

60

61

62

63

 // ... lines 64 - 130

131

So that is what's actually called when building the JSON.

The same thing happens when we send JSON, like to create or update a DragonTreasure .

PropertyAccess looks at each field in the JSON and, if that field is settable, like via a

setName() method, it sets it:

class DragonTreasure

{

 #[ORM\Column(length: 255)]

 private ?string $name = null;

}

class DragonTreasure

{

 #[ORM\Column(length: 255)]

 private ?string $name = null;

 public function getName(): ?string

 {

 return $this->name;

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 33

34

35

 // ... lines 36 - 59

60

61

62

63

64

65

66

67

68

69

70

 // ... lines 71 - 130

131

And, it's even a bit cooler than that: it will even look for getter or setter methods that don't

correspond to any real property! You can use this to create "extra" fields in your API that don't

exist as properties in your class.

Adding a Virtual "textDescription" Field

Let's try that! Pretend that, when we're creating or editing a treasure, instead of sending a

description field, we want to be able to send a textDescription field that contains

plaintext... but with line breaks. Then, in our code, we'll transform those lines breaks into HTML

 tags.

Let me show you what I mean. Copy the setDescription() method. Then, below, paste and

call this new method setTextDescription() . It's basically going to set the description

property... but call nl2br() on it first. That function literally transforms new lines into

tags. If you've been around as long as I have, you remember when nl2br was super cool:

class DragonTreasure

{

 #[ORM\Column(length: 255)]

 private ?string $name = null;

 public function getName(): ?string

 {

 return $this->name;

 }

 public function setName(string $name): self

 {

 $this->name = $name;

 return $this;

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 83

84

85

86

87

88

89

 // ... lines 90 - 137

138

Anyways, with just that change, refresh the documentation and open the POST or PUT

endpoints. Woh! We have a new field called textDescription ! Yup! The serializer saw the

setTextDescription() method and determined that textDescription is a "settable"

virtual property!

However, we don't see this on the GET endpoint. And that's perfect! There is no

getTextDescription() method, so there will not be a new field here. The new field is

writable, but not readable.

Let's take this endpoint for a spin! First... I need to execute the GET collection endpoint so I can

see what ids we have in the database. Perfect: I have a Treasure with ID 1. Close this up. Let's

try the PUT endpoint to do our first update. When you use the PUT endpoint, you don't need

send every field: only the fields you want to change.

 Tip

If you're starting a new API Platform project, this PUT request will fail! You can try a PATCH

request instead. This relates to a new standard_put config in

config/packages/api_platform.yaml , which we talk about a bit later in the tutorial.

Pass textDescription ... and I'll include \n to represent some new lines in JSON.

When we try it, yes! 200 status code. And check it out: the description field has those

tags!

Removing Fields

class DragonTreasure

{

 public function setTextDescription(string $description): self

 {

 $this->description = nl2br($description);

 return $this;

 }

}

Ok, so now that we have setTextDescription() ... maybe that's the only way that we want

to allow that field to be set. To enforce that, eradicate the setDescription() method.

Now when we refresh... and look at the PUT endpoint, we still have textDescription , but

the description field is gone! The serializer realizes that it's no longer settable and removed

it from our API. It would still be returned because it's something that we can read, but it's no

longer writeable.

This is all really awesome. We simply worry about writing our class the way we want then API

Platform builds our API accordingly.

Making the plunderedAt Field Readonly

Ok, what else? Well, it is a little weird that we can set the createdAt field: that's usually set

internally and automatically. Let's fix that.

Oh, but, ya know what? I meant to call this field plunderedAt . I'll refactor and rename that

property... then let PhpStorm also rename my getter and setter methods.

Cool! This will also cause the column in my database to change... so spin over to your console

and run:

symfony console make:migration

I'll live dangerously and run that immediately:

symfony console doctrine:migrations:migrate

Done! Thanks to that rename... over in the API, excellent: the field is now plunderedAt .

Ok, so forget about the API for a moment: let's just do a little cleanup. The purpose of this

plunderedAt field is for it to be set automatically whenever we create a new

DragonTreasure .

To do that, create a public function __construct() and, inside, say

this->plunderedAt = new DateTimeImmutable() . And now we don't need the

= null on the property.

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 48

49

50

 // ... lines 51 - 54

55

56

57

58

 // ... lines 59 - 128

129

And if we search for setPlunderedAt , we don't really need that method anymore! Remove it!

This now means that the plunderedAt property is readable but not writeable. So, no shocker,

when we refresh and open up the PUT or POST endpoint, plunderedAt is absent. But if we

look at what the model would look like if we fetched a treasure, plunderedAt is still there.

Adding a Fake "Date Ago" Field

All right, one more goal! Let's add a virtual field called plunderedAtAgo that returns a human-

readable version of the date, like "two months ago". To do this, we need to install a new

package:

composer require nesbot/carbon

Once this finishes... find the getPlunderedAt() method, copy it, paste below, it will return a

string and call it getPlunderedAtAgo() . Inside, return

Carbon::instance($this->getPlunderedAt())) then ->diffForHumans() .

class DragonTreasure

{

 #[ORM\Column]

 private \DateTimeImmutable $plunderedAt;

 public function __construct()

 {

 $this->plunderedAt = new \DateTimeImmutable();

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

 // ... lines 13 - 27

28

29

 // ... lines 30 - 118

119

120

121

122

123

124

125

 // ... lines 126 - 137

138

So, as we now understand, there is no plunderedAtAgo property... but the serializer

should see this as readable via its getter and expose it. Oh, and while I'm here, I'll add a little

documentation above to describe the field's meaning.

Ok, let's try this. As soon as we refresh and open a GET endpoint, we see the new field under

the example! We can also see the fields we'll receive down in the Schemas section. Back up,

let's try the GET endpoint with ID one . And... how cool is that?

Next: what if we do want to have certain getter or setter methods in our class, like

setDescription() , but we do not want that to be part of our API? The answer: serialization

groups.

use Carbon\Carbon;

class DragonTreasure

{

 /**

 * A human-readable representation of when this treasure was

plundered.

 */

 public function getPlunderedAtAgo(): string

 {

 return Carbon::instance($this->plunderedAt)->diffForHumans();

 }

}

Chapter 10: Serialization Groups: Choosing Fields

Right now, whether or not a field in our class is readable or writable in the API is entirely

determined by whether or not that property is readable or writable in our class (basically,

whether or not it has a getter or setter method). But what if you need a getter or setter... but

don't want that field exposed in the API? For that, we have two options.

A DTO Class?

Option número uno: create a DTO class for the API resource. This is something we'll save for

another day... in a future tutorial. But in a nutshell, it's where you create a dedicated class for

your DragonTreasure API... and then move the ApiResource attribute onto that. The key

thing is that you'll design the new class to look exactly like your API... because modeling your

API will be its only job. It takes a little more work to set things up, but the advantage is that you

then have a dedicated class for your API. Done!

Hello Serialization Groups

The second solution, and the one we're going to use, is serialization groups. Check it out. Over

on the ApiResource attribute, add a new option called normalizationContext . If you

recall, "normalization" is the process of going from an object to an array, like when you're

making a GET request to read a treasure. The normalizationContext is basically options

that are passed to the serializer during that process. And the one option that's most important is

groups . Set that to one group called treasure:read :

src/Entity/DragonTreasure.php

 // ... lines 1 - 16

17

 // ... lines 18 - 26

27

28

29

30

31

32

 // ... lines 33 - 140

141

We'll talk about what this does in a minute. But you can see the pattern I'm using for the group:

the name of the class (it could be dragon_treasure if we wanted) then :read ... because

normalization means that we're reading this class. You can name these groups however you

want: this is my standard.

So... what does that do? Let's find out! Refresh the documentation... and, to make life easier, go

to the URL: /api/dragon_treasures.jsonld . Whoops! It's just treasures.jsonld

now. There we go. And... absolutely nothing is returned! Ok, we have the hydra fields, but this

hydra:member contains the array of treasures. It is returning one treasure... but other than

@id and @type ... there are no actual fields!

How Serialization Groups Work

Here's the deal. As soon as we add a normalizationContext with a group, when our object

is normalized, the serializer will only include properties that have this group on it. And since we

haven't added any groups to our properties, it returns nothing.

How do we add groups? With another attribute! Above the $name property, say #[Groups] ,

hit "tab" to add its use statement and then treasure:read . Repeat this above the

$description field... because we want that to be readable... and then the $value field...

and finally $coolFactor :

#[ApiResource(

 normalizationContext: [

 'groups' => ['treasure:read'],

]

)]

class DragonTreasure

{

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 14

15

 // ... lines 16 - 31

32

33

 // ... lines 34 - 39

40

41

 // ... lines 42 - 43

44

45

 // ... lines 46 - 50

51

52

 // ... lines 53 - 54

55

56

 // ... lines 57 - 145

146

Good start. Move over and refresh the endpoint. Now... got it! We see name , description ,

value , and coolFactor .

DenormalizationContext: Controlling Writable Groups

We now have control over which fields are readable... and we can do the same thing to choose

which fields should be writeable in the API. That's called "de-normalization", and I bet you can

guess what we're going to do. Copy normalizationContext , paste, change it to

denormalizationContext ... and use treasure:write :

src/Entity/DragonTreasure.php

 // ... lines 1 - 17

18

 // ... lines 19 - 30

31

32

33

34

35

36

 // ... lines 37 - 148

149

use Symfony\Component\Serializer\Annotation\Groups;

class DragonTreasure

{

 #[Groups(['treasure:read'])]

 private ?string $name = null;

 #[Groups(['treasure:read'])]

 private ?string $description = null;

 #[Groups(['treasure:read'])]

 private ?int $value = null;

 #[Groups(['treasure:read'])]

 private ?int $coolFactor = null;

}

#[ApiResource(

 denormalizationContext: [

 'groups' => ['treasure:write'],

]

)]

class DragonTreasure

{

}

Now head down to the $name property and add treasure:write . I'm going to skip

$description (remember that we actually deleted our setDescription() method earlier

on purpose)... but add this to $value ... and $coolFactor :

src/Entity/DragonTreasure.php

 // ... lines 1 - 34

35

36

 // ... lines 37 - 42

43

44

 // ... lines 45 - 53

54

55

 // ... lines 56 - 57

58

59

 // ... lines 60 - 148

149

Oh, it's mad at me! As soon as we pass multiple groups, we need to make this an array. Add

some [] around those three properties. Much happier.

To check if this is A-OK, refresh the documentation... open up the PUT endpoint, and... sweet!

We see name , value , and coolFactor , which are currently the only fields that are writable

in our API.

Adding Groups To Methods

We are missing a few things, though. Earlier, we made a getPlunderedAtAgo() method...

src/Entity/DragonTreasure.php

 // ... lines 1 - 34

35

36

 // ... lines 37 - 132

133

134

135

136

 // ... lines 137 - 148

149

class DragonTreasure

{

 #[Groups(['treasure:read', 'treasure:write'])]

 private ?string $name = null;

 #[Groups(['treasure:read', 'treasure:write'])]

 private ?int $value = null;

 #[Groups(['treasure:read', 'treasure:write'])]

 private ?int $coolFactor = null;

}

class DragonTreasure

{

 public function getPlunderedAtAgo(): string

 {

 return Carbon::instance($this->plunderedAt)->diffForHumans();

 }

}

and we want this to be included when we read our resource. Right now, if we we check the

endpoint, it's not there.

To fix this, we can also add groups above methods. Say #[Groups(['treasure:read'])] :

src/Entity/DragonTreasure.php

 // ... lines 1 - 34

35

36

 // ... lines 37 - 132

133

134

135

136

137

 // ... lines 138 - 149

150

And when we go check... voilà, it pops up.

Let's also find the setTextDescription() method... and do the same thing:

#[Groups([treasure:write])] :

src/Entity/DragonTreasure.php

 // ... lines 1 - 34

35

36

 // ... lines 37 - 93

94

95

96

 // ... lines 97 - 99

100

 // ... lines 101 - 150

151

Awesome! If we head back to the documentation, the field is not currently there... but when we

refresh... and check out the PUT endpoint again... textDescription is back!

Re-Adding Methods

Hey, now we can re-add any of the getter or setter methods we removed earlier! Like, maybe I

do need a setDescription() method in my code for something. Copy setName() to be

class DragonTreasure

{

 #[Groups(['treasure:read'])]

 public function getPlunderedAtAgo(): string

 {

 return Carbon::instance($this->plunderedAt)->diffForHumans();

 }

}

class DragonTreasure

{

 #[Groups(['treasure:write'])]

 public function setTextDescription(string $description): self

 {

 }

}

lazy, paste and change "name" to "description" in a few places.

Got it! And even though we have that setter back, when we look at the PUT endpoint,

description doesn't show up. We have complete control over our fields thanks to the

denormalization groups. Do the same thing for setPlunderedAt() ... because sometimes it's

handy - in data fixtures especially - to be able to set this manually.

And... done!

Adding Field Defaults

So we know that fetching a resource works. Now let's see if we can create a new resource.

Click on the POST endpoint, hit "Try it out", and... let's fill in some info about our new treasure,

which is, of course, a Giant jar of pickles . This is very valuable and has a

coolFactor of 10 . I'll also add a description... though this jar of pickles speaks for itself.

When we try this... oh, dear... we get a 500 error:

“An exception occurred while executing a query: Not null violation, null value in column

isPublished .”

We slimmed our API down to only the fields that we want writeable... but there's still one

property that must be set in the database. Scroll up and find isPublished . Yup, it currently

defaults to null . Change that to = false ... and now the property will never be null .

If we try it... the Giant jar of pickles is pickled into the database! It works!

Next: let's explore a few more cool serialization tricks to give us even more control.

Chapter 11: Serialization Tricks

We've sort of tricked the system to allow a textDescription field when we send data. This

is made possible thanks to our setTextDescription() method, which runs nl2br() on

the description that's sent to our API. This means that the user sends a textDescription

field when editing or creating a treasure... but they receive a description field when reading.

src/Entity/DragonTreasure.php

 // ... lines 1 - 34

35

36

 // ... lines 37 - 93

94

95

96

97

98

99

100

 // ... lines 101 - 150

151

And that's totally fine: you're allowed to have different input fields versus output fields. But it

would be a bit cooler if, in this case, both were just called description .

SerializedName: Controlling the Field Name

So... can we control the name of a field? Absolutely! We do this, as you may have predicted, via

another wonderful attribute. This one is called SerializedName . Pass it description :

class DragonTreasure

{

 #[Groups(['treasure:write'])]

 public function setTextDescription(string $description): self

 {

 $this->description = nl2br($description);

 return $this;

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 15

16

 // ... lines 17 - 35

36

37

 // ... lines 38 - 101

102

103

104

105

106

107

108

109

 // ... lines 110 - 166

167

This won't change how the field is read, but if we refresh the docs... and look at the PUT

endpoint... yep! We can now send a field called description .

Constructor Arguments

What about constructor arguments in our entity? When we make a POST request, for example,

we know it uses the setter methods to write the data onto the properties.

Now try this: find setName() and remove it. Then go to the constructor and add a

string $name argument there instead. Below, say $this->name = $name .

src/Entity/DragonTreasure.php

 // ... lines 1 - 35

36

37

 // ... lines 38 - 67

68

69

70

71

72

 // ... lines 73 - 160

161

use Symfony\Component\Serializer\Annotation\SerializedName;

class DragonTreasure

{

 #[SerializedName('description')]

 #[Groups(['treasure:write'])]

 public function setTextDescription(string $description): self

 {

 $this->description = nl2br($description);

 return $this;

 }

}

class DragonTreasure

{

 public function __construct(string $name)

 {

 $this->name = $name;

 $this->plunderedAt = new \DateTimeImmutable();

 }

}

From an object-oriented perspective, the field can be passed when the object is created, but

after that, it's read-only. Heck, if you wanted to get fancy, you could add readonly to the

property.

Let's see what this looks like in our documentation. Open up the POST endpoint. It looks like we

can still send a name field! Test by hitting "Try it out"... and let's add a Giant slinky we won

from a real-life giant in... a rather tense poker match. It's pretty valuable, has a coolFactor of

8 , and give it a description . Let's see what happens. Hit "Execute" and... it worked! And we

can see in the response that the name was set. How is that possible?

Well, if you go down and look at the PUT endpoint, you'll see that it also advertises name here.

But... go up find the id of the treasure we just created - its 4 for me, put 4 in here to edit... then

send just the name field to change it. And... it didn't change! Yup, just like with our code, once a

DragonTreasure is created, the name can't be changed.

But... how did the POST request set the name... if there's no setter? The answer is that the

serializer is smart enough to set constructor arguments... if the argument name matches the

property name. Yup, the fact that the arg is called name and the property is also called name is

what makes this work.

Watch: change the argument to treasureName in both places:

src/Entity/DragonTreasure.php

 // ... lines 1 - 35

36

37

 // ... lines 38 - 67

68

69

70

71

72

 // ... lines 73 - 160

161

Now, spin over, refresh, and check out the POST endpoint. The field is gone. API Platform sees

that we have a treasureName argument that could be sent, but since treasureName

doesn't correspond to any property, that field doesn't have any serialization groups. So it's not

used. I'll change that back to name :

class DragonTreasure

{

 public function __construct(string $treasureName)

 {

 $this->name = $treasureName;

 $this->plunderedAt = new \DateTimeImmutable();

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 35

36

37

 // ... lines 38 - 67

68

69

70

71

72

 // ... lines 73 - 160

161

By using name , it looks at the name property, and reads its serialization groups.

Optional Vs Required Constructor Args

However, there is still one problem with constructor arguments that you should be aware of.

Refresh the docs.

What would happen if our user doesn't pass a name at all? Hit "Execute" to find out. Ok! We get

an error with a 400 status code... but it's not a very good error. It says:

“Cannot create an instance of App\Entity\DragonTreasure from serialized data

because its constructor requires parameter name to be present.”

That's... actually too technical. What we really want is to allow validation to take care of this...

and we'll talk about validation soon. But in order for validation to work, the serializer needs to be

able to do its job: it needs to be able to instantiate the object:

src/Entity/DragonTreasure.php

 // ... lines 1 - 35

36

37

 // ... lines 38 - 67

68

69

70

71

72

 // ... lines 73 - 160

161

class DragonTreasure

{

 public function __construct(string $name)

 {

 $this->name = $name;

 $this->plunderedAt = new \DateTimeImmutable();

 }

}

class DragonTreasure

{

 public function __construct(string $name = null)

 {

 $this->name = $name;

 $this->plunderedAt = new \DateTimeImmutable();

 }

}

Ok, try this now... better! Ok, it's worse - a 500 error - but we'll fix that with validation in a few

minutes. The point is: the serializer was able to create our object.

Next: To help us while we're developing, let's add a rich set of data fixtures. Then we'll play with

a great feature that API Platform gives us for free: pagination

Chapter 12: Pagination & Foundry Fixtures

We're going to start doing more with our API... so it's time to bring this thing to life with some

data fixtures!

For this, I like to use Foundry along with DoctrineFixturesBundle. So, run

composer require foundry orm-fixtures --dev

to install both as dev dependencies. Once that finishes, run

php bin/console make:factory

Adding the Foundry Factory

If you haven't used Foundry before, for each entity, you create a factory class that's really good

at creating that entity. I'll hit zero to generate the one for DragonTreasure .

The end result is a new src/Factory/DragonTreasureFactory.php file:

src/Factory/DragonTreasureFactory.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 36

37

38

39

40

 // ... lines 41 - 46

47

48

49

50

51

namespace App\Factory;

use App\Entity\DragonTreasure;

use App\Repository\DragonTreasureRepository;

use Zenstruck\Foundry\ModelFactory;

use Zenstruck\Foundry\Proxy;

use Zenstruck\Foundry\RepositoryProxy;

/**

 * @extends ModelFactory<DragonTreasure>

 *

 * @method DragonTreasure|Proxy create(array|callable $attributes =

[])

 * @method static DragonTreasure|Proxy createOne(array $attributes = [])

 * @method static DragonTreasure|Proxy find(object|array|mixed $criteria)

 * @method static DragonTreasure|Proxy findOrCreate(array $attributes)

 * @method static DragonTreasure|Proxy first(string $sortedField = 'id')

 * @method static DragonTreasure|Proxy last(string $sortedField = 'id')

 * @method static DragonTreasure|Proxy random(array $attributes = [])

 * @method static DragonTreasure|Proxy randomOrCreate(array $attributes =

[])

 * @method static DragonTreasureRepository|RepositoryProxy repository()

 * @method static DragonTreasure[]|Proxy[] all()

 * @method static DragonTreasure[]|Proxy[] createMany(int $number,

array|callable $attributes = [])

 * @method static DragonTreasure[]|Proxy[] createSequence(array|callable

$sequence)

 * @method static DragonTreasure[]|Proxy[] findBy(array $attributes)

 * @method static DragonTreasure[]|Proxy[] randomRange(int $min, int $max,

array $attributes = [])

 * @method static DragonTreasure[]|Proxy[] randomSet(int $number, array

$attributes = [])

 */

final class DragonTreasureFactory extends ModelFactory

{

 public function __construct()

 {

 parent::__construct();

 }

 protected function getDefaults(): array

 {

 return [

 'coolFactor' => self::faker()->randomNumber(),

 'description' => self::faker()->text(),

52

53

54

55

56

57

 // ... lines 58 - 61

62

63

64

65

66

67

68

69

70

71

72

73

This class is just really good at creating DragonTreasure objects. It even has a bunch of nice

random data ready to be used!

To make this even fancier, I'm going to paste over with some code that I've dragon-ized. Oh,

and we also need a TREASURE_NAMES constant... which I'll also paste on top. You can grab all

of this from the code block on this page.

 'isPublished' => self::faker()->boolean(),

 'name' => self::faker()->text(255),

 'plunderedAt' =>

\DateTimeImmutable::createFromMutable(self::faker()->dateTime()),

 'value' => self::faker()->randomNumber(),

];

 }

 protected function initialize(): self

 {

 return $this

 // ->afterInstantiate(function(DragonTreasure

$dragonTreasure): void {})

 ;

 }

 protected static function getClass(): string

 {

 return DragonTreasure::class;

 }

}

src/Factory/DragonTreasureFactory.php

 // ... lines 1 - 29

30

31

32

 // ... lines 33 - 46

47

48

49

50

51

52

53

54

55

56

57

 // ... lines 58 - 72

73

Ok, so this class is done. Step two: to actually create some fixtures, open

src/DataFixtures/AppFixtures.php . I'll clear out the load() method. All we need is:

DragonTreasureFactory::createMany(40) to create a healthy trove of 40 treasures:

final class DragonTreasureFactory extends ModelFactory

{

 private const TREASURE_NAMES = ['pile of gold coins', 'diamond-

encrusted throne', 'rare magic staff', 'enchanted sword', 'set of

intricately crafted goblets', 'collection of ancient tomes', 'hoard of

shiny gemstones', 'chest filled with priceless works of art', 'giant

pearl', 'crown made of pure platinum', 'giant egg (possibly a dragon

egg?)', 'set of ornate armor', 'set of golden utensils', 'statue carved

from a single block of marble', 'collection of rare, antique weapons',

'box of rare, exotic chocolates', 'set of ornate jewelry', 'set of rare,

antique books', 'giant ball of yarn', 'life-sized statue of the dragon

itself', 'collection of old, used toothbrushes', 'box of mismatched

socks', 'set of outdated electronics (such as CRT TVs or floppy disks)',

'giant jar of pickles', 'collection of novelty mugs with silly sayings',

'pile of old board games', 'giant slinky', 'collection of rare, exotic

hats'];

 protected function getDefaults(): array

 {

 return [

 'coolFactor' => self::faker()->numberBetween(1, 10),

 'description' => self::faker()->paragraph(),

 'isPublished' => self::faker()->boolean(),

 'name' => self::faker()->randomElement(self::TREASURE_NAMES),

 'plunderedAt' =>

\DateTimeImmutable::createFromMutable(self::faker()->dateTimeBetween('-1

year')),

 'value' => self::faker()->numberBetween(1000, 1000000),

];

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

Let's try this thing! Back at your terminal, run:

symfony console doctrine:fixtures:load

Say "yes" and... it looks like it worked! Back on our API docs, refresh... then let's try the GET

collection endpoint. Hit execute.

We have Pagination!

Oh, so cool! Look at all those beautiful treasures! Remember, we added 40. But if you look

closely... even though the IDs don't start at 1, we can see that there are definitely less than 40

here. The response says hydra:totalItems: 40 , but it only shows 25.

Down here, this hydra:view kind of explains why: there's built-in pagination! Right now we're

looking at page 1.. and we can also see the URLs for the last page and the next page.

So yes, API endpoints that return a collection need pagination... just like a website. And with API

Platform, it just works.

To play with this, let's go to /api/treasures.jsonld . This is page 1... and then we can add

?page=2 to see page 2. That's the easiest thing I'll do all day.

namespace App\DataFixtures;

use App\Factory\DragonTreasureFactory;

use Doctrine\Bundle\FixturesBundle\Fixture;

use Doctrine\Persistence\ObjectManager;

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 DragonTreasureFactory::createMany(40);

 }

}

Digging Into API Platform Configuration

Now if you need to, you can change a bunch of pagination options. Let's see if we can tweak

the number of items per page from 25 to 10.

To start digging into the config, open up your terminal and run:

php bin/console debug:config api_platform

There are a lot of things that you can configure on API Platform. And this command shows us

the current configuration. So for example, you can add a title and description to your

API. This becomes part of the OpenAPI Spec... and so it shows up on your documentation.

If you search for pagination - we don't want the one under graphql ... we want the one

under collection - we can see several pagination-related options. But, again, this is showing

us the current configuration... it doesn't necessarily show us all possible keys.

To see that, instead of debug:config , run:

php bin/console config:dump api_platform

debug:config shows you the current configuration. config:dump shows you a full tree of

possible configuration. Now... we see pagination_items_per_page . That sounds like what

we want!

This is actually really cool. All of these options live under something called defaults . And

these are snake-case versions of the exact same options that you'll find inside the

ApiResource attribute. Setting any of these defaults in the config causes that to be the

default value passed to that option for every ApiResource in your system. Pretty cool.

So, if we wanted to change the items per page globally, we could do it with this config. Or, if we

want to change it only for one resource, we can do it above the class.

Customizing Max Items Per Page

Find the ApiResource attribute and add paginationItemsPerPage set to 10:

src/Entity/DragonTreasure.php

 // ... lines 1 - 18

19

 // ... lines 20 - 34

35

36

37

38

 // ... lines 39 - 161

162

Again, you can see that the options we already have... are included in the defaults config.

Move over and head back to page 1. And... voilà! A much shorter list. Also, there are now 4

pages of treasure instead of 2.

Oh, and FYI: you can also make it so that the user of your API can determine how many items

to show per page via a query parameter. Check the documentation for how to do that.

Ok, now that we have a lot of data, let's add the ability for our Dragon API users to search and

filter through the treasures. Like maybe a dragon is searching for a a treasure of individually

wrapped candies among all this loot. That's next.

#[ApiResource(

 paginationItemsPerPage: 10

)]

class DragonTreasure

{

}

Chapter 13: Filters: Searching Results

Some of our dragon treasures are currently published and some are unpublished. That's thanks

to DragonTreasureFactory , where we randomly publish some but not others.

Right now, the API is returning every last dragon treasure. In the future, we're going to make it

so that our API automatically returns only published treasures. But to start, let's at least make it

possible for our API clients to filter out unpublished results if they want to.

Hello ApiFilter

How? By Leveraging filters. API Platform comes with a bunch of built-in filters that allow you to

filter the collections of results by text, booleans, dates and much more.

Here's how it works: above your class, add an attribute called ApiFilter .

There are typically two ingredients that you need to pass to this. The first is which filter class

you want to use. And if you look at the documentation, there's a bunch of them, like one called

BooleanFilter that we'll use now and another called SearchFilter that we'll use in a few

minutes.

Pass this BooleanFilter - the one from ORM , since we're using the Doctrine ORM - because

we want to allow the user to filter on a boolean field.

The second thing you need top pass is properties set to an array of which fields or

properties you want to use this filter on. Set this to isPublished :

src/Entity/DragonTreasure.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 38

39

40

41

 // ... lines 42 - 164

165

use ApiPlatform\Doctrine\Orm\Filter\BooleanFilter;

use ApiPlatform\Metadata\ApiFilter;

#[ApiFilter(BooleanFilter::class, properties: ['isPublished'])]

class DragonTreasure

{

}

Using the Filter in the Request

All right! Go back to the documentation and check out the GET collection endpoint. When we try

this... there's a new isPublished field! First, just hit "Execute" without setting that. When we

scroll all the way down, there we go! hydra:totalItems: 40 . Now set isPublished to

true and try it again.

Yes! We have hydra:totalItems: 16 . It's alive! And check out how the filtering happens.

It's dead simple via a query parameter: isPublished=true . Oh, and it gets cooler. Look at

the response: we have hydra:view , which shows the pagination and now we also have a new

hydra:search . Yea, API Platform actually documents this new way of searching right in the

response. It's saying:

“Hey, if you want, you can add a ?isPublished=true query parameter to filter these

results.”

Pretty stinking cool.

Adding Filters Directly Above Properties

Now, when you read about filters inside of the API Platform docs, they pretty much always show

it above the class, like we have. But you can also put the filter above the property it relates to.

Watch: copy the ApiFilter line, remove it, and go down to $isPublished . Paste this

above. And now, we don't need the properties option anymore... API Platform figures that

out on its own:

src/Entity/DragonTreasure.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 68

69

70

 // ... lines 71 - 164

165

The result? The same as before. I won't try it, but if you peek at the collection endpoint, it still

has the isPublished filter field.

class DragonTreasure

{

 #[ApiFilter(BooleanFilter::class)]

 private bool $isPublished = false;

}

SearchFilter: Filter by Text

What else can we do? Another really handy filter is SearchFilter . Let's make it possible to

search by text on the name property. This looks almost the same: above $name , add

ApiFilter . In this case we want SearchFilter : again, get the one for the ORM. This filter

also accepts an option. You can see here that, in addition to properties , ApiFilter has an

argument called strategy . That doesn't apply to all filters, but it does apply to this one. Set

strategy to partial :

src/Entity/DragonTreasure.php

 // ... lines 1 - 5

6

 // ... lines 7 - 39

40

41

 // ... lines 42 - 48

49

50

 // ... lines 51 - 166

167

This will allow us to search on the name property for a partial match. It's a "fuzzy" search. Other

strategies include exact , start and more.

Let's give it a shot! Refresh the docs page. And... now the collection endpoint has another filter

box. Search for rare and hit Execute. Let's see, down here... yes! Apparently 15 of the results

have rare somewhere in the name .

And again, this works by adding a simple ?name=rare to the URL.

Oh, let's also make the description field searchable:

use ApiPlatform\Doctrine\Orm\Filter\SearchFilter;

class DragonTreasure

{

 #[ApiFilter(SearchFilter::class, strategy: 'partial')]

 private ?string $name = null;

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 5

6

 // ... lines 7 - 39

40

41

 // ... lines 42 - 48

49

50

 // ... lines 51 - 53

54

55

 // ... lines 56 - 167

168

And now... that shows up in the API too!

The SearchFilter is easy to set up... but it's a fairly simple fuzzy search. If you want

something more complex - like ElasticSearch - API Platform does support that. You can even

create your own custom filters, which we'll do in a future tutorial.

Alrighty: next, let's see two more filters: one simple and one weird... A filter that, instead of

hiding results, allows the API user to hide certain fields in the response.

use ApiPlatform\Doctrine\Orm\Filter\SearchFilter;

class DragonTreasure

{

 #[ApiFilter(SearchFilter::class, strategy: 'partial')]

 private ?string $name = null;

 #[ApiFilter(SearchFilter::class, strategy: 'partial')]

 private ?string $description = null;

}

Chapter 14: PropertyFilter: Sparse Fieldsets

Since dragons love expensive treasure, let's add a way for them to filter based on the value, like

within a range. There's a built-in filter for that called RangeFilter . Find the $value property

and, like we did before, use #[ApiFilter()] and inside RangeFilter (the one from ORM)

::class :

src/Entity/DragonTreasure.php

 // ... lines 1 - 6

7

 // ... lines 8 - 40

41

42

 // ... lines 43 - 62

63

64

 // ... lines 65 - 169

170

This one doesn't need any other options, so... we're done! Dang... that was easy. When we

refresh... open it up, and hit "Try it out".... look at that! We have a ton of new filters -

value[between] , value[gt] (or "greater than"), value[gte] , etc. Let's try

value[gt] ... with a random number... maybe 500000 . When we click "Execute"... yup! It

updated the URL here. It's... not the prettiest URL ever - due to the encoding - but it works like a

charm. And down in the results... apparently there are 18 treasures worth more than that!

PropertyFilter

The last filter I want to show you... isn't really a filter at all. It's a way our API clients to choose

which fields they want returned... instead of which results.

To show this off, find the getDescription() method. Pretend that we want to return a

shorter, truncated version of the description. To do this, copy the getDescription() method,

paste it below, and rename it to getShortDescription() :

use ApiPlatform\Doctrine\Orm\Filter\RangeFilter;

class DragonTreasure

{

 #[ApiFilter(RangeFilter::class)]

 private ?int $value = null;

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 41

42

43

 // ... lines 44 - 99

100

101

 // ... line 102

103

 // ... lines 104 - 176

177

To truncate this, we can use the u() function from Symfony. Type u and make sure to hit "tab"

to autocomplete that. This is a rare function that Symfony gives us... and hitting "tab" did add a

use statement for it:

src/Entity/DragonTreasure.php

 // ... lines 1 - 20

21

 // ... lines 22 - 41

42

43

 // ... lines 44 - 99

100

101

102

103

 // ... lines 104 - 176

177

This creates an object with all sorts of string-related goodies on it, including truncate() .

Pass 40 to truncate at 40 characters followed by

Method done! To expose this to our API, above, add the Groups attribute with

treasure:read :

class DragonTreasure

{

 public function getShortDescription(): string

 {

 }

}

use function Symfony\Component\String\u;

class DragonTreasure

{

 public function getShortDescription(): string

 {

 return u($this->getDescription())->truncate(40, '...');

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 20

21

 // ... lines 22 - 41

42

43

 // ... lines 44 - 98

99

100

101

102

103

 // ... lines 104 - 176

177

Beautiful! Okay, head back to the documentation and refresh. Open the GET endpoint, hit "Try it

out", "Execute" and... nice. Here's our truncated description!

Though... it is weird that we now return two descriptions: a short one and the regular one. If our

API client wants the short description, it may not want us to also return the full-length

description... for the sake of bandwidth.

What can we do? Introducing: the PropertyFilter ! Head back to DragonTreasure .

Unlike the others, this filter must go above the class. So right here, say ApiFilter , and then

PropertyFilter (in this case, there's only one of them) ::class . There are some options

you can pass to this - which you can find in the docs - but we don't need any of them:

src/Entity/DragonTreasure.php

 // ... lines 1 - 14

15

 // ... lines 16 - 42

43

44

45

 // ... lines 46 - 178

179

So... what does that do? Head back, refresh the documentation, open up the GET collection

endpoint, and hit "Try it out". Woh! We now see a properties[] box and we can add items to

it. Let's try it! Add a new string called name and another called description .

Moment of truth. Hit "Execute", and... there it is! It popped these onto the URL like normal. But

look at the response: it only contains the name and description fields. Well... it also

use function Symfony\Component\String\u;

class DragonTreasure

{

 #[Groups(['treasure:read'])]

 public function getShortDescription(): string

 {

 return u($this->getDescription())->truncate(40, '...');

 }

}

use ApiPlatform\Serializer\Filter\PropertyFilter;

#[ApiFilter(PropertyFilter::class)]

class DragonTreasure

{

}

contains the JSON-LD fields, but the real data is just those two fields.

If we removed the properties strings, we would get the normal, full response. So, by default,

you get all fields. But users can now choose fewer fields if they want to.

What about Vulcain?

This all works quite nicely. But if you look at the API Platform documentation for the

PropertyFilter , they actually recommend a different solution: something called "Vulcain".

Nope, not Spock's home planet. We're talking about a protocol that adds features to your web

server. It was created by the API Platform team, and if we scroll down a bit, they have a really

good example.

Pretend that we have the following API. If we make a request to /books , we get these two

books back. Simple enough. Then maybe we want to get more info about the first book, so we

make a request to that URL - /books/1 . Great! But... now we want details about the author, so

we make a request to /authors/1 .

So, to get all the book information and all the author information, we ultimately needed to make

four requests: the original, plus 3 more. That's not great for performance.

What Vulcain allows you to do is just make this first request... but tell the server that it should

push the data from the other requests to you.

We can see this best in JavaScript, and there's a little example down here. In this case, imagine

that we're making a request to /books/1 but we know that we also need the author

information. So, when we make the request, we include a special Preload header. This tells

the server:

“Hey! After returning the book data, use a server push to send me the information found by

following the author IRI.”

The really cool thing is that your JavaScript doesn't really change. You still use fetch() to

make a second request to the bookJSON.author URL... except that this will return instantly

because the browser already has the data.

I'm not going to get into all the specifics, but the Preload on the first example is even more

impressive: /member/*/author . That tells the server to push all the data as if we had also

requested each of the member keys - so all the books - and their author URLs.

The point is: if you use Vulcain, your API users can make tiny changes to enjoy huge

performance benefits... without us needing to add a lot of fanciness to our API.

Next: Let's talk about formats. We know that our API can return JSON-LD, JSON, and even

HTML representations of our resources. Let's add two new formats, including a CSV format,

which will be the fastest CSV export feature you've ever built.

Chapter 15: More Formats: HAL & CSV

API Platform supports multiple input and output formats. We know that we can go to

/api/treasures.json to see JSON, .jsonld to see JSON-LD or even .html to see the

HTML output format.

Accept Header & Content Negotiation

But adding this extension to the end of the URL is just a hack that API Platform allows. To

choose the format we want the API to return, we're supposed to send an Accept header. And

we can see this when we use the interactive docs. This makes a request with an Accept

header set to application/ld+json . Setting this header is easy to do in JavaScript, and if

you don't set it, JSON-LD is the default format.

API Platform uses three formats out of the box. You can see them down here on the bottom of

the docs page. But, what in our app says that we want to use these three formats specifically?

To answer that, head over to your terminal and run:

./bin/console debug:config api_platform

Inside the config, check out this formats key... which, by default, is set to those three formats.

This basically says that if the Accept header is application/ld+json , use the JSON-LD

format. Internally, it means that when Symfony is serializing our data, it will serialize to JSON-

LD or JSON.

Adding a New Format

As a challenge, let's add a fourth format. To do that, we just need to add a new item to this

config... but without completely replacing the existing formats. Copy these, then open the

/config/packages/ directory. We don't have an api_platform.yaml file yet, so let's

create one. Inside that, say api_platform and paste those below. And while we don't have

to, I'm going to change this to use a shorter, more attractive version of this config:

config/packages/api_platform.yaml

1

2

3

4

5

Done!

If we go and refresh right now, everything works the same. We have the same formats below...

because we simply repeated the default config.

The new format we're going to add is another type of JSON called HAL. Here's what's going on.

We all understand the JSON format. But then, to add more meaning to JSON - like certain keys

that your JSON should have and their meaning - some people come out with standards that

extend JSON. JSON-LD is one example and HAL is a competing standard. I don't often use

HAL... so we're mostly doing this to see an example of what adding a format looks like.

Oh, and the Content-Type for HAL is supposed to be application/hal+json :

config/packages/api_platform.yaml

1

2

 // ... lines 3 - 5

6

As soon as we do that, when we refresh... it shows nothing? I'm pretty sure Symfony didn't see

my new config file. Hop over here and clear the cache with:

./bin/console cache:clear

Refresh again and... there we go! We now see jsonhal ! And if we click, it takes us to the

jsonhal version of our API homepage!

Let's try an endpoint with this format. Click on the GET request, "Try it out", and, down here, we

can select which "media type" to request. Select application/hal+json , hit "Execute",

and... there it is!

api_platform:

 formats:

 jsonld: ['application/ld+json']

 json: ['application/json']

 html: ['text/html']

api_platform:

 formats:

 jsonhal: ['application/hal+json']

You can see that it's JSON... and it has the same results, but it looks a bit different. It has things

like _embedded and _links ... which are part of the HAL standard... and not worth talking

about right now.

By the way, the reason this new format worked simply by adding a tiny bit of config is that the

serializer already understands the jsonhal format. So when we request with this Accept

header, API Platform asks the serializer to serialize into the jsonhal format... and it knows

how to do that.

Adding a CSV Format

Okay, let's do something that's a bit more practical. What if our dragon users need to return the

treasures in CSV format... like so they can import them into Quickbooks for tax purposes.

Well, CSV is a format that Symfony's Serializer understands out of the box. We know that we

could add CSV right into this config file. But as an added challenge, instead of enabling the CSV

for every API resource in our system, let's just add it to DragonTreasure .

Find the ApiResource attribute and, at the bottom, add formats . Just like with the

configuration, if we simple put csv here, that will remove the other formats. To do this right, we

need to list all of them: jsonld , json , html , and jsonhal . Each of these will read the

configuration to know which content type to use. At the end, add csv . But because csv

doesn't exist in the config, we need to tell it which content type will activate this. So set it to

text/csv .

src/Entity/DragonTreasure.php

 // ... lines 1 - 24

25

 // ... lines 26 - 41

42

43

44

45

46

47

48

49

 // ... line 50

51

52

 // ... lines 53 - 185

186

Oh, but my editor is mad! It says:

“Named arguments order does not match parameters order”

We know that each PHP attribute is a class... and when we pass arguments to the attribute,

we're actually passing named arguments to that class's constructor. And, with named args, the

order of the args doesn't matter. I actually don't think PhpStorm should be highlighting this as a

problem... but if you're annoyed like I am, you can hit "Sort arguments" and... there. It moved

formats up a little higher, it's happy, and we won't have to stare at that yellow underline.

All right, head over, refresh, open up our collection endpoint and hit "Try it out". This time, down

here, select text/csv then... "Engage"! Hello CSV. Too easy!

Once again, this works because Symfony's Serializer understands the CSV format. So it does

all the work.

In fact, open the profiler for that request... and go down to the serializer section. Yep! We can

see that it's using the csv format... which activates a CsvEncoder . That's why we get our nice

results. If you needed to return your results in a custom format that's not supported by the

serializer, you could add your own encoder to the system to handle that. It's super flexible

Next: Let's talk about validation!

#[ApiResource(

 formats: [

 'jsonld',

 'json',

 'html',

 'jsonhal',

 'csv' => 'text/csv',

],

)]

class DragonTreasure

{

}

Chapter 16: Validation

There are a bunch of different ways for the users of our API to mess things up, like bad JSON or

doing silly things like passing a negative number for the value field. This is dragon gold, not

dragon debt!

Invalid JSON

This chapter is all about handling these bad things in a graceful way. Try the POST endpoint.

Let's send some invalid JSON. Hit Execute. Awesome! A 400 error! That's what we want. 400 -

or any status code that starts with 4 - means that the client - the user of the API - made a

mistake. 400 specifically means "bad request".

In the response, the type is hydra:error and it says: An error occurred and

Syntax Error . Oh, and this trace only shows in the debug environment: it won't be shown

on production.

So this is pretty sweet! Invalid JSON is handled out-of-the-box.

Business Rules Validation Constraints

Let's try something different, like sending empty JSON. This gives us the dreaded 500 error.

Boo. Internally, API platform creates a DragonTreasure object... but doesn't set any data on

it. And then it explodes when it hits the database because some of the columns are null .

And, we expected this! We're missing validation. Adding validation to our API is exactly like

adding validation anywhere in Symfony. For example, find the name property. We need name

to be required. So, add the NotBlank constraint, and hit tab. Oh, but I'm going to go find the

NotBlank use statement... and change this to Assert . That's optional... but it's the way the

cool kids tend do it in Symfony. Now say Assert\NotBlank :

src/Entity/DragonTreasure.php

 // ... lines 1 - 19

20

 // ... lines 21 - 51

52

53

 // ... lines 54 - 61

62

 // ... line 63

64

 // ... lines 65 - 188

189

Below, add one more: Length . Let's say that the name should be at least two characters, max

50 characters... and add a maxMessage : Describe your loot in 50 chars or less :

src/Entity/DragonTreasure.php

 // ... lines 1 - 19

20

 // ... lines 21 - 51

52

53

 // ... lines 54 - 61

62

63

64

 // ... lines 65 - 188

189

How Errors Look in the Response

Good start! Let's try it again. Take that same empty JSON, hit Execute, and yes! A 422

response! This is a really common response code that usually means there was a validation

error. And behold! The @type is ConstraintViolationList . This is a special JSON-LD

type added by API Platform. Earlier, we saw this documented in the JSON-LD documentation.

Watch: go to /api/docs.jsonld and search for a ConstraintViolation . There it is! API

Platform adds two classes - ConstraintViolation and ConstraintViolationList to

describe how validation errors will look. A ConstraintViolationList is basically just a

collection of ConstraintViolations ... and then it describes what the

ConstraintViolation properties are.

use Symfony\Component\Validator\Constraints as Assert;

class DragonTreasure

{

 #[Assert\NotBlank]

 private ?string $name = null;

}

use Symfony\Component\Validator\Constraints as Assert;

class DragonTreasure

{

 #[Assert\NotBlank]

 #[Assert\Length(min: 2, max: 50, maxMessage: 'Describe your loot in 50

chars or less')]

 private ?string $name = null;

}

We can see these over here: we have a violations property with propertyPath and then

the message below.

Adding More Constraints

Ok! Let's sneak in a few more constraints. Add NotBlank above description ... and

GreaterThanOrEqual to 0 above value to avoid negatives. Finally, for coolFactor use

GreaterThanOrEqual to 0 and also LessThanOrEqual to 10. So something between 0

and 10:

src/Entity/DragonTreasure.php

 // ... lines 1 - 51

52

53

 // ... lines 54 - 68

69

70

 // ... lines 71 - 77

78

79

 // ... lines 80 - 82

83

84

85

 // ... lines 86 - 192

193

And while we're here, we don't need to do this, but I'm going to initialize $value to 0 and

$coolFactor to 0. This makes both of those not required in the API: if the user doesn't send

them, they'll default to 0:

class DragonTreasure

{

 #[Assert\NotBlank]

 private ?string $description = null;

 #[Assert\GreaterThanOrEqual(0)]

 private ?int $value = null;

 #[Assert\GreaterThanOrEqual(0)]

 #[Assert\LessThanOrEqual(10)]

 private ?int $coolFactor = null;

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 51

52

53

 // ... lines 54 - 68

69

70

 // ... lines 71 - 77

78

79

 // ... lines 80 - 82

83

84

85

 // ... lines 86 - 192

193

Ok, go back and try that same endpoint. Look at that beautiful validation! Also try setting

coolFactor to 11 . Yup! No treasure is that cool... well, unless it's a giant plate of nachos.

Passing Bad Types

Ok, there's one last way that a user can send bad stuff: by passing the wrong type. So

coolFactor: 11 will fail our validation rules. But what if we pass a string instead? Yikes!

Hit Execute. Okay: a 400 status code, that's good. Though, it's not a validation error, it has a

different type. But it does tell the user what happened:

“the type of the coolFactor attribute must be int , string given.”

Good enough! This is thanks to the setCoolFactor() method. The system sees the int

type and so it rejects the string with this error.

So the only thing that we need to worry about in our app is writing good code that properly uses

type and adding validation constraints: the safety net that catches business rule violations...

like value should be greater than 0 or description is required. API Platform handles the

rest.

Next: our API only has one resource: DragonTreasure . Let's add a second resource - a

User resource - so that we can link which user owns which treasure in the API.

class DragonTreasure

{

 #[Assert\NotBlank]

 private ?string $description = null;

 #[Assert\GreaterThanOrEqual(0)]

 private ?int $value = 0;

 #[Assert\GreaterThanOrEqual(0)]

 #[Assert\LessThanOrEqual(10)]

 private ?int $coolFactor = 0;

}

Chapter 17: Creating a User Entity

We won't talk about security in this tutorial. But even still, we do need the concept of a user...

because each treasure in the database will be owned by a user... or really, by a dragon. Later,

we'll use this to allow API users to see which treasures belong to which user and a bunch more.

make:user

So, let's create that User class. Find your terminal and run:

php bin/console make:user

We could use make:entity , but make:user will set up a bit of the security stuff that we'll

need in a future tutorial. Let's call the class User , yes we are going to store these in the

database, and set email as the main identifier field.

Next it asks if we need to hash and check user passwords. If the hashed version of user

passwords will be stored in your system, say yes to this. If your users won't have passwords - or

some external system checks the passwords - answer no. I'll say yes to this.

This didn't do much... in a good way! It gave us a User entity, the repository class... and a

small update to config/packages/security.yaml . Yup, it just sets up the user provider:

nothing special. And again, we'll talk about that in a future tutorial.

Adding a username Property

Ok, inside the src/Entity/ directory, we have our new User entity class with id , email

and password properties... and getters and setters below. Nothing fancy. This implements two

interfaces that we need for security... but those aren't important right now.

src/Entity/User.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 99

100

Oh, but I do want to add one more field to this class: a username that we can show in the API.

So, spin back over to your terminal and this time run:

php bin/console make:entity

Update the User class, add a username property, 255 length is good, not null... and done.

Hit enter one more time to exit.

namespace App\Entity;

use App\Repository\UserRepository;

use Doctrine\ORM\Mapping as ORM;

use

Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;

use Symfony\Component\Security\Core\User\UserInterface;

#[ORM\Entity(repositoryClass: UserRepository::class)]

#[ORM\Table(name: '`user`')]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column]

 private ?int $id = null;

 #[ORM\Column(length: 180, unique: true)]

 private ?string $email = null;

 #[ORM\Column]

 private array $roles = [];

 /**

 * @var string The hashed password

 */

 #[ORM\Column]

 private ?string $password = null;

}

Back over on the class... perfect! There's the new field. While we're here, add unique: true

to make this unique in the database.

src/Entity/User.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 30

31

32

 // ... lines 33 - 114

115

Entity done! Let's make a migration for it. Back at the terminal run:

symfony console make:migration

Then... spin over and open that new migration file. No surprises: it creates the user table:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\Column(length: 255, unique: true)]

 private ?string $username = null;

}

migrations/Version20230104193724.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 35

36

Close that up and run it with:

symfony console doctrine:migrations:migrate

Adding the Factory & Fixtures

Sweet! Though, I think our new entity deserves some juicy data fixtures. Let's use Foundry like

we did for DragonTreasure . Start by running

declare(strict_types=1);

namespace DoctrineMigrations;

use Doctrine\DBAL\Schema\Schema;

use Doctrine\Migrations\AbstractMigration;

/**

 * Auto-generated Migration: Please modify to your needs!

 */

final class Version20230104193724 extends AbstractMigration

{

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('CREATE SEQUENCE "user_id_seq" INCREMENT BY 1

MINVALUE 1 START 1');

 $this->addSql('CREATE TABLE "user" (id INT NOT NULL, email

VARCHAR(180) NOT NULL, roles JSON NOT NULL, password VARCHAR(255) NOT

NULL, username VARCHAR(255) NOT NULL, PRIMARY KEY(id))');

 $this->addSql('CREATE UNIQUE INDEX UNIQ_8D93D649E7927C74 ON "user"

(email)');

 $this->addSql('CREATE UNIQUE INDEX UNIQ_8D93D649F85E0677 ON "user"

(username)');

 }

}

php bin/console make:factory

to generate the factory for User .

Like before, in the src/Factory/ directory, we have a new class - UserFactory - which is

really good at creating User objects. The main thing we need to tweak is getDefaults() to

make the data even better. I'm going to paste in new contents for the entire class, which you

can copy from the code block on this page.

src/Factory/UserFactory.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 29

30

31

32

33

34

35

36

37

38

39

40

41

 // ... lines 42 - 47

48

49

50

51

52

53

 // ... lines 54 - 59

60

61

62

63

64

65

66

67

 // ... lines 68 - 71

72

73

74

namespace App\Factory;

use App\Entity\User;

use App\Repository\UserRepository;

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

use Zenstruck\Foundry\ModelFactory;

use Zenstruck\Foundry\Proxy;

use Zenstruck\Foundry\RepositoryProxy;

/**

 * @extends ModelFactory<User>

 */

final class UserFactory extends ModelFactory

{

 const USERNAMES = [

 'FlamingInferno',

 'ScaleSorcerer',

 'TheDragonWithBadBreath',

 'BurnedOut',

 'ForgotMyOwnName',

 'ClumsyClaws',

 'HoarderOfUselessTrinkets',

];

 public function __construct(

 private UserPasswordHasherInterface $passwordHasher

)

 {

 parent::__construct();

 }

 protected function getDefaults(): array

 {

 return [

 'email' => self::faker()->email(),

 'password' => 'password',

 'username' => self::faker()->randomElement(self::USERNAMES) .

self::faker()->randomNumber(3),

];

 }

 protected function initialize(): self

 {

 return $this

75

76

77

78

79

80

81

82

83

84

85

86

87

88

This updates getDefaults() to have a little more pizazz and sets the password to

password . I know, creative. I'm also leveraging an afterInstantiation hook to hash that

password.

Finally, to actually create some fixtures, open up AppFixtures . Pretty simple here:

UserFactory::createMany() and let's create 10.

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

Let's see if that worked! Spin over and run:

symfony console doctrine:fixtures:load

No errors!

 ->afterInstantiate(function(User $user): void {

 $user->setPassword($this->passwordHasher->hashPassword(

 $user,

 $user->getPassword()

));

 })

 ;

 }

 protected static function getClass(): string

 {

 return User::class;

 }

}

use App\Factory\UserFactory;

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 DragonTreasureFactory::createMany(40);

 UserFactory::createMany(10);

 }

}

Status check: we have a User entity and we created a migration for it. Heck, we even loaded

some schweet data fixtures! But it is not, yet, part of our API. If you refresh the documentation,

there's still only Treasure .

Let's make this part of our API next.

Chapter 18: User API Resource

We have a User entity... but it is not yet part of our API. How do we make it part of the API? Ah,

we already know! Go above the class and add the ApiResource attribute.

src/Entity/User.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

15

 // ... lines 16 - 116

117

Refresh the docs. Look at that! Six fresh new endpoints for the User class! And thanks to our

fixtures, we should be able to see data immediately. Let's try the collection endpoint. Execute

and... it's alive.

Though... it is a little weird that fields like roles and password show up. Ah, we'll worry about

that in a minute.

API Platform & UUIDs

Before we keep rolling forward, I want to mention one quick thing about UUIDs. As you can see,

we're using auto-increment IDs for of our API - it's always /api/users/ then the entity id. But

you can totally use a UUID instead. And that's something we'll do in a future tutorial.

But... why would you use UUIDs? Well, sometimes it can make life easier in JavaScript when

working with frontend frameworks. You can actually generate the UUID in JavaScript and then

send that to your API when creating a new resource. This can help because your JavaScript

knows the ID of the resource immediately and can update the state... instead of waiting for the

Ajax request to finish to get the new auto-increment id.

Anyways, my point is: API Platform does support UUIDs . You could add a new UUID column,

then tell API Platform that it should be your identifier. Oh, but keep in mind that some database

use ApiPlatform\Metadata\ApiResource;

#[ApiResource]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

engines - like MySQL - can have poor performance if you make the UUID the primary key. In

that case, just keep id as the primary key, and add an extra UUID column.

Adding the Serialization Groups

Anyways, back to our User resource! Right now, it's returning way too many fields. Fortunately,

we know how to fix that. Up on ApiResource , add a normalizationContext key with

groups set to user:read to follow the same pattern that we used in DragonTreasure .

Also add denormalizationContext set to user:write .

src/Entity/User.php

 // ... lines 1 - 13

14

15

16

17

18

19

 // ... lines 20 - 123

124

Now we can just decorate the fields that we want in the API. We don't need id ... since we

always have @id , which is more useful. But we do want email . So add the #Groups()

attribute, hit tab to add that use statement and pass both user:read and user:write .

src/Entity/User.php

 // ... lines 1 - 9

10

 // ... lines 11 - 13

14

15

16

17

18

19

 // ... lines 20 - 25

26

27

 // ... lines 28 - 123

124

#[ApiResource(

 normalizationContext: ['groups' => ['user:read']],

 denormalizationContext: ['groups' => ['user:write']],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

use Symfony\Component\Serializer\Annotation\Groups;

#[ApiResource(

 normalizationContext: ['groups' => ['user:read']],

 denormalizationContext: ['groups' => ['user:write']],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write'])]

 private ?string $email = null;

}

Copy that... and go down to password . We do need the password to be writeable but not

readable. So add user:write .

src/Entity/User.php

 // ... lines 1 - 9

10

 // ... lines 11 - 13

14

15

16

17

18

19

 // ... lines 20 - 25

26

27

 // ... lines 28 - 35

36

37

 // ... lines 38 - 123

124

Now this still isn't quite correct. The password field should hold the hashed password. But our

users will, of course, send the plaintext passwords via the API when creating a user or updating

their password. Then we will hash it. That's something we're going to solve in a future tutorial

when we talk more about security. But this will be good enough for now.

Oh, and above username , also add user:read and user:write .

use Symfony\Component\Serializer\Annotation\Groups;

#[ApiResource(

 normalizationContext: ['groups' => ['user:read']],

 denormalizationContext: ['groups' => ['user:write']],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write'])]

 private ?string $email = null;

 #[Groups(['user:write'])]

 private ?string $password = null;

}

src/Entity/User.php

 // ... lines 1 - 9

10

 // ... lines 11 - 13

14

15

16

17

18

19

 // ... lines 20 - 25

26

27

 // ... lines 28 - 35

36

37

 // ... lines 38 - 39

40

41

 // ... lines 42 - 123

124

Cool! Refresh the docs... and open up the collections endpoint to give it a go. The result...

exactly what we wanted! Only email and username come back.

And if we were to create a new user... yup! The writable fields are email , username , and

password .

Adding Validation

Ok, what else are we missing? How about validation? If we try the POST endpoint with empty

data... we get that nasty 500 error. Fixing time!

Back over in the file, start above the class to make sure that both email and username are

unique . Add UniqueEntity passing fields set to email ... and we can even include a

message. Repeat that same thing... but change email to username .

use Symfony\Component\Serializer\Annotation\Groups;

#[ApiResource(

 normalizationContext: ['groups' => ['user:read']],

 denormalizationContext: ['groups' => ['user:write']],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write'])]

 private ?string $email = null;

 #[Groups(['user:write'])]

 private ?string $password = null;

 #[Groups(['user:read', 'user:write'])]

 private ?string $username = null;

}

src/Entity/User.php

 // ... lines 1 - 10

11

 // ... lines 12 - 18

19

20

21

22

 // ... lines 23 - 129

130

Next, down in email , add NotBlank ... then I'll add the Assert in front... and tweak the use

statement so it works just like last time.

src/Entity/User.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 18

19

20

21

22

 // ... lines 23 - 29

30

 // ... line 31

32

 // ... lines 33 - 129

130

Nice. email needs one more - Assert\Email - and above username , add NotBlank .

use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

#[UniqueEntity(fields: ['email'], message: 'There is already an account

with this email')]

#[UniqueEntity(fields: ['username'], message: 'It looks like another

dragon took your username. ROAR!')]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

use Symfony\Component\Validator\Constraints as Assert;

#[UniqueEntity(fields: ['email'], message: 'There is already an account

with this email')]

#[UniqueEntity(fields: ['username'], message: 'It looks like another

dragon took your username. ROAR!')]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Assert\NotBlank]

 private ?string $email = null;

}

src/Entity/User.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 18

19

20

21

22

 // ... lines 23 - 29

30

31

32

 // ... lines 33 - 45

46

47

 // ... lines 48 - 129

130

I'm not too worried about password right now... because it's already a bit weird.

Let's try this! Scroll up and just send a password field. And... yes! The nice 422 status code

with validation errors. Try valid data now: pass an email and username ... though I'm not sure

this guy's actually a dragon... we might need a captcha.

Hit Execute. That's it! 201 status code with email and username returned!

Our resource has validation, pagination and contains great information! And we could even

easily add filtering. In other words, we're crushing it!

And now we get to the really interesting part. We need to "relate" our two resources so that

each treasure is owned by a user. What does that look like in API Platform? It's super

interesting, and it's next.

use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

use Symfony\Component\Validator\Constraints as Assert;

#[UniqueEntity(fields: ['email'], message: 'There is already an account

with this email')]

#[UniqueEntity(fields: ['username'], message: 'It looks like another

dragon took your username. ROAR!')]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Assert\NotBlank]

 #[Assert\Email]

 private ?string $email = null;

 #[Assert\NotBlank]

 private ?string $username = null;

}

Chapter 19: Relating Resources

In our app, each DragonTreasure should be owned by a single dragon... or User in our

system. To set this up, forget about the API for a moment and let's just model this in the

database.

Adding the ManyToOne Relation

Spin over to your terminal and run:

php bin/console make:entity

Let's modify the DragonTreasure entity to add an owner property... and then this will be a

ManyToOne relation. If you're not sure which relation you need, you can always type

relation and get a nice little wizard.

This will be a relation to User ... and then it asks if the new owner property is allowed to be

null in the database. Every DragonTreasure must have an owner... so say "no". Next: do we

we want to map the other side of the relationship? So basically, do we want the ability to say,

$user->getDragonTreasures() in our code? I'm going to say yes to this. And you might

answer "yes" for two reasons. Either because being able to say

$user->getDragonTreasures() would be useful in your code or, as we'll see a bit later,

because you want to be able to fetch a User in your API and instantly see what treasures it

has.

Anyways, the property - dragonTreasures inside of User is fine.... and finally, for

orphanRemoval , say no. We'll also talk about that later.

And... done! Hit enter to exit.

So this had nothing to do with API Platform. Our DragonTreasure entity now has a new

owner property with getOwner() and setOwner() methods.

src/Entity/DragonTreasure.php

 // ... lines 1 - 51

52

53

 // ... lines 54 - 93

94

95

96

 // ... lines 97 - 197

198

199

200

201

202

203

204

205

206

207

208

209

And over in User we have a new dragonTreasures property, which is a OneToMany back

to DragonTreasure . At the bottom, it generated getDragonTreasures() ,

addDragonTreasure() , and removeDragonTreasure() . Very standard stuff.

class DragonTreasure

{

 #[ORM\ManyToOne(inversedBy: 'dragonTreasures')]

 #[ORM\JoinColumn(nullable: false)]

 private ?User $owner = null;

 public function getOwner(): ?User

 {

 return $this->owner;

 }

 public function setOwner(?User $owner): self

 {

 $this->owner = $owner;

 return $this;

 }

}

src/Entity/User.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 22

23

24

 // ... lines 25 - 50

51

52

53

54

55

56

57

 // ... lines 58 - 140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

use Doctrine\Common\Collections\ArrayCollection;

use Doctrine\Common\Collections\Collection;

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\OneToMany(mappedBy: 'owner', targetEntity:

DragonTreasure::class)]

 private Collection $dragonTreasures;

 public function __construct()

 {

 $this->dragonTreasures = new ArrayCollection();

 }

 /**

 * @return Collection<int, DragonTreasure>

 */

 public function getDragonTreasures(): Collection

 {

 return $this->dragonTreasures;

 }

 public function addDragonTreasure(DragonTreasure $treasure): self

 {

 if (!$this->dragonTreasures->contains($treasure)) {

 $this->dragonTreasures->add($treasure);

 $treasure->setOwner($this);

 }

 return $this;

 }

 public function removeDragonTreasure(DragonTreasure $treasure): self

 {

 if ($this->dragonTreasures->removeElement($treasure)) {

 // set the owning side to null (unless already changed)

 if ($treasure->getOwner() === $this) {

 $treasure->setOwner(null);

 }

 }

 return $this;

 }

}

Let's create a migration for this:

symfony console make:migration

We'll do our standard double-check to make sure the migration isn't trying to mine bitcoin. Yep,

all boring SQL queries here.

migrations/Version20230104200643.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

 // ... lines 27 - 35

36

Run it with:

symfony console doctrine:migrations:migrate

Resetting the Database

And it explodes in our face. Rude! But... it shouldn't be too surprising. We already have about

40 DragonTreasure records in our database. So when the migration tries to add the

owner_id column to the table - which does not allow null - our database is stumped: it has no

idea what value to put for those existing treasures.

final class Version20230104200643 extends AbstractMigration

{

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE dragon_treasure ADD owner_id INT NOT

NULL');

 $this->addSql('ALTER TABLE dragon_treasure ADD CONSTRAINT

FK_9E31BF5F7E3C61F9 FOREIGN KEY (owner_id) REFERENCES "user" (id) NOT

DEFERRABLE INITIALLY IMMEDIATE');

 $this->addSql('CREATE INDEX IDX_9E31BF5F7E3C61F9 ON

dragon_treasure (owner_id)');

 }

}

If our app were already on production, we'd have to do a bit more work to fix this. We talk about

that in our Doctrine tutorial. But since this isn't on production, we can cheat and just to turn the

database off and on again. To do that run:

symfony console doctrine:database:drop --force

Then:

symfony console doctrine:database:create

And the migration, which should work now that our database is empty.

symfony console doctrine:migrations:migrate

Setting up the Fixtures

Finally, re-add some data with:

symfony console doctrine:fixtures:load

And oh, this fails for the same reason! It's trying to create Dragon Treasures without an owner.

To fix that, there are two options. In DragonTreasureFactory , add a new owner field to

getDefaults() set to UserFactory::new() .

src/Factory/DragonTreasureFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 46

47

48

49

 // ... lines 50 - 55

56

57

58

 // ... lines 59 - 73

74

I'm not going to go into the specifics of Foundry - and Foundry has great docs on how to work

with relationships - but this will create a new User each time it creates a new

DragonTreasure ... and then will relate them. So that's nice to have as a default.

But in AppFixtures , let's override that to do something cooler. Move the

DragonTreasureFactory call after UserFactory ... then pass a second argument, which is

a way to override the defaults. By passing a callback, each time a DragonTreasure is

created - so 40 times - it will call this method and we can return unique data to use for

overriding the defaults for that treasure. Return owner set to UserFactory::random() :

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

That'll find a random User object and set it as the owner . So we'll have 40

DragonTreasures each randomly hoarded by one of these 10 Users.

Let's try it! Run:

final class DragonTreasureFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'owner' => UserFactory::new(),

];

 }

}

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 UserFactory::createMany(10);

 DragonTreasureFactory::createMany(40, function () {

 return [

 'owner' => UserFactory::random(),

];

 });

 }

}

symfony console doctrine:fixtures:load

This time... success!

Exposing the "owner" in the API

Ok, so now DragonTreasure has a new owner relation property... and User has a new

dragonTreasures relation property.

Will... that new owner property show up in the API? Try the GET collection endpoint for

treasure. And... the new field does not show up! That makes sense! The owner property is not

inside the normalization group.

So if we want to expose the owner property in the API, just like any other field, we need to add

groups to it. Copy the groups from coolFactor ... and paste them here.

src/Entity/DragonTreasure.php

 // ... lines 1 - 51

52

53

 // ... lines 54 - 95

96

97

 // ... lines 98 - 209

210

This makes the property readable and writable. And yes, later, we'll learn how to set the owner

property automatically so that the API user doesn't need to send that manually. But for now,

having the API client send the owner field will work great.

Anyways, what does this new owner property look like? Hit "Execute" and... woh! The owner

property is set to a URL! Well, really, the IRI of the User .

I love this. When I first started working with API Platform, I thought relationship properties might

just use the object's id. Like owner: 1 . But this is way more useful... because it tells our API

client exactly how they could get more information about this user: just follow the URL!

class DragonTreasure

{

 #[Groups(['treasure:read', 'treasure:write'])]

 private ?User $owner = null;

}

Writing a Relation Property

So, by default, a relation is returned as a URL. But what does it look like to set a relation field?

Refresh the page, open the POST endpoint, try it, and I'll paste in all of the fields except for

owner . What do we use for owner? I don't know! Let's try setting it to an id, like 1 .

Moment of truth. Hit execute. Let's see... a 400 status code! And check out the error:

“Expected IRI or nested document for attribute owner , integer given.”

So I passed the ID of the owner and... it doesn't like that. What should we put here? Well, the

IRI of course! Let's find out more about that next.

Chapter 20: Relations & Iris

When we tried to create a DragonTreasure with this owner , we set the field to the owner's

database id. And we found out that API Platform did not like that. It said: "expected IRI". But

what is an IRI?

We mentioned this term once earlier in the tutorial. Go back down to the GET /api/users

collection endpoint. We know that every resource has an @id field set to the URL where you

can fetch that resource. This is the IRI or "International Resource Identifier". It's meant to be a

unique identifier across your entire API - like across all resources.

Think about it: the number "1" is not a unique identifier - we might have a DragonTreasure

with that id and a User . But the IRI is unique. And, a URL is also just a heck of a lot more

handy than an integer anyways.

So when we want to set a relation property, we need to also use the IRI, like /api/users/1 .

When we hit Execute, it works! A 201 status code. In the returned JSON, no surprise, the

owner field also comes back as an IRI.

The takeaway from all of this is delightfully simple. Relations are just normal fields... but we get

and set them via their IRI string. This is such a beautiful and clean way to handle this.

Adding a Collection dragonTreasures Relation Field

Ok, let's talk about the other side of this relationship. Refresh the whole page and go to the GET

one user endpoint. Try this with a real user id - like 1 for me. And... there's the data.

So the question I have now is: could we add a dragonTreasures field that shows all the

treasures that this user owns?

Well, let's think about it. We know that the serializer works by grabbing all accessible properties

on an object that are in the normalization group. And... we do have a dragonTreasures

property on User .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 50

51

52

 // ... lines 53 - 169

170

So... it should just work! To expose the field to the API, add it to the serialization group

user:read . Later, we'll talk about how we can write to a collection field... but for now, just

make it readable.

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 50

51

52

53

 // ... lines 54 - 170

171

Ok! Refresh... and look at the same GET endpoint. Down here, cool! It shows a new

dragonTreasures field in the example response. Let's try it: use the same id, hit "Execute"

and... oh, gorgeous: it returns an array of IRI strings! I love that! And, of course, if we need more

information about these, we can make a request to any of these URLs to get all the shiny

details.

And to get really fancy, you could use Vulcain so that users can "preload" those relations...

meaning the server will push the data directly to the client.

But as cool as this is, it does lead me to a question: what if needing the DragonTreasure

data for a user is so common that, to avoid extra requests, we want to embed the data right

here - like JSON objects instead of IRI strings?

Can we do that? Absolutely. Let's find out how next.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\OneToMany(mappedBy: 'owner', targetEntity:

DragonTreasure::class)]

 private Collection $dragonTreasures;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\OneToMany(mappedBy: 'owner', targetEntity:

DragonTreasure::class)]

 #[Groups(['user:read'])]

 private Collection $dragonTreasures;

}

Chapter 21: Embedded Relations

So when two resources are related in our API, they show up as an IRI string, or collection of

strings. But you might wonder:

“Hey, could we include the DragonTreasure data right here instead of the IRI so that I

don't need to make a second, third or fourth request to get that data?”

Absolutely! And, again, you can also do something really cool with Vulcain... but let's learn how

to embed data.

Embedding Vs IRI via Normalization Groups

When the User object is being serialized, it uses the normalization groups to determine which

fields to include. In this case, we have one group called user:read . That's why email ,

username and dragonTreasures are all returned.

src/Entity/User.php

 // ... lines 1 - 16

17

18

 // ... line 19

20

 // ... lines 21 - 22

23

24

 // ... lines 25 - 30

31

 // ... lines 32 - 33

34

 // ... lines 35 - 46

47

 // ... line 48

49

 // ... lines 50 - 51

52

53

 // ... lines 54 - 170

171

To transform the dragonTreasures property into embedded data, we need to go into

DragonTreasure and add this same user:read group to at least one field. Watch: above

name , add user:read . Then... go down and also add this for value .

src/Entity/DragonTreasure.php

 // ... lines 1 - 51

52

53

 // ... lines 54 - 59

60

 // ... lines 61 - 63

64

 // ... lines 65 - 75

76

 // ... lines 77 - 78

79

 // ... lines 80 - 209

210

Yup, as soon as we have even one property inside of DragonTreasure that's in the

user:read normalization group, the way the dragonTreasures field looks will totally

change.

#[ApiResource(

 normalizationContext: ['groups' => ['user:read']],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write'])]

 private ?string $email = null;

 #[Groups(['user:read', 'user:write'])]

 private ?string $username = null;

 #[Groups(['user:read'])]

 private Collection $dragonTreasures;

}

class DragonTreasure

{

 #[Groups(['treasure:read', 'treasure:write', 'user:read'])]

 private ?string $name = null;

 #[Groups(['treasure:read', 'treasure:write', 'user:read'])]

 private ?int $value = 0;

}

Watch: when we execute that... awesome! Instead of an array of IRI strings, it's an array of

objects, with name and value ... and of course the normal @id and @type fields.

So: when you have a relation field, it will either be represented as an IRI string or an object...

and this depends entirely on your normalization groups.

Embedding the Other Direction

Let's try this same thing in the other direction. We have a treasure whose id is 2. Head up to

the GET a single treasure endpoint... try it... and enter 2 for the id.

No surprise, we see owner as an IRI string. Could we turn that into an embedded object

instead? Of course! We know that DragonTreasure uses the treasure:read

normalization group. So, go into User and add that to the username property:

treasure:read .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 46

47

 // ... line 48

49

 // ... lines 50 - 170

171

With just that change... when we try it... yes! The owner field just got transformed into an

embedded object!

Embedded for One Endpoint, IRI for Another

Ok, let's also fetch a collection of treasures : just request all of them. Thanks to the change

we just made, every single treasure's owner property is now an object.

That gives me a wild, hare-brained idea. What if having all the owner information when I fetch

a single DragonTreasure is cool... but maybe it feels like overkill to have that data returned

from the collection endpoint. Could we embed the owner when fetching a single treasure ...

but then use the IRI string when fetching a collection?

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write', 'treasure:read'])]

 private ?string $username = null;

}

The answer is... no! I'm kidding - of course! We can do whatever crazy things we want! Though,

the more weird things you add to your API, the trickier life gets. So choose your adventures

wisely!

Doing this is a two-step process. First in DragonTreasure , find the Get operation, which is

the operation for fetching a single treasure. One of the options that you can pass into an

operation is the normalizationContext ... which will override the default. Add

normalizationContext , then groups set to the standard treasure:read . Then add a

second group that's specific to this operation: treasure:item:get .

src/Entity/DragonTreasure.php

 // ... lines 1 - 25

26

 // ... lines 27 - 28

29

30

31

32

33

34

 // ... lines 35 - 38

39

 // ... lines 40 - 53

54

 // ... line 55

56

57

 // ... lines 58 - 213

214

You can call this whatever you want... but I like this convention: resource name followed by

item or collection then the HTTP method, like get or post .

And yes, I did forget the groups key: I'll fix that in a minute.

Anyways, if I had coded this correctly, it would mean that when this operation is used, the

serializer will include all fields that are in at least one of these two groups.

Now we can leverage that. Copy the new group name. Then, over in User , above username ,

instead of treasure:read , paste that new group.

#[ApiResource(

 operations: [

 new Get(

 normalizationContext: [

 'groups' => ['treasure:read', 'treasure:item:get'],

],

),

],

)]

class DragonTreasure

{

}

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 46

47

 // ... line 48

49

 // ... lines 50 - 170

171

Let's check it out! Try the GET collection endpoint again. Yes! We're back to owner being an

IRI string. And if we try the GET one endpoint.. oh, the owner is... also an IRI here too? That's

my bad. Back on normalization_context I forgot to say groups . I was basically setting

two meaningless options into normalization_context .

Let's try that again. This time... got it!

When you get fancy like this, it does get a bit harder to keep track of what serialization groups

are being used and when. Though you can use the Profiler to help with that. For example, this is

our most recent request for the single treasure.

If we open the profiler for that request... and go down to the Serializer section, we see the data

that's being serialized... but more importantly the normalization context... including groups set

to the two we expect.

This is also cool because you can see other context options that are set by API Platform. These

control certain internal behavior.

Next: let's get crazy with our relationships by using a DragonTreasure endpoint to change

the username field of that treasure's owner. Woh.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write', 'treasure:item:get'])]

 private ?string $username = null;

}

Chapter 22: Embedded Write

I'm going to try out the GET one treasure endpoint... using a real id. Perfect. Because of the

changes we just made, the owner field is embedded.

What about changing the owner? Piece of crumb cake: as long as the field is writable... which

ours is. Right now the owner is id 1. Use the PUT endpoint to update id 2. For the payload, set

owner to /api/users/3 .

And... execute! Bah! Syntax error. JSON is crabby. Remove the comma, try again and... yes!

The owner comes back as the IRI /api/users/3 .

Sending Embedded Data to Update

But now I want to do something wild! This treasure is owned by user 3. Let's go get their details.

Open the GET one user endpoint, try it out, enter 3 and... there it is! The username is

burnout400 .

Here's the goal: while updating a DragonTreasure - so while using the PUT endpoint to

/api/treasures/{id} - instead of changing from one owner to another, I want to change

the existing owner's username . Something like this: instead of setting owner to the IRI string,

set it to an object with username assigned to something new.

Would that work? Let's experiment! Hit Execute and it does not. It says:

“Nested documents for attribute owner are not allowed, use IRI instead.”

Allowing Writable Properties to be Embedded

So, at first glance, it looks like this isn't allowed: it looks like you can only use an IRI string here.

But actually, this is allowed. The problem is that the username field is not writable via this

operation.

Let's think about this. We're updating a DragonTreasure . This means that API Platform is

using the treasure:write serialization group. That group is above the owner property,

which is why we can change the owner .

src/Entity/DragonTreasure.php

 // ... lines 1 - 25

26

 // ... lines 27 - 49

50

51

52

 // ... line 53

54

 // ... line 55

56

57

 // ... lines 58 - 99

100

101

 // ... lines 102 - 213

214

But if we want to be able to change the owner's username , then we also need to go into User

and add that group here.

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 46

47

 // ... line 48

49

 // ... lines 50 - 170

171

This works exactly like embedded fields when we read them. Basically, since at least one field

in User has the treasure:write group, we are now allowed to send an object to the

owner field.

New vs Existing Objects in Embedded Data

#[ApiResource(

 denormalizationContext: [

 'groups' => ['treasure:write'],

],

)]

class DragonTreasure

{

 #[Groups(['treasure:read', 'treasure:write'])]

 private ?User $owner = null;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write', 'treasure:item:get',

'treasure:write'])]

 private ?string $username = null;

}

Watch: fire it up again. It works... almost. We get a 500 error:

“A new entity was found through the relationship DragonTreasure.owner , but was not

configured to cascade persist.”

Woh. This means that the serializer saw our data, created a new User object and then set the

username onto it. Doctrine failed because we never told it to persist the new User object.

Though... that's not the point: the point is that we don't want a new User ! We want to grab the

existing owner and update its username .

By the way, to make this example more realistic, let's also add a name to the payload so we

can pretend that we're actually updating the treasure... and decide to also update the

username of the owner while we're in the neighborhood.

Anyways: how do we tell the serializer to use the existing owner instead of creating a new one?

By adding an @id field set to the IRI of the user: /api/users/3 .

That's it! When the serializer sees an object, if it does not have an @id , it creates a new object.

If it does have an @id , it finds that object and then sets any data onto it.

So, moment of truth. When we try it... of course, another syntax error. Get it together Ryan! After

fixing that... perfect! A 200 status code! Though... we can't really see if it updated the

username here... since it just shows the owner.

Use the GET one User endpoint... find user 3... and check that sweet data! It did change the

username .

Ok, so I realize that this example may not have been the most realistic, but being able to update

related objects does have plenty of real use-cases.

Cascading the Persist to Create a new Object

Looking back at that PUT request, what if we did want to allow a new User object to be

created and saved? Is that possible? It is!

First, we would need to add a cascade: ['persist'] to the treasure.owner

ORM\Column attribute. This is something we'll see later. And second, we would need to make

sure to expose all of the required fields as writable. Right now only username is writable... so

we couldn't send password or email .

The Valid Constraint

Before we keep going, we are missing one small, but important, detail. Let's try this update one

more time with the @id . But set username to an empty string.

Remember, the username field has a NotBlank above it, so this should fail validation. And

yet, when we try it, we get a 200 status code! And if we go to the GET one user endpoint...

yeah, the username is now empty! That's... a problem.

How did that happen? Because of how Symfony's validation system works.

The top-level entity - the object that we're modifying directly - is DragonTreasure . So the

validation system looks at DragonTreasure and it executes all of the validation constraints.

However, when it gets to an object like the owner property, it stops. It does not continue to

validate that object as well.

If you want that to happen, you need to add a constraint to this called Assert\Valid .

src/Entity/DragonTreasure.php

 // ... lines 1 - 55

56

57

 // ... lines 58 - 100

101

102

 // ... lines 103 - 214

215

Now... on our PUT endpoint... if we try this again, yep! 422: owner.username , this value

should not be blank.

Being able to update an embedded object is really neat & powerful. But the cost of this is

making your API more and more complex. So while you can choose to do this - and you should

if it's what you want - you might also choose to force the API client to update the treasure first...

and then make a second request to update the user's username... instead of allowing them to

do it all fancy at the same time.

class DragonTreasure

{

 #[Assert\Valid]

 private ?User $owner = null;

}

Next: let's look at this relationship from the other side. When we're updating a User , could we

also update the treasures that belong to that user? Let's find out!

Chapter 23: Adding Items to a Collection Property

Let's fetch a single user in our API: I know one exists with ID 2. And cool!

As we learned earlier, exposing a collection relation property is just like any other field: simply

make sure that it's in the correct serialization group. And then you can go further with

serialization groups to choose between making it return as an array of IRI strings or as an array

of embedded objects, like we have now.

New question: could we also modify the dragonTreasures that a user owns from one of the

user operations? The answer is, of course, yea! And we're going to do this in increasingly crazy

ways.

Making the Collection Field Writable

Look at the POST endpoint. We don't see a dragonTreasures field right now because... the

field simply isn't writable: it's not in the correct group. To remedy that, we know what to do: add

user:write .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 51

52

53

 // ... lines 54 - 170

171

Easy peasy! When we refresh the docs, and check that endpoint... there we go:

dragonTreasures . And it says that this field should be an array of strings: an array of IRI

strings.

Let's try crafting a new user. Fill in the email and username . Then, let's assign the new user

to a few existing treasures. Let's sneak up to the GET collection endpoint for treasures... and

awesome. We have ids 2, 3 and 4.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write'])]

 private Collection $dragonTreasures;

}

Back down here, assign owner to an array with /api/treasures/2 , /api/treasures/3

and /api/treasures/4 .

Makes sense, right? If the API can return dragonTreasures as an array of IRI strings, why

can't we send an array of IRI strings? When we hit Execute... indeed! It worked perfectly!

And since each treasure can have only one owner... it means that we kinda stole those

treasures from someone else! Sorry!

The adder & remover Methods for Collections

But... wait a second, how did that work? We know that when we send fields like email ,

password , and username , because those are private properties, the serializer calls the setter

methods. When we pass username , it calls setUsername() .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 134

135

136

137

138

139

140

 // ... lines 141 - 170

171

So when we pass dragonTreasures , it must call setDragonTreasures , right?

Well guess what? We don't have a setDragonTreasures() method! But we do have an

addDragonTreasure() method and a removeDragonTreasure() method.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function setUsername(string $username): self

 {

 $this->username = $username;

 return $this;

 }

}

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

The serializer is really smart. It sees that the new User object has no dragonTreasures . So

it recognizes that each of these three objects are new to this user and so it calls

addDragonTreasure() once for each.

And the way that MakerBundle generated these methods is critical. It takes the new

DragonTreasure and sets the owner to be this object. That's important because of how

Doctrine handles relationships: setting the owner sets what's called the "owning" side of the

relationship. Basically, without this, Doctrine wouldn't save this change to the database.

The takeaway is that, thanks to addDragonTreasure() and its magical powers, the owner

of the DragonTreasure is changed from its old owner to the new User , and everything

saves exactly like we want.

Next, let's get more complex by allowing treasures to be created when we're creating a new

User . We're also going to allow treasures to be removed from a User ... for the unlikely event

that the dwarves take back the mountain. As if.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function addDragonTreasure(DragonTreasure $treasure): self

 {

 if (!$this->dragonTreasures->contains($treasure)) {

 $this->dragonTreasures->add($treasure);

 $treasure->setOwner($this);

 }

 return $this;

 }

 public function removeDragonTreasure(DragonTreasure $treasure): self

 {

 if ($this->dragonTreasures->removeElement($treasure)) {

 // set the owning side to null (unless already changed)

 if ($treasure->getOwner() === $this) {

 $treasure->setOwner(null);

 }

 }

 return $this;

 }

}

Chapter 24: Creating Embedded Objects

Is it possible to create a totally new DragonTreasure when we create a user? Like... instead

of sending the IRI of an existing treasure, we send an object?

Let's try it! First, I'll change this to a unique email and username. Then, for

dragonTreasures , clear those IRIs and, instead, pass a JSON object with the fields that we

know are required. Our new dragon user just scored a copy of GoldenEye for N64! Legendary.

Add a description ... and a value .

In theory, this JSON body makes sense! But does it work? Hit "Execute" and... nope! Well, not

yet. But we know this error!

“Nested documents for attribute dragonTreasures are not allowed. Use IRIs instead.”

Making dragonTreasures Accept JSON Objects

Inside User , if we scroll way up, the $dragonTreasures property is writable because it has

user:write .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 51

52

53

 // ... lines 54 - 170

171

But we can't send an object for this property because we haven't added user:write to any of

the fields inside of DragonTreasure . Let's fix that.

We want to be able to send $name , so add user:write ... I'll skip $description but do the

same for $value . Now search for setTextDescription() which is the actual description.

Add user:write here too.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Groups(['user:read', 'user:write'])]

 private Collection $dragonTreasures;

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 55

56

57

 // ... lines 58 - 63

64

 // ... lines 65 - 67

68

 // ... lines 69 - 79

80

 // ... lines 81 - 82

83

 // ... lines 84 - 138

139

140

141

 // ... lines 142 - 144

145

 // ... lines 146 - 214

215

Okay, in theory, we should now be able to send an embedded object. If we head over and try it

again... we upgraded to a 500 error!

“A new entity was found through the relationship User#dragonTreasures ”

Cascading an Entity Relation Persist

This is great! We already know that when you send an embedded object, if you include @id ,

the serializer will fetch that object first and then update it. But if you don't have an @id , it will

create a brand new object. Right now, it is creating a new object,... but nothing told the entity

manager to persist it. That's why we're getting this error.

To solve this, we need to cascade persist this property. In User , on the OneToMany for

$dragonTreasures , add a cascade option set to ['persist'] .

class DragonTreasure

{

 #[Groups(['treasure:read', 'treasure:write', 'user:read',

'user:write'])]

 private ?string $name = null;

 #[Groups(['treasure:read', 'treasure:write', 'user:read',

'user:write'])]

 private ?int $value = 0;

 #[Groups(['treasure:write', 'user:write'])]

 public function setTextDescription(string $description): self

 {

 }

}

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 50

51

 // ... line 52

53

 // ... lines 54 - 170

171

This means that if we're saving a User object, it should magically persist any

$dragonTreasures inside. And if we try it now... it works! That's awesome! And apparently,

our new treasure id is 43 .

Let's open up a new browser tab and navigate to that URL... plus .json ... actually, let's do

.jsonld . Beautiful! We see that the owner is set to the new user that we just created.

How was owner Set? Again: The Smart Methods

But... hold your horses! We didn't send the owner field in the treasure data... so how did that

field get set? Well, first, it does make sense that we didn't send an owner field for the new

DragonTreasure ... since the user that will own it didn't even exist yet! Ok, then, but who did

set the owner?

Behind the scenes, the serializer creates a new User object first. Then, it creates a new

DragonTreasure object. Finally, it sees that the new DragonTreasure is not assigned to

the User yet, and it calls addDragonTreasure() . When it does that, the code down here

sets the owner : just like we saw before. So our well-written code is taking care of all of those

details for us.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\OneToMany(mappedBy: 'owner', targetEntity:

DragonTreasure::class, cascade: ['persist'])]

 private Collection $dragonTreasures;

}

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 149

150

151

152

153

154

155

156

157

158

 // ... lines 159 - 170

171

Adding the Valid Constraint

Anyways, you might remember from before that as soon as we allow a relation field to send

embedded data... we need to add one tiny thing. I won't do it, but if we sent an empty name

field, it would create a DragonTreasure ... with an empty name , even though, over here, if we

scroll up to the name property, it's required! Remember: when the system validates the User

object, it will stop at $dragonTreasures . It won't also validate those objects. If you do want to

validate them, add #[Assert\Valid] .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 52

53

54

 // ... lines 55 - 171

172

Now that I have this, to prove that it's working, hit "Execute" and... awesome! We get a 422

status code telling us that name shouldn't be empty. I'll go put that back.

Sending Embedded Objects and IRI Strings at the Same Time

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function addDragonTreasure(DragonTreasure $treasure): self

 {

 if (!$this->dragonTreasures->contains($treasure)) {

 $this->dragonTreasures->add($treasure);

 $treasure->setOwner($this);

 }

 return $this;

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[Assert\Valid]

 private Collection $dragonTreasures;

}

We now know that we can send IRI strings or embedded objects for a relation property -

assuming we've setup the serialization groups to allow that. And, we can even mix them.

Let's say that we want to create a new DragonTreasure object, but we're also going to steal,

borrow, a treasure from another dragon. This is totally allowed. Watch! When we hit "Execute"...

we get a 201 status code. This returns treasure ids 44 (that's the new one) and 7 , which is the

one we just stole.

Okay, we only have one more chapter about handling relationships. Let's see how we can

remove a treasure from a user to delete that treasure. That's next.

Chapter 25: Removing Items from a Collection

Our brand-new user is the proud owner of two treasures with IDs 7 and 44 . Let's update this

user to see if we can make some changes to $dragonTreasures . Use the PUT endpoint,

click "Try it out", and... let's see... the id we need is 14 ... so I'll enter that. I'll also remove

every field except for dragonTreasures so we can focus.

We know that this currently has two dazzling treasures - /api/treasures/7 and

/api/treasures/44 . So if we send this request, in theory, that should do... nothing! And if

we look down here... yeah: it made no changes at all.

Suppose we want to add a new DragonTreasure to this resource. To do that, we list the two

that it already has, along with /api/treasures/8 . I'm totally guessing that's a valid id .

When we hit "Execute"... that works beautifully. The serializer system noticed that it already had

these first two, so it didn't do anything with those. It just added the new one with id 8 .

Removing an Item from a Collection

That's cool, but what I really want to talk about is removing a treasure. Let's say that our dragon

left one of these treasures in their pants pocket and accidentally washed it in the laundry. I can't

blame them. I lose my lip balm in there all the time. Since the treasure is soggy and useless

now, we need to remove it from the list of treasures. No problem! We'll just mention the two our

dragon still has and remove the other one. When we hit "Execute"... it explodes!

“An exception occurred while executing a query: [...] Not null violation: 7. null value in column

"owner_id"”

What happened? Well, our app set the $owner property for the DragonTreasure we just

removed to null ... and is now trying to save it. But since we have it set to

nullable: false , it's failing.

src/Entity/DragonTreasure.php

 // ... lines 1 - 55

56

57

 // ... lines 58 - 97

98

99

 // ... lines 100 - 101

102

 // ... lines 103 - 214

215

But... let's take a step back and look at the whole picture. First, the serializer noticed that

treasures 7 and 8 are already owned by the User ... so it did nothing with those. But then it

noticed that the treasure with id 44 - which was owned by this User - is missing!

Because of that, over on our User class, the serializer called removeDragonTreasure() .

What's really important is that it takes that DragonTreasure and set the owner to null to

break the relationship. Depending on your app, that might be exactly what you want. Maybe you

allow dragonTreasures to have no owner ... like... they're still undiscovered and waiting for

a dragon to find them. If that's the case, you'll just want to make sure that your relationship

allows null ... and everything will save just fine.

But in our case, if a DragonTreasure no longer has an owner , we want to delete it

completely. We can do that in User ... way up on the dragonTreasures property. After

cascade , add one more option here: orphanRemoval: true .

src/Entity/User.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 50

51

 // ... lines 52 - 53

54

 // ... lines 55 - 171

172

This tells Doctrine that if any of these dragonTreasures become "orphaned" - meaning they

no longer have any owner - they should be deleted.

Let's try it. When we hit "Execute" again... got it! It saves just fine.

class DragonTreasure

{

 #[ORM\ManyToOne(inversedBy: 'dragonTreasures')]

 #[ORM\JoinColumn(nullable: false)]

 private ?User $owner = null;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 #[ORM\OneToMany(mappedBy: 'owner', targetEntity:

DragonTreasure::class, cascade: ['persist'], orphanRemoval: true)]

 private Collection $dragonTreasures;

}

Next: Let's circle back to filters and see how we can use them to search across related

resources.

Chapter 26: Filtering on Relations

Earlier, we added a bunch of nice filters to DragonTreasure . Let's add a few more - starting

with User - so we can show off some filtering superpowers for relations.

Using PropertyFilter Across Relations

Start like normal: ApiFilter and let's first use PropertyFilter::class . Remember: this

is kind of a fake filter that allows our API client to select which fields they want. And this is all

pretty familiar so far.

src/Entity/User.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 22

23

 // ... lines 24 - 25

26

27

 // ... lines 28 - 174

175

When we head over, refresh, and go to the GET collection endpoint... we see a new

properties[] field. We could choose to return just username ... or username and

dragonTreasures .

When we hit "Execute"... perfect! We see the two fields... where dragonTreasures is an

array of objects, each containing the fields we chose to embedded.

Again, this is super duper normal. So let's try something more interesting. In fact, what we're

going to try isn't supported directly in the interactive docs.

So, copy this URL... paste and add .jsonld to the end.

use ApiPlatform\Metadata\ApiFilter;

use ApiPlatform\Serializer\Filter\PropertyFilter;

#[ApiFilter(PropertyFilter::class)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

Here's the goal: I want to return the username field and then only the name field of each

dragon treasure. The syntax is a bit ugly: it's [dragonTreasures] , followed by []=name .

And just like that... it only shows name ! So right out of the box, PropertyFilter allows us to

reach across relationships.

Searching Relation Fields

Let's do something else. Head back to DragonTreasure . It might be handy to filter by the

$owner : we could quickly get a list of all treasures for a specific user.

No sweat! Just add ApiFilter above the $owner property, passing in the trusty

SearchFilter::class followed by strategy: 'exact' .

src/Entity/DragonTreasure.php

 // ... lines 1 - 55

56

57

 // ... lines 58 - 101

102

103

 // ... lines 104 - 215

216

Back over on the docs, if we open up the GET collection endpoint for treasures and give it a

whirl... let's see... here we go - "owner". Enter something like /api/users/4 ... assuming

that's actually a real user in our database, and... yes! Here are the five treasures owned by that

user!

But I want to get crazier: I want to find all treasures that are owned by a user matching a

specific username. So instead of filtering on owner , we need to filter on owner.username .

How? Well, when we want to filter simply by owner , we can put the ApiFilter right above

that property. But since we want to filter on owner.username , we can't put that above a

property... because owner.username isn't a property. This is one of the cases where we need

to put the filter above the class. And... that also means we need to add a properties option

set to an array. Inside, say 'owner.username' and set that to the partial strategy.

class DragonTreasure

{

 #[ApiFilter(SearchFilter::class, strategy: 'exact')]

 private ?User $owner = null;

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 55

56

57

58

59

60

 // ... lines 61 - 218

219

Ok! Head back over and refresh. We know we have an owner whose username is "Smaug"... so

let's go back to the GET collection endpoint and... here in owner.username , search for

"maug"... and hit "Execute".

Let's see... That worked! This shows all treasures owned by any user whose username contains

maug . Pretty cool!

Ok squad: get ready for the grand finale - Subresources. These have seriously changed in API

Platform 3. Let's dive into them next.

#[ApiFilter(SearchFilter::class, properties: [

 'owner.username' => 'partial',

])]

class DragonTreasure

{

}

Chapter 27: Subresources

We have two different ways to get the dragon treasures for a user. First, we could fetch the

User and read its dragonTreasures property. The second is via the filter that we added a

moment ago. In the API, that looks like owner=/api/users/4 on the GET collection

operation for treasures.

This is my go-to way of getting the data... because if I want to fetch treasures, it make sense to

use a treasures endpoint. Besides, if a user owns a lot of treasures, that'll give us

pagination!

But you may sometimes choose to add a special way to fetch a resource or collection of

resources... almost like a vanity URL. For example, imagine that, to get this same collection, we

want the user to be able to go to /api/users/4/treasures.jsonld . That, of course,

doesn't work. But it can be done. This is called a subresource, and subresources are much

nicer in API platform 3.

Adding a Subresource via Another ApiResource

Okay, let's think. This endpoint will return treasures. So to add this subresource, we need to

update the DragonTreasure class.

How? By adding a second ApiResource attribute. We already have this main one, so now

add a new one. But this time, control the URL with a uriTemplate option set to exactly what

we want: /users/{user_id} for the wildcard part (we'll see how that's used in a moment)

then /treasures .

That's it! Well... also add .{_format} . This is optional, but that's the magic that lets us "cheat"

and add this .jsonld to the end of the URL.

src/Entity/DragonTreasure.php

 // ... lines 1 - 54

55

56

 // ... line 57

58

 // ... lines 59 - 62

63

64

 // ... lines 65 - 222

223

Next, add operations ... because we don't need all six... we really need just one. So, say

[new GetCollection()] because we will return a collection of treasures.

src/Entity/DragonTreasure.php

 // ... lines 1 - 54

55

56

57

58

 // ... lines 59 - 62

63

64

 // ... lines 65 - 222

223

Ok, let's see what this did! Head back to the documentation and refresh. Suddenly we have...

three resources and this one has the correct URL!

Oh, and we have three resources because, if you recall, we customized the shortName . Copy

that and paste it onto the new ApiResource so they match. And to make PhpStorm happy, I'll

put them in order.

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

)]

class DragonTreasure

{

}

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

 operations: [new GetCollection()],

)]

class DragonTreasure

{

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 54

55

56

57

58

59

 // ... lines 60 - 63

64

65

 // ... lines 66 - 223

224

Now when we refresh... perfect! That's what we want!

Understanding uriVariables

We now have a new operation for fetching treasures. But does it work? It says that it will

retrieve a collection of treasure resources, so that's good. But... we have a problem. It thinks

that we need to pass the id of a DragonTreasure ... but it should be the id of a User ! And

even if we pass something, like 4 ... and hit "Execute"... look at the URL! It didn't even use the

4 : it still has {user_id} in the URL! So of course it comes back with a 404 error.

The problem is that we need to help API Platform understand what {user_id} means. We

need to tell it that this is the id of the user and that it should use that to query

WHERE owner_id equals the value.

To do that, add a new option called uriVariables . This is where we describe any "wildcards"

in your URL. Pass user_id set to a new Link() object. There are multiple... we want the

one from ApiPlatform\Metadata .

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

 shortName: 'Treasure',

 operations: [new GetCollection()],

)]

class DragonTreasure

{

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

 // ... lines 13 - 55

56

57

58

59

60

61

 // ... lines 62 - 63

64

65

66

 // ... lines 67 - 70

71

72

 // ... lines 73 - 230

231

This object needs two things. First, point to the class that the {user_id} is referring to. Do

that by passing a fromClass option set to User::class .

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

 // ... lines 13 - 55

56

57

58

59

60

61

 // ... line 62

63

64

65

66

 // ... lines 67 - 70

71

72

 // ... lines 73 - 230

231

Second, we need to define which property on User points to DragonTreasure so that it can

figure out how to structure the query. To do this, set fromProperty to treasures . So, inside

use ApiPlatform\Metadata\Link;

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

 shortName: 'Treasure',

 operations: [new GetCollection()],

 uriVariables: [

 'user_id' => new Link(

),

],

)]

class DragonTreasure

{

}

use ApiPlatform\Metadata\Link;

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

 shortName: 'Treasure',

 operations: [new GetCollection()],

 uriVariables: [

 'user_id' => new Link(

 fromClass: User::class,

),

],

)]

class DragonTreasure

{

}

User , we're saying that this property describes the relationship. Oh, but I totally messed that

up: the property is dragonTreasures .

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

 // ... lines 13 - 55

56

57

58

59

60

61

62

63

64

65

66

 // ... lines 67 - 70

71

72

 // ... lines 73 - 230

231

Ok, cruise back over and refresh. Under the endpoint... yea! It says "User identifier". Let's put 4

in there again, hit "Execute" and... got it. There are the five treasures for this user!

And in the other browser tab... if we refresh... it works!

How the Query is Made

Behind the scenes, thanks to the Link , API Platform basically makes the following query:

“SELECT * FROM dragon_treasure WHERE owner_id =”

whatever we pass for {user_id} . It knows how to make that query by looking at the Doctrine

relationship and figuring out which column to use. It's super smart.

We can actually see this in the profiler. Go to /_profiler , click on our request... and, down

here, we see 2 queries... which are basically the same: the 2nd is used for the "total items" for

pagination.

use ApiPlatform\Metadata\Link;

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

 shortName: 'Treasure',

 operations: [new GetCollection()],

 uriVariables: [

 'user_id' => new Link(

 fromProperty: 'dragonTreasures',

 fromClass: User::class,

),

],

)]

class DragonTreasure

{

}

If you click "View formatted query" on the main query... it's even more complex than I expected!

It has an INNER JOIN ... but it's basically selecting all the dragon treasures data where

owner_id = the ID of that user.

What about toProperty?

By the way, if you look at the documentation, there's also a way to set all of this up via the other

side of the relationship: by saying toProperty: 'owner' .

This still works... and works exactly the same. But I recommend sticking with fromProperty ,

which is consistent and, I think, more clear. The toProperty is needed only if you didn't map

the inverse side of a relationship... like if there was no dragonTreasures property on User .

Unless you have that situation, stick with fromProperty .

Don't Forget normalizationContext!

This is all working nicely except for one small problem. If you look back at the data, it shows the

wrong fields! It's returning everything, like id and isPublished .

Those aren't supposed to be included thanks of our normalization groups. But since we haven't

specified any normalization groups on the new ApiResource , the serializer returns everything.

To fix this, copy the normalizationContext and paste it down here. We don't need to worry

about denormalizationContext because we don't have any operations that do any

denormalizing.

src/Entity/DragonTreasure.php

 // ... lines 1 - 11

12

 // ... lines 13 - 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

 // ... lines 70 - 73

74

75

 // ... lines 76 - 233

234

If we refresh now... got it!

A Single Subresource Endpoint

Let's add one more subresource to see a slightly different case. I'll show you the URL I want

first. We have a treasure with ID 11 . This means we can go to

/api/treasures/11.jsonld to see that. Now I want to be able to add /owner to the end

to get the user that owns this treasure. Right now, that doesn't work.... so let's get to work!

Because the resource that will be returned is a User , that's the class that needs the new API

Resource.

Above it, add #[ApiResource()] with uriTemplate set to

/treasures/{treasure_id} for the wildcard (though this can be called anything), followed

by /owner.{_format} .

use ApiPlatform\Metadata\Link;

#[ApiResource(

 uriTemplate: '/users/{user_id}/treasures.{_format}',

 shortName: 'Treasure',

 operations: [new GetCollection()],

 uriVariables: [

 'user_id' => new Link(

 fromProperty: 'dragonTreasures',

 fromClass: User::class,

),

],

 normalizationContext: [

 'groups' => ['treasure:read'],

],

)]

class DragonTreasure

{

}

src/Entity/User.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 34

35

 // ... lines 36 - 38

39

40

 // ... lines 41 - 187

188

Next pass uriVariables with treasure_id set to a new Link() - the one from

ApiPlatform\Metadata . Inside, set fromClass to DragonTreasure::class . And since

the property inside DragonTreasure that refers to this relationship is owner , add

fromProperty: 'owner' .

src/Entity/User.php

 // ... lines 1 - 7

8

 // ... lines 9 - 24

25

26

 // ... line 27

28

29

30

31

32

33

 // ... line 34

35

 // ... lines 36 - 38

39

40

 // ... lines 41 - 187

188

We also know that we're going to need the normalizationContext ... so copy that... and

paste it here. Finally, we only want one operation: a GET operation to return a single User . So,

add operations set to [new Get()] .

#[ApiResource(

 uriTemplate: '/treasures/{treasure_id}/owner.{_format}',

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

use ApiPlatform\Metadata\Link;

#[ApiResource(

 uriTemplate: '/treasures/{treasure_id}/owner.{_format}',

 uriVariables: [

 'treasure_id' => new Link(

 fromProperty: 'owner',

 fromClass: DragonTreasure::class,

),

],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

src/Entity/User.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 24

25

26

27

28

29

30

31

32

33

34

35

 // ... lines 36 - 38

39

40

 // ... lines 41 - 187

188

That should do it! Move back over to the documentation, refresh, and take a look under "User".

Yep! We have a new operation! And it even sees that the wildcard is a "DragonTreasure

identifier".

If we go refresh the other tab... it works!

Ok team, I lied about this being the last topic because... it's bonus topic time! Next: let's create a

React-based admin area automatically from our API docs. Woh.

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\Link;

#[ApiResource(

 uriTemplate: '/treasures/{treasure_id}/owner.{_format}',

 operations: [new Get()],

 uriVariables: [

 'treasure_id' => new Link(

 fromProperty: 'owner',

 fromClass: DragonTreasure::class,

),

],

 normalizationContext: ['groups' => ['user:read']],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

Chapter 28: React Admin

Whoa! Look out! Bonus chapter! We know that our API is fully described using the Open API

spec. Heck, we can even see it by going to /api/docs.json . This shows all our different

endpoints and their fields. It gets this delicious info by reading our code, PHPdoc, and other

things. And we know this is used to power the Swagger UI docs page. Our API is also described

by JSON-LD and Hydra.

And, both of these types of API docs can be used to power other things.

For example, search for "react admin", to find an open source React-based admin system. This

is super powerful and cool... and it's been around for a long time. And the way it works is...

amazing: we point it at our API documentation and then... it just builds itself! I think we should

take it for a test drive.

Search for "api platform react admin" to find the API Platform docs page all about this. This has

some info... but what we're really after is over here. Click "Get Started". This walks us through

all the details, even including CORS config if you have that problem.

So... let's do this!

Webpack Encore Setup

If you use the API Platform Docker distribution, this admin area comes pre-installed. But it's also

easy enough to add manually. Right now, our app doesn't have any JavaScript, so we need to

bootstrap everything. Find your terminal and run:

composer require encore

This installs WebpackEncoreBundle... and its recipe gives us a basic frontend setup. When

that's done, install the Node assets with:

npm install

Okay, flip back over to the docs. API Platform has their own Node package that helps integrate

with the admin. So let's get that installed. Copy the npm install line - you can also use

yarn if you want - paste it in the terminal, and add a -D at the end.

npm install @api-platform/admin -D

That -D isn't super important, but I tend to install my assets as devDependencies .

UX React Setup

To get all of this working, ultimately, we're going to render a single React component into a

page. To help with that, I'm going to install a UX package that's... just really good at rendering

React components. It's optional, but nice.

Run:

composer require symfony/ux-react

Perfect. Now, spin over and search for "symfony ux react" to find its documentation. Copy this

setup code: we need to add it to our app.js file... over here in assets/ . Paste... and we

don't need all of these comments. I'll also move this code down below the imports.

assets/app.js

 // ... lines 1 - 12

13

14

Awesome! This basically says that it will look in an assets/react/controllers/ directory

and make every React component inside super easy to render in Twig. So, let's create that: in

import './bootstrap';

registerReactControllerComponents(require.context('./react/controllers',

true, /\.(j|t)sx?$/));

assets/ , add two new directories: react/controllers/ . And then create a new file called

ReactAdmin.jsx .

For the contents, go back to the API Platform docs... and it gives us almost exactly what we

need. Copy this... and paste it inside our new file. But first, it doesn't look like it, but thanks to

the JSX syntax, we're using React, so we need an import React from 'react' .

And... let's make sure we have that installed:

npm install react -D

Passing a Prop to the React Component

Second, take a look at the entrypoint prop. This is so cool. We pass the URL to our API

homepage... and then React admin takes care of the rest. For us, this URL would be something

like https://localhost:8000/api . But... I'd rather not hardcode a "localhost" into my

JavaScript.

Instead, we're going to pass this in as a prop. To allow that, add a props argument... then say

props.entrypoint .

assets/react/controllers/ReactAdmin.jsx

1

2

3

4

5

6

How do we pass this in? We'll see that in just a minute.

Enabling React in Encore

All right, let's see if the system will even build. Fire it up:

import { HydraAdmin } from "@api-platform/admin";

import React from 'react';

export default (props) => (

 <HydraAdmin entrypoint={props.entrypoint} />

);

npm run watch

And... syntax error! It sees this .jsx syntax and... has no idea what to do with it! That's

because we haven't enabled React inside of WebpackEncore yet. Hit Ctrl+C to stop that... then

spin over and open webpack.config.js . Find a comment that says

.enableReactPreset() . There it is. Uncomment that.

webpack.config.js

 // ... lines 1 - 8

9

 // ... lines 10 - 64

65

66

 // ... lines 67 - 77

Now when we run

npm run watch

again... it still won't work! But it gives us the command we need to install the one missing

package for React support! Copy that, run it:

npm install @babel/preset-react@^7.0.0 --save-dev

And now when we try

npm run watch

... it works! Time to render that React component.

Rendering the ReactAdmin Component

Encore

 // uncomment if you use React

 .enableReactPreset()

How do we do that? This is the easy part. In src/Controller/ , create a new PHP class

called AdminController . This is probably going to be the most boring controller you'll ever

create. Make it extend AbstractController , and then add a public function called

dashboard() , which will return a Response , though that's optional. Above this, add a

Route() for /admin .

All we need inside is return $this->render() and then a template:

admin/dashboard.html.twig .

src/Controller/AdminController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cool! Down in the templates/ directory, create that admin/ directory... and inside, a new file

called dashboard.html.twig . Again, this is probably one of the most boring templates you'll

ever make, at least at the start. Extend base.html.twig and add block body and

endblock .

Now, how do we render the React component? Thanks to that UX React package, it's super

easy. Create the element that it should render into then add react_component() followed by

the name of the component. Since the file is called ReactAdmin.jsx in the

react/controllers/ directory, its name will be ReactAdmin .

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

class AdminController extends AbstractController

{

 #[Route('/admin')]

 public function dashboard(): Response

 {

 return $this->render('admin/dashboard.html.twig');

 }

}

templates/admin/dashboard.html.twig

1

2

3

4

 // ... line 5

6

7

And here's where we pass in those props. Remember: we have one called entrypoint . Oh,

but let me fix my indentation... and remember to add the </div> . We don't need anything

inside the div... because that's where the React admin area will magically appear, like a rabbit

out of a hat.

Pass the entrypoint prop set to the normal path() function. Now, we just need to figure

out the route name that API Platform uses for the API homepage. This tab is running npm... so

I'll open a new terminal tab and run:

php bin/console debug:router

Woh! Too big. That's better. Scroll up a bit, and... here it is. We want: api_entrypoint . Head

back over, and pass that in.

templates/admin/dashboard.html.twig

1

2

3

4

5

6

7

Moment of truth! Find your browser, change the address to /admin , and... hello ReactAdmin!

Woh! Behind the scenes, that made a request to our API entrypoint, saw all of the different API

resources we have, and it created this admin! I know, isn't that insane?

We won't go too deep into this, though you can customize it and you almost definitely will need

to customize it. But we get a lot of stuff out of the box. It's not perfect: it looks a little confused by

our embedded dragonTreasures , but it's already very powerful. Even the validation works!

{% extends 'base.html.twig' %}

{% block body %}

 <div {{ react_component('ReactAdmin', {

 }) }}></div>

{% endblock %}

{% extends 'base.html.twig' %}

{% block body %}

 <div {{ react_component('ReactAdmin', {

 entrypoint: path('api_entrypoint')

 }) }}></div>

{% endblock %}

Watch: when I submit, it reads the server-side validation returned by our API and assigned each

error to the correct field. And treasures is aware of our filters. It's all here!

If this is interesting to you, definitely check it out further.

All right, team! You did it! You got through the first API Platform tutorial, which is fundamental to

everything. You now understand how resources are serialized, how resources relate to other

resources, IRIs, etc. All of these things are going to empower you no matter what API you're

building. In the next tutorial, we'll talk about users, security, custom validation, user-specific

fields and other wild stuff. Let us know what you're building and, if you have any questions,

we're here for you down in the comments section.

Alright, friends! Seeya next time!

With <3 from SymfonyCasts

