API| Platform 3 Part 2: Security
for your Treasures

Chapter 1: API Docs on Production?

Welcome back you wonderful JSON-returning people, to API Platform episode 2. In part 1, we
got busy! We created a pretty killer API to store dragon treasures, though... we completely
forgot to add security! Any small, hairy-footed creature could sneak in a back door... and we'd
have absolutely no idea! So this time, we're talking everything related to security. Like
authentication: should | use a session with a login form... or do | need API tokens? And
authorization, like denying access to entire endpoints. Then we'll get into trickier things like
showing or hiding results based on the user and even showing or hiding certain fields based on
the user. We'll also talk about totally custom fields, the PATCH HTTP method and setting up an

API test system your friends will be jealous of.

Project Setup

Now, you know the drill: to really dig into this stuff, you should code along with me. Download
the code course code from this page. After you unzip it, you'll find a start/ directory with the
same code that you see here. Pop open this nifty README . md file and go through all the setup

instructions.

I'm all the way down here at starting the symfony web server. So I'll spin over to a terminal

that's already inside the project and run

symfony serve -d

to start a local web server in the background. Perfect! I'll hold Cmd and click that URL to pop
that open in my browser. Hello Treasure Connect! This is the app we created in episode 1...
though we worked exclusively on the API. We created endpoints for treasures, users and the

ability to relate them.

This homepage is brand new for episode 2. It's a small Vue app that | built. It has a login form...

but it doesn't work yet: it will be up to us to bring it to life.

https://symfonycasts.com/screencast/api-platform

Interactive Docs on Production?

Now before we dive into security, one question | sometimes get is:
“Hey Ryan, the interactive docs are super cool... but could | hide them on production?”

If your API is private - it's just meant for your JavaScript - that might make sense because you
don't want to advertise your endpoints to the world. However, | don't feel too compelled to hide
the docs... because even if you do, the endpoints still exist. So you're going to need proper

security anyways.

But yes, hiding them is possible, so let's see how. Even if you will show your docs, this is kind of

an interesting process that shows how various parts of the system work together.

Find your terminal and run:

php ./bin/console config:dump api_platform

Remember: this command show all the possible configuration for API Platform. Let's see...
search for "swagger". There we go. There's a section with things like enable_swagger,
enable_swagger_ui, enable_re_doc, enable_entrypoint, and enable_docs. What

does all that mean?

Hello ReDoc

First | want to show you what ReDoc is, because we didn't talk about that in the first tutorial.
We're currently looking at the Swagger version of our documentation. But there's a competing
format called ReDoc... and you can click on the "ReDoc" link at the bottom to see it! Yup! This is

the same documentation info... but with a different layout! If you like this, it's there for you.

Disabling_The Docs

Anyways, back at the terminal, there are a lot of "enable" configs. They're all related... but
slightly different. For example, enable_swagger really refers to the OpenAPI documentation.

Remember that's the JSON document that powers the Swagger and ReDoc API docs. Then,

these are whether or not we want to show those two types of documentation frontends. And
down here, enable_entrypoint and enable_docs control whether or not certain routes

are added to our app.

| bet that didn't completely make sense, so let's play with this. Pretend that we want to disable
the docs entirely. Ok! Open config/packages/api_platform.yaml and, to start, add

enable docs: false:

config/packages/api_platform.yaml

1 api_platform:
? /... lines 2 - 7
8 enable_docs: false

As soon as you do that and refresh... alright! Our API documentation is gone... but with a 500

error. When you enable_docs: false, it literally removes the route to our documentation.

Let's back up. Going to /api was always kind of a shortcut to get to the docs. The real path
was /api/docs, /api/docs.json or .jsonld. And these are now all 404's because we

disabled that route. So yay our documentation is gone!

However, when you go to /api, this actually isn't a documentation page. This is known as the
"entry point": it's our APl homepage. This page does still exist... but it tries to link to our API

docs... which don't exist, and it explodes.

To disable the entry point, move over and add enable_entrypoint: false:

config/packages/api_platform.yaml

1 api_platform:
$ /7 ... lines 2 - 8
9 enable_entrypoint: false

Now going to /api give us... beautiful! A 404.

Ok, so we know we can goto /api/treasures.json or .jsonld. But what if we just go to
/api/treasures? That... unfortunately is a 500 error! When our browser makes a request, it
sends an Accept header that says that we want HTML. So we're asking our API for the html
version of the treasures. And the html version is... the documentation. So it tries to link to the

documentation and explodes.

To disable this, we can communicate to the system that we don't have Swagger or API

documentation at all... so it should stop trying to link to it. Do that by setting

enable_swagger: false:

config/packages/api_platform.yaml

1 api_platform:
$ /7 ... lines 2 - 9
10 enable_swagger: false

Though... that just trades for another 500 error that says:
“Hey, you can't enable Swagger Ul without enabling Swagger!”

Fix that with enable_swagger_ui: false:

config/packages/api_platform.yaml

1 api_platform:
T /7 ... lines 2 - 10
11 enable_swagger_ui: false

And now... closer!

Disabling_the HTML Format

“Serialization for the format html is not supported.”

The problem is that we're still requesting the html version of this resource. But now that we

don't have any documentation, our APl is like:

“Um... not really sure how to return an HTML version of this.”

And the truth is: if we totally disable our docs, we don't need an HTML format anymore! And so,

we can disable it. Do that by, very simply, removing html from formats:

config/packages/api_platform.yaml

1 api_platform:

2 formats:

jsonld: ['application/ld+json']
json: ['application/json']
jsonhal: ['application/hal+json']

// ... lines 7 - 10

@ o0 0 bW

And... we actually have one other spot where we need to do that: in
src/Entity/DragonTreasure.php. When we added our custom csv format... let's see

here it is... we repeated all the formats including html. So take html off of there as well:

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 26
27 #[ApiResource(

$ // ... lines 28 - 40
41 formats: [

42 'jsonld',

43 'json',

44 'jsonhal’,

45 'csv' => 'text/csv',
46 1,

$ // ... lines 47 - 53
54)]

$ /7 ... lines 55 - 72
73 class DragonTreasure
74 {

$ // ... lines 75 - 232
233 }

When we refresh now... got it! Since there's no HTML format, it defaults to JSON-LD. Our docs

are now totally disabled.

Oh, and to disable the docs just for production, | would create an environment variable - like
ENABLE_API_DOCS - then reference that in my config:

Actually, due to how the config is loaded, environment variables won't work here! Instead,

you could disable docs in production only, via:

when@prod:
api_platform:

enable_swagger_ui: false

config/packages/api_platform.yaml
api_platform:
enable_swagger_ui: '%env(bool:ENABLE_API_DOCS)%'

But... | do like the documentation, so I'm going to undo this change... and this change as well to

get our docs back.

config/packages/api_platform.yaml

1 api_platform:

2 formats:

3 jsonld: ['application/ld+json']

4 json: ['application/json']

5 html: ['text/html']

6 jsonhal: ['application/hal+json']
7

8 # enable_docs: false

9 # enable_entrypoint: false

10 # enable_swagger: false

11 # enable_swagger_ui: false

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 26
27 #[ApiResource(
$ /7 ... lines 28 - 40
41 formats: [
42 '"jsonld',
43 'json',
44 "html',
45 '"jsonhal',
46 'csv' => 'text/csv',
47 1,
$ /7 ... lines 48 - 54
55)]
$ /7 ... lines 56 - 73
74 class DragonTreasure
75| {
$ /7 ... lines 76 - 233
234 }
Love it!

Next, let's have a fireside chat about authentication. You have a fancy API: do you need API

tokens? Or something else?

Chapter 2: API Tokens? Session Cookies?

Join me, while we tell a tale as old as... the modern Internet: API authentication. A topic of hype,
complexity and unlikely heroes. Characters include sessions, API tokens, OAuth, JSON web

tokens! But what do we need for our situation?

The first thing | want you to ask is:
“Who will be using my API?”

Is it your own JavaScript, or do you need to allow programmatic access? Like someone will

write a script that will use your API?

We're going to go through both of these use-cases... and each has some extra complexities that

we'll discuss along the way.

Everything_ is a Token!

By the way, when you think of API authentication, you typically think of an API token. And that's
true! But it turns out that... pretty much all authentication is done by some sort of a token. Even
session-based authentication is done by sending a cookie... which contains a unique, you

guessed it, "token". It's a random string that PHP uses to find and load the related session data

on the server.

So the trick is figuring out which type of token you need in each situation and how the end-user

will get that token.

Use-Case 1: Building for your Own JavaScript

So let's talk about that first use-case: the user of your API is your own JavaScript.

Well, before we even dive into security, make sure your frontend and your API live on the same
domain... like the exact same domain, not just a subdomain. Why? Because if they live on two

different domains or subdomains, you have to deal with CORS: Cross-Origin Resource Sharing.

CORS not only adds complexity to your setup, it also hurts performance. Kévin Dunglas - the
lead developer of API Platform - has a blog_post about this. He even shows a strategy where
your frontend and backend can live in totally different directories or repositories, but still live on

the same domain thanks to some web server tricks.

If you do, for some reason, decide to put your API and frontend on different sub-domains, then
you will need to worry about CORS headers and you can solve that with NelmioCorsBundle.

But, | don't recommend it.

The case for Sessions

Anyways, back to security. If you're calling your API from your own JavaScript, the user is
probably logging in via a login form with an email and password. It doesn't matter if that's a
traditional login form or one that's built with a fancy JavaScript framework that submits via
AJAX.

And, honestly, a really simple way to handle this use-case is not with API tokens, but with good
ol' fashioned HTTP Basic authentication. Yea, where you literally pass the email & password to
each endpoint. For example, the user enters their email and password, you make an API
request to some endpoint just to make sure it's valid, then you store that email and password in
JavaScript and send it on every single API request going forward. Your email & password works

basically like an API token.

However, this has some practical challenges, like the question of where you securely store the
email and password in JavaScript so you can continually use it. This is actually a problem in
general with JavaScript and "credentials”, including API tokens: you need to be very careful
where you store those so that other JavaScript on your page can't read them. There are

solutions: https://bit.ly/authO-token-storage - but it adds complexity that you very likely don't

need.

So instead, for your own JavaScript, you can use a session. When you start a session in
Symfony, it returns an "HTTP only" cookie... and that cookie contains the session id. Though,
the contents of the cookie aren't really important: it could be the session id or some sort of token
you invented and are reading in Symfony. The really important thing is that because the cookie
is "HTTP only", it can't be read by JavaScript: your JavaScript or anyone else's JavaScript. But
whenever you make an API request to your domain, that cookie's will come with it... and your

app will use it to log in the user.

https://dunglas.dev/2022/01/preventing-cors-preflight-requests-using-content-negotiation/
https://bit.ly/auth0-token-storage

So the API token in this situation is simply the "session id", which is stored securely in an HTTP-

only cookie. Mmm. We will code through this use case.

Oh, and by the way, one edge-case with this situation is if you have a Single Sign On situation -
an SSO. In that case, you'll authenticate with your SSO like a normal web app. When you finish,
you'll have a token, which you can then use to either authenticate the user with a session like
normal... or you can use that token directly from your JavaScript. That's a more advanced use
case that we won't go through in this tutorial... though, we will talk about how to read & validate

API tokens regardless of where those tokens came from.

Use-Case 2: Programmatic Access & APl Tokens

The second big use-case for authentication is programmatic access. Some code will talk to your

API... besides JavaScript from inside the browser.

In this case, the API clients absolutely will send some sort of an API token string. And so, you
need to make your API able to read a token that's sent on each request, usually sent on an

Authorization header:

$response = $httpClient->request(
"GET',
'/api/treasures’',

[

"Authorization' => 'Bearer '.$apiToken,

1,
)i

How the user gets this token depends: there are kind of two main cases. The first one is the
"GitHub personal access token" case. This is where a user can browse to a page on your site

and click to create a new access token. Then they can copy that and go use it in some code.

The second big case is OAuth, which is just a fancy & secure way to get an access token. It's
especially important when the "code" that's making the API requests is making those requests

on "behalf" of some user on your system.

Like imagine a site - ReplyToAllCommentsWithHearts.com - that allows you to connect with
GitHub. Once you do, that site can then make API requests to GitHub for your account, like

making comments as your user. Or imagine an iPhone app where, to log in, you show the user

the login form on your site. Then, via an OAuth flow, that mobile app will receive an access

token it can use to talk to your APl on behalf of that user.

We're going to talk about the personal access token method in this tutorial, including how to
read and validate API tokens, no matter where they come from. We won't talk about the OAuth
flow... and it's partially because it's a separate beast. Yes, if you have the use-case where you
need to allow third parties to get API tokens for different users on your site, you will need some
sort of OAuth server, whether you build it yourself or use some other solution. But once the
OAuth server has done its work, the client that will talk to your API receives... a token! And then
they'll use that token to talk to your API. So your API will need to read, validate, and understand

that token, but it doesn't care how the API client got it.

Ok, let's put all this theory behind us and start going through the first use-case next: allowing

our JavaScript to log in by sending an AJAX request.

Chapter 3: API Login Form with json_login

On the homepage, which is built in Vue, we have a login form. The goal is that, when we submit

this, it will send an AJAX request with the email & password to and endpoint that will validate it.

The form itself is built over here in assets/vue/LoginForm.vue:

assets/vue/LoginForm.vue

1
2
3
4

5

X
46
47
48
49
50
51

X
96

<template>
<form
v-on:submit.prevent="handleSubmit"
class="book shadow-md rounded px-8 pt-6 pb-8 mb-4 sm:w-1/2 md:w-
1/3"
>
// ... lines 6 - 45
</form>
</template>

<script setup>
import { ref } from 'vue';

// ... lines 52 - 95
</script>

If you're not familiar with Vue, don't worry. We will do some light coding in it, but I'm mostly using

it as an example to make some API requests.

Down near the bottom, on submit, we make a POST request to /1login sending the email

and password as JSON. So our first goal is to create this endpoint:

assets/vue/LoginForm.vue

0
49

0
66

0
70
71
72
73
74
75
76
77
78
79

0
94
95
96

// ... lines 1 - 48

<script setup>

// ... lines 50 - 65

const handleSubmit = async () => {
// ... lines 67 - 69

const response = await fetch('/login', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
3
body: JSON.stringify({
email: email.value,
password: password.value

1)
1)
// ... lines 80 - 93
3
</script>

Creating_the Login Controller

Fortunately, Symfony has a built-in mechanism just for this. To start, even though it won't do

much, we need a new controller! In src/Controller/, create a new PHP class. Let's call it

SecurityController. This will look very traditional: extend AbstractController, then

add a public function login() that will return a Response, the one from

HttpFoundation:

src/Controller/SecurityController.php

0

© & o 00 b~ W

10

12
13
14
15
16

// ... lines 1 - 2
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;

// ... lines 7 - 8
class SecurityController extends AbstractController
{
// ... line 11
public function login(): Response
{
}

Above, give this a Route with a URL of /login to match what our JavaScript is sending to.
Name the route app_login. Oh, and we don't really need to do this, but we can also add
methods: ['POST']:

src/Controller/SecurityController.php

T /7 ... lines 1 - 6

7 use Symfony\Component\Routing\Annotation\Route;

8

9 class SecurityController extends AbstractController
10 {

11 #[Route('/login', name: 'app_login', methods: ['POST'])]
12 public function login(): Response
13 {

T /7 ... line 14
15 3}
16 }

There won't be a /1ogin page on our site that we make a GET request to: we're only going to
POST to this URL.

Returning_the Current User Id

As you'll see in a minute, we're not going to process the email and password in this
controller... but this will be executed after a successful login. So... what should we return after a
successful login? | don't know! And honestly it mostly depends on what would be useful in our

JavaScript. | haven't thought about it much yet, but maybe... the user id? Let's start there.

If authentication was successful, then, at this point, the user will be logged in like normal. To get
the currently-authenticated user, I'm going to leverage a newer feature of Symfony. Add an
argument with a PHP attribute called #[CurrentUser]. Then we can use the normal User

type-hint, call it $user and default it to null, in case we're not logged in for some reason:

src/Controller/SecurityController.php

? /... lines 1 - 7
8 use Symfony\Component\Security\Http\Attribute\CurrentUser;
9

10 class SecurityController extends AbstractController

11 {

12 #[Route('/login', name: 'app_login', methods: ['POST'])]

13 public function login(#[CurrentUser] $user = null): Response
14 {

t o/ ... lines 15 - 17

18 }

19 }

We'll talk about how that's possible in a minute.

Then, return $this->json() with a user key setto $user->getId():

src/Controller/SecurityController.php

T 7/ ... lines 1 - 9

10 class SecurityController extends AbstractController

11 {

12 #[Route('/login', name: 'app_login', methods: ['POST'])]
13 public function login(#[CurrentUser] $user = null): Response
14 {

15 return $this->json([

16 'user' => $user ? $user->getId() : null,

17 1);

18 3}

19 1}

Cool! And that's all we need our controller to do.

Activating_json_login

To activate the system that will do the real work of reading the email & password, head to
config/packages/security.yaml. Under the firewall, add json_login and below that
check_path... which should be set to the name of the route that we just created. So,

app_login:

config/packages/security.yaml

1 security:

T /7 ... lines 2 - 11

12 firewalls:

? /... lines 13 - 15

16 main:

$ /7 ... lines 17 - 18

19 json_login:

20 check_path: app_login
$ /... lines 21 - 46

This activates a security listener: it's a bit of code that will now be watching every request to see
if itis a POST request to this route. So, a POST to /login. Ifit s, it will decode the JSON on
that request, read the email and password keys off of that JSON, validate the password and

log us in.

Though, we do need to tell it what keys in the JSON we're using. Our JavaScript is sending
email and password: super creative. So below this, set username_path to email and

password_path to password:

config/packages/security.yaml

1 security:

$ /7 ... lines 2 - 11

12 firewalls:

? /... lines 13 - 15

16 main:

$ /7 ... lines 17 - 18

19 json_login:

20 check_path: app_login
21 username_path: email

22 password_path: password
$ /... lines 23 - 48

The User Provider

Done! But wait! If we POST an email and password to this endpoint... how the heck does
the system know how to find that user? How is it supposed to know that it should query the

user table WHERE email = the email from the request?

Excellent question! In episode 1, we ran:

php ./bin/console make:user

This created a User entity with the basic security stuff that we need:

src/Entity/User.php

T /7 ... lines 1 - 38
39 class User implements UserInterface, PasswordAuthenticatedUserInterface
40 {
T /7 ... lines 41 - 43
44 private ?int $id = null;
$ // ... lines 45 - 49
50 private ?string $email = null;
$ /7 ... lines 51 - 52
53 private array $roles = [];
$ // ... lines 54 - 59
60 private ?string $password = null;
T // ... lines 61 - 64
65 private ?string $username = null;
$ // ... lines 66 - 187
188 }

In security.yaml, it also created a user provider:

config/packages/security.yaml

1 security:

$ /7 ... lines 2 - 4

5 # https://symfony.com/doc/current/security.html#loading-the-user-the-
user-provider

providers:

7 # used to reload user from session & other features (e.g.
switch_user)

8 app_user_provider:

9 entity:

10 class: App\Entity\User

11 property: email

T /7 ... lines 12 - 48

This is an entity provider: it tells the security system to find users in the database by querying by
the email property. This means our system will decode the JSON, fetch the email key, query

for a User with a matching email, then validate the password. In other words... we're ready!

Looking back at LoginForm.vue, the JavaScript is also ready: handleSubmit () will be

called when we submit the form... and it makes the AJAX call:

assets/vue/LoginForm.vue

$ // ... lines 1 - 48

49 <script setup>

$ // ... lines 50 - 65

66 const handleSubmit = async () => {

67 isLoading.value = true;

68 error.value = '';

69

70 const response = await fetch('/login', {
71 method: 'POST',

72 headers: {

73 'Content-Type': 'application/json'
74 1,

75 body: JSON.stringify({

76 email: email.value,

77 password: password.value

78 })

79 1)

80

81 isLoading.value = false;

82

83 if (!response.ok) {

84 const data = await response.json();
85 console.log(data);

86 // TODO: set error

87

88 return;

89 }

920

91 email.value = '';

92 password.value = '';

93 //emit('user-authenticated', userIri);
94 }

95

96 </script>

So let's try this thing! Move over and refresh just to be sure. Try it with a fake email and
password first. Submit and... nothing happened? Open up your browser's inspector and go to
the console. Yes! You see a 401 status code and it dumped this error: invalid credentials. That's
coming from right here in our JavaScript: after the request finishes, if the response is "not okay"

- meaning there was a 4XX or 5XX status code - we decode the JSON and log it.

Apparently, when we fail authentication with json_login, it returns a small bit of JSON with

"Invalid Credentials".

Next: let's turn this error into something we can see on the form, handle another error case, and

then think about what to do when authentication is successful.

Chapter 4: Handling Authentication Errors

When we log in with an invalid email and password, it looks like the json_login system
sends back some nice JSON with an error key set to "Invalid credentials”. If we wanted to
customize this, we could create a class that implements

AuthenticationFailureHandlerInterface:

class AppAuthFailureHandler implements AuthenticationFailureHandlerInterface

{

public function onAuthenticationFailure($request, $exception)

{
return new JsonResponse(
['something' => 'went wrong'],
401
);
}

And then set its service ID onto the failure_handler option under json_login:

json_login:
failure_handler: App\Security\AppAuthFailureHandler

Showing_the Error on the Form

But, this is plenty good for us. So let's use it over in our /assets/vue/LoginForm.vue. We
won't go too deeply into Vue, but | already have state called error, and if we set that, it will

show up on the form:

assets/vue/LoginForm.vue

0
49

0
55

0
66

0
68

0
83
84
85
86
87
88
89

0
94
95
96

// ... lines 1 - 48
<script setup>

// ... lines 50 - 54
const error = ref('");
// ... lines 56 - 65
const handleSubmit = async
// ... line 67
error.value = '';
// ... lines 69 - 82
if (!response.ok) {
const data = await
console.log(data);
// TODO: set error
return;
}
// ... lines 90 - 93
}
</script>

() =>{

response.json();

After making the request, if the response is not okay, we're already decoding the JSON. Now

let's say error.value = data.error:

assets/vue/LoginForm.vue

0
49

0
66

0
83
84
85
86
87
88

0
93
94
95

// ... lines 1 - 48
<script setup>

// ... lines 50 - 65
const handleSubmit = async
// ... lines 67 - 82
if (!response.ok) {
const data =
error.value =
return;
}
// ... lines 89 - 92
3
</script>

() =>{

await response.json();
data.error;

To see if this works, make sure you have Webpack Encore running in the background so it

recompiles our JavaScript. Refresh. And... you can click this little link to cheat and enter a valid

email. But then type in a ridiculous password and... | love it! We see "Invalid credentials" on top

with some red boxes!

json_login Requires Content-Type: application/json

So the AJAX call is working great. Though, there is one gotcha with the json_login security
mechanism: it requires you to send a Content-Type header set to application/json. We

are setting this on our Ajax call and you should to:

assets/vue/LoginForm.vue

? /... lines 1 - 48

49 <script setup>

$ /7 ... lines 50 - 65

66 const handleSubmit = async () => {

$ // ... lines 67 - 69

70 const response = await fetch('/login', {
T /7 ... line 71

72 headers: {

73 'Content-Type': 'application/json'
74 1,

$ /7 ... lines 75 - 78

79 1);

$ /7 ... lines 80 - 92

93 }

94

95 </script>

But... if someone forgets, we want to make sure that things don't go completely crazy.

Comment out that Content-Type header so we can see what happens:

assets/vue/LoginForm.vue

? /... lines 1 - 48

49 <script setup>

$ /7 ... lines 50 - 65

66 const handleSubmit = async () => {

$ // ... lines 67 - 69

70 const response = await fetch('/login', {
$ /... line 71

72 headers: {

73 //'Content-Type': 'application/json'
74 },

$ /7 ... lines 75 - 78

79 1);

T 7/ ... lines 80 - 92

93 }

94

95 </script>

Then move over, refresh the page... type a ridiculous password and... it clears the form? Look
down at the Network call. The endpoint returned a 200 status code with a user key set to
null!

And... that makes sense! Because we're missing the header, the json_login mechanism did
nothing. Instead, the request continued to our SecurityController ... except that this time

the user is not logged in. So, we return user: null... with a 200 status code.

That's a problem because it make it look like the Ajax call was successful. To fix this, if, for any
reason the json_login mechanism was skipped... but the user is hitting our login endpoint,

let's return a 401 status code that says:

“Hey! You need to log in!”

So, if not $user, then return $this->json() ... and this could look like anything. Let's
include an error key explaining what probably went wrong: this matches the error key that

json_login returns when the credentials fail, so our JavaScript will like this. Heck. I'll even fix

my typol!

src/Controller/SecurityController.php

0
10

11

0
13
14
15
16
17

18
19

0
24
25

// ... lines 1 - 9

class SecurityController extends AbstractController
{

// ... line 12

public function login(#[CurrentUser] $user = null): Response
{
if (!'$user) {
return $this->json([
'error' => 'Invalid login request: check that the Content-
Type header is "application/json".',
1, 401);

}
// ... lines 20 - 23

Most importantly, for the second argument, pass a 401 for the status code.

Below, we can simplify... because now we know that there will be a user:

src/Controller/SecurityController.php

0
10

11

T
13
14
15
16
17

18
19
20
21
22
23
24
25

// ... lines 1 - 9

class SecurityController extends AbstractController
{

// ... line 12

public function login(#[CurrentUser] $user = null): Response
{
if (!'$user) {
return $this->json([
'error' => 'Invalid login request: check that the Content-
Type header is "application/json".',
1, 401);

return $this->json([
'user' => $user->getId(),

1);

Beautiful! Spin over and submit another bad password. Oh, gorgeous! The 401 status code

triggers our error handling code, which displays the error on top. So awesome.

Go back to LoginForm.vue and put the Content-Type header back:

assets/vue/LoginForm.vue

? /... lines 1 - 48

49 <script setup>

$ /7 ... lines 50 - 65

66 const handleSubmit = async () => {

$ /7 ... lines 67 - 69

70 const response = await fetch('/login', {
T /7 ... line 71

72 headers: {

73 'Content-Type': 'application/json'
74 },

T /7 ... lines 75 - 78

79 });

$ /7 ... lines 80 - 92

93 }

94

95 </script>

Next: let's login successfully and... figure out what we want to do when that happens! We're also

going to talk about the session and how that authenticates our API requests.

Chapter 5: On Authentication Success

If you refresh the page and check the web debug toolbar, you can see that we're not logged in.
Let's try using a real email and password. We can cheat by clicking the email and password
links: this user exists in our AppFixtures, so it should work. And... okay... the boxes

disappear! But nothing else happens. We'll improve that in a minute.

Thanks Session!

But for now, refresh the page and look at the web debug toolbar again. We're authenticated!
Yea! Just by making a successful AJAX request to that login endpoint, that was enough to
create the session and keep us logged in. Even better, if we started making requests to our API
from JavaScript, those requests would be authenticated too. That's right! We don't need a fancy
API token system where we attach a token to every request. We can just make a request and

through the magic of cookies, that request will be authenticated.

In new API Platform projects, the default config/packages/api_platform.yaml file
has configuration that makes your endpoints "stateless":
config/packages/api_platform.yaml
api_platform:
...
defaults:

stateless: true

If you want to be able to make API requests and rely in the session to stay authenticated,

change this to: stateless: false.

REST and What Data to Return from our Authentication
Endpoint?

So, logging in worked... but nothing happened on the page. What should we do after
authentication? Once again, it doesn't really matter. If you're writing your auth system for your
own JavaScript, you should do whatever is useful for your frontend. We're currently returning

the user id. But we could, if we wanted, return the entire user object as JSON.

But there's one tiny problem with that. It's not super RESTful. This is one of those "REST purity"
things. Every URL in your API, on a technical level, represents a different resource. This

represents the collection resource, and this URL represents a single User resource. And if you
have a different URL, that's understood to be a different resource. The point is that, in a perfect
world, you would just return a User resource from a single URL instead of having five different

endpoints to fetch a user.

If we return the User JSON from this endpoint, we're "technically” creating a new API resource.
In fact, anything we return from this endpoint, from a REST point of view, becomes a new
resource in our API. To be honest, this is all technical semantics and you should feel free to do

whatever you want. But, | do have a fun suggestion.

Returning_the IRI

To try be helpful to our frontend and somewhat RESTful, | have another idea. What if we return
nothing from the endpoint.... but sneak the user's IRl onto the Location header of the

response. Then, our frontend could use that to know who just logged in.

Let me show you. First, instead of returning the User ID, we're going to return the IRI, which will
look something like '/api/users/'.$user->getId().Butl don't wantto hard code that
because we could potentially change the URL in the future. I'd rather have API Platform

generate that for me.

And fortunately, API Platform gives us an autowireable service to do that! Before the optional
argument, add a new argument type-hinted with IriConverterInterface and call it

$iriConverter:

src/Controller/SecurityController.php

? // ... lines 1 - 4

5 wuse ApiPlatform\Api\IriConverterInterface;

$ /7 ... lines 6 - 10

11 class SecurityController extends AbstractController

12 {

13 #[Route('/login', name: 'app_login', methods: ['POST'])]
14 public function login(IriConverterInterface $iriConverter, #

[CurrentUser] $user = null): Response

15 {

$ /7 ... lines 16 - 24
25 3}
26 }

Then, down here, return new Response() (the one from HttpFoundation) with no

content and a 204 status code:

src/Controller/SecurityController.php

$ /7 ... lines 1 - 10

11 class SecurityController extends AbstractController

12 {

13 #[Route('/login', name: 'app_login', methods: ['POST'])]

14 public function login(IriConverterInterface $iriConverter, #
[CurrentUser] $user = null): Response

15 {

$ /7 ... lines 16 - 21

22 return new Response(null, 204, [

$ /... line 23

24 1);

25 3}

26 }

The 204 means it was "successful... but there's no content to return”. We'll also pass a

Location header setto $iriConverter->getIriFromResource():

src/Controller/SecurityController.php

? /... lines 1 - 10

11 class SecurityController extends AbstractController

12 {

13 #[Route('/login', name: 'app_login', methods: ['POST'])]

14 public function login(IriConverterInterface $iriConverter, #
[CurrentUser] $user = null): Response

15 {

? /... lines 16 - 21

22 return new Response(null, 204, [

23 'Location' => $iriConverter->getIriFromResource($user),

24 1);

25 3

26 }

So you can get the resource from an IRI or the IRI string from the resource, the resource being

your object. Pass this $user .

Using_the IRl in JavaScript

How nice is that? Now that we're returning this how can we use this in JavaScript? Ideally, after
we log in, we would automatically show some user info over on the right. This area is built by

another Vue file called TreasureConnectApp.vue:

assets/vue/controllers/TreasureConnectApp.vue

1 <template>

2 <div class="purple flex flex-col min-h-screen">

$ /7 ... lines 3 - 5

6 <div class="flex-auto flex flex-col sm:flex-row justify-center px-

8'">

7 <LoginForm

v-on:user-authenticated="onUserAuthenticated"></LoginForm>

9 <div

10 class="book shadow-md rounded sm:ml-3 px-8 pt-8 pb-8 mb-4
sm:w-1/2 md:w-1/3 text-center'">

11 <div v-if="user">

12 Authenticated as: {{ user.username }}

13

14 | Log out

15 </div>

16 <div v-else>Not authenticated</div>

$ /7 ... lines 17 - 20

21 </div>

22 </div>

$ /7 ... line 23

24 </div>

25 </template>

26

27 <script setup>
28 dimport { ref } from 'vue';

29 import LoginForm from '../LoginForm';

30 import coinLogoPath from '../../images/coinLogo.png’;
31 import goldPilePath from '../../images/GoldPile.png’;
32

33 defineProps(['entrypoint']);

34 const user = ref(null);

35

36 const onUserAuthenticated = async (userUri) => {

37 const response = await fetch(useruUri);
38 user.value = await response.json();
39 }

40 </script>

| won't go into the details, but as long as that component has user data, it will print it out here.
And LoginForm.vue is already set up to pass that user data to
TreasureConnectApp.vue. Down at the bottom, after a successful authentication, this is
where we clear the email and password state, which empties the boxes after we log in. If we

emit an event called user-authenticated and pass it the userIri,

TreasureConnectApp.vue is already set up to listen to this event. It will then make an AJAX

request to userIri, get the JSON back, and populate its own data.

If you're not comfortable with Vue, that's ok. The point is that all we need to do is grab the IRI

string from the Location header, emit this event, and everything should work.

To read the header, say const userIri = response.headers.get('Location').lll

also uncomment this so we can emit it:

assets/vue/LoginForm.vue

? /... lines 1 - 48

49 <script setup>

$ /7 ... lines 50 - 65

66 const handleSubmit = async () => {

$ // ... lines 67 - 89

920 email.value = '"';

91 password.value = '';

92 const userIri = response.headers.get('Location');
93 emit('user-authenticated', userIri);
94 }

95

96 </script>

This should be good! Move over and refresh. The first thing | want you to notice is that we're still
logged in, but our Vue app doesn't know that we're logged in. We're going to fix that in a minute.
Log in again using our valid email and password. And... beautiful' We made the POST request,
it returned the IRI and then our JavaScript made a second request to that IRI to fetch the user

data, which it displayed here.

Next: Let's talk about what it means to log out of an API. Then, I'll show you a simple way of
telling your JavaScript who is logged in on page load. Because, right now, even though we are

logged in, as soon as | refresh, our JavaScript thinks we're not. Lame.

Chapter 6: Logout & Passing API Data to
JavaScript

What does it mean to "log out" of something? Like logging out of an API? Well, it's two things.
First, it means invalidating whatever your token is, if possible. For example, if you have an API

token, you would say to the API:
“Make this API token no longer valid.”

In the case of session authentication, it's basically the same: it means removing the session

from the session storage.

The second part of "logging out” is making whoever is using the token "forget” it. If you had an
API token in JavaScript, you would remove it from JavaScript. For session authentication, it

means deleting the cookie.

Adding_the Ability to Log_Out

Anyways, let's add the ability to log out of our session-based authentication. Back over in
SecurityController, like before, we need a route and controller, even though this
controller will never be called. I'll name the method logout() and we're going to return void.

You'll see why in a second. Give this a Route of /logout and name: app_logout:

src/Controller/SecurityController.php

? /... lines 1 - 10

11 class SecurityController extends AbstractController
12 {

$ /... lines 13 - 26

27 #[Route('/logout', name: 'app_logout')]

28 public function logout(): void

29 {

$ // ... line 30

31 3

32 1

The reason | chose void is because we're going to throw an exception from inside the method.
We've created this entirely because we need a route: Symfony's security system will intercept

things before the controller is called:

src/Controller/SecurityController.php

$ /... lines 1 - 10

11 class SecurityController extends AbstractController

12 {

T 7/ ... lines 13 - 26

27 #[Route('/logout', name: 'app_logout')]

28 public function logout(): void

29 {

30 throw new \Exception('This should never be reached!');
31 }

32 }

To activate that magic, in security.yaml, add a key called 1logout with path below set to

that new route name: app_logout:

config/packages/security.yaml

1 security:

? /... lines 2 - 11

12 firewalls:

$ /7 ... lines 13 - 15

16 main:

$ /... lines 17 - 22

23 logout:

24 path: app_logout
$ // ... lines 25 - 50

This activates a listener that's now watching for requests to /logout. When there is a request

to /logout, it will log the user out and redirect them.

All right, over here, our Vue app thinks we're not logged in, but we are: we can see it in the web

debug toolbar. And if we manually go to /logout ... boom! We are now logged out for real.

Getting_the Current User Data in JavaScript

So we saw a moment ago that even when we are logged in and refresh, our Vue app has no
idea that we're logged in. How could we fix that? One idea would be to create a /me API

endpoint. Then, on load, our Vue app could make an AJAX request to that endpoint... which

would either return null or the current user info. But, /me endpoints are super not RESTful.

And there's a better way: dump the user information into JavaScript on page load.

Setting_a Global user JavaScript Variable

There are two different ways to do this. The first is by setting a global variable. For example, in
templates/base.html. twig, it doesn't really matter where, but inside the body, add a
script tag. And here say window.user = andthen {{ app.user|serialize }}.
Serialize into jsonld and add a | raw so that it doesn't escape the output: we want raw

JSON:

templates/base.html. twig

1 <!IDOCTYPE html>

2 <html>

? // ... lines 3 - 15

16 <body>

17 <script>

18 window.user = {{ app.user|serialize('jsonld')|raw }};
19 </script>

20

21 {% block body %}{% endblock %}

22 </body>

23 </html>

How cool is that? In a minute, we'll read that from our JavaScript. If we refresh right now and
look at the source, yea! We see window.user = null.And then when we log in and refresh

the page, check it out: window.user = and a huge amount of data!

Serializing_to JSON-LD in Twig

But there's something mysterious going on: it has the correct fields! Look closely, it has email,
username and then dragonTreasures, which is what all this stuff is. It also, correctly, does

not have roles or password.

So it seems that it's correctly reading our normalization groups! But how is that even possible?
We're just saying "serialize this user to jsonld". This has nothing to do with API Platform and
it's not being processed by API platform. But... our normalization groups are configured in API

Platform. So how did the serializer know to use those?

The answer to that, as best | can tell, is that it's working... partially by accident. During
serialization, API Platform sees that we're serializing an "API resource" and so it looks up the

metadata for this class.

That's cool... but it's actually not perfect... and | like to be explicit anyway. Pass a 2nd argument

to serialize, which is the context and set groups to user:read:

templates/base.html. twig

1 <IDOCTYPE html>

2 <html>

? /... lines 3 - 15

16 <body>

17 <script>

18 window.user = {{ app.user|serialize('jsonld', {
19 'groups': ['user:read']
20 })lraw }};

21 </script>

$ /7 ... lines 22 - 23

24 </body>

25 </html>

Now, watch what happens when we refresh. Like before, the correct properties on User will be
exposed. But keep an eye on the embedded dragonTreasures property. Woh, it changed!
That was actually wrong before: it was including everything, not just the stuff inside the

user:read group.

Reading_the Dynamic Data from Vue

Ok, let's go use this global variable over in JavaScript: in TreasureConnectApp.vue. Right

now, the user data always starts as null. We can change that to window.user :

assets/vue/controllers/TreasureConnectApp.vue

T /7 ... lines 1 - 26
27 <script setup>
T /7 ... lines 28 - 32

33 defineProps(['entrypoint']);
34 const user = ref(window.user);
$ /7 ... lines 35 - 39

40 </script>

When we refresh... got it!

Next: if you're using Stimulus, an even better way to pass data to JavaScript is to use Stimulus

values.

Chapter 7: Passing Values to Stimulus

Setting a global variable is fine. But if you're using Stimulus, there's a better way. We can pass

server data as a value to a Stimulus controller.

Of course, this is a Vue app. But if you look in templates/main/homepage.html. twig,

we're using the symfony/ux-vue package to render this:

templates/main/homepage.html. twig

$ /7 ... lines 1 - 2
{% block body %}
<div {{ vue_component('TreasureConnectApp', {

1) }I></div>

3
4
5 entrypoint: path('api_entrypoint')
6
7 {% endblock %}

Behind the scenes, that activates a small Stimulus controller that starts & renders the Vue
component. Any arguments that we pass here are sent to the Stimulus controller as a value...
and then forwarded as props to the Vue app. So what we're going to do is "kind of" specific to

Vue, but you could use this strategy to pass values to any Stimulus controller.

First in the Vue component, let's allow a new prop to be passed in called user:

assets/vue/controllers/TreasureConnectApp.vue

$ /7 ... lines 1 - 26

27 <script setup>

$ /7 ... lines 28 - 32

33 const props = defineProps(['entrypoint', 'user'])
$ /7 ... lines 34 - 40

41 </script>

If you're not using Vue, don't worry too much about the specifics. To make sure that's getting

here console.log(props.user).And initialize the data to props.user:

assets/vue/controllers/TreasureConnectApp.vue

? /... lines 1 - 26
27 <script setup>
$ /7 ... lines 28 - 32

33 const props = defineProps(['entrypoint', 'user'])
34 console.log(props.user);

35 const user = ref(props.user);

T /7 ... lines 36 - 40

41 </script>

Next, over in base.html.twig, remove all that fancy window.user stuff:

templates/base.html. twig
1 <!DOCTYPE html>

2 <html>

$ /7 ... lines 3 - 15

16 <body>

17 {% block body %}{% endblock %}
18 </body>

19 </html>

And in homepage.html. twig, pass a new user prop setto app.user:

templates/main/homepage.html. twig

T /7 ... lines 1 - 2

3 {% block body %}

4 <div {{ vue_component('TreasureConnectApp', {
5 entrypoint: path('api_entrypoint'),

6 user: app.user

7 }) }}></div>

8 {% endblock %}

Now if you move over and refresh, that's doesn't work? It looks like we're authenticated as...

nothing?

Serializing Before Passing_in the Value

If you dig a little, you'll see that we're sending the user to Stimulus as empty {}. Why?
Because when you send data into Stimulus, it doesn't use the serializer to transform into JSON:

it just uses json_encode() . And that's not good enough.

So, we need to serialize this ourselves. To do that, open

src/Controller/MainController.php. Here's the controller that renders that template.

Autowire a service called NormalizerInterface and then pass a variable into our template
called userData setto $normalizer->normalize(). Oh, but we need the user! Add
another argument to the controller with the fancy new #[CurrentUser] attribute, type-hint
User, say $user, and then = null in case we're not authenticated. Back down below,
normalization will turn the object into an array. So pass $user and then the format for the
array, which is jsonld: we want all the JSON-LD fields. Finally pass the serialization context

with 'groups' => 'user:read':

src/Controller/MainController.php

T 7/ ... lines 1 - 4
5 wuse App\Entity\User;
$ /7 ... lines 6 - 8

9 use Symfony\Component\Security\Http\Attribute\CurrentUser;

10 use Symfony\Component\Serializer\Normalizer\NormalizerInterface;
11

12 class MainController extends AbstractController

13 {

14 #[Route('/"')]

15 public function homepage(NormalizerInterface $normalizer, #
[CurrentUser] User $user = null): Response

16 {

17 return $this->render('main/homepage.html.twig', [

18 'userData' => $normalizer->normalize($user, 'jsonld',6 [

19 'groups' => ['user:read'],

20 1),

21 1);

22 3}

23 }

Last step! In the template, set that user prop to userData:

templates/main/homepage.html. twig

$ /... lines 1 - 2
3 {% block body %}

4 <div {{ vue_component('TreasureConnectApp', {
$ /... line 5

6 user: userData,

7 }) }i></div>

8 {% endblock %}

Since the Stimulus system will run that array through json_encode() that will transform that
array into JSON. When we move over and refresh.... got it! You can see the entire JSON being

passed into the Stimulus controller... and then that's passed to Vue as a prop.

Spin back over and make sure to get that console.log() out of there:

assets/vue/controllers/TreasureConnectApp.vue

$ /... lines 1 - 26

27 <script setup>

$ /7 ... lines 28 - 33

34 console.log(props.user);
$ // ... lines 35 - 40

41 </script>

CSRF Protection

We haven't actually seen it yet, but when we start making requests to our API, those requests
will be authenticated thanks to the session. When using sessions with your API, you might read

about needing CSRF protection. Do we need CSRF tokens?

The quick answer is: probably not. As long as you use something called SameSite cookies -
which are automatic in Symfony - then your API probably doesn't need to worry about CSRF
protection. But be aware of two things. First, make sure that your GET requests don't have any
side effects. Don't do something silly like allow the API client to make a GET request... but then
you save something to the database. Second, some older browsers - like IE 11 - don't support
SamesSite cookies. So by forgoing CSRF tokens, you could be allowing a small percentage of

your users to be susceptible to CSRF attacks.

If you want to learn more, our API Platform 2 tutorial has a whole chapter on SameSite cookies
and CSREF tokens.

Next, let's turn to the other authentication use-case: API tokens.

https://symfonycasts.com/screencast/api-platform-security/samesite-csrf
https://symfonycasts.com/screencast/api-platform-security/samesite-csrf

Chapter 8: Token Types & The ApiToken Entity

Okay, so what if you need to allow programmatic access to your API?

The Types of Access Tokens

When you talk to an API via code, you send an API token, commonly known as an access

token:

fetch('/api/kittens', {
headers: {
'"Authorization': 'Bearer THE-ACCESS-TOKEN',

¥):

Exactly how you get that token will vary. But there are two main cases.

First, as a user on the site, like a dragon, you want to generate an API token so that you can
personally use it in a script you're writing. This is like a GitHub personal access token. These

are literally created via a web interface. We're going to show this.

The second main use case is when a third party wants to make requests to your APl on behalf
of a user of your system. Like some new site called DragonTreasureOrganizer.com wants
to be able to make an API request to our API on behalf of some of our users - like it will fetch the
treasure's for a user and display them artfully on their site. In this situation, instead of our users
generating tokens manually and then... like... entering them into that site, you'll offer OAuth.
OAuth is basically a mechanism for normal users to securely give access tokens for their
account to a third party. And so, your site, or somewhere in your infrastructure you'll have an

OAuth server.

That's beyond the scope of this tutorial. But the important thing is that after OAuth is done, the
API client wil end up with, you guessed it, an API token! So no matter which journey you're in, if
you're doing programmatic access, your APl users will end up with an access token. And then

your job will be to read and understand that. We'll do exactly that.

JWT vs Database Storage?

So as | mentioned, we're going to show a system where we allow users to generate their own

access tokens. So how do we do that? Again, there are two main ways. Death by choices!

The first is to generate something called a JSSON Web Token or JWT. The cool thing about
JWTs are that no database storage is needed. They're special strings that actually contain info
inside of them. For example, you could create a JWT string that includes the user id and some

scopes.

One downside of JWTs are that there's no easy way to "log out"... because there's no out-of-
the-box way to invalidate JWTs. You give them an expiration when you create them... but then
they're valid until then... no matter what, unless you add some extra complexity... which kinda

defeats the purpose.

JWT's are trendy, popular and fun! But... you may not need them. They're awesome when you
have a single sign-on system because, if that JWT is used to authenticate with multiple systems
or APIs, each API can validate the JWT all on their own: without needing to make an API

request to a central authentication system.

So you might end up using JWTs and there's a great bundle for them called
LexikJWTAuthenticationBundle. JWT's are also the type of access token that OpenlD gives you

in the end.

Instead of JWTs, the second main option is dead simple: generate a random token string and
store it in the database. This also allows you to invalidate access tokens by... just deleting them!

This is what we'll do.

Generating_the Entity

So let's get to work. To store API tokens, we need a new entity! Find your terminal and run:

php ./bin/console make:entity

And let's call it ApiToken. Say no to making this an API resource. In theory, you could allow

users to authenticate via a login form or HTTP basic and then send a POST request to create

API tokens if you want to... but we won't.

Add an ownedBYy property. This is going to be a ManyToOne to User and not nullable. And
I'll say "yes" to the inverse. So the idea is that every User can have many API tokens. When an
API token is used, we want to know which User it's related to. We'll use that during
authentication. Calling the property apiTokens is fine and say no to orphan removal. Next
property: expiresAt, make that a datetime_immutable and I'll say yesto nullable.
Maybe we allow tokens to never expire by leaving this field blank. Next up is token, which will
be a string. I'm going to set the length to 68 - we'll see why in a minute - not nullable. And
finally, add a scopes property as a json type. This is going to be kind of cool: we'll store an
array of "permissions” that this API token should have. Say, not nullable on that one as well.

Hit enter to finish.

All right, spin over to your editor. No surprises: that created an ApiToken entity... and there's

nothing very interesting inside of it:

src/Entity/ApiToken.php

T /...

lines 1 - 2

3 namespace App\Entity;

0 N o O »

use App\Repository\ApiTokenRepository;
use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity(repositoryClass: ApiTokenRepository::class)]

9 class ApiToken

10 {
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

T /...

81 }

#[ORM\Id]
#[ORM\GeneratedValue]
#[ORM\Column]

private ?int $id = null;

#[ORM\ManyToOne (inversedBy: 'apiTokens')]
#[ORM\JoinColumn(nullable: false)]
private ?User $ownedBy = null;

#[ORM\Column(nullable: true)]
private ?\DateTimeImmutable $expiresAt = null;

#[ORM\Column(length: 68)]
private string $token = null;

#[ORM\Column]
private array $scopes = [];
lines 28 - 80

So let's go over and make the migration for it:

symfony console make:migration

Spin over and peek at that file to make sure it looks good. Yup! It creates the api_token table:

migrations/Version20230209183006.php

0
13

14
15
16
17
18
19
20
21
22

23

24

25
26

27

28
29
30
3!
32

33
34
35

36
37
38

// ... lines 1 - 12
final class Version20230209183006 extends AbstractMigration

{

public function getDescription(): string

{
return '';
}
public function up(Schema $schema): void
{
// this up() migration is auto-generated, please modify it to your
needs

$this->addSql('CREATE SEQUENCE api_token_id_seq INCREMENT BY 1
MINVALUE 1 START 1');

$this->addSql('CREATE TABLE api_token (id INT NOT NULL,
owned_by_id INT NOT NULL, expires_at TIMESTAMP(©) WITHOUT TIME ZONE
DEFAULT NULL, token VARCHAR(68) NOT NULL, scopes JSON NOT NULL, PRIMARY
KEY(id))');

$this->addSql('CREATE INDEX IDX_7BA2F5EBSE70BCD7 ON api_token
(owned_by_id)");

$this->addSql('COMMENT ON COLUMN api_token.expires_at IS
\'(DC2Type:datetime_immutable)\'");

$this->addSgl('ALTER TABLE api_token ADD CONSTRAINT
FK_7BA2F5EB5E70BCD7 FOREIGN KEY (owned_by_id) REFERENCES "user" (id) NOT
DEFERRABLE INITIALLY IMMEDIATE');

¥

public function down(Schema $schema): void

{

// this down() migration is auto-generated, please modify it to
your needs

$this->addSqgl('CREATE SCHEMA public');

$this->addSqgl('DROP SEQUENCE api_token_id_seq CASCADE');

$this->addSql('ALTER TABLE api_token DROP CONSTRAINT
FK_7BA2F5EB5E70BCD7 ") ;

$this->addSgl('DROP TABLE api_token');

Run that with:

symfony console doctrine:migrations:migrate

And... awesome! Next: let's add a way to generate the random token string. Then, we'll talk

about scopes and load up our fixtures with some API tokens.

Chapter 9: Generating the API Token & Fixtures

The most important property on ApiToken is the token string... which needs to be something

random. Create a construct method with a string $tokenType argument:

src/Entity/ApiToken.php

? /... lines 1 - 8

9 class ApiToken

10 {

$ /... lines 11 - 30

31 public function __construct(string $tokenType =

self::PERSONAL_ACCESS_TOKEN_PREFIX)

32 {

$ // ... line 33
34 3}

T /7 ... lines 35 - 87
88 }

This isn't mandatory, but GitHub has caught onto something neat - since they have different
types of tokens, like personal access tokens and OAuth tokens - they give each token type its

own prefix. It just helps figure out where each comes from.

We're only going to have one type, but we'll follow the idea. On top, to store the type prefix, add
private const PERSONAL_ACCESS_TOKEN_PREFIX = 'tcp_':

src/Entity/ApiToken.php

$ /7 ... lines 1 - 8

9 class ApiToken

10 {

11 private const PERSONAL_ACCESS_TOKEN_PREFIX = 'tcp_';
$ /7 ... lines 12 - 87

88 }

... just made up that prefix. Our site is called Treasure Connect... and this is a personal access

token, so tcp_.

Below, for string $tokenType = defaultitto
self: :PERSONAL_ACCESS_TOKEN_PREFIX:

src/Entity/ApiToken.php

? /... lines 1 - 8

9 class ApiToken

10 {

T /7 ... lines 11 - 30

31 public function __construct(string $tokenType =

self::PERSONAL_ACCESS_TOKEN_PREFIX)

32 {

$ // ... line 33
34 }

$ /7 ... lines 35 - 87
88 1}

@ Tip

For stronger security, avoid storing the plaintext token in the database. This is a bit more

technical but you can find details at https://symfonycasts.com/api-token-hashed.

For the token itself, say $this->token = $tokenType. and then I'll use some code that

will generate a random string that's 64 characters long:

src/Entity/ApiToken.php

$ /7 ... lines 1 - 8

9 class ApiToken

10 {

$ /... lines 11 - 30

31 public function __ construct(string $tokenType =

self::PERSONAL_ACCESS_TOKEN_PREFIX)

32 {
33 $this->token = $tokenType.bin2hex(random_bytes(32));
34 3}

T 7/ ... lines 35 - 87
88 }

So that's 64 characters here plus the 4 character prefix equals 68. That's why | chose that
length. And because we're setting the $token in the constructor, this doesn't need to = null

or be nullable anymore. It will always be a string.

Setting_up the Fixtures

OkK! This is set up! So let's add some API tokens to the database. At your terminal, run

https://symfonycasts.com/api-token-hashed

php ./bin/console make:factory

SO we can generate a Foundry factory for ApiToken. Go check out the new class:

src/Factory/ApiTokenFactory.php. Downin getDefaults():

src/Factory/ApiTokenFactory.php

$ /7 ... lines 1 - 29

30 final class ApiTokenFactory extends ModelFactory
31 {

$ 7/ ... lines 32 - 46

47 protected function getDefaults(): array

48 {

49 return [

50 'ownedBy' => UserFactory::new(),

51 'scopes' => [],

52 "token' => self::faker()->text(64),
53 1;

54 }

T 7/ ... lines 55 - 69

70 }

This looks mostly fine, though we don't need to pass in the token. Oh, and | want to tweak the

Scopes:
$ // ... lines 1 - 29
30 final class ApiTokenFactory extends ModelFactory
31 {
$ /7 ... lines 32 - 46
47 protected function getDefaults(): array
48 {
49 return [
50 'ownedBy' => UserFactory::new(),
51 'scopes' => [
$ /7 ... lines 52 - 53
54 1,
55 1;
56 }
$ /7 ... lines 57 - 71
72}

Typically, when you create an access token - whether it's a personal access token or one

created through OAuth - you're able to choose which permissions that token will have: it does

not automatically have all the permissions that a normal user would. | want to add that into our

system as well.

Back over in ApiToken, at the top, after the first constant, I'll paste in a few more:

src/Entity/ApiToken.php

$ /7 ... lines 1 - 8

9 class ApiToken

10 {

$ /7 ... lines 11 - 12

13 public const SCOPE_USER_EDIT = 'ROLE_USER_EDIT';

14 public const SCOPE_TREASURE_CREATE = 'ROLE_TREASURE_CREATE';
15 public const SCOPE_TREASURE_EDIT = 'ROLE_TREASURE_EDIT';

$ /7 ... lines 16 - 97

98 1}

This defines three different scopes that a token can have. This isn't all the scopes we could
imagine, but it's enough to make things realistic. So, when you create a token, you can choose
whether that token should have permission to edit user data, or whether it can create treasures
on behalf of the user or whether it can edit treasures on behalf of the user. | also added a

public const SCOPES to describes them:

src/Entity/ApiToken.php

$ /7 ... lines 1 - 8

9 class ApiToken

10 {

$ /7 ... lines 11 - 16

17 public const SCOPES = [

18 self::SCOPE_USER_EDIT => 'Edit User',

19 self::SCOPE_TREASURE_CREATE => 'Create Treasures',
20 self::SCOPE_TREASURE_EDIT => 'Edit Treasures',
21 1;

$ /7 ... lines 22 - 97

98 }

Back over in our ApiTokenFactory, let's, by default, give each ApiToken two of those three

scopes:

src/Factory/ApiTokenFactory.php

? /... lines 1 - 29

30 final class ApiTokenFactory extends ModelFactory
L[4

$ // ... lines 32 - 46

47 protected function getDefaults(): array

48 {

49 return [

50 'ownedBy' => UserFactory::new(),

51 'scopes' => [

52 ApiToken: :SCOPE_TREASURE_CREATE,
53 ApiToken: :SCOPE_USER_EDIT,

54 1,

55 1;

56 3

$ /7 ... lines 57 - 71

72}

Ok! ApiTokenFactory is ready. Last step: open AppFixtures so we can create some
ApiToken fixtures. | want to make sure that, in our dummy data, each user has at least one or
two API tokens. An easy way to do that, down here is to say

ApiTokenFactory: :createMany(). Since we have 10 users, let's create 30 tokens. Then
pass that a callback function and, inside, return an override for the default data. We're going to

override the ownedBy to be UserFactory: :random():

src/DataFixtures/AppFixtures.php

? // ... lines 1 - 4

5 wuse App\Factory\ApiTokenFactory;

T /7 ... lines 6 - 10

11 class AppFixtures extends Fixture

12 {

13 public function load(ObjectManager $manager): void
14 {

$ /... lines 15 - 26
27 ApiTokenFactory::createMany (30, function () {
28 return [
29 'ownedBy' => UserFactory::random(),
30 1;
31 1)
32 3
33| I

So this will create 30 tokens and assign them randomly to the 10, well really 11, users in the

database. So on average, each user should have about three API tokens assigned to them. I'm

doing this because, to keep life simple, we're not going to build a user interface where the user
can actually click and create access tokens and select scopes. We're going to skip all that.
Instead, since every user will already have some API tokens in the database, we can jump

straight to learning how to read and validate those tokens.

Reload the fixtures with:

symfony console doctrine:fixtures:load

Showing_the Tokens on the Frontend

And... beautiful! But since we're not going to build an interface for creating tokens, we at least
need an easy way to see the tokens for a user... so we can test them in our APIl. When we're

authenticated, we can show them right here.

This isn't a very important detail, so I'll do it real quick. Over in User, at the bottom, I'll paste in

a function that returns an array of the valid API token strings for this user:

src/Entity/User.php

$ /7 ... lines 1 - 38
39 class User implements UserInterface, PasswordAuthenticatedUserInterface
40 {
T /7 ... lines 41 - 222
223 /**
224 * @return string[]
225 */
226 public function getValidTokenStrings(): array
227 {
228 return $this->getApiTokens()
229 ->filter (fn (ApiToken $token) => $token->isValid())
230 ->map(fn (ApiToken $token) => $token->getToken())
231 ->toArray()
232 ;
233 3
234 }

In ApiToken, we also need an isValid() method... so I'll paste that as well:

src/Entity/ApiToken.php

? /... lines 1 - 8

9 class ApiToken

10 {

T /7 ... lines 11 - 98

99 public function isValid(): bool
100 {
101 return $this->expiresAt === null || $this->expiresAt > new

\DateTimeImmutable();

102 }
103 }

You can get all of this from the code blocks on this page.

Next, open up assets/vue/controllers/TreasureConnectApp.vue... and add a new

prop that can be passed in: tokens:

assets/vue/controllers/TreasureConnectApp.vue

? /... lines 1 - 34
35 <script setup>
$ // ... lines 36 - 40

41 const props = defineProps(['entrypoint', ‘'user', 'tokens'])
$ /7 ... lines 42 - 47
48 </script>

Thanks to that, we'll have a new tokens variable in the template. After the "Log Out" link, I'll

paste in some code that renders those:

assets/vue/controllers/TreasureConnectApp.vue

1 <template>

2 <div class="purple flex flex-col min-h-screen">

$ /7 ... lines 3 - 5

6 <div class="flex-auto flex flex-col sm:flex-row justify-center px-

8'">

7 <LoginForm

8 v-on:user-authenticated="onUserAuthenticated"></LoginForm>

9 <div

10 class="book shadow-md rounded sm:ml-3 px-8 pt-8 pb-8 mb-4
sm:w-1/2 md:w-1/3 text-center'">

11 <div v-if="user">

$ /7 ... lines 12 - 13

14 | Log out

15

16 <h3 class="text-left font-semibold mt-2">Tokens</h3>

17 <div v-if="npull === tokens">Refresh to see tokens...
</div>

18 <dl v-else class="text-left max-w-md text-gray-900
divide-y divide-gray-200 dark:divide-gray-700">

19 <div class="flex flex-col py-3" v-for="token in
tokens" :key="token">

20 <dd class="text-xs whitespace-normal break-
words">{{ token }}</dd>

21 </div>

22 </dl>

23 </div>

$ /... lines 24 - 28

29 </div>

30 </div>

$ /... line 31

32 </div>

33 </template>

$ /7 ... lines 34 - 49

Last step: open templates/main/homepage.html.twig. This is where we're passing
props to our Vue app. Pass a new one called tokens set to, if app.user, then

app.user.validTokenStrings, else null:

templates/main/homepage.html. twig

? /... lines 1 - 2
3 {% block body %}

4 <div {{ vue_component('TreasureConnectApp', {

$ // ... lines 5 - 6

7 tokens: app.user ? app.user.validTokenStrings : null
8 }) }}></div>

9 {% endblock %}

Let's try this! If we refresh, right now we are not logged in. Use our cheater links to log in. Notice
that it doesn't show them immediately... we could improve our code to do that... but it's not a big

deal. Refresh and... there they are! We have two tokens!

Next: let's write a system so that can read these tokens and authenticate the user instead of

using session authentication.

Chapter 10: Access Token Authenticator

To authenticate with a token, an API client will send an Authorization header set to the

word Bearer then the token string... which is just a standard practice:

$client->request('GET', '/api/treasures', [
"headers' => [
"Authorization' => 'Bearer TOKEN',

1,
1);

Then something in our app will read that header, make sure the token is valid, authenticate the

user and throw a big party to celebrate.

Activating_access_token

Fortunately, Symfony has the perfect system just for this! Spin over and open up

config/packages/security.yaml. Anywhere under your firewall add access_token:

config/packages/security.yaml

1 security:

T /7 ... lines 2 - 11

12 firewalls:

$ /... lines 13 - 15

16 main:

$ /7 ... lines 17 - 24

25 access_token:
$ // ... lines 26 - 52

This activates a listener that will watch every request to see if it has an Authorization

header. If it does, it will read that and try to authenticate the user.

Though, it requires a helper class... because even though it knows where to find the token on
the request... it has no idea what to do with! It doesn't know if it's a JWT that it should decode...

or, in our case, that it can query the database for the matching record. So, to help it, add a

token_handler option set to the id of a service we'll create:

App\Security\ApiTokenHandler :

config/packages/security.yaml

1 security:

T /7 ... lines 2 - 11

12 firewalls:

? /... lines 13 - 15

16 main:

$ /7 ... lines 17 - 24

25 access_token:

26 token_handler: App\Security\ApiTokenHandler
$ /7 ... lines 27 - 52

Stateless Firewall

By the way, if your security system only allows authentication via an API token, then you don't
need session storage. In that case, you can set a stateless: true flag that tells the
security system that when a user authenticates, not to bother storing the user info in the
session. I'm going to remove that, because we do have a way to log in that relies on the

session.

The Token Handler Class

Ok, let's go create that handler class. In the src/ directory create a new sub-directory called
Security/ and inside of that a new PHP class called ApiTokenHandler. Thisis a
beautifully simple class. Make it implement AccessTokenHandlerInterface and then go to
"Code"->"Generate" or Command+N on a Mac and select "Implement Methods" to generate the

one we need: getUserBadgeFrom():

src/Security/ApiTokenHandler .php

? /... lines 1 - 2

3 namespace App\Security;

4

5 use

Symfony\Component\Security\Http\AccessToken\AccessTokenHandlerInterface;

6 use
Symfony\Component\Security\Http\Authenticator\Passport\Badge\UserBadge;

7
8 class ApiTokenHandler implements AccessTokenHandlerInterface
9 {

10 public function getUserBadgeFrom(#[\SensitiveParameter] string

$accessToken): UserBadge

11 {

12 // TODO: Implement getUserBadgeFrom() method.

13 3

14 3}

The access_token system knows how to find the token: it knows it will live on an
Authorization header with the word Bearer in front of it. So it grabs that string then calls
getUserBadgeFrom() and passes it to us. By the way this #[\SensitiveParameter]
attribute is new feature in PHP. It's cool, but not important: it just makes sure that if an exception

is thrown, this value won't be shown in the stacktrace.

Our job here is to query the database using the $accessToken and then return which user it
relates to. To do that, we need the ApiTokenRepository!Add a construct method with a

private ApiTokenRepository $apiTokenRepository argument:

src/Security/ApiTokenHandler .php

? // ... lines 1 - 4
5 use App\Repository\ApiTokenRepository;
$ /7 ... lines 6 - 9

10 class ApiTokenHandler implements AccessTokenHandlerInterface
11 {

12 public function __construct(private ApiTokenRepository
$apiTokenRepository)

13 {

14 }

$ /7 ... lines 15 - 25

26 }

Below, say $token = $this->apiTokenRepository and then call findOneBy ()

passing it an array, so it will query where the token field equals $accessToken:

src/Security/ApiTokenHandler .php

0
10

11

0
16

17
18

0
25
26

// ... lines 1 - 9

class ApiTokenHandler implements AccessTokenHandlerInterface
{

// ... lines 12 - 15

public function getUserBadgeFrom(#[\SensitiveParameter] string
$accessToken): UserBadge

{
$token = $this->apiTokenRepository->findOneBy(['token' =>
$accessToken]);
// ... lines 19 - 24

If authentication should fail for any reason, we need to throw a type of security exception. For

example, if the token doesn't exist, throw a new BadCredentialsException: the one from

Symfony components:

src/Security/ApiTokenHandler.php

0
6

0
10
11

0
16

17
18

19
20
21
22

0
25
26

// ... lines 1 - 5

use Symfony\Component\Security\Core\Exception\BadCredentialsException;
// ... lines 7 - 9

class ApiTokenHandler implements AccessTokenHandlerInterface

{

// ... lines 12 - 15

public function getUserBadgeFrom(#[\SensitiveParameter] string
$accessToken): UserBadge

{
$token = $this->apiTokenRepository->findOneBy(['token' =>
$accessToken]);

if (!'$token) {
throw new BadCredentialsException();

}
// ... lines 23 - 24

That will cause authentication to fail... but we don't need to pass a message. This will return a

"Bad Credentials.”" message to the user.

At this point, we have found the ApiToken entity. But, ultimately our security system wants to

authenticate a user... not an "API Token". We do that by returning a UserBadge that, sort of,

wraps the User object. Watch: return a new UserBadge() . The first argument is the "user

identifier". Pass $token->getOwnedBy () to get the User and then

->getUserIdentifier():

src/Security/ApiTokenHandler.php

T /7 ... lines 1 - 7
8 use
Symfony\Component\Security\Http\Authenticator\Passport\Badge\UserBadge;

10 class ApiTokenHandler implements AccessTokenHandlerInterface

11 {

? /... lines 12 - 15

16 public function getUserBadgeFrom(#[\SensitiveParameter] string
$accessToken): UserBadge

17 {

$ /7 ... lines 18 - 23

24 return new UserBadge($token->getOwnedBy()->getUserIdentifier());

25 3}

26 }

How the User Object is Loaded

Notice that we're not actually returning the User object. That's mostly because... we don't need
to! Let me explain. Hold Command or Ctrl and click getUserIdentifier (). What this
really returns is the user's email. So we're returning a UserBadge with the user's email
inside. What happens next is the same thing that happens when we send an email to the
json_login authentication endpoint. Symfony's security system takes that email and,
because we have this user provider, it knows to query the database for a User with that

email.

So it's going to query the database again for the User via the email... which is a bit
unnecessary, but fine. If you want to avoid that, you could pass a callable to the second

argument and return $token->getOwnedBy() . But this will work fine as it is.

Oh, and it's probably a good idea to check and make sure the token is valid! If not
$token->isValid(), then we could throw another BadCredentialsException. But if
you want to customize the message, you can also throw a new
CustomUserMessageAuthenticationException with "Token expired" to return that

message to the user:

src/Security/ApiTokenHandler .php

? // ... lines 1 - 6

7 use
Symfony\Component\Security\Core\Exception\CustomUserMessageAuthenticationExc

? /... lines 8 - 106
11 class ApiTokenHandler implements AccessTokenHandlerInterface

12 {

$ /... lines 13 - 16

17 public function getUserBadgeFrom(#[\SensitiveParameter] string
$accessToken): UserBadge

18 {

? // ... lines 19 - 24

25 if (!$token->isvalid()) {

26 throw new CustomUserMessageAuthenticationException('Token
expired');

27 3}

28

29 return new UserBadge($token->getOwnedBy()->getUserIdentifier());

30 3

31 }

Using_the Token in Swagger?

And... done! So... how do we try this? Well, ideally we could try it in our Swagger docs. I'm
going to open a new tab... then log out. But I'll keep my original tab open... so | can steal these

valid tokens!

Head to the API docs. How can we tell this interface to send an API token when it makes the
requests? Well you may have noticed an "Authorize" button. But when we click it... it's empty!
That's because we haven't, yet, told Open API how users are able to authenticate. Fortunately

we can do this via API Platform.

Open up config/packages/api_platform.yaml. And a new key called swagger, though
we're actually configuring the OpenAPI docs. To add a new way of authenticating, set
api_keys to activate that type, then access_token... which can be anything you want.
Below this, give this authentication mechanism a name... and type: header because we

want to pass the token as a header:

config/packages/api_platform.yaml

1 api_platform:

$ /7 ... lines 2 - 7

8 swagger:

9 api_keys:

10 access_token:

11 name: Authorization
12 type: header

$ /... lines 13 - 18

This will tell Swagger - via our OpenAPI docs - that we can send API tokens via the
Authorization header. Now when we click the "Authorize" button... yea! It says "Name:

Authorization", "In Header".

To use this, we need to start with the word Bearer then a space... because it doesn't fill that in
for us. More on that in a minute. Let's first try an invalid token. Hit "Authorize". That didn't

actually make any requests yet: it just stored the token in JavaScript.

Let's try the get treasure collection endpoint. When we execute... awesome! A 401! We don't
need to be authenticated to use this endpoint, but because we passed an Authorization
header with Bearer and then a token, the new access_token system caught that, passed
the string to our handler... but then we couldn't find a matching token in the database, so we

threw the BadCredentialsException

You can see it down here: the API returned an empty response, but with a header containing

invalid_token and error_description: "Invalid credentials.".

Checking_the Token Authentication is Working

So the bad case is working. Let's try the happy case! In the other tab, copy one of the valid
tokens. Then slide back up, hit "Authorize", then "Log out". Logging out just means that it
"forgets"” the API token we set a minute ago. Re-type Bearer , paste, hit "Authorize", close...

and let's go down and try this endpoint again. And... woohoo! A 200!

So it seems like that worked... but how can we tell? Whelp, down on the web debug toolbar,
click to open the profiler for that request. On the Security tab... yes! We're logged in as Bernie.

Success!

The only thing | don't like is needing to type that Bearer string in the authorization box. That's
not super user-friendly. So next, let's fix that by learning how we can customize the OpenAPI

spec document that Swagger uses.

Chapter 11: Customizing the OpenAPI Docs

To use API tokens in Swagger, we need to type the word "Bearer" and then the token. Lame!

Especially if we intend for this to be used by real users. So how can we fix that?

The OpenAPl Spec is the Key

Remember that Swagger is entirely generated from the OpenAPI spec document that API
Platform builds. You can see this document either by viewing the page source - you can see it
all right there - or by going to /api/docs. json. A few minutes ago, we added some config to

API Platform called Authorization:

config/packages/api_platform.yaml

1 api_platform:

$ /7 ... lines 2 - 7

8 swagger:

9 api_keys:

10 access_token:

11 name: Authorization
12 type: header

$ /... lines 13 - 18

The end result is that it added these security sections down here. Yup, it's that simple: this
config triggered these new sections in this JISON document: nothing else. Swagger then reads

that and knows to make this "Authorization" available.

So | did some digging directly on the OpenAPI site and | found out that it does have a way to
define an authentication scheme where you do not need to pass the "Bearer" part manually.
Unfortunately, unless I'm missing it, API Platform's config does not support adding that. So are

we done for? No way! And for an awesome reason.

Creating_our OpenApiFactory

To create this JISON document, internally, API Platform creates an OpenApi object, populates

all this data onto it and then sends it through Symfony's serializer. This is important because we

can tweak the OpenApi object before it goes through the serializer. How? The OpenApi

object is created via a core OpenApiFactory... and we can decorate that.

Check it out: over in the src/ directory, create a new directory called ApiPlatform/... and
inside, a new PHP class called OpenApiFactoryDecorator. Make this implement
OpenApiFactoryInterface. Then go to "Code"->"Generate" or Command+N on a Mac to

implement the one method we need: __invoke():

src/ApiPlatform/OpenApiFactoryDecorator.php

T /7 ... lines 1 - 2
namespace App\ApiPlatform;

use ApiPlatform\OpenApi\Factory\OpenApiFactoryInterface;
use ApiPlatform\OpenApi\OpenApi;

class OpenApiFactoryDecorator implements OpenApiFactoryInterface
{

10 public function __invoke(array $context = []): OpenApi

11 {

12 // TODO: Implement __invoke() method.

13 }

14 }

© 00 N o 0o b~ W

Hello Service Decoration!

Right now, a core OpenApiFactory service exists in APl Platform that creates the OpenApi
object with all this data on it. Here's our sneaky plan: we're going to tell Symfony to use our new
class as the OpenApiFactory instead of the core one. But... we definitely do not want to re-
implement all of the core logic. To avoid that, we'll also tell Symfony to pass us the original, core

OpenApiFactory.

You might be familiar with what we're doing. It's class decoration: an object-oriented strategy for

extending classes. It's really easy to do in Symfony and API Platform leverages it a lot.

Whenever you do decoration, you will always create a constructor that accepts the interface that
you're decorating. So OpenApiFactoryInterface. I'll call this $decorated. Oh, and let me

put private in front of that:

src/ApiPlatform/OpenApiFactoryDecorator.php

? /... lines 1 - 4
5 use ApiPlatform\OpenApi\Factory\OpenApiFactoryInterface;
$ /7 ... lines 6 - 9

10 class OpenApiFactoryDecorator implements OpenApiFactoryInterface
11 {

12 public function __construct(private OpenApiFactoryInterface
$decorated)
13 {
14 }
T 7/ ... lines 15 - 23
24 }
Perfect.

Down here, to start, say $openApi = $this->decorated and then call the __invoke()

method passing the same argument: $context:

src/ApiPlatform/OpenApiFactoryDecorator.php

$ /7 ... lines 1 - 9

10 class OpenApiFactoryDecorator implements OpenApiFactoryInterface
11 {

t /7 ... lines 12 - 15

16 public function __invoke(array $context = []): OpenApi

17 {

18 $openApi = $this->decorated->__invoke($context);

t /7 ... lines 19 - 22

23 3

24 }

That will call the core factory which will do all the hard work of creating the full OpenApi object.

Down here, return that:

src/ApiPlatform/OpenApiFactoryDecorator.php

$ /7 ... lines 1 - 9

10 class OpenApiFactoryDecorator implements OpenApiFactoryInterface
11 {

$ /... lines 12 - 15

16 public function __invoke(array $context = []): OpenApi

17 {

18 $openApi = $this->decorated->__invoke($context);

? /... lines 19 - 21

22 return $openApi;

23 }

And in between? Yup, that's where we can mess with things! To make sure this is working, for

now, just dump the $openApi object:

src/ApiPlatform/OpenApiFactoryDecorator.php

T /7 ... lines 1 - 9

10 class OpenApiFactoryDecorator implements OpenApiFactoryInterface
11 {

t 7/ ... lines 12 - 15

16 public function __invoke(array $context = []): OpenApi
17 {

18 $openApi = $this->decorated->__invoke($context);
19

20 dump ($openApi);

21

22 return $openApi;

23 }

24 }

The #[AsDecorator] Attribute

At this moment, from an object-oriented point of view, this class is set up correctly for
decoration. But Symfony's container is still set up to use the normal OpenApiFactory: it's not
going to use our new service at all. We somehow need to tell the container that, first, the core
OpenApiFactory service should be replaced by our service, and second, that the original

core service should be passed to us.

How can we do that? Above the class, add an attribute called #[AsDecorator] and hit tab to
add that use statement. Pass this the service id of the original, core OpenApiFactory. You
can do some digging to find this or usually the documentation will tell you. API platform actually
documents decorating this service, so right in their docs, you'll find that the service id is

api_platform.openapi.factory:

src/ApiPlatform/OpenApiFactoryDecorator.php

$ /7 ... lines 1 - 6

7 use Symfony\Component\DependencyInjection\Attribute\AsDecorator;
8

9 #[AsDecorator('api_platform.openapi.factory')]
10 class OpenApiFactoryDecorator implements OpenApiFactoryInterface
11 {

? /... lines 12 - 23
24 }

That's it! Thanks to this, anyone that was previously using the core
api_platform.openapi.factory service will receive our service instead. But the original

one will be passed to us.

So... it should be working! To test it, head to the APl homepage and refresh. Yes! When this
page loads, it renders the OpenAPIl JSON document in the background. The dump in the web
debug toolbar proves that it hit our code! And check out that beautiful OpenApi object: it has
everything including security, which matches what we saw in the JSON. So now, we can

tweak that!

Customizing_the OpenAPI Config

The code I'll put here is a bit specific to the OpenApi object and the exact config that | know we

need in the final Open API JSON:

src/ApiPlatform/OpenApiFactoryDecorator.php

T /7 ... lines 1 - 9
10 #[AsDecorator('api_platform.openapi.factory')]
11 class OpenApiFactoryDecorator implements OpenApiFactoryInterface

12 {

$ /7 ... lines 13 - 16

17 public function __invoke(array $context = []): OpenApi

18 {

19 $openApi = $this->decorated->__invoke($context);

20

21 $securitySchemes = $openApi->getComponents()->getSecuritySchemes()
?: new \ArrayObject();

$ /7 ... lines 22 - 26

27 return $openApi;

28 }

29 }

We fetch the $securitySchemes, and then override access_token. This matches the
name we used in the config. Set that to a new SecurityScheme() object with two named

arguments: type: 'http' and scheme: 'bearer':

src/ApiPlatform/OpenApiFactoryDecorator.php

? /... lines 1 - 5
6 use ApiPlatform\OpenApi\Model\SecurityScheme;
T 7/ ... lines 7 - 9

10 #[AsDecorator('api_platform.openapi.factory')]
11 class OpenApiFactoryDecorator implements OpenApiFactoryInterface

12 {

$ /7 ... lines 13 - 16

17 public function __invoke(array $context = []): OpenApi

18 {

19 $openApi = $this->decorated->__invoke($context);

20

21 $securitySchemes = $openApi->getComponents()->getSecuritySchemes()
?: new \ArrayObject();

22 $securitySchemes['access_token'] = new SecurityScheme (

23 type: 'http',

24 scheme: 'bearer',

25)i

26

27 return $openApi;

28 3

29 }

That's it! First refresh the raw JSON document so we can see what this looks like. Let me

search for "Bearer". There we go! We modified what the JSON looks like!

What does Swagger think about this new config? Refresh and hit "Authorize". Ok cool:
access_token, http, Bearer. Go steal an API token... paste without saying Bearer first
and hit "Authorize". Let's test the same endpoint. Whoops, | need to hit "Try it out". And...
gorgeous! Look at that Authorization header! It passed Bearer for us. Mission

accomplished.

By the way, you might think, because we're completely overriding the access_token config,
that we could just delete it from api_platform.yaml. Unfortunately, for subtle reasons that
have to do with how the security documentation is generated, we do still need this. But I'll say

overridden in OpenApiFactoryDecorator:

config/packages/api_platform.yaml

1 api_platform:

$ /7 ... lines 2 - 7

8 swagger:

9 api_keys:
10 # overridden in OpenApiFactoryDecorator
11 access_token:

$ /7 ... lines 12 - 19

This was just one example of how you could extend your Open API spec doc. But if you ever

need to tweak something else, now you know how.

Next, let's talk about scopes.

Chapter 12: APl Token Scopes

Each ApiToken has an array of scopes, though we're not using that yet. The idea is cool:
when a token is created, you can select which permissions it has. Like maybe a token gives the
permission to create new treasures but not edit existing treasures. To allow that, we're going to

map the scopes of a token to roles in Symfony.

How are Roles Loaded Now?

Right now in ApiTokenHandler, we're basically returning the user... and then the system
authenticates fully as that user. This means we get whatever roles are on that User object.
How could we change that so that we authenticate as this user... but with a different set of

roles? A set based on the scopes from the token?

We're using the access_token security system. Hit Shift+Shift and open a core class
called AccessTokenAuthenticator. This is cool: it's the actual code behind that
authentication system! For example, this is where it grabs the token off of the request and calls

our token handler's getUserBadgeFrom() method.

The roles the user will have are also determined here: down inside createToken(). The
"token" is, sort of, a "wrapper" around the User object in the security system. And this is where
we pass it the roles it should have. As you can see, no matter what, the roles will be
$passport->getUser()->getRoles() . In other words, we always get the roles by calling

getRoles() onthe User class... which just returns the roles property.

Setting_up the Custom Roles System

So there's no great hook point. We could create a custom authenticator class and implement
our own createToken() method. But that's a bummer because we would need to completely

reimplement the logic form this authenticator class. So, instead we can... kind of cheat.

Start in User . Scroll up to the top where we have our properties. Add a new one:

private ?array called $accessTokenScopes and initialize it to null:

src/Entity/User.php

$ /7 ... lines 1 - 38

39 class User implements UserInterface, PasswordAuthenticatedUserInterface
40 {

$ /7 ... lines 41 - 54

55 /* Scopes given during API authentication */

56 private ?array $accessTokenScopes = null;

$ /7 ... lines 57 - 248
249 1}

Notice that this is not a persisted column. It's just a place to temporarily store the scopes that
the user should have. Next, down at the bottom add a new public method called
markAsTokenAuthenticated() with an array $scopes argument. We're going to call

this during authentication. Inside, say $this->accessTokenScopes = $scopes:

src/Entity/User.php

$ /7 ... lines 1 - 38
39 class User implements UserInterface, PasswordAuthenticatedUserInterface
40 {
$ /7 ... lines 41 - 244
245 public function markAsTokenAuthenticated(array $scopes)
246 {
247 $this->accessTokenScopes = $scopes;
248 }
249 }

Here's where things get interesting. Search for the getRoles() method. We know that, no
matter what, Symfony will call this during authentication and whatever this returns, that's the

roles the user will have. We're going to "sneak in" our scope roles.

First if the $accessTokenScopes property is null, that means we're logging in as a normal
user. In this case, set $roles to $this->roles so that we get all the $roles on the User.

Then add an extra role called ROLE_FULL_USER:

src/Entity/User.php

$ /7 ... lines 1 - 38
39 class User implements UserInterface, PasswordAuthenticatedUserInterface
40 {
$ /7 ... lines 41 - 113
114 public function getRoles(): array
115 {
116 if (null === $this->accessTokenScopes) {
117 // logged in via the full user mechanism
118 $roles = $this->roles;
119 $roles[] = 'ROLE_FULL_USER';
120 } else {
T /7 ... line 121
122 }
$ /7 ... lines 123 - 127
128 }
$ /7 ... lines 129 - 248
249 }

We'll talk about that in a minute.

Else, if we did log in via an access token, say $roles = $this->accessTokenScopes:

src/Entity/User.php

? /... lines 1 - 38
39 class User implements UserInterface, PasswordAuthenticatedUserInterface
40 {
$ /7 ... lines 41 - 113
114 public function getRoles(): array
115 {
116 if (null === $this->accessTokenScopes) {
117 // logged in via the full user mechanism
118 $roles = $this->roles;
119 $roles[] = '"ROLE_FULL_USER';
120 } else {
121 $roles = $this->accessTokenScopes;
122 }
$ /7 ... lines 123 - 127
128 }
$ /7 ... lines 129 - 248
249 }

And, in both cases, make sure that we always have ROLE_USER:

src/Entity/User.php

0
39

40
0
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
0
249

// ... lines 1 - 38
class User implements UserInterface, PasswordAuthenticatedUserInterface
{
// ... lines 41 - 113
public function getRoles(): array
{
if (null === $this->accessTokenScopes) {
// logged in via the full user mechanism
$roles = $this->roles;
$roles[] = '"ROLE_FULL_USER';
} else {
$roles = $this->accessTokenScopes;

// guarantee every user at least has ROLE_USER

$roles[] = 'ROLE_USER';

return array_unique($roles);

// ... lines 129 - 248
}

With this in place, head over to ApiTokenHandler . Right before we return UserBadge, add

$token->getOwnedBy () ->markAsTokenAuthenticated() and pass

$token->getScopes():

src/Security/ApiTokenHandler .php

0
11

12

0
17

18

0
29

30
31
32
33

// ... lines 1 - 10

class ApiTokenHandler implements AccessTokenHandlerInterface
{

// ... lines 13 - 16

public function getUserBadgeFrom(#[\SensitiveParameter] string
$accessToken): UserBadge

{
// ... lines 19 - 28

$token->getOwnedBy()->markAsTokenAuthenticated($token-
>getScopes());

return new UserBadge($token->getOwnedBy()->getUserIdentifier());

Done! Let's take it for a test drive! Back over on Swagger, it already has our API token... so we

can just re-execute the request. Cool: we see the Authorization header. Did it authenticate

with the correct scopes?

Click to open the profiler for that request... and head down to "Security". It did! Look: we're
logged in as that user, but with ROLE_USER, ROLE_USER_EDIT and
ROLE_TREASURE_CREATE: the two scopes from the token. But if we were to log in via the login
form, instead of these scopes, we would have whatever roles the user normally has, plus
ROLE_FULL_USER.

Giving_Normal Users sudo Access with role hierarchy

In the next chapter, we'll use these roles to protect different APl operations. For example, to use
the POST treasures endpoint, we'll require ROLE_TREASURE_CREATE . But we also need to
make sure that if a user logs in via the login form, they can still use this operation, even though

they won't have that exact role. That is where ROLE_FULL_USER comes in handy.

Open config/packages/security.yaml and, anywhere, add role_hierarchy... |
recommend spelling it correctly. Say ROLE_FULL_USER. So, if you're logged in as a full user,
we're going to give you all possible scopes that a token could have. Copy the three scope roles:
ROLE_USER_EDIT, ROLE_TREASURE_CREATE and ROLE_TREASURE_EDIT:

config/packages/security.yaml

1 security:

? /... lines 2 - 12

13 role_hierarchy:

14 ROLE_FULL_USER: [ROLE_USER_EDIT, ROLE_TREASURE_CREATE,
ROLE_TREASURE_EDIT]

$ // ... lines 15 - 56

We do need to be careful to make sure that if we add more scopes, we add them here too.

Thanks to this, if we protect something by requiring ROLE_USER_EDIT, users that are logged

in via the login form will have access.

Ok team, we are done with authentication! Woo! Next, let's start into "authorization" by learning

how to lock down operations so that only certain users can access them.

Chapter 13: Deny Access with The "security"
Option

We've just talked a lot about authentication: that's the way we tell the APl who we are. Now we
turn to authorization, which is all about denying access to certain operations and other things

based on who you are.

Using_access_control

There are multiple ways to control access to something. The simplest is in
config/packages/security.yaml. Just like normal Symfony security, down here, we have

an access_control section:

config/packages/security.yaml

1 security:

$ /... lines 2 - 37

38 # Easy way to control access for large sections of your site

39 # Note: Only the *first* access control that matches will be used
40 access_control:

41 # - { path: A/admin, roles: ROLE_ADMIN }

42 # - { path: A/profile, roles: ROLE_USER }

$ // ... lines 43 - 56

If you want to lock down a specific URL pattern by a specific role, use access_control. You
could use this, for example, to require that the user has a role to use anything in your API by

targeting URLs starting with /api.

Hello "security" Option

In a traditional web app, | do use access_control for several things. But most of the time |
put my authorization rules inside controllers. But... of course, with API Platform, we don't have
controllers. All we have are API resource classes, like DragonTreasure. So instead of putting

security rules in controllers, we'll attach them to our operations.

For example, let's make the POST request to create a new DragonTreasure require the user
to be authenticated. Do that by adding a very handy security option. Set that to a string and

inside, say i1s_granted(), double quotes then ROLE_TREASURE_CREATE:

src/Entity/DragonTreasure.php

? /... lines 1 - 26
27 #[ApiResource(

$ // ... lines 28 - 29
30 operations: [

$ /7 ... lines 31 - 36
37 new Post(

38 security: 'is_granted("ROLE_TREASURE_CREATE")',
39)

$ /7 ... lines 40 - 41
42 1

T /7 ... lines 43 - 56
57)]

$ /7 ... lines 58 - 75
76 class DragonTreasure
77 {

$ /7 ... lines 78 - 235
236 }

We could simply use ROLE_USER here if we just wanted to make sure that the user is logged
in. But we have a cool system where, if you use an API token for authentication, that token will
have specific scopes. One possible scope is called SCOPE_TREASURE_CREATE ... which maps
to ROLE_TREASURE_CREATE. So we look for that. Also, in security.yaml, via
role_hierarchy, if you log in via the login form, you get ROLE_FULL_USER... and then you
automatically also get ROLE_TREASURE_CREATE.

In other words, by using ROLE_TREASURE_CREATE, access will be granted either because you

logged in via the login form or you authenticated using an API token that has that scope.

Let's try it. Make sure you're logged out. I'll refresh. Yup, you can see on the web debug toolbar

that I'm not logged in... and Swagger does not currently have an API token.

Let's test the POST endpoint. Try it out.. and... just Execute with the example data. And... yes! A

401 status code with type hydra:error!

More about the "security" Attribute

The security option actually holds an expression using Symfony's expression language. And
you can get pretty fancy with it. Though, we're going to try to keep things simple. And later, we'll

learn how to offload complex rules to voters.

Let's add a few more rules. Put and Patch are both edits. These are especially interesting
because, to use these, not only do we need to be logged in, we probably need to be the owner

of this DragonTreasure. We don't want other people to edit our goodies.

We're going to worry about the ownership part later. But for now, let's at least add security
with is_granted() then ROLE_TREASURE_EDIT:

src/Entity/DragonTreasure.php

? /... lines 1 - 27
28 #[ApiResource(

$ /7 ... lines 29 - 30
31 operations: [

$ // ... lines 32 - 40
41 new Put(

42 security: 'is_granted("ROLE_TREASURE_EDIT")',
43)

$ // ... lines 44 - 49
50 1,

$ /7 ... lines 51 - 64
65)]

$ /7 ... lines 66 - 83
84 class DragonTreasure
85 {

$ /7 ... lines 86 - 243
244 '}

Once again, I'm using the scope role. Copy that, and duplicate it down here for Patch:

src/Entity/DragonTreasure.php

0
28

I
31
X
44
45
46
X
50
I
65
X
84
85

T
244

// ... lines 1 - 27
#[ApiResource(
// ... lines 29 - 30
operations: [
// ... lines 32 - 43
new Patch(
security:
),
// ... lines 47 - 49
1
// ... lines 51 - 64
)]
// ... lines 66 - 83
class DragonTreasure

{

// ... lines 86 - 243

}

'is_granted("ROLE_TREASURE_EDIT")',

Oh, and earlier, we removed the Delete operation. Let's add that back with security setto

look for ROLE_ADMIN:

src/Entity/DragonTreasure.php

)
28
0
31
)
47
48
49
50
0
65
0
84
85

T
244

// ... lines 1 - 27
#[ApiResource(
// ... lines 29 - 30
operations: [
// ... lines 32 - 46
new Delete(
security:
)
1
// ... lines 51 - 64
)]
// ... lines 66 - 83
class DragonTreasure

{

// ... lines 86 - 243

}

'is_granted("ROLE_ADMIN")',

If we decided later to add a scope that allowed API tokens to delete treasures, we could add
that and change this to ROLE_TRESURE_DELETE.

Let's make sure this works! Use the GET collection endpoint. Try that out. This operation does

not require authentication... so it works just fine. And we have a treasure with ID 1. Close this

up, open the PUT operation, hit "Try it out", 1, "Execute" and... alright! We get a 401 here too!

Adding_"security" to an Entire Clas

So adding the security option to the individual operations is probably the most common thing
to do. But you can also add it to the ApiResource itself to apply to the entire class. For
example, on User, we probably want every operation to require authentication... except for the

Post to create, because that's how you would register a new user.

So up here, add security and look for ROLE_USER... just to check that we're logged in:

src/Entity/User.php

T /7 ... lines 1 - 20

21 #[ApiResource(

$ 7/ ... lines 22 - 23

24 security: 'is_granted("ROLE_USER")',

25)]

T /7 ... lines 26 - 40

41 class User implements UserInterface, PasswordAuthenticatedUserInterface
42 {

$ /7 ... lines 43 - 250
251 }

And because this class has a sub resource... and this also allows us to fetch a user, be sure to

add security here too:

src/Entity/User.php

T 7/ ... lines 1 - 25
26 #[ApiResource(
$ /... lines 27 - 35
36 security: 'is_granted("ROLE_USER")',
37)]
$ /7 ... lines 38 - 40
41 class User implements UserInterface, PasswordAuthenticatedUserInterface
42 {
$ /7 ... lines 43 - 250
251 }

Keep close track of security if you're using subresources.

Ok, so now every operation on User requires you to be logged in. But... we don't want that for

the Post operation. To add flexibility, go up to the first ApiResource, add the operations

option, and, real quick, list all the normal operations, new Get(), new GetCollection(),

new Post(), new Put(), new Patch(), and new Delete():

src/Entity/User.php

lines 1 - 25
26 #[ApiResource(

0

27
28
29
30
31

I
33
34

T
36
37

T
39
40
41

T
45

I
61
62

0
271

/7

// Now add “operations’ set to the 6 normal operations

operations: [

27 oo

/S

/.

1

/.

)]

27 oo

{

/S

}

new
new
new
line
)
new
line
)
new
line
)

new

Get(),
GetCollection(),
Post (

32

Put (
35

Patch(
38

Delete(),

lines 42 - 44

lines 46 - 60
class User implements UserInterface, PasswordAuthenticatedUserInterface

lines 63 - 270

Now that we have those, we can customize them. For Post, since we want this to not require

authentication, say security: 'is_granted() passing a special fake role called
PUBLIC_ACCESS:

src/Entity/User.php

0
26

27
28
0
31
32
33
0
41
0
45
0
61
62

0
271

// ... lines 1 - 25
#[ApiResource(
// Now add “operations’ set to the 6 normal operations
operations: [
// ... lines 29 - 30
new Post(
security: 'is_granted("PUBLIC_ACCESS")',

)/

// ... lines 34 - 40
1
// ... lines 42 - 44
)]
// ... lines 46 - 60
class User implements UserInterface, PasswordAuthenticatedUserInterface
{
// ... lines 63 - 270
3

This will override the security rule that we're passing on the resource level. Oh, and while we're

here, for Put, set security to look for ROLE_USER_EDIT since we have a scope role for

editing users. Repeat that down here for Patch:

src/Entity/User.php

0
26

27
28

0
34
35
36
37
38
39

0
41

0
45

0
61
62

0
271

// ... lines 1 - 25
#[ApiResource(
// Now add “operations’ set to the 6 normal operations
operations: [
// ... lines 29 - 33
new Put(
security: 'is_granted("ROLE_USER_EDIT")'
)
new Patch(
security: 'is_granted("ROLE_USER_EDIT")'

)

// ... line 40
1
// ... lines 42 - 44
)]
// ... lines 46 - 60
class User implements UserInterface, PasswordAuthenticatedUserInterface
{
// ... lines 63 - 270

}

| love it! Refresh the whole page. We're most interested in the POST users endpoint. We are not
authenticated, so hit "Try it out” and I'll leave the default data. "Execute" and... we nailed it! A

201 status. That did allow anonymous access.

Checking_the Security Decisions

Oh, and super fun: if you ever want to see the security decisions that were made during a
request, open the profiler for that request, go down to the "Security" section then "Access
Decision". For this request, only one decision made by the security system: it was for
PUBLIC_ACCESS, and that was allowed.

Next: our APl is getting complex... and it's only going to get more complex. It's time to stop

testing our endpoints manually via Swagger and start testing them with automated tests.

Chapter 14: Bootstrapping a Killer Test System

Our API is getting more and more complex. And doing manually testing is not a great long-term

plan. So let's install some tools to get a killer test setup.

Installing_the test-pack

Step one: at your terminal run:

composer require test

This is a flex alias for a package called symfony/test-pack. Remember: packs are shortcut
packages that actually install a bunch of other packages. For example, when this finishes... and
we check out composer . json, you can see down in require-dev that this added PHPUnit

itself as well as a few other tools from Symfony to help testing:

composer.json

i
T /7 ... lines 2 - 87
88 "require-dev": {
$ // ... line 89
920 "phpunit/phpunit": "A9.5",
91 "symfony/browser-kit": "6.2.*",
92 "symfony/css-selector": "6.2.*",
? // ... lines 93 - 95
96 "symfony/phpunit-bridge": "A6.2",
$ /7 ... lines 97 - 99
100 3}
101 }

It also executed a recipe which added a number of files. We have phpunit.xml.dist, a
tests/ directory, .env.test for test-specific environment variables and even a little

bin/phpunit executable shortcut that we'll use to run our tests.

Hello browser Library

No surprise, Symfony has tools for testing and these can be used to test an API. Heck, API
Platform even has their own tools built on top of those to make testing an APl even easier. And

yet, I'm going to be stubborn and use a totally different tool that I've fallen in love with.

It's called Browser, and it's also built on top of Symfony's testing tools: almost like a nicer
interface above that strong base. It's just... super fun to use. Browser gives us a fluid interface
that can be used for testing web apps, like you see here, or testing APIs. It can also can be

used to test pages that use JavaScript.

Let's get this guy installed. Copy the composer require line, spin back over and run that:

composer require zenstruck/browser --dev

While that's doing its thing, it's optional, but there's an "extension” that you can add to

phpunit.xml.dist. Add it down here on the bottom:

phpunit.xml.dist

t /7 ... lines 1 - 3
4 <phpunit xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

5
xsi:noNamespaceSchemaLocation="vendor/phpunit/phpunit/phpunit.xsd"

6 backupGlobals="false"

7 colors="true"

8 bootstrap="tests/bootstrap.php"

9 convertDeprecationsToExceptions="false"
10 >

$ /7 ... lines 11 - 35

36 <extensions>

37 <extension class="Zenstruck\Browser\Test\BrowserExtension" />
38 </extensions>

$ /7 ... lines 39 - 45

46 </phpunit>
In the future, if you're using PHPUnit 10, this will likely be replaced by some listener config.

This adds a few extra features to browser. Like, when a test fails, it will automatically save the
last response to a file. We'll see this soon. And if you're using JavaScript testing, it'll take

screenshots of failures!

https://github.com/zenstruck/browser

Creating_our First Test

Ok, we're ready for our first test. In the tests/ directory, it doesn't matter how you organize
things, but I'm going to create a Functional/ directory because we're going to be making
functional tests to our API. Yup, we'll literally create an API client, make GET or POST requests

and then assert that we get back the correct output.

Create a new class called DragonTreasureResourceTest . A normal test extends
TestCase from PHPUnit. But make this extend KernelTestCase: a class from Symfony that

extends TestCase... but gives us access to Symfony's engine:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 2
namespace App\Tests\Functional;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class DragonTreasureResourceTest extends KernelTestCase

{

© 00 N O 0o b~ W

10 }

Let's start by testing the GET collection endpoint to make sure we get back the data we expect.

To activate the browser library, at the top, add a trait with use HasBrowser :

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 5
use Zenstruck\Browser\Test\HasBrowser;

6
7
8 class DragonTreasureResourceTest extends KernelTestCase
9

{
10 use HasBrowser;
? /... lines 11 - 18
19 1}

Next, add a new test method: public function, how about

testGetCollectionOfTreasures() ... which will return void:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 7

8 class DragonTreasureResourceTest extends KernelTestCase
9 {

$ /7 ... lines 10 - 11

12 public function testGetCollectionOfTreasures(): void
13 {

$ /7 ... lines 14 - 17
18 3
19 }

Using browser is dead simple thanks to that trait: $this->browser (). Now we can make
GET, POST, PATCH or whatever request we want. Make a GET request to /api/treasures

and then, just to see what that looks like, use this nifty ->dump () function:

tests/Functional/DragonTreasureResourceTest.php

? /7 ... lines 1 - 7

8 class DragonTreasureResourceTest extends KernelTestCase
9 {

T /7 ... lines 10 - 11

12 public function testGetCollectionOfTreasures(): void
13 {
14 $this->browser()
15 ->get('/api/treasures')
16 ->dump ()
17 5
18 3}
19 }

Running_our Tests through the symfony Binary

How cool is that? Let's see what it looks like. To execute our test, we could run:

php ./vendor/bin/phpunit

That works just fine. But one of the recipes also added a shortcut file:

php bin/phpunit

When we run that, ooh, let's see. The dump() did happen: it dumped out the response... which

was some sort of error. It says:
“SQLSTATE: connection to server port 5432 failed.”

Hmm, it can't connect to our database. Our database is running via a Docker container... and
then, because we're using the symfony web server, when we use the site via a browser, the
symfony web server detects the Docker container and sets the DATABASE_URL environment

variable for us. That's how our API has been able to talk to the Docker database.

When we've run commands that need to talk to the database, we've been running them like
symfony console make:migration... because when we execute things through

symfony, it adds the DATABASE_URL environment variable... and then runs the command.

So, when we simply run php bin/phpunit ... the real DATABASE_URL is missing. To fix that,

run:

symfony php bin/phpunit

It's the same thing... except it lets symfony add the DATABASE_URL environment variable.

And now... we see the dump again! Scroll to the top. Better! Now the error says:

“Database app_test does not exist.”

Test-Specific Database

Interesting. To understand what's happening, open config/packages/doctrine.yaml.
Scroll down to a when@test section. This is cool: when we're in the test environment,
there's a bit of config called dbname_suffix. Thanks to this, Doctrine will take our normal

database name and add _test toit:

config/packages/doctrine.yaml

? /... lines 1 - 18

19 when@test:

20 doctrine:

21 dbal:

22 # "TEST_TOKEN" is typically set by ParaTest

23 dbname_suffix: '_test%env(default::TEST_TOKEN)%'
$ /7 ... lines 24 - 44

This next part is specific to a library called ParaTest where you can run tests in parallel. Since

we're not using that, it's just an empty string and not something we need to worry about.

Anyway, that's how we end up with an _test at the end of our database name. And we want
that! We don't want our dev and test environments to use the same database because it

gets annoying when they run over each other's data.

By the way, if you're not using the symfony Binary and Docker setup... and you're configuring
your database manually, be aware that in the test environment, the .env.local file is not

read:

1 # define your env variables for the test env here

2 KERNEL_CLASS='App\Kernel'

3 APP_SECRET='S$ecretfort3st'

4 SYMFONY_DEPRECATIONS_HELPER=999999

5 PANTHER_APP_ENV=panther

6 PANTHER_ERROR_SCREENSHOT_DIR=./var/error-screenshots

The test environment is special: it skips reading .env.local and only reads .env.test.
You can also create a .env.test.local for env vars that are read in the test environment

but that won't be committed to your repository.

The ResetDatabaseTrait

Ok, in the test environment, we're missing the database. We could easily fix this by running:

symfony console doctrine:database:create --env=test

But that's way too much work. Instead, add one more trait to our test class:

use ResetDatabase:

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 6

7 use Zenstruck\Foundry\Test\ResetDatabase;

8

9 class DragonTreasureResourceTest extends KernelTestCase
10 {

T /7 ... line 11

12 use ResetDatabase;

$ /7 ... lines 13 - 20

21 }

This comes from Foundry: the library we've been using to create dummy fixtures via the factory
classes. ResetDatabase is amazing. It automatically makes sure that the database is cleared
before each test. So if you have two tests, your second test isn't going to mess up because of

some data that the first test added.

It's also going to create the database automatically for us. Check it out. Run

symfony php bin/phpunit

again and check out the dump. That's our response! It's our beautiful JSON-LD! We don't have

any items in the collection yet, but it is working.

And notice that, when we make this request, we are not sending an Accept header on the
request. Remember, when we use the Swagger Ul... it actually does send an Accept header

that advertises that we want application/ld+json.

We can add that to our test if we want. But if we pass nothing, we get JSON-LD back because
that's the default format of our API.

Next: let's properly finish this test, including seeding the database with data and learning about

Browser's API assertions.

Chapter 15: JSON Test Assertions & Seeding the
Database

Let's make this test real with data and assertions.

There are two main ways to do assertions with Browser. First, it comes with a bunch of built-in
methods to help, like ->assertJson(). Or... you can always just grab the JSON that comes
back from an endpoint and check things using the built-in PHPUnit assertions you know and

love. We'll see both.

Let's start by checking ->assertJson():

tests/Functional/DragonTreasureResourceTest.php

T 7/ ... lines 1 - 8

9 class DragonTreasureResourceTest extends KernelTestCase
10 {

$ /7 ... lines 11 - 13

14 public function testGetCollectionOfTreasures(): void
15 {

16 $this->browser()

17 ->get('/api/treasures')

T ~/ ... line 18

19 ->assertJson()

20 ;

21 }

22 }

When we run that;:

symfony php bin/phpunit

It passes! Cool! We know that this response should have a hydra: totalItems property set
to the number of results. Right now, our database is empty... but we can at least assert that it

matches zero.

To do that, use ->assertJsonMatches().

This is a special method from Browser that uses a special syntax that allows us to read different
parts off the JSON. We'll dig into it in a minute.

But this one is simple: assert that hydra:totalItems equals O:

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 8

9 class DragonTreasureResourceTest extends KernelTestCase
10 {

T 7/ ... lines 11 - 13

14 public function testGetCollectionOfTreasures(): void
15 {

16 $this->browser()

T 7/ ... lines 17 - 18

19 ->assertJson()

20 ->assertJsonMatches('hydra:totalItems', 0)
21 ;

22 }

23 }

When we try this:

symfony php bin/phpunit

It fails! But with a great error:

“mtdowling/jmespath.php is required to search JSON”

Hello JIMESPath

Ah, we need to install that! Copy the composer require line, find your terminal, and run it:

composer require mtdowling/jmespath.php --dev

This "JMESPath" thing is actually super cool: it's a "query language" for reading different parts
of any JSON. For example, if this is your JSON and you want to read the a key, just say a.

Simple.

But you can also do deeper, like: a.b.c.d. Or, get crazier: grab the 1 index, orgrab a.b.c,
then the O index, .d, the 1 index then the O index. You can even slice the array in different

ways. Basically... you can go nuts.

But we're not going to lose our minds with this. It's a handy syntax... but if things get too

complex, we can always test the JSON manually, which we'll do in a bit.

Anyway, now that we have the library installed, let's run the test again.

symfony php bin/phpunit
It still fails! With a weird error:

“Syntax error at character 5 hydra:totalItems.”

Unfortunately, the : is a special character inside of JMESPath. So whenever we have a : , we

need to put quotes around that key:

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 8

9 class DragonTreasureResourceTest extends KernelTestCase
10 {

$ /7 ... lines 11 - 13

14 public function testGetCollectionOfTreasures(): void
15 {

16 $this->browser()

$ /7 ... lines 17 - 19

20 ->assertJsonMatches('"hydra:totalItems"', 0)
21 :

22 }

23 }

Not ideal, but not a huge inconvenience.

Now when we try it:

symfony php bin/phpunit

It passes!

Seeding_the Database

But... this isn't a very interesting test: we're just asserting that we get nothing back... because
the database is empty. To make our test real, we need data: we need to seed the database with

data at the start of the test.

To use Foundry factories in a test, also add a use Factories; trait to the top of your test

class. Things worked without that in this case, but in the future, you'll likely get an error.

Fortunately, Foundry makes that dead-simple. At the top, call
DragonTreasureFactory::createMany() and let's create 5 treasures. Now, below, assert

that we get 5 results:

tests/Functional/DragonTreasureResourceTest.php

? // ... lines 1 - 4

5 wuse App\Factory\DragonTreasureFactory;

$ /7 ... lines 6 - 9

10 class DragonTreasureResourceTest extends KernelTestCase
11 {

$ /7 ... lines 12 - 14

15 public function testGetCollectionOfTreasures(): void
16 {

17 DragonTreasureFactory: :createMany(5);

18

19 $this->browser()

$ /7 ... lines 20 - 22

23 ->assertJsonMatches('"hydra:totalItems"', 5)
T /7 ... line 24

25 5

26 3}

27 }

It's just that simple. And actually, let me put our dump back so we can see the result:

tests/Functional/DragonTreasureResourceTest.php

$ /... lines 1 - 9
10 class DragonTreasureResourceTest extends KernelTestCase
11 {
$ // ... lines 12 - 14
15 public function testGetCollectionOfTreasures(): void
16 {
T /7 ... lines 17 - 18
19 $this->browser()
$ /... 1line 26
21 ->dump ()
$ /7 ... line 22
23 ->assertJsonMatches('"hydra:totalItems"', 5)
$ // ... line 24
25 :
26 }
27 }
Try it now:

symfony php bin/phpunit

It passes! And if you look up, yea! The response has 5 treasures! Dang, that was easy.

Next: let's use JIMESPath to assert something more challenging. Then we'll back up and see
how we can dig into Browser to give us infinite flexibility - and simplicity - when it comes to
testing JSON.

Chapter 16: Advanced & Flexible JISON Test
Assertions

We might also want to test that we get the correct fields in the response for each item. Can we
do that with IMESPath? Sure! The assertJsonMatches() method is really handy. And
actually, if you hold command or control and click into it, when we call

assertJsonMatches(), behind the scenes, it calls $this->json(). This creates a Json
object... which has even more useful methods. The Browser instance itself gives us access to
assertJsonMatches(). But if we want to use any of its other methods, we need to do a bit

more work.

The first way to use the Json object is via Browser's use() method. Pass this a callback with

a Json $json argument:

tests/Functional/DragonTreasureResourceTest.php

? // ... lines 1 - 6

7 use Zenstruck\Browser\Json;

$ /7 ... lines 8 - 10

11 class DragonTreasureResourceTest extends KernelTestCase
12 {

$ /7 ... lines 13 - 15

16 public function testGetCollectionOfTreasures(): void
17 {

$ /... lines 18 - 19
20 $this->browser()

$ /7 ... lines 21 - 24
25 ->use(function(Json $json) {

$ // ... line 26
27 1)
28 5
29 3}
30 }

This is a magic feature of browser: it reads the type-hint of the argument, and knows to pass us
the Json object. You could also type-hint a CookieJar object, Crawler or a few other

things.

The point is: because we type-hinted the argument with Json, it will grab the Json object for
the last response and pass it to us. Let's use it to do some experimenting. We want to check
what the keys are for the first item inside of hydra:member . To help figure the expression we
need, let's use a method called search(). This allows us to use a JMESPath expression and
get back the result. Do double quotes then hydra:member to see what it returns. And...

remove the other dump:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 10

11 class DragonTreasureResourceTest extends KernelTestCase
12 {

$ /7 ... lines 13 - 15

16 public function testGetCollectionOfTreasures(): void
17 {

$ /7 ... lines 18 - 19

20 $this->browser()

$ /7 ... lines 21 - 24

25 ->use(function(Json $json) {

26 dump($json->search('"hydra:member"'));
27 1)

28 ;

29 }

30 }

Ok! Run that test again:

symfony php bin/phpunit

It passes... but more importantly, look at the dump! It's the array of 5 items. OK... let's grab the
0 index. After the hydra:member double quotes, add [0] . Then surround the entire thing
with a keys() function from JMESPath:

tests/Functional/DragonTreasureResourceTest.php

0
11

12

0
16
17

0
20

0
25
26
27
28
29
30

// ... lines 1 - 10
class DragonTreasureResourceTest extends KernelTestCase
{
// ... lines 13 - 15
public function testGetCollectionOfTreasures(): void
{
// ... lines 18 - 19
$this->browser()
// ... lines 21 - 24
->use(function(Json $json) {
dump($json->search('keys("hydra:member"[0])"'));
1)
3
3

Try that now:

symfony php bin/phpunit

Oh that's lovely. And it's probably one of the more complex things that you'll do. Now that we've

got the path right, turn that into an assertion. You can do that by setting this to a variable - like

$keys - and using a normal assertion. Or you can change search to assertMatches()

and pass a second argument: the array of the expected fields:

tests/Functional/DragonTreasureResourceTest.php

0
11

12

0
16
17

0
20

0
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

27 oo

lines 1 - 10

class DragonTreasureResourceTest extends KernelTestCase

{

/S

}

lines 13 - 15
public function testGetCollectionOfTreasures(): void
{
. lines 18 - 19
$this->browser()
. lines 21 - 24
->use(function(Json $json) {
$json->assertMatches('keys("hydra:member"[0])"',
‘eid’,
‘@type’,
"name’',
'description',
'value',
'coolFactor',
'owner',
'shortDescription’,
'plunderedAtAgo’,
1);
1)

We should be good! Try it:

symfony php bin/phpunit

[

It passes! And yes, we could now remove the use() method and move this to a normal

->assertJsonMatches() call

Doing_Normal JSON Assertions

As cool as this IMESPath stuff is, it is another thing to learn and it can get complex. So what's

the alternative?

Assign the entire $browser chain to a new $json variable and then add ->json() to the

end. Most methods on Browser return... a Browser, which let's us do all the fun chaining. But

a few, like ->json() let us "break out" of browser so we can do something custom.

This allows us to remove the use() function here and replace the assertions with more
traditional PHPUnit code:

tests/Functional/DragonTreasureResourceTest.php

T 7/ ... lines 1 - 10

11 class DragonTreasureResourceTest extends KernelTestCase
12 {

? /... lines 13 - 15

16 public function testGetCollectionOfTreasures(): void
17 {

18 DragonTreasureFactory::createMany(5);

19

20 $json = $this->browser()

21 ->get('/api/treasures')

22 ->assertJson()

23 ->assertJsonMatches('"hydra:totalItems"', 5)
24 ->assertJsonMatches('length("hydra:member")', 5)
25 ->json()

26 ;

27

28 $json->assertMatches('keys("hydra:member"[0])', [
29 '@id"',

30 ‘@type’,

31 "name’,

32 'description’,

33 'value',

34 'coolFactor',

35 'owner',

36 'shortDescription’,

37 "plunderedAtAgo’,

38 1),

39 3

40 3}

We could still use the Json object directly... that passes... or to remove all fanciness, change to
$this->assertSame() that $json->decoded()['hydra:member'][0O] -

array_keys() around everything - matches our array:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 10

11 class DragonTreasureResourceTest extends KernelTestCase

12 {

? /... lines 13 - 15

16 public function testGetCollectionOfTreasures(): void

17 {

18 DragonTreasureFactory: :createMany(5);

19

20 $json = $this->browser()

21 ->get('/api/treasures')

22 ->assertJson()

23 ->assertJsonMatches('"hydra:totalItems"', 5)

24 ->assertJsonMatches('length("hydra:member")', 5)

25 ->json()

26 5

27

28 $this->assertSame(array_keys($json->decoded()['hydra:member'][0]),
[

29 '@id',

30 ‘@type’,

31 'name’,

32 'description’,

33 'value',

34 'coolFactor',

35 'owner',

36 'shortDescription’,

37 'plunderedAtAgo’,

38 1);

39 }

40 }

And of course... that passes to!

So, a lot of power... but also a lot of flexibility to write tests how you want.

Next, let's add tests for authentication: both logging in via our login form and via an API token.

Chapter 17: Testing Authentication

Let's create a test to post and create a new treasure. Say
public function testPostToCreateTreasure() thatreturns void. And start the

same way as before: $this->browser()->post('/api/treasures'):

tests/Functional/DragonTreasureResourceTest.php

T 77/ ... lines 1 - 10

11 class DragonTreasureResourceTest extends KernelTestCase
12 {

$ /7 ... lines 13 - 40

41 public function testPostToCreateTreasure(): void
42 {

43 $this->browser()

44 ->post('/api/treasures', [

T /7 ... line 45

46 1)

$ 7/ ... lines 47 - 48

49 ;

50 3}

51 }

In this case we need to send data. The second argument to any of these post() or get()
methods is an array of options, which can include headers, query parameters or other stuff.
One key is json, which you can set to an array, which will be JSON-encoded for you. Start by
sending empty JSON... then ->assertStatus(422). To see what the response looks like,
add ->dump():

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 10

11 class DragonTreasureResourceTest extends KernelTestCase
12 {

T /7 ... lines 13 - 40

41 public function testPostToCreateTreasure(): void
42 {

43 $this->browser()

44 ->post('/api/treasures', [

45 'json' => [],

46 1)

47 ->assertStatus(422)

48 ->dump ()

49 ;

50 }

51 }

Awesome! Copy the test method name. | want to focus just on this one test. To do that, run:

symfony php bin/phpunit --filter=testPostToCreateTreasure

And... oh! Current response status code is 401, but 422 expected.

Dumped Failed Responses in Browser

When a test fails with browser, it automatically saves the last response to a file... which is
awesome. It's actually in the var/ directory. In my terminal, | can hold Command and click to

open that in my browser. That is nice. You'll see me do this a bunch of times.

Ok, so this returned a 401 status code. Of course: the endpoint requires authentication! Our app
has two ways to authenticate: via the login form and session or via an API token. We're going to

test both, starting with the login form.

Logging_in during_the Test

To log in as a user... that user first needs to exist in the database. Remember: at the start of

each test, our database is empty. It's then our job to populate it with whatever we need.

Create a user with UserFactory: :createOne(['password' => 'pass']) so thatwe
know what the password will be. Then, before we make the POST request to create a treasure,
->post() to /login and send json with email setto $user->getEmail() - to use
whatever random email address Faker chose - then password setto pass. To make sure that

worked, ->assertStatus(204):

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 5

6 use App\Factory\UserFactory;

? /... lines 7 - 11

12 class DragonTreasureResourceTest extends KernelTestCase
13 {

$ /7 ... lines 14 - 41
42 public function testPostToCreateTreasure(): void
43 {
44 $user = UserFactory::createOne(['password' => 'pass']);
45
46 $this->browser()
47 ->post('/login', [
48 "json' => [
49 'email' => $user->getEmail(),
50 'password' => 'pass',
51 1
52 1)
53 ->assertStatus(204)

$ /7 ... lines 54 - 58
59 :
60 }
61 }

That's the status code we're returning after successful authentication.

Let's give this a try! Move over and run the test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

It passes! We're getting the 422 status code and see the validation messages!

Shortcut to Logging_in: actingAs()

So... logging in is... just that easy! And | would recommend having a test that specifically POSTs

to your login endpoint like we just did, to make sure its working correctly.

However, in all of my other tests... when | simply need to be authenticated to do the real work,

there's a faster way to log in. Instead of making the POST request, say ->actingAs($user):

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 11

12 class DragonTreasureResourceTest extends KernelTestCase
18| {

$ /7 ... lines 14 - 41

42 public function testPostToCreateTreasure(): void
43 {

$ /7 ... lines 44 - 45

46 $this->browser()

47 ->actingAs($user)

$ // ... lines 48 - 52

53 :

54 }

55 }

This is a sneaky way of taking the User object and pushing it directly into Symfony's security
system without making any requests. It's easier, and faster. And now, we don't care what the

password is at all, so we can simplify that.

Let's check it:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Still good!

Testing_Successful Treasure Creation

Let's do another POST down here. Keep chaining and add ->post (). Actually... I'm lazy. Copy
the existing ->post() ... and use that. But this time, send real data: I'll quickly type in some...
these can be anything. The last key we need is owner . Right now, we are required to send the
owner when we create a treasure. Soon, we'll make that optional: if we don't send it, it will
default to whoever is authenticated. But for now, set itto /api/users/ then
$user->getId(). Finish with assertStatus(201):

tests/Functional/DragonTreasureResourceTest.php

I ...

lines 1 - 11

12 class DragonTreasureResourceTest extends KernelTestCase

13

T /...

42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64

{

air.

}

lines 14 - 41
public function testPostToCreateTreasure(): void

{

$user = UserFactory::createOne();

$this->browser()
->actingAs($user)
->post('/api/treasures', [
‘Json' => [],
1)
->assertStatus(422)
->post('/api/treasures', [
'json' => [
'name' => 'A shiny thing',
'description' => 'It sparkles when I wave it in the

'value' => 1000,

'coolFactor' => 5,

'owner' => '/api/users/'.$user->getId(),
1

1)
->assertStatus(201)

Because 201 is what the API returns when an object is created.

Alright, go test, go:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Still passing! We're on a roll! Add a ->dump() to help us debug then a sanity check:

->assertJsonMatches() that name is A shiny thing:

tests/Functional/DragonTreasureResourceTest.php

0
12

13

0
42
43

0
46

0
61
62
63
64
65
66

// ... lines 1 - 11
class DragonTreasureResourceTest extends KernelTestCase
{
// ... lines 14 - 41
public function testPostToCreateTreasure(): void
{
// ... lines 44 - 45
$this->browser()
// ... lines 47 - 60
->assertStatus(201)
->dump ()
->assertJsonMatches('name', 'A shiny thing')
r
}
3

When we try that:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Sending_the Accept: application/Id+json Header

No surprise: all green. But look at the dumped response: it's not JSON-LD! We're getting back

standard JSON. You can see it in the Content-Type header: 'application/json', not

application/1ld+json, which is what | was expecting.

Let's find out what's going on next and fix it globally by customizing how Browser works across

our entire test suite.

Chapter 18: Customizing Browser Globally

Our test works... but the API is sending us back JSON, not JSON-LD. Why?

When we made the GET request earlier, we did not include an Accept header to indicate

which format we wanted back. But... JSON-LD is our API's default format, so it sent that back.

However, when we make a ->post () request with the json key, that adds a
Content-Type header setto application/json - which is fine - but it also adds an
Accept header setto application/json. Yup, we're telling the server that we want plain
JSON back, not JSON-LD.

| want to use JSON-LD everywhere. How can we do that? The second argument to ->post()
can be an array or an object called HttpOptions. Say HttpOptions: :json() ... and then

pass the array directly. Let me... get my syntax right:

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 7

8 use Zenstruck\Browser\HttpOptions;

t /7 ... lines 9 - 12

13 class DragonTreasureResourceTest extends KernelTestCase
14 {

$ /7 ... lines 15 - 42
43 public function testPostToCreateTreasure(): void
44 {

$ /7 ... lines 45 - 52
53 ->post('/api/treasures', HttpOptions::json([
54 'name' => 'A shiny thing',
55 'description' => 'It sparkles when I wave it in the air.',
56 'value' => 1000,
57 'coolFactor' => 5,
58 'owner' => '/api/users/'.$user->getId(),
59 1))

$ /7 ... lines 60 - 62
63 ;
64 3}

So far, this is equivalent to what we had before. But now we can change some options by

saying ->withHeader () passing Accept and application/ld+json:

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 12

13 class DragonTreasureResourceTest extends KernelTestCase

14 {

I 7/ ... lines 15 - 42

43 public function testPostToCreateTreasure(): void

44 {

$ // ... lines 45 - 52

53 ->post('/api/treasures', HttpOptions::json([

54 'name' => 'A shiny thing',

55 'description' => 'It sparkles when I wave it in the air.',
56 'value' => 1000,

57 'coolFactor' => 5,

58 'owner' => '/api/users/'.$user->getId(),

59 1) ->withHeader ('Accept', 'application/ld+json'))
$ 7/ ... lines 60 - 62

63 ;

64 3}

65 }

We could have also done this with the array of options: it has a key called headers. But the

object is kind of nice.

Let's make sure this fixes things. Run the test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Globally Sending_the Header

And... we're back to JSON-LD! It's got the right fields and the application/1ld+json

response Content-Type header.

So.... that's cool... but doing this every time we make a request to our API in the tests is... mega

lame. We need this to happen automatically.

A nice way to do that is to leverage a base test class. Inside of tests/, actually inside of

tests/Functional/, create a new PHP class called ApiTestCase. I'm going to make this

abstract and extend KernelTestCase:

tests/Functional/ApiTestCase.php

? /... lines 1 - 2

3 namespace App\Tests\Functional;

4

5 wuse Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;
? /... lines 6 - 9

10 abstract class ApiTestCase extends KernelTestCase

11 {

T /7 ... lines 12 - 25

26 }

Inside, add the HasBrowser trait. But we're going to do something sneaky: we're going to

import the browser () method but call it baseKernelBrowser :

tests/Functional/ApiTestCase.php

T /7 ... lines 1 - 7

8 use Zenstruck\Browser\Test\HasBrowser;

9

10 abstract class ApiTestCase extends KernelTestCase
11 {

12 use HasBrowser {

13 browser as baseKernelBrowser;

14 }

$ /7 ... lines 15 - 25

26 }

Why the heck are we doing that? Re-implement the browser () method... then call
$this->baseKernelBrowser () passing it $options and $server. But now call another
method: ->setDefaultHttpOptions(). Passthis HttpOptions: ::create() then

->withHeader (), Accept, application/ld+json:

tests/Functional/ApiTestCase.php

? /... lines 1 - 5

6 use Zenstruck\Browser\HttpOptions;

$ /7 ... lines 7 - 9

10 abstract class ApiTestCase extends KernelTestCase

11 {

$ /7 ... lines 12 - 15

16 protected function browser(array $options = [], array $server = [])
17 {

18 return $this->baseKernelBrowser ($options, $server)
19 ->setDefaultHttpOptions(
20 HttpOptions::create()
21 ->withHeader ('Accept', 'application/ld+json')
22
23)
24 ;
25 3}
26 }

Done! Back in our real test class, extend ApiTestCase: get the one that's from our app:

tests/Functional/DragonTreasureResourceTest.php

T 77/ ... lines 1 - 11

12 class DragonTreasureResourceTest extends ApiTestCase
13 {

$ /7 ... lines 14 - 63

64 1}

That's it' When we say $this->browser (), it now calls our browser () method, which
changes that default option. Celebrate by removing withHeader () ... and you could revert

back to the array of options with a json key if you want.

Let's try it.

symfony php bin/phpunit --filter=testPostToCreateTreasure

And... uh oh. That's a strange error:

“Cannot override final method _resetBrowserClients()”

This..

. IS because we're importing the trait from the parent class and our class... which makes

the trait go bananas. Remove the one inside our test class:

tests/Functional/DragonTreasureResourceTest.php

// ... lines 1 - 8
use Zenstruck\Browser\Test\HasBrowser;
// ... lines 10 - 11
class DragonTreasureResourceTest extends ApiTestCase
{
use HasBrowser;
// ... lines 15 - 63
}

we don't need it anymore. I'll also do a little cleanup on my use statements.

And now:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Got it! We get back JSON-LD with zero extra work. Remove that dump() :

tests/Functional/DragonTreasureResourceTest.php

// ... lines 1 - 11
class DragonTreasureResourceTest extends ApiTestCase
{
// ... lines 14 - 41
public function testPostToCreateTreasure(): void
{
// ... lines 44 - 45
$this->browser()
// ... lines 47 - 59
->dump ()
// ... line 61
’
3
3

Next: let's write another test that uses our API| token authentication.

Chapter 19: Testing Token Authentication

What about a test like this... but where we log in with an API key? Let's do that! Create a new

method: public function testPostToCreateTreasureWithApiKey():

tests/Functional/DragonTreasureResourceTest.php

T 7/ ... lines 1 - 10

11 class DragonTreasureResourceTest extends ApiTestCase

12 {

$ 7/ ... lines 13 - 61

62 public function testPostToCreateTreasureWithApiKey(): void
63 {

T /7 ... lines 64 - 70

71 }

72}

This will start pretty much the same as before. I'll copy the top of the previous test, remove the

actingAs() ... and add a dump() near the bottom:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 10

11 class DragonTreasureResourceTest extends ApiTestCase
12 {

$ /7 ... lines 13 - 61

62 public function testPostToCreateTreasureWithApiKey(): void
63 {

64 $this->browser()

65 ->post('/api/treasures', [

66 'json' => [],

67 1)

68 ->dump()

69 ->assertStatus(422)

70 ;

71 }

72}

So, like before, we're sending invalid data and expect a 422 status code.

Copy that method name, then spin over and run just this test:

symfony php bin/phpunit --filter=testPostToCreateTreasurewWithApiKey

And... no surprise: we get a 401 status code because we're not authenticated.

Let's send an Authorization header, but an invalid one to start. Pass a headers key set to

an array with Authorization and then word Bearer and then... foo.

This should still fail:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithApiKey

And... it does! But with a different error message: invalid_token. Nice!

Using_a Real Token

To pass a real token, we need to put a real token into the database. Do that with

$token = ApiTokenFactory::createOne():

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12

13 class DragonTreasureResourceTest extends ApiTestCase
14 {

$ // ... lines 15 - 63

64 public function testPostToCreateTreasureWithApiKey(): void
65 {

66 $token = ApiTokenFactory::createOne([

t /7 ... line 67

68 1);

$ /7 ... lines 69 - 79

80 3}

81 1}

Do we need to control any fields on this? We actually do. Open up DragonTreasure. If we
scroll up, the Post operation requires ROLE_TREASURE_CREATE:

src/Entity/DragonTreasure.php

0
28

0
31
0
38
39
40
0
50
0
65
0
84
85

I
244

// ... lines 1 - 27
#[ApiResource(
// ... lines 29 - 30
operations: [
// ... lines 32 - 37
new Post(
security:
),
// ... lines 41 - 49
1
// ... lines 51 - 64
)]
// ... lines 66 - 83
class DragonTreasure
{
// ... lines 86 - 243
3

'is_granted("ROLE_TREASURE_CREATE")',

When we authenticate via the login form, thanks to role_hierarchy, we always have that.

But when using an API key, to get that role, the token needs the corresponding scope.

To make sure we have it, back in the test, set the scopes property to
ApiToken: :SCOPE_TREASURE_CREATE:

tests/Functional/DragonTreasureResourceTest.php

0
5

0
13
14

0
64
65
66
67
68

0
80
81

class DragonTreasureResourceTest extends ApiTestCase

public function testPostToCreateTreasureWithApiKey(): void

$token = ApiTokenFactory::createOne([
'scopes' => [ApiToken::SCOPE_TREASURE_CREATE]

// ... lines 1 - 4
use App\Entity\ApiToken;
// ... lines 6 - 12
{
// ... lines 15 - 63

{

1);

// ... lines 69 - 79

}
}

Now pass this to the header: $token->getToken(). Oh... and let me fix scopes: that

should be an array:

tests/Functional/DragonTreasureResourceTest.php

0
13

14

T
64
65
66
67
68

T
70
71

I
73
74
75
76

T
79
80
81

// ... lines 1 - 12
class DragonTreasureResourceTest extends ApiTestCase
{
// ... lines 15 - 63
public function testPostToCreateTreasureWithApiKey(): void
{
$token = ApiTokenFactory::createOne([
'scopes' => [ApiToken::SCOPE_TREASURE_CREATE]
1);
// ... line 69
$this->browser()
->post('/api/treasures', [
// ... line 72
'"headers' => [
'"Authorization' => 'Bearer '.$token->getToken()
]
1)
// ... lines 77 - 78
3
3

| think we're ready! Run that test:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithApiKey

And..

. got it! We see the beautiful 422 validation errors!

Testing_a Token with a Bad Scope

Let's test to make sure we don't have access if our token is missing this scope. Copy the entire

test method... then paste below. Call it

testPostToCreateTreasureDeniedwWithoutScope().

This time, set scopes to something else, like SCOPE_TREASURE_EDIT. Below, we now

expect a 403 status code:

tests/Functional/DragonTreasureResourceTest.php

I ...

lines 1 - 12

13 class DragonTreasureResourceTest extends ApiTestCase

14 {
T /...

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

}

lines 15 - 80
public function testPostToCreateTreasureDeniedWithoutScope(): void
{
$token = ApiTokenFactory::createOne([
'scopes' => [ApiToken::SCOPE_TREASURE_EDIT]
1);

$this->browser()
->post('/api/treasures', [
‘json' => [],
'"headers' => [
'"Authorization' => 'Bearer '.$token->getToken()

1)
->assertStatus(403)

This time, let's run all the tests:

symfony php bin/phpunit

And... all green! A 422 then a 403. Go remove the dumps from both those spots.

By the way, if you use API tokens a lot in your tests, passing the Authorization header can

get annoying. Browser has a way where we can create a custom Browser object with custom

methods. For example, you could add an authwWithToken() method, pass an array of

scopes, and then it would create that token and set it into the header

$this->browser()
->authWithToken([ApiToken: :SCOPE_TREASURE_CREATE])
/] ..

This totally does not work right now, but check out Browser's docs to learn how.

Next: in API Platform 3.1, the behavior of the PUT operation is changing. Let's talk about how,

and what we need to do in our code to prepare for it.

Chapter 20: New PUT Behavior

Find your terminal and manually clear the cache directory:

rm -rf var/cache/*

I'm doing this so that, when we run all or our tests

symfony php bin/phpunit

we see a deprecation warning, which is fascinating. It says:

“Since API Platform 3.1: in API Platform 4, PUT will always replace the data. set
extraProperties['"standard_put'] to true on every operation to avoid breaking
PUT's behavior. Use PATCH for the old behavior.”

Okay... what does that mean? Right now, it means nothing has changed: our PUT operation
behaves like it always has. But, in API Platform 4, the behavior of PUT will change dramatically.
And, at some point between now and then, we need to opt into that new behavior so that it

doesn't suddenly break when we upgrade to version 4 in the future.

What's Changing_in PUT

So what's changing exactly? Head over to the API docs and refresh. Use the GET collection

endpoint... and hit "Execute", so we can get a valid ID.
Great: we have a treasure with ID 1.

Right now, if we send a PUT request with this ID, we can send just one field to update just that

one thing. For example, we can send description to change only that.

Oh, but before we Execute this, we do need to be logged in. In my other tab, I'll fill in the login

form. Perfect. Now execute the PUT operation.

Yup: we pass only the description field, and it updates only the description field: all the

other fields remain the same.

Whelp, it turns out that this is not how PUT is supposed to work according to the HTTP Spec.
PUT is supposed to be a "replace". What | mean is, if we send only one field, the PUT operation
is supposed to take that new resource - which is just the one field - and replace the existing
resource. That's a complicated way of saying that, when using PUT, you need to send every

field, even the fields that aren't changing. Otherwise, they'll be setto null.

If that sounds kind of crazy, | kind of agree, but there are valid technical reasons for why this is
the case. The point is that: this is how PUT is supposed to work and in API Platform 4, this is
how PUT will work.

Honestly, it makes PUT less useful. So you'll notice that I'll pretty much exclusively use PATCH

going forward.

Moving_to the new PUT Behavior

So whether we like it or not, at some point between now and API platform 4, we need to tell API
Platform that it is okay for it to change the behavior of PUT to the "new" way. Let's do that now

by adding some extra config to every ApiResource attribute in our app.

To solve this globally for all your resources at once, you can add this as a default in the API

Platform configuration:

config/packages/api_platform.yaml
api_platform:
defaults:
extra_properties:

standard_put: true

Open src/Entity/DragonTreasure.php... and add a new option called

extraProperties setto an array with standard_put setto true:

src/Entity/DragonTreasure.php

? /... lines 1 - 27
28 #[ApiResource(

T /7 ... lines 29 - 64
65 extraProperties: [
66 'standard_put' => true,
67 1
68)]

$ /7 ... lines 69 - 89
90 class DragonTreasure
91 {

$ /7 ... lines 92 - 249

250 }

That's it! Copy that... because we're going to need that down here on this ApiResource...

even though it doesn't have a PUT operation:

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 27
28 #[ApiResource(
T /7 ... lines 29 - 64
65 extraProperties: [
66 'standard_put' => true,
67 1
68)]
69 #[ApiResource(
$ s/ ... lines 70 - 81
82 extraProperties: [
83 'standard_put' => true,
84 1,
85)]
$ /7 ... lines 86 - 89
90 class DragonTreasure
91 {
$ /7 ... lines 92 - 249
250 }

Then, over in User, add that to both of the ApiResource spots as well:

src/Entity/User.php

? /... lines 1 - 25
26 #[ApiResource(
$ /7 ... lines 27 - 44
45 extraProperties: [
46 'standard_put' => true,
47 1,
48)]
49 #[ApiResource(
$ // ... lines 50 - 59
60 extraProperties: [
61 'standard_put' => true,
62 1
63)]
$ // ... lines 64 - 66
67 class User implements UserInterface, PasswordAuthenticatedUserInterface
68 {
$ 7/ ... lines 69 - 276
277 '}

Now when we run our tests, the deprecation is gone! We're not using the PUT operation in any

tests, so everything still passes.

Seeing_the New Behavior

To see the new behavior, try out the PUT endpoint again: still sending just one field. This time...
check it out! A 422 validation error! All the fields that we did not include were set to null... and

that caused the validation failure.

So... this makes PUT a bit less useful... and we'll lean a lot more on PATCH. If you don't want to
have a PUT operation at all anymore, that makes a lot of sense. One unique thing about the
new PUT behavior is that you could use it to create new objects... which could be useful in
some edge-cases... or an absolute nightmare from a security standpoint as we now need to
worry about objects being edited or created via the same PUT operation. For that reason, as we

go along, you'll see me remove the PUT operation in some cases.

Next: let's get more complex with security by making sure that a DragonTreasure can only

be edited by its owner.

Chapter 21: Only Allow Owners to Edit

New security quest: | want to allow only the owner of a treasure to edit it. Right now, you're
allowed to edit a treasure as long as you have this role. But that means you can edit anyone's

treasure. Someone keep changing my Velvis painting's coolFactor to 0. That's super uncool.

TDD: Testing_the only Owners can Edit

Let's write a test for this. At the bottom say

public function testPatchToUpdateTreasure():

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 97
98 public function testPatchToUpdateTreasure()
99 {
T /7 ... lines 100 - 112
113 }
114 }

And we'll start like normal: $user = UserFactory::createOne() then

$this->browser->actingAs($user).

Since we're editing a treasure, let's ->patch() to /api/treasures/... and then we need a
treasure to edit! Create one on top:

$treasure = DragonTreasureFactory::createOne(). And for this test, we want to
make sure that the owner is definitely this $user . Finish the URL with

$treasure->getId().

For the data, send some json to update just the value field to 12345, then

assertStatus(200) and assertJsonMatches('value', 12345):

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
T /7 ... lines 15 - 97
98 public function testPatchToUpdateTreasure()
99 {
100 $user = UserFactory::createOne();
101 $treasure = DragonTreasureFactory::createOne(['owner' => $user]);
102
103 $this->browser()
104 ->actingAs($user)
105 ->patch('/api/treasures/'.$treasure->getId(), [
106 "json' => [
107 'value' => 12345,
108 1
109 1
110 ->assertStatus(200)
111 ->assertJsonMatches('value', 12345)
112 ;
113 }
114 }

Excellent! This should be allowed because we're the owner . Copy the method name, then find

your terminal and run it:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

No surprise, it passes.
Now let's try the other case: let's log in as someone else and try to update this treasure.

Copy the entire $browser section. We could create another test method, but this will work fine
all in one. Before this, add $user2 = UserFactory::createOne() -thenlog in as that
user. This time, change the value to 6789 and, since this should not be allowed, assert that

the status code is 403:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
T /7 ... lines 15 - 97
98 public function testPatchToUpdateTreasure()
99 {
T 7/ ... lines 100 - 113
114 $user2 = UserFactory::createOne();
115 $this->browser()
116 ->actingAs($user2)
117 ->patch('/api/treasures/'.$treasure->getId(), [
118 'json' => [
119 'value' => 6789,
120 1,
121 1
122 ->assertStatus(403)
123 ;
124 }
125 }

When we try the test now:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

It fails! This is being allowed: the API returned a 200!

More Complex security Expressions

So how can we make it so that only the owner of a treasure can edit it? Well, over in

DragonTreasure, the answer is all about the security option:

src/Entity/DragonTreasure.php

0
28

T
31
I
41
42
43
44
45
46
T
50
T
68
T
90
91
T
250

// ... lines 1 - 27
#[ApiResource(
// ... lines 29 - 30
operations: [
// ... lines 32 - 40
new Put(

security: 'is_granted("ROLE_TREASURE_EDIT")',
)

new Patch(
security: 'is_granted("ROLE_TREASURE_EDIT")',

)

// ... lines 47 - 49
1,

// ... lines 51 - 67

)]

// ... lines 69 - 89

class DragonTreasure

{

// ... lines 92 - 249
3

One thing that gets tricky with Put () and Patch() is that both are used to edit users. So if

you're going to have both, you need keep their security options in sync. I'm actually going to

remove Put() so we can focus on Patch().

The string inside of security is an expression... and we can get kinda fancy. We can grant

access if you have ROLE_TREASURE_EDIT and if object.owner == user:

src/Entity/DragonTreasure.php

? /... lines 1 - 27
28 #[ApiResource(

$ /7 ... lines 29 - 30
31 operations: [

$ /7 ... lines 32 - 40
41 new Patch(

42 security: 'is_granted("ROLE_TREASURE_EDIT") and object.owner

== user',

43),

T /7 ... lines 44 - 46
47 1,

$ /7 ... lines 48 - 64
65)]

$ /7 ... lines 66 - 86
87 class DragonTreasure
88 {

$ /7 ... lines 89 - 246
247 }

Inside the security expression, Symfony gives us a few variable. One is user, which is the
current User object. Another is object, which will be the current object for this operation. So
the DragonTreasure object. So we're saying that access should be allowed if the
DragonTreasures owner is equal to the currently authenticated user . That's... exactly what

we want!

So, try the test again!

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

And... uh oh! We downgraded to a 500 error! This is where that saved log file comes in handy.

I'll click to open that up. If this is hard to read, view the page source. Much better. It says:
“Cannot access private property DragonTreasure: :$owner.”

And it's coming from Symfony's ExpressionLanguage. Ah, | know what's wrong. The
expression language is like Twig... but not exactly the same. We can't do fancy things like

.owner when owner is a private property. We need to call the public method:

src/Entity/DragonTreasure.php

0
28

0
31
0
41
42

43
0
47
0
65
0
87
88
0
247

// ... lines 1 - 27
#[ApiResource(
// ... lines 29 - 30
operations: [
// ... lines 32 - 40
new Patch(
security:
object.getOwner () ==
)
// ... lines 44 - 46
1
// ... lines 48 - 64
)]
// ... lines 66 - 86
class DragonTreasure
{
// ... lines 89 - 246
3

Drumroll please:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

It passes with flying colors!

'is_granted("ROLE_TREASURE_EDIT") and
user',

Preventing_Changing_Owners: securityPostDenormalize

But you know me, I've gotta make it trickier. Copy part of the test. This time, log in as the owner

and edit our own treasure. So far, this is all good. But now try to change the owner to someone

else: $user2->getId():

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 97
98 public function testPatchToUpdateTreasure()
99 {
$ /7 ... lines 100 - 126
127 $this->browser()
$ /7 ... line 128
129 ->patch('/api/treasures/'.$treasure->getId(), [
130 'json' => [
131 // change the owner to someone else
132 'owner' => '/api/users/'.$user2->getId(),
133 1,
134 1
t /7 ... line 135
136 5
137 }
138 }

Now maybe this is something you want to allow. Maybe you say:
“If you can edit a DragonTreasure, then you're free to assign it a different owner.”

But let's pretend that we want to prevent this. So assertStatus(403). Do you think the test

will pass? Try it:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

It fails! It did allow us to change the owner! Spin back over to DragonTreasure. The
security expression is run before the new data is deserialized onto the object. In other
words, object will be the DragonTreasure from the database, before any of the new JSON
is applied to it. This means that it's checking that the current owner is equal to the currently

logged-in user, which is the main case that we want to protect.

But sometimes you want to run security after the new data has been put onto the object. In that
case, use an option called securityPostDenormalize. Remember denormalize is the
process of taking the data and putting it onto the object. So security will still run first... and

make sure we're the original owner. Now we can also say object.getOwner() == user:

src/Entity/DragonTreasure.php

? /... lines 1 - 27
28 #[ApiResource(
$ /7 ... lines 29 - 30
31 operations: [
$ /7 ... lines 32 - 40
41 new Patch(
42 security: 'is_granted("ROLE_TREASURE_EDIT") and
object.getOwner() == user',
43 securityPostDenormalize: 'object.getOwner() == user',
44 o
$ /7 ... lines 45 - 47
48 1
$ /7 ... lines 49 - 65
66)]
T /7 ... lines 67 - 87
88 class DragonTreasure
89 {
$ // ... lines 90 - 247
248 }

That looks identical... but this time object will be the DragonTreasure with the new data.

So we're checking that the new owner is also equal to the currently logged-in user.

By the way, in securityPostDenormalize, you also have a previous_object variable,
which is equal to the object before denormalization. So, it's identical to object up in the

security option. But, we don't need that.

Try the test now:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

We got it!

Security vs Validation

This last example highlights two different types of security checks. The first check determines
whether or not the user can perform this operation at all. Like: is the current user allowed to
make a PATCH request to this treasure? That depends on the current user and the current

DragonTreasure in the database.

But the second check is saying:

“Okay, now that | know I'm allowed to make a PATCH request, am | allowed to change the

data in this exact way?”

This depends on the currently logged-in user and the data that's being sent.

I'm bringing up this difference because, for me, the first case - where you're trying to figure out
whether an operation is allowed at all - regardless of what data is being sent - that is a job for

security. And this is exactly how I would implement it.

However, the second case - where you're trying to figure out whether the user is allowed to
send this exact data - like are they allowed to change the owner or not - for me, | think that's

better handled by the validation layer.

I'm going to keep this in the security layer right now. But later when we talk about custom

validation, we'll move this into that.

Up next: can we flex the security option enough to also let admin users edit anyone's

treasure? Stay tuned!

Chapter 22: Allow Admin Users to Edit any
Treasure

We've got things set up so that only the owner of a treasure can edit it. Now, a new requirement
has come down from on-high: admin users should be able to edit any treasure. That means a
user that has ROLE_ADMIN.

To the test-mobile! Add a public function testAdminCanPatchToEditTreasure().
Then create an admin user with UserFactory: :createOne() passing roles set to

ROLE_ADMIN:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 138
139 public function testAdminCanPatchToEditTreasure(): void
140 {
141 $admin = UserFactory::createOne(['roles' => ['ROLE_ADMIN']]);
142 }
143 }

Foundry State Methods

That'll work fine. But if we need to create a lot of admin users in our tests, we can add a shortcut
to Foundry. Open UserFactory. We're going to create something called a "state" method.
Anywhere inside, add a public function called, how about withRoles() that has an

array $roles argument and returns self, which will make this more convenient when we

use it. Then return $this->addState(['roles' => $roles]):

src/Factory/UserFactory.php

? /... lines 1 - 30

31 final class UserFactory extends ModelFactory

32 {

? /7 ... lines 33 - 54

55 public function withRoles(array $roles): self
56 {

57 return $this->addState(['roles' => $roles]);
58 }

T 7/ ... lines 59 - 92

93 }

Whatever we pass to addState() becomes part of the data that will be used to make this

user.

To use the state method, the code changes to UserFactory: :new(). Instead of creating a
User object, this instantiates a new UserFactory ... and then we can call withRoles() and

pass ROLE_ADMIN:

So, we're "crafting” what we want the user to look like. When we're done, call create():

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
I /7 ... lines 15 - 138
139 public function testAdminCanPatchToEditTreasure(): void
140 {
141 $admin = UserFactory::new()->withRoles(['ROLE_ADMIN'])->create();
142 }
143 }

createOne() is a static shortcut method. But since we have an instance of the factory, use

create().

But we can go even further. Back in UserFactory, add another state method called

asAdmin() thatreturns self. Inside return $this->withRoles(['ROLE_ADMIN']):

src/Factory/UserFactory.php

0
31

32

0
60
61
62
63

0
98

27 oo

lines 1 - 30

final class UserFactory extends ModelFactory

{

/S

27 oo

lines 33 - 59
public function asAdmin(): self

{
return $this->withRoles(['ROLE_ADMIN']);

lines 64 - 97

Thanks to that, we can simplify to UserFactory: :new()->asAdmin()->create():

tests/Functional/DragonTreasureResourceTest.php

0
13
14

0

139
140
141
142
143

Nice!

/7

lines 1 - 12

class DragonTreasureResourceTest extends ApiTestCase

{

I/ oo

lines 15 - 138
public function testAdminCanPatchToEditTreasure(): void

{

$admin = UserFactory: :new()->asAdmin()->create();

Writing_the Test

Now let's get this test going. Create a new $treasure setto

DragonTreasureFactory::createOne():

tests/Functional/DragonTreasureResourceTest.php

0
13
14
0
139
140
141
142

0
154
155

/7

lines 1 - 12

class DragonTreasureResourceTest extends ApiTestCase

{

I/ oo

/7

lines 15 - 138
public function testAdminCanPatchToEditTreasure(): void
{
$admin = UserFactory: :new()->asAdmin()->create();
$treasure = DragonTreasureFactory::createOne();
lines 143 - 153

Because we're not passing an owner, this will create a new User in the background and use

that as the owner . This means that our admin user will not be the owner.

Now, $this->browser()->actingAs($adminUser) then ->patch() to
/api/treasures/, $treasure->getId(), sending json to update value to the same
12345. ->assertStatus(200) and assertJsonMatches(), value, 12345:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 138
139 public function testAdminCanPatchToEditTreasure(): void
140 {
141 $admin = UserFactory::new()->asAdmin()->create();
142 $treasure = DragonTreasureFactory::createOne();
143
144 $this->browser()
145 ->actingAs($admin)
146 ->patch('/api/treasures/'.$treasure->getId(), [
147 "json' => [
148 'value' => 12345,
149 1,
150 1
151 ->assertStatus(200)
152 ->assertJsonMatches('value', 12345)
153 5
154 3}
155 }

Cool! Copy the method name. Let's try it:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

And... okay! We haven't implemented this yet, so it fails.

Allowing Admins to Edit Anything

So, how do we allow admins to edit any treasure? Well, at first, it's relatively easy because we

have total control via the security expression. So we can add something like

if is_granted("ROLE_ADMIN") OR and then put parentheses around the other use-case:

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 27

28 #[ApiResource(

T 7/ ... lines 29 - 30

31 operations: [

T 7/ ... lines 32 - 40

41 new Patch(

42 security: 'is_granted("ROLE_ADMIN") or

(is_granted("ROLE_TREASURE_EDIT") and object.getOwner() == user)',
$ /7 ... line 43

44),

$ /7 ... lines 45 - 47
48 1,

$ // ... lines 49 - 65
66)]

$ /7 ... lines 67 - 87
88 class DragonTreasure
89 {

T /7 ... lines 90 - 247
248 }

Let's make sure it works!

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

A 500 error! Let's see what's going on. Click to open this.
“Unexpected token "name" around position 26.”

So... that was an accident. Change OR to or. And... also move this new logic into

securityPostDenormalize:

src/Entity/DragonTreasure.php

0
28

0
31

T
41

42
43

44
T
48
T
66
T
88
89

0
248

// ... lines 1 - 27

#[ApiResource(

// ... lines 29 - 30
operations: [

// ... lines 32 - 40

new Patch(

security: 'is_granted("ROLE_ADMIN") or
(is_granted("ROLE_TREASURE_EDIT") and object.getOwner() == user)',

securityPostDenormalize: 'is_granted("ROLE_ADMIN") or

object.getOwner() == user',
),

// ... lines 45 - 47
1

// ... lines 49 - 65

)]

// ... lines 67 - 87

class DragonTreasure

{

// ... lines 90 - 247

}

Then try the test again:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

Got it! But my screw-up brings up a great point: the security expression is getting too

complex. It's about as readable as a single-line PERL script... and we do not want to make

mistakes when it comes to security.

So next, let's centralize this logic with a voter.

Chapter 23: Security Voter

Our security is turning into a madhouse, which | don't like. | want my security logic to be simple

and centralized. The way to do that in Symfony is with a voter. Let's go create one.

At the command line, run:

php ./bin/console make:voter

Call it DragonTreasureVoter. It's pretty common to have one voter per entity that you need
security logic for. So this voter will make all decisions related to DragonTreasure: can the

current user edit one, delete one, view one: whatever we eventually need.

Go open itup: src/Security/Voter/DragonTreasureVoter.php:

src/Security/Voter/DragonTreasureVoter.php

? /... lines 1 - 2

3 namespace App\Security\Voter;
4
5 use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
6 use Symfony\Component\Security\Core\Authorization\Voter\Voter;
7 use Symfony\Component\Security\Core\User\UserInterface;
8
9 class DragonTreasureVoter extends Voter
10 {
11 public const EDIT = 'POST_EDIT';
12 public const VIEW = 'POST_VIEW';
13
14 protected function supports(string $attribute, mixed $subject): bool
15 {
16 // replace with your own logic
17 // https://symfony.com/doc/current/security/voters.html
18 return in_array($attribute, [self::EDIT, self::VIEW])
19 && $subject instanceof \App\Entity\DragonTreasure;
20 3}
21
22 protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool
23 {
24 $user = $token->getUser();
25 // if the user is anonymous, do not grant access
26 if (!$user instanceof UserInterface) {
27 return false;
28 3
29
30 // ... (check conditions and return true to grant permission)
31 switch ($attribute) {
32 case self::EDIT:
33 // logic to determine if the user can EDIT
34 // return true or false
35 break;
36 case self::VIEW:
37 // logic to determine if the user can VIEW
38 // return true or false
39 break;
40 3
41
42 return false;
43 3}

44 1}

Before we talk about this class, let me show you how we'll use it. In DragonTreasure, we're
still going to use the is_granted() function. But for the first argument, pass EDIT ... which is

just a string I'm making up: you'll see how that's used in the voter. Then pass object:

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 27
28 #[ApiResource(

$ /7 ... lines 29 - 30
31 operations: [

T /7 ... lines 32 - 40
41 new Patch(

42 security: 'is_granted("EDIT", object)',

T /7 ... line 43

44),

$ /7 ... lines 45 - 47
48 1

$ /7 ... lines 49 - 65
66)]

$ // ... lines 67 - 87
88 class DragonTreasure
89 {

$ /7 ... lines 90 - 247
248 }

We normally pass is_granted() a single argument: a role! But you can also pass it any
random string like EDIT ... as long as you have a voter set up to handle that. If your voter needs

some extra info to make its decision, you can pass that as the second argument.

On a high level, we're asking the security system whether or not the current user is allowed to

EDIT this DragonTreasure object. DragonTreasureVoter will make that decision.

Copy this and paste it down for securityPostDenormalize:

src/Entity/DragonTreasure.php

? /... lines 1 - 27
28 #[ApiResource(
$ /7 ... lines 29 - 30
31 operations: [
$ // ... lines 32 - 40
41 new Patch(
42 security: 'is_granted("EDIT", object)',
43 securityPostDenormalize: 'is_granted("EDIT", object)',
a4),
T /7 ... lines 45 - 47
48 1,
$ // ... lines 49 - 65
66)]
$ /7 ... lines 67 - 87
88 class DragonTreasure
89 {
$ // ... lines 906 - 247
248 }

How Voters Works

So here's the deal: anytime that is_granted() is called - from anywhere, not just from API
Platform - Symfony loops through a list of "voter" classes and tries to figure out which one
knows how to make that decision. When we check for a role, there's an existing voter that
knows how to handle that. In the case of EDIT, there is no core voter that knows how to handle

that. So we'll make DragonTreasureVoter able to handle it.

To determine who can handle an isGranted call, Symfony calls supports() on each voter
passing the same two arguments. For our case, $attribute willbe EDIT and $subject

will be the DragonTreasure object:

src/Security/Voter/DragonTreasureVoter.php

T 7/ ... lines 1 - 8

9 class DragonTreasureVoter extends Voter

10 {

? /... lines 11 - 13

14 protected function supports(string $attribute, mixed $subject): bool
15 {

$ /... lines 16 - 19

20 }

$ /7 ... lines 21 - 43

44 3}

MakeBundle generated a voter that handles checking if we can "edit" or "view" a
DragonTreasure. We don't need that "view" right now, so I'll delete it. Below, change this to
an instance of DragonTreasure and I'll retype the end and hit tab to add the use statement...

just to clean things up:

src/Security/Voter/DragonTreasureVoter.php

T 7/ ... lines 1 - 9

10 class DragonTreasureVoter extends Voter

11 {

12 public const EDIT = 'EDIT';

13

14 protected function supports(string $attribute, mixed $subject): bool
15 {

16 return in_array($attribute, [self::EDIT])
17 && $subject instanceof DragonTreasure;
18 3}

? /... lines 19 - 38

39 }

So if someone calls isGranted() and passes the string EDIT and a DragonTreasure

object, we know how to make that decision.

Oh, and | need to change the constant value to EDIT to match the EDIT string we're passing

to is_granted().

If we return true from supports(), Symfony will then call voteOnAttribute(). Very

simply: we return true if the user should have access, false otherwise.

To start, just return false:

src/Security/Voter/DragonTreasureVoter.php

$ /... lines 1 - 9

10 class DragonTreasureVoter extends Voter

11 {

$ /... lines 12 - 19

20 protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool

21 {

22 return false;

$ /7 ... lines 23 - 37

38 3}

39 1}

If we've played our cards right, our voter will swoop in like an overactive superhero every time
we make a PATCH request and slam the access door shut. Before we try test that theory,

remove the "view" case down here:

src/Security/Voter/DragonTreasureVoter.php

$ /... lines 1 - 9

10 class DragonTreasureVoter extends Voter

11 {

T 7/ ... lines 12 - 19

20 protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool

21 {

22 return false;

23 $user = $token->getUser();

24 // if the user is anonymous, do not grant access

25 if ('$user instanceof UserInterface) {

26 return false;

27 }

28

29 // ... (check conditions and return true to grant permission)

30 switch ($attribute) {

31 case self::EDIT:

32 // logic to determine if the user can EDIT

33 // return true or false

34 break;

35 }

36

37 return false;

38 3

39 }

Ok, let's make sure our tests fail! Run:

symfony php bin/phpunit

And... yes! Two tests fail: both because access is denied. Our voter is being called.

Adding_the Voter Logic

Back in the class, voteOnAttribute() is passed the attribute - EDIT - the $subject - a

DragonTreasure object and a $token, which is a wrapper around the current User object.

So we're first checking to make sure that the user is actually authenticated.

After that, assert() that $subject is an instance of DragonTreasure because this

method should only ever be called when supports() return true:

src/Security/Voter/DragonTreasureVoter.php

T 7/ ... lines 1 - 9

10 class DragonTreasureVoter extends Voter

11 {

$ /... lines 12 - 19

20 protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool

21 {

22 $user = $token->getUser();

23 // if the user is anonymous, do not grant access

24 if ('$user instanceof UserInterface) {

25 return false;

26 }

27

28 assert($subject instanceof DragonTreasure);

29

30 // ... (check conditions and return true to grant permission)

$ /7 ... lines 31 - 40

41 }

42 3}

I'm mostly writing this to help my editor know that $subject is a DragonTreasure:

assert() is a handy way to do that.

The switch statement only has one case right now. And this is where our logic will live. Very
simply: if $subject - that's the DragonTreasure - ->getOwner () equals $user, then

return true. Otherwise, it will hit the break and return false:

src/Security/Voter/DragonTreasureVoter.php

0
10

11

0
20

21

0
30
31
32
33
34
35
36
37
38
39
40
41
42

// ... lines 1 - 9

class DragonTreasureVoter extends Voter
{

// ... lines 12 - 19

protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool

{
// ... lines 22 - 29
// ... (check conditions and return true to grant permission)
switch ($attribute) {
case self::EDIT:
if ($subject->getOwner() === $user) {
return true;
}
break;
3
return false;
3
}

This isn't all the logic we need, but it's a good start!

Try the tests now:

symfony php bin/phpunit

Down to one failure!

Checking for Roles in the Voter

What's next? Well, we don't have a test for it, but if we authenticate with an API token, in order

to edit a treasure, you need to ROLE_TREASURE_EDIT, which you can get via the token scope.

So, in the voter, we need to check if the user has that role. Add a __construct() method and

autowire Security - the one from SecurityBundle - $security:

src/Security/Voter/DragonTreasureVoter.php

? /... lines 1 - 5

6 use Symfony\Bundle\SecurityBundle\Security;
T 7/ ... lines 7 - 10

11 class DragonTreasureVoter extends Voter

12 {

$ /7 ... lines 13 - 14

15 public function __construct(private Security $security)
16 {

17 }

$ /7 ... lines 18 - 50

51 }

Then, below, before we check the owner, if not
$this->security->isGranted('ROLE_TREASURE_EDIT'), then definitely return false:

src/Security/Voter/DragonTreasureVoter.php

? /7 ... lines 1 - 10

11 class DragonTreasureVoter extends Voter

12 {

$ // ... lines 13 - 24

25 protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool

26 {

$ /7 ... lines 27 - 35

36 switch ($attribute) {

37 case self::EDIT:

38 if (!$this->security->isGranted('ROLE_TREASURE_EDIT')) {

39 return false;

40 }

41

42 if ($subject->getOwner() === $user) {

43 return true;

44 }

45

46 break;

47 }

$ /7 ... lines 48 - 49

50 }

51 }

The last test that's failing is testing that an admin can patch to edit any treasure. Because we've

already injected the Security service, this is easy.

Let's pretend admin users will be able to do anything. So above the switch, if

$this->security->isGranted('ROLE_ADMIN'), then return true:

src/Security/Voter/DragonTreasureVoter.php

0
11
12

0
25

26

0
33
34
35
36
37

0
54
55

// ... lines 1 - 10

class DragonTreasureVoter extends Voter
{

// ... lines 13 - 24

protected function voteOnAttribute(string $attribute, mixed $subject,
TokenInterface $token): bool

{
// ... lines 27 - 32
if ($this->security->isGranted('ROLE_ADMIN')) {
return true;

assert($subject instanceof DragonTreasure);
// ... lines 38 - 53

Moment of truth:

symfony php bin/phpunit

Voila! Our logic has found a cozy home inside the voter, the security expression is now so

simple it's almost scary, and we got to write our logic in PHP.

Next: let's explore hiding certain fields in the response based on the user.

Chapter 24: Conditional Fields by User:
ApiProperty

We control which fields are readable and writable via serialization groups. But what if you have
a field that should be included in the API... but only for certain users? Sadly, groups can't pull off

that kind of magic on their own.

For example, find the $isPublished field and let's make this part of our API by adding the

treasure:read and treasure:write groups:

src/Entity/DragonTreasure.php

T 7/ ... lines 1 - 87
88 class DragonTreasure
89 {
$ /7 ... lines 90 - 127
128 #[Groups(['treasure:read', 'treasure:write'])]
129 private bool $isPublished = false;
$ /7 ... lines 130 - 248
249 }

Now if we spin over and try the tests:

symfony php bin/phpunit

This makes one test fail: testGetCollectionOfTreasures sees that isPublished is

being returned... and it's not expecting it.

Here's the plan: we'll sneak the field into our API but only for admin users or owners of this

DragonTreasure. How can we pull that off?

Hello ApiProperty

Well, surprise! We don't often need it, but we can add an ApiProperty attribute above any

property to help further configure it. It has a bunch of stuff, like a description that helps with your

documentation and many edge-case things. There's even one called readable. If we said

readable: false:

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 88
89 class DragonTreasure
90 {
T 7/ ... lines 91 - 129
130 #[ApiProperty(readable: false)]
131 private bool $isPublished = false;
$ /7 ... lines 132 - 250
251 }

Then the serialization groups would say that this should be included in the response... but then

this would override that. Watch: if we try the tests:

symfony php bin/phpunit

They pass because the field is gone.

The security Option

For our mission, we can leverage a super cool option called security. Set it to

is_granted("ROLE_ADMIN"):

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 8
9 use ApiPlatform\Metadata\ApiProperty;
$ /7 ... lines 10 - 88
89 class DragonTreasure
90 {
T /7 ... lines 91 - 129
130 #[ApiProperty(security: 'is_granted("ROLE_ADMIN")')]
131 private bool $isPublished = false;
T /7 ... lines 132 - 250
251 }

That's it! If this expression return false, isPublished will not be included in the API: it won't

be readable or writable.

And when we run the tests now:

symfony php bin/phpunit

They still pass, which means isPublished is not being returned.

Now let's go test the "happy" path where this field is returned. Pop open
DragonTreasureResourceTest. Here's the original test:

testGetCollectionOfTreasures(). We're anonymous, so 1sPublished isn't returned.

Now scroll down to testAdminCanPatchToEditTreasure(). When we create the

DragonTreasure, let's make sure it always starts with isPublished => false:

tests/Functional/DragonTreasureResourceTest.php

T /7 ... lines 1 - 12

13 class DragonTreasureResourceTest extends ApiTestCase

14 {

$ /7 ... lines 15 - 138
139 public function testAdminCanPatchToEditTreasure(): void
140 {
141 $admin = UserFactory::new()->asAdmin()->create();
142 $treasure = DragonTreasureFactory::createOne([
143 'isPublished' => false,
144 1);

T 7/ ... lines 145 - 156
157 3}
158 }

Then, down here, assertJsonMatches('isPublished', false) to test that the fieldis

returned:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ // ... lines 15 - 138
139 public function testAdminCanPatchToEditTreasure(): void
140 {
141 $admin = UserFactory::new()->asAdmin()->create();
142 $treasure = DragonTreasureFactory::createOne([
143 'isPublished' => false,
144 1);
145
146 $this->browser()
T /7 ... lines 147 - 154
155 ->assertJsonMatches('isPublished', false)
156 ;
157 }
158 }

Copy the test name, spin over and add --filter to run just that test:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

And... it passes! The field is being returned when we're an admin.

Also Returning_isPublished for the Owner

What about if we're the owner of the treasure? Copy the test... rename it to
testOwnerCanSeeIsPublishedField() ... and let's tweak a few things. Rename $admin
to $user, simplify this to DragonTreasureFactory: :createOne() and make sure the

owner is set to our new $user:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 158
159 public function testOwnerCanSeeIsPublishedField(): void
160 {
161 $user = UserFactory::new()->create();
162 $treasure = DragonTreasureFactory::createOne([
163 '"isPublished' => false,
164 'owner' => S$user,
165 1);
166
167 $this->browser()
168 ->actingAs($user)
169 ->patch('/api/treasures/'.$treasure->getId(), [
170 'json' => [
171 'value' => 12345,
172 1,
173 1
174 ->assertStatus(200)
175 ->assertJsonMatches('value', 12345)
176 ->assertJsonMatches('isPublished', false)
177 5
178 }
179 }

We could change this to a GET request... but PATCH is fine. In either situation, we want to

make sure the isPublished field is returned.

Since we haven't implemented this yet... let's make sure it fails. Copy the method name and try
it:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Failure achieved! And we know how to solve this! On the security option, we could inline the
logic with or object.getOwner () === user. But remember: we created the voter so that

we don't need to do crazy stuff like that! Instead, say is_granted(), EDIT then object:

src/Entity/DragonTreasure.php

? /... lines 1 - 88

89 class DragonTreasure

90 {

T /7 ... lines 91 - 129
130 #[ApiProperty(security: 'is_granted("EDIT", object)')]
131 private bool $isPublished = false;

T /7 ... lines 132 - 250
251 }

Try the test now:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

The Special securityPostDenormalize

Got it! Oh, and | haven't used it much, but there's also a securityPostDenormalize option.
Just like with the securityPostDenormalize option on each operation, this runs after the
new data is deserialized onto the object. What's interesting is that if the expression returns

false, the data on the object is actually reverted.

For example, suppose the isPublished property started as false and then the user sent
some JSON to change itto true. But then, securityPostDenormalize returned false.
In that case, API Platform will revert the isPublished property back to its original value: it will
change it from false back to true. Oh, and by the way, securityPostDenormalize is
not executed on GET requests: it only happens when data is being deserialized. So be sure to
put your main security logic in security and only use securityPostDenormalize if you

need it.

Up next on our to-do list: let's level-up our user operations to hash the password before saving

to the database. We'll need a fresh, non-persisted plain password property to make it happen.

Chapter 25: User Test + Plain Password

We have a pretty nice DragonTreasureResourceTest, so let's bootstrap one for User.

Bootstrapping_the User Test

Create a new PHP class called, how about, UserResourceTest . Make it extend our custom

ApiTestCase, then we just need to use ResetDatabase:

To use Foundry factories in a test, also add a use Factories; trait to the top of your test

class. Things worked without that in this case, but in the future, you'll likely get an error.

tests/Functional/UserResourceTest.php

? /7 ... lines 1 - 2
namespace App\Tests\Functional;

use Zenstruck\Foundry\Test\ResetDatabase;

class UserResourceTest extends ApiTestCase

{

use ResetDatabase;
// ... lines 10 - 14

}

© O 0 N o o1~ W

[N
al

We don't need HasBrowser because that's already done in the base class.

Start with public function testPostToCreateUser():

tests/Functional/UserResourceTest.php

? // ... lines 1 - 6
7 class UserResourceTest extends ApiTestCase

8 {

? /... lines 9 - 10

11 public function testPostToCreateUser(): void
12 {
13
14 }
15 }

Make a ->post() requestto /api/users, tossin some json with email and password,

and assertStatus(201).

And now that we've created the new user, let's jump right in and test if we can log in with their
credentials! Make another ->post() requestto /login, also pass some json - copy the

email and password from above - then assertSuccessful():

tests/Functional/UserResourceTest.php

T 7/ ... lines 1 - 6

7 class UserResourceTest extends ApiTestCase

8 {

? /... lines 9 - 10

11 public function testPostToCreateUser(): void

12 {
13 $this->browser()
14 ->post('/api/users', [
15 'json' => [
16 'email' => 'draggin_in_the_morning@coffee.com',
17 'username' => 'draggin_in_the_morning',
18 'password' => 'password',
19]
20 1)
21 ->assertStatus(201)
22 ->post('/login', [
23 'json' => [
24 'email' => 'draggin_in_the_morning@coffee.com',
25 'password' => 'password',
26 1
27 1)
28 ->assertSuccessful()
29 ;
30 3

|

Let's give this a go: symfony php bin/phpunit and run the entire

tests/Functional/UserResourceTest.php file:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

And... ok! A 422 status code, but 201 expected. Let's see: this means something went wrong
creating the user. Let's pop open the last response. Ah! My bad: | forgot to pass the required

username field: we're failing validation!

Pass username... set to anything:

tests/Functional/UserResourceTest.php

? // ... lines 1 - 6
7 class UserResourceTest extends ApiTestCase
8 {
T /7 ... lines 9 - 10
11 public function testPostToCreateUser(): void
12 {
13 $this->browser()
14 ->post('/api/users', [
15 "json' => [
$ /7 ... line 16
17 'username' => 'draggin_in_the_morning',
T /7 ... line 18
19 1
20 1)
$ /7 ... lines 21 - 28
29)
30 }
31 }
Try that again:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

That's what | wanted:

“Expected successful status code, but got 401.”

So the failure is down here. We were able to create the user... but when we tried to log in, it
failed. If you were with us for episode one, you might remember why! We never set up our API

to hash the password.

Check it out: inside User, we did make password part of our API. The user sends the plain-
text password they want... then we're saving that directly into the database. That's a huge
security problem... and it makes it impossible to log in as this user, because Symfony expects

the password property to hold a hashed password.

Setting_up the plainPassword Field

So our goal is clear: allow the user to send a plain password, but then hash it before it's stored
in the database. To do this, instead of temporarily storing the plain-text password on the
password property, let's create a totally new property:

private ?string $plainPassword = null:

src/Entity/User.php

? // ... lines 1 - 66
67 class User implements UserInterface, PasswordAuthenticatedUserInterface
68 {
$ /7 ... lines 69 - 92
93 private ?string $plainPassword = null;
$ /7 ... lines 94 - 290
291 }

This will not be stored in the database: it's just a temporary spot to hold the plain password

before we hash it and set that on the real password property.

Down at the bottom, I'll go to "Code"->"Generate", or Command +N on a Mac, and generate a
"Getter and setter" for this. Let's clean this up a bit: accept only a string, and the PHPDoc is

redundant:

https://symfonycasts.com/screencast/api-platform

src/Entity/User.php

0
67

68
0
280
281
282
283
284
285
286
287
288
289
290
291

// ... lines 1 - 66

class User implements UserInterface, PasswordAuthenticatedUserInterface
{

// ... lines 69 - 279

public function setPlainPassword(string $plainPassword): User

{

$this->plainPassword = $plainPassword;

return $this;

¥
public function getPlainPassword(): ?string
{
return $this->plainPassword;
¥

}

Next, scroll all the way to the top and find password. Remove this from our API entirely:

src/Entity/User.php

0
68

// ... lines 1 - 67
class User implements UserInterface, PasswordAuthenticatedUserInterface
{
// ... lines 70 - 86
J**
* @var string The hashed password
*/
#[ORM\Column]
private ?string $password = null;
// ... lines 92 - 292
}

Instead, expose plainPassword... but use SerializedName so it's called password:

src/Entity/User .php

0
68
69

// ... lines 1 - 67

class User implements UserInterface, PasswordAuthenticatedUserInterface
{

// ... lines 70 - 92

#[Groups(['user:write'])]

#[SerializedName('password')]

private ?string $plainPassword = null;
// ... lines 96 - 292

So we're obviously not done yet... and if you run the tests:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

Things are worse! A 500 error because of a not null violation. We're sending password, that's
stored on plainPassword... then we're doing absolutely nothing with it. So the real

password property stays null and explodes when it hits the database.

So here's the million-dollar question: how can we hash the plainPassword property? Or, in
simpler terms, how can we run code in API Platform after the data is deserialized but before it's
saved to the database? The answer is: state processors. Let's dive into this powerful concept

next.

Chapter 26: State Processors: Hashing the User

Password

When an API client creates a user, they send a password field, which gets set onto the

plainPassword property. Now, we need to hash that password before the User is saved to

the database. Like we showed when working with Foundry, hashing a password is simple: grab

the UserPasswordHasherInterface service then call a method on it;

src/Factory/UserFactory.php

0
;

0
31
32

0
48
49
50
51

0
53

0
82
83
84
85
86
87
88
89
90
91
92

0
08

// ... lines 1 - 6

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;
// ... lines 8 - 30

final class UserFactory extends ModelFactory

{
// ... lines 33 - 47

public function __construct(

private UserPasswordHasherInterface $passwordHasher

)

{
// ... line 52

}
// ... lines 54 - 81

protected function initialize(): self

{

return $this
->afterInstantiate(function(User $user): void {
$user->setPassword($this->passwordHasher->hashPassword(
$user,
$user->getPassword()
));
1)

}
// ... lines 93 - 97
¥

But to pull this off, we need a "hook" in API platform: we need some way to run code after our

data is deserialized onto the User object, but before it's saved.

In our tutorial about API platform 2, we used a Doctrine listener for this, which would still work.
Though, it does some negatives, like being super magical - it's hard to debug if it doesn't work -

and you need to do some weird stuff to make sure it runs when editing a user's password.

Hello State Processors

Fortunately, In API platform 3, we have a shiny new tool that we can leverage. It's called a state

processor. And actually, our User class is already using a state processor!

Find the API Platform 2 to 3 upgrade guide... and search for processor. Let's see... here we go.

It has a section called providers and processors. We'll talk about providers later.

According to this, if you have an ApiResource class that is an entity - like in our app - then,
for example, your Put operation already uses a state processor called PersistProcessor!

The Post operation also uses that, and Delete has one called RemoveProcessor .

State processors are cool. After the sent data is deserialized onto the object, we... need to do
something! Most of the time, that "something" is: save the object to the database. And that's
precisely what PersistProcessor does! Yea, our entity changes are saved to the database

entirely thanks to that built-in state processor!

Creating_the Custom State Processor

So here's the plan: we're going to hook into the state processor system and add our own. Step

one, run a new command from API Platform:

php ./bin/console make:state-processor

Let's call it UserHashPasswordProcessor . Perfect.

Spin over, go into src/, open the new State/ directory and check out

UserHashPasswordStateProcessor:

https://api-platform.com/docs/core/upgrade-guide/

src/State/UserHashPasswordStateProcessor.php

? /... lines 1 - 2

3 namespace App\State;

4

5 use ApiPlatform\Metadata\Operation;

6 use ApiPlatform\State\ProcessorInterface;

7

8 class UserHashPasswordStateProcessor implements ProcessorInterface

9 {

10 public function process(mixed $data, Operation $operation, array
$urivariables = [], array $context = []): void

11 {

12 // Handle the state

13 }

14 3}

It's delightfully simple: API platform will call this method, pass us data, tell us which operation is
happening... and a few other things. Then... we just do whatever we want. Send emails, save

things to the database, or RickRoll someone watching a screencast!

Activating this processor is simple in theory. We could go to the Post operation, add a
processor option and set it to our service id:

UserHashPasswordStateProcessor: :class.

Unfortunately... if we did that, it would replace the PersistProcessor that it's using now.
And... we don't want that: we want our new processor to run... and then also the existing

PersistProcessor. But... each operation can only have one processor.

Setting_up Decoration

No worries! We can do this by decorating PersistProcessor . Decoration always follows the
same pattern. First, add a constructor that accept an argument with the same interface as our

class: private ProcessorInterface and I'll call it $innerProcessor:

src/State/UserHashPasswordStateProcessor.php

? /... lines 1 - 5
6 use ApiPlatform\State\ProcessorInterface;
T /7 ... lines 7 - 9

10 class UserHashPasswordStateProcessor implements ProcessorInterface
11 {

12 public function __ _construct(private ProcessorInterface
$innerProcessor)

13 {

14 }

T /7 ... lines 15 - 21

22 }

After | add a dump() to see if this is working, we'll do step 2: call the decorated service
method: $this->innerProcessor->process() passing $data, $operation,

$urivVariables and... yes, $context:

In API Platform 3.2 and higher, you should
return $this->innerProcessor->process(). Thisis also a safe thing to do in 3.0 &
3.1.

src/State/UserHashPasswordStateProcessor.php

T /7 ... lines 1 - 9

10 class UserHashPasswordStateProcessor implements ProcessorInterface

11 {

$ /7 ... lines 12 - 15

16 public function process(mixed $data, Operation $operation, array
$urivariables = [], array $context = []): void

17 {

18 dump("ALIVE!");

19

20 $this->innerProcessor->process($data, $operation, $urivVariables,
$context);

21 }

22 }

Love it: our class is set up for decoration. Now we need to tell Symfony to use it. Internally,
PersistProcessor from API Platform is a service. We're going to tell Symfony that whenever
anything needs that PersistProcessor service, it should be passed our service instead...

but also that Symfony should pass us the original PersistProcessor.

To do that, add #[AsDecorator ()] and pass the id of the service. You can usually find this in
the documentation, or you can use the debug:container command to search for it. The docs

say it's api_platform.doctrine.orm.state.persist_processor:

src/State/UserHashPasswordStateProcessor.php

T 77/ ... lines 1 - 6

7 use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

8

9 #[AsDecorator('api_platform.doctrine.orm.state.persist_processor')]
10 class UserHashPasswordStateProcessor implements ProcessorInterface
11 {

$ /7 ... lines 12 - 21
22 }

Decoration done! We're not doing anything yet, but let's see if it hits our dump! Run the test:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

And... there it is! It's still a 500, but it is using our processor!

Adding the Hashing_Logic

Now we can get to work. Because of how we did the service decoration, our new processor will
be called whenever any entity is processed... whether it's a User, DragonTreasure or
something else. So, start by checking if $data is an instanceof User ... and if
$data->getPlainPassword() ... because if we're editing a user, and no password is sent,

no need for us to do anything:

src/State/UserHashPasswordStateProcessor.php

? /... lines 1 - 11

12 class UserHashPasswordStateProcessor implements ProcessorInterface

13 {

$ /7 ... lines 14 - 17

18 public function process(mixed $data, Operation $operation, array
$urivVariables = [], array $context = []): void

19 {

20 if ($data instanceof User && $data->getPlainPassword()) {

T /7 ... line 21

22 }

23

24 $this->innerProcessor->process($data, $operation, $uriVariables,
$context);

25 3}

26 }

By the way, the official documentation for decorating state processors is slightly different. It
looks more complex to me, but the end result is a processor that's only called for one entity, not

all of them.

To hash the password, add a second argument to the constructor:

private UserPasswordHasherInterface called $userPasswordHasher:

src/State/UserHashPasswordStateProcessor.php

T /7 ... lines 1 - 8

9 use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

$ // ... lines 10 - 11

12 class UserHashPasswordStateProcessor implements ProcessorInterface

13 {

14 public function __construct(private ProcessorInterface
$innerProcessor, private UserPasswordHasherInterface $userPasswordHasher)

15 {

16 3}

$ /7 ... lines 17 - 25

26 }

Below, say $data->setPassword() setto
$this->userPasswordHasher->hashPassword() passing it the User, which is $data

and the plain password: $data->getPlainPassword():

src/State/UserHashPasswordStateProcessor.php

0
12

13

0
18

19
20
21

22
23
24

25
26

// ... lines 1 - 11

class UserHashPasswordStateProcessor implements ProcessorInterface
{

// ... lines 14 - 17

public function process(mixed $data, Operation $operation, array
$urivVariables = [], array $context = []): void

{
if ($data instanceof User && $data->getPlainPassword()) {

$data->setPassword($this->userPasswordHasher -
>hashPassword($data, $data->getPlainPassword()));

}

$this->innerProcessor->process($data, $operation, $uriVariables,
$context);

}

And this all happens before we call the inner processor that actually saves the object.

Let's try this thing! Run that test:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

Victory! After creating a user in our API, we can then log in as that user.

User.eraseCredentials()

Oh, and it's minor, but once you have a plainPassword property, inside of User, there's a

method called eraseCredentials(). Uncomment $this->plainPassword = null:

src/Entity/User.php

0
68

69

0
187
188
189

190
191

0
293

// ... lines 1 - 67
class User implements UserInterface, PasswordAuthenticatedUserInterface
{
// ... lines 70 - 186
public function eraseCredentials()
{
// If you store any temporary, sensitive data on the user, clear
it here
$this->plainPassword = null;
}
// ... lines 192 - 292
}

This makes sure that if the object is serialized into the session, the sensitive plainPassword

is cleared first.

Next: let's fix some validation issues via validationGroups and discover something special

about the Patch operation.

Chapter 27: Validation Groups & Patch Formats

Now that the plainPassword property is a legitimate part of our API, let's add some
validation... because you can't create a new user without a password! Add
Assert\NotBlank:

src/Entity/User .php

$ /7 ... lines 1 - 67
68 class User implements UserInterface, PasswordAuthenticatedUserInterface
69 {
$ /7 ... lines 70 - 94
95 #[Assert\NotBlank]
96 private ?string $plainPassword = null;
$ /7 ... lines 97 - 293
294 }

Piece of cake! Well, that just created a new problem... but let's blindly move forward and

pretend that everything is fine.

Copy the first test and paste to create a second method that will make sure we can update
users. Call it testPatchToUpdateUser (). This one is simple: make a new user -
$user = UserFactory::createOne(), add actingAs($user) then ->patch() to

/api/users/ then $user->getId() to edit ourselves.

For the json, just send username, add assertStatus(200).... then we don't need any of
this other stulff:

tests/Functional/UserResourceTest.php

? /... lines 1 - 7

8 class UserResourceTest extends ApiTestCase

9 {

$ /7 ... lines 10 - 32

33 public function testPatchToUpdateUser(): void
34 {

35 $user = UserFactory::createOne();

36

37 $this->browser()
38 ->actingAs($user)
39 ->patch('/api/users/' . $user->getId(), [
40 "json' => [
41 'username' => 'changed',
42 1,
43 1
44 ->assertStatus(200);
45 3}
46 3}

As a reminder, up on the Patch operation for User ... here it is, we're requiring that the user
has ROLE_USER_EDIT. Because we're logging in as a "full" user, we should have that... and

everything should work fine... famous last words.

Run:

symfony php bin/phpunit --filter=testPatchToUpdateUser

PATCH: The Most Interesting HTTP Method in the World

And... oh! 200 expected, got 415. That's a new one! Click to open the last response... then I'll

View Source to make it more clear. Interesting:

“The content-Type: application/json is not supported. Supported MIME types are

application/merge-patch+json.”

Let's unpack this. We're making a PATCH request... and PATCH requests are quite simple: we

send a subset of fields, and only those fields are updated.

Whelp, it turns out that the PATCH HTTP method can get a whole heck of a lot more interesting
than this. In the greater interwebs, there are competing formats for how the data should look

when using a PATCH request and each format means something different.

Currently, APl Platform supports only one of these formats:
application/merge-patch+json. This formatis... kind of what you expect. It says: if you
send a single field, only that single field will be changed. But it also has other rules, like how you
could set email to null... and that would actually remove the email field. That doesn't really
make sense in our API, but the point is: the format defines rules about how your JSON should
look for a PATCH request and what that means. If you want to know more, there's a document

that describes everything: it's quite short and readable.

So, API platform only supports one format for PATCH requests at the moment. But, in the future,
they might support more. And so, when you make a PATCH request, API Platform requires you
to send a Content-Type header setto application/merge-patch+json... so that you're

explicitly telling API platform which format your JSON is using.

In other words, to fix our error, pass a headers key with Content-Type set to

application/merge-patch+json:

tests/Functional/UserResourceTest.php

? /... lines 1 - 7

8 class UserResourceTest extends ApiTestCase

9 {

? /... lines 160 - 32

33 public function testPatchToUpdateUser(): void

34 {

$ /7 ... lines 35 - 36

37 $this->browser()

$ // ... line 38
39 ->patch('/api/users/' . $user->getId(), [
$ /7 ... lines 40 - 42
43 'headers' => ['Content-Type' => 'application/merge-

patch+json']

44 1

$ /... line 45
46 3}
47 3}

Try this now:

https://www.rfc-editor.org/rfc/rfc7386
https://www.rfc-editor.org/rfc/rfc7386

symfony php bin/phpunit --filter=testPatchToUpdateUser

It still fails, but now it's a validation error! The takeaway is simple: PATCH requests require this
Content-Type header.

But wait! We did a bunch of PATCH requests over in DragonTreasureResourceTest and

those worked fine without the header! What the what?

That... was kind of on accident. Inside DragonTreasure, in the first tutorial... here it is, we

added a formats key so that we could add CSV support:

src/Entity/DragonTreasure.php

? /... lines 1 - 28
29 #[ApiResource(

$ /7 ... lines 30 - 49
50 formats: [

51 'jsonld',

52 'json',

53 "html',

54 '"jsonhal’,

55 'csv' => 'text/csv',
56 1

$ /7 ... lines 57 - 66
67)]

$ /7 ... lines 68 - 252

It turns out that, for some complex internal reasons, by adding formats, we removed the
requirement for needing that header. So we were "getting away" with not setting the header in
DragonTreasureResourceTest ... even though we should be setting it. It may have been
better to set formats on the GetCollection operation only... since that's the only spot we
need CSV.

Anyway, that's why we didn't need it before, but we do need it now. By the way, if adding this
header every time you call ->patch is annoying, this is another situation where you could add
a custom method to browser - like ->apiPatch() - which would work the same, but add that

header automatically.

Fixing_the Validation Groups

Ok, back to the test! It's failing with a 422. Open the error response. Ah, it's from

plainPassword: this field should not be blank!

The plainPassword property is not persisted to the database. So, it's always empty at the
start of an API request. When we create a User, we absolutely do want this field to be
required. But when we're editing a User, we don't need this field to be set. They can set it in

order to change their password, but that's optional.

This is the first spot where we need conditional validation: validation should happen on one
operation, but not on others. The way to fix this is with validation groups, which is very similar to

serialization groups.

Find the Post operation and pass a new option called validationContext with, you
guessed it, groups'! Set this to an array with a group called Default with a capital D. Then

invent a second group: postValidation:

src/Entity/User.php

? /... lines 1 - 26

27 #[ApiResource(

$ /7 ... line 28

29 operations: [

$ /7 ... lines 30 - 31

32 new Post(

T /7 ... line 33

34 validationContext: ['groups' => ['Default',
'postValidation']],

35),

$ /7 ... lines 36 - 42

43 1

$ /7 ... lines 44 - 49

50)]

$ // ... lines 51 - 296

When the validator validates an object, by default, it validates everything that's in a group called
Default. And any time you have a constraint, by default that constraint is in that Default

group. So what we're saying here is:

“We want to validate all the normal constraints plus any constraints that are in the

postValidation group.”

Now we can take that postValidation, go down to plainPassword and set groups to

postValidation:
$ // ... lines 1 - 68
69 class User implements UserInterface, PasswordAuthenticatedUserInterface
70 {
$ /7 ... lines 71 - 95
96 #[Assert\NotBlank(groups: ['postValidation'])]
97 private ?string $plainPassword = null;
$ /7 ... lines 98 - 294
295 }

That removes this constraint from the Default group and only includes it in the
postValidation group. Thanks to this, other operations like Patch will not run this, but the

Post operation will.

Run the test now:

symfony php bin/phpunit --filter=testPatchToUpdateUser

We're unstoppable! In fact, all of our tests are passing!

Careful: PUT Can Create Objects

But head's up! In User, we still have both Put and Patch. | haven't played with it much yet,
but the new Put behavior, in theory, does support creating objects. This can make things tricky:
do we need to require the password or not? It depends! This might be another reason for
removing the Put operation to keep life simple. That gives us one operation for creating and

one operation for editing.

Next: let's explore making our serialization groups dynamic based on the user. This will give us
another way to include or not include fields based on who is logged in. And it'll lead us towards

adding super custom fields.

Chapter 28: Dynamic Groups: Context Builder

In DragonTreasure, find the $1sPublished field. Earlier we added this ApiProperty
security thing so that the field is only returned for admin users or owners of this treasure.

This is a simple and 100% valid way to handle this situation.

However, there is another way to handle fields that should be dynamic based on the current

user... and it may or may not have two advantages depending on your situation.

The security Options vs Dynamic Groups

First, check out the documentation. Open the GET endpoint for a single DragonTreasure.
And, even without trying it, you can see that 1sPublished is a field that is correctly advertised

in our docs.

So, that's good, right? Yea! Well, probably. If isPublished were truly an internal, admin-only

field, we might not want it advertised to the world.

The second possible problem with security is that, if you have this option on many
properties, it's going to run that security check a /ot of times when returning a collection of
objects. Honestly, that probably won't cause performance issues, but it's something to be aware

of.

Inventing_New Serialization Groups

To solve these two possible problems - and, honestly, just to learn more about how API Platform
works under the hood - | want to show you an alternative solution. Remove the ApiProperty

attribute:

src/Entity/DragonTreasure.php

? /... lines 1 - 88

89 class DragonTreasure

20 {

$ // ... lines 91 - 129
130 #[ApiProperty(security: 'is_granted("EDIT", object)')]
131 private bool $isPublished = false;

T /7 ... lines 132 - 250
251 }

And replace it with two new groups. We're not going to use the normal treasure:read and
treasure:write... because then the fields would always be part of our API. Instead, use

admin:read and admin:write:

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 88
89 class DragonTreasure
90 {
$ // ... lines 91 - 128
129 #[Groups(['admin:read', 'admin:write'])]
130 private bool $isPublished = false;
$ /7 ... lines 131 - 249
250 }

This won't work yet... because these groups are never used. But here's the idea: if the current

user is an admin, then when we serialize, we'll add these two groups.

The tricky part is, right now, groups are static! We set them way up here on the ApiResource

attribute - or on a specific operation - and that's it! But we can make them dynamic.

Hello ContextBuilder

Internally, API Platform has a system called a context builder, which is responsible for building
the normalization or denormalization contexts that are then passed into the serializer. And, we

can hook into that to change the context: like to add extra groups.

Let's doit! Overin src/ApiPlatform/, create a new class called
AdminGroupsContextBuilder ... and make this implement

SerializerContextBuilderInterface:

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 2
namespace App\ApiPlatform;

use ApiPlatform\Serializer\SerializerContextBuilderInterface;
// ... lines 6 - 7

class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

{
$ /7 ... lines 160 - 13
14 }

0 & o b~ W

©

Then, go to "Code"->"Generate" - or Command +N on a Mac - and select "Implement methods"

to create the one we need: createFromRequest():

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 5
6 use Symfony\Component\HttpFoundation\Request;
7

8 class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

9 {
10 public function createFromRequest(Request $request, bool
$normalization, array $extractedAttributes = null): array

11 {

12 // TODO: Implement createFromRequest() method.
13 3}

14 3}

It's pretty simple: API Platform will call this, pass us the Request, whether or not we're
normalizing or denormalizing... and then we return the context array that should be passed to

the serializer.

Let's do some Decoration!

Like we've seen a few times already, our intention is not to replace the core context builder.

Nope, we want the core context builder to do its thing... and then we'll add our own stuff.

To do this, once again, we'll use service decoration. We know how this works: add a
__construct() method that accepts a private SerializerContextBuilderInterface

and I'll call this $decorated:

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 7

8 class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

9 {
10 public function __construct(private SerializerContextBuilderInterface
$decorated)
11 {
12 }
$ /7 ... lines 13 - 20
21 }

Then, down here, say $context = this->decorated->createFromRequest() passing
$request, $normalization and $extractedAttributes. Add a dump() to make sure

this is working and return $context:

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 7

8 class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

9 {
? /... lines 160 - 13
14 public function createFromRequest(Request $request, bool

$normalization, array $extractedAttributes = null): array
15 {

16 $context = $this->decorated->createFromRequest($request,
$normalization, $extractedAttributes);

17 dump('I AM WORKING!'");

18

19 return $context;

20 }

21 }

To tell Symfony to use our context builder in place of the real one, add our
#[AsDecorator()].

Here, we need the service ID of whatever the core context builder is. That's something you can

find in the docs: it's api_platform.serializer.context_builder:

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 5

6 use Symfony\Component\DependencyInjection\Attribute\AsDecorator;
$ /7 ... lines 7 - 8

9 #[AsDecorator('api_platform.serializer.context_builder')]

10 class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

11 {
$ /... lines 12 - 22
23 }

Oh, but be careful when using SerializerContextBuilderInterface: there are two of
them. One of is from GraphQL: make sure you select the one from

ApiPlatform\Serializer, unless you are using GraphQL.

Ok! Let's see if it hits our dump! Run all of our tests: | also want to see which fail:

symfony php bin/phpunit

And... okay! We see the dump a bunch of times, followed by two failures. The first is
testAdminCanPatchToEditTreasure. That's the case we're working on right now. We'll

worry about testOwnerCanSeeIsPublishedFieldI in a minute.

Copy the test method name and rerun that with --filter=:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

When the Context Builder is Called

Perfect! We see the dump: actually three times, which is interesting. Open up that test so we
can see what's going on. Yup! We're making a single PATCH requestto /api/treasure/1.

So, the context builder is called 3 times during just one request?

It is! It's called one time when API Platform is querying and loading the DragonTreasure from
the database. That's... kind of an odd situation because the context is meant to be used for the

serializer... but we're simply querying for the object. But anyway, that's the first time.

The next two make sense: it's called when the JSON we're sending is denormalized into the

object... and a third time when the final DragonTreasure is normalized back into JSON.

Anyway, let's hop in and add the dynamic groups. To determine if the user is an admin, add a
second constructor argument - private Security from SecurityBundle called

$security:

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 5
6 use Symfony\Bundle\SecurityBundle\Security;
T 77/ ... lines 7 - 9
10 #[AsDecorator('api_platform.serializer.context_builder')]
11 class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

12 {

13 public function __ _construct(private SerializerContextBuilderInterface
$decorated, private Security $security)

14 {

15 }

$ /7 ... lines 16 - 26

27 }

Then down here, if isset($context['groups']) and
$this->security->isGranted('ROLE_ADMIN'), then we'll add the groups:
$context['groups'][] =. If we're currently normalizing, add admin:read else add

admin:write:

src/ApiPlatform/AdminGroupsContextBuilder .php

? /... lines 1 - 10

11 class AdminGroupsContextBuilder implements
SerializerContextBuilderInterface

12 {

$ /7 ... lines 13 - 16

17 public function createFromRequest(Request $request, bool
$normalization, array $extractedAttributes = null): array

18 {

19 $context = $this->decorated->createFromRequest($request,
$normalization, $extractedAttributes);

20

21 if (isset($context['groups']) && $this->security-
>isGranted('ROLE_ADMIN')) {

22 $context['groups'][] = $normalization ? 'admin:read'
'admin:write';

23 3}

$ // ... lines 24 - 25

26 }

27 }

Now, you might be wondering why we're checking if isset($context|['groups']). Well, it
doesn't apply to our app, but imagine if we were serializing an object that didn't have any
groups on it - like we never set the normalizationContext on that ApiResource. In that
case, adding these groups would cause it to return /ess fields! Remember, if there are no
serialization groups, the serializer returns every accessible field. But as soon as you add even
one group, it only serializes the things in that one group. So if there aren't any groups, do

nothing and let everything be serialized or deserialized like normal.

OkK! Let's try the test now!

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

It passes! The isPublished field is being returned if we're an admin user. But... go refresh
the docs... and open the GET one treasure endpoint. Now we do not see 1sPublished
advertised as a field in our docs... even though it will be returned if we're an admin. That might
be good or bad. It is possible to make the docs load dynamically based on who is logged in, but
that's not something we're going to tackle in this tutorial. We did talk about that in our API

platform 2 tutorial... but the config system has changed.

https://symfonycasts.com/screencast/api-platform2-security
https://symfonycasts.com/screencast/api-platform2-security

Let's dig into the next method, which tests that an owner can see the isPublished field. This
is currently failing... and it's even trickier than the admin situation because we need to include or

not include the isPublished field on an object-by-object basis.

Chapter 29: Custom Normalizer

Copy the test method - testOwnerCanSeeIsPublishedField. We just added some magic
so that admin users can see the isPublished property. This method tests for our next

mission: that owners of a DragonTreasure can also see this.

Run it with:
symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

And... it fails: expected null to be the same as false, because the field isn't returned at all.

To fix this, over in DragonTreasure, add a third special group: owner :read:

src/Entity/DragonTreasure.php

? /... lines 1 - 88
89 class DragonTreasure
90 {
$ /7 ... lines 91 - 128
129 #[Groups(['admin:read', 'admin:write', 'owner:read'])]
130 private bool $isPublished = false;
$ /7 ... lines 131 - 249
250 }

Can you see where we're going with this? If we are the owner of a DragonTreasure, we'll add

this group and then the field will be included. However, pulling this off is tricky.

As we talked about in the last video, normalization groups start static: they live up here in our
config. The context builder allows us to make these groups dynamic per request. So, if we're an
admin user, we can add an extra admin:read group, which will be used when serializing

every object for this entire request.

But in this situation, we need to make the group dynamic per object. Imagine if we're returning
10 DragonTreasure's: the user may only own one of them, so only that one

DragonTreasure should be normalized using this extra group.

The Job of Normalizers

To handle this level of control, we need a custom normalizer. Normalizers are core to Symfony's
serializer. They're responsible for turning a piece of data - like an ApiResource object or a
DateTime object that lives on a property - into a scalar or array value. By creating a custom

normalizer, you can do pretty much any weird thing you want!

Find your terminal and run:

php bin/console debug:container --tag=serializer.normalizer

| love this: it shows us every single normalizer in our app! We can see stuff that's responsible for
normalizing UUIDs.... this is what normalizes any of our ApiResource objects to JSON-LD

and here's one for a DateTime. There's a ton of interesting stuff.

Our goal is to create our own normalizer, decorate an existing core normalizer, then add the

dynamic group before that core normalizer is called.

Creating_the Normalizer Class

So let's get to work! Over in src/ - it doesn't really matter how we organize things - I'm going
to create a new directory called Normalizer. Let me collapse a few things... so it's easier to
look at. Inside that, add a new class called, how about, AddOwnerGroupsNormalizer. All
normalizers must implement NormalizerInterface... then go to "Code"->"Generate" or

Command+N on a Mac and select "Implement methods" to add the two we need:

src/Normalizer/AddOwnerGroupsNormalizer.php

? /... lines 1 - 2

3 namespace App\Normalizer;
4
5 use Symfony\Component\Serializer\Normalizer\NormalizerInterface;
6
7 class AddOwnerGroupsNormalizer implements NormalizerInterface
8 {
9 public function normalize(mixed $object, string $format = null, array
$context = [])
10 {
11 // TODO: Implement normalize() method.
12 }
13
14 public function supportsNormalization(mixed $data, string $format =
null)
15 {
16 // TODO: Implement supportsNormalization() method.
17 3}
18 1}

Here's how this works: as soon as we implement NormalizerInterface, anytime any piece
of data is being normalized, it will call our supportsNormalization() method. There, we
can decide whether or not we know how to normalize that thing. If we return true, the
serializer will then call normalize(), pass us that data, and then we return the normalized

version.

And actually, to avoid some deprecation errors, pop open the parent class. The return type is
this crazy array thingy. Copy that... and add it as the return type. You don't have to do this -

everything would work without it - but you'd get a deprecation warning in your tests.

Down for supportsNormalization(), in Symfony 7, there will be an array $context

argument... and the method will return a bool:

src/Normalizer/AddOwnerGroupsNormalizer.php

$ // ... lines 1 - 6

7 class AddOwnerGroupsNormalizer implements NormalizerInterface

8 {

9 public function normalize(mixed $object, string $format = null, array
$context = []): array|string|int|float|bool|\ArrayObject|null

$ /7 ... lines 10 - 12

13

14 public function supportsNormalization(mixed $data, string $format =
null, array $context = []): bool

$ /7 ... lines 15 - 17

18 }

Which Service do We Decorate?

Before we fill this in or set up decoration, we need to think about which core service we're going
to decorate. Here's my idea: if we replace the main core normalizer service with this class,
we could add the group then call the decorated normalizer... so that everything then works like

usual, except that it has the extra group.

Back at the terminal, run:

bin/console debug:container normalizer

We get back a bunch of results. That makes sense: there's a main normalizer, but then the
normalizer itself has lots of other normalizers inside of it to handle different types of data.
So... where is the top level normalizer? It's actually not even in this list: it called serializer.

Though, as we'll see next, even that isn't quite right.

Chapter 30: Normalizer Decoration & "Normalizer
Aware"

Our mission is clear: set up our normalizer to decorate Symfony's core normalizer service so
that we can add the owner : read group when necessary and then call the decorated

normalizer.

Setting_up for Decoration

And we know decoration! Add public function __construct() with

private NormalizerInterface $normalizer:

src/Normalizer/AddOwnerGroupsNormalizer.php

$ // ... lines 1 - 4
use Symfony\Component\Serializer\Normalizer\NormalizerInterface;

{

5
6
7 class AddOwnerGroupsNormalizer implements NormalizerInterface
8
9

public function __construct(private NormalizerInterface $normalizer)
10 {
11 3}
? /... lines 12 - 23

Below in normalize(), add a dump() then
return $this->normalizer->normalize() passing $object $format, and
$context. For supportsNormalization(), do the same thing: call

supportsNormalization() on the decorated class and pass the args:

src/Normalizer/AddOwnerGroupsNormalizer.php

$ // ... lines 1 - 6

7 class AddOwnerGroupsNormalizer implements NormalizerInterface

8 {

$ /7 ... lines 9 - 12

13 public function normalize(mixed $object, string $format = null, array
$context = []): array]|string|int|float|bool|\ArrayObject|null

14 {

15 dump('IT WORKS!"');

16

17 return $this->normalizer->normalize($object, $format, $context);

18 }

19

20 public function supportsNormalization(mixed $data, string $format =
null, array $context = []): bool

21 {

22 return $this->normalizer->supportsNormalization($data, $format);

23 }

24 }

To complete decoration, head to the top of the class. I'll remove a few old use statements...
then say #[AsDecorator] passing serializer, which | mentioned is the service id for the

top-level main normalizer:

src/Normalizer/AddOwnerGroupsNormalizer.php

T /7 ... lines 1 - 4

5 use Symfony\Component\DependencyInjection\Attribute\AsDecorator;
? /7 ... lines 6 - 7

8 #[AsDecorator('serializer')]

9 class AddOwnerGroupsNormalizer implements NormalizerInterface
10 {

$ /7 ... lines 11 - 25
26 }

Ok! We haven't made any changes yet... so we should still see the one failing test. Try it:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Woh! An explosion! Wow.

“ValidationExceptionListener::__construct():Argument #1 ($serializer)

must be of type SerializerInterface, AddOwnerGroupsNormalizer given.”

Okay? When we add #[AsDecorator('serializer')], it means that our service replaces
the service known as serializer. So, everyone that's depending on the serializer
service will now be passed us... and then the original serializer is passed to our

constructor.

So, what's the problem? Decoration has worked several times before. The problem is that the
serializer service in Symfony is... kind of big. It implements NormalizerInterface, but
also DenormalizerInterface, EncoderInterface, DecoderInterface and
SerializerInterface! But our object only implements one of these . And so, when our
class is passed to something that expects an object with one of those other 4 interfaces, it

explodes.

If we truly wanted to decorate the serializer service, we would need to implement all five of

those interfaces... which is just a ugly and too much. And that's fine!

Decorating_a Lower-Level Normalizer

Instead of decorating the top level normalizer, let's decorate one specific normalizer: the one
that's responsible for normalizing ApiResource objects into JSON-LD. This is another spot
where you can rely on the documentation to give you the exact service ID you need. It's

api_platform.jsonld.normalizer.item:

src/Normalizer/AddOwnerGroupsNormalizer.php

? /7 ... lines 1 - 4

5 wuse Symfony\Component\DependencyInjection\Attribute\AsDecorator;
T 7 ... lines 6 - 7

8 #[AsDecorator('api_platform.jsonld.normalizer.item')]

9 class AddOwnerGroupsNormalizer implements NormalizerInterface
10 {

T /7 ... lines 11 - 25

26 }

Try the test again: testOwnerCanSeeIsPublishedField

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Yes! We see our dump! And... a 400 error? Let me pop open the response so we can see it.

Strange:
“The injected serializer must be an instance of NormalizerInterface.”

And it's coming from deep inside of API Platform's serializer code. So... decorating normalizers
is not a very friendly process. It's well-documented, but weird. When you decorate this specific
normalizer, you also need to implement SerializerAwareInterface. And that's going to
require you to have a setSerializer () method. Oh, let me import that use statement: |

don't know why that didn't come automatically:

src/Normalizer/AddOwnerGroupsNormalizer.php

? /... lines 1 - 6
7 use Symfony\Component\Serializer\SerializerAwareInterface;
T /7 ... lines 8 - 10

11 class AddOwnerGroupsNormalizer implements NormalizerInterface,
SerializerAwareInterface

12 {
$ /7 ... lines 13 - 28
29 public function setSerializer(SerializerInterface $serializer)
30 {
I 7/ ... lines 31 - 33
34 3}
35 }
There we go.

Inside, say, if $this->normalizer is an instanceof SerializerAwareInterface,

then call $this->normalizer->setSerializer($serializer):

src/Normalizer/AddOwnerGroupsNormalizer.php

$ // ... lines 1 - 10

11 class AddOwnerGroupsNormalizer implements NormalizerInterface,
SerializerAwareInterface

12 {

$ /7 ... lines 13 - 28

29 public function setSerializer(SerializerInterface $serializer)
30 {

31 if ($this->normalizer instanceof SerializerAwareInterface) {
32 $this->normalizer->setSerializer($serializer);

33 }

34 }

35 }

| don't even want to get into the details of this: it just happens that the normalizer we're

decorating implements another interface... so we need to also implement it.

Let's try this again.

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Finally, we have the dump and it's failing the assertion we expect... since we haven't added the

group yet. Let's do that!

Adding_the Dynamic Group

Remember the goal: if we own this DragonTreasure, we want to add the owner : read

group. On the constructor, autowire the Security service as a property:

src/Normalizer/AddOwnerGroupsNormalizer.php

$ /7 ... lines 1 - 5
6 use Symfony\Bundle\SecurityBundle\Security;
? /7 ... lines 7 - 12

13 class AddOwnerGroupsNormalizer implements NormalizerInterface,
SerializerAwareInterface

14 {

15 public function _ _construct(private NormalizerInterface $normalizer,
private Security $security)

16 {

17 }

$ // ... lines 18 - 38

39 }

Then, down here, if $object is an instanceof DragonTreasure - because this method
will be called for all of our API resource classes - and $this->security->getUser()

equals $object->getOwner (), then call $context['groups'][] to add owner:read:

src/Normalizer/AddOwnerGroupsNormalizer.php

? /... lines 1 - 4
5 wuse App\Entity\DragonTreasure;
$ /7 ... lines 6 - 12

13 class AddOwnerGroupsNormalizer implements NormalizerInterface,
SerializerAwareInterface

14 {

$ /7 ... lines 15 - 18

19 public function normalize(mixed $object, string $format = null, array
$context = []): array|string|int|float|bool|\ArrayObject|null

20 {

21 if ($object instanceof DragonTreasure && $this->security-
>getUser () === $object->getOwner()) {

22 $context['groups'][] = 'owner:read';

23 3

$ // ... lines 24 - 25

26 }

$ /7 ... lines 27 - 38

39 1}

Phew! Try that test one more time:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

We got it! We can now return different fields on an object-by-object basis.

Also Decorating_the Denormalizer

If you want to also add owner :write during denormalization, you would need to implement a
second interface. I'm not going to do the whole thing... but you would implement
DenormalizerInterface, add the two methods needed, call the decorated service... and
change the argument to be a union type of NormalizerInterface and

DenormalizerInterface.

Finally, the service that you're decorating for denormalization is different: it's
api_platform.serializer.normalizer.item. However, if you want to decorate both
the normalizer and denormalizer in the same class, you'd need to remove #[AsDecorator]
and move the decoration config to services.yaml... because a single service can't decorate

two things at once. API Platform covers that in their docs.

Ok, I'm going to undo all of that... and just stick with adding owner : read. Next: now that we
have a custom normalizer, we can easily do wacky things like adding a totally custom field to

our API that doesn't exist in our class.

Chapter 31: Totally Custom Fields

Let's get wild. | want to add a totally custom, crazy new field to our DragonTreasure API that
does not correspond to any property in our class. Well, actually, we learned in part 1 of this
series that adding custom fields is possible by creating a getter method and adding a
serialization group above it. But, that solution only works if we can calculate the field's value
solely from the data on the object. If, for example, we need to call a service to get the data, then

we're out of luck.

Adding a new field whose data is calculated from a service is another trick up the custom
normalizer's sleeve. And since we already have one set up, | thought we'd use it to see how this

works.

Testing_for the IsMe Field

Go to DragonTreasureResourceTest and find
testOwnerCanSeeIsPublishedField(). Rename this to

testOwnerCanSeeIsPublishedAndIsMineFields():

tests/Functional/DragonTreasureResourceTest.php

T /7 ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ 7/ ... lines 15 - 158
159 public function testOwnerCanSeeIsPublishedAndIsMineFields(): void
160 {
$ /7 ... lines 161 - 178
179 }
180 }

This is a bit silly, but if we own a DragonTreasure, we're going to add a new boolean
property called $1isMine setto true. So, down at the bottom, we'll say 1sMine and expect it

to be true:

tests/Functional/DragonTreasureResourceTest.php

0
13

14

T
159
160

T
167

X
176
177
178
179
180

// ... lines 1 - 12
class DragonTreasureResourceTest extends ApiTestCase
{
// ... lines 15 - 158
public function testOwnerCanSeeIsPublishedAndIsMineFields(): void
{
// ... lines 161 - 166
$this->browser()
// ... lines 168 - 175

->assertJsonMatches('isPublished', false)
->assertJsonMatches('isMine', true)

Copy that method name, then spin over and run this test:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

Tada! It's null because the field doesn't exist yet.

Returning_the Custom Field

So how can we add this? Now that we've gone through the pain of getting the normalizer set up,

it's easy! The normalizer system will do its thing, return the normalized data, then, between that

and the return statement, we can... just mess with it!

src/Normalizer/AddOwnerGroupsNormalizer.php

? /... lines 1 - 12

13 class AddOwnerGroupsNormalizer implements NormalizerInterface,
SerializerAwareInterface

14 {

$ /7 ... lines 15 - 18

19 public function normalize(mixed $object, string $format = null, array
$context = []): array|string|int|float|bool|\ArrayObject|null

20 {

21 if ($object instanceof DragonTreasure && $this->security-
>getUser () === $object->getOwner()) {

22 $context['groups'][] = 'owner:read';

23 }

24

25 $normalized = $this->normalizer->normalize($object, $format,
$context);

$ /7 ... lines 26 - 30

31 return $normalized;

32 }

$ /7 ... lines 33 - 44

45 %}

Copy the if statement from up here. | could be more clever and reuse code, but it's fine. If the
object is a DragonTreasure and we own this DragonTreasure, we will say

$normalized['isMine'] = true:

src/Normalizer/AddOwnerGroupsNormalizer.php

? /... lines 1 - 12

13 class AddOwnerGroupsNormalizer implements NormalizerInterface,
SerializerAwareInterface

14 {

T 7/ ... lines 15 - 18

19 public function normalize(mixed $object, string $format = null, array
$context = []): array|string|int|float|bool|\ArrayObject|null

20 {

$ /7 ... lines 21 - 24

25 $normalized = $this->normalizer->normalize($object, $format,
$context);

26

27 if ($object instanceof DragonTreasure && $this->security-
>getUser () === $object->getOwner()) {

28 $normalized['isMine'] = true;

29 }

30

31 return $normalized;

32 }

$ /7 ... lines 33 - 44

45 }

That's it! When we run the test:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

All green!

Custom Fields Missing_in the Docs

But there's a practical downside to these custom fields: they will not be documented in our API.

Our API docs have no idea that this exists!

If you do need a super-duper custom field that requires service logic... and you do need it to be
documented, you have two options. First, you could add a non-persisted 1sMe property to your
class then populate it with a state provider. We haven't talked about state providers yet, but
they're how data is loaded. For example, our classes are already using a Doctrine state provider

behind the scenes to query the database. We'll cover state providers in part 3 of this series.

The second solution would be to use the custom normalizer like we did, then try to add the field

to the OpenAPI docs manually via the OpenAPI factory trick that we showed earlier.

Next: suppose a user is allowed to edit something... but there are certain changes to the data
that they are not allowed to make - like they could set a field to foo but they aren't allowed to
change it to bar because they don't have enough permissions. How should we handle that? It's

security meets validation.

Chapter 32: Custom Validator

If you need to control how a field like 1sPublished is set based on who is logged in, you have

two different situations.

Protecting_a Field vs Protecting_its Data

First, if you need to prevent certain users from writing to this field entirely, that's what security is
for. The easiest option is to use the #[ApiProperty(security: ...)] option thatwe
used earlier above the property. Or you could get fancier and add a dynamic admin:write

group via a context builder. Either way, we're preventing this field from being written entirely.

The second situation is when a user should be allowed to write to a field... but the valid data
they're allowed to set depends on who they are. Like maybe a user is allowed to set

isPublished to false... but they're not allowed to set it to true unless they're an admin.

Let me give you a different example. Right now, when you create a DragonTreasure, we
force the client to pass an owner. We can see thisin testPostToCreateTreasure().
We're going to fix this in a few minutes so that we can leave this field off... and then it'll be set

automatically to whoever is authenticated.

But right now, the owner field is allowed and required. But who they are allowed to assign as
the owner depends on who is logged in. For normal users, they should only be allowed to
assign themselves as a user. But for admins, they should be able to assign anyone as the
owner . Heck, maybe in the future we get crazier and there are clans of dragons... and you can
create treasures and assign them to anyone in your clan The point is: the question isn't if we

can set this field, but what data we're allowed to set it to. And that depends on who we are.

Solving_with Security or Validation?

Ok, actually, we solved this problem earlier for the Patch() operation. Let me show you. Find

testPatchToUpdateTreasure(). Then... let's run just that test:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

And... it passes. This test checks 3 things. First, we log in as the user that owns the

DragonTreasure and make an update. That's the happy case!

Next, we log in as a different user and try to edit the first user's DragonTreasure. That is not
allowed. And that is a proper use of security: we don't own this DragonTreasure, so we

are not at all allowed to edit it. That's what the security line is protecting.

For the last part, we log in again as the owner of this DragonTreasure. But then we try to
change the owner to someone else. That's also not allowed and this is the situation we're
talking about. It's currently handled by securityPostDenormalize (). But | want to handle it

instead with validation. Why? Because the question we're answering is this:
“Is the owner data that's sent valid?”

And... validating data is... the job of validation!

Remove the securityPostDenormalize():

src/Entity/DragonTreasure.php

$ /7 ... lines 1 - 28
29 #[ApiResource(

$ /7 ... lines 30 - 31
32 operations: [

T /7 ... lines 33 - 41
42 new Patch(

$ /... line 43

44 securityPostDenormalize: 'is_granted("EDIT", object)',
45),

$ // ... lines 46 - 48
49 1

$ /7 ... lines 50 - 66
67)]

$ /7 ... lines 68 - 88
89 class DragonTreasure
90 {

T /7 ... lines 91 - 249

250 }

And to prove this was important, run the test again:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

Yup! It failed on line 132... which is this one down here. Let's rewrite this with a custom validator,

which is actually a lot nicer.

Creating_the Custom Validation

Oh but because this will fail via validation when we're done, change to assertStatus(422):

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 97
98 public function testPatchToUpdateTreasure()
99 {
$ /7 ... lines 100 - 126
127 $this->browser()
$ /7 ... lines 128 - 134
135 ->assertStatus(422)
136 :
137 }
$ /7 ... lines 138 - 179
180 }

The idea is that we are allowed to PATCH this user, but we sent invalid data: we can't set this

owner to someone other than ourselves.

Ok, head to the command line and run:

php ./bin/console make:validator

Give it a cool name like IsValidOwnerValidator . In Symfony, validators are two different

classes. Open src/Validator/IsValidOwner .php first:

src/Validator/IsValidOwner .php

)
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20

// ... lines 1 - 2
namespace App\Validator;

use Symfony\Component\Validator\Constraint;

/**
* @Annotation
*
* @Target ({"PROPERTY", "METHOD", "ANNOTATION"})
*/
#[\Attribute(\Attribute: : TARGET_PROPERTY | \Attribute::TARGET_METHOD |
\Attribute::IS_REPEATABLE)]
class IsValidOwner extends Constraint

{
/%
* Any public properties become valid options for the annotation.
* Then, use these in your validator class.
*/
public $message = 'The value "{{ value }}" is not valid.';
}

This lightweight class will be used as the attribute... and it just holds options that we can

configure, like $message, which is enough. Let's change the default message to something a

bit more helpful:

src/Validator/IsValidOwner .php

0
13

14

0
19

20

// ... lines 1 - 12
class IsValidOwner extends Constraint
{
// ... lines 15 - 18
public string $message = 'You are not allowed to set the owner to this
value.';
3

The second class is the one that will be executed to handle the logic:

src/Validator/IsValidOwnerValidator .php

0
3

© 00 N o o b

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// ... lines 1 - 2
namespace App\Validator;

use Symfony\Component\Validator\Constraint;
use Symfony\Component\Validator\ConstraintValidator;

class IsValidOwnerValidator extends ConstraintValidator

{

public function validate($value, Constraint $constraint)

{
/* @var App\Validator\IsValidOwner $constraint */

if (null === $value || '' === S$value) {
return;

// TODO: implement the validation here

$this->context->buildViolation($constraint->message)
->setParameter('{{ value }}', $value)
->addvViolation();

}

We'll look at that in a moment... but let's use the new constraint first. Over in

DragonTreasure, down on the owner property... there we go... add the new attribute:

IsValidOwner:

src/Entity/DragonTreasure.php

0
20

0
89
90

0
136

138

251

// ... lines 1 - 19
use App\Validator\IsValidOwner;
// ... lines 21 - 88
class DragonTreasure
{
// ... lines 91 - 135
#[IsValidOwner]
// ... line 137
private ?User $owner = null;
// ... lines 139 - 250
3

Filling_in the Validator Logic

Now that we have this, when our object is validated, Symfony will call
IsvValidOwnerValidator and pass us the $value - which will be the User object - and

the constraint, which will be IsValidOwner .

Let's do some clean up. Remove the var and replace it with

assert($constraint instanceof IsValidOwner):

src/Validator/IsValidOwnerValidator .php

$ // ... lines 1 - 8

9 class IsValidOwnerValidator extends ConstraintValidator
10 {

11 public function validate($value, Constraint $constraint)
12 {

13 assert($constraint instanceof IsValidOwner);

14

15 if (null === $value || '' === $value) {

16 return;

17 }

$ /7 ... lines 18 - 23

24 }

25 }

That's just to help my editor: we know that Symfony will always pass us that. Next, notice that
it's checking to see if the $value is null or blank. And if is, it does nothing. If the $owner

property is empty, that should really be handled by a different constraint.

Back in DragonTreasure, add #[Assert\NotNull]:

src/Entity/DragonTreasure.php

? /... lines 1 - 88
89 class DragonTreasure
20 {
$ // ... lines 91 - 136
137 #[Assert\NotNull]
$ // ... line 138
139 private ?User $owner = null;
$ /7 ... lines 140 - 251
252 }

So if they forget to send owner, this will handle that validation error. Back inside our validator, if

we have that situation, we can just return:

src/Validator/IsValidOwnerValidator .php

$ // ... lines 1 - 8

9 class IsValidOwnerValidator extends ConstraintValidator
10 {

11 public function validate($value, Constraint $constraint)
12 {

$ // ... lines 13 - 14

15 if (null === $value || '' === $value) {

16 return;

17 }

$ /7 ... lines 18 - 23

24 }

25 1}

Below this, add one more assert() that $value is an instanceof User.

Really, Symfony will pass us whatever value is attached to this property... but we know that this

will always be a User:

src/Validator/IsValidOwnerValidator.php

$ /7 ... lines 1 - 8

9 class IsValidOwnerValidator extends ConstraintValidator

10 {

11 public function validate($value, Constraint $constraint)
12 {

$ /7 ... lines 13 - 14

15 if (null === $value || '' === $value) {

16 return;

17 }

18

19 // constraint is only meant to be used above a User property
20 assert($value instanceof User);

$ /7 ... lines 21 - 23

24 }

25 }

Finally, delete setParameter () - that's not needed in our case - and

$constraint->message is reading the $message property:

src/Validator/IsValidOwnerValidator .php

$ // ... lines 1 - 8

9 class IsValidOwnerValidator extends ConstraintValidator

10 {

11 public function validate($value, Constraint $constraint)
12 {

13 assert($constraint instanceof IsValidOwner);

14

15 if (null === $value || '' === $value) {

16 return;
17 }
18
19 // constraint is only meant to be used above a User property
20 assert($value instanceof User);
21
22 $this->context->buildViolation($constraint->message)
23 ->addVviolation();
24 }
25 }

At this point, we have a functional validator! Except... it's going to fail in all situations. Ah, let's at

least make sure it's being called. Run our test:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

Beautiful failure! A 422 coming from DragonTreasureResourceTest line 110... because our

constraint is never satisfied.

Checking_for Ownership in the Validator

Finally we can add our business logic. To do the owner check, we need to know who's logged
in. Add a __construct() method, autowire our favorite Security class... and I'll put

private in front of that, so it becomes a property:

src/Validator/IsValidOwnerValidator .php

0
6

0
10
11
12
13
14

0
35

// ... lines 1 - 5

use Symfony\Bundle\SecurityBundle\Security;

// ... lines 7 - 9

class IsValidOwnerValidator extends ConstraintValidator

{
public function __construct(private Security $security)
{

¥
// ... lines 15 - 34

Below, set $user = $this->security->getUser (). And if there is no user for some

reason, throw a LogicException to make things explode:

src/Validator/IsValidOwnerValidator.php

0
10
11

0
16

30

0
34
35

// ... lines 1 - 9

class IsValidOwnerValidator extends ConstraintValidator

{

// ... lines 12 - 15
public function validate($value, Constraint $constraint)
{

// ... lines 18 - 23

// constraint is only meant to be used above a User property
assert($value instanceof User);

$user = $this->security->getUser();
if ('$user) {
throw new \LogicException('IsOwnerValidator should only be
used when a user is logged in.'");

}
// ... lines 31 - 33

Why not trigger a validation error? We could... but in our app, if an anonymous user is somehow

successfully changing a DragonTreasure... we have some sort of misconfiguration.

Finally, if $value does not equal $user - so if the owner is not the User - add that

validation failure:

src/Validator/IsValidOwnerValidator.php

? /... lines 1 - 9

10 class IsValidOwnerValidator extends ConstraintValidator

11 {

$ /7 ... lines 12 - 15

16 public function validate($value, Constraint $constraint)
17 {

$ /7 ... lines 18 - 31

32 if ($value !== $user) {

33 $this->context->buildViolation($constraint->message)
34 ->addViolation();

35 }

36 }

37 }

That's it! Let's try this thing!

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

And... bingo! Whether we're creating or editing a DragonTreasure, we are not allowed to set

the owner to someone that is not us.

And we can add whatever other fanciness we want. Like if the user is an admin, return so that

admin users are allowed to assign the owner to anyone:

src/Validator/IsValidOwnerValidator .php

0
10

11

0
16
17

0
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41

// ... lines 1 - 9

class IsValidOwnerValidator extends ConstraintValidator

{

// ... lines 12 - 15
public function validate($value, Constraint $constraint)
{

// ... lines 18 - 26

$user = $this->security->getUser();
if ('$user) {
throw new \LogicException('IsOwnerValidator should only be
used when a user is logged in.'");

}

if ($this->security->isGranted('ROLE_ADMIN')) {
return;

if ($value !== $user) {
$this->context->buildViolation($constraint->message)
->addViolation();

}

| love this. But... there's still one big security hole: a hole that will allow a user to steal the

treasures of someone else! Not cool! Let's find out what that is next and crush it.

Chapter 33: Validating how Values Change

We still have a massive problem making sure treasures don't end up stolen! We just covered
the main case: if you make a POST or a PUT request to a treasure endpoint, thanks to our new

validation, we make sure you assign the owner to yourself, unless you're an admin. Yay!

But in our API, when POSTing or PATCHing to a user endpoint, you are allowed to send a
dragonTreasures field. This, unfortunately allows treasures to be stolen. Simply send a
PATCH request to modify your own User record... then set the dragonTreasures field to an

array containing the IRI strings of some treasures that you do not own. Whoops!

The easiest solution would be to... make the field not writable. So, inside of User, for
dragonTreasures, we would keep this readable, but remove the write group. That would

force everyone to use the /api/treasures endpoints to manage their treasures.

The Trickiness of this Problem

If you do want to keep the writable dragonTreasures field... you can, but this problem is

tricky to solve.

Let's think: if you send a dragonTreasures field that contains the IRI of a treasure you do not
own, that should trigger a validation error. Ok... so maybe we add a validation constraint above
this property? The problem is that, by the time that validation runs, the treasures sent over in
the JSON have already been set onto this dragonTreasures property. And importantly, the

owner on those treasures has already been updated to this User!

Remember: when the serializer sees a DragonTreasure that is not already owned by this
user, it will call addDragonTreasure() ... which then calls setOwner ($this). So, by the
time validation runs, it's going to look like we are the owner of the treasure... even though we

originally weren't!

Using_Previous Data?

What can we do? Well, API Platform does have a concept of "previous data". API Platform
clones the data before deserializing the new JSON onto it, which means it is possible to get

what the User object originally looked like.

Unfortunately, that clone is shallow, meaning that it clones scalar fields - like username - but
any objects - like the DragonTreasure objects are not cloned. There's no way via API

Platform to see what they originally looked like.

Testing_for the Bug

So, we are going to solve this with validation... but with the help of a special class from Doctrine
called the UnitOfWork.

Alrighty, let's whip up a test to shine a light on this pesky bug. Inside tests/Functional/,
open UserResourceTest . Copy the previous test, paste, and call it
testTreasuresCannotBeStolen(). Create a second user with

UserFactory: :createOne()... and we need a DragonTreasure that we're going to try to

steal. Assign its owner to $otherUser:

tests/Functional/UserResourceTest.php

$ // ... lines 1 - 4

5 use App\Factory\DragonTreasureFactory;

$ /7 ... lines 6 - 8

9 class UserResourceTest extends ApiTestCase

10 {

$ /7 ... lines 11 - 48
49 public function testTreasuresCannotBeStolen(): void
50 {
51 $user = UserFactory::createOne();
52 $otherUser = UserFactory::createOne();
53 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$otherUser]);

$ 7/ ... lines 54 - 66
67 }
68 }

Let's do this! We log in as $user, update ourselves - which is allowed - then, for the JSON,
sure, maybe we still send username ... but we also send dragonTreasures set to an array

with /api/treasures/ and $dragonTreasure->getId().

At the bottom, assert that this returns a 422:

tests/Functional/UserResourceTest.php

0
5

0
9
10
0
49
50
51
52
53

54
b5
56
57
58
59
60
61
62
63
64

65
66
67
68

// ... lines 1 - 4

use App\Factory\DragonTreasureFactory;

// ... lines 6 - 8

class UserResourceTest extends ApiTestCase

{

// ... lines 11 - 48
public function testTreasuresCannotBeStolen(): void
{

$user = UserFactory::createOne();
$otherUser = UserFactory::createOne();

$dragonTreasure = DragonTreasureFactory::createOne(['owner' =>
$otherUser]);

$this->browser ()
->actingAs($user)
->patch('/api/users/"' . $user->getId(), [
"json' => [
'username' => 'changed',
'dragonTreasures' => [
'/api/treasures/' . $dragonTreasure->getId(),
1
1

'headers' => ['Content-Type' => 'application/merge-
patch+json']

1)
->assertStatus(422);

}

Ok! Copy the method name. We're expecting this to fail:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

And..

. it does! Status code 200, which means we are allowing treasure to be stolen! Gasp!

Creating_the Validator

Ok, let's cook up a new validator class:

php ./bin/console make:validator

Call it TreasuresAllowedOwnerChange.

Go use this immediately. Above the dragonTreasures property, add

#[TreasuresAllowedOwnerChange]:

src/Entity/User.php

? /... lines 1 - 15
16 use App\Validator\TreasuresAllowedOwnerChange;
T /7 ... lines 17 - 69
70 class User implements UserInterface, PasswordAuthenticatedUserInterface
71 {
T /7 ... lines 72 - 107
108 #[TreasuresAllowedOwnerChange]
109 private Collection $dragonTreasures;
T 7/ ... lines 110 - 296
297 }

Next, over in src/Validator/, open up the validator class. We'll do some basic cleanup: use
the assert() function to assert that $constraint is an instance of
TreasuresAllowedOwnerChange. And also assert that value is an instance of

Collection from Doctrine:

src/Validator/TreasuresAllowedOwnerChangeValidator.php

$ /7 ... lines 1 - 8

9 class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator
10 {

11 public function validate($value, Constraint $constraint)

12 {

13 assert($constraint instanceof TreasuresAllowedOwnerChange);
14

15 if (null === $value || '' === $value) {

16 return;

17 }

18

19 // meant to be used above a Collection field

20 assert($value instanceof Collection);

? /... lines 21 - 25

26 3

27| 1

We know that this will be used above this property... so it will be some sort of collection of

DragonTreasures.

Enter UnitOfWork

But... this will be the collection of DragonTreasure objects after they've been modified. We
need to ask Doctrine what each DragonTreasure looked like when it was originally queried
from the database. To do that, we need to grab an internal object from Doctrine called the
UnitOfWork.

On top, add a constructor, autowire EntityManagerInterface $entityManager ... and

make that's a private property:

src/Validator/TreasuresAllowedOwnerChangeValidator.php

T 7/ ... lines 1 - 6
7 use Doctrine\ORM\EntityManagerInterface;
? /... lines 8 - 10

11 class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator
12 {

13 public function _ _construct(private EntityManagerInterface
$entityManager)

14 {

15 3}

? // ... lines 16 - 40

41 }

Below, grab the unit of work with
$unitOfWork = $this->entityManager->getUnitOfWork():

src/Validator/TreasuresAllowedOwnerChangeValidator.php

? /... lines 1 - 10

11 class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator
12 {

? /... lines 13 - 16

17 public function validate($value, Constraint $constraint)
18 {

$ /7 ... lines 19 - 24

25 // meant to be used above a Collection field

26 assert($value instanceof Collection);

27

28 $unitofWork = $this->entityManager->getUnitOfWork();
$ /7 ... lines 29 - 39

40 3}

41 3}

This is a powerful object that keeps track of how entity objects are changing and is responsible
for knowing which objects need to be inserted, updated or deleted from the database when the

entity manager flushes.

Next, foreach over $value - which will be a collection - as $dragonTreasure. To help
my editor, I'll assert that $dragonTreasure is an instance of DragonTreasure. And now,
get the original data:

$originalData = $unitOfWork->getOriginalEntityData($dragonTreasure).

Pretty sweet right? Let's dd($dragonTreasure) and $originalData so we can see what

they look like:

src/Validator/TreasuresAllowedOwnerChangeValidator.php

? /... lines 1 - 10

11 class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator
12 {

T /7 ... lines 13 - 16

17 public function validate($value, Constraint $constraint)
18 {

$ /7 ... lines 19 - 27

28 $unitofWork = $this->entityManager->getUnitOfWork();
29 foreach ($value as $dragonTreasure) {

30 assert($dragonTreasure instanceof DragonTreasure);
31

32 $originalData = $unitOfWork-

>getOriginalEntityData($dragonTreasure);

33 dd($dragonTreasure, $originalData);

34 }

$ /7 ... lines 35 - 39
40 }
41 3}

Go test go:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

Yes! It hit the dump! And this is cool! The first part is the updated DragonTreasure object and
its owner has ID 1. It's not super obvious, but $user will be id 1 and $otherUser will be id 2.
So the owner was originally ID 2, but yeah: user id 1 has stolen it! Below this, we see the

original data as an array. And its owner was ID 2!

This info makes us dangerous. Back inside our validator, say $originalOwnerId =
originalDatal 'owner_id'].And to be super clear, set $newOwnerId to

$dragonTreasure->getOwner()->getId().

If these don't match, we have a problem. Well actually, if we don't have an
$originalOwnerId, we're creating a new DragonTreasure and that's ok. So if there is no

$originalOwnerId or the $originalOwnerId is equal to the $newOwnerId, we're good!

Else... there's some plundering happening! Move the $violationBuilder up, but remove

setParameter():

src/Validator/TreasuresAllowedOwnerChangeValidator.php

? /... lines 1 - 10
11 class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator
12 {
T /7 ... lines 13 - 16
17 public function validate($value, Constraint $constraint)
18 {
$ /7 ... lines 19 - 27
28 $unitofWork = $this->entityManager->getUnitOfWork();
29 foreach ($value as $dragonTreasure) {
30 assert($dragonTreasure instanceof DragonTreasure);
31
32 $originalData = $unitOfWork-
>getOriginalEntityData($dragonTreasure);
33 $originalOwnerId = $originalDatal['owner_id'];
34 $newOwnerId = $dragonTreasure->getOwner ()->getId();
35
36 if (!$originalOwnerId || $originalOwnerId === $newOwnerId) {
37 return;
38 }
39
40 // the owner is being changed
41 $this->context->buildViolation($constraint->message)
42 ->addVviolation();
43 3
44 }
45 %}
That's it!

Oh, but I never customized the error message. In the Constraint class, give the $message

property a better default message:

src/Validator/TreasuresAllowedOwnerChange.php

? /... lines 1 - 12

13 class TreasuresAllowedOwnerChange extends Constraint

14 {

$ /... lines 15 - 18

19 public string $message = 'One of the treasures illegally changed
owners.';

20 }

All right team, moment of truth! Run that test:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

Nailed it! Treasure stealing is officially off the table. Oh, and though I didn't do it, we could also

inject the Security service to allow admin users to do whatever they want.

Up next: when we create a DragonTreasure, we must send the owner field. Let's finally
make that optional. If we don't pass the owner, we'll set it to the currently authenticated user.

To do that, we need to hook into API platform'’s "saving" process one more time.

Chapter 34: Auto Setting the "owner"

Every DragonTreasure must have an owner ... and to set that, when you POST to create a
treasure, we require that field. | think we should make that optional. So, in the test, stop sending

the owner field:

tests/Functional/DragonTreasureResourceTest.php

T /7 ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 41
42 public function testPostToCreateTreasure(): void
43 {
$ /7 ... lines 44 - 45
46 $this->browser()
$ /7 ... lines 47 - 51
52 ->post('/api/treasures', HttpOptions::json([
$ /7 ... lines 53 - 56
57 'owner' => '/api/users/'.$user->getId(),
58 1))
? // ... lines 59 - 60
61 ;
62 }
$ /7 ... lines 63 - 179
180 }

When this happens, let's automatically set it to the currently-authenticated user.

Make sure the test fails. Copy the method name... and run it:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Nailed it. Got a 422, 201 expected. That 422 is a validation error from the owner property: this

value should not be null.

Removing_the Owner Validation

If we're going to make it optional, we need to remove that Assert\NotNull:

src/Entity/DragonTreasure.php

t /7 ... lines 1 - 88
89 class DragonTreasure
90 {
$ /7 ... lines 91 - 136
137 #[Assert\NotNull]
$ /7 ... line 138
139 private ?User $owner = null;
$ /7 ... lines 140 - 251
252 }

And now when we try the test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Well hello there gorgeous 500 error! Probably it's because the null owner_id is going kaboom

when it hits the database. Yup!

Using_the State Processors

So: how can we automatically set this field when it's not sent? In the previous API Platform 2
tutorial, | did this with an entity listener, which is a fine solution. But in API Platform 3, just like
when we hashed the user password, there's now a really nice system for this: the state

processor system.

As a reminder, our POST and PATCH endpoints for DragonTreasure already have a state
processor that comes from Doctrine: it's responsible for saving the object to the database. Our
goal will feel familiar at this point: to decorate that state process so we can run extra code

before saving.

Like before, start by running:

php bin/console make:state-processor

Callit DragonTreasureSetOwnerProcessor:

src/State/DragonTreasureSetOwnerProcessor .php

$ /... lines 1 - 2
namespace App\State;

use ApiPlatform\Metadata\Operation;

3

4

5

6 use ApiPlatform\State\ProcessorInterface;

7

8 class DragonTreasureSetOwnerProcessor implements ProcessorInterface
9

{

10 public function process(mixed $data, Operation $operation, array
$urivariables = [], array $context = []): void

11 {

12 // Handle the state

13 }

14 }

Over in src/State/, open that up. Ok, let's decorate! Add the construct method with

private ProcessorInterface $innerProcessor:

src/State/DragonTreasureSetOwnerProcessor .php

? /... lines 1 - 5
6 use ApiPlatform\State\ProcessorInterface;
$ /7 ... lines 7 - 9

10 class DragonTreasureSetOwnerProcessor implements ProcessorInterface
11 {

12 public function __ _construct(private ProcessorInterface
$innerProcessor)

13 {

14 }

T 7/ ... lines 15 - 19

20 }

In API Platform 3.2 and higher, you should
return $this->innerProcessor->process(). Thisis also a safe thing to do in 3.0 &
3.1

Then down in process(), call that! This method doesn't return anything - it has a void return
- so we just need $this->innerProcessor - don't forget that part like | am - ->process()

passing $data, $operation, $urivVariables and $context:

src/State/DragonTreasureSetOwnerProcessor.php

? /... lines 1 - 9

10 class DragonTreasureSetOwnerProcessor implements ProcessorInterface

11 {

? /... lines 12 - 15

16 public function process(mixed $data, Operation $operation, array
$urivVariables = [], array $context = []): void

17 {

18 $this->innerProcessor->process($data, $operation, $urivVariables,
$context);

19 }

20 }

Now, to make Symfony use our state processor instead of the normal one from Doctrine, add
#[AsDecorator] ... and the id of the service is

api_platform.doctrine.orm.state.persist_processor:

src/State/DragonTreasureSetOwnerProcessor.php

? // ... lines 1 - 6

7 use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

8

9 #[AsDecorator('api_platform.doctrine.orm.state.persist_processor')]
10 class DragonTreasureSetOwnerProcessor implements ProcessorInterface
11 {

$ /7 ... lines 12 - 19

20 }

Cool! Now, everything that uses that service in the system will be passed our service instead...

and then the original will be passed into us.

Decorating_ Multiple Times is Ok!

Oh, and there's something cool going on. Look at UserHashPasswordStateProcessor.
We're decorating the same thing there! Yea, we're decorating that service twice, which is totally

allowed! Internally, this will create a, sort of, chain of decorated services.

Ok, let's get to work setting the owner. Autowire our favorite Security service so we can

figure out who is logged in:

src/State/DragonTreasureSetOwnerProcessor.php

? /... lines 1 - 7
8 use Symfony\Bundle\SecurityBundle\Security;
$ /7 ... lines 9 - 11

12 class DragonTreasureSetOwnerProcessor implements ProcessorInterface
13 {

14 public function __construct(private ProcessorInterface
$innerProcessor, private Security $security)

15 {

16 }

$ /7 ... lines 17 - 25

26 }

Then, before we do the saving, if $data is an instanceof DragonTreasure and
$data->getOwner () is null and $this->security->getUser () - making sure the user

is logged in - then $data->setOwner ($this->security->getUser()):

src/State/DragonTreasureSetOwnerProcessor .php

$ /7 ... lines 1 - 11

12 class DragonTreasureSetOwnerProcessor implements ProcessorInterface

13 {

T 7/ ... lines 14 - 17

18 public function process(mixed $data, Operation $operation, array
$urivariables = [], array $context = []): void

19 {

20 if ($data instanceof DragonTreasure && $data->getOwner() === null
&& $this->security->getUser()) {

21 $data->setOwner ($this->security->getUser());

22 }

23

24 $this->innerProcessor->process($data, $operation, $urivVariables,
$context);

25 3}

26 }

That should do it! Run that test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Yikes! Allowed memory size exhausted. | smell recursion! Because... I'm calling process() on

myself: | need $this->innerProcessor->process():

src/State/DragonTreasureSetOwnerProcessor.php

0
12

13

0
18

Now:

// ... lines 1 - 11

class DragonTreasureSetOwnerProcessor implements ProcessorInterface
{

// ... lines 14 - 17

public function process(mixed $data, Operation $operation, array
$urivVariables = [], array $context = []): void
{
// ... lines 20 - 23
$this->innerProcessor->process($data, $operation, $urivVariables,
$context);

}

symfony php bin/phpunit --filter=testPostToCreateTreasure

A passing test is so much cooler than recursion. And the owner field is now optional!

Next: we currently return all treasures from our GET collection endpoint, including unpublished

treasures. Let's fix that by modifying the query behind that endpoint to hide them.

Chapter 35: Query Extension: Auto-Filter a
Collection

When we get a collection of treasures, we currently return every treasure, even unpublished
treasures. Probably some of these are unpublished. We did add a filter to control this... but let's
be honest, that's not the best solution. Really, we need to not return unpublished treasures at

all.

Find the API Platform Upgrade Guide... and search for the word "state” to find a section that
talks about "providers" and "processors”. We talked about state processors eatrlier, like the
PersistProcessor onthe Put and Post operations, which is responsible for saving the

item to the database.

State Providers

But each operation also has something called a state provider. This is what's responsible for
loading the object or collection of objects. For example, when we make a GET request for a
single item, the ItemProvider is what's responsible for taking the ID and querying the

database. There's also a CollectionProvider to load a collection of items.

So if we want to automatically hide unpublished treasures, one option would be to decorate this
CollectionProvider, very much like we did with the PersistProcessor . Except... that
won't quite work. Why? The CollectionProvider from Doctrine executes the query and
returns the results. So all we would be able to do is take those results... then hide the ones we
don't want. That's... not ideal for performance - imagine loading 50 treasures then only showing
10 - and it would confuse pagination. What we really want to do is modify the query itself: to add
a WHERE isPublished = true.

Testing_for the Behavior

Luckily for us, this CollectionProvider "provides" its own extension point that lets us do

exactly that.

https://api-platform.com/docs/core/upgrade-guide/#api-platform-2730

Before we dive in, let's update a test to show the behavior we want. Find
testGetCollectionOfTreasures(). Take control of these 5 treasures and make them all

isPublished => true:

tests/Functional/DragonTreasureResourceTest.php

? /7 ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 16
17 public function testGetCollectionOfTreasures(): void
18 {
19 DragonTreasureFactory: :createMany(5, [
20 'isPublished' => true,
21 1),
$ /7 ... lines 22 - 44
45 }
$ /7 ... lines 46 - 183
184 }

because right now, in DragonTreasureFactory, isPublished is set to a random value:

src/Factory/DragonTreasureFactory.php

? /... lines 1 - 29

30 final class DragonTreasureFactory extends ModelFactory
31 {

T /7 ... lines 32 - 46

47 protected function getDefaults(): array

48 {

49 return [

$ /7 ... lines 50 - 51

52 'isPublished' => self::faker()->boolean(),
$ /7 ... lines 53 - 56

57 1;

58 }

? /... lines 59 - 73

74 3}

Then add one more with createOne() and isPublished false:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 16
17 public function testGetCollectionOfTreasures(): void
18 {
19 DragonTreasureFactory::createMany(5, [
20 'isPublished' => true,
27 1)
22 DragonTreasureFactory: :createOne([
23 'isPublished' => false,
24 1);
$ /7 ... lines 25 - 44
45 }
$ /7 ... lines 46 - 183
184 }

Awesome! And we still want to assert that this returns just 5 items. So... let's make sure it fails:

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

And... yea! It returns 6 items.

Collection Query Extensions

Ok, to modify the query for a collection endpoint, we're going to create something called a query
extension. Anywhere in src/ - I'll do itin the ApiPlatform/ directory - create a new class
called DragonTreasureIsPublishedExtension. Make this implement
QueryCollectionExtensionInterface, then go to "Code"->"Generate" or Command +N

on a Mac - and generate the one method we need: applyToCollection():

src/ApiPlatform/DragonTreasureIsPublishedExtension. php

? /... lines 1 - 2
namespace App\ApiPlatform;

use ApiPlatform\Doctrine\Orm\Extension\QueryCollectionExtensionInterface;
use ApiPlatform\Doctrine\Orm\Util\QueryNameGeneratorInterface;

use ApiPlatform\Metadata\Operation;

use Doctrine\ORM\QueryBuilder;

© 00 N O 0o b~ W

10 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface

11 {

12 public function applyToCollection(QueryBuilder $queryBuilder,
QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass,
Operation $operation = null, array $context = []): void

13 {

14 // TODO: Implement applyToCollection() method.
15 3}

16 }

This is pretty cool: it passes us the $queryBuilder and a few other pieces of info. Then, we
can modify that QueryBuilder. The best part? The QueryBuilder already takes into
account things like pagination and any filters that have been applied. So those are not things we

need to worry about.

Also, thanks to Symfony's autoconfiguration system, just by creating this class and making it

implement this interface, it will already be called whenever a collection endpoint is used!

Query Extension Logic

In fact, it will be called for any resource. So the first thing we need is
if (DragonTreasure::class !== $resourceClass) - fortunately it passes us the

class name - then return:

src/ApiPlatform/DragonTreasureIsPublishedExtension. php

? /... lines 1 - 7
8 use App\Entity\DragonTreasure;
T 77/ ... lines 9 - 10

11 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface

12 {

13 public function applyToCollection(QueryBuilder $queryBuilder,
QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass,
Operation $operation = null, array $context = []): void

14 {

15 if (DragonTreasure::class !== $resourceClass) {

16 return;

17 }

? /... lines 18 - 21

22 }

23 }

Below, this is where we get to work. Now, every QueryBuilder object has a root alias that
refers to the class or table that you're querying. Usually, we create the QueryBuilder ... like
from inside a repository we say something like $this->createQueryBuilder('d') and d

becomes that "root alias". Then we use that in other parts of the query.

However, in this situation, we didn't create the QueryBuilder, so we never chose that root
alias. It was chosen for us. What is it? It's: "banana". Actually, | have no idea what it is! But we

can get it with $queryBuilder->getRootAliases()[0]:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

T /7 ... lines 1 - 10

11 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface

12 {

13 public function applyToCollection(QueryBuilder $queryBuilder,
QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass,
Operation $operation = null, array $context = []): void

14 {

15 if (DragonTreasure::class !== $resourceClass) {
16 return;

17 }

18

19 $rootAlias = $queryBuilder->getRootAliases()[0];
$ /7 ... lines 20 - 21

22 }

23 }

Now it's just normal query logic: $queryBuilder->andWhere() passing sprintf (). This
looks a little weird: %s.isPublished = :isPublished, then pass $rootAlias followed

by ->setParameter('isPublished', true):

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

T /7 ... lines 1 - 106

11 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface

12 {

13 public function applyToCollection(QueryBuilder $queryBuilder,
QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass,
Operation $operation = null, array $context = []): void

14 {

15 if (DragonTreasure::class !== $resourceClass) {

16 return;

17 }

18

19 $rootAlias = $queryBuilder->getRootAliases()[0];

20 $queryBuilder->andwWhere(sprintf('%s.isPublished = :isPublished',
$rootAlias))

21 ->setParameter('isPublished', true);

22 3}

23 }

Cool! Spin over to try this thing!

symfony php bin/console phpunit --filter=testGetCollectionOfTreasures

Mission accomplished! It's just that easy.

Query Extensions on SubResources?

By the way, will this also work for sub-resources? For example, over in our docs, we can also
fetch a collection of treasures by going to /api/users/{user_id}/treasures. Will this
also hide the unpublished treasures? The answer is... yes! So, it's not something you need to

worry about. | won't show it, but this also uses the query extension.

Oh, and if you wanted admin users to be able to see unpublished treasures, you could add logic

to only modify this query if the current user is not an admin.

Next up: this query extension fixes the collection endpoint! But... someone could still fetch a

single unpublished treasure directly by its id. Let's fix that!

Chapter 36: 404 On Unpublished Items

We've stopped returning unpublished treasures from the treasure collection endpoint, but you
can still fetch them from the GET one endpoint. That's because these
QueryCollectionExtensionInterface classes are only called when we are fetching a

collection of items: not when we're selecting a single item.

To prove this, go into our test. Duplicate the collection test, paste, and call it
testGetOneUnpublishedTreasure404s(). Inside, create just one DragonTreasure
that's unpublished... and make a ->get() requestto /api/treasures/...oh! | need a

$dragonTreasure variable. That's better. Now add $dragonTreasure->getId().

At the bottom, assert that the status is 404... and we don't need any of these assertions, or this

$json variable:

tests/Functional/DragonTreasureResourceTest.php

$ /7 ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 46
47 public function testGetOneUnpublishedTreasure404s(): void
48 {
49 $dragonTreasure = DragonTreasureFactory::createOne([
50 'isPublished' => false,
51 1),
52
53 $this->browser()
54 ->get('/api/treasures/'.$dragonTreasure->getId())
55 ->assertStatus(404);
56 }
$ // ... lines 57 - 194
195 }

Very simple! Grab that method name and, you know the drill. Run just that test:

symfony php bin/phpunit --filter=testGetOneUnpublishedTreasure404s

And... yep! It currently returns a 200 status code.

Hello Query Item Extensions

How do we fix this? Well... just like how there's a QueryCollectionExtensionInterface
for the collection endpoint, there's also a QueryItemExtensionInterface that's used

whenever API Platform queries for a single item.

You can create a totally separate class for this... but you can also combine them. Add a second
interface for QueryItemExtensionInterface. Then, scroll down and go to "Code"-
>"Generate" - or Command+N on a Mac - to add the one method we're missing:

applyToItem():

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

T 7/ ... lines 1 - 5
6 use ApiPlatform\Doctrine\Orm\Extension\QueryItemExtensionInterface;
? /... lines 7 - 11

12 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface

13 {
$ 7/ ... lines 14 - 24
25 public function applyToItem(QueryBuilder $queryBuilder,

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass,
array $identifiers, Operation $operation = null, array $context = []):

void
26 {
27 // TODO: Implement applyToItem() method.
28 3}
29 }

Yea, it's almost identical to the collection method.... it works the same way... and we even need
the same logic! So, copy the code we need, then go to the Refactor menu and say "Refactor
this", which is also Control+T on a Mac. Select to extract this to a method... and call it
addIsPublishedWhere():

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

12

13

0
24
25
26
27
28
29

30

0
35
36

37
38
39

Awesome! I'll clean things up... and, you know what? | should have added this if statement

// ... lines 1 - 11

class DragonTreasurelIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

// ... lines 14 - 23

/**

* @param string $resourceClass

* @param QueryBuilder $queryBuilder
* @return void

*/

private function addIsPublishedWhere(string $resourceClass,

QueryBuilder $queryBuilder): void

{

// ... lines 31 - 34

$rootAlias = $queryBuilder->getRootAliases()[0O];
$queryBuilder->andwWhere(sprintf('%s.isPublished = :isPublished',

$rootAlias))

->setParameter('isPublished',

inside there too. So let's move that:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

0

12 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface

13

0
29

30
31
32
33
34
35
36

37
38
39

// ... lines 1 - 11

{

// ... lines 14 - 28

private function addIsPublishedWhere(string $resourceClass,

QueryBuilder $queryBuilder): void

true);

{
if (DragonTreasure::class !== $resourceClass) {
return;
}
$rootAlias = $queryBuilder->getRootAliases()[0];
$queryBuilder->andwWhere(sprintf('%s.isPublished = :isPublished',
$rootAlias))
->setParameter('isPublished', true);
}

Which means we need a string $resourceClass argument. Above, pass

$resourceClass to the method:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

12

13
14

15
16
17

0
39

// ... lines 1 - 11
class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface
{

public function applyToCollection(QueryBuilder $queryBuilder,
QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass,
Operation $operation = null, array $context = []): void

{
$this->addIsPublishedWhere($resourceClass, $queryBuilder);

// ... lines 18 - 38

Perfect! Now, in applyToItem(), call that same method:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

12
13

19

20
21
22

0
39

// ... lines 1 - 11

class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface
{
// ... lines 14 - 18

public function applyToItem(QueryBuilder $queryBuilder,
QueryNameGeneratorInterface $queryNameGenerator, string $resourcecClass,
array $identifiers, Operation $operation = null, array $context = []):
void

{

$this->addIsPublishedwhere($resourceClass, $queryBuilder);

// ... lines 23 - 38

Ok, we're ready! Try the test now:

symfony php bin/phpunit --filter=testGetOneUnpublishedTreasure404s

And..

. it passes!

Fixing_our Test Suite

We've been tinkering with our code quite a bit, so it's time for a test-a-palooza! Run all the tests:

symfony php bin/phpunit

And... whoops! 3 failures - all coming from DragonTreasureResourceTest. The problem is
that, when we created treasures in our tests, we weren't explicit about whether we wanted a

published or unpublished treasure... and that value is set randomly in our factory.

To fix this, we could be explicit by controlling the 1sPublished field whenever we create a

treasure. Or... we can be lazier and, in DragonTreasureFactory, set isPublished to true

by default:
$ /7 ... lines 1 - 29
30 final class DragonTreasureFactory extends ModelFactory
31 {
$ /7 ... lines 32 - 46
47 protected function getDefaults(): array
48 {
49 return [
$ /7 ... lines 50 - 51
52 'isPublished' => true,
$ 7/ ... lines 53 - 56
57 1;
58 }
$ /7 ... lines 59 - 73
74 '}

Now, to keep our fixture data interesting, when we create the 40 dragon treasures, let's override
isPublished and manually add some randomness: if a random number from 0 to 10 is

greater than 3, then make it published:

src/DataFixtures/AppFixtures.php

? /... lines 1 - 10

11 class AppFixtures extends Fixture

12 {

13 public function load(ObjectManager $manager): void
14 {

T 7/ ... lines 15 - 20

21 DragonTreasureFactory: :createMany (40, function () {
22 return [

$ /... line 23

24 'isPublished' => rand(0, 10) > 3,

25 1;

26 3);

t 7/ ... lines 27 - 32

33 }

34 }

That should fix most of our tests. Though search for isPublished. Ah yea, we're testing that
an admin can PATCH to edit a treasure. We created an unpublished DragonTreasure... just

so we could assert that this was in the response. Let's change this to true in both places:

tests/Functional/DragonTreasureResourceTest.php

$ // ... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ 7/ ... lines 15 - 153
154 public function testAdminCanPatchToEditTreasure(): void
155 {
$ // ... line 156
157 $treasure = DragonTreasureFactory::createOne([
158 'isPublished' => true,
159 1);
160
161 $this->browser()
T 7/ ... lines 162 - 169
170 ->assertJsonMatches('isPublished', true)
171 :
172 }
T 7/ ... lines 173 - 194
195 }

There's one other similar test: change isPublished to true here as well:

tests/Functional/DragonTreasureResourceTest.php

0
13

14

T
174
175

T
177
178

I
180
181
182

)
191

T
193
194
195

// ... lines 1 - 12
class DragonTreasureResourceTest extends ApiTestCase
{
// ... lines 15 - 173
public function testOwnerCanSeeIsPublishedAndIsMineFields(): void
{
// ... line 176
$treasure = DragonTreasureFactory::createOne([
'isPublished' => true,
// ... line 179
1);
$this->browser()
// ... lines 183 - 190
->assertJsonMatches('isPublished', true)
// ... line 192
}
3

Now try the tests:

symfony php bin/phpunit

Allowing_Updates to an Unpublished Item

They're happy! I'm happy! Well, mostly. We still have one teensie problem. Find the first PATCH

test. We're creating a published DragonTreasure, updating it... and it works just fine. Copy

this entire test... paste it.. but delete the bottom part: we only need the top. Call this method

testPatchUnpublishedWorks() ... then make sure the DragonTreasure is unpublished:

tests/Functional/DragonTreasureResourceTest.php

? /... lines 1 - 12
13 class DragonTreasureResourceTest extends ApiTestCase
14 {
$ /7 ... lines 15 - 153
154 public function testPatchUnpublishedWorks()
155 {
$ /7 ... line 156
157 $treasure = DragonTreasureFactory::createOne([
$ /7 ... line 158
159 '"isPublished' => false,
160 1);
$ /7 ... lines 161 - 171
172 }
$ /7 ... lines 173 - 215
216 }

Think about it: if | have a DragonTreasure with isPublished false, | should be able to
update it, right? This is my treasure... | created it and I'm still working on it. We want this to be

allowed.

Will it? You can probably guess:

symfony php bin/phpunit --filter=testPatchUnpublishedWorks

Nope! We get a 404! This is both a feature... and a "gotcha"! When we create a
QueryCollectionExtensionInterface, that's only used for this one collection endpoint.
But when we create an ItemExtensionInterface, that's used whenever we fetch a single
treasure: including for the Delete, Patch and Put operations. So, when an owner tries to

Patch their own DragonTreasure, thanks to our query extension, it can't be found.

There are two solutions for this. First, in applyToItem(), API Platform passes us the
$operation. So we could use this to determine if this a Get, Patch or Delete operation

and only apply the logic for some of those.

And... this might make sense. After all, if you're allowed to edit or delete a treasure... that means
you've already passed a security check... so we don't necessarily need to lock things down via

this query extension.

The other solution is to change the query to allow owners to see their own treasures. One cool
thing about this solution is that it will also allow unpublished treasures to be returned from the

collection endpoint if the current user is the owner of that treasure.

Let's give this a shot. Add the public function ___construct() ... and autowire the

amazing Security service:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

$ /7 ... lines 1 - 10
11 use Symfony\Bundle\SecurityBundle\Security;
12

13 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface

14 {

15 public function __construct(private Security $security)
16 {

17 }

$ // ... lines 18 - 50

51 }

Below... life gets a bit trickier. Start with $user = $this->security->getUser (). /fwe
have a user, we're going to modify the QueryBuilder in a similar... but slightly different way.
Oh, actually, let me bring the $rootAlias up above my if statement. Now, if the user is logged
in, add OR %s.owner = :owner ...then pass in one more rootAlias... followed by

->setParameter('owner', $user).

Else, if there is no user, use the original query. And we need the isPublished parameter in

both cases... so keep that at the bottom:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

? /... lines 1 - 12

13 class DragonTreasureIsPublishedExtension implements
QueryCollectionExtensionInterface, QueryItemExtensionInterface

14 {

T 7/ ... lines 15 - 33

34 private function addIsPublishedWhere(string $resourceClass,
QueryBuilder $queryBuilder): void

35 {

36 if (DragonTreasure::class !== $resourceClass) {

37 return;

38 }

39

40 $rootAlias = $queryBuilder->getRootAliases()[0];

41 $user = $this->security->getUser();

42 if ($user) {

43 $queryBuilder->andwWhere(sprintf('%s.isPublished = :isPublished
OR %s.owner = :owner', $rootAlias, $rootAlias))

44 ->setParameter('owner', $user);

45 } else {

46 $queryBuilder->andwWhere(sprintf('%s.isPublished =
:isPublished', $rootAlias));

47 }

48

49 $queryBuilder->setParameter('isPublished', true);

50 }

51 }

| think | like that! Let's see what the test thinks:

symfony php bin/phpunit --filter=testPatchUnpublishedworks

It likes it too! In fact, all of our tests seem happy.

Ok team: final topic. When we fetch a User resource, we return its dragon treasures. Does that
collection also include unpublished treasures? Ah... yep it does! Let's talk about why and how to

fix it next.

Chapter 37: Filtering Relation Collection

Hey, we've made a pretty fancy API! We've got a few sub-resources and embedded relation
data, which is readable and writable. This is all super awesome... but it sure does crank up the

complexity of our API, especially when it comes to security.

For example, we can no longer see unpublished treasures from the GET collection or GET
single endpoints. But we can still see unpublished treasures if you fetch a user and read its

dragonTreasures field.

Writing the Test

Let's whip up a test real quick to expose this problem. Open our UserResourceTest. At the
bottom, add a public function testUnpublishedTreasuresNotReturned(). Inside that,

create a user with UserFactory: :createOne(). Then use DragonTreasureFactory to
create a treasure that's isPublished false and has its owner set to the $user ... just so we

know who the owner is.

For the action, say $this->browser () ... and we do need to log in to use the endpoint... but
we don't care who we're logged in as... so say actingAs() UserFactory::createOne()

to log in as someone else.

Then ->get() /api/users/ $user->getId(). Finish with assertJsonMatches() that
the length() of dragonTreasures is zero - using a cool length() function from that

JMESPath syntax:

tests/Functional/UserResourceTest.php

$ // ... lines 1 - 8

9 class UserResourceTest extends ApiTestCase

10 {

? /7 ... lines 11 - 68

69 public function testUnpublishedTreasuresNotReturned(): void
70 {

71 $user = UserFactory::createOne();

72 DragonTreasureFactory: :createOne([

73 '"isPublished' => false,
74 "owner' => $user,
75 1);
76
77 $this->browser()
78 ->actingAs(UserFactory: :createOne())
79 ->get('/api/users/' . $user->getId())
80 ->assertJsonMatches('length("dragonTreasures")', 0);
81 }
82 1}

Let's try it! Copy the method... and run it with - -filter= that name:

symfony php bin/phpunit --filter=testUnpublishedTreasuresNotReturned

OK! It expected 1 to be the same as 0 because we are returning the unpublished treasure... but

we don't want to!

How Relations are Loaded

First... why is this unpublished DragonTreasure being returned? Didn't we build query

extension classes to prevent exactly this?

Well.... an important thing to understand is that these query extension classes are used for the
main query on an endpoint only. For example, if we use the GET collection endpoint for

treasures, the "main” query is for those treasures and the query collection extension is called.

But when we make a call to a user endpoint - like to GET a single User - API Platform is not
making a query for any treasures: it's making a query for that one User . Once it has that

User, to get this dragonTreasures field, it does not make another query for those, at least

not directly. Instead, if you open the User entity, API Platform - via the serializer - simply calls

getDragonTreasures().

So it queries for the User, calls ->getDragonTreasures() ... and whatever that returns is
set onto the dragonTreasures field. And since this returns all related treasures, that's what

we get: including the unpublished ones.

Adding_a Filtered Getter Method

How can we fix this? By adding a new method that only returns the published treasures. Say
public function getPublishedDragonTreasures(), whichreturnsa Collection.
Inside, we can get fancy: return $this->dragonTreasures->filter () passing that a
callback with a DragonTreasure $treasure argument. Then, return

$treasure->getIsPublished():

src/Entity/User .php

? /... lines 1 - 69
70 class User implements UserInterface, PasswordAuthenticatedUserInterface
71 {
$ // ... lines 72 - 216
217 public function getPublishedDragonTreasures(): Collection
218 {
219 return $this->dragonTreasures->filter(static function
(DragonTreasure $treasure) {
220 return $treasure->getIsPublished();
221 1)
222 3}
$ 7/ ... lines 223 - 303
304 }

That's a nifty trick for looping through all the treasures and getting a shiny new collection with

just the published ones.

Side note: one downside to this approach is that if a user has 100 treasures... but only 10 of
them are published, internally, Doctrine will first query for all 100... even though we'll only return
10. If you have large collections, this can be a performance problem. In our Doctrine tutorial, we

talk about fixing this with something called the Criteria system. But with both approaches, the

result is the same: a method that returns a subset of the collection.

https://symfonycasts.com/screencast/doctrine-relations/collection-criteria

Swapping_the Getter into our API

At this point, the new method will work, but it's not yet part of our API. Scroll up to the
dragonTreasures property. It's currently readable and writable in our APIl. Make the property

only writable:

src/Entity/User .php

? /... lines 1 - 69
70 class User implements UserInterface, PasswordAuthenticatedUserInterface
71 {
$ /7 ... lines 72 - 105
106 #[Groups(['user:write'])]
$ 7/ ... lines 107 - 108
109 private Collection $dragonTreasures;
$ /7 ... lines 110 - 305
306 }

Then, down on the new method, add #[Groups('user:read')] to make this part of our API

and #[SerializedName('dragonTreasures')] to give it the original name:

src/Entity/User.php

$ // ... lines 1 - 69
70 class User implements UserInterface, PasswordAuthenticatedUserInterface
71 {
$ 7/ ... lines 72 - 216
217 #[Groups(['user:read'])]
218 #[SerializedName('dragonTreasures')]
219 public function getPublishedDragonTreasures(): Collection
220 {
T 7/ ... lines 221 - 223
224 }
$ /7 ... lines 225 - 305
306 }

Drumroll! Try the test:

symfony php bin/phpunit --filter=testUnpublishedTreasuresNotReturned

It explodes! Because... | have a syntax error. Try it again. All green!

And... we're done! You did it! Thank you so much for joining me on this gigantic, cool,
challenging journey into API Platform and security. Parts of this tutorial were pretty complex...

because | want you to be able to solve real, tough security problems.

In the next tutorial, we're going to look at even more custom and powerful things that you can do

with API Platform, including how to use classes for API resources that are not entities.

In the meantime, let us know what you're building and, as always, we're here for you in the

comments section. Alright friends, see ya next time!

With <3 from SymfonyCasts

