
API Platform 3 Part 2: Security
for your Treasures



Chapter 1: API Docs on Production?

Welcome back you wonderful JSON-returning people, to API Platform episode 2. In part 1, we

got busy! We created a pretty killer API to store dragon treasures, though... we completely

forgot to add security! Any small, hairy-footed creature could sneak in a back door... and we'd

have absolutely no idea! So this time, we're talking everything related to security. Like

authentication: should I use a session with a login form... or do I need API tokens? And

authorization, like denying access to entire endpoints. Then we'll get into trickier things like

showing or hiding results based on the user and even showing or hiding certain fields based on

the user. We'll also talk about totally custom fields, the PATCH HTTP method and setting up an

API test system your friends will be jealous of.

Project Setup

Now, you know the drill: to really dig into this stuff, you should code along with me. Download

the code course code from this page. After you unzip it, you'll find a start/  directory with the

same code that you see here. Pop open this nifty README.md  file and go through all the setup

instructions.

I'm all the way down here at starting the symfony  web server. So I'll spin over to a terminal

that's already inside the project and run

symfony serve -d

to start a local web server in the background. Perfect! I'll hold Cmd  and click that URL to pop

that open in my browser. Hello Treasure Connect! This is the app we created in episode 1...

though we worked exclusively on the API. We created endpoints for treasures, users and the

ability to relate them.

This homepage is brand new for episode 2. It's a small Vue app that I built. It has a login form...

but it doesn't work yet: it will be up to us to bring it to life.

https://symfonycasts.com/screencast/api-platform


Interactive Docs on Production?

Now before we dive into security, one question I sometimes get is:

“Hey Ryan, the interactive docs are super cool... but could I hide them on production?”

If your API is private - it's just meant for your JavaScript - that might make sense because you

don't want to advertise your endpoints to the world. However, I don't feel too compelled to hide

the docs... because even if you do, the endpoints still exist. So you're going to need proper

security anyways.

But yes, hiding them is possible, so let's see how. Even if you will show your docs, this is kind of

an interesting process that shows how various parts of the system work together.

Find your terminal and run:

php ./bin/console config:dump api_platform

Remember: this command show all the possible configuration for API Platform. Let's see...

search for "swagger". There we go. There's a section with things like enable_swagger ,

enable_swagger_ui , enable_re_doc , enable_entrypoint , and enable_docs . What

does all that mean?

Hello ReDoc

First I want to show you what ReDoc is, because we didn't talk about that in the first tutorial.

We're currently looking at the Swagger version of our documentation. But there's a competing

format called ReDoc... and you can click on the "ReDoc" link at the bottom to see it! Yup! This is

the same documentation info... but with a different layout! If you like this, it's there for you.

Disabling The Docs

Anyways, back at the terminal, there are a lot of "enable" configs. They're all related... but

slightly different. For example, enable_swagger  really refers to the OpenAPI documentation.

Remember that's the JSON document that powers the Swagger and ReDoc API docs. Then,



these are whether or not we want to show those two types of documentation frontends. And

down here, enable_entrypoint  and enable_docs  control whether or not certain routes

are added to our app.

I bet that didn't completely make sense, so let's play with this. Pretend that we want to disable

the docs entirely. Ok! Open config/packages/api_platform.yaml  and, to start, add

enable_docs: false :

config/packages/api_platform.yaml

1

 // ... lines 2 - 7

8

As soon as you do that and refresh... alright! Our API documentation is gone... but with a 500

error. When you enable_docs: false , it literally removes the route to our documentation.

Let's back up. Going to /api  was always kind of a shortcut to get to the docs. The real path

was /api/docs , /api/docs.json  or .jsonld . And these are now all 404's because we

disabled that route. So yay our documentation is gone!

However, when you go to /api , this actually isn't a documentation page. This is known as the

"entry point": it's our API homepage. This page does still exist... but it tries to link to our API

docs... which don't exist, and it explodes.

To disable the entry point, move over and add enable_entrypoint: false :

config/packages/api_platform.yaml

1

 // ... lines 2 - 8

9

Now going to /api  give us... beautiful! A 404.

Ok, so we know we can go to /api/treasures.json  or .jsonld . But what if we just go to

/api/treasures? That... unfortunately is a 500 error! When our browser makes a request, it

sends an Accept  header that says that we want HTML. So we're asking our API for the html

version of the treasures. And the html  version is... the documentation. So it tries to link to the

documentation and explodes.

To disable this, we can communicate to the system that we don't have Swagger or API

documentation at all... so it should stop trying to link to it. Do that by setting

api_platform:

    enable_docs: false

api_platform:

    enable_entrypoint: false



enable_swagger: false :

config/packages/api_platform.yaml

1

 // ... lines 2 - 9

10

Though... that just trades for another 500 error that says:

“Hey, you can't enable Swagger UI without enabling Swagger!”

Fix that with enable_swagger_ui: false :

config/packages/api_platform.yaml

1

 // ... lines 2 - 10

11

And now... closer!

Disabling the HTML Format

“Serialization for the format html  is not supported.”

The problem is that we're still requesting the html  version of this resource. But now that we

don't have any documentation, our API is like:

“Um... not really sure how to return an HTML version of this.”

And the truth is: if we totally disable our docs, we don't need an HTML format anymore! And so,

we can disable it. Do that by, very simply, removing html  from formats :

config/packages/api_platform.yaml

1

2

3

4

5

6

 // ... lines 7 - 10

api_platform:

    enable_swagger: false

api_platform:

    enable_swagger_ui: false

api_platform:

    formats:

        jsonld: [ 'application/ld+json' ]

        json: [ 'application/json' ]

        jsonhal: [ 'application/hal+json' ]



And... we actually have one other spot where we need to do that: in

src/Entity/DragonTreasure.php . When we added our custom csv  format... let's see

here it is... we repeated all the formats including html . So take html  off of there as well:

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

 // ... lines 28 - 40

41

42

43

44

45

46

 // ... lines 47 - 53

54

 // ... lines 55 - 72

73

74

 // ... lines 75 - 232

233

When we refresh now... got it! Since there's no HTML format, it defaults to JSON-LD . Our docs

are now totally disabled.

Oh, and to disable the docs just for production, I would create an environment variable - like

ENABLE_API_DOCS  - then reference that in my config:

 Tip

Actually, due to how the config is loaded, environment variables won't work here! Instead,

you could disable docs in production only, via:

when@prod:

    api_platform:

        enable_swagger_ui: false

# config/packages/api_platform.yaml

api_platform:

    enable_swagger_ui: '%env(bool:ENABLE_API_DOCS)%'

#[ApiResource(

    formats: [

        'jsonld',

        'json',

        'jsonhal',

        'csv' => 'text/csv',

    ],

)]

class DragonTreasure

{

}



But... I do like the documentation, so I'm going to undo this change... and this change as well to

get our docs back.

config/packages/api_platform.yaml

1

2

3

4

5

6

7

8

9

10

11

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

 // ... lines 28 - 40

41

42

43

44

45

46

47

 // ... lines 48 - 54

55

 // ... lines 56 - 73

74

75

 // ... lines 76 - 233

234

Love it!

Next, let's have a fireside chat about authentication. You have a fancy API: do you need API

tokens? Or something else?

api_platform:

    formats:

        jsonld: [ 'application/ld+json' ]

        json: [ 'application/json' ]

        html: [ 'text/html' ]

        jsonhal: [ 'application/hal+json' ]

#    enable_docs: false

#    enable_entrypoint: false

#    enable_swagger: false

#    enable_swagger_ui: false

#[ApiResource(

    formats: [

        'jsonld',

        'json',

        'html',

        'jsonhal',

        'csv' => 'text/csv',

    ],

)]

class DragonTreasure

{

}



Chapter 2: API Tokens? Session Cookies?

Join me, while we tell a tale as old as... the modern Internet: API authentication. A topic of hype,

complexity and unlikely heroes. Characters include sessions, API tokens, OAuth, JSON web

tokens! But what do we need for our situation?

The first thing I want you to ask is:

“Who will be using my API?”

Is it your own JavaScript, or do you need to allow programmatic access? Like someone will

write a script that will use your API?

We're going to go through both of these use-cases... and each has some extra complexities that

we'll discuss along the way.

Everything is a Token!

By the way, when you think of API authentication, you typically think of an API token. And that's

true! But it turns out that... pretty much all authentication is done by some sort of a token. Even

session-based authentication is done by sending a cookie... which contains a unique, you

guessed it, "token". It's a random string that PHP uses to find and load the related session data

on the server.

So the trick is figuring out which type of token you need in each situation and how the end-user

will get that token.

Use-Case 1: Building for your Own JavaScript

So let's talk about that first use-case: the user of your API is your own JavaScript.

Well, before we even dive into security, make sure your frontend and your API live on the same

domain... like the exact same domain, not just a subdomain. Why? Because if they live on two

different domains or subdomains, you have to deal with CORS: Cross-Origin Resource Sharing.



CORS not only adds complexity to your setup, it also hurts performance. Kévin Dunglas - the

lead developer of API Platform - has a blog post about this. He even shows a strategy where

your frontend and backend can live in totally different directories or repositories, but still live on

the same domain thanks to some web server tricks.

If you do, for some reason, decide to put your API and frontend on different sub-domains, then

you will need to worry about CORS headers and you can solve that with NelmioCorsBundle.

But, I don't recommend it.

The case for Sessions

Anyways, back to security. If you're calling your API from your own JavaScript, the user is

probably logging in via a login form with an email and password. It doesn't matter if that's a

traditional login form or one that's built with a fancy JavaScript framework that submits via

AJAX.

And, honestly, a really simple way to handle this use-case is not with API tokens, but with good

ol' fashioned HTTP Basic authentication. Yea, where you literally pass the email & password to

each endpoint. For example, the user enters their email and password, you make an API

request to some endpoint just to make sure it's valid, then you store that email and password in

JavaScript and send it on every single API request going forward. Your email & password works

basically like an API token.

However, this has some practical challenges, like the question of where you securely store the

email and password in JavaScript so you can continually use it. This is actually a problem in

general with JavaScript and "credentials", including API tokens: you need to be very careful

where you store those so that other JavaScript on your page can't read them. There are

solutions: https://bit.ly/auth0-token-storage - but it adds complexity that you very likely don't

need.

So instead, for your own JavaScript, you can use a session. When you start a session in

Symfony, it returns an "HTTP only" cookie... and that cookie contains the session id. Though,

the contents of the cookie aren't really important: it could be the session id or some sort of token

you invented and are reading in Symfony. The really important thing is that because the cookie

is "HTTP only", it can't be read by JavaScript: your JavaScript or anyone else's JavaScript. But

whenever you make an API request to your domain, that cookie's will come with it... and your

app will use it to log in the user.

https://dunglas.dev/2022/01/preventing-cors-preflight-requests-using-content-negotiation/
https://bit.ly/auth0-token-storage


So the API token in this situation is simply the "session id", which is stored securely in an HTTP-

only cookie. Mmm. We will code through this use case.

Oh, and by the way, one edge-case with this situation is if you have a Single Sign On situation -

an SSO. In that case, you'll authenticate with your SSO like a normal web app. When you finish,

you'll have a token, which you can then use to either authenticate the user with a session like

normal... or you can use that token directly from your JavaScript. That's a more advanced use

case that we won't go through in this tutorial... though, we will talk about how to read & validate

API tokens regardless of where those tokens came from.

Use-Case 2: Programmatic Access & API Tokens

The second big use-case for authentication is programmatic access. Some code will talk to your

API... besides JavaScript from inside the browser.

In this case, the API clients absolutely will send some sort of an API token string. And so, you

need to make your API able to read a token that's sent on each request, usually sent on an

Authorization  header:

$response = $httpClient->request(

    'GET',

    '/api/treasures',

    [

        'Authorization' => 'Bearer '.$apiToken,

    ],

);

How the user gets this token depends: there are kind of two main cases. The first one is the

"GitHub personal access token" case. This is where a user can browse to a page on your site

and click to create a new access token. Then they can copy that and go use it in some code.

The second big case is OAuth, which is just a fancy & secure way to get an access token. It's

especially important when the "code" that's making the API requests is making those requests

on "behalf" of some user on your system.

Like imagine a site - ReplyToAllCommentsWithHearts.com - that allows you to connect with

GitHub. Once you do, that site can then make API requests to GitHub for your account, like

making comments as your user. Or imagine an iPhone app where, to log in, you show the user



the login form on your site. Then, via an OAuth flow, that mobile app will receive an access

token it can use to talk to your API on behalf of that user.

We're going to talk about the personal access token method in this tutorial, including how to

read and validate API tokens, no matter where they come from. We won't talk about the OAuth

flow... and it's partially because it's a separate beast. Yes, if you have the use-case where you

need to allow third parties to get API tokens for different users on your site, you will need some

sort of OAuth server, whether you build it yourself or use some other solution. But once the

OAuth server has done its work, the client that will talk to your API receives... a token! And then

they'll use that token to talk to your API. So your API will need to read, validate, and understand

that token, but it doesn't care how the API client got it.

Ok, let's put all this theory behind us and start going through the first use-case next: allowing

our JavaScript to log in by sending an AJAX request.



Chapter 3: API Login Form with json_login

On the homepage, which is built in Vue, we have a login form. The goal is that, when we submit

this, it will send an AJAX request with the email & password to and endpoint that will validate it.

The form itself is built over here in assets/vue/LoginForm.vue :

assets/vue/LoginForm.vue

1

2

3

4

5

 // ... lines 6 - 45

46

47

48

49

50

51

 // ... lines 52 - 95

96

If you're not familiar with Vue, don't worry. We will do some light coding in it, but I'm mostly using

it as an example to make some API requests.

Down near the bottom, on submit, we make a POST request to /login  sending the email

and password  as JSON. So our first goal is to create this endpoint:

<template>

    <form

        v-on:submit.prevent="handleSubmit"

        class="book shadow-md rounded px-8 pt-6 pb-8 mb-4 sm:w-1/2 md:w-

1/3"

    >

    </form>

</template>

<script setup>

import { ref } from 'vue';

</script>



assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

 // ... lines 67 - 69

70

71

72

73

74

75

76

77

78

79

 // ... lines 80 - 93

94

95

96

Creating the Login Controller

Fortunately, Symfony has a built-in mechanism just for this. To start, even though it won't do

much, we need a new controller! In src/Controller/ , create a new PHP class. Let's call it

SecurityController . This will look very traditional: extend AbstractController , then

add a public function login()  that will return a Response , the one from

HttpFoundation :

src/Controller/SecurityController.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 8

9

10

 // ... line 11

12

13

14

15

16

<script setup>

const handleSubmit = async () => {

    const response = await fetch('/login', {

        method: 'POST',

        headers: {

            'Content-Type': 'application/json'

        },

        body: JSON.stringify({

            email: email.value,

            password: password.value

        })

    });

}

</script>

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\Response;

class SecurityController extends AbstractController

{

    public function login(): Response

    {

        

    }

}



Above, give this a Route  with a URL of /login  to match what our JavaScript is sending to.

Name the route app_login . Oh, and we don't really need to do this, but we can also add

methods: ['POST'] :

src/Controller/SecurityController.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

 // ... line 14

15

16

There won't be a /login  page on our site that we make a GET request to: we're only going to

POST to this URL.

Returning the Current User Id

As you'll see in a minute, we're not going to process the email  and password  in this

controller... but this will be executed after a successful login. So... what should we return after a

successful login? I don't know! And honestly it mostly depends on what would be useful in our

JavaScript. I haven't thought about it much yet, but maybe... the user id? Let's start there.

If authentication was successful, then, at this point, the user will be logged in like normal. To get

the currently-authenticated user, I'm going to leverage a newer feature of Symfony. Add an

argument with a PHP attribute called #[CurrentUser] . Then we can use the normal User

type-hint, call it $user  and default it to null , in case we're not logged in for some reason:

use Symfony\Component\Routing\Annotation\Route;

class SecurityController extends AbstractController

{

    #[Route('/login', name: 'app_login', methods: ['POST'])]

    public function login(): Response

    {

    }

}



src/Controller/SecurityController.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 17

18

19

We'll talk about how that's possible in a minute.

Then, return $this->json()  with a user  key set to $user->getId() :

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

Cool! And that's all we need our controller to do.

Activating json_login

To activate the system that will do the real work of reading the email & password, head to

config/packages/security.yaml . Under the firewall, add json_login  and below that

check_path ... which should be set to the name of the route that we just created. So,

app_login :

use Symfony\Component\Security\Http\Attribute\CurrentUser;

class SecurityController extends AbstractController

{

    #[Route('/login', name: 'app_login', methods: ['POST'])]

    public function login(#[CurrentUser] $user = null): Response

    {

    }

}

class SecurityController extends AbstractController

{

    #[Route('/login', name: 'app_login', methods: ['POST'])]

    public function login(#[CurrentUser] $user = null): Response

    {

        return $this->json([

            'user' => $user ? $user->getId() : null,

        ]);

    }

}



config/packages/security.yaml

1

 // ... lines 2 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 18

19

20

 // ... lines 21 - 46

This activates a security listener: it's a bit of code that will now be watching every request to see

if it is a POST request to this route. So, a POST to /login . If it is, it will decode the JSON on

that request, read the email  and password  keys off of that JSON, validate the password and

log us in.

Though, we do need to tell it what keys in the JSON we're using. Our JavaScript is sending

email  and password : super creative. So below this, set username_path  to email  and

password_path  to password :

config/packages/security.yaml

1

 // ... lines 2 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 18

19

20

21

22

 // ... lines 23 - 48

The User Provider

Done! But wait! If we POST an email  and password  to this endpoint... how the heck does

the system know how to find that user? How is it supposed to know that it should query the

user  table WHERE email = the email from the request?

Excellent question! In episode 1, we ran:

security:

    firewalls:

        main:

            json_login:

                check_path: app_login

security:

    firewalls:

        main:

            json_login:

                check_path: app_login

                username_path: email

                password_path: password



php ./bin/console make:user

This created a User  entity with the basic security stuff that we need:

src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 43

44

 // ... lines 45 - 49

50

 // ... lines 51 - 52

53

 // ... lines 54 - 59

60

 // ... lines 61 - 64

65

 // ... lines 66 - 187

188

In security.yaml , it also created a user provider:

config/packages/security.yaml

1

 // ... lines 2 - 4

5

6

7

8

9

10

11

 // ... lines 12 - 48

This is an entity provider: it tells the security system to find users in the database by querying by

the email  property. This means our system will decode the JSON, fetch the email  key, query

for a User  with a matching email, then validate the password. In other words... we're ready!

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    private ?int $id = null;

    private ?string $email = null;

    private array $roles = [];

    private ?string $password = null;

    private ?string $username = null;

}

security:

    # https://symfony.com/doc/current/security.html#loading-the-user-the-

user-provider

    providers:

        # used to reload user from session & other features (e.g. 

switch_user)

        app_user_provider:

            entity:

                class: App\Entity\User

                property: email



Looking back at LoginForm.vue , the JavaScript is also ready: handleSubmit()  will be

called when we submit the form... and it makes the AJAX call:

assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

So let's try this thing! Move over and refresh just to be sure. Try it with a fake email and

password first. Submit and... nothing happened? Open up your browser's inspector and go to

the console. Yes! You see a 401 status code and it dumped this error: invalid credentials. That's

coming from right here in our JavaScript: after the request finishes, if the response is "not okay"

- meaning there was a 4XX or 5XX status code - we decode the JSON and log it.

<script setup>

const handleSubmit = async () => {

    isLoading.value = true;

    error.value = '';

    const response = await fetch('/login', {

        method: 'POST',

        headers: {

            'Content-Type': 'application/json'

        },

        body: JSON.stringify({

            email: email.value,

            password: password.value

        })

    });

    isLoading.value = false;

    if (!response.ok) {

        const data = await response.json();

        console.log(data);

        // TODO: set error

        return;

    }

    email.value = '';

    password.value = '';

    //emit('user-authenticated', userIri);

}

</script>



Apparently, when we fail authentication with json_login , it returns a small bit of JSON with

"Invalid Credentials".

Next: let's turn this error into something we can see on the form, handle another error case, and

then think about what to do when authentication is successful.



Chapter 4: Handling Authentication Errors

When we log in with an invalid email and password, it looks like the json_login  system

sends back some nice JSON with an error  key set to "Invalid credentials". If we wanted to

customize this, we could create a class that implements

AuthenticationFailureHandlerInterface :

class AppAuthFailureHandler implements AuthenticationFailureHandlerInterface

{

    public function onAuthenticationFailure($request, $exception)

    {

        return new JsonResponse(

            ['something' => 'went wrong'],

            401

        );

    }

}

And then set its service ID onto the failure_handler  option under json_login :

json_login:

    failure_handler: App\Security\AppAuthFailureHandler

Showing the Error on the Form

But, this is plenty good for us. So let's use it over in our /assets/vue/LoginForm.vue . We

won't go too deeply into Vue, but I already have state called error , and if we set that, it will

show up on the form:



assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 54

55

 // ... lines 56 - 65

66

 // ... line 67

68

 // ... lines 69 - 82

83

84

85

86

87

88

89

 // ... lines 90 - 93

94

95

96

After making the request, if the response is not okay, we're already decoding the JSON. Now

let's say error.value = data.error :

assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

 // ... lines 67 - 82

83

84

85

86

87

88

 // ... lines 89 - 92

93

94

95

To see if this works, make sure you have Webpack Encore running in the background so it

recompiles our JavaScript. Refresh. And... you can click this little link to cheat and enter a valid

<script setup>

const error = ref('');

const handleSubmit = async () => {

    error.value = '';

    if (!response.ok) {

        const data = await response.json();

        console.log(data);

        // TODO: set error

        return;

    }

}

</script>

<script setup>

const handleSubmit = async () => {

    if (!response.ok) {

        const data = await response.json();

        error.value = data.error;

        return;

    }

}

</script>



email. But then type in a ridiculous password and... I love it! We see "Invalid credentials" on top

with some red boxes!

json_login Requires Content-Type: application/json

So the AJAX call is working great. Though, there is one gotcha with the json_login  security

mechanism: it requires you to send a Content-Type  header set to application/json . We

are setting this on our Ajax call and you should to:

assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

 // ... lines 67 - 69

70

 // ... line 71

72

73

74

 // ... lines 75 - 78

79

 // ... lines 80 - 92

93

94

95

But... if someone forgets, we want to make sure that things don't go completely crazy.

Comment out that Content-Type  header so we can see what happens:

<script setup>

const handleSubmit = async () => {

    const response = await fetch('/login', {

        headers: {

            'Content-Type': 'application/json'

        },

    });

}

</script>



assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

 // ... lines 67 - 69

70

 // ... line 71

72

73

74

 // ... lines 75 - 78

79

 // ... lines 80 - 92

93

94

95

Then move over, refresh the page... type a ridiculous password and... it clears the form? Look

down at the Network call. The endpoint returned a 200 status code with a user  key set to

null !

And... that makes sense! Because we're missing the header, the json_login  mechanism did

nothing. Instead, the request continued to our SecurityController ... except that this time

the user is not logged in. So, we return user: null ... with a 200 status code.

That's a problem because it make it look like the Ajax call was successful. To fix this, if, for any

reason the json_login  mechanism was skipped... but the user is hitting our login endpoint,

let's return a 401 status code that says:

“Hey! You need to log in!”

So, if not $user , then return $this->json() ... and this could look like anything. Let's

include an error  key explaining what probably went wrong: this matches the error  key that

json_login  returns when the credentials fail, so our JavaScript will like this. Heck. I'll even fix

my typo!

<script setup>

const handleSubmit = async () => {

    const response = await fetch('/login', {

        headers: {

            //'Content-Type': 'application/json'

        },

    });

}

</script>



src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... line 12

13

14

15

16

17

18

19

 // ... lines 20 - 23

24

25

Most importantly, for the second argument, pass a 401 for the status code.

Below, we can simplify... because now we know that there will be a user:

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... line 12

13

14

15

16

17

18

19

20

21

22

23

24

25

Beautiful! Spin over and submit another bad password. Oh, gorgeous! The 401 status code

triggers our error handling code, which displays the error on top. So awesome.

Go back to LoginForm.vue  and put the Content-Type  header back:

class SecurityController extends AbstractController

{

    public function login(#[CurrentUser] $user = null): Response

    {

        if (!$user) {

            return $this->json([

                'error' => 'Invalid login request: check that the Content-

Type header is "application/json".',

            ], 401);

        }

    }

}

class SecurityController extends AbstractController

{

    public function login(#[CurrentUser] $user = null): Response

    {

        if (!$user) {

            return $this->json([

                'error' => 'Invalid login request: check that the Content-

Type header is "application/json".',

            ], 401);

        }

        return $this->json([

            'user' => $user->getId(),

        ]);

    }

}



assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

 // ... lines 67 - 69

70

 // ... line 71

72

73

74

 // ... lines 75 - 78

79

 // ... lines 80 - 92

93

94

95

Next: let's login successfully and... figure out what we want to do when that happens! We're also

going to talk about the session and how that authenticates our API requests.

<script setup>

const handleSubmit = async () => {

    const response = await fetch('/login', {

        headers: {

            'Content-Type': 'application/json'

        },

    });

}

</script>



Chapter 5: On Authentication Success

If you refresh the page and check the web debug toolbar, you can see that we're not logged in.

Let's try using a real email and password. We can cheat by clicking the email and password

links: this user exists in our AppFixtures , so it should work. And... okay... the boxes

disappear! But nothing else happens. We'll improve that in a minute.

Thanks Session!

But for now, refresh the page and look at the web debug toolbar again. We're authenticated!

Yea! Just by making a successful AJAX request to that login endpoint, that was enough to

create the session and keep us logged in. Even better, if we started making requests to our API

from JavaScript, those requests would be authenticated too. That's right! We don't need a fancy

API token system where we attach a token to every request. We can just make a request and

through the magic of cookies, that request will be authenticated.

 Tip

In new API Platform projects, the default config/packages/api_platform.yaml  file

has configuration that makes your endpoints "stateless":

# config/packages/api_platform.yaml

api_platform:

    # ...

    defaults:

        stateless: true

If you want to be able to make API requests and rely in the session to stay authenticated,

change this to: stateless: false .

REST and What Data to Return from our Authentication
Endpoint?



So, logging in worked... but nothing happened on the page. What should we do after

authentication? Once again, it doesn't really matter. If you're writing your auth system for your

own JavaScript, you should do whatever is useful for your frontend. We're currently returning

the user  id. But we could, if we wanted, return the entire user  object as JSON.

But there's one tiny problem with that. It's not super RESTful. This is one of those "REST purity"

things. Every URL in your API, on a technical level, represents a different resource. This

represents the collection resource, and this URL represents a single User  resource. And if you

have a different URL, that's understood to be a different resource. The point is that, in a perfect

world, you would just return a User  resource from a single URL instead of having five different

endpoints to fetch a user.

If we return the User  JSON from this endpoint, we're "technically" creating a new API resource.

In fact, anything we return from this endpoint, from a REST point of view, becomes a new

resource in our API. To be honest, this is all technical semantics and you should feel free to do

whatever you want. But, I do have a fun suggestion.

Returning the IRI

To try be helpful to our frontend and somewhat RESTful, I have another idea. What if we return

nothing from the endpoint.... but sneak the user's IRI onto the Location  header of the

response. Then, our frontend could use that to know who just logged in.

Let me show you. First, instead of returning the User ID, we're going to return the IRI, which will

look something like '/api/users/'.$user->getId() . But I don't want to hard code that

because we could potentially change the URL in the future. I'd rather have API Platform

generate that for me.

And fortunately, API Platform gives us an autowireable service to do that! Before the optional

argument, add a new argument type-hinted with IriConverterInterface  and call it

$iriConverter :



src/Controller/SecurityController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

13

14

15

 // ... lines 16 - 24

25

26

Then, down here, return new Response()  (the one from HttpFoundation ) with no

content and a 204  status code:

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 21

22

 // ... line 23

24

25

26

The 204  means it was "successful... but there's no content to return". We'll also pass a

Location  header set to $iriConverter->getIriFromResource() :

use ApiPlatform\Api\IriConverterInterface;

class SecurityController extends AbstractController

{

    #[Route('/login', name: 'app_login', methods: ['POST'])]

    public function login(IriConverterInterface $iriConverter, #

[CurrentUser] $user = null): Response

    {

    }

}

class SecurityController extends AbstractController

{

    #[Route('/login', name: 'app_login', methods: ['POST'])]

    public function login(IriConverterInterface $iriConverter, #

[CurrentUser] $user = null): Response

    {

        return new Response(null, 204, [

        ]);

    }

}



src/Controller/SecurityController.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 21

22

23

24

25

26

So you can get the resource from an IRI or the IRI string from the resource, the resource being

your object. Pass this $user .

Using the IRI in JavaScript

How nice is that? Now that we're returning this how can we use this in JavaScript? Ideally, after

we log in, we would automatically show some user info over on the right. This area is built by

another Vue file called TreasureConnectApp.vue :

class SecurityController extends AbstractController

{

    #[Route('/login', name: 'app_login', methods: ['POST'])]

    public function login(IriConverterInterface $iriConverter, #

[CurrentUser] $user = null): Response

    {

        return new Response(null, 204, [

            'Location' => $iriConverter->getIriFromResource($user),

        ]);

    }

}



assets/vue/controllers/TreasureConnectApp.vue

1

2

 // ... lines 3 - 5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 20

21

22

 // ... line 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

I won't go into the details, but as long as that component has user data, it will print it out here.

And LoginForm.vue  is already set up to pass that user data to

TreasureConnectApp.vue . Down at the bottom, after a successful authentication, this is

where we clear the email  and password  state, which empties the boxes after we log in. If we

emit an event called user-authenticated  and pass it the userIri ,

<template>

    <div class="purple flex flex-col min-h-screen">

        <div class="flex-auto flex flex-col sm:flex-row justify-center px-

8">

            <LoginForm

                v-on:user-authenticated="onUserAuthenticated"></LoginForm>

            <div

                class="book shadow-md rounded sm:ml-3 px-8 pt-8 pb-8 mb-4 

sm:w-1/2 md:w-1/3 text-center">

                <div v-if="user">

                    Authenticated as: <strong>{{ user.username }}</strong>

                    | <a href="/logout" class="underline">Log out</a>

                </div>

                <div v-else>Not authenticated</div>

            </div>

        </div>

    </div>

</template>

<script setup>

import { ref } from 'vue';

import LoginForm from '../LoginForm';

import coinLogoPath from '../../images/coinLogo.png';

import goldPilePath from '../../images/GoldPile.png';

defineProps(['entrypoint']);

const user = ref(null);

const onUserAuthenticated = async (userUri) => {

    const response = await fetch(userUri);

    user.value = await response.json();

}

</script>



TreasureConnectApp.vue  is already set up to listen to this event. It will then make an AJAX

request to userIri , get the JSON back, and populate its own data.

If you're not comfortable with Vue, that's ok. The point is that all we need to do is grab the IRI

string from the Location  header, emit this event, and everything should work.

To read the header, say const userIri = response.headers.get('Location') . I'll

also uncomment this so we can emit  it:

assets/vue/LoginForm.vue

 // ... lines 1 - 48

49

 // ... lines 50 - 65

66

 // ... lines 67 - 89

90

91

92

93

94

95

96

This should be good! Move over and refresh. The first thing I want you to notice is that we're still

logged in, but our Vue app doesn't know that we're logged in. We're going to fix that in a minute.

Log in again using our valid email and password. And... beautiful! We made the POST  request,

it returned the IRI and then our JavaScript made a second request to that IRI to fetch the user

data, which it displayed here.

Next: Let's talk about what it means to log out of an API. Then, I'll show you a simple way of

telling your JavaScript who is logged in on page load. Because, right now, even though we are

logged in, as soon as I refresh, our JavaScript thinks we're not. Lame.

<script setup>

const handleSubmit = async () => {

    email.value = '';

    password.value = '';

    const userIri = response.headers.get('Location');

    emit('user-authenticated', userIri);

}

</script>



Chapter 6: Logout & Passing API Data to
JavaScript

What does it mean to "log out" of something? Like logging out of an API? Well, it's two things.

First, it means invalidating whatever your token is, if possible. For example, if you have an API

token, you would say to the API:

“Make this API token no longer valid.”

In the case of session authentication, it's basically the same: it means removing the session

from the session storage.

The second part of "logging out" is making whoever is using the token "forget" it. If you had an

API token in JavaScript, you would remove it from JavaScript. For session authentication, it

means deleting the cookie.

Adding the Ability to Log Out

Anyways, let's add the ability to log out of our session-based authentication. Back over in

SecurityController , like before, we need a route and controller, even though this

controller will never be called. I'll name the method logout()  and we're going to return void .

You'll see why in a second. Give this a Route  of /logout  and name: app_logout :

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

27

28

29

 // ... line 30

31

32

class SecurityController extends AbstractController

{

    #[Route('/logout', name: 'app_logout')]

    public function logout(): void

    {

    }

}



The reason I chose void  is because we're going to throw an exception from inside the method.

We've created this entirely because we need a route: Symfony's security system will intercept

things before the controller is called:

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 26

27

28

29

30

31

32

To activate that magic, in security.yaml , add a key called logout  with path  below set to

that new route name: app_logout :

config/packages/security.yaml

1

 // ... lines 2 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 22

23

24

 // ... lines 25 - 50

This activates a listener that's now watching for requests to /logout . When there is a request

to /logout , it will log the user out and redirect them.

All right, over here, our Vue app thinks we're not logged in, but we are: we can see it in the web

debug toolbar. And if we manually go to /logout ... boom! We are now logged out for real.

Getting the Current User Data in JavaScript

So we saw a moment ago that even when we are logged in and refresh, our Vue app has no

idea that we're logged in. How could we fix that? One idea would be to create a /me  API

endpoint. Then, on load, our Vue app could make an AJAX request to that endpoint... which

class SecurityController extends AbstractController

{

    #[Route('/logout', name: 'app_logout')]

    public function logout(): void

    {

        throw new \Exception('This should never be reached!');

    }

}

security:

    firewalls:

        main:

            logout:

                path: app_logout



would either return null  or the current user info. But, /me  endpoints are super not RESTful.

And there's a better way: dump the user information into JavaScript on page load.

Setting a Global user JavaScript Variable

There are two different ways to do this. The first is by setting a global variable. For example, in

templates/base.html.twig , it doesn't really matter where, but inside the body, add a

script  tag. And here say window.user =  and then {{ app.user|serialize }} .

Serialize into jsonld  and add a |raw  so that it doesn't escape the output: we want raw

JSON:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

20

21

22

23

How cool is that? In a minute, we'll read that from our JavaScript. If we refresh right now and

look at the source, yea! We see window.user = null . And then when we log in and refresh

the page, check it out: window.user =  and a huge amount of data!

Serializing to JSON-LD in Twig

But there's something mysterious going on: it has the correct fields! Look closely, it has email ,

username  and then dragonTreasures , which is what all this stuff is. It also, correctly, does

not have roles  or password .

So it seems that it's correctly reading our normalization groups! But how is that even possible?

We're just saying "serialize this user to jsonld ". This has nothing to do with API Platform and

it's not being processed by API platform. But... our normalization groups are configured in API

Platform. So how did the serializer know to use those?

<!DOCTYPE html>

<html>

    <body>

        <script>

            window.user = {{ app.user|serialize('jsonld')|raw }};

        </script>

        {% block body %}{% endblock %}

    </body>

</html>



The answer to that, as best I can tell, is that it's working... partially by accident. During

serialization, API Platform sees that we're serializing an "API resource" and so it looks up the

metadata for this class.

That's cool... but it's actually not perfect... and I like to be explicit anyway. Pass a 2nd argument

to serialize, which is the context and set groups  to user:read :

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

20

21

 // ... lines 22 - 23

24

25

Now, watch what happens when we refresh. Like before, the correct properties on User  will be

exposed. But keep an eye on the embedded dragonTreasures  property. Woh, it changed!

That was actually wrong before: it was including everything, not just the stuff inside the

user:read  group.

Reading the Dynamic Data from Vue

Ok, let's go use this global variable over in JavaScript: in TreasureConnectApp.vue . Right

now, the user  data always starts as null . We can change that to window.user :

assets/vue/controllers/TreasureConnectApp.vue

 // ... lines 1 - 26

27

 // ... lines 28 - 32

33

34

 // ... lines 35 - 39

40

When we refresh... got it!

<!DOCTYPE html>

<html>

    <body>

        <script>

            window.user = {{ app.user|serialize('jsonld', {

                'groups': ['user:read']

            })|raw }};

        </script>

    </body>

</html>

<script setup>

defineProps(['entrypoint']);

const user = ref(window.user);

</script>



Next: if you're using Stimulus, an even better way to pass data to JavaScript is to use Stimulus

values.



Chapter 7: Passing Values to Stimulus

Setting a global variable is fine. But if you're using Stimulus, there's a better way. We can pass

server data as a value to a Stimulus controller.

Of course, this is a Vue app. But if you look in templates/main/homepage.html.twig ,

we're using the symfony/ux-vue  package to render this:

templates/main/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

Behind the scenes, that activates a small Stimulus controller that starts & renders the Vue

component. Any arguments that we pass here are sent to the Stimulus controller as a value...

and then forwarded as props to the Vue app. So what we're going to do is "kind of" specific to

Vue, but you could use this strategy to pass values to any Stimulus controller.

First in the Vue component, let's allow a new prop to be passed in called user :

assets/vue/controllers/TreasureConnectApp.vue

 // ... lines 1 - 26

27

 // ... lines 28 - 32

33

 // ... lines 34 - 40

41

If you're not using Vue, don't worry too much about the specifics. To make sure that's getting

here console.log(props.user) . And initialize the data to props.user :

{% block body %}

    <div {{ vue_component('TreasureConnectApp', {

        entrypoint: path('api_entrypoint')

    }) }}></div>

{% endblock %}

<script setup>

const props = defineProps(['entrypoint', 'user'])

</script>



assets/vue/controllers/TreasureConnectApp.vue

 // ... lines 1 - 26

27

 // ... lines 28 - 32

33

34

35

 // ... lines 36 - 40

41

Next, over in base.html.twig , remove all that fancy window.user  stuff:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

19

And in homepage.html.twig , pass a new user  prop set to app.user :

templates/main/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

Now if you move over and refresh, that's doesn't work? It looks like we're authenticated as...

nothing?

Serializing Before Passing in the Value

If you dig a little, you'll see that we're sending the user  to Stimulus as empty {} . Why?

Because when you send data into Stimulus, it doesn't use the serializer to transform into JSON:

it just uses json_encode() . And that's not good enough.

So, we need to serialize this ourselves. To do that, open

src/Controller/MainController.php . Here's the controller that renders that template.

<script setup>

const props = defineProps(['entrypoint', 'user'])

console.log(props.user);

const user = ref(props.user);

</script>

<!DOCTYPE html>

<html>

    <body>

        {% block body %}{% endblock %}

    </body>

</html>

{% block body %}

    <div {{ vue_component('TreasureConnectApp', {

        entrypoint: path('api_entrypoint'),

        user: app.user

    }) }}></div>

{% endblock %}



Autowire a service called NormalizerInterface  and then pass a variable into our template

called userData  set to $normalizer->normalize() . Oh, but we need the user! Add

another argument to the controller with the fancy new #[CurrentUser]  attribute, type-hint

User , say $user , and then = null  in case we're not authenticated. Back down below,

normalization will turn the object into an array. So pass $user  and then the format for the

array, which is jsonld : we want all the JSON-LD fields. Finally pass the serialization context

with 'groups' => 'user:read' :

src/Controller/MainController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Last step! In the template, set that user  prop to userData :

templates/main/homepage.html.twig

 // ... lines 1 - 2

3

4

 // ... line 5

6

7

8

Since the Stimulus system will run that array through json_encode()  that will transform that

array into JSON. When we move over and refresh.... got it! You can see the entire JSON being

passed into the Stimulus controller... and then that's passed to Vue as a prop.

use App\Entity\User;

use Symfony\Component\Security\Http\Attribute\CurrentUser;

use Symfony\Component\Serializer\Normalizer\NormalizerInterface;

class MainController extends AbstractController

{

    #[Route('/')]

    public function homepage(NormalizerInterface $normalizer, #

[CurrentUser] User $user = null): Response

    {

        return $this->render('main/homepage.html.twig', [

            'userData' => $normalizer->normalize($user, 'jsonld', [

                'groups' => ['user:read'],

            ]),

        ]);

    }

}

{% block body %}

    <div {{ vue_component('TreasureConnectApp', {

        user: userData,

    }) }}></div>

{% endblock %}



Spin back over and make sure to get that console.log()  out of there:

assets/vue/controllers/TreasureConnectApp.vue

 // ... lines 1 - 26

27

 // ... lines 28 - 33

34

 // ... lines 35 - 40

41

CSRF Protection

We haven't actually seen it yet, but when we start making requests to our API, those requests

will be authenticated thanks to the session. When using sessions with your API, you might read

about needing CSRF protection. Do we need CSRF tokens?

The quick answer is: probably not. As long as you use something called SameSite cookies -

which are automatic in Symfony - then your API probably doesn't need to worry about CSRF

protection. But be aware of two things. First, make sure that your GET requests don't have any

side effects. Don't do something silly like allow the API client to make a GET request... but then

you save something to the database. Second, some older browsers - like IE 11 - don't support

SameSite cookies. So by forgoing CSRF tokens, you could be allowing a small percentage of

your users to be susceptible to CSRF attacks.

If you want to learn more, our API Platform 2 tutorial has a whole chapter on SameSite cookies

and CSRF tokens.

Next, let's turn to the other authentication use-case: API tokens.

<script setup>

console.log(props.user);

</script>

https://symfonycasts.com/screencast/api-platform-security/samesite-csrf
https://symfonycasts.com/screencast/api-platform-security/samesite-csrf


Chapter 8: Token Types & The ApiToken Entity

Okay, so what if you need to allow programmatic access to your API?

The Types of Access Tokens

When you talk to an API via code, you send an API token, commonly known as an access

token:

fetch('/api/kittens', {

    headers: {

        'Authorization': 'Bearer THE-ACCESS-TOKEN',

    }

});

Exactly how you get that token will vary. But there are two main cases.

First, as a user on the site, like a dragon, you want to generate an API token so that you can

personally use it in a script you're writing. This is like a GitHub personal access token. These

are literally created via a web interface. We're going to show this.

The second main use case is when a third party wants to make requests to your API on behalf

of a user of your system. Like some new site called DragonTreasureOrganizer.com  wants

to be able to make an API request to our API on behalf of some of our users - like it will fetch the

treasure's for a user and display them artfully on their site. In this situation, instead of our users

generating tokens manually and then... like... entering them into that site, you'll offer OAuth.

OAuth is basically a mechanism for normal users to securely give access tokens for their

account to a third party. And so, your site, or somewhere in your infrastructure you'll have an

OAuth server.

That's beyond the scope of this tutorial. But the important thing is that after OAuth is done, the

API client wll end up with, you guessed it, an API token! So no matter which journey you're in, if

you're doing programmatic access, your API users will end up with an access token. And then

your job will be to read and understand that. We'll do exactly that.



JWT vs Database Storage?

So as I mentioned, we're going to show a system where we allow users to generate their own

access tokens. So how do we do that? Again, there are two main ways. Death by choices!

The first is to generate something called a JSON Web Token or JWT. The cool thing about

JWTs are that no database storage is needed. They're special strings that actually contain info

inside of them. For example, you could create a JWT string that includes the user id and some

scopes.

One downside of JWTs are that there's no easy way to "log out"... because there's no out-of-

the-box way to invalidate JWTs. You give them an expiration when you create them... but then

they're valid until then... no matter what, unless you add some extra complexity... which kinda

defeats the purpose.

JWT's are trendy, popular and fun! But... you may not need them. They're awesome when you

have a single sign-on system because, if that JWT is used to authenticate with multiple systems

or APIs, each API can validate the JWT all on their own: without needing to make an API

request to a central authentication system.

So you might end up using JWTs and there's a great bundle for them called

LexikJWTAuthenticationBundle. JWT's are also the type of access token that OpenID gives you

in the end.

Instead of JWTs, the second main option is dead simple: generate a random token string and

store it in the database. This also allows you to invalidate access tokens by... just deleting them!

This is what we'll do.

Generating the Entity

So let's get to work. To store API tokens, we need a new entity! Find your terminal and run:

php ./bin/console make:entity

And let's call it ApiToken . Say no to making this an API resource. In theory, you could allow

users to authenticate via a login form or HTTP basic and then send a POST request to create



API tokens if you want to... but we won't.

Add an ownedBy  property. This is going to be a ManyToOne  to User  and not nullable . And

I'll say "yes" to the inverse. So the idea is that every User  can have many API tokens. When an

API token is used, we want to know which User  it's related to. We'll use that during

authentication. Calling the property apiTokens  is fine and say no to orphan removal. Next

property: expiresAt , make that a datetime_immutable  and I'll say yes to nullable .

Maybe we allow tokens to never expire by leaving this field blank. Next up is token , which will

be a string. I'm going to set the length to 68  - we'll see why in a minute - not nullable . And

finally, add a scopes  property as a json  type. This is going to be kind of cool: we'll store an

array of "permissions" that this API token should have. Say, not nullable  on that one as well.

Hit enter to finish.

All right, spin over to your editor. No surprises: that created an ApiToken  entity... and there's

nothing very interesting inside of it:



src/Entity/ApiToken.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 80

81

So let's go over and make the migration for it:

symfony console make:migration

Spin over and peek at that file to make sure it looks good. Yup! It creates the api_token  table:

namespace App\Entity;

use App\Repository\ApiTokenRepository;

use Doctrine\ORM\Mapping as ORM;

#[ORM\Entity(repositoryClass: ApiTokenRepository::class)]

class ApiToken

{

    #[ORM\Id]

    #[ORM\GeneratedValue]

    #[ORM\Column]

    private ?int $id = null;

    #[ORM\ManyToOne(inversedBy: 'apiTokens')]

    #[ORM\JoinColumn(nullable: false)]

    private ?User $ownedBy = null;

    #[ORM\Column(nullable: true)]

    private ?\DateTimeImmutable $expiresAt = null;

    #[ORM\Column(length: 68)]

    private string $token = null;

    #[ORM\Column]

    private array $scopes = [];

}



migrations/Version20230209183006.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Run that with:

symfony console doctrine:migrations:migrate

final class Version20230209183006 extends AbstractMigration

{

    public function getDescription(): string

    {

        return '';

    }

    public function up(Schema $schema): void

    {

        // this up() migration is auto-generated, please modify it to your 

needs

        $this->addSql('CREATE SEQUENCE api_token_id_seq INCREMENT BY 1 

MINVALUE 1 START 1');

        $this->addSql('CREATE TABLE api_token (id INT NOT NULL, 

owned_by_id INT NOT NULL, expires_at TIMESTAMP(0) WITHOUT TIME ZONE 

DEFAULT NULL, token VARCHAR(68) NOT NULL, scopes JSON NOT NULL, PRIMARY 

KEY(id))');

        $this->addSql('CREATE INDEX IDX_7BA2F5EB5E70BCD7 ON api_token 

(owned_by_id)');

        $this->addSql('COMMENT ON COLUMN api_token.expires_at IS 

\'(DC2Type:datetime_immutable)\'');

        $this->addSql('ALTER TABLE api_token ADD CONSTRAINT 

FK_7BA2F5EB5E70BCD7 FOREIGN KEY (owned_by_id) REFERENCES "user" (id) NOT 

DEFERRABLE INITIALLY IMMEDIATE');

    }

    public function down(Schema $schema): void

    {

        // this down() migration is auto-generated, please modify it to 

your needs

        $this->addSql('CREATE SCHEMA public');

        $this->addSql('DROP SEQUENCE api_token_id_seq CASCADE');

        $this->addSql('ALTER TABLE api_token DROP CONSTRAINT 

FK_7BA2F5EB5E70BCD7');

        $this->addSql('DROP TABLE api_token');

    }

}



And... awesome! Next: let's add a way to generate the random token string. Then, we'll talk

about scopes and load up our fixtures with some API tokens.



Chapter 9: Generating the API Token & Fixtures

The most important property on ApiToken  is the token string... which needs to be something

random. Create a construct method with a string $tokenType  argument:

src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 30

31

32

 // ... line 33

34

 // ... lines 35 - 87

88

This isn't mandatory, but GitHub has caught onto something neat - since they have different

types of tokens, like personal access tokens and OAuth tokens - they give each token type its

own prefix. It just helps figure out where each comes from.

We're only going to have one type, but we'll follow the idea. On top, to store the type prefix, add

private const PERSONAL_ACCESS_TOKEN_PREFIX = 'tcp_' :

src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

11

 // ... lines 12 - 87

88

I... just made up that prefix. Our site is called Treasure Connect... and this is a personal access

token, so tcp_ .

Below, for string $tokenType =  default it to

self::PERSONAL_ACCESS_TOKEN_PREFIX :

class ApiToken

{

    public function __construct(string $tokenType = 

self::PERSONAL_ACCESS_TOKEN_PREFIX)

    {

    }

}

class ApiToken

{

    private const PERSONAL_ACCESS_TOKEN_PREFIX = 'tcp_';

}



src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 30

31

32

 // ... line 33

34

 // ... lines 35 - 87

88

 Tip

For stronger security, avoid storing the plaintext token in the database. This is a bit more

technical but you can find details at https://symfonycasts.com/api-token-hashed.

For the token itself, say $this->token = $tokenType.  and then I'll use some code that

will generate a random string that's 64 characters long:

src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 30

31

32

33

34

 // ... lines 35 - 87

88

So that's 64 characters here plus the 4 character prefix equals 68. That's why I chose that

length. And because we're setting the $token  in the constructor, this doesn't need to = null

or be nullable anymore. It will always be a string .

Setting up the Fixtures

Ok! This is set up! So let's add some API tokens to the database. At your terminal, run

class ApiToken

{

    public function __construct(string $tokenType = 

self::PERSONAL_ACCESS_TOKEN_PREFIX)

    {

    }

}

class ApiToken

{

    public function __construct(string $tokenType = 

self::PERSONAL_ACCESS_TOKEN_PREFIX)

    {

        $this->token = $tokenType.bin2hex(random_bytes(32));

    }

}

https://symfonycasts.com/api-token-hashed


php ./bin/console make:factory

so we can generate a Foundry factory for ApiToken . Go check out the new class:

src/Factory/ApiTokenFactory.php . Down in getDefaults() :

src/Factory/ApiTokenFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 46

47

48

49

50

51

52

53

54

 // ... lines 55 - 69

70

This looks mostly fine, though we don't need to pass in the token . Oh, and I want to tweak the

scopes:

src/Factory/ApiTokenFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 46

47

48

49

50

51

 // ... lines 52 - 53

54

55

56

 // ... lines 57 - 71

72

Typically, when you create an access token - whether it's a personal access token or one

created through OAuth - you're able to choose which permissions that token will have: it does

final class ApiTokenFactory extends ModelFactory

{

    protected function getDefaults(): array

    {

        return [

            'ownedBy' => UserFactory::new(),

            'scopes' => [],

            'token' => self::faker()->text(64),

        ];

    }

}

final class ApiTokenFactory extends ModelFactory

{

    protected function getDefaults(): array

    {

        return [

            'ownedBy' => UserFactory::new(),

            'scopes' => [

            ],

        ];

    }

}



not automatically have all the permissions that a normal user would. I want to add that into our

system as well.

Back over in ApiToken , at the top, after the first constant, I'll paste in a few more:

src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

15

 // ... lines 16 - 97

98

This defines three different scopes that a token can have. This isn't all the scopes we could

imagine, but it's enough to make things realistic. So, when you create a token, you can choose

whether that token should have permission to edit user data, or whether it can create treasures

on behalf of the user or whether it can edit treasures on behalf of the user. I also added a

public const SCOPES  to describes them:

src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 16

17

18

19

20

21

 // ... lines 22 - 97

98

Back over in our ApiTokenFactory , let's, by default, give each ApiToken  two of those three

scopes:

class ApiToken

{

    public const SCOPE_USER_EDIT = 'ROLE_USER_EDIT';

    public const SCOPE_TREASURE_CREATE = 'ROLE_TREASURE_CREATE';

    public const SCOPE_TREASURE_EDIT = 'ROLE_TREASURE_EDIT';

}

class ApiToken

{

    public const SCOPES = [

        self::SCOPE_USER_EDIT => 'Edit User',

        self::SCOPE_TREASURE_CREATE => 'Create Treasures',

        self::SCOPE_TREASURE_EDIT => 'Edit Treasures',

    ];

}



src/Factory/ApiTokenFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 46

47

48

49

50

51

52

53

54

55

56

 // ... lines 57 - 71

72

Ok! ApiTokenFactory  is ready. Last step: open AppFixtures  so we can create some

ApiToken  fixtures. I want to make sure that, in our dummy data, each user has at least one or

two API tokens. An easy way to do that, down here is to say

ApiTokenFactory::createMany() . Since we have 10 users, let's create 30 tokens. Then

pass that a callback function and, inside, return an override for the default data. We're going to

override the ownedBy  to be UserFactory::random() :

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

13

14

 // ... lines 15 - 26

27

28

29

30

31

32

33

So this will create 30 tokens and assign them randomly to the 10, well really 11, users in the

database. So on average, each user should have about three API tokens assigned to them. I'm

final class ApiTokenFactory extends ModelFactory

{

    protected function getDefaults(): array

    {

        return [

            'ownedBy' => UserFactory::new(),

            'scopes' => [

                ApiToken::SCOPE_TREASURE_CREATE,

                ApiToken::SCOPE_USER_EDIT,

            ],

        ];

    }

}

use App\Factory\ApiTokenFactory;

class AppFixtures extends Fixture

{

    public function load(ObjectManager $manager): void

    {

        ApiTokenFactory::createMany(30, function () {

            return [

                'ownedBy' => UserFactory::random(),

            ];

        });

    }

}



doing this because, to keep life simple, we're not going to build a user interface where the user

can actually click and create access tokens and select scopes. We're going to skip all that.

Instead, since every user will already have some API tokens in the database, we can jump

straight to learning how to read and validate those tokens.

Reload the fixtures with:

symfony console doctrine:fixtures:load

Showing the Tokens on the Frontend

And... beautiful! But since we're not going to build an interface for creating tokens, we at least

need an easy way to see the tokens for a user... so we can test them in our API. When we're

authenticated, we can show them right here.

This isn't a very important detail, so I'll do it real quick. Over in User , at the bottom, I'll paste in

a function that returns an array of the valid API token strings for this user:

src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 222

223

224

225

226

227

228

229

230

231

232

233

234

In ApiToken , we also need an isValid()  method... so I'll paste that as well:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    /**

     * @return string[]

     */

    public function getValidTokenStrings(): array

    {

        return $this->getApiTokens()

            ->filter(fn (ApiToken $token) => $token->isValid())

            ->map(fn (ApiToken $token) => $token->getToken())

            ->toArray()

        ;

    }

}



src/Entity/ApiToken.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 98

99

100

101

102

103

You can get all of this from the code blocks on this page.

Next, open up assets/vue/controllers/TreasureConnectApp.vue ... and add a new

prop that can be passed in: tokens :

assets/vue/controllers/TreasureConnectApp.vue

 // ... lines 1 - 34

35

 // ... lines 36 - 40

41

 // ... lines 42 - 47

48

Thanks to that, we'll have a new tokens  variable in the template. After the "Log Out" link, I'll

paste in some code that renders those:

class ApiToken

{

    public function isValid(): bool

    {

        return $this->expiresAt === null || $this->expiresAt > new 

\DateTimeImmutable();

    }

}

<script setup>

const props = defineProps(['entrypoint', 'user', 'tokens'])

</script>



assets/vue/controllers/TreasureConnectApp.vue

1

2

 // ... lines 3 - 5

6

7

8

9

10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 28

29

30

 // ... line 31

32

33

 // ... lines 34 - 49

Last step: open templates/main/homepage.html.twig . This is where we're passing

props to our Vue app. Pass a new one called tokens  set to, if app.user , then

app.user.validTokenStrings , else null :

<template>

    <div class="purple flex flex-col min-h-screen">

        <div class="flex-auto flex flex-col sm:flex-row justify-center px-

8">

            <LoginForm

                v-on:user-authenticated="onUserAuthenticated"></LoginForm>

            <div

                class="book shadow-md rounded sm:ml-3 px-8 pt-8 pb-8 mb-4 

sm:w-1/2 md:w-1/3 text-center">

                <div v-if="user">

                    | <a href="/logout" class="underline">Log out</a>

                    <br>

                    <h3 class="text-left font-semibold mt-2">Tokens</h3>

                    <div v-if="null === tokens">Refresh to see tokens...

</div>

                    <dl v-else class="text-left max-w-md text-gray-900 

divide-y divide-gray-200 dark:divide-gray-700">

                        <div class="flex flex-col py-3" v-for="token in 

tokens" :key="token">

                            <dd class="text-xs whitespace-normal break-

words">{{ token }}</dd>

                        </div>

                    </dl>

                </div>

            </div>

        </div>

    </div>

</template>



templates/main/homepage.html.twig

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

8

9

Let's try this! If we refresh, right now we are not logged in. Use our cheater links to log in. Notice

that it doesn't show them immediately... we could improve our code to do that... but it's not a big

deal. Refresh and... there they are! We have two tokens!

Next: let's write a system so that can read these tokens and authenticate the user instead of

using session authentication.

{% block body %}

    <div {{ vue_component('TreasureConnectApp', {

        tokens: app.user ? app.user.validTokenStrings : null

    }) }}></div>

{% endblock %}



Chapter 10: Access Token Authenticator

To authenticate with a token, an API client will send an Authorization  header set to the

word Bearer  then the token string... which is just a standard practice:

$client->request('GET', '/api/treasures', [

    'headers' => [

        'Authorization' => 'Bearer TOKEN',

    ],

]);

Then something in our app will read that header, make sure the token is valid, authenticate the

user and throw a big party to celebrate.

Activating access_token

Fortunately, Symfony has the perfect system just for this! Spin over and open up

config/packages/security.yaml . Anywhere under your firewall add access_token :

config/packages/security.yaml

1

 // ... lines 2 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 24

25

 // ... lines 26 - 52

This activates a listener that will watch every request to see if it has an Authorization

header. If it does, it will read that and try to authenticate the user.

Though, it requires a helper class... because even though it knows where to find the token on

the request... it has no idea what to do with! It doesn't know if it's a JWT that it should decode...

or, in our case, that it can query the database for the matching record. So, to help it, add a

security:

    firewalls:

        main:

            access_token:



token_handler  option set to the id of a service we'll create:

App\Security\ApiTokenHandler :

config/packages/security.yaml

1

 // ... lines 2 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 24

25

26

 // ... lines 27 - 52

Stateless Firewall

By the way, if your security system only allows authentication via an API token, then you don't

need session storage. In that case, you can set a stateless: true  flag that tells the

security system that when a user authenticates, not to bother storing the user info in the

session. I'm going to remove that, because we do have a way to log in that relies on the

session.

The Token Handler Class

Ok, let's go create that handler class. In the src/  directory create a new sub-directory called

Security/  and inside of that a new PHP class called ApiTokenHandler . This is a

beautifully simple class. Make it implement AccessTokenHandlerInterface  and then go to

"Code"->"Generate" or Command+N  on a Mac and select "Implement Methods" to generate the

one we need: getUserBadgeFrom() :

security:

    firewalls:

        main:

            access_token:

                token_handler: App\Security\ApiTokenHandler



src/Security/ApiTokenHandler.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

The access_token  system knows how to find the token: it knows it will live on an

Authorization  header with the word Bearer  in front of it. So it grabs that string then calls

getUserBadgeFrom()  and passes it to us. By the way this #[\SensitiveParameter]

attribute is new feature in PHP. It's cool, but not important: it just makes sure that if an exception

is thrown, this value won't be shown in the stacktrace.

Our job here is to query the database using the $accessToken  and then return which user it

relates to. To do that, we need the ApiTokenRepository ! Add a construct method with a

private ApiTokenRepository $apiTokenRepository  argument:

src/Security/ApiTokenHandler.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

12

13

14

 // ... lines 15 - 25

26

Below, say $token = $this->apiTokenRepository  and then call findOneBy()

passing it an array, so it will query where the token  field equals $accessToken :

namespace App\Security;

use 

Symfony\Component\Security\Http\AccessToken\AccessTokenHandlerInterface;

use 

Symfony\Component\Security\Http\Authenticator\Passport\Badge\UserBadge;

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function getUserBadgeFrom(#[\SensitiveParameter] string 

$accessToken): UserBadge

    {

        // TODO: Implement getUserBadgeFrom() method.

    }

}

use App\Repository\ApiTokenRepository;

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function __construct(private ApiTokenRepository 

$apiTokenRepository)

    {

    }

}



src/Security/ApiTokenHandler.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

 // ... lines 19 - 24

25

26

If authentication should fail for any reason, we need to throw a type of security exception. For

example, if the token doesn't exist, throw a new BadCredentialsException : the one from

Symfony components:

src/Security/ApiTokenHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

21

22

 // ... lines 23 - 24

25

26

That will cause authentication to fail... but we don't need to pass a message. This will return a

"Bad Credentials." message to the user.

At this point, we have found the ApiToken  entity. But, ultimately our security system wants to

authenticate a user... not an "API Token". We do that by returning a UserBadge  that, sort of,

wraps the User  object. Watch: return a new UserBadge() . The first argument is the "user

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function getUserBadgeFrom(#[\SensitiveParameter] string 

$accessToken): UserBadge

    {

        $token = $this->apiTokenRepository->findOneBy(['token' => 

$accessToken]);

    }

}

use Symfony\Component\Security\Core\Exception\BadCredentialsException;

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function getUserBadgeFrom(#[\SensitiveParameter] string 

$accessToken): UserBadge

    {

        $token = $this->apiTokenRepository->findOneBy(['token' => 

$accessToken]);

        if (!$token) {

            throw new BadCredentialsException();

        }

    }

}



identifier". Pass $token->getOwnedBy()  to get the User  and then

->getUserIdentifier() :

src/Security/ApiTokenHandler.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 23

24

25

26

How the User Object is Loaded

Notice that we're not actually returning the User  object. That's mostly because... we don't need

to! Let me explain. Hold Command  or Ctrl  and click getUserIdentifier() . What this

really returns is the user's email . So we're returning a UserBadge  with the user's email

inside. What happens next is the same thing that happens when we send an email  to the

json_login  authentication endpoint. Symfony's security system takes that email and,

because we have this user provider, it knows to query the database for a User  with that

email .

So it's going to query the database again for the User  via the email... which is a bit

unnecessary, but fine. If you want to avoid that, you could pass a callable to the second

argument and return $token->getOwnedBy() . But this will work fine as it is.

Oh, and it's probably a good idea to check and make sure the token is valid! If not

$token->isValid() , then we could throw another BadCredentialsException . But if

you want to customize the message, you can also throw a new

CustomUserMessageAuthenticationException  with "Token expired" to return that

message to the user:

use 

Symfony\Component\Security\Http\Authenticator\Passport\Badge\UserBadge;

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function getUserBadgeFrom(#[\SensitiveParameter] string 

$accessToken): UserBadge

    {

        return new UserBadge($token->getOwnedBy()->getUserIdentifier());

    }

}



src/Security/ApiTokenHandler.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 24

25

26

27

28

29

30

31

Using the Token in Swagger?

And... done! So... how do we try this? Well, ideally we could try it in our Swagger docs. I'm

going to open a new tab... then log out. But I'll keep my original tab open... so I can steal these

valid tokens!

Head to the API docs. How can we tell this interface to send an API token when it makes the

requests? Well you may have noticed an "Authorize" button. But when we click it... it's empty!

That's because we haven't, yet, told Open API how users are able to authenticate. Fortunately

we can do this via API Platform.

Open up config/packages/api_platform.yaml . And a new key called swagger , though

we're actually configuring the OpenAPI docs. To add a new way of authenticating, set

api_keys  to activate that type, then access_token ... which can be anything you want.

Below this, give this authentication mechanism a name... and type: header  because we

want to pass the token as a header:

use 

Symfony\Component\Security\Core\Exception\CustomUserMessageAuthenticationExc

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function getUserBadgeFrom(#[\SensitiveParameter] string 

$accessToken): UserBadge

    {

        if (!$token->isValid()) {

            throw new CustomUserMessageAuthenticationException('Token 

expired');

        }

        return new UserBadge($token->getOwnedBy()->getUserIdentifier());

    }

}



config/packages/api_platform.yaml

1

 // ... lines 2 - 7

8

9

10

11

12

 // ... lines 13 - 18

This will tell Swagger - via our OpenAPI docs - that we can send API tokens via the

Authorization  header. Now when we click the "Authorize" button... yea! It says "Name:

Authorization", "In Header".

To use this, we need to start with the word Bearer  then a space... because it doesn't fill that in

for us. More on that in a minute. Let's first try an invalid token. Hit "Authorize". That didn't

actually make any requests yet: it just stored the token in JavaScript.

Let's try the get treasure collection endpoint. When we execute... awesome! A 401! We don't

need to be authenticated to use this endpoint, but because we passed an Authorization

header with Bearer  and then a token, the new access_token  system caught that, passed

the string to our handler... but then we couldn't find a matching token in the database, so we

threw the BadCredentialsException

You can see it down here: the API returned an empty response, but with a header containing

invalid_token  and error_description : "Invalid credentials.".

Checking the Token Authentication is Working

So the bad case is working. Let's try the happy case! In the other tab, copy one of the valid

tokens. Then slide back up, hit "Authorize", then "Log out". Logging out just means that it

"forgets" the API token we set a minute ago. Re-type Bearer , paste, hit "Authorize", close...

and let's go down and try this endpoint again. And... woohoo! A 200!

So it seems like that worked... but how can we tell? Whelp, down on the web debug toolbar,

click to open the profiler for that request. On the Security tab... yes! We're logged in as Bernie.

Success!

api_platform:

    swagger:

        api_keys:

            access_token:

                name: Authorization

                type: header



The only thing I don't like is needing to type that Bearer  string in the authorization box. That's

not super user-friendly. So next, let's fix that by learning how we can customize the OpenAPI

spec document that Swagger uses.



Chapter 11: Customizing the OpenAPI Docs

To use API tokens in Swagger, we need to type the word "Bearer" and then the token. Lame!

Especially if we intend for this to be used by real users. So how can we fix that?

The OpenAPI Spec is the Key

Remember that Swagger is entirely generated from the OpenAPI spec document that API

Platform builds. You can see this document either by viewing the page source - you can see it

all right there - or by going to /api/docs.json . A few minutes ago, we added some config to

API Platform called Authorization :

config/packages/api_platform.yaml

1

 // ... lines 2 - 7

8

9

10

11

12

 // ... lines 13 - 18

The end result is that it added these security sections down here. Yup, it's that simple: this

config triggered these new sections in this JSON document: nothing else. Swagger then reads

that and knows to make this "Authorization" available.

So I did some digging directly on the OpenAPI site and I found out that it does have a way to

define an authentication scheme where you do not need to pass the "Bearer" part manually.

Unfortunately, unless I'm missing it, API Platform's config does not support adding that. So are

we done for? No way! And for an awesome reason.

Creating our OpenApiFactory

To create this JSON document, internally, API Platform creates an OpenApi  object, populates

all this data onto it and then sends it through Symfony's serializer. This is important because we

api_platform:

    swagger:

        api_keys:

            access_token:

                name: Authorization

                type: header



can tweak the OpenApi  object before it goes through the serializer. How? The OpenApi

object is created via a core OpenApiFactory ... and we can decorate that.

Check it out: over in the src/  directory, create a new directory called ApiPlatform/ ... and

inside, a new PHP class called OpenApiFactoryDecorator . Make this implement

OpenApiFactoryInterface . Then go to "Code"->"Generate" or Command+N  on a Mac to

implement the one method we need: __invoke() :

src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

Hello Service Decoration!

Right now, a core OpenApiFactory  service exists in API Platform that creates the OpenApi

object with all this data on it. Here's our sneaky plan: we're going to tell Symfony to use our new

class as the OpenApiFactory  instead of the core one. But... we definitely do not want to re-

implement all of the core logic. To avoid that, we'll also tell Symfony to pass us the original, core

OpenApiFactory .

You might be familiar with what we're doing. It's class decoration: an object-oriented strategy for

extending classes. It's really easy to do in Symfony and API Platform leverages it a lot.

Whenever you do decoration, you will always create a constructor that accepts the interface that

you're decorating. So OpenApiFactoryInterface . I'll call this $decorated . Oh, and let me

put private  in front of that:

namespace App\ApiPlatform;

use ApiPlatform\OpenApi\Factory\OpenApiFactoryInterface;

use ApiPlatform\OpenApi\OpenApi;

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __invoke(array $context = []): OpenApi

    {

        // TODO: Implement __invoke() method.

    }

}



src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

12

13

14

 // ... lines 15 - 23

24

Perfect.

Down here, to start, say $openApi = $this->decorated  and then call the __invoke()

method passing the same argument: $context :

src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

 // ... lines 19 - 22

23

24

That will call the core factory which will do all the hard work of creating the full OpenApi  object.

Down here, return that:

src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

 // ... lines 19 - 21

22

23

24

use ApiPlatform\OpenApi\Factory\OpenApiFactoryInterface;

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __construct(private OpenApiFactoryInterface 

$decorated)

    {

    }

}

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __invoke(array $context = []): OpenApi

    {

        $openApi = $this->decorated->__invoke($context);

    }

}

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __invoke(array $context = []): OpenApi

    {

        $openApi = $this->decorated->__invoke($context);

        return $openApi;

    }

}



And in between? Yup, that's where we can mess with things! To make sure this is working, for

now, just dump the $openApi  object:

src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

21

22

23

24

The #[AsDecorator] Attribute

At this moment, from an object-oriented point of view, this class is set up correctly for

decoration. But Symfony's container is still set up to use the normal OpenApiFactory : it's not

going to use our new service at all. We somehow need to tell the container that, first, the core

OpenApiFactory  service should be replaced by our service, and second, that the original

core service should be passed to us.

How can we do that? Above the class, add an attribute called #[AsDecorator]  and hit tab to

add that use  statement. Pass this the service id of the original, core OpenApiFactory . You

can do some digging to find this or usually the documentation will tell you. API platform actually

documents decorating this service, so right in their docs, you'll find that the service id is

api_platform.openapi.factory :

src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 6

7

8

9

10

11

 // ... lines 12 - 23

24

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __invoke(array $context = []): OpenApi

    {

        $openApi = $this->decorated->__invoke($context);

        dump($openApi);

        return $openApi;

    }

}

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('api_platform.openapi.factory')]

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

}



That's it! Thanks to this, anyone that was previously using the core

api_platform.openapi.factory  service will receive our service instead. But the original

one will be passed to us.

So... it should be working! To test it, head to the API homepage and refresh. Yes! When this

page loads, it renders the OpenAPI JSON document in the background. The dump in the web

debug toolbar proves that it hit our code! And check out that beautiful OpenApi  object: it has

everything including security , which matches what we saw in the JSON. So now, we can

tweak that!

Customizing the OpenAPI Config

The code I'll put here is a bit specific to the OpenApi  object and the exact config that I know we

need in the final Open API JSON:

src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 16

17

18

19

20

21

 // ... lines 22 - 26

27

28

29

We fetch the $securitySchemes , and then override access_token . This matches the

name we used in the config. Set that to a new SecurityScheme()  object with two named

arguments: type: 'http'  and scheme: 'bearer' :

#[AsDecorator('api_platform.openapi.factory')]

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __invoke(array $context = []): OpenApi

    {

        $openApi = $this->decorated->__invoke($context);

        $securitySchemes = $openApi->getComponents()->getSecuritySchemes() 

?: new \ArrayObject();

        return $openApi;

    }

}



src/ApiPlatform/OpenApiFactoryDecorator.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

 // ... lines 13 - 16

17

18

19

20

21

22

23

24

25

26

27

28

29

That's it! First refresh the raw JSON document so we can see what this looks like. Let me

search for "Bearer". There we go! We modified what the JSON looks like!

What does Swagger think about this new config? Refresh and hit "Authorize". Ok cool:

access_token , http, Bearer . Go steal an API token... paste without saying Bearer  first

and hit "Authorize". Let's test the same endpoint. Whoops, I need to hit "Try it out". And...

gorgeous! Look at that Authorization  header! It passed Bearer  for us. Mission

accomplished.

By the way, you might think, because we're completely overriding the access_token  config,

that we could just delete it from api_platform.yaml . Unfortunately, for subtle reasons that

have to do with how the security documentation is generated, we do still need this. But I'll say

# overridden in OpenApiFactoryDecorator :

use ApiPlatform\OpenApi\Model\SecurityScheme;

#[AsDecorator('api_platform.openapi.factory')]

class OpenApiFactoryDecorator implements OpenApiFactoryInterface

{

    public function __invoke(array $context = []): OpenApi

    {

        $openApi = $this->decorated->__invoke($context);

        $securitySchemes = $openApi->getComponents()->getSecuritySchemes() 

?: new \ArrayObject();

        $securitySchemes['access_token'] = new SecurityScheme(

            type: 'http',

            scheme: 'bearer',

        );

        return $openApi;

    }

}



config/packages/api_platform.yaml

1

 // ... lines 2 - 7

8

9

10

11

 // ... lines 12 - 19

This was just one example of how you could extend your Open API spec doc. But if you ever

need to tweak something else, now you know how.

Next, let's talk about scopes.

api_platform:

    swagger:

        api_keys:

            # overridden in OpenApiFactoryDecorator

            access_token:



Chapter 12: API Token Scopes

Each ApiToken  has an array of scopes, though we're not using that yet. The idea is cool:

when a token is created, you can select which permissions it has. Like maybe a token gives the

permission to create new treasures but not edit existing treasures. To allow that, we're going to

map the scopes of a token to roles in Symfony.

How are Roles Loaded Now?

Right now in ApiTokenHandler , we're basically returning the user... and then the system

authenticates fully as that user. This means we get whatever roles are on that User  object.

How could we change that so that we authenticate as this user... but with a different set of

roles? A set based on the scopes from the token?

We're using the access_token  security system. Hit Shift+Shift  and open a core class

called AccessTokenAuthenticator . This is cool: it's the actual code behind that

authentication system! For example, this is where it grabs the token off of the request and calls

our token handler's getUserBadgeFrom()  method.

The roles the user will have are also determined here: down inside createToken() . The

"token" is, sort of, a "wrapper" around the User  object in the security system. And this is where

we pass it the roles it should have. As you can see, no matter what, the roles will be

$passport->getUser()->getRoles() . In other words, we always get the roles by calling

getRoles()  on the User  class... which just returns the roles  property.

Setting up the Custom Roles System

So there's no great hook point. We could create a custom authenticator class and implement

our own createToken()  method. But that's a bummer because we would need to completely

reimplement the logic form this authenticator class. So, instead we can... kind of cheat.

Start in User . Scroll up to the top where we have our properties. Add a new one:

private ?array  called $accessTokenScopes  and initialize it to null :



src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 54

55

56

 // ... lines 57 - 248

249

Notice that this is not a persisted column. It's just a place to temporarily store the scopes that

the user should have. Next, down at the bottom add a new public method called

markAsTokenAuthenticated()  with an array $scopes  argument. We're going to call

this during authentication. Inside, say $this->accessTokenScopes = $scopes :

src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 244

245

246

247

248

249

Here's where things get interesting. Search for the getRoles()  method. We know that, no

matter what, Symfony will call this during authentication and whatever this returns, that's the

roles the user will have. We're going to "sneak in" our scope roles.

First if the $accessTokenScopes  property is null , that means we're logging in as a normal

user. In this case, set $roles  to $this->roles  so that we get all the $roles  on the User .

Then add an extra role called ROLE_FULL_USER :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    /* Scopes given during API authentication */

    private ?array $accessTokenScopes = null;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function markAsTokenAuthenticated(array $scopes)

    {

        $this->accessTokenScopes = $scopes;

    }

}



src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 113

114

115

116

117

118

119

120

 // ... line 121

122

 // ... lines 123 - 127

128

 // ... lines 129 - 248

249

We'll talk about that in a minute.

Else, if we did log in via an access token, say $roles = $this->accessTokenScopes :

src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 113

114

115

116

117

118

119

120

121

122

 // ... lines 123 - 127

128

 // ... lines 129 - 248

249

And, in both cases, make sure that we always have ROLE_USER :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function getRoles(): array

    {

        if (null === $this->accessTokenScopes) {

            // logged in via the full user mechanism

            $roles = $this->roles;

            $roles[] = 'ROLE_FULL_USER';

        } else {

        }

    }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function getRoles(): array

    {

        if (null === $this->accessTokenScopes) {

            // logged in via the full user mechanism

            $roles = $this->roles;

            $roles[] = 'ROLE_FULL_USER';

        } else {

            $roles = $this->accessTokenScopes;

        }

    }

}



src/Entity/User.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

 // ... lines 129 - 248

249

With this in place, head over to ApiTokenHandler . Right before we return UserBadge , add

$token->getOwnedBy()->markAsTokenAuthenticated()  and pass

$token->getScopes() :

src/Security/ApiTokenHandler.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 28

29

30

31

32

33

Done! Let's take it for a test drive! Back over on Swagger, it already has our API token... so we

can just re-execute the request. Cool: we see the Authorization  header. Did it authenticate

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function getRoles(): array

    {

        if (null === $this->accessTokenScopes) {

            // logged in via the full user mechanism

            $roles = $this->roles;

            $roles[] = 'ROLE_FULL_USER';

        } else {

            $roles = $this->accessTokenScopes;

        }

        // guarantee every user at least has ROLE_USER

        $roles[] = 'ROLE_USER';

        return array_unique($roles);

    }

}

class ApiTokenHandler implements AccessTokenHandlerInterface

{

    public function getUserBadgeFrom(#[\SensitiveParameter] string 

$accessToken): UserBadge

    {

        $token->getOwnedBy()->markAsTokenAuthenticated($token-

>getScopes());

        return new UserBadge($token->getOwnedBy()->getUserIdentifier());

    }

}



with the correct scopes?

Click to open the profiler for that request... and head down to "Security". It did! Look: we're

logged in as that user, but with ROLE_USER , ROLE_USER_EDIT  and

ROLE_TREASURE_CREATE : the two scopes from the token. But if we were to log in via the login

form, instead of these scopes, we would have whatever roles the user normally has, plus

ROLE_FULL_USER .

Giving Normal Users sudo Access with role_hierarchy

In the next chapter, we'll use these roles to protect different API operations. For example, to use

the POST treasures endpoint, we'll require ROLE_TREASURE_CREATE . But we also need to

make sure that if a user logs in via the login form, they can still use this operation, even though

they won't have that exact role. That is where ROLE_FULL_USER  comes in handy.

Open config/packages/security.yaml  and, anywhere, add role_hierarchy ... I

recommend spelling it correctly. Say ROLE_FULL_USER . So, if you're logged in as a full user,

we're going to give you all possible scopes that a token could have. Copy the three scope roles:

ROLE_USER_EDIT , ROLE_TREASURE_CREATE  and ROLE_TREASURE_EDIT :

config/packages/security.yaml

1

 // ... lines 2 - 12

13

14

 // ... lines 15 - 56

We do need to be careful to make sure that if we add more scopes, we add them here too.

Thanks to this, if we protect something by requiring ROLE_USER_EDIT , users that are logged

in via the login form will have access.

Ok team, we are done with authentication! Woo! Next, let's start into "authorization" by learning

how to lock down operations so that only certain users can access them.

security:

    role_hierarchy:

        ROLE_FULL_USER: [ROLE_USER_EDIT, ROLE_TREASURE_CREATE, 

ROLE_TREASURE_EDIT]



Chapter 13: Deny Access with The "security"
Option

We've just talked a lot about authentication: that's the way we tell the API who we are. Now we

turn to authorization, which is all about denying access to certain operations and other things

based on who you are.

Using access_control

There are multiple ways to control access to something. The simplest is in

config/packages/security.yaml . Just like normal Symfony security, down here, we have

an access_control  section:

config/packages/security.yaml

1

 // ... lines 2 - 37

38

39

40

41

42

 // ... lines 43 - 56

If you want to lock down a specific URL pattern by a specific role, use access_control . You

could use this, for example, to require that the user has a role to use anything in your API by

targeting URLs starting with /api .

Hello "security" Option

In a traditional web app, I do use access_control  for several things. But most of the time I

put my authorization rules inside controllers. But... of course, with API Platform, we don't have

controllers. All we have are API resource classes, like DragonTreasure . So instead of putting

security rules in controllers, we'll attach them to our operations.

security:

    # Easy way to control access for large sections of your site

    # Note: Only the *first* access control that matches will be used

    access_control:

        # - { path: ^/admin, roles: ROLE_ADMIN }

        # - { path: ^/profile, roles: ROLE_USER }



For example, let's make the POST request to create a new DragonTreasure  require the user

to be authenticated. Do that by adding a very handy security  option. Set that to a string and

inside, say is_granted() , double quotes then ROLE_TREASURE_CREATE :

src/Entity/DragonTreasure.php

 // ... lines 1 - 26

27

 // ... lines 28 - 29

30

 // ... lines 31 - 36

37

38

39

 // ... lines 40 - 41

42

 // ... lines 43 - 56

57

 // ... lines 58 - 75

76

77

 // ... lines 78 - 235

236

We could simply use ROLE_USER  here if we just wanted to make sure that the user is logged

in. But we have a cool system where, if you use an API token for authentication, that token will

have specific scopes. One possible scope is called SCOPE_TREASURE_CREATE ... which maps

to ROLE_TREASURE_CREATE . So we look for that. Also, in security.yaml , via

role_hierarchy , if you log in via the login form, you get ROLE_FULL_USER ... and then you

automatically also get ROLE_TREASURE_CREATE .

In other words, by using ROLE_TREASURE_CREATE , access will be granted either because you

logged in via the login form or you authenticated using an API token that has that scope.

Let's try it. Make sure you're logged out. I'll refresh. Yup, you can see on the web debug toolbar

that I'm not logged in... and Swagger does not currently have an API token.

Let's test the POST endpoint. Try it out.. and... just Execute with the example data. And... yes! A

401 status code with type hydra:error !

More about the "security" Attribute

#[ApiResource(

    operations: [

        new Post(

            security: 'is_granted("ROLE_TREASURE_CREATE")',

        ),

    ],

)]

class DragonTreasure

{

}



The security  option actually holds an expression using Symfony's expression language. And

you can get pretty fancy with it. Though, we're going to try to keep things simple. And later, we'll

learn how to offload complex rules to voters.

Let's add a few more rules. Put  and Patch  are both edits. These are especially interesting

because, to use these, not only do we need to be logged in, we probably need to be the owner

of this DragonTreasure . We don't want other people to edit our goodies.

We're going to worry about the ownership part later. But for now, let's at least add security

with is_granted()  then ROLE_TREASURE_EDIT :

src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

 // ... lines 44 - 49

50

 // ... lines 51 - 64

65

 // ... lines 66 - 83

84

85

 // ... lines 86 - 243

244

Once again, I'm using the scope role. Copy that, and duplicate it down here for Patch :

#[ApiResource(

    operations: [

        new Put(

            security: 'is_granted("ROLE_TREASURE_EDIT")',

        ),

    ],

)]

class DragonTreasure

{

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 43

44

45

46

 // ... lines 47 - 49

50

 // ... lines 51 - 64

65

 // ... lines 66 - 83

84

85

 // ... lines 86 - 243

244

Oh, and earlier, we removed the Delete  operation. Let's add that back with security  set to

look for ROLE_ADMIN :

src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 46

47

48

49

50

 // ... lines 51 - 64

65

 // ... lines 66 - 83

84

85

 // ... lines 86 - 243

244

If we decided later to add a scope that allowed API tokens to delete treasures, we could add

that and change this to ROLE_TRESURE_DELETE .

Let's make sure this works! Use the GET collection endpoint. Try that out. This operation does

not require authentication... so it works just fine. And we have a treasure with ID 1. Close this

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("ROLE_TREASURE_EDIT")',

        ),

    ],

)]

class DragonTreasure

{

}

#[ApiResource(

    operations: [

        new Delete(

            security: 'is_granted("ROLE_ADMIN")',

        ),

    ],

)]

class DragonTreasure

{

}



up, open the PUT operation, hit "Try it out", 1, "Execute" and... alright! We get a 401 here too!

Adding "security" to an Entire Clas

So adding the security  option to the individual operations is probably the most common thing

to do. But you can also add it to the ApiResource  itself to apply to the entire class. For

example, on User , we probably want every operation to require authentication... except for the

Post  to create, because that's how you would register a new user.

So up here, add security  and look for ROLE_USER ... just to check that we're logged in:

src/Entity/User.php

 // ... lines 1 - 20

21

 // ... lines 22 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 250

251

And because this class has a sub resource... and this also allows us to fetch a user, be sure to

add security  here too:

src/Entity/User.php

 // ... lines 1 - 25

26

 // ... lines 27 - 35

36

37

 // ... lines 38 - 40

41

42

 // ... lines 43 - 250

251

Keep close track of security if you're using subresources.

Ok, so now every operation on User  requires you to be logged in. But... we don't want that for

the Post  operation. To add flexibility, go up to the first ApiResource , add the operations

#[ApiResource(

    security: 'is_granted("ROLE_USER")',

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

#[ApiResource(

    security: 'is_granted("ROLE_USER")',

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}



option, and, real quick, list all the normal operations, new Get() , new GetCollection() ,

new Post() , new Put() , new Patch() , and new Delete() :

src/Entity/User.php

 // ... lines 1 - 25

26

27

28

29

30

31

 // ... line 32

33

34

 // ... line 35

36

37

 // ... line 38

39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 60

61

62

 // ... lines 63 - 270

271

Now that we have those, we can customize them. For Post , since we want this to not require

authentication, say security: 'is_granted()  passing a special fake role called

PUBLIC_ACCESS :

#[ApiResource(

    // Now add `operations` set to the 6 normal operations

    operations: [

        new Get(),

        new GetCollection(),

        new Post(

        ),

        new Put(

        ),

        new Patch(

        ),

        new Delete(),

    ],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}



src/Entity/User.php

 // ... lines 1 - 25

26

27

28

 // ... lines 29 - 30

31

32

33

 // ... lines 34 - 40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 60

61

62

 // ... lines 63 - 270

271

This will override the security rule that we're passing on the resource level. Oh, and while we're

here, for Put , set security  to look for ROLE_USER_EDIT  since we have a scope role for

editing users. Repeat that down here for Patch :

src/Entity/User.php

 // ... lines 1 - 25

26

27

28

 // ... lines 29 - 33

34

35

36

37

38

39

 // ... line 40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 60

61

62

 // ... lines 63 - 270

271

#[ApiResource(

    // Now add `operations` set to the 6 normal operations

    operations: [

        new Post(

            security: 'is_granted("PUBLIC_ACCESS")',

        ),

    ],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

#[ApiResource(

    // Now add `operations` set to the 6 normal operations

    operations: [

        new Put(

            security: 'is_granted("ROLE_USER_EDIT")'

        ),

        new Patch(

            security: 'is_granted("ROLE_USER_EDIT")'

        ),

    ],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}



I love it! Refresh the whole page. We're most interested in the POST  users endpoint. We are not

authenticated, so hit "Try it out" and I'll leave the default data. "Execute" and... we nailed it! A

201 status. That did allow anonymous access.

Checking the Security Decisions

Oh, and super fun: if you ever want to see the security decisions that were made during a

request, open the profiler for that request, go down to the "Security" section then "Access

Decision". For this request, only one decision made by the security system: it was for

PUBLIC_ACCESS , and that was allowed.

Next: our API is getting complex... and it's only going to get more complex. It's time to stop

testing our endpoints manually via Swagger and start testing them with automated tests.



Chapter 14: Bootstrapping a Killer Test System

Our API is getting more and more complex. And doing manually testing is not a great long-term

plan. So let's install some tools to get a killer test setup.

Installing the test-pack

Step one: at your terminal run:

composer require test

This is a flex alias for a package called symfony/test-pack . Remember: packs are shortcut

packages that actually install a bunch of other packages. For example, when this finishes... and

we check out composer.json , you can see down in require-dev  that this added PHPUnit

itself as well as a few other tools from Symfony to help testing:

composer.json

1

 // ... lines 2 - 87

88

 // ... line 89

90

91

92

 // ... lines 93 - 95

96

 // ... lines 97 - 99

100

101

It also executed a recipe which added a number of files. We have phpunit.xml.dist , a

tests/  directory, .env.test  for test-specific environment variables and even a little

bin/phpunit  executable shortcut that we'll use to run our tests.

{

    "require-dev": {

        "phpunit/phpunit": "^9.5",

        "symfony/browser-kit": "6.2.*",

        "symfony/css-selector": "6.2.*",

        "symfony/phpunit-bridge": "^6.2",

    }

}



Hello browser Library

No surprise, Symfony has tools for testing and these can be used to test an API. Heck, API

Platform even has their own tools built on top of those to make testing an API even easier. And

yet, I'm going to be stubborn and use a totally different tool that I've fallen in love with.

It's called Browser, and it's also built on top of Symfony's testing tools: almost like a nicer

interface above that strong base. It's just... super fun to use. Browser gives us a fluid interface

that can be used for testing web apps, like you see here, or testing APIs. It can also can be

used to test pages that use JavaScript.

Let's get this guy installed. Copy the composer require  line, spin back over and run that:

composer require zenstruck/browser --dev

While that's doing its thing, it's optional, but there's an "extension" that you can add to

phpunit.xml.dist . Add it down here on the bottom:

phpunit.xml.dist

 // ... lines 1 - 3

4

5

6

7

8

9

10

 // ... lines 11 - 35

36

37

38

 // ... lines 39 - 45

46

In the future, if you're using PHPUnit 10, this will likely be replaced by some listener  config.

This adds a few extra features to browser. Like, when a test fails, it will automatically save the

last response to a file. We'll see this soon. And if you're using JavaScript testing, it'll take

screenshots of failures!

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

         

xsi:noNamespaceSchemaLocation="vendor/phpunit/phpunit/phpunit.xsd"

         backupGlobals="false"

         colors="true"

         bootstrap="tests/bootstrap.php"

         convertDeprecationsToExceptions="false"

>

    <extensions>

        <extension class="Zenstruck\Browser\Test\BrowserExtension" />

    </extensions>

</phpunit>

https://github.com/zenstruck/browser


Creating our First Test

Ok, we're ready for our first test. In the tests/  directory, it doesn't matter how you organize

things, but I'm going to create a Functional/  directory because we're going to be making

functional tests to our API. Yup, we'll literally create an API client, make GET or POST requests

and then assert that we get back the correct output.

Create a new class called DragonTreasureResourceTest . A normal test extends

TestCase  from PHPUnit. But make this extend KernelTestCase : a class from Symfony that

extends TestCase ... but gives us access to Symfony's engine:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

Let's start by testing the GET collection endpoint to make sure we get back the data we expect.

To activate the browser library, at the top, add a trait with use HasBrowser :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 5

6

7

8

9

10

 // ... lines 11 - 18

19

Next, add a new test method: public function , how about

testGetCollectionOfTreasures() ... which will return void :

namespace App\Tests\Functional;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class DragonTreasureResourceTest extends KernelTestCase

{

}

use Zenstruck\Browser\Test\HasBrowser;

class DragonTreasureResourceTest extends KernelTestCase

{

    use HasBrowser;

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 11

12

13

 // ... lines 14 - 17

18

19

Using browser is dead simple thanks to that trait: $this->browser() . Now we can make

GET, POST, PATCH or whatever request we want. Make a GET request to /api/treasures

and then, just to see what that looks like, use this nifty ->dump()  function:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 11

12

13

14

15

16

17

18

19

Running our Tests through the symfony Binary

How cool is that? Let's see what it looks like. To execute our test, we could run:

php ./vendor/bin/phpunit

That works just fine. But one of the recipes also added a shortcut file:

php bin/phpunit

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

    }

}

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->get('/api/treasures')

            ->dump()

        ;

    }

}



When we run that, ooh, let's see. The dump()  did happen: it dumped out the response... which

was some sort of error. It says:

“SQLSTATE: connection to server port 5432 failed.”

Hmm, it can't connect to our database. Our database is running via a Docker container... and

then, because we're using the symfony  web server, when we use the site via a browser, the

symfony  web server detects the Docker container and sets the DATABASE_URL  environment

variable for us. That's how our API has been able to talk to the Docker database.

When we've run commands that need to talk to the database, we've been running them like

symfony console make:migration ... because when we execute things through

symfony , it adds the DATABASE_URL  environment variable... and then runs the command.

So, when we simply run php bin/phpunit ... the real DATABASE_URL  is missing. To fix that,

run:

symfony php bin/phpunit

It's the same thing... except it lets symfony  add the DATABASE_URL  environment variable.

And now... we see the dump again! Scroll to the top. Better! Now the error says:

“Database app_test  does not exist.”

Test-Specific Database

Interesting. To understand what's happening, open config/packages/doctrine.yaml .

Scroll down to a when@test  section. This is cool: when we're in the test  environment,

there's a bit of config called dbname_suffix . Thanks to this, Doctrine will take our normal

database name and add _test  to it:



config/packages/doctrine.yaml

 // ... lines 1 - 18

19

20

21

22

23

 // ... lines 24 - 44

This next part is specific to a library called ParaTest where you can run tests in parallel. Since

we're not using that, it's just an empty string and not something we need to worry about.

Anyway, that's how we end up with an _test  at the end of our database name. And we want

that! We don't want our dev  and test  environments to use the same database because it

gets annoying when they run over each other's data.

By the way, if you're not using the symfony  Binary and Docker setup... and you're configuring

your database manually, be aware that in the test  environment, the .env.local  file is not

read:

.env.test

1

2

3

4

5

6

The test  environment is special: it skips reading .env.local  and only reads .env.test .

You can also create a .env.test.local  for env vars that are read in the test  environment

but that won't be committed to your repository.

The ResetDatabaseTrait

Ok, in the test  environment, we're missing the database. We could easily fix this by running:

symfony console doctrine:database:create --env=test

when@test:

    doctrine:

        dbal:

            # "TEST_TOKEN" is typically set by ParaTest

            dbname_suffix: '_test%env(default::TEST_TOKEN)%'

# define your env variables for the test env here

KERNEL_CLASS='App\Kernel'

APP_SECRET='$ecretf0rt3st'

SYMFONY_DEPRECATIONS_HELPER=999999

PANTHER_APP_ENV=panther

PANTHER_ERROR_SCREENSHOT_DIR=./var/error-screenshots



But that's way too much work. Instead, add one more trait to our test class:

use ResetDatabase :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 6

7

8

9

10

 // ... line 11

12

 // ... lines 13 - 20

21

This comes from Foundry: the library we've been using to create dummy fixtures via the factory

classes. ResetDatabase  is amazing. It automatically makes sure that the database is cleared

before each test. So if you have two tests, your second test isn't going to mess up because of

some data that the first test added.

It's also going to create the database automatically for us. Check it out. Run

symfony php bin/phpunit

again and check out the dump. That's our response! It's our beautiful JSON-LD! We don't have

any items in the collection yet, but it is working.

And notice that, when we make this request, we are not sending an Accept  header on the

request. Remember, when we use the Swagger UI... it actually does send an Accept  header

that advertises that we want application/ld+json .

We can add that to our test if we want. But if we pass nothing, we get JSON-LD back because

that's the default format of our API.

Next: let's properly finish this test, including seeding the database with data and learning about

Browser's API assertions.

use Zenstruck\Foundry\Test\ResetDatabase;

class DragonTreasureResourceTest extends KernelTestCase

{

    use ResetDatabase;

}



Chapter 15: JSON Test Assertions & Seeding the
Database

Let's make this test real with data and assertions.

There are two main ways to do assertions with Browser. First, it comes with a bunch of built-in

methods to help, like ->assertJson() . Or... you can always just grab the JSON that comes

back from an endpoint and check things using the built-in PHPUnit assertions you know and

love. We'll see both.

Let's start by checking ->assertJson() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

 // ... line 18

19

20

21

22

When we run that:

symfony php bin/phpunit

It passes! Cool! We know that this response should have a hydra:totalItems  property set

to the number of results. Right now, our database is empty... but we can at least assert that it

matches zero.

To do that, use ->assertJsonMatches() .

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->get('/api/treasures')

            ->assertJson()

        ;

    }

}



This is a special method from Browser that uses a special syntax that allows us to read different

parts off the JSON. We'll dig into it in a minute.

But this one is simple: assert that hydra:totalItems  equals 0 :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

 // ... lines 17 - 18

19

20

21

22

23

When we try this:

symfony php bin/phpunit

It fails! But with a great error:

“mtdowling/jmespath.php  is required to search JSON”

Hello JMESPath

Ah, we need to install that! Copy the composer require  line, find your terminal, and run it:

composer require mtdowling/jmespath.php --dev

This "JMESPath" thing is actually super cool: it's a "query language" for reading different parts

of any JSON. For example, if this is your JSON and you want to read the a  key, just say a .

Simple.

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->assertJson()

            ->assertJsonMatches('hydra:totalItems', 0)

        ;

    }

}



But you can also do deeper, like: a.b.c.d . Or, get crazier: grab the 1  index, or grab a.b.c ,

then the 0  index, .d , the 1  index then the 0  index. You can even slice the array in different

ways. Basically... you can go nuts.

But we're not going to lose our minds with this. It's a handy syntax... but if things get too

complex, we can always test the JSON manually, which we'll do in a bit.

Anyway, now that we have the library installed, let's run the test again.

symfony php bin/phpunit

It still fails! With a weird error:

“Syntax error at character 5 hydra:totalItems .”

Unfortunately, the :  is a special character inside of JMESPath. So whenever we have a : , we

need to put quotes around that key:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

 // ... lines 17 - 19

20

21

22

23

Not ideal, but not a huge inconvenience.

Now when we try it:

symfony php bin/phpunit

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->assertJsonMatches('"hydra:totalItems"', 0)

        ;

    }

}



It passes!

Seeding the Database

But... this isn't a very interesting test: we're just asserting that we get nothing back... because

the database is empty. To make our test real, we need data: we need to seed the database with

data at the start of the test.

 Tip

To use Foundry factories in a test, also add a use Factories;  trait to the top of your test

class. Things worked without that in this case, but in the future, you'll likely get an error.

Fortunately, Foundry makes that dead-simple. At the top, call

DragonTreasureFactory::createMany()  and let's create 5 treasures. Now, below, assert

that we get 5 results:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

 // ... lines 12 - 14

15

16

17

18

19

 // ... lines 20 - 22

23

 // ... line 24

25

26

27

It's just that simple. And actually, let me put our dump back so we can see the result:

use App\Factory\DragonTreasureFactory;

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        DragonTreasureFactory::createMany(5);

        $this->browser()

            ->assertJsonMatches('"hydra:totalItems"', 5)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 18

19

 // ... line 20

21

 // ... line 22

23

 // ... line 24

25

26

27

Try it now:

symfony php bin/phpunit

It passes! And if you look up, yea! The response has 5 treasures! Dang, that was easy.

Next: let's use JMESPath to assert something more challenging. Then we'll back up and see

how we can dig into Browser to give us infinite flexibility - and simplicity - when it comes to

testing JSON.

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->dump()

            ->assertJsonMatches('"hydra:totalItems"', 5)

        ;

    }

}



Chapter 16: Advanced & Flexible JSON Test
Assertions

We might also want to test that we get the correct fields in the response for each item. Can we

do that with JMESPath? Sure! The assertJsonMatches()  method is really handy. And

actually, if you hold command or control and click into it, when we call

assertJsonMatches() , behind the scenes, it calls $this->json() . This creates a Json

object... which has even more useful methods. The Browser  instance itself gives us access to

assertJsonMatches() . But if we want to use any of its other methods, we need to do a bit

more work.

The first way to use the Json  object is via Browser's use()  method. Pass this a callback with

a Json $json  argument:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 24

25

 // ... line 26

27

28

29

30

This is a magic feature of browser: it reads the type-hint of the argument, and knows to pass us

the Json  object. You could also type-hint a CookieJar  object, Crawler  or a few other

things.

use Zenstruck\Browser\Json;

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->use(function(Json $json) {

            })

        ;

    }

}



The point is: because we type-hinted the argument with Json , it will grab the Json  object for

the last response and pass it to us. Let's use it to do some experimenting. We want to check

what the keys are for the first item inside of hydra:member . To help figure the expression we

need, let's use a method called search() . This allows us to use a JMESPath  expression and

get back the result. Do double quotes then hydra:member  to see what it returns. And...

remove the other dump:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 24

25

26

27

28

29

30

Ok! Run that test again:

symfony php bin/phpunit

It passes... but more importantly, look at the dump! It's the array of 5 items. Ok... let's grab the

0  index. After the hydra:member  double quotes, add [0] . Then surround the entire thing

with a keys()  function from JMESPath:

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->use(function(Json $json) {

                dump($json->search('"hydra:member"'));

            })

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 24

25

26

27

28

29

30

Try that now:

symfony php bin/phpunit

Oh that's lovely. And it's probably one of the more complex things that you'll do. Now that we've

got the path right, turn that into an assertion. You can do that by setting this to a variable - like

$keys  - and using a normal assertion. Or you can change search  to assertMatches()

and pass a second argument: the array of the expected fields:

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->use(function(Json $json) {

                dump($json->search('keys("hydra:member"[0])'));

            })

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

We should be good! Try it:

symfony php bin/phpunit

It passes! And yes, we could now remove the use()  method and move this to a normal

->assertJsonMatches()  call.

Doing Normal JSON Assertions

As cool as this JMESPath stuff is, it is another thing to learn and it can get complex. So what's

the alternative?

Assign the entire $browser  chain to a new $json  variable and then add ->json()  to the

end. Most methods on Browser  return... a Browser , which let's us do all the fun chaining. But

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        $this->browser()

            ->use(function(Json $json) {

                $json->assertMatches('keys("hydra:member"[0])', [

                    '@id',

                    '@type',

                    'name',

                    'description',

                    'value',

                    'coolFactor',

                    'owner',

                    'shortDescription',

                    'plunderedAtAgo',

                ]);

            })

        ;

    }

}



a few, like ->json()  let us "break out" of browser so we can do something custom.

This allows us to remove the use()  function here and replace the assertions with more

traditional PHPUnit code:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

We could still use the Json  object directly... that passes... or to remove all fanciness, change to

$this->assertSame()  that $json->decoded()['hydra:member'][0]  -

array_keys()  around everything - matches our array:

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        DragonTreasureFactory::createMany(5);

        $json = $this->browser()

            ->get('/api/treasures')

            ->assertJson()

            ->assertJsonMatches('"hydra:totalItems"', 5)

            ->assertJsonMatches('length("hydra:member")', 5)

            ->json()

        ;

        $json->assertMatches('keys("hydra:member"[0])', [

            '@id',

            '@type',

            'name',

            'description',

            'value',

            'coolFactor',

            'owner',

            'shortDescription',

            'plunderedAtAgo',

        ]);

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

And of course... that passes to!

So, a lot of power... but also a lot of flexibility to write tests how you want.

Next, let's add tests for authentication: both logging in via our login form and via an API token.

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        DragonTreasureFactory::createMany(5);

        $json = $this->browser()

            ->get('/api/treasures')

            ->assertJson()

            ->assertJsonMatches('"hydra:totalItems"', 5)

            ->assertJsonMatches('length("hydra:member")', 5)

            ->json()

        ;

        $this->assertSame(array_keys($json->decoded()['hydra:member'][0]), 

[

            '@id',

            '@type',

            'name',

            'description',

            'value',

            'coolFactor',

            'owner',

            'shortDescription',

            'plunderedAtAgo',

        ]);

    }

}



Chapter 17: Testing Authentication

Let's create a test to post and create a new treasure. Say

public function testPostToCreateTreasure()  that returns void . And start the

same way as before: $this->browser()->post('/api/treasures') :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 40

41

42

43

44

 // ... line 45

46

 // ... lines 47 - 48

49

50

51

In this case we need to send data. The second argument to any of these post()  or get()

methods is an array of options, which can include headers , query  parameters or other stuff.

One key is json , which you can set to an array, which will be JSON-encoded for you. Start by

sending empty JSON... then ->assertStatus(422) . To see what the response looks like,

add ->dump() :

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $this->browser()

            ->post('/api/treasures', [

            ])

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 40

41

42

43

44

45

46

47

48

49

50

51

Awesome! Copy the test method name. I want to focus just on this one test. To do that, run:

symfony php bin/phpunit --filter=testPostToCreateTreasure

And... oh! Current response status code is 401, but 422 expected.

Dumped Failed Responses in Browser

When a test fails with browser, it automatically saves the last response to a file... which is

awesome. It's actually in the var/  directory. In my terminal, I can hold Command  and click to

open that in my browser. That is nice. You'll see me do this a bunch of times.

Ok, so this returned a 401 status code. Of course: the endpoint requires authentication! Our app

has two ways to authenticate: via the login form and session or via an API token. We're going to

test both, starting with the login form.

Logging in during the Test

To log in as a user... that user first needs to exist in the database. Remember: at the start of

each test, our database is empty. It's then our job to populate it with whatever we need.

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $this->browser()

            ->post('/api/treasures', [

                'json' => [],

            ])

            ->assertStatus(422)

            ->dump()

        ;

    }

}



Create a user with UserFactory::createOne(['password' => 'pass'])  so that we

know what the password will be. Then, before we make the POST request to create a treasure,

->post()  to /login  and send json  with email  set to $user->getEmail()  - to use

whatever random email address Faker chose - then password  set to pass . To make sure that

worked, ->assertStatus(204) :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 5

6

 // ... lines 7 - 11

12

13

 // ... lines 14 - 41

42

43

44

45

46

47

48

49

50

51

52

53

 // ... lines 54 - 58

59

60

61

That's the status code we're returning after successful authentication.

Let's give this a try! Move over and run the test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

It passes! We're getting the 422 status code and see the validation messages!

Shortcut to Logging in: actingAs()

use App\Factory\UserFactory;

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $user = UserFactory::createOne(['password' => 'pass']);

        $this->browser()

            ->post('/login', [

                'json' => [

                    'email' => $user->getEmail(),

                    'password' => 'pass',

                ],

            ])

            ->assertStatus(204)

        ;

    }

}



So... logging in is... just that easy! And I would recommend having a test that specifically POSTs

to your login endpoint like we just did, to make sure its working correctly.

However, in all of my other tests... when I simply need to be authenticated to do the real work,

there's a faster way to log in. Instead of making the POST request, say ->actingAs($user) :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 41

42

43

 // ... lines 44 - 45

46

47

 // ... lines 48 - 52

53

54

55

This is a sneaky way of taking the User  object and pushing it directly into Symfony's security

system without making any requests. It's easier, and faster. And now, we don't care what the

password is at all, so we can simplify that.

Let's check it:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Still good!

Testing Successful Treasure Creation

Let's do another POST  down here. Keep chaining and add ->post() . Actually... I'm lazy. Copy

the existing ->post() ... and use that. But this time, send real data: I'll quickly type in some...

these can be anything. The last key we need is owner . Right now, we are required to send the

owner  when we create a treasure. Soon, we'll make that optional: if we don't send it, it will

default to whoever is authenticated. But for now, set it to /api/users/  then

$user->getId() . Finish with assertStatus(201) :

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $this->browser()

            ->actingAs($user)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Because 201 is what the API returns when an object is created.

Alright, go test, go:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Still passing! We're on a roll! Add a ->dump()  to help us debug then a sanity check:

->assertJsonMatches()  that name  is A shiny thing :

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $user = UserFactory::createOne();

        $this->browser()

            ->actingAs($user)

            ->post('/api/treasures', [

                'json' => [],

            ])

            ->assertStatus(422)

            ->post('/api/treasures', [

                'json' => [

                    'name' => 'A shiny thing',

                    'description' => 'It sparkles when I wave it in the 

air.',

                    'value' => 1000,

                    'coolFactor' => 5,

                    'owner' => '/api/users/'.$user->getId(),

                ],

            ])

            ->assertStatus(201)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 41

42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 60

61

62

63

64

65

66

When we try that:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Sending the Accept: application/ld+json Header

No surprise: all green. But look at the dumped response: it's not JSON-LD! We're getting back

standard JSON. You can see it in the Content-Type  header: 'application/json' , not

application/ld+json , which is what I was expecting.

Let's find out what's going on next and fix it globally by customizing how Browser works across

our entire test suite.

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $this->browser()

            ->assertStatus(201)

            ->dump()

            ->assertJsonMatches('name', 'A shiny thing')

        ;

    }

}



Chapter 18: Customizing Browser Globally

Our test works... but the API is sending us back JSON, not JSON-LD. Why?

When we made the GET  request earlier, we did not include an Accept  header to indicate

which format we wanted back. But... JSON-LD is our API's default format, so it sent that back.

However, when we make a ->post()  request with the json  key, that adds a

Content-Type  header set to application/json  - which is fine - but it also adds an

Accept  header set to application/json . Yup, we're telling the server that we want plain

JSON back, not JSON-LD.

I want to use JSON-LD everywhere. How can we do that? The second argument to ->post()

can be an array or an object called HttpOptions . Say HttpOptions::json() ... and then

pass the array directly. Let me... get my syntax right:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 42

43

44

 // ... lines 45 - 52

53

54

55

56

57

58

59

 // ... lines 60 - 62

63

64

65

use Zenstruck\Browser\HttpOptions;

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

            ->post('/api/treasures', HttpOptions::json([

                'name' => 'A shiny thing',

                'description' => 'It sparkles when I wave it in the air.',

                'value' => 1000,

                'coolFactor' => 5,

                'owner' => '/api/users/'.$user->getId(),

            ]))

        ;

    }

}



So far, this is equivalent to what we had before. But now we can change some options by

saying ->withHeader()  passing Accept  and application/ld+json :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 42

43

44

 // ... lines 45 - 52

53

54

55

56

57

58

59

 // ... lines 60 - 62

63

64

65

We could have also done this with the array of options: it has a key called headers . But the

object is kind of nice.

Let's make sure this fixes things. Run the test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Globally Sending the Header

And... we're back to JSON-LD! It's got the right fields and the application/ld+json

response Content-Type  header.

So.... that's cool... but doing this every time we make a request to our API in the tests is... mega

lame. We need this to happen automatically.

A nice way to do that is to leverage a base test class. Inside of tests/ , actually inside of

tests/Functional/ , create a new PHP class called ApiTestCase . I'm going to make this

class DragonTreasureResourceTest extends KernelTestCase

{

    public function testPostToCreateTreasure(): void

    {

            ->post('/api/treasures', HttpOptions::json([

                'name' => 'A shiny thing',

                'description' => 'It sparkles when I wave it in the air.',

                'value' => 1000,

                'coolFactor' => 5,

                'owner' => '/api/users/'.$user->getId(),

            ])->withHeader('Accept', 'application/ld+json'))

        ;

    }

}



abstract  and extend KernelTestCase :

tests/Functional/ApiTestCase.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 9

10

11

 // ... lines 12 - 25

26

Inside, add the HasBrowser  trait. But we're going to do something sneaky: we're going to

import the browser()  method but call it baseKernelBrowser :

tests/Functional/ApiTestCase.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 25

26

Why the heck are we doing that? Re-implement the browser()  method... then call

$this->baseKernelBrowser()  passing it $options  and $server . But now call another

method: ->setDefaultHttpOptions() . Pass this HttpOptions::create()  then

->withHeader() , Accept , application/ld+json :

namespace App\Tests\Functional;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

abstract class ApiTestCase extends KernelTestCase

{

}

use Zenstruck\Browser\Test\HasBrowser;

abstract class ApiTestCase extends KernelTestCase

{

    use HasBrowser {

        browser as baseKernelBrowser;

    }

}



tests/Functional/ApiTestCase.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

21

22

23

24

25

26

Done! Back in our real test class, extend ApiTestCase : get the one that's from our app:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 63

64

That's it! When we say $this->browser() , it now calls our browser()  method, which

changes that default option. Celebrate by removing withHeader() ... and you could revert

back to the array of options with a json  key if you want.

Let's try it.

symfony php bin/phpunit --filter=testPostToCreateTreasure

And... uh oh. That's a strange error:

“Cannot override final method _resetBrowserClients() ”

use Zenstruck\Browser\HttpOptions;

abstract class ApiTestCase extends KernelTestCase

{

    protected function browser(array $options = [], array $server = [])

    {

        return $this->baseKernelBrowser($options, $server)

            ->setDefaultHttpOptions(

                HttpOptions::create()

                    ->withHeader('Accept', 'application/ld+json')

            )

        ;

    }

}

class DragonTreasureResourceTest extends ApiTestCase

{

}



This... is because we're importing the trait from the parent class and our class... which makes

the trait go bananas. Remove the one inside our test class:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

13

14

 // ... lines 15 - 63

64

we don't need it anymore. I'll also do a little cleanup on my use  statements.

And now:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Got it! We get back JSON-LD with zero extra work. Remove that dump() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 41

42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 59

60

 // ... line 61

62

63

64

Next: let's write another test that uses our API token authentication.

use Zenstruck\Browser\Test\HasBrowser;

class DragonTreasureResourceTest extends ApiTestCase

{

    use HasBrowser;

}

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $this->browser()

            ->dump()

        ;

    }

}



Chapter 19: Testing Token Authentication

What about a test like this... but where we log in with an API key? Let's do that! Create a new

method: public function testPostToCreateTreasureWithApiKey() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 61

62

63

 // ... lines 64 - 70

71

72

This will start pretty much the same as before. I'll copy the top of the previous test, remove the

actingAs() ... and add a dump()  near the bottom:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 61

62

63

64

65

66

67

68

69

70

71

72

So, like before, we're sending invalid data and expect a 422 status code.

Copy that method name, then spin over and run just this test:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasureWithApiKey(): void

    {

    }

}

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasureWithApiKey(): void

    {

        $this->browser()

            ->post('/api/treasures', [

                'json' => [],

            ])

            ->dump()

            ->assertStatus(422)

        ;

    }

}



symfony php bin/phpunit --filter=testPostToCreateTreasureWithApiKey

And... no surprise: we get a 401 status code because we're not authenticated.

Let's send an Authorization  header, but an invalid one to start. Pass a headers  key set to

an array with Authorization  and then word Bearer  and then... foo .

This should still fail:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithApiKey

And... it does! But with a different error message: invalid_token . Nice!

Using a Real Token

To pass a real token, we need to put a real token into the database. Do that with

$token = ApiTokenFactory::createOne() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 63

64

65

66

 // ... line 67

68

 // ... lines 69 - 79

80

81

Do we need to control any fields on this? We actually do. Open up DragonTreasure . If we

scroll up, the Post  operation requires ROLE_TREASURE_CREATE :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasureWithApiKey(): void

    {

        $token = ApiTokenFactory::createOne([

        ]);

    }

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 37

38

39

40

 // ... lines 41 - 49

50

 // ... lines 51 - 64

65

 // ... lines 66 - 83

84

85

 // ... lines 86 - 243

244

When we authenticate via the login form, thanks to role_hierarchy , we always have that.

But when using an API key, to get that role, the token needs the corresponding scope.

To make sure we have it, back in the test, set the scopes  property to

ApiToken::SCOPE_TREASURE_CREATE :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 63

64

65

66

67

68

 // ... lines 69 - 79

80

81

Now pass this to the header: $token->getToken() . Oh... and let me fix scopes : that

should be an array:

#[ApiResource(

    operations: [

        new Post(

            security: 'is_granted("ROLE_TREASURE_CREATE")',

        ),

    ],

)]

class DragonTreasure

{

}

use App\Entity\ApiToken;

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasureWithApiKey(): void

    {

        $token = ApiTokenFactory::createOne([

            'scopes' => [ApiToken::SCOPE_TREASURE_CREATE]

        ]);

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 63

64

65

66

67

68

 // ... line 69

70

71

 // ... line 72

73

74

75

76

 // ... lines 77 - 78

79

80

81

I think we're ready! Run that test:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithApiKey

And... got it! We see the beautiful 422 validation errors!

Testing a Token with a Bad Scope

Let's test to make sure we don't have access if our token is missing this scope. Copy the entire

test method... then paste below. Call it

testPostToCreateTreasureDeniedWithoutScope() .

This time, set scopes  to something else, like SCOPE_TREASURE_EDIT . Below, we now

expect a 403 status code:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasureWithApiKey(): void

    {

        $token = ApiTokenFactory::createOne([

            'scopes' => [ApiToken::SCOPE_TREASURE_CREATE]

        ]);

        $this->browser()

            ->post('/api/treasures', [

                'headers' => [

                    'Authorization' => 'Bearer '.$token->getToken()

                ]

            ])

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

This time, let's run all the tests:

symfony php bin/phpunit

And... all green! A 422 then a 403. Go remove the dumps from both those spots.

By the way, if you use API tokens a lot in your tests, passing the Authorization  header can

get annoying. Browser has a way where we can create a custom Browser object with custom

methods. For example, you could add an authWithToken()  method, pass an array of

scopes, and then it would create that token and set it into the header

$this->browser()

    ->authWithToken([ApiToken::SCOPE_TREASURE_CREATE])

    // ...

;

This totally does not work right now, but check out Browser's docs to learn how.

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasureDeniedWithoutScope(): void

    {

        $token = ApiTokenFactory::createOne([

            'scopes' => [ApiToken::SCOPE_TREASURE_EDIT]

        ]);

        $this->browser()

            ->post('/api/treasures', [

                'json' => [],

                'headers' => [

                    'Authorization' => 'Bearer '.$token->getToken()

                ]

            ])

            ->assertStatus(403)

        ;

    }

}



Next: in API Platform 3.1, the behavior of the PUT  operation is changing. Let's talk about how,

and what we need to do in our code to prepare for it.



Chapter 20: New PUT Behavior

Find your terminal and manually clear the cache directory:

rm -rf var/cache/*

I'm doing this so that, when we run all or our tests

symfony php bin/phpunit

we see a deprecation warning, which is fascinating. It says:

“Since API Platform 3.1: in API Platform 4, PUT  will always replace the data. set

extraProperties["standard_put"]  to true  on every operation to avoid breaking

PUT's behavior. Use PATCH  for the old behavior.”

Okay... what does that mean? Right now, it means nothing has changed: our PUT  operation

behaves like it always has. But, in API Platform 4, the behavior of PUT  will change dramatically.

And, at some point between now and then, we need to opt into that new behavior so that it

doesn't suddenly break when we upgrade to version 4 in the future.

What's Changing in PUT

So what's changing exactly? Head over to the API docs and refresh. Use the GET  collection

endpoint... and hit "Execute", so we can get a valid ID.

Great: we have a treasure with ID 1.

Right now, if we send a PUT  request with this ID, we can send just one field to update just that

one thing. For example, we can send description  to change only that.



Oh, but before we Execute this, we do need to be logged in. In my other tab, I'll fill in the login

form. Perfect. Now execute the PUT  operation.

Yup: we pass only the description  field, and it updates only the description  field: all the

other fields remain the same.

Whelp, it turns out that this is not how PUT  is supposed to work according to the HTTP Spec.

PUT  is supposed to be a "replace". What I mean is, if we send only one field, the PUT  operation

is supposed to take that new resource - which is just the one field - and replace the existing

resource. That's a complicated way of saying that, when using PUT, you need to send every

field, even the fields that aren't changing. Otherwise, they'll be set to null .

If that sounds kind of crazy, I kind of agree, but there are valid technical reasons for why this is

the case. The point is that: this is how PUT  is supposed to work and in API Platform 4, this is

how PUT  will work.

Honestly, it makes PUT  less useful. So you'll notice that I'll pretty much exclusively use PATCH

going forward.

Moving to the new PUT Behavior

So whether we like it or not, at some point between now and API platform 4, we need to tell API

Platform that it is okay for it to change the behavior of PUT  to the "new" way. Let's do that now

by adding some extra config to every ApiResource  attribute in our app.

 Tip

To solve this globally for all your resources at once, you can add this as a default in the API

Platform configuration:

# config/packages/api_platform.yaml

    api_platform:

        defaults:

        extra_properties:

            standard_put: true

Open src/Entity/DragonTreasure.php ... and add a new option called

extraProperties  set to an array with standard_put  set to true :



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 64

65

66

67

68

 // ... lines 69 - 89

90

91

 // ... lines 92 - 249

250

That's it! Copy that... because we're going to need that down here on this ApiResource ...

even though it doesn't have a PUT  operation:

src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 64

65

66

67

68

69

 // ... lines 70 - 81

82

83

84

85

 // ... lines 86 - 89

90

91

 // ... lines 92 - 249

250

Then, over in User , add that to both of the ApiResource  spots as well:

#[ApiResource(

    extraProperties: [

        'standard_put' => true,

    ],

)]

class DragonTreasure

{

}

#[ApiResource(

    extraProperties: [

        'standard_put' => true,

    ],

)]

#[ApiResource(

    extraProperties: [

        'standard_put' => true,

    ],

)]

class DragonTreasure

{

}



src/Entity/User.php

 // ... lines 1 - 25

26

 // ... lines 27 - 44

45

46

47

48

49

 // ... lines 50 - 59

60

61

62

63

 // ... lines 64 - 66

67

68

 // ... lines 69 - 276

277

Now when we run our tests, the deprecation is gone! We're not using the PUT  operation in any

tests, so everything still passes.

Seeing the New Behavior

To see the new behavior, try out the PUT  endpoint again: still sending just one field. This time...

check it out! A 422 validation error! All the fields that we did not include were set to null... and

that caused the validation failure.

So... this makes PUT  a bit less useful... and we'll lean a lot more on PATCH . If you don't want to

have a PUT  operation at all anymore, that makes a lot of sense. One unique thing about the

new PUT  behavior is that you could use it to create new objects... which could be useful in

some edge-cases... or an absolute nightmare from a security standpoint as we now need to

worry about objects being edited or created via the same PUT  operation. For that reason, as we

go along, you'll see me remove the PUT  operation in some cases.

Next: let's get more complex with security by making sure that a DragonTreasure  can only

be edited by its owner.

#[ApiResource(

    extraProperties: [

        'standard_put' => true,

    ],

)]

#[ApiResource(

    extraProperties: [

        'standard_put' => true,

    ],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}



Chapter 21: Only Allow Owners to Edit

New security quest: I want to allow only the owner of a treasure to edit it. Right now, you're

allowed to edit a treasure as long as you have this role. But that means you can edit anyone's

treasure. Someone keep changing my Velvis painting's coolFactor  to 0. That's super uncool.

TDD: Testing the only Owners can Edit

Let's write a test for this. At the bottom say

public function testPatchToUpdateTreasure() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 97

98

99

 // ... lines 100 - 112

113

114

And we'll start like normal: $user = UserFactory::createOne()  then

$this->browser->actingAs($user) .

Since we're editing a treasure, let's ->patch()  to /api/treasures/ ... and then we need a

treasure to edit! Create one on top:

$treasure = DragonTreasureFactory::createOne() . And for this test, we want to

make sure that the owner  is definitely this $user . Finish the URL with

$treasure->getId() .

For the data, send some json  to update just the value  field to 12345 , then

assertStatus(200)  and assertJsonMatches('value', 12345) :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPatchToUpdateTreasure()

    {

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Excellent! This should be allowed because we're the owner . Copy the method name, then find

your terminal and run it:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

No surprise, it passes.

Now let's try the other case: let's log in as someone else and try to update this treasure.

Copy the entire $browser  section. We could create another test method, but this will work fine

all in one. Before this, add $user2 = UserFactory::createOne()  - then log in as that

user. This time, change the value  to 6789  and, since this should not be allowed, assert that

the status code is 403:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPatchToUpdateTreasure()

    {

        $user = UserFactory::createOne();

        $treasure = DragonTreasureFactory::createOne(['owner' => $user]);

        $this->browser()

            ->actingAs($user)

            ->patch('/api/treasures/'.$treasure->getId(), [

                'json' => [

                    'value' => 12345,

                ],

            ])

            ->assertStatus(200)

            ->assertJsonMatches('value', 12345)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 97

98

99

 // ... lines 100 - 113

114

115

116

117

118

119

120

121

122

123

124

125

When we try the test now:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

It fails! This is being allowed: the API returned a 200!

More Complex security Expressions

So how can we make it so that only the owner of a treasure can edit it? Well, over in

DragonTreasure , the answer is all about the security  option:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPatchToUpdateTreasure()

    {

        $user2 = UserFactory::createOne();

        $this->browser()

            ->actingAs($user2)

            ->patch('/api/treasures/'.$treasure->getId(), [

                'json' => [

                    'value' => 6789,

                ],

            ])

            ->assertStatus(403)

        ;

    }

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

44

45

46

 // ... lines 47 - 49

50

 // ... lines 51 - 67

68

 // ... lines 69 - 89

90

91

 // ... lines 92 - 249

250

One thing that gets tricky with Put()  and Patch()  is that both are used to edit users. So if

you're going to have both, you need keep their security  options in sync. I'm actually going to

remove Put()  so we can focus on Patch() .

The string inside of security  is an expression... and we can get kinda fancy. We can grant

access if you have ROLE_TREASURE_EDIT  and if object.owner == user :

#[ApiResource(

    operations: [

        new Put(

            security: 'is_granted("ROLE_TREASURE_EDIT")',

        ),

        new Patch(

            security: 'is_granted("ROLE_TREASURE_EDIT")',

        ),

    ],

)]

class DragonTreasure

{

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

 // ... lines 44 - 46

47

 // ... lines 48 - 64

65

 // ... lines 66 - 86

87

88

 // ... lines 89 - 246

247

Inside the security expression, Symfony gives us a few variable. One is user , which is the

current User  object. Another is object , which will be the current object for this operation. So

the DragonTreasure  object. So we're saying that access should be allowed if the

DragonTreasures owner  is equal to the currently authenticated user . That's... exactly what

we want!

So, try the test again!

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

And... uh oh! We downgraded to a 500 error! This is where that saved log file comes in handy.

I'll click to open that up. If this is hard to read, view the page source. Much better. It says:

“Cannot access private property DragonTreasure::$owner .”

And it's coming from Symfony's ExpressionLanguage . Ah, I know what's wrong. The

expression language is like Twig... but not exactly the same. We can't do fancy things like

.owner  when owner  is a private property. We need to call the public method:

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("ROLE_TREASURE_EDIT") and object.owner 

== user',

        ),

    ],

)]

class DragonTreasure

{

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

 // ... lines 44 - 46

47

 // ... lines 48 - 64

65

 // ... lines 66 - 86

87

88

 // ... lines 89 - 246

247

Drumroll please:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

It passes with flying colors!

Preventing Changing Owners: securityPostDenormalize

But you know me, I've gotta make it trickier. Copy part of the test. This time, log in as the owner

and edit our own treasure. So far, this is all good. But now try to change the owner  to someone

else: $user2->getId() :

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("ROLE_TREASURE_EDIT") and 

object.getOwner() == user',

        ),

    ],

)]

class DragonTreasure

{

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 97

98

99

 // ... lines 100 - 126

127

 // ... line 128

129

130

131

132

133

134

 // ... line 135

136

137

138

Now maybe this is something you want to allow. Maybe you say:

“If you can edit a DragonTreasure , then you're free to assign it a different owner.”

But let's pretend that we want to prevent this. So assertStatus(403) . Do you think the test

will pass? Try it:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

It fails! It did allow us to change the owner ! Spin back over to DragonTreasure . The

security  expression is run before the new data is deserialized onto the object. In other

words, object  will be the DragonTreasure  from the database, before any of the new JSON

is applied to it. This means that it's checking that the current owner  is equal to the currently

logged-in user, which is the main case that we want to protect.

But sometimes you want to run security after the new data has been put onto the object. In that

case, use an option called securityPostDenormalize . Remember denormalize is the

process of taking the data and putting it onto the object. So security  will still run first... and

make sure we're the original owner. Now we can also say object.getOwner() == user :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPatchToUpdateTreasure()

    {

        $this->browser()

            ->patch('/api/treasures/'.$treasure->getId(), [

                'json' => [

                    // change the owner to someone else

                    'owner' => '/api/users/'.$user2->getId(),

                ],

            ])

        ;

    }

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 65

66

 // ... lines 67 - 87

88

89

 // ... lines 90 - 247

248

That looks identical... but this time object  will be the DragonTreasure  with the new data.

So we're checking that the new owner is also equal to the currently logged-in user.

By the way, in securityPostDenormalize , you also have a previous_object  variable,

which is equal to the object before denormalization. So, it's identical to object  up in the

security  option. But, we don't need that.

Try the test now:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

We got it!

Security vs Validation

This last example highlights two different types of security checks. The first check determines

whether or not the user can perform this operation at all. Like: is the current user allowed to

make a PATCH  request to this treasure? That depends on the current user and the current

DragonTreasure in the database.

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("ROLE_TREASURE_EDIT") and 

object.getOwner() == user',

            securityPostDenormalize: 'object.getOwner() == user',

        ),

    ],

)]

class DragonTreasure

{

}



But the second check is saying:

“Okay, now that I know I'm allowed to make a PATCH  request, am I allowed to change the

data in this exact way?”

This depends on the currently logged-in user and the data that's being sent.

I'm bringing up this difference because, for me, the first case - where you're trying to figure out

whether an operation is allowed at all - regardless of what data is being sent - that is a job for

security. And this is exactly how I would implement it.

However, the second case - where you're trying to figure out whether the user is allowed to

send this exact data - like are they allowed to change the owner  or not - for me, I think that's

better handled by the validation layer.

I'm going to keep this in the security layer right now. But later when we talk about custom

validation, we'll move this into that.

Up next: can we flex the security  option enough to also let admin users edit anyone's

treasure? Stay tuned!



Chapter 22: Allow Admin Users to Edit any
Treasure

We've got things set up so that only the owner of a treasure can edit it. Now, a new requirement

has come down from on-high: admin users should be able to edit any treasure. That means a

user that has ROLE_ADMIN .

To the test-mobile! Add a public function testAdminCanPatchToEditTreasure() .

Then create an admin user with UserFactory::createOne()  passing roles set to

ROLE_ADMIN :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

143

Foundry State Methods

That'll work fine. But if we need to create a lot of admin users in our tests, we can add a shortcut

to Foundry. Open UserFactory . We're going to create something called a "state" method.

Anywhere inside, add a public function called, how about withRoles()  that has an

array $roles  argument and returns self , which will make this more convenient when we

use it. Then return $this->addState(['roles' => $roles]) :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::createOne(['roles' => ['ROLE_ADMIN']]);

    }

}



src/Factory/UserFactory.php

 // ... lines 1 - 30

31

32

 // ... lines 33 - 54

55

56

57

58

 // ... lines 59 - 92

93

Whatever we pass to addState()  becomes part of the data that will be used to make this

user.

To use the state method, the code changes to UserFactory::new() . Instead of creating a

User  object, this instantiates a new UserFactory ... and then we can call withRoles()  and

pass ROLE_ADMIN :

So, we're "crafting" what we want the user to look like. When we're done, call create() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

143

createOne()  is a static shortcut method. But since we have an instance of the factory, use

create() .

But we can go even further. Back in UserFactory , add another state method called

asAdmin()  that returns self . Inside return $this->withRoles(['ROLE_ADMIN']) :

final class UserFactory extends ModelFactory

{

    public function withRoles(array $roles): self

    {

        return $this->addState(['roles' => $roles]);

    }

}

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::new()->withRoles(['ROLE_ADMIN'])->create();

    }

}



src/Factory/UserFactory.php

 // ... lines 1 - 30

31

32

 // ... lines 33 - 59

60

61

62

63

 // ... lines 64 - 97

98

Thanks to that, we can simplify to UserFactory::new()->asAdmin()->create() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

143

Nice!

Writing the Test

Now let's get this test going. Create a new $treasure  set to

DragonTreasureFactory::createOne() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

 // ... lines 143 - 153

154

155

final class UserFactory extends ModelFactory

{

    public function asAdmin(): self

    {

        return $this->withRoles(['ROLE_ADMIN']);

    }

}

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::new()->asAdmin()->create();

    }

}

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::new()->asAdmin()->create();

        $treasure = DragonTreasureFactory::createOne();

    }

}



Because we're not passing an owner , this will create a new User  in the background and use

that as the owner . This means that our admin user will not be the owner.

Now, $this->browser()->actingAs($adminUser)  then ->patch()  to

/api/treasures/ , $treasure->getId() , sending json  to update value  to the same

12345 . ->assertStatus(200)  and assertJsonMatches() , value , 12345 :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Cool! Copy the method name. Let's try it:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

And... okay! We haven't implemented this yet, so it fails.

Allowing Admins to Edit Anything

So, how do we allow admins to edit any treasure? Well, at first, it's relatively easy because we

have total control via the security  expression. So we can add something like

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::new()->asAdmin()->create();

        $treasure = DragonTreasureFactory::createOne();

        $this->browser()

            ->actingAs($admin)

            ->patch('/api/treasures/'.$treasure->getId(), [

                'json' => [

                    'value' => 12345,

                ],

            ])

            ->assertStatus(200)

            ->assertJsonMatches('value', 12345)

        ;

    }

}



if is_granted("ROLE_ADMIN") OR  and then put parentheses around the other use-case:

src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

 // ... line 43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 65

66

 // ... lines 67 - 87

88

89

 // ... lines 90 - 247

248

Let's make sure it works!

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

A 500 error! Let's see what's going on. Click to open this.

“Unexpected token "name" around position 26.”

So... that was an accident. Change OR  to or . And... also move this new logic into

securityPostDenormalize :

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("ROLE_ADMIN") or 

(is_granted("ROLE_TREASURE_EDIT") and object.getOwner() == user)',

        ),

    ],

)]

class DragonTreasure

{

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 65

66

 // ... lines 67 - 87

88

89

 // ... lines 90 - 247

248

Then try the test again:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

Got it! But my screw-up brings up a great point: the security  expression is getting too

complex. It's about as readable as a single-line PERL script... and we do not want to make

mistakes when it comes to security.

So next, let's centralize this logic with a voter.

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("ROLE_ADMIN") or 

(is_granted("ROLE_TREASURE_EDIT") and object.getOwner() == user)',

            securityPostDenormalize: 'is_granted("ROLE_ADMIN") or 

object.getOwner() == user',

        ),

    ],

)]

class DragonTreasure

{

}



Chapter 23: Security Voter

Our security is turning into a madhouse, which I don't like. I want my security logic to be simple

and centralized. The way to do that in Symfony is with a voter. Let's go create one.

At the command line, run:

php ./bin/console make:voter

Call it DragonTreasureVoter . It's pretty common to have one voter per entity that you need

security logic for. So this voter will make all decisions related to DragonTreasure : can the

current user edit one, delete one, view one: whatever we eventually need.

Go open it up: src/Security/Voter/DragonTreasureVoter.php :



src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

namespace App\Security\Voter;

use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;

use Symfony\Component\Security\Core\Authorization\Voter\Voter;

use Symfony\Component\Security\Core\User\UserInterface;

class DragonTreasureVoter extends Voter

{

    public const EDIT = 'POST_EDIT';

    public const VIEW = 'POST_VIEW';

    protected function supports(string $attribute, mixed $subject): bool

    {

        // replace with your own logic

        // https://symfony.com/doc/current/security/voters.html

        return in_array($attribute, [self::EDIT, self::VIEW])

            && $subject instanceof \App\Entity\DragonTreasure;

    }

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        $user = $token->getUser();

        // if the user is anonymous, do not grant access

        if (!$user instanceof UserInterface) {

            return false;

        }

        // ... (check conditions and return true to grant permission) ...

        switch ($attribute) {

            case self::EDIT:

                // logic to determine if the user can EDIT

                // return true or false

                break;

            case self::VIEW:

                // logic to determine if the user can VIEW

                // return true or false

                break;

        }

        return false;

    }

}



Before we talk about this class, let me show you how we'll use it. In DragonTreasure , we're

still going to use the is_granted()  function. But for the first argument, pass EDIT ... which is

just a string I'm making up: you'll see how that's used in the voter. Then pass object :

src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

 // ... line 43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 65

66

 // ... lines 67 - 87

88

89

 // ... lines 90 - 247

248

We normally pass is_granted()  a single argument: a role! But you can also pass it any

random string like EDIT ... as long as you have a voter set up to handle that. If your voter needs

some extra info to make its decision, you can pass that as the second argument.

On a high level, we're asking the security system whether or not the current user is allowed to

EDIT  this DragonTreasure  object. DragonTreasureVoter  will make that decision.

Copy this and paste it down for securityPostDenormalize :

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("EDIT", object)',

        ),

    ],

)]

class DragonTreasure

{

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 27

28

 // ... lines 29 - 30

31

 // ... lines 32 - 40

41

42

43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 65

66

 // ... lines 67 - 87

88

89

 // ... lines 90 - 247

248

How Voters Works

So here's the deal: anytime that is_granted()  is called - from anywhere, not just from API

Platform - Symfony loops through a list of "voter" classes and tries to figure out which one

knows how to make that decision. When we check for a role, there's an existing voter that

knows how to handle that. In the case of EDIT , there is no core voter that knows how to handle

that. So we'll make DragonTreasureVoter  able to handle it.

To determine who can handle an isGranted  call, Symfony calls supports()  on each voter

passing the same two arguments. For our case, $attribute  will be EDIT  and $subject

will be the DragonTreasure  object:

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 19

20

 // ... lines 21 - 43

44

#[ApiResource(

    operations: [

        new Patch(

            security: 'is_granted("EDIT", object)',

            securityPostDenormalize: 'is_granted("EDIT", object)',

        ),

    ],

)]

class DragonTreasure

{

}

class DragonTreasureVoter extends Voter

{

    protected function supports(string $attribute, mixed $subject): bool

    {

    }

}



MakeBundle generated a voter that handles checking if we can "edit" or "view" a

DragonTreasure . We don't need that "view" right now, so I'll delete it. Below, change this to

an instance of DragonTreasure  and I'll retype the end and hit tab to add the use  statement...

just to clean things up:

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 38

39

So if someone calls isGranted()  and passes the string EDIT  and a DragonTreasure

object, we know how to make that decision.

Oh, and I need to change the constant value to EDIT  to match the EDIT  string we're passing

to is_granted() .

If we return true  from supports() , Symfony will then call voteOnAttribute() . Very

simply: we return true  if the user should have access, false  otherwise.

To start, just return false :

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 19

20

21

22

 // ... lines 23 - 37

38

39

class DragonTreasureVoter extends Voter

{

    public const EDIT = 'EDIT';

    protected function supports(string $attribute, mixed $subject): bool

    {

        return in_array($attribute, [self::EDIT])

            && $subject instanceof DragonTreasure;

    }

}

class DragonTreasureVoter extends Voter

{

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        return false;

    }

}



If we've played our cards right, our voter will swoop in like an overactive superhero every time

we make a PATCH request and slam the access door shut. Before we try test that theory,

remove the "view" case down here:

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Ok, let's make sure our tests fail! Run:

symfony php bin/phpunit

And... yes! Two tests fail: both because access is denied. Our voter is being called.

Adding the Voter Logic

Back in the class, voteOnAttribute()  is passed the attribute - EDIT  - the $subject  - a

DragonTreasure  object and a $token , which is a wrapper around the current User  object.

class DragonTreasureVoter extends Voter

{

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        return false;

        $user = $token->getUser();

        // if the user is anonymous, do not grant access

        if (!$user instanceof UserInterface) {

            return false;

        }

        // ... (check conditions and return true to grant permission) ...

        switch ($attribute) {

            case self::EDIT:

                // logic to determine if the user can EDIT

                // return true or false

                break;

        }

        return false;

    }

}



So we're first checking to make sure that the user is actually authenticated.

After that, assert()  that $subject  is an instance of DragonTreasure  because this

method should only ever be called when supports()  return true :

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 40

41

42

I'm mostly writing this to help my editor know that $subject  is a DragonTreasure :

assert()  is a handy way to do that.

The switch  statement only has one case  right now. And this is where our logic will live. Very

simply: if $subject  - that's the DragonTreasure  - ->getOwner()  equals $user , then

return true . Otherwise, it will hit the break  and return false :

class DragonTreasureVoter extends Voter

{

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        $user = $token->getUser();

        // if the user is anonymous, do not grant access

        if (!$user instanceof UserInterface) {

            return false;

        }

        assert($subject instanceof DragonTreasure);

        // ... (check conditions and return true to grant permission) ...

    }

}



src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 19

20

21

 // ... lines 22 - 29

30

31

32

33

34

35

36

37

38

39

40

41

42

This isn't all the logic we need, but it's a good start!

Try the tests now:

symfony php bin/phpunit

Down to one failure!

Checking for Roles in the Voter

What's next? Well, we don't have a test for it, but if we authenticate with an API token, in order

to edit a treasure, you need to ROLE_TREASURE_EDIT , which you can get via the token scope.

So, in the voter, we need to check if the user has that role. Add a __construct()  method and

autowire Security  - the one from SecurityBundle - $security :

class DragonTreasureVoter extends Voter

{

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        // ... (check conditions and return true to grant permission) ...

        switch ($attribute) {

            case self::EDIT:

                if ($subject->getOwner() === $user) {

                    return true;

                }

                break;

        }

        return false;

    }

}



src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 5

6

 // ... lines 7 - 10

11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 50

51

Then, below, before we check the owner, if not

$this->security->isGranted('ROLE_TREASURE_EDIT') , then definitely return false :

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 35

36

37

38

39

40

41

42

43

44

45

46

47

 // ... lines 48 - 49

50

51

The last test that's failing is testing that an admin can patch to edit any treasure. Because we've

already injected the Security  service, this is easy.

use Symfony\Bundle\SecurityBundle\Security;

class DragonTreasureVoter extends Voter

{

    public function __construct(private Security $security)

    {

    }

}

class DragonTreasureVoter extends Voter

{

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        switch ($attribute) {

            case self::EDIT:

                if (!$this->security->isGranted('ROLE_TREASURE_EDIT')) {

                    return false;

                }

                if ($subject->getOwner() === $user) {

                    return true;

                }

                break;

        }

    }

}



Let's pretend admin users will be able to do anything. So above the switch , if

$this->security->isGranted('ROLE_ADMIN') , then return true :

src/Security/Voter/DragonTreasureVoter.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 32

33

34

35

36

37

 // ... lines 38 - 53

54

55

Moment of truth:

symfony php bin/phpunit

Voilà! Our logic has found a cozy home inside the voter, the security  expression is now so

simple it's almost scary, and we got to write our logic in PHP.

Next: let's explore hiding certain fields in the response based on the user.

class DragonTreasureVoter extends Voter

{

    protected function voteOnAttribute(string $attribute, mixed $subject, 

TokenInterface $token): bool

    {

        if ($this->security->isGranted('ROLE_ADMIN')) {

            return true;

        }

        assert($subject instanceof DragonTreasure);

    }

}



Chapter 24: Conditional Fields by User:
ApiProperty

We control which fields are readable and writable via serialization groups. But what if you have

a field that should be included in the API... but only for certain users? Sadly, groups can't pull off

that kind of magic on their own.

For example, find the $isPublished  field and let's make this part of our API by adding the

treasure:read  and treasure:write  groups:

src/Entity/DragonTreasure.php

 // ... lines 1 - 87

88

89

 // ... lines 90 - 127

128

129

 // ... lines 130 - 248

249

Now if we spin over and try the tests:

symfony php bin/phpunit

This makes one test fail: testGetCollectionOfTreasures  sees that isPublished  is

being returned... and it's not expecting it.

Here's the plan: we'll sneak the field into our API but only for admin users or owners of this

DragonTreasure . How can we pull that off?

Hello ApiProperty

Well, surprise! We don't often need it, but we can add an ApiProperty  attribute above any

property to help further configure it. It has a bunch of stuff, like a description that helps with your

class DragonTreasure

{

    #[Groups(['treasure:read', 'treasure:write'])]

    private bool $isPublished = false;

}



documentation and many edge-case things. There's even one called readable . If we said

readable: false :

src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 129

130

131

 // ... lines 132 - 250

251

Then the serialization groups would say that this should be included in the response... but then

this would override that. Watch: if we try the tests:

symfony php bin/phpunit

They pass because the field is gone.

The security Option

For our mission, we can leverage a super cool option called security . Set it to

is_granted("ROLE_ADMIN") :

src/Entity/DragonTreasure.php

 // ... lines 1 - 8

9

 // ... lines 10 - 88

89

90

 // ... lines 91 - 129

130

131

 // ... lines 132 - 250

251

That's it! If this expression return false, isPublished  will not be included in the API: it won't

be readable or writable.

class DragonTreasure

{

    #[ApiProperty(readable: false)]

    private bool $isPublished = false;

}

use ApiPlatform\Metadata\ApiProperty;

class DragonTreasure

{

    #[ApiProperty(security: 'is_granted("ROLE_ADMIN")')]

    private bool $isPublished = false;

}



And when we run the tests now:

symfony php bin/phpunit

They still pass, which means isPublished  is not being returned.

Now let's go test the "happy" path where this field is returned. Pop open

DragonTreasureResourceTest . Here's the original test:

testGetCollectionOfTreasures() . We're anonymous, so isPublished  isn't returned.

Now scroll down to testAdminCanPatchToEditTreasure() . When we create the

DragonTreasure , let's make sure it always starts with isPublished => false :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

143

144

 // ... lines 145 - 156

157

158

Then, down here, assertJsonMatches('isPublished', false)  to test that the field is

returned:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::new()->asAdmin()->create();

        $treasure = DragonTreasureFactory::createOne([

            'isPublished' => false,

        ]);

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 138

139

140

141

142

143

144

145

146

 // ... lines 147 - 154

155

156

157

158

Copy the test name, spin over and add --filter  to run just that test:

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

And... it passes! The field is being returned when we're an admin.

Also Returning isPublished for the Owner

What about if we're the owner of the treasure? Copy the test... rename it to

testOwnerCanSeeIsPublishedField() ... and let's tweak a few things. Rename $admin

to $user , simplify this to DragonTreasureFactory::createOne()  and make sure the

owner  is set to our new $user :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $admin = UserFactory::new()->asAdmin()->create();

        $treasure = DragonTreasureFactory::createOne([

            'isPublished' => false,

        ]);

        $this->browser()

            ->assertJsonMatches('isPublished', false)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

We could change this to a GET request... but PATCH is fine. In either situation, we want to

make sure the isPublished  field is returned.

Since we haven't implemented this yet... let's make sure it fails. Copy the method name and try

it:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Failure achieved! And we know how to solve this! On the security  option, we could inline the

logic with or object.getOwner() === user . But remember: we created the voter so that

we don't need to do crazy stuff like that! Instead, say is_granted() , EDIT  then object :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testOwnerCanSeeIsPublishedField(): void

    {

        $user = UserFactory::new()->create();

        $treasure = DragonTreasureFactory::createOne([

            'isPublished' => false,

            'owner' => $user,

        ]);

        $this->browser()

            ->actingAs($user)

            ->patch('/api/treasures/'.$treasure->getId(), [

                'json' => [

                    'value' => 12345,

                ],

            ])

            ->assertStatus(200)

            ->assertJsonMatches('value', 12345)

            ->assertJsonMatches('isPublished', false)

        ;

    }

}



src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 129

130

131

 // ... lines 132 - 250

251

Try the test now:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

The Special securityPostDenormalize

Got it! Oh, and I haven't used it much, but there's also a securityPostDenormalize  option.

Just like with the securityPostDenormalize  option on each operation, this runs after the

new data is deserialized onto the object. What's interesting is that if the expression returns

false , the data on the object is actually reverted.

For example, suppose the isPublished  property started as false  and then the user sent

some JSON to change it to true . But then, securityPostDenormalize  returned false .

In that case, API Platform will revert the isPublished  property back to its original value: it will

change it from false  back to true . Oh, and by the way, securityPostDenormalize  is

not executed on GET  requests: it only happens when data is being deserialized. So be sure to

put your main security logic in security  and only use securityPostDenormalize  if you

need it.

Up next on our to-do list: let's level-up our user operations to hash the password before saving

to the database. We'll need a fresh, non-persisted plain password property to make it happen.

class DragonTreasure

{

    #[ApiProperty(security: 'is_granted("EDIT", object)')]

    private bool $isPublished = false;

}



Chapter 25: User Test + Plain Password

We have a pretty nice DragonTreasureResourceTest , so let's bootstrap one for User.

Bootstrapping the User Test

Create a new PHP class called, how about, UserResourceTest . Make it extend our custom

ApiTestCase , then we just need to use ResetDatabase :

 Tip

To use Foundry factories in a test, also add a use Factories;  trait to the top of your test

class. Things worked without that in this case, but in the future, you'll likely get an error.

tests/Functional/UserResourceTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 14

15

We don't need HasBrowser  because that's already done in the base class.

Start with public function testPostToCreateUser() :

namespace App\Tests\Functional;

use Zenstruck\Foundry\Test\ResetDatabase;

class UserResourceTest extends ApiTestCase

{

    use ResetDatabase;

}



tests/Functional/UserResourceTest.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

12

13

14

15

Make a ->post()  request to /api/users , toss in some json  with email  and password ,

and assertStatus(201) .

And now that we've created the new user, let's jump right in and test if we can log in with their

credentials! Make another ->post()  request to /login , also pass some json  - copy the

email  and password  from above - then assertSuccessful() :

tests/Functional/UserResourceTest.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

class UserResourceTest extends ApiTestCase

{

    public function testPostToCreateUser(): void

    {

    }

}

class UserResourceTest extends ApiTestCase

{

    public function testPostToCreateUser(): void

    {

        $this->browser()

            ->post('/api/users', [

                'json' => [

                    'email' => 'draggin_in_the_morning@coffee.com',

                    'username' => 'draggin_in_the_morning',

                    'password' => 'password',

                ]

            ])

            ->assertStatus(201)

            ->post('/login', [

                'json' => [

                    'email' => 'draggin_in_the_morning@coffee.com',

                    'password' => 'password',

                ]

            ])

            ->assertSuccessful()

        ;

    }

}



Let's give this a go: symfony php bin/phpunit  and run the entire

tests/Functional/UserResourceTest.php  file:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

And... ok! A 422 status code, but 201 expected. Let's see: this means something went wrong

creating the user. Let's pop open the last response. Ah! My bad: I forgot to pass the required

username  field: we're failing validation!

Pass username ... set to anything:

tests/Functional/UserResourceTest.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 10

11

12

13

14

15

 // ... line 16

17

 // ... line 18

19

20

 // ... lines 21 - 28

29

30

31

Try that again:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

That's what I wanted:

“Expected successful status code, but got 401.”

class UserResourceTest extends ApiTestCase

{

    public function testPostToCreateUser(): void

    {

        $this->browser()

            ->post('/api/users', [

                'json' => [

                    'username' => 'draggin_in_the_morning',

                ]

            ])

        ;

    }

}



So the failure is down here. We were able to create the user... but when we tried to log in, it

failed. If you were with us for episode one, you might remember why! We never set up our API

to hash the password.

Check it out: inside User , we did make password  part of our API. The user sends the plain-

text password they want... then we're saving that directly into the database. That's a huge

security problem... and it makes it impossible to log in as this user, because Symfony expects

the password  property to hold a hashed password.

Setting up the plainPassword Field

So our goal is clear: allow the user to send a plain password, but then hash it before it's stored

in the database. To do this, instead of temporarily storing the plain-text password on the

password  property, let's create a totally new property:

private ?string $plainPassword = null :

src/Entity/User.php

 // ... lines 1 - 66

67

68

 // ... lines 69 - 92

93

 // ... lines 94 - 290

291

This will not be stored in the database: it's just a temporary spot to hold the plain password

before we hash it and set that on the real password  property.

Down at the bottom, I'll go to "Code"->"Generate", or Command+N  on a Mac, and generate a

"Getter and setter" for this. Let's clean this up a bit: accept only a string, and the PHPDoc is

redundant:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    private ?string $plainPassword = null;

}

https://symfonycasts.com/screencast/api-platform


src/Entity/User.php

 // ... lines 1 - 66

67

68

 // ... lines 69 - 279

280

281

282

283

284

285

286

287

288

289

290

291

Next, scroll all the way to the top and find password . Remove this from our API entirely:

src/Entity/User.php

 // ... lines 1 - 67

68

69

 // ... lines 70 - 86

87

88

89

90

91

 // ... lines 92 - 292

293

Instead, expose plainPassword ... but use SerializedName  so it's called password :

src/Entity/User.php

 // ... lines 1 - 67

68

69

 // ... lines 70 - 92

93

94

95

 // ... lines 96 - 292

293

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function setPlainPassword(string $plainPassword): User

    {

        $this->plainPassword = $plainPassword;

        return $this;

    }

    public function getPlainPassword(): ?string

    {

        return $this->plainPassword;

    }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    /**

     * @var string The hashed password

     */

    #[ORM\Column]

    private ?string $password = null;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    #[Groups(['user:write'])]

    #[SerializedName('password')]

    private ?string $plainPassword = null;

}



So we're obviously not done yet... and if you run the tests:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

Things are worse! A 500 error because of a not null violation. We're sending password , that's

stored on plainPassword ... then we're doing absolutely nothing with it. So the real

password  property stays null and explodes when it hits the database.

So here's the million-dollar question: how can we hash the plainPassword  property? Or, in

simpler terms, how can we run code in API Platform after the data is deserialized but before it's

saved to the database? The answer is: state processors. Let's dive into this powerful concept

next.



Chapter 26: State Processors: Hashing the User
Password

When an API client creates a user, they send a password  field, which gets set onto the

plainPassword  property. Now, we need to hash that password before the User  is saved to

the database. Like we showed when working with Foundry, hashing a password is simple: grab

the UserPasswordHasherInterface  service then call a method on it:

src/Factory/UserFactory.php

 // ... lines 1 - 6

7

 // ... lines 8 - 30

31

32

 // ... lines 33 - 47

48

49

50

51

 // ... line 52

53

 // ... lines 54 - 81

82

83

84

85

86

87

88

89

90

91

92

 // ... lines 93 - 97

98

But to pull this off, we need a "hook" in API platform: we need some way to run code after our

data is deserialized onto the User  object, but before it's saved.

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

final class UserFactory extends ModelFactory

{

    public function __construct(

        private UserPasswordHasherInterface $passwordHasher

    )

    {

    }

    protected function initialize(): self

    {

        return $this

            ->afterInstantiate(function(User $user): void {

                $user->setPassword($this->passwordHasher->hashPassword(

                    $user,

                    $user->getPassword()

                ));

            })

        ;

    }

}



In our tutorial about API platform 2, we used a Doctrine listener for this, which would still work.

Though, it does some negatives, like being super magical - it's hard to debug if it doesn't work -

and you need to do some weird stuff to make sure it runs when editing a user's password.

Hello State Processors

Fortunately, In API platform 3, we have a shiny new tool that we can leverage. It's called a state

processor. And actually, our User  class is already using a state processor!

Find the API Platform 2 to 3 upgrade guide... and search for processor. Let's see... here we go.

It has a section called providers and processors. We'll talk about providers later.

According to this, if you have an ApiResource  class that is an entity - like in our app - then,

for example, your Put  operation already uses a state processor called PersistProcessor !

The Post  operation also uses that, and Delete  has one called RemoveProcessor .

State processors are cool. After the sent data is deserialized onto the object, we... need to do

something! Most of the time, that "something" is: save the object to the database. And that's

precisely what PersistProcessor  does! Yea, our entity changes are saved to the database

entirely thanks to that built-in state processor!

Creating the Custom State Processor

So here's the plan: we're going to hook into the state processor system and add our own. Step

one, run a new command from API Platform:

php ./bin/console make:state-processor

Let's call it UserHashPasswordProcessor . Perfect.

Spin over, go into src/ , open the new State/  directory and check out

UserHashPasswordStateProcessor :

https://api-platform.com/docs/core/upgrade-guide/


src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

It's delightfully simple: API platform will call this method, pass us data, tell us which operation is

happening... and a few other things. Then... we just do whatever we want. Send emails, save

things to the database, or RickRoll someone watching a screencast!

Activating this processor is simple in theory. We could go to the Post  operation, add a

processor  option and set it to our service id:

UserHashPasswordStateProcessor::class .

Unfortunately... if we did that, it would replace the PersistProcessor  that it's using now.

And... we don't want that: we want our new processor to run... and then also the existing

PersistProcessor . But... each operation can only have one processor.

Setting up Decoration

No worries! We can do this by decorating PersistProcessor . Decoration always follows the

same pattern. First, add a constructor that accept an argument with the same interface as our

class: private ProcessorInterface  and I'll call it $innerProcessor :

namespace App\State;

use ApiPlatform\Metadata\Operation;

use ApiPlatform\State\ProcessorInterface;

class UserHashPasswordStateProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        // Handle the state

    }

}



src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

 // ... lines 15 - 21

22

After I add a dump()  to see if this is working, we'll do step 2: call the decorated service

method: $this->innerProcessor->process()  passing $data , $operation ,

$uriVariables  and... yes, $context :

 Tip

In API Platform 3.2 and higher, you should

return $this->innerProcessor->process() . This is also a safe thing to do in 3.0 &

3.1.

src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

21

22

Love it: our class is set up for decoration. Now we need to tell Symfony to use it. Internally,

PersistProcessor  from API Platform is a service. We're going to tell Symfony that whenever

anything needs that PersistProcessor  service, it should be passed our service instead...

but also that Symfony should pass us the original PersistProcessor .

use ApiPlatform\State\ProcessorInterface;

class UserHashPasswordStateProcessor implements ProcessorInterface

{

    public function __construct(private ProcessorInterface 

$innerProcessor)

    {

    }

}

class UserHashPasswordStateProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        dump('ALIVE!');

        $this->innerProcessor->process($data, $operation, $uriVariables, 

$context);

    }

}



To do that, add #[AsDecorator()]  and pass the id of the service. You can usually find this in

the documentation, or you can use the debug:container  command to search for it. The docs

say it's api_platform.doctrine.orm.state.persist_processor :

src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 6

7

8

9

10

11

 // ... lines 12 - 21

22

Decoration done! We're not doing anything yet, but let's see if it hits our dump! Run the test:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

And... there it is! It's still a 500, but it is using our processor!

Adding the Hashing Logic

Now we can get to work. Because of how we did the service decoration, our new processor will

be called whenever any entity is processed... whether it's a User , DragonTreasure  or

something else. So, start by checking if $data  is an instanceof User ... and if

$data->getPlainPassword() ... because if we're editing a user, and no password  is sent,

no need for us to do anything:

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('api_platform.doctrine.orm.state.persist_processor')]

class UserHashPasswordStateProcessor implements ProcessorInterface

{

}



src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

20

 // ... line 21

22

23

24

25

26

By the way, the official documentation for decorating state processors is slightly different. It

looks more complex to me, but the end result is a processor that's only called for one entity, not

all of them.

To hash the password, add a second argument to the constructor:

private UserPasswordHasherInterface  called $userPasswordHasher :

src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

13

14

15

16

 // ... lines 17 - 25

26

Below, say $data->setPassword()  set to

$this->userPasswordHasher->hashPassword()  passing it the User , which is $data

and the plain password: $data->getPlainPassword() :

class UserHashPasswordStateProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        if ($data instanceof User && $data->getPlainPassword()) {

        }

        $this->innerProcessor->process($data, $operation, $uriVariables, 

$context);

    }

}

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

class UserHashPasswordStateProcessor implements ProcessorInterface

{

    public function __construct(private ProcessorInterface 

$innerProcessor, private UserPasswordHasherInterface $userPasswordHasher)

    {

    }

}



src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

20

21

22

23

24

25

26

And this all happens before we call the inner processor that actually saves the object.

Let's try this thing! Run that test:

symfony php bin/phpunit tests/Functional/UserResourceTest.php

Victory! After creating a user in our API, we can then log in as that user.

User.eraseCredentials()

Oh, and it's minor, but once you have a plainPassword  property, inside of User , there's a

method called eraseCredentials() . Uncomment $this->plainPassword = null :

class UserHashPasswordStateProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        if ($data instanceof User && $data->getPlainPassword()) {

            $data->setPassword($this->userPasswordHasher-

>hashPassword($data, $data->getPlainPassword()));

        }

        $this->innerProcessor->process($data, $operation, $uriVariables, 

$context);

    }

}



src/Entity/User.php

 // ... lines 1 - 67

68

69

 // ... lines 70 - 186

187

188

189

190

191

 // ... lines 192 - 292

293

This makes sure that if the object is serialized into the session, the sensitive plainPassword

is cleared first.

Next: let's fix some validation issues via validationGroups  and discover something special

about the Patch  operation.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function eraseCredentials()

    {

        // If you store any temporary, sensitive data on the user, clear 

it here

        $this->plainPassword = null;

    }

}



Chapter 27: Validation Groups & Patch Formats

Now that the plainPassword  property is a legitimate part of our API, let's add some

validation... because you can't create a new user without a password! Add

Assert\NotBlank :

src/Entity/User.php

 // ... lines 1 - 67

68

69

 // ... lines 70 - 94

95

96

 // ... lines 97 - 293

294

Piece of cake! Well, that just created a new problem... but let's blindly move forward and

pretend that everything is fine.

Copy the first test and paste to create a second method that will make sure we can update

users. Call it testPatchToUpdateUser() . This one is simple: make a new user -

$user = UserFactory::createOne() , add actingAs($user)  then ->patch()  to

/api/users/  then $user->getId()  to edit ourselves.

For the json , just send username , add assertStatus(200) .... then we don't need any of

this other stuff:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    #[Assert\NotBlank]

    private ?string $plainPassword = null;

}



tests/Functional/UserResourceTest.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

As a reminder, up on the Patch  operation for User ... here it is, we're requiring that the user

has ROLE_USER_EDIT . Because we're logging in as a "full" user, we should have that... and

everything should work fine... famous last words.

Run:

symfony php bin/phpunit --filter=testPatchToUpdateUser

PATCH: The Most Interesting HTTP Method in the World

And... oh! 200 expected, got 415. That's a new one! Click to open the last response... then I'll

View Source to make it more clear. Interesting:

“The content-Type: application/json  is not supported. Supported MIME types are

application/merge-patch+json .”

Let's unpack this. We're making a PATCH  request... and PATCH  requests are quite simple: we

send a subset of fields, and only those fields are updated.

class UserResourceTest extends ApiTestCase

{

    public function testPatchToUpdateUser(): void

    {

        $user = UserFactory::createOne();

        $this->browser()

            ->actingAs($user)

            ->patch('/api/users/' . $user->getId(), [

                'json' => [

                    'username' => 'changed',

                ],

            ])

            ->assertStatus(200);

    }

}



Whelp, it turns out that the PATCH  HTTP method can get a whole heck of a lot more interesting

than this. In the greater interwebs, there are competing formats for how the data should look

when using a PATCH request and each format means something different.

Currently, API Platform supports only one of these formats:

application/merge-patch+json . This format is... kind of what you expect. It says: if you

send a single field, only that single field will be changed. But it also has other rules, like how you

could set email  to null ... and that would actually remove the email  field. That doesn't really

make sense in our API, but the point is: the format defines rules about how your JSON should

look for a PATCH  request and what that means. If you want to know more, there's a document

that describes everything: it's quite short and readable.

So, API platform only supports one format for PATCH requests at the moment. But, in the future,

they might support more. And so, when you make a PATCH  request, API Platform requires you

to send a Content-Type  header set to application/merge-patch+json ... so that you're

explicitly telling API platform which format your JSON is using.

In other words, to fix our error, pass a headers  key with Content-Type  set to

application/merge-patch+json :

tests/Functional/UserResourceTest.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 32

33

34

 // ... lines 35 - 36

37

 // ... line 38

39

 // ... lines 40 - 42

43

44

 // ... line 45

46

47

Try this now:

class UserResourceTest extends ApiTestCase

{

    public function testPatchToUpdateUser(): void

    {

        $this->browser()

            ->patch('/api/users/' . $user->getId(), [

                'headers' => ['Content-Type' => 'application/merge-

patch+json']

            ])

    }

}

https://www.rfc-editor.org/rfc/rfc7386
https://www.rfc-editor.org/rfc/rfc7386


symfony php bin/phpunit --filter=testPatchToUpdateUser

It still fails, but now it's a validation error! The takeaway is simple: PATCH requests require this

Content-Type  header.

But wait! We did a bunch of PATCH  requests over in DragonTreasureResourceTest  and

those worked fine without the header! What the what?

That... was kind of on accident. Inside DragonTreasure , in the first tutorial... here it is, we

added a formats  key so that we could add CSV support:

src/Entity/DragonTreasure.php

 // ... lines 1 - 28

29

 // ... lines 30 - 49

50

51

52

53

54

55

56

 // ... lines 57 - 66

67

 // ... lines 68 - 252

It turns out that, for some complex internal reasons, by adding formats , we removed the

requirement for needing that header. So we were "getting away" with not setting the header in

DragonTreasureResourceTest ... even though we should be setting it. It may have been

better to set formats  on the GetCollection  operation only... since that's the only spot we

need CSV.

Anyway, that's why we didn't need it before, but we do need it now. By the way, if adding this

header every time you call ->patch  is annoying, this is another situation where you could add

a custom method to browser - like ->apiPatch()  - which would work the same, but add that

header automatically.

Fixing the Validation Groups

#[ApiResource(

    formats: [

        'jsonld',

        'json',

        'html',

        'jsonhal',

        'csv' => 'text/csv',

    ],

)]



Ok, back to the test! It's failing with a 422. Open the error response. Ah, it's from

plainPassword : this field should not be blank!

The plainPassword  property is not persisted to the database. So, it's always empty at the

start of an API request. When we create a User , we absolutely do want this field to be

required. But when we're editing a User , we don't need this field to be set. They can set it in

order to change their password, but that's optional.

This is the first spot where we need conditional validation: validation should happen on one

operation, but not on others. The way to fix this is with validation groups, which is very similar to

serialization groups.

Find the Post  operation and pass a new option called validationContext  with, you

guessed it, groups ! Set this to an array with a group called Default  with a capital D. Then

invent a second group: postValidation :

src/Entity/User.php

 // ... lines 1 - 26

27

 // ... line 28

29

 // ... lines 30 - 31

32

 // ... line 33

34

35

 // ... lines 36 - 42

43

 // ... lines 44 - 49

50

 // ... lines 51 - 296

When the validator validates an object, by default, it validates everything that's in a group called

Default . And any time you have a constraint, by default that constraint is in that Default

group. So what we're saying here is:

“We want to validate all the normal constraints plus any constraints that are in the

postValidation  group.”

#[ApiResource(

    operations: [

        new Post(

            validationContext: ['groups' => ['Default', 

'postValidation']],

        ),

    ],

)]



Now we can take that postValidation , go down to plainPassword  and set groups  to

postValidation :

src/Entity/User.php

 // ... lines 1 - 68

69

70

 // ... lines 71 - 95

96

97

 // ... lines 98 - 294

295

That removes this constraint from the Default  group and only includes it in the

postValidation  group. Thanks to this, other operations like Patch  will not run this, but the

Post  operation will.

Run the test now:

symfony php bin/phpunit --filter=testPatchToUpdateUser

We're unstoppable! In fact, all of our tests are passing!

Careful: PUT Can Create Objects

But head's up! In User , we still have both Put  and Patch . I haven't played with it much yet,

but the new Put  behavior, in theory, does support creating objects. This can make things tricky:

do we need to require the password or not? It depends! This might be another reason for

removing the Put  operation to keep life simple. That gives us one operation for creating and

one operation for editing.

Next: let's explore making our serialization groups dynamic based on the user. This will give us

another way to include or not include fields based on who is logged in. And it'll lead us towards

adding super custom fields.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    #[Assert\NotBlank(groups: ['postValidation'])]

    private ?string $plainPassword = null;

}



Chapter 28: Dynamic Groups: Context Builder

In DragonTreasure , find the $isPublished  field. Earlier we added this ApiProperty

security  thing so that the field is only returned for admin users or owners of this treasure.

This is a simple and 100% valid way to handle this situation.

However, there is another way to handle fields that should be dynamic based on the current

user... and it may or may not have two advantages depending on your situation.

The security Options vs Dynamic Groups

First, check out the documentation. Open the GET endpoint for a single DragonTreasure .

And, even without trying it, you can see that isPublished  is a field that is correctly advertised

in our docs.

So, that's good, right? Yea! Well, probably. If isPublished  were truly an internal, admin-only

field, we might not want it advertised to the world.

The second possible problem with security  is that, if you have this option on many

properties, it's going to run that security check a lot of times when returning a collection of

objects. Honestly, that probably won't cause performance issues, but it's something to be aware

of.

Inventing New Serialization Groups

To solve these two possible problems - and, honestly, just to learn more about how API Platform

works under the hood - I want to show you an alternative solution. Remove the ApiProperty

attribute:



src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 129

130

131

 // ... lines 132 - 250

251

And replace it with two new groups. We're not going to use the normal treasure:read  and

treasure:write ... because then the fields would always be part of our API. Instead, use

admin:read  and admin:write :

src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 128

129

130

 // ... lines 131 - 249

250

This won't work yet... because these groups are never used. But here's the idea: if the current

user is an admin, then when we serialize, we'll add these two groups.

The tricky part is, right now, groups are static! We set them way up here on the ApiResource

attribute - or on a specific operation - and that's it! But we can make them dynamic.

Hello ContextBuilder

Internally, API Platform has a system called a context builder, which is responsible for building

the normalization or denormalization contexts that are then passed into the serializer. And, we

can hook into that to change the context: like to add extra groups.

Let's do it! Over in src/ApiPlatform/ , create a new class called

AdminGroupsContextBuilder ... and make this implement

SerializerContextBuilderInterface :

class DragonTreasure

{

    #[ApiProperty(security: 'is_granted("EDIT", object)')]

    private bool $isPublished = false;

}

class DragonTreasure

{

    #[Groups(['admin:read', 'admin:write'])]

    private bool $isPublished = false;

}



src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 13

14

Then, go to "Code"->"Generate" - or Command+N  on a Mac - and select "Implement methods"

to create the one we need: createFromRequest() :

src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

It's pretty simple: API Platform will call this, pass us the Request , whether or not we're

normalizing or denormalizing... and then we return the context  array that should be passed to

the serializer.

Let's do some Decoration!

Like we've seen a few times already, our intention is not to replace the core context builder.

Nope, we want the core context builder to do its thing... and then we'll add our own stuff.

To do this, once again, we'll use service decoration. We know how this works: add a

__construct()  method that accepts a private SerializerContextBuilderInterface

and I'll call this $decorated :

namespace App\ApiPlatform;

use ApiPlatform\Serializer\SerializerContextBuilderInterface;

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

}

use Symfony\Component\HttpFoundation\Request;

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

    public function createFromRequest(Request $request, bool 

$normalization, array $extractedAttributes = null): array

    {

        // TODO: Implement createFromRequest() method.

    }

}



src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 7

8

9

10

11

12

 // ... lines 13 - 20

21

Then, down here, say $context = this->decorated->createFromRequest()  passing

$request , $normalization  and $extractedAttributes . Add a dump()  to make sure

this is working and return $context :

src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 13

14

15

16

17

18

19

20

21

To tell Symfony to use our context builder in place of the real one, add our

#[AsDecorator()] .

Here, we need the service ID of whatever the core context builder is. That's something you can

find in the docs: it's api_platform.serializer.context_builder :

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

    public function __construct(private SerializerContextBuilderInterface 

$decorated)

    {

    }

}

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

    public function createFromRequest(Request $request, bool 

$normalization, array $extractedAttributes = null): array

    {

        $context = $this->decorated->createFromRequest($request, 

$normalization, $extractedAttributes);

        dump('I AM WORKING!');

        return $context;

    }

}



src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

 // ... lines 12 - 22

23

Oh, but be careful when using SerializerContextBuilderInterface : there are two of

them. One of is from GraphQL: make sure you select the one from

ApiPlatform\Serializer , unless you are using GraphQL.

Ok! Let's see if it hits our dump! Run all of our tests: I also want to see which fail:

symfony php bin/phpunit

And... okay! We see the dump a bunch of times, followed by two failures. The first is

testAdminCanPatchToEditTreasure . That's the case we're working on right now. We'll

worry about testOwnerCanSeeIsPublishedFieldI  in a minute.

Copy the test method name and rerun that with --filter= :

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

When the Context Builder is Called

Perfect! We see the dump: actually three times, which is interesting. Open up that test so we

can see what's going on. Yup! We're making a single PATCH  request to /api/treasure/1 .

So, the context builder is called 3 times during just one request?

It is! It's called one time when API Platform is querying and loading the DragonTreasure  from

the database. That's... kind of an odd situation because the context is meant to be used for the

serializer... but we're simply querying for the object. But anyway, that's the first time.

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('api_platform.serializer.context_builder')]

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

}



The next two make sense: it's called when the JSON we're sending is denormalized into the

object... and a third time when the final DragonTreasure  is normalized back into JSON.

Anyway, let's hop in and add the dynamic groups. To determine if the user is an admin, add a

second constructor argument - private Security  from SecurityBundle  called

$security :

src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

 // ... lines 16 - 26

27

Then down here, if isset($context['groups'])  and

$this->security->isGranted('ROLE_ADMIN') , then we'll add the groups:

$context['groups'][] = . If we're currently normalizing, add admin:read  else add

admin:write :

use Symfony\Bundle\SecurityBundle\Security;

#[AsDecorator('api_platform.serializer.context_builder')]

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

    public function __construct(private SerializerContextBuilderInterface 

$decorated, private Security $security)

    {

    }

}



src/ApiPlatform/AdminGroupsContextBuilder.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

19

20

21

22

23

 // ... lines 24 - 25

26

27

Now, you might be wondering why we're checking if isset($context['groups']) . Well, it

doesn't apply to our app, but imagine if we were serializing an object that didn't have any

groups  on it - like we never set the normalizationContext  on that ApiResource . In that

case, adding these groups  would cause it to return less fields! Remember, if there are no

serialization groups, the serializer returns every accessible field. But as soon as you add even

one group, it only serializes the things in that one group. So if there aren't any groups , do

nothing and let everything be serialized or deserialized like normal.

Ok! Let's try the test now!

symfony php bin/phpunit --filter=testAdminCanPatchToEditTreasure

It passes! The isPublished  field is being returned if we're an admin user. But... go refresh

the docs... and open the GET one treasure endpoint. Now we do not see isPublished

advertised as a field in our docs... even though it will be returned if we're an admin. That might

be good or bad. It is possible to make the docs load dynamically based on who is logged in, but

that's not something we're going to tackle in this tutorial. We did talk about that in our API

platform 2 tutorial... but the config system has changed.

class AdminGroupsContextBuilder implements 

SerializerContextBuilderInterface

{

    public function createFromRequest(Request $request, bool 

$normalization, array $extractedAttributes = null): array

    {

        $context = $this->decorated->createFromRequest($request, 

$normalization, $extractedAttributes);

        if (isset($context['groups']) && $this->security-

>isGranted('ROLE_ADMIN')) {

            $context['groups'][] = $normalization ? 'admin:read' : 

'admin:write';

        }

    }

}

https://symfonycasts.com/screencast/api-platform2-security
https://symfonycasts.com/screencast/api-platform2-security


Let's dig into the next method, which tests that an owner can see the isPublished  field. This

is currently failing... and it's even trickier than the admin situation because we need to include or

not include the isPublished  field on an object-by-object basis.



Chapter 29: Custom Normalizer

Copy the test method - testOwnerCanSeeIsPublishedField . We just added some magic

so that admin users can see the isPublished  property. This method tests for our next

mission: that owners of a DragonTreasure  can also see this.

Run it with:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

And... it fails: expected null  to be the same as false , because the field isn't returned at all.

To fix this, over in DragonTreasure , add a third special group: owner:read :

src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 128

129

130

 // ... lines 131 - 249

250

Can you see where we're going with this? If we are the owner of a DragonTreasure , we'll add

this group and then the field will be included. However, pulling this off is tricky.

As we talked about in the last video, normalization groups start static: they live up here in our

config. The context builder allows us to make these groups dynamic per request. So, if we're an

admin user, we can add an extra admin:read  group, which will be used when serializing

every object for this entire request.

But in this situation, we need to make the group dynamic per object. Imagine if we're returning

10 DragonTreasure 's: the user may only own one of them, so only that one

DragonTreasure  should be normalized using this extra group.

class DragonTreasure

{

    #[Groups(['admin:read', 'admin:write', 'owner:read'])]

    private bool $isPublished = false;

}



The Job of Normalizers

To handle this level of control, we need a custom normalizer. Normalizers are core to Symfony's

serializer. They're responsible for turning a piece of data - like an ApiResource  object or a

DateTime  object that lives on a property - into a scalar or array value. By creating a custom

normalizer, you can do pretty much any weird thing you want!

Find your terminal and run:

php  bin/console debug:container --tag=serializer.normalizer

I love this: it shows us every single normalizer in our app! We can see stuff that's responsible for

normalizing UUIDs.... this is what normalizes any of our ApiResource  objects to JSON-LD

and here's one for a DateTime . There's a ton of interesting stuff.

Our goal is to create our own normalizer, decorate an existing core normalizer, then add the

dynamic group before that core normalizer is called.

Creating the Normalizer Class

So let's get to work! Over in src/  - it doesn't really matter how we organize things - I'm going

to create a new directory called Normalizer . Let me collapse a few things... so it's easier to

look at. Inside that, add a new class called, how about, AddOwnerGroupsNormalizer . All

normalizers must implement NormalizerInterface ... then go to "Code"->"Generate" or

Command+N  on a Mac and select "Implement methods" to add the two we need:



src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Here's how this works: as soon as we implement NormalizerInterface , anytime any piece

of data is being normalized, it will call our supportsNormalization()  method. There, we

can decide whether or not we know how to normalize that thing. If we return true , the

serializer will then call normalize() , pass us that data, and then we return the normalized

version.

And actually, to avoid some deprecation errors, pop open the parent class. The return type is

this crazy array thingy. Copy that... and add it as the return type. You don't have to do this -

everything would work without it - but you'd get a deprecation warning in your tests.

Down for supportsNormalization() , in Symfony 7, there will be an array $context

argument... and the method will return a bool :

namespace App\Normalizer;

use Symfony\Component\Serializer\Normalizer\NormalizerInterface;

class AddOwnerGroupsNormalizer implements NormalizerInterface

{

    public function normalize(mixed $object, string $format = null, array 

$context = [])

    {

        // TODO: Implement normalize() method.

    }

    public function supportsNormalization(mixed $data, string $format = 

null)

    {

        // TODO: Implement supportsNormalization() method.

    }

}



src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 12

13

14

 // ... lines 15 - 17

18

Which Service do We Decorate?

Before we fill this in or set up decoration, we need to think about which core service we're going

to decorate. Here's my idea: if we replace the main core normalizer  service with this class,

we could add the group then call the decorated normalizer... so that everything then works like

usual, except that it has the extra group.

Back at the terminal, run:

bin/console debug:container normalizer

We get back a bunch of results. That makes sense: there's a main normalizer , but then the

normalizer  itself has lots of other normalizers inside of it to handle different types of data.

So... where is the top level normalizer? It's actually not even in this list: it called serializer .

Though, as we'll see next, even that isn't quite right.

class AddOwnerGroupsNormalizer implements NormalizerInterface

{

    public function normalize(mixed $object, string $format = null, array 

$context = []): array|string|int|float|bool|\ArrayObject|null

    public function supportsNormalization(mixed $data, string $format = 

null, array $context = []): bool

}



Chapter 30: Normalizer Decoration & "Normalizer
Aware"

Our mission is clear: set up our normalizer to decorate Symfony's core normalizer service so

that we can add the owner:read  group when necessary and then call the decorated

normalizer.

Setting up for Decoration

And we know decoration! Add public function __construct()  with

private NormalizerInterface $normalizer :

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

 // ... lines 12 - 23

24

Below in normalize() , add a dump()  then

return $this->normalizer->normalize()  passing $object  $format , and

$context . For supportsNormalization() , do the same thing: call

supportsNormalization()  on the decorated class and pass the args:

use Symfony\Component\Serializer\Normalizer\NormalizerInterface;

class AddOwnerGroupsNormalizer implements NormalizerInterface

{

    public function __construct(private NormalizerInterface $normalizer)

    {

    }

}



src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 12

13

14

15

16

17

18

19

20

21

22

23

24

To complete decoration, head to the top of the class. I'll remove a few old use  statements...

then say #[AsDecorator]  passing serializer , which I mentioned is the service id for the

top-level main normalizer:

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

 // ... lines 11 - 25

26

Ok! We haven't made any changes yet... so we should still see the one failing test. Try it:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Woh! An explosion! Wow.

“ValidationExceptionListener::__construct() : Argument #1 ($serializer )

must be of type SerializerInterface , AddOwnerGroupsNormalizer  given.”

class AddOwnerGroupsNormalizer implements NormalizerInterface

{

    public function normalize(mixed $object, string $format = null, array 

$context = []): array|string|int|float|bool|\ArrayObject|null

    {

        dump('IT WORKS!');

        return $this->normalizer->normalize($object, $format, $context);

    }

    public function supportsNormalization(mixed $data, string $format = 

null, array $context = []): bool

    {

        return $this->normalizer->supportsNormalization($data, $format);

    }

}

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('serializer')]

class AddOwnerGroupsNormalizer implements NormalizerInterface

{

}



Okay? When we add #[AsDecorator('serializer')] , it means that our service replaces

the service known as serializer . So, everyone that's depending on the serializer

service will now be passed us... and then the original serializer  is passed to our

constructor.

So, what's the problem? Decoration has worked several times before. The problem is that the

serializer  service in Symfony is... kind of big. It implements NormalizerInterface , but

also DenormalizerInterface , EncoderInterface , DecoderInterface  and

SerializerInterface ! But our object only implements one of these . And so, when our

class is passed to something that expects an object with one of those other 4 interfaces, it

explodes.

If we truly wanted to decorate the serializer  service, we would need to implement all five of

those interfaces... which is just a ugly and too much. And that's fine!

Decorating a Lower-Level Normalizer

Instead of decorating the top level normalizer , let's decorate one specific normalizer: the one

that's responsible for normalizing ApiResource  objects into JSON-LD . This is another spot

where you can rely on the documentation to give you the exact service ID you need. It's

api_platform.jsonld.normalizer.item :

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

 // ... lines 11 - 25

26

Try the test again: testOwnerCanSeeIsPublishedField

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('api_platform.jsonld.normalizer.item')]

class AddOwnerGroupsNormalizer implements NormalizerInterface

{

}



Yes! We see our dump! And... a 400 error? Let me pop open the response so we can see it.

Strange:

“The injected serializer must be an instance of NormalizerInterface .”

And it's coming from deep inside of API Platform's serializer code. So... decorating normalizers

is not a very friendly process. It's well-documented, but weird. When you decorate this specific

normalizer, you also need to implement SerializerAwareInterface . And that's going to

require you to have a setSerializer()  method. Oh, let me import that use  statement: I

don't know why that didn't come automatically:

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 28

29

30

 // ... lines 31 - 33

34

35

There we go.

Inside, say, if $this->normalizer  is an instanceof SerializerAwareInterface ,

then call $this->normalizer->setSerializer($serializer) :

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 28

29

30

31

32

33

34

35

use Symfony\Component\Serializer\SerializerAwareInterface;

class AddOwnerGroupsNormalizer implements NormalizerInterface, 

SerializerAwareInterface

{

    public function setSerializer(SerializerInterface $serializer)

    {

    }

}

class AddOwnerGroupsNormalizer implements NormalizerInterface, 

SerializerAwareInterface

{

    public function setSerializer(SerializerInterface $serializer)

    {

        if ($this->normalizer instanceof SerializerAwareInterface) {

            $this->normalizer->setSerializer($serializer);

        }

    }

}



I don't even want to get into the details of this: it just happens that the normalizer we're

decorating implements another interface... so we need to also implement it.

Let's try this again.

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

Finally, we have the dump and it's failing the assertion we expect... since we haven't added the

group yet. Let's do that!

Adding the Dynamic Group

Remember the goal: if we own this DragonTreasure , we want to add the owner:read

group. On the constructor, autowire the Security  service as a property:

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 5

6

 // ... lines 7 - 12

13

14

15

16

17

 // ... lines 18 - 38

39

Then, down here, if $object  is an instanceof DragonTreasure  - because this method

will be called for all of our API resource classes - and $this->security->getUser()

equals $object->getOwner() , then call $context['groups'][]  to add owner:read :

use Symfony\Bundle\SecurityBundle\Security;

class AddOwnerGroupsNormalizer implements NormalizerInterface, 

SerializerAwareInterface

{

    public function __construct(private NormalizerInterface $normalizer, 

private Security $security)

    {

    }

}



src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 18

19

20

21

22

23

 // ... lines 24 - 25

26

 // ... lines 27 - 38

39

Phew! Try that test one more time:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedField

We got it! We can now return different fields on an object-by-object basis.

Also Decorating the Denormalizer

If you want to also add owner:write  during denormalization, you would need to implement a

second interface. I'm not going to do the whole thing... but you would implement

DenormalizerInterface , add the two methods needed, call the decorated service... and

change the argument to be a union type of NormalizerInterface  and

DenormalizerInterface .

Finally, the service that you're decorating for denormalization is different: it's

api_platform.serializer.normalizer.item . However, if you want to decorate both

the normalizer and denormalizer in the same class, you'd need to remove #[AsDecorator]

and move the decoration config to services.yaml ... because a single service can't decorate

two things at once. API Platform covers that in their docs.

use App\Entity\DragonTreasure;

class AddOwnerGroupsNormalizer implements NormalizerInterface, 

SerializerAwareInterface

{

    public function normalize(mixed $object, string $format = null, array 

$context = []): array|string|int|float|bool|\ArrayObject|null

    {

        if ($object instanceof DragonTreasure && $this->security-

>getUser() === $object->getOwner()) {

            $context['groups'][] = 'owner:read';

        }

    }

}



Ok, I'm going to undo all of that... and just stick with adding owner:read . Next: now that we

have a custom normalizer, we can easily do wacky things like adding a totally custom field to

our API that doesn't exist in our class.



Chapter 31: Totally Custom Fields

Let's get wild. I want to add a totally custom, crazy new field to our DragonTreasure  API that

does not correspond to any property in our class. Well, actually, we learned in part 1 of this

series that adding custom fields is possible by creating a getter method and adding a

serialization group above it. But, that solution only works if we can calculate the field's value

solely from the data on the object. If, for example, we need to call a service to get the data, then

we're out of luck.

Adding a new field whose data is calculated from a service is another trick up the custom

normalizer's sleeve. And since we already have one set up, I thought we'd use it to see how this

works.

Testing for the IsMe Field

Go to DragonTreasureResourceTest  and find

testOwnerCanSeeIsPublishedField() . Rename this to

testOwnerCanSeeIsPublishedAndIsMineFields() :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 158

159

160

 // ... lines 161 - 178

179

180

This is a bit silly, but if we own a DragonTreasure , we're going to add a new boolean

property called $isMine  set to true . So, down at the bottom, we'll say isMine  and expect it

to be true :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testOwnerCanSeeIsPublishedAndIsMineFields(): void

    {

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 158

159

160

 // ... lines 161 - 166

167

 // ... lines 168 - 175

176

177

178

179

180

Copy that method name, then spin over and run this test:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

Tada! It's null  because the field doesn't exist yet.

Returning the Custom Field

So how can we add this? Now that we've gone through the pain of getting the normalizer set up,

it's easy! The normalizer system will do its thing, return the normalized data, then, between that

and the return  statement, we can... just mess with it!

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testOwnerCanSeeIsPublishedAndIsMineFields(): void

    {

        $this->browser()

            ->assertJsonMatches('isPublished', false)

            ->assertJsonMatches('isMine', true)

        ;

    }

}



src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

21

22

23

24

25

 // ... lines 26 - 30

31

32

 // ... lines 33 - 44

45

Copy the if statement from up here. I could be more clever and reuse code, but it's fine. If the

object is a DragonTreasure  and we own this DragonTreasure , we will say

$normalized['isMine'] = true :

class AddOwnerGroupsNormalizer implements NormalizerInterface, 

SerializerAwareInterface

{

    public function normalize(mixed $object, string $format = null, array 

$context = []): array|string|int|float|bool|\ArrayObject|null

    {

        if ($object instanceof DragonTreasure && $this->security-

>getUser() === $object->getOwner()) {

            $context['groups'][] = 'owner:read';

        }

        $normalized = $this->normalizer->normalize($object, $format, 

$context);

        return $normalized;

    }

}



src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

 // ... lines 21 - 24

25

26

27

28

29

30

31

32

 // ... lines 33 - 44

45

That's it! When we run the test:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

All green!

Custom Fields Missing in the Docs

But there's a practical downside to these custom fields: they will not be documented in our API.

Our API docs have no idea that this exists!

If you do need a super-duper custom field that requires service logic... and you do need it to be

documented, you have two options. First, you could add a non-persisted isMe  property to your

class then populate it with a state provider. We haven't talked about state providers yet, but

they're how data is loaded. For example, our classes are already using a Doctrine state provider

behind the scenes to query the database. We'll cover state providers in part 3 of this series.

class AddOwnerGroupsNormalizer implements NormalizerInterface, 

SerializerAwareInterface

{

    public function normalize(mixed $object, string $format = null, array 

$context = []): array|string|int|float|bool|\ArrayObject|null

    {

        $normalized = $this->normalizer->normalize($object, $format, 

$context);

        if ($object instanceof DragonTreasure && $this->security-

>getUser() === $object->getOwner()) {

            $normalized['isMine'] = true;

        }

        return $normalized;

    }

}



The second solution would be to use the custom normalizer like we did, then try to add the field

to the OpenAPI docs manually via the OpenAPI factory trick that we showed earlier.

Next: suppose a user is allowed to edit something... but there are certain changes to the data

that they are not allowed to make - like they could set a field to foo  but they aren't allowed to

change it to bar  because they don't have enough permissions. How should we handle that? It's

security meets validation.



Chapter 32: Custom Validator

If you need to control how a field like isPublished  is set based on who is logged in, you have

two different situations.

Protecting a Field vs Protecting its Data

First, if you need to prevent certain users from writing to this field entirely, that's what security is

for. The easiest option is to use the #[ApiProperty(security: ...)]  option that we

used earlier above the property. Or you could get fancier and add a dynamic admin:write

group via a context builder. Either way, we're preventing this field from being written entirely.

The second situation is when a user should be allowed to write to a field... but the valid data

they're allowed to set depends on who they are. Like maybe a user is allowed to set

isPublished  to false ... but they're not allowed to set it to true  unless they're an admin.

Let me give you a different example. Right now, when you create a DragonTreasure , we

force the client to pass an owner . We can see this in testPostToCreateTreasure() .

We're going to fix this in a few minutes so that we can leave this field off... and then it'll be set

automatically to whoever is authenticated.

But right now, the owner  field is allowed and required. But who they are allowed to assign as

the owner  depends on who is logged in. For normal users, they should only be allowed to

assign themselves as a user. But for admins, they should be able to assign anyone as the

owner . Heck, maybe in the future we get crazier and there are clans of dragons... and you can

create treasures and assign them to anyone in your clan The point is: the question isn't if we

can set this field, but what data we're allowed to set it to. And that depends on who we are.

Solving with Security or Validation?

Ok, actually, we solved this problem earlier for the Patch()  operation. Let me show you. Find

testPatchToUpdateTreasure() . Then... let's run just that test:



symfony php bin/phpunit --filter=testPatchToUpdateTreasure

And... it passes. This test checks 3 things. First, we log in as the user that owns the

DragonTreasure  and make an update. That's the happy case!

Next, we log in as a different user and try to edit the first user's DragonTreasure . That is not

allowed. And that is a proper use of security : we don't own this DragonTreasure , so we

are not at all allowed to edit it. That's what the security  line is protecting.

For the last part, we log in again as the owner of this DragonTreasure . But then we try to

change the owner to someone else. That's also not allowed and this is the situation we're

talking about. It's currently handled by securityPostDenormalize() . But I want to handle it

instead with validation. Why? Because the question we're answering is this:

“Is the owner  data that's sent valid?”

And... validating data is... the job of validation!

Remove the securityPostDenormalize() :

src/Entity/DragonTreasure.php

 // ... lines 1 - 28

29

 // ... lines 30 - 31

32

 // ... lines 33 - 41

42

 // ... line 43

44

45

 // ... lines 46 - 48

49

 // ... lines 50 - 66

67

 // ... lines 68 - 88

89

90

 // ... lines 91 - 249

250

#[ApiResource(

    operations: [

        new Patch(

            securityPostDenormalize: 'is_granted("EDIT", object)',

        ),

    ],

)]

class DragonTreasure

{

}



And to prove this was important, run the test again:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

Yup! It failed on line 132... which is this one down here. Let's rewrite this with a custom validator,

which is actually a lot nicer.

Creating the Custom Validation

Oh but because this will fail via validation when we're done, change to assertStatus(422) :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 97

98

99

 // ... lines 100 - 126

127

 // ... lines 128 - 134

135

136

137

 // ... lines 138 - 179

180

The idea is that we are allowed to PATCH this user, but we sent invalid data: we can't set this

owner to someone other than ourselves.

Ok, head to the command line and run:

php ./bin/console make:validator

Give it a cool name like IsValidOwnerValidator . In Symfony, validators are two different

classes. Open src/Validator/IsValidOwner.php  first:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPatchToUpdateTreasure()

    {

        $this->browser()

            ->assertStatus(422)

        ;

    }

}



src/Validator/IsValidOwner.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

This lightweight class will be used as the attribute... and it just holds options that we can

configure, like $message , which is enough. Let's change the default message to something a

bit more helpful:

src/Validator/IsValidOwner.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

The second class is the one that will be executed to handle the logic:

namespace App\Validator;

use Symfony\Component\Validator\Constraint;

/**

 * @Annotation

 *

 * @Target({"PROPERTY", "METHOD", "ANNOTATION"})

 */

#[\Attribute(\Attribute::TARGET_PROPERTY | \Attribute::TARGET_METHOD | 

\Attribute::IS_REPEATABLE)]

class IsValidOwner extends Constraint

{

    /*

     * Any public properties become valid options for the annotation.

     * Then, use these in your validator class.

     */

    public $message = 'The value "{{ value }}" is not valid.';

}

class IsValidOwner extends Constraint

{

    public string $message = 'You are not allowed to set the owner to this 

value.';

}



src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

We'll look at that in a moment... but let's use the new constraint first. Over in

DragonTreasure , down on the owner  property... there we go... add the new attribute:

IsValidOwner :

src/Entity/DragonTreasure.php

 // ... lines 1 - 19

20

 // ... lines 21 - 88

89

90

 // ... lines 91 - 135

136

 // ... line 137

138

 // ... lines 139 - 250

251

Filling in the Validator Logic

namespace App\Validator;

use Symfony\Component\Validator\Constraint;

use Symfony\Component\Validator\ConstraintValidator;

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        /* @var App\Validator\IsValidOwner $constraint */

        if (null === $value || '' === $value) {

            return;

        }

        // TODO: implement the validation here

        $this->context->buildViolation($constraint->message)

            ->setParameter('{{ value }}', $value)

            ->addViolation();

    }

}

use App\Validator\IsValidOwner;

class DragonTreasure

{

    #[IsValidOwner]

    private ?User $owner = null;

}



Now that we have this, when our object is validated, Symfony will call

IsValidOwnerValidator  and pass us the $value  - which will be the User  object - and

the constraint, which will be IsValidOwner .

Let's do some clean up. Remove the var  and replace it with

assert($constraint instanceof IsValidOwner) :

src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 23

24

25

That's just to help my editor: we know that Symfony will always pass us that. Next, notice that

it's checking to see if the $value  is null or blank. And if is, it does nothing. If the $owner

property is empty, that should really be handled by a different constraint.

Back in DragonTreasure , add #[Assert\NotNull] :

src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 136

137

 // ... line 138

139

 // ... lines 140 - 251

252

So if they forget to send owner , this will handle that validation error. Back inside our validator, if

we have that situation, we can just return:

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        assert($constraint instanceof IsValidOwner);

        if (null === $value || '' === $value) {

            return;

        }

    }

}

class DragonTreasure

{

    #[Assert\NotNull]

    private ?User $owner = null;

}



src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 23

24

25

Below this, add one more assert()  that $value  is an instanceof User .

Really, Symfony will pass us whatever value is attached to this property... but we know that this

will always be a User :

src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 14

15

16

17

18

19

20

 // ... lines 21 - 23

24

25

Finally, delete setParameter()  - that's not needed in our case - and

$constraint->message  is reading the $message  property:

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        if (null === $value || '' === $value) {

            return;

        }

    }

}

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        if (null === $value || '' === $value) {

            return;

        }

        // constraint is only meant to be used above a User property

        assert($value instanceof User);

    }

}



src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

At this point, we have a functional validator! Except... it's going to fail in all situations. Ah, let's at

least make sure it's being called. Run our test:

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

Beautiful failure! A 422 coming from DragonTreasureResourceTest  line 110... because our

constraint is never satisfied.

Checking for Ownership in the Validator

Finally we can add our business logic. To do the owner check, we need to know who's logged

in. Add a __construct()  method, autowire our favorite Security  class... and I'll put

private  in front of that, so it becomes a property:

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        assert($constraint instanceof IsValidOwner);

        if (null === $value || '' === $value) {

            return;

        }

        // constraint is only meant to be used above a User property

        assert($value instanceof User);

        $this->context->buildViolation($constraint->message)

            ->addViolation();

    }

}



src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

 // ... lines 15 - 34

35

Below, set $user = $this->security->getUser() . And if there is no user for some

reason, throw a LogicException  to make things explode:

src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 23

24

25

26

27

28

29

30

 // ... lines 31 - 33

34

35

Why not trigger a validation error? We could... but in our app, if an anonymous user is somehow

successfully changing a DragonTreasure ... we have some sort of misconfiguration.

Finally, if $value  does not equal $user  - so if the owner  is not the User  - add that

validation failure:

use Symfony\Bundle\SecurityBundle\Security;

class IsValidOwnerValidator extends ConstraintValidator

{

    public function __construct(private Security $security)

    {

    }

}

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        // constraint is only meant to be used above a User property

        assert($value instanceof User);

        $user = $this->security->getUser();

        if (!$user) {

            throw new \LogicException('IsOwnerValidator should only be 

used when a user is logged in.');

        }

    }

}



src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 31

32

33

34

35

36

37

That's it! Let's try this thing!

symfony php bin/phpunit --filter=testPatchToUpdateTreasure

And... bingo! Whether we're creating or editing a DragonTreasure , we are not allowed to set

the owner to someone that is not us.

And we can add whatever other fanciness we want. Like if the user is an admin, return so that

admin users are allowed to assign the owner  to anyone:

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        if ($value !== $user) {

            $this->context->buildViolation($constraint->message)

                ->addViolation();

        }

    }

}



src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

I love this. But... there's still one big security hole: a hole that will allow a user to steal the

treasures of someone else! Not cool! Let's find out what that is next and crush it.

class IsValidOwnerValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        $user = $this->security->getUser();

        if (!$user) {

            throw new \LogicException('IsOwnerValidator should only be 

used when a user is logged in.');

        }

        if ($this->security->isGranted('ROLE_ADMIN')) {

            return;

        }

        if ($value !== $user) {

            $this->context->buildViolation($constraint->message)

                ->addViolation();

        }

    }

}



Chapter 33: Validating how Values Change

We still have a massive problem making sure treasures don't end up stolen! We just covered

the main case: if you make a POST or a PUT request to a treasure endpoint, thanks to our new

validation, we make sure you assign the owner to yourself, unless you're an admin. Yay!

But in our API, when POSTing or PATCHing to a user endpoint, you are allowed to send a

dragonTreasures  field. This, unfortunately allows treasures to be stolen. Simply send a

PATCH  request to modify your own User  record... then set the dragonTreasures  field to an

array containing the IRI strings of some treasures that you do not own. Whoops!

The easiest solution would be to... make the field not writable. So, inside of User , for

dragonTreasures , we would keep this readable, but remove the write group. That would

force everyone to use the /api/treasures  endpoints to manage their treasures.

The Trickiness of this Problem

If you do want to keep the writable dragonTreasures  field... you can, but this problem is

tricky to solve.

Let's think: if you send a dragonTreasures  field that contains the IRI of a treasure you do not

own, that should trigger a validation error. Ok... so maybe we add a validation constraint above

this property? The problem is that, by the time that validation runs, the treasures sent over in

the JSON have already been set onto this dragonTreasures  property. And importantly, the

owner  on those treasures has already been updated to this User !

Remember: when the serializer sees a DragonTreasure  that is not already owned by this

user, it will call addDragonTreasure() ... which then calls setOwner($this) . So, by the

time validation runs, it's going to look like we are the owner of the treasure... even though we

originally weren't!

Using Previous Data?



What can we do? Well, API Platform does have a concept of "previous data". API Platform

clones the data before deserializing the new JSON onto it, which means it is possible to get

what the User  object originally looked like.

Unfortunately, that clone is shallow, meaning that it clones scalar fields - like username  - but

any objects - like the DragonTreasure  objects are not cloned. There's no way via API

Platform to see what they originally looked like.

Testing for the Bug

So, we are going to solve this with validation... but with the help of a special class from Doctrine

called the UnitOfWork .

Alrighty, let's whip up a test to shine a light on this pesky bug. Inside tests/Functional/ ,

open UserResourceTest . Copy the previous test, paste, and call it

testTreasuresCannotBeStolen() . Create a second user with

UserFactory::createOne() ... and we need a DragonTreasure  that we're going to try to

steal. Assign its owner  to $otherUser :

tests/Functional/UserResourceTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 48

49

50

51

52

53

 // ... lines 54 - 66

67

68

Let's do this! We log in as $user , update ourselves - which is allowed - then, for the JSON,

sure, maybe we still send username ... but we also send dragonTreasures  set to an array

with /api/treasures/  and $dragonTreasure->getId() .

At the bottom, assert that this returns a 422:

use App\Factory\DragonTreasureFactory;

class UserResourceTest extends ApiTestCase

{

    public function testTreasuresCannotBeStolen(): void

    {

        $user = UserFactory::createOne();

        $otherUser = UserFactory::createOne();

        $dragonTreasure = DragonTreasureFactory::createOne(['owner' => 

$otherUser]);

    }

}



tests/Functional/UserResourceTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Ok! Copy the method name. We're expecting this to fail:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

And... it does! Status code 200, which means we are allowing treasure to be stolen! Gasp!

Creating the Validator

Ok, let's cook up a new validator class:

use App\Factory\DragonTreasureFactory;

class UserResourceTest extends ApiTestCase

{

    public function testTreasuresCannotBeStolen(): void

    {

        $user = UserFactory::createOne();

        $otherUser = UserFactory::createOne();

        $dragonTreasure = DragonTreasureFactory::createOne(['owner' => 

$otherUser]);

        $this->browser()

            ->actingAs($user)

            ->patch('/api/users/' . $user->getId(), [

                'json' => [

                    'username' => 'changed',

                    'dragonTreasures' => [

                        '/api/treasures/' . $dragonTreasure->getId(),

                    ],

                ],

                'headers' => ['Content-Type' => 'application/merge-

patch+json']

            ])

            ->assertStatus(422);

    }

}



php ./bin/console make:validator

Call it TreasuresAllowedOwnerChange .

Go use this immediately. Above the dragonTreasures  property, add

#[TreasuresAllowedOwnerChange] :

src/Entity/User.php

 // ... lines 1 - 15

16

 // ... lines 17 - 69

70

71

 // ... lines 72 - 107

108

109

 // ... lines 110 - 296

297

Next, over in src/Validator/ , open up the validator class. We'll do some basic cleanup: use

the assert()  function to assert that $constraint  is an instance of

TreasuresAllowedOwnerChange . And also assert that value  is an instance of

Collection  from Doctrine:

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 25

26

27

use App\Validator\TreasuresAllowedOwnerChange;

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    #[TreasuresAllowedOwnerChange]

    private Collection $dragonTreasures;

}

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        assert($constraint instanceof TreasuresAllowedOwnerChange);

        if (null === $value || '' === $value) {

            return;

        }

        // meant to be used above a Collection field

        assert($value instanceof Collection);

    }

}



We know that this will be used above this property... so it will be some sort of collection of

DragonTreasures .

Enter UnitOfWork

But... this will be the collection of DragonTreasure  objects after they've been modified. We

need to ask Doctrine what each DragonTreasure  looked like when it was originally queried

from the database. To do that, we need to grab an internal object from Doctrine called the

UnitOfWork .

On top, add a constructor, autowire EntityManagerInterface $entityManager ... and

make that's a private property:

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

13

14

15

 // ... lines 16 - 40

41

Below, grab the unit of work with

$unitOfWork = $this->entityManager->getUnitOfWork() :

use Doctrine\ORM\EntityManagerInterface;

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

    public function __construct(private EntityManagerInterface 

$entityManager)

    {

    }

}



src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 24

25

26

27

28

 // ... lines 29 - 39

40

41

This is a powerful object that keeps track of how entity objects are changing and is responsible

for knowing which objects need to be inserted, updated or deleted from the database when the

entity manager flushes.

Next, foreach  over $value  - which will be a collection - as $dragonTreasure . To help

my editor, I'll assert that $dragonTreasure  is an instance of DragonTreasure . And now,

get the original data:

$originalData = $unitOfWork->getOriginalEntityData($dragonTreasure) .

Pretty sweet right? Let's dd($dragonTreasure)  and $originalData  so we can see what

they look like:

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        // meant to be used above a Collection field

        assert($value instanceof Collection);

        $unitOfWork = $this->entityManager->getUnitOfWork();

    }

}



src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 39

40

41

Go test go:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

Yes! It hit the dump! And this is cool! The first part is the updated DragonTreasure  object and

its owner has ID 1. It's not super obvious, but $user  will be id 1 and $otherUser  will be id 2.

So the owner was originally ID 2, but yeah: user id 1 has stolen it! Below this, we see the

original data as an array. And its owner was ID 2!

This info makes us dangerous. Back inside our validator, say $originalOwnerId  =

originalData['owner_id'] . And to be super clear, set $newOwnerId  to

$dragonTreasure->getOwner()->getId() .

If these don't match, we have a problem. Well actually, if we don't have an

$originalOwnerId , we're creating a new DragonTreasure  and that's ok. So if there is no

$originalOwnerId  or the $originalOwnerId  is equal to the $newOwnerId , we're good!

Else... there's some plundering happening! Move the $violationBuilder  up, but remove

setParameter() :

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        $unitOfWork = $this->entityManager->getUnitOfWork();

        foreach ($value as $dragonTreasure) {

            assert($dragonTreasure instanceof DragonTreasure);

            $originalData = $unitOfWork-

>getOriginalEntityData($dragonTreasure);

            dd($dragonTreasure, $originalData);

        }

    }

}



src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

That's it!

Oh, but I never customized the error message. In the Constraint  class, give the $message

property a better default message:

src/Validator/TreasuresAllowedOwnerChange.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

All right team, moment of truth! Run that test:

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

    public function validate($value, Constraint $constraint)

    {

        $unitOfWork = $this->entityManager->getUnitOfWork();

        foreach ($value as $dragonTreasure) {

            assert($dragonTreasure instanceof DragonTreasure);

            $originalData = $unitOfWork-

>getOriginalEntityData($dragonTreasure);

            $originalOwnerId = $originalData['owner_id'];

            $newOwnerId = $dragonTreasure->getOwner()->getId();

            if (!$originalOwnerId || $originalOwnerId === $newOwnerId) {

                return;

            }

            // the owner is being changed

            $this->context->buildViolation($constraint->message)

                ->addViolation();

        }

    }

}

class TreasuresAllowedOwnerChange extends Constraint

{

    public string $message = 'One of the treasures illegally changed 

owners.';

}



symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

Nailed it! Treasure stealing is officially off the table. Oh, and though I didn't do it, we could also

inject the Security  service to allow admin users to do whatever they want.

Up next: when we create a DragonTreasure , we must send the owner  field. Let's finally

make that optional. If we don't pass the owner , we'll set it to the currently authenticated user.

To do that, we need to hook into API platform's "saving" process one more time.



Chapter 34: Auto Setting the "owner"

Every DragonTreasure  must have an owner ... and to set that, when you POST  to create a

treasure, we require that field. I think we should make that optional. So, in the test, stop sending

the owner  field:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 41

42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 51

52

 // ... lines 53 - 56

57

58

 // ... lines 59 - 60

61

62

 // ... lines 63 - 179

180

When this happens, let's automatically set it to the currently-authenticated user.

Make sure the test fails. Copy the method name... and run it:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Nailed it. Got a 422, 201 expected. That 422 is a validation error from the owner  property: this

value should not be null.

Removing the Owner Validation

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPostToCreateTreasure(): void

    {

        $this->browser()

            ->post('/api/treasures', HttpOptions::json([

                'owner' => '/api/users/'.$user->getId(),

            ]))

        ;

    }

}



If we're going to make it optional, we need to remove that Assert\NotNull :

src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 136

137

 // ... line 138

139

 // ... lines 140 - 251

252

And now when we try the test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Well hello there gorgeous 500 error! Probably it's because the null owner_id  is going kaboom

when it hits the database. Yup!

Using the State Processors

So: how can we automatically set this field when it's not sent? In the previous API Platform 2

tutorial, I did this with an entity listener, which is a fine solution. But in API Platform 3, just like

when we hashed the user password, there's now a really nice system for this: the state

processor system.

As a reminder, our POST and PATCH endpoints for DragonTreasure  already have a state

processor that comes from Doctrine: it's responsible for saving the object to the database. Our

goal will feel familiar at this point: to decorate that state process so we can run extra code

before saving.

Like before, start by running:

php bin/console make:state-processor

class DragonTreasure

{

    #[Assert\NotNull]

    private ?User $owner = null;

}



Call it DragonTreasureSetOwnerProcessor :

src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

Over in src/State/ , open that up. Ok, let's decorate! Add the construct method with

private ProcessorInterface $innerProcessor :

src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

 // ... lines 15 - 19

20

 Tip

In API Platform 3.2 and higher, you should

return $this->innerProcessor->process() . This is also a safe thing to do in 3.0 &

3.1.

Then down in process() , call that! This method doesn't return anything - it has a void  return

- so we just need $this->innerProcessor  - don't forget that part like I am - ->process()

passing $data , $operation , $uriVariables  and $context :

namespace App\State;

use ApiPlatform\Metadata\Operation;

use ApiPlatform\State\ProcessorInterface;

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        // Handle the state

    }

}

use ApiPlatform\State\ProcessorInterface;

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

    public function __construct(private ProcessorInterface 

$innerProcessor)

    {

    }

}



src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

Now, to make Symfony use our state processor instead of the normal one from Doctrine, add

#[AsDecorator] ... and the id of the service is

api_platform.doctrine.orm.state.persist_processor :

src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 6

7

8

9

10

11

 // ... lines 12 - 19

20

Cool! Now, everything that uses that service in the system will be passed our service instead...

and then the original will be passed into us.

Decorating Multiple Times is Ok!

Oh, and there's something cool going on. Look at UserHashPasswordStateProcessor .

We're decorating the same thing there! Yea, we're decorating that service twice, which is totally

allowed! Internally, this will create a, sort of, chain of decorated services.

Ok, let's get to work setting the owner. Autowire our favorite Security  service so we can

figure out who is logged in:

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        $this->innerProcessor->process($data, $operation, $uriVariables, 

$context);

    }

}

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('api_platform.doctrine.orm.state.persist_processor')]

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

}



src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 7

8

 // ... lines 9 - 11

12

13

14

15

16

 // ... lines 17 - 25

26

Then, before we do the saving, if $data  is an instanceof DragonTreasure  and

$data->getOwner()  is null and $this->security->getUser()  - making sure the user

is logged in - then $data->setOwner($this->security->getUser()) :

src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

20

21

22

23

24

25

26

That should do it! Run that test:

symfony php bin/phpunit --filter=testPostToCreateTreasure

Yikes! Allowed memory size exhausted. I smell recursion! Because... I'm calling process()  on

myself: I need $this->innerProcessor->process() :

use Symfony\Bundle\SecurityBundle\Security;

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

    public function __construct(private ProcessorInterface 

$innerProcessor, private Security $security)

    {

    }

}

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        if ($data instanceof DragonTreasure && $data->getOwner() === null 

&& $this->security->getUser()) {

            $data->setOwner($this->security->getUser());

        }

        $this->innerProcessor->process($data, $operation, $uriVariables, 

$context);

    }

}



src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 23

24

25

26

Now:

symfony php bin/phpunit --filter=testPostToCreateTreasure

A passing test is so much cooler than recursion. And the owner field is now optional!

Next: we currently return all treasures from our GET collection endpoint, including unpublished

treasures. Let's fix that by modifying the query behind that endpoint to hide them.

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

    public function process(mixed $data, Operation $operation, array 

$uriVariables = [], array $context = []): void

    {

        $this->innerProcessor->process($data, $operation, $uriVariables, 

$context);

    }

}



Chapter 35: Query Extension: Auto-Filter a
Collection

When we get a collection of treasures, we currently return every treasure, even unpublished

treasures. Probably some of these are unpublished. We did add a filter to control this... but let's

be honest, that's not the best solution. Really, we need to not return unpublished treasures at

all.

Find the API Platform Upgrade Guide... and search for the word "state" to find a section that

talks about "providers" and "processors". We talked about state processors earlier, like the

PersistProcessor  on the Put  and Post  operations, which is responsible for saving the

item to the database.

State Providers

But each operation also has something called a state provider. This is what's responsible for

loading the object or collection of objects. For example, when we make a GET request for a

single item, the ItemProvider  is what's responsible for taking the ID and querying the

database. There's also a CollectionProvider  to load a collection of items.

So if we want to automatically hide unpublished treasures, one option would be to decorate this

CollectionProvider , very much like we did with the PersistProcessor . Except... that

won't quite work. Why? The CollectionProvider  from Doctrine executes the query and

returns the results. So all we would be able to do is take those results... then hide the ones we

don't want. That's... not ideal for performance - imagine loading 50 treasures then only showing

10 - and it would confuse pagination. What we really want to do is modify the query itself: to add

a WHERE isPublished = true .

Testing for the Behavior

Luckily for us, this CollectionProvider  "provides" its own extension point that lets us do

exactly that.

https://api-platform.com/docs/core/upgrade-guide/#api-platform-2730


Before we dive in, let's update a test to show the behavior we want. Find

testGetCollectionOfTreasures() . Take control of these 5 treasures and make them all

isPublished => true :

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 16

17

18

19

20

21

 // ... lines 22 - 44

45

 // ... lines 46 - 183

184

because right now, in DragonTreasureFactory , isPublished  is set to a random value:

src/Factory/DragonTreasureFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 46

47

48

49

 // ... lines 50 - 51

52

 // ... lines 53 - 56

57

58

 // ... lines 59 - 73

74

Then add one more with createOne()  and isPublished  false:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        DragonTreasureFactory::createMany(5, [

            'isPublished' => true,

        ]);

    }

}

final class DragonTreasureFactory extends ModelFactory

{

    protected function getDefaults(): array

    {

        return [

            'isPublished' => self::faker()->boolean(),

        ];

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 16

17

18

19

20

21

22

23

24

 // ... lines 25 - 44

45

 // ... lines 46 - 183

184

Awesome! And we still want to assert that this returns just 5 items. So... let's make sure it fails:

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

And... yea! It returns 6 items.

Collection Query Extensions

Ok, to modify the query for a collection endpoint, we're going to create something called a query

extension. Anywhere in src/  - I'll do it in the ApiPlatform/  directory - create a new class

called DragonTreasureIsPublishedExtension . Make this implement

QueryCollectionExtensionInterface , then go to "Code"->"Generate" or Command+N

on a Mac - and generate the one method we need: applyToCollection() :

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testGetCollectionOfTreasures(): void

    {

        DragonTreasureFactory::createMany(5, [

            'isPublished' => true,

        ]);

        DragonTreasureFactory::createOne([

            'isPublished' => false,

        ]);

    }

}



src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

This is pretty cool: it passes us the $queryBuilder  and a few other pieces of info. Then, we

can modify that QueryBuilder . The best part? The QueryBuilder  already takes into

account things like pagination and any filters that have been applied. So those are not things we

need to worry about.

Also, thanks to Symfony's autoconfiguration system, just by creating this class and making it

implement this interface, it will already be called whenever a collection endpoint is used!

Query Extension Logic

In fact, it will be called for any resource. So the first thing we need is

if (DragonTreasure::class !== $resourceClass)  - fortunately it passes us the

class name - then return:

namespace App\ApiPlatform;

use ApiPlatform\Doctrine\Orm\Extension\QueryCollectionExtensionInterface;

use ApiPlatform\Doctrine\Orm\Util\QueryNameGeneratorInterface;

use ApiPlatform\Metadata\Operation;

use Doctrine\ORM\QueryBuilder;

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface

{

    public function applyToCollection(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

Operation $operation = null, array $context = []): void

    {

        // TODO: Implement applyToCollection() method.

    }

}



src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 21

22

23

Below, this is where we get to work. Now, every QueryBuilder  object has a root alias that

refers to the class or table that you're querying. Usually, we create the QueryBuilder ... like

from inside a repository we say something like $this->createQueryBuilder('d')  and d

becomes that "root alias". Then we use that in other parts of the query.

However, in this situation, we didn't create the QueryBuilder , so we never chose that root

alias. It was chosen for us. What is it? It's: "banana". Actually, I have no idea what it is! But we

can get it with $queryBuilder->getRootAliases()[0] :

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

 // ... lines 20 - 21

22

23

use App\Entity\DragonTreasure;

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface

{

    public function applyToCollection(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

Operation $operation = null, array $context = []): void

    {

        if (DragonTreasure::class !== $resourceClass) {

            return;

        }

    }

}

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface

{

    public function applyToCollection(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

Operation $operation = null, array $context = []): void

    {

        if (DragonTreasure::class !== $resourceClass) {

            return;

        }

        $rootAlias = $queryBuilder->getRootAliases()[0];

    }

}



Now it's just normal query logic: $queryBuilder->andWhere()  passing sprintf() . This

looks a little weird: %s.isPublished = :isPublished , then pass $rootAlias  followed

by ->setParameter('isPublished', true) :

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

Cool! Spin over to try this thing!

symfony php bin/console phpunit --filter=testGetCollectionOfTreasures

Mission accomplished! It's just that easy.

Query Extensions on SubResources?

By the way, will this also work for sub-resources? For example, over in our docs, we can also

fetch a collection of treasures by going to /api/users/{user_id}/treasures . Will this

also hide the unpublished treasures? The answer is... yes! So, it's not something you need to

worry about. I won't show it, but this also uses the query extension.

Oh, and if you wanted admin users to be able to see unpublished treasures, you could add logic

to only modify this query if the current user is not an admin.

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface

{

    public function applyToCollection(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

Operation $operation = null, array $context = []): void

    {

        if (DragonTreasure::class !== $resourceClass) {

            return;

        }

        $rootAlias = $queryBuilder->getRootAliases()[0];

        $queryBuilder->andWhere(sprintf('%s.isPublished = :isPublished', 

$rootAlias))

            ->setParameter('isPublished', true);

    }

}



Next up: this query extension fixes the collection endpoint! But... someone could still fetch a

single unpublished treasure directly by its id. Let's fix that!



Chapter 36: 404 On Unpublished Items

We've stopped returning unpublished treasures from the treasure collection endpoint, but you

can still fetch them from the GET one endpoint. That's because these

QueryCollectionExtensionInterface  classes are only called when we are fetching a

collection of items: not when we're selecting a single item.

To prove this, go into our test. Duplicate the collection test, paste, and call it

testGetOneUnpublishedTreasure404s() . Inside, create just one DragonTreasure

that's unpublished... and make a ->get()  request to /api/treasures/ ... oh! I need a

$dragonTreasure  variable. That's better. Now add $dragonTreasure->getId() .

At the bottom, assert that the status is 404... and we don't need any of these assertions, or this

$json  variable:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 46

47

48

49

50

51

52

53

54

55

56

 // ... lines 57 - 194

195

Very simple! Grab that method name and, you know the drill. Run just that test:

symfony php bin/phpunit --filter=testGetOneUnpublishedTreasure404s

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testGetOneUnpublishedTreasure404s(): void

    {

        $dragonTreasure = DragonTreasureFactory::createOne([

            'isPublished' => false,

        ]);

        $this->browser()

            ->get('/api/treasures/'.$dragonTreasure->getId())

            ->assertStatus(404);

    }

}



And... yep! It currently returns a 200 status code.

Hello Query Item Extensions

How do we fix this? Well... just like how there's a QueryCollectionExtensionInterface

for the collection endpoint, there's also a QueryItemExtensionInterface  that's used

whenever API Platform queries for a single item.

You can create a totally separate class for this... but you can also combine them. Add a second

interface for QueryItemExtensionInterface . Then, scroll down and go to "Code"-

>"Generate" - or Command+N  on a Mac - to add the one method we're missing:

applyToItem() :

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 5

6

 // ... lines 7 - 11

12

13

 // ... lines 14 - 24

25

26

27

28

29

Yea, it's almost identical to the collection method.... it works the same way... and we even need

the same logic! So, copy the code we need, then go to the Refactor menu and say "Refactor

this", which is also Control+T  on a Mac. Select to extract this to a method... and call it

addIsPublishedWhere() :

use ApiPlatform\Doctrine\Orm\Extension\QueryItemExtensionInterface;

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    public function applyToItem(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

array $identifiers, Operation $operation = null, array $context = []): 

void

    {

        // TODO: Implement applyToItem() method.

    }

}



src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 23

24

25

26

27

28

29

30

 // ... lines 31 - 34

35

36

37

38

39

Awesome! I'll clean things up... and, you know what? I should have added this if  statement

inside there too. So let's move that:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 28

29

30

31

32

33

34

35

36

37

38

39

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    /**

     * @param string $resourceClass

     * @param QueryBuilder $queryBuilder

     * @return void

     */

    private function addIsPublishedWhere(string $resourceClass, 

QueryBuilder $queryBuilder): void

    {

        $rootAlias = $queryBuilder->getRootAliases()[0];

        $queryBuilder->andWhere(sprintf('%s.isPublished = :isPublished', 

$rootAlias))

            ->setParameter('isPublished', true);

    }

}

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    private function addIsPublishedWhere(string $resourceClass, 

QueryBuilder $queryBuilder): void

    {

        if (DragonTreasure::class !== $resourceClass) {

            return;

        }

        $rootAlias = $queryBuilder->getRootAliases()[0];

        $queryBuilder->andWhere(sprintf('%s.isPublished = :isPublished', 

$rootAlias))

            ->setParameter('isPublished', true);

    }

}



Which means we need a string $resourceClass  argument. Above, pass

$resourceClass  to the method:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 11

12

13

14

15

16

17

 // ... lines 18 - 38

39

Perfect! Now, in applyToItem() , call that same method:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 18

19

20

21

22

 // ... lines 23 - 38

39

Ok, we're ready! Try the test now:

symfony php bin/phpunit --filter=testGetOneUnpublishedTreasure404s

And... it passes!

Fixing our Test Suite

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    public function applyToCollection(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

Operation $operation = null, array $context = []): void

    {

        $this->addIsPublishedWhere($resourceClass, $queryBuilder);

    }

}

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    public function applyToItem(QueryBuilder $queryBuilder, 

QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, 

array $identifiers, Operation $operation = null, array $context = []): 

void

    {

        $this->addIsPublishedWhere($resourceClass, $queryBuilder);

    }

}



We've been tinkering with our code quite a bit, so it's time for a test-a-palooza! Run all the tests:

symfony php bin/phpunit

And... whoops! 3 failures - all coming from DragonTreasureResourceTest . The problem is

that, when we created treasures in our tests, we weren't explicit about whether we wanted a

published or unpublished treasure... and that value is set randomly in our factory.

To fix this, we could be explicit by controlling the isPublished  field whenever we create a

treasure. Or... we can be lazier and, in DragonTreasureFactory , set isPublished  to true

by default:

src/Factory/DragonTreasureFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 46

47

48

49

 // ... lines 50 - 51

52

 // ... lines 53 - 56

57

58

 // ... lines 59 - 73

74

Now, to keep our fixture data interesting, when we create the 40 dragon treasures, let's override

isPublished  and manually add some randomness: if a random number from 0 to 10 is

greater than 3, then make it published:

final class DragonTreasureFactory extends ModelFactory

{

    protected function getDefaults(): array

    {

        return [

            'isPublished' => true,

        ];

    }

}



src/DataFixtures/AppFixtures.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 20

21

22

 // ... line 23

24

25

26

 // ... lines 27 - 32

33

34

That should fix most of our tests. Though search for isPublished . Ah yea, we're testing that

an admin can PATCH  to edit a treasure. We created an unpublished DragonTreasure ... just

so we could assert that this was in the response. Let's change this to true  in both places:

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 153

154

155

 // ... line 156

157

158

159

160

161

 // ... lines 162 - 169

170

171

172

 // ... lines 173 - 194

195

There's one other similar test: change isPublished  to true  here as well:

class AppFixtures extends Fixture

{

    public function load(ObjectManager $manager): void

    {

        DragonTreasureFactory::createMany(40, function () {

            return [

                'isPublished' => rand(0, 10) > 3,

            ];

        });

    }

}

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testAdminCanPatchToEditTreasure(): void

    {

        $treasure = DragonTreasureFactory::createOne([

            'isPublished' => true,

        ]);

        $this->browser()

            ->assertJsonMatches('isPublished', true)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 173

174

175

 // ... line 176

177

178

 // ... line 179

180

181

182

 // ... lines 183 - 190

191

 // ... line 192

193

194

195

Now try the tests:

symfony php bin/phpunit

Allowing Updates to an Unpublished Item

They're happy! I'm happy! Well, mostly. We still have one teensie problem. Find the first PATCH

test. We're creating a published DragonTreasure , updating it... and it works just fine. Copy

this entire test... paste it.. but delete the bottom part: we only need the top. Call this method

testPatchUnpublishedWorks() ... then make sure the DragonTreasure  is unpublished:

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testOwnerCanSeeIsPublishedAndIsMineFields(): void

    {

        $treasure = DragonTreasureFactory::createOne([

            'isPublished' => true,

        ]);

        $this->browser()

            ->assertJsonMatches('isPublished', true)

        ;

    }

}



tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 153

154

155

 // ... line 156

157

 // ... line 158

159

160

 // ... lines 161 - 171

172

 // ... lines 173 - 215

216

Think about it: if I have a DragonTreasure  with isPublished  false , I should be able to

update it, right? This is my treasure... I created it and I'm still working on it. We want this to be

allowed.

Will it? You can probably guess:

symfony php bin/phpunit --filter=testPatchUnpublishedWorks

Nope! We get a 404! This is both a feature... and a "gotcha"! When we create a

QueryCollectionExtensionInterface , that's only used for this one collection endpoint.

But when we create an ItemExtensionInterface , that's used whenever we fetch a single

treasure: including for the Delete , Patch  and Put  operations. So, when an owner tries to

Patch  their own DragonTreasure , thanks to our query extension, it can't be found.

There are two solutions for this. First, in applyToItem() , API Platform passes us the

$operation . So we could use this to determine if this a Get , Patch  or Delete  operation

and only apply the logic for some of those.

And... this might make sense. After all, if you're allowed to edit or delete a treasure... that means

you've already passed a security check... so we don't necessarily need to lock things down via

this query extension.

class DragonTreasureResourceTest extends ApiTestCase

{

    public function testPatchUnpublishedWorks()

    {

        $treasure = DragonTreasureFactory::createOne([

            'isPublished' => false,

        ]);

    }

}



The other solution is to change the query to allow owners to see their own treasures. One cool

thing about this solution is that it will also allow unpublished treasures to be returned from the

collection endpoint if the current user is the owner of that treasure.

Let's give this a shot. Add the public function __construct() ... and autowire the

amazing Security  service:

src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 50

51

Below... life gets a bit trickier. Start with $user = $this->security->getUser() . If we

have a user, we're going to modify the QueryBuilder  in a similar... but slightly different way.

Oh, actually, let me bring the $rootAlias  up above my if statement. Now, if the user is logged

in, add OR %s.owner = :owner ... then pass in one more rootAlias ... followed by

->setParameter('owner', $user) .

Else, if there is no user, use the original query. And we need the isPublished  parameter in

both cases... so keep that at the bottom:

use Symfony\Bundle\SecurityBundle\Security;

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    public function __construct(private Security $security)

    {

    }

}



src/ApiPlatform/DragonTreasureIsPublishedExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

I think I like that! Let's see what the test thinks:

symfony php bin/phpunit --filter=testPatchUnpublishedWorks

It likes it too! In fact, all of our tests seem happy.

Ok team: final topic. When we fetch a User  resource, we return its dragon treasures. Does that

collection also include unpublished treasures? Ah... yep it does! Let's talk about why and how to

fix it next.

class DragonTreasureIsPublishedExtension implements 

QueryCollectionExtensionInterface, QueryItemExtensionInterface

{

    private function addIsPublishedWhere(string $resourceClass, 

QueryBuilder $queryBuilder): void

    {

        if (DragonTreasure::class !== $resourceClass) {

            return;

        }

        $rootAlias = $queryBuilder->getRootAliases()[0];

        $user = $this->security->getUser();

        if ($user) {

            $queryBuilder->andWhere(sprintf('%s.isPublished = :isPublished 

OR %s.owner = :owner', $rootAlias, $rootAlias))

                ->setParameter('owner', $user);

        } else {

            $queryBuilder->andWhere(sprintf('%s.isPublished = 

:isPublished', $rootAlias));

        }

        $queryBuilder->setParameter('isPublished', true);

    }

}



Chapter 37: Filtering Relation Collection

Hey, we've made a pretty fancy API! We've got a few sub-resources and embedded relation

data, which is readable and writable. This is all super awesome... but it sure does crank up the

complexity of our API, especially when it comes to security.

For example, we can no longer see unpublished treasures from the GET collection or GET

single endpoints. But we can still see unpublished treasures if you fetch a user and read its

dragonTreasures  field.

Writing the Test

Let's whip up a test real quick to expose this problem. Open our UserResourceTest . At the

bottom, add a public function testUnpublishedTreasuresNotReturned() . Inside that,

create a user with UserFactory::createOne() . Then use DragonTreasureFactory  to

create a treasure that's isPublished  false and has its owner  set to the $user ... just so we

know who the owner is.

For the action, say $this->browser() ... and we do need to log in to use the endpoint... but

we don't care who we're logged in as... so say actingAs()  UserFactory::createOne()

to log in as someone else.

Then ->get()  /api/users/  $user->getId() . Finish with assertJsonMatches()  that

the length()  of dragonTreasures  is zero - using a cool length()  function from that

JMESPath syntax:



tests/Functional/UserResourceTest.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Let's try it! Copy the method... and run it with --filter=  that name:

symfony php bin/phpunit --filter=testUnpublishedTreasuresNotReturned

Ok! It expected 1 to be the same as 0 because we are returning the unpublished treasure... but

we don't want to!

How Relations are Loaded

First... why is this unpublished DragonTreasure  being returned? Didn't we build query

extension classes to prevent exactly this?

Well.... an important thing to understand is that these query extension classes are used for the

main query on an endpoint only. For example, if we use the GET collection endpoint for

treasures, the "main" query is for those treasures and the query collection extension is called.

But when we make a call to a user endpoint - like to GET a single User  - API Platform is not

making a query for any treasures: it's making a query for that one User . Once it has that

User , to get this dragonTreasures  field, it does not make another query for those, at least

class UserResourceTest extends ApiTestCase

{

    public function testUnpublishedTreasuresNotReturned(): void

    {

        $user = UserFactory::createOne();

        DragonTreasureFactory::createOne([

            'isPublished' => false,

            'owner' => $user,

        ]);

        $this->browser()

            ->actingAs(UserFactory::createOne())

            ->get('/api/users/' . $user->getId())

            ->assertJsonMatches('length("dragonTreasures")', 0);

    }

}



not directly. Instead, if you open the User  entity, API Platform - via the serializer - simply calls

getDragonTreasures() .

So it queries for the User , calls ->getDragonTreasures() ... and whatever that returns is

set onto the dragonTreasures  field. And since this returns all related treasures, that's what

we get: including the unpublished ones.

Adding a Filtered Getter Method

How can we fix this? By adding a new method that only returns the published treasures. Say

public function getPublishedDragonTreasures() , which returns a Collection .

Inside, we can get fancy: return $this->dragonTreasures->filter()  passing that a

callback with a DragonTreasure $treasure  argument. Then, return

$treasure->getIsPublished() :

src/Entity/User.php

 // ... lines 1 - 69

70

71

 // ... lines 72 - 216

217

218

219

220

221

222

 // ... lines 223 - 303

304

That's a nifty trick for looping through all the treasures and getting a shiny new collection with

just the published ones.

Side note: one downside to this approach is that if a user has 100 treasures... but only 10 of

them are published, internally, Doctrine will first query for all 100... even though we'll only return

10. If you have large collections, this can be a performance problem. In our Doctrine tutorial, we

talk about fixing this with something called the Criteria system. But with both approaches, the

result is the same: a method that returns a subset of the collection.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    public function getPublishedDragonTreasures(): Collection

    {

        return $this->dragonTreasures->filter(static function 

(DragonTreasure $treasure) {

            return $treasure->getIsPublished();

        });

    }

}

https://symfonycasts.com/screencast/doctrine-relations/collection-criteria


Swapping the Getter into our API

At this point, the new method will work, but it's not yet part of our API. Scroll up to the

dragonTreasures  property. It's currently readable and writable in our API. Make the property

only writable:

src/Entity/User.php

 // ... lines 1 - 69

70

71

 // ... lines 72 - 105

106

 // ... lines 107 - 108

109

 // ... lines 110 - 305

306

Then, down on the new method, add #[Groups('user:read')]  to make this part of our API

and #[SerializedName('dragonTreasures')]  to give it the original name:

src/Entity/User.php

 // ... lines 1 - 69

70

71

 // ... lines 72 - 216

217

218

219

220

 // ... lines 221 - 223

224

 // ... lines 225 - 305

306

Drumroll! Try the test:

symfony php bin/phpunit --filter=testUnpublishedTreasuresNotReturned

It explodes! Because... I have a syntax error. Try it again. All green!

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    #[Groups(['user:write'])]

    private Collection $dragonTreasures;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

    #[Groups(['user:read'])]

    #[SerializedName('dragonTreasures')]

    public function getPublishedDragonTreasures(): Collection

    {

    }

}



And... we're done! You did it! Thank you so much for joining me on this gigantic, cool,

challenging journey into API Platform and security. Parts of this tutorial were pretty complex...

because I want you to be able to solve real, tough security problems.

In the next tutorial, we're going to look at even more custom and powerful things that you can do

with API Platform, including how to use classes for API resources that are not entities.

In the meantime, let us know what you're building and, as always, we're here for you in the

comments section. Alright friends, see ya next time!



With <3 from SymfonyCasts


