
API Platform 3 Part 3: Custom
Resources

Chapter 1: Setup & Ways to Extend API Platform

Fasten your scales, dragon enthusiasts! It's time to dive into the third episode of our riveting API

Platform saga: the episode where things get... let's say: more advanced and interesting.

Episode 1 was our intro, and we covered a lot: pagination, filtering and a ton about serialization:

how our API resource objects are turned into JSON and how the JSON sent by the user is

turned back into those same objects.

Episode 2 was about security and included things like state processors - the key to running

code before or after saving - custom fields, validation, voters, and more.

Custom Api Classes?

That's all good stuff. But, so far, all of our #[ApiResource] classes have been Doctrine

entities. And that's fine! But as your API starts to look different from your entities, making that

work adds complexity: serialization groups, extending normalizers, etc. At some point, it

becomes easier and clearer to stop using your entity directly for your API and, instead, create a

dedicated class. That is the biggest focus of this tutorial... and it'll take us deep into the concept

of state providers and processors... which are basically the core to everything.

Project Setup

All right people, let's do this! I recommend POSTing up and coding along with me: it's more fun,

and you'll get more out of this. Download the course code from this page and, when you unzip

it, you'll find a start/ directory with the same code that I have here - including the all-

important README.md file, which contains all the deets to get this tutorial running.

The last step is to spin over, open a terminal into the project, and run

symfony serve -d

to start the built-in web server at https://127.0.0.1:8000. Say hello to: Treasure Connect! This is

the same app we built in episodes one and two. I have made a few small changes - including

fixing a few deprecations - but nothing major.

The most important page is /api where we can see our two API resources: Treasure and

User. And we made these fairly complex! We have sub-resources, custom fields, complex

security, etc. But again, for both DragonTreasure and User , the #[ApiResource]

attribute is above an entity class. In a bit, we'll re-create this same API setup, but with dedicated

classes.

src/Entity/User.php

 // ... lines 1 - 27

28

 // ... line 29

30

31

32

 // ... lines 33 - 43

44

45

46

 // ... lines 47 - 50

51

52

53

54

 // ... lines 55 - 65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 307

Custom Controllers? Event Listeners?

Before we hop in, I'm going to search for "API platform extending" to find one of my favorite

pages on the API Platform documentation. It answers a simple but powerful question: what are

all the different ways that I can extend API platform? For example, state processors are the best

way to run code before or after you save something: a topic we talked about in the last tutorial.

So, this page is great and I want you to know about it. But I'm also here to mention a couple of

things that we are not going to talk about. First, we are not going to talk about building

#[ApiResource(

 operations: [

 new Get(),

 new GetCollection(),

],

 normalizationContext: ['groups' => ['user:read']],

 denormalizationContext: ['groups' => ['user:write']],

)]

#[ApiResource(

 uriTemplate: '/treasures/{treasure_id}/owner.{_format}',

 operations: [new Get()],

)]

class User implements UserInterface, PasswordAuthenticatedUserInterface

https://127.0.0.1:8000/

operations with custom controllers. Heck, that's not even in this list! The reason: there's always

a better way - a different extension point - to do that. For example, you might create a custom

operation or even a custom ApiResource class with a state processor that allows you to do

whatever weird work your custom operation needs.

We're also not going to talk about event listeners: these kernel events. It's for the same reason:

there are different extensions points we can use. These events also only work for REST: they

won't work for GraphQL. And... it looks like the next version of API Platform - version 3.2 - may

even remove these events in favor of a new internal system that leverages state providers and

state processors even more.

Ok team: time to get to work. Next, let's use a state provider to add a totally custom field to one

of our API resources. But unlike when we did this in the previous tutorial, this field will be

properly documented in our API.

Chapter 2: State Providers, Processors & a
Custom Field

API Platform 3 rolled out snazzy new concepts called State Providers and State Processors.

We chatted about them in the last tutorial and we're going to dive even deeper in this tutorial.

Providers & Processors Basics

Nestled within the "Upgrade Guide" of API Platform's docs lives one of my favorite sections on

this very topic. Each API resource class - whether it's an entity or a normal class - will have a

State Provider. Its job is to load the data, like from the database... or wherever. Each API

resource class will also have a State Processor whose jobs is to save the data, like on a POST

or PATCH request. It's also responsible for deleting.

The big bonus is that if your API resource is an entity, you automatically get a set of State

Providers and State Processors. For example, the GetCollection operation uses a core

CollectionProvider , which queries the database for you. And there's a similar

ItemProvider to fetch one item from the database.

Entities also gets a complimentary PersistProcessor , which, no surprise, persists your data

to the database.

In Episode 2, we decorated the PersistProcessor for the User entity. This let us hash the

plain password up here... before calling the core PersistProcessor to handle the saving.

src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

20

21

22

23

24

25

26

Good & Better Ways to Add a Custom Field

We're talking about this because we can use a similar trick with the state provider to add a

custom field: a field that you want in your API, but that doesn't live in the database.

In the last episode, we learned that one way to add a custom field is by extending the

normalizer. We did this in AddOwnerGroupsNormalizer . Well, this does a few things, but

importantly for us: if the object is a DragonTreasure - so if a DragonTreasure is being

turned into JSON - and the currently authenticated user is the owner of that treasure, then add a

totally custom isMine field.

class UserHashPasswordStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 if ($data instanceof User && $data->getPlainPassword()) {

 $data->setPassword($this->userPasswordHasher-

>hashPassword($data, $data->getPlainPassword()));

 }

 $this->innerProcessor->process($data, $operation, $uriVariables,

$context);

 }

}

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 54

55

We can see this in our tests: tests/Functional/DragonTreasureResourceTest.php

Search for isMine . Yep: testOwnerCanSeeIsPublishedAndIsMineFields . The

important part is the bottom: when the treasure is serialized, isMine should be in the

response.

class AddOwnerGroupsNormalizer implements NormalizerInterface,

SerializerAwareInterface

{

 public function normalize(mixed $object, string $format = null, array

$context = []): array|string|int|float|bool|\ArrayObject|null

 {

 if ($object instanceof DragonTreasure && $this->security-

>getUser() === $object->getOwner()) {

 $context['groups'][] = 'owner:read';

 }

 $normalized = $this->normalizer->normalize($object, $format,

$context);

 if ($object instanceof DragonTreasure && $this->security-

>getUser() === $object->getOwner()) {

 $normalized['isMine'] = true;

 }

 return $normalized;

 }

}

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 196

197

198

 // ... lines 199 - 204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

This works great... except for one hiccup: in the documentation... there is no mention of the

isMine field! It will be returned, but it's not documented.

If this matters to you, there are two better ways to handle this: add a non-persisted field to your

entity - that's what we'll do in a moment - or create a totally custom API resource class. That will

be our big topic later.

Adding the Non-Persisted Field

Step 1: remove the code in the normalizer... and just return. Copy the test method name... to

make sure this fails:

class DragonTreasureResourceTest extends ApiTestCase

{

 public function testOwnerCanSeeIsPublishedAndIsMineFields(): void

 {

 $this->browser()

 ->actingAs($user)

 ->patch('/api/treasures/'.$treasure->getId(), [

 'json' => [

 'value' => 12345,

],

])

 ->assertStatus(200)

 ->assertJsonMatches('value', 12345)

 ->assertJsonMatches('isPublished', true)

 ->assertJsonMatches('isMine', true)

 ;

 }

}

src/Normalizer/AddOwnerGroupsNormalizer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

21

22

23

24

25

26

 // ... lines 27 - 48

49

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

And... yay failure! Expected null to be the same as true from line 215... because no more

isMine field!

Step 2: add this field as a real property on our class: how about

private bool $isOwnedByAuthenticatedUser . Notice this is a non-persisted property:

it only exists to help our API. Doing this isn't super common, but is allowed. Skip down to the

bottom to add a getter and setter.

class AddOwnerGroupsNormalizer implements NormalizerInterface,

SerializerAwareInterface

{

 public function normalize(mixed $object, string $format = null, array

$context = []): array|string|int|float|bool|\ArrayObject|null

 {

 if ($object instanceof DragonTreasure && $this->security-

>getUser() === $object->getOwner()) {

 $context['groups'][] = 'owner:read';

 }

 return $this->normalizer->normalize($object, $format, $context);

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 88

89

90

 // ... lines 91 - 139

140

141

142

143

 // ... lines 144 - 256

257

258

259

260

261

262

263

264

265

266

Oh, and since the property doesn't have a default value, if the property hasn't been initialized,

let's yell so we know.

src/Entity/DragonTreasure.php

 // ... lines 1 - 256

257

258

259

260

261

 // ... lines 262 - 263

264

 // ... lines 265 - 271

Last but not least, we need to expose this property to our API. Do that by putting it into the

group called treasure:read ... and then use SerializedName to call it isMine in the API.

class DragonTreasure

{

 /**

 * @var bool Non-persisted property to help determine if the treasure

is owned by the authenticated user

 */

 private bool $isOwnedByAuthenticatedUser;

 public function isOwnedByAuthenticatedUser(): bool

 {

 return $this->isOwnedByAuthenticatedUser;

 }

 public function setIsOwnedByAuthenticatedUser(bool

$isOwnedByAuthenticatedUser)

 {

 $this->isOwnedByAuthenticatedUser = $isOwnedByAuthenticatedUser;

 }

}

 public function isOwnedByAuthenticatedUser(): bool

 {

 if (!isset($this->isOwnedByAuthenticatedUser)) {

 throw new \LogicException('You must call

setIsOwnedByAuthenticatedUser() before isOwnedByAuthenticatedUser()');

 }

 }

src/Entity/DragonTreasure.php

 // ... lines 1 - 256

257

258

259

260

 // ... lines 261 - 265

266

 // ... lines 267 - 273

If we go run the test now:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

We're greeted with a delicious 500 error! Thanks to the zenstruck/browser library, it saved

that failed response to a file... which we can pop open in our browser. And... yup!

“You must call setIsOwnedByAuthenticatedUser()”

So it's trying to expose the field to our API... but nothing is setting that property. How will we set

it? With a positive attitude! And... mostly a custom state provider. That's next.

 #[Groups(['treasure:read'])]

 #[SerializedName('isMine')]

 public function isOwnedByAuthenticatedUser(): bool

 {

 }

Chapter 3: Decorating the Core State Provider

To populate the non-persisted property on our entity, we'll leverage a custom state provider.

Create one with:

php bin/console make:state-provider

Let's dub it DragonTreasureStateProvider .

Spin over and open this up in src/State/ . Ok, it implements a ProviderInterface which

requires one method: provide() . Our job is to return the DragonTreasure object for the

current API request - which is a Patch request in our test.

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

Before we think about doing that, dd($operation) so we can see if this is executed. When

we try the test... the answer is that it is not called. We get the same error as before.

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 15

class DragonTreasureStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 // Retrieve the state from somewhere

 }

}

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 dd($operation);

 }

So, creating a state provider and implementing ProviderInterface is not enough to make

our class be used. And this is great! We get to control this on an resource-by-resource basis...

or even on an operation-by-operation basis.

In DragonTreasure , way up on top, inside the ApiResource attribute, add provider then

the service ID, which is the class in our case: DragonTreasureStateProvider::class .

src/Entity/DragonTreasure.php

 // ... lines 1 - 19

20

 // ... lines 21 - 30

31

 // ... lines 32 - 64

65

 // ... lines 66 - 68

69

 // ... lines 70 - 90

91

 // ... lines 92 - 275

So now, whenever API Platform needs to "load" a dragon treasure, it will call our provider. And

our test is a perfect example. When we make a PATCH request, the first thing API Platform will

do is ask the state provider to load this treasure. Then it will update it using the JSON.

Watch, when we run the test now:

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

We hit the dump!

Decorating the Provider

But... I don't want to do all the work of querying the database for the dragon treasures...

because there's already a core entity provider that does all that! So let's use it!

Add a constructor... oh and I'll keep that dd() for now. Add a private

ProviderInterface $itemProvider argument.

use App\State\DragonTreasureStateProvider;

#[ApiResource(

 provider: DragonTreasureStateProvider::class,

)]

class DragonTreasure

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 5

6

 // ... line 7

8

9

10

11

12

 // ... lines 13 - 17

18

As a reminder: the Get one, Patch , Put and Delete operations all use the

ItemProvider , which knows to query for a single item. Since our test uses Patch , we're

going to focus on using that provider first.

If we run the test now, it fails. The error is:

“Cannot autowire service DragonTreasureStateProvider : argument itemProvider

references ProviderInterface , but no such service exists.”

Often in Symfony, if we type-hint an interface, Symfony will pass us what we need. But in the

case of ProviderInterface , there are multiple services that implement this - including the

core ItemProvider and CollectionProvider .

This means that we need to tell Symfony which we want. Do that with the handy-dandy

#[Autowire] attribute with service set to ItemProvider::class - make sure to get the

one from ORM .

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 7

8

 // ... line 9

10

11

12

13

14

15

16

 // ... lines 17 - 21

22

use ApiPlatform\State\ProviderInterface;

class DragonTreasureStateProvider implements ProviderInterface

{

 public function __construct(private ProviderInterface $itemProvider)

 {

 }

}

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class DragonTreasureStateProvider implements ProviderInterface

{

 public function __construct(

 #[Autowire(service: ItemProvider::class)] private

ProviderInterface $itemProvider

)

 {

 }

}

And yup! That is a valid service id. There is also a harder-to-remember service id, but API

Platform provides a service alias so that we can just use this. Lovely!

Ok, go test go! Yes! We hit the dump which means that the item provider was injected. So now,

we're dangerous. $treasure equals $this->itemProvider->provide() passing the 3

args.

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 18

19

20

21

 // ... lines 22 - 29

30

 // ... lines 31 - 32

At this point, $treasure will be null or a valuable DragonTreasure object. If it is not a

DragonTreasure instance, return null.

But if we do have a treasure, we're in business! Call setIsOwnedByAuthenticatedUser()

and hardcode true for now. Then return $treasure .

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 22

23

24

25

26

27

28

29

30

 // ... lines 31 - 32

Ok, go test go!

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $treasure = $this->itemProvider->provide($operation,

$uriVariables, $context);

 }

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if (!$treasure instanceof DragonTreasure) {

 return $treasure;

 }

 $treasure->setIsOwnedByAuthenticatedUser(true);

 return $treasure;

 }

symfony php bin/phpunit --filter=testOwnerCanSeeIsPublishedAndIsMineFields

Shazam! We're green! So let's go set that value for real. This is easy enough: add a

private Security argument... and make sure you first arg has a comma.

Then this is true if $this->security->getUser() equals $treasure->getOwner() .

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 11

12

13

14

 // ... line 15

16

17

18

19

20

21

22

 // ... lines 23 - 28

29

30

31

32

33

And... then... the test still passes. Custom field accomplished! And, most importantly, it is

documented inside our API.

However, we did just break our GetCollection endpoint. Let's fix that next.

class DragonTreasureStateProvider implements ProviderInterface

{

 public function __construct(

 private Security $security,

)

 {

 }

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $treasure->setIsOwnedByAuthenticatedUser($this->security-

>getUser() === $treasure->getOwner());

 return $treasure;

 }

}

Chapter 4: Decorating the CollectionProvider

Let's boldly do something that scares most us developers: run the entire test suite:

symfony php bin/phpunit

These were obediently passing when I started the tutorial... but they've decided to rebel! Let's

pop open the failed response. Hmm:

“More than one result was found for query, although one row or none was expected.”

If you view the page source, this is coming from Doctrine... and eventually the core

ItemProvider that we're calling. Back on the docs, the GetCollection operation - which

is the operation used in this test - has a different provider: CollectionProvider .

Unfortunately, when I set provider inside the #[ApiResource] attribute... that set the

provider for every operation. It is possible to set the provider for a specific operation... like

this. But... I like having a single provider for my entire API resource - it's simpler.

To make that happen, we just need to realize that this provider will be called both when fetching

a single item and when fetching a collection of items. For this test, our provider is being called to

fetch a collection... then we're calling the item provider... and weird stuff happens.

dd() the $operation again...

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 20

21

22

23

 // ... lines 24 - 32

33

34

then copy the failing test name... and run just that one:

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

Excellent! A GetCollection object. We can use that to figure out which provider we need!

Let's get the core CollectionProvider injected. Copy the first argument, duplicate it, and

set it to use the CollectionProvider service from ORM. Name it

$collectionProvider .

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 13

14

15

16

 // ... line 17

18

 // ... line 19

20

21

22

 // ... lines 23 - 39

40

Below, check to see if $operation is an instance of CollectionOperationInterface .

Ok, really, only one operation - GetCollection - uses the collection provider... but in case a

class DragonTreasureStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 dd($operation);

 }

}

use ApiPlatform\Doctrine\Orm\State\CollectionProvider;

class DragonTreasureStateProvider implements ProviderInterface

{

 public function __construct(

 #[Autowire(service: CollectionProvider::class)] private

ProviderInterface $collectionProvider,

)

 {

 }

}

custom operation were added, anything that needs a collection will implement this interface. In

this situation, return $this->collectionProvider->provide() and pass in the args.

And... don't forget the method name!

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 23

24

25

26

27

28

 // ... lines 29 - 38

39

 // ... lines 40 - 41

Alrighty! Spin over or run the test again:

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

And... it still explodes. Something about expected null to be the same as 5. Check the response.

Ah! It's our error again! For the item operation, we are setting that property. Now, we need to do

the same thing here: loop over each treasure and set that.

The Paginator Object

But first, what does the collection provider return - an array of treasures? Copy the entire call,

dd() it... and run the test again:

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 return $this->collectionProvider->provide($operation,

$uriVariables, $context);

 }

 }

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 23

24

25

26

27

 // ... line 28

29

 // ... lines 30 - 39

40

 // ... lines 41 - 42

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

Let's see... it's a Paginator object! That's important: that is what powers the pagination for

our collection endpoints. Ok, it's not actually that important right now - we can loop over this

object to get each DragonTreasure - but we'll come back to this later when we create a

custom resource.

Delete the dd() and, instead of the return, say $paginator equals. I'll help my editor by

saying that this is an iterable of DragonTreasure . Now, foreach $paginator as

$treasure ... and then I'll steal the code from below... and paste.

Now that we've modified each item, return $paginator .

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 dd($this->collectionProvider->provide($operation,

$uriVariables, $context));

 }

 }

src/State/DragonTreasureStateProvider.php

 // ... lines 1 - 23

24

25

26

27

28

29

30

31

32

33

34

35

 // ... lines 36 - 45

46

 // ... lines 47 - 48

Let's try it again!

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

It fails again... but at the very end: DragonTreasureResourceTest line 37. Let's go check

that out. So all the way up here, we create some treasures, make a ->get() request to the

collection endpoint, verify some things, and then, below, we grab the first item and check to

make sure it has the right fields. Apparently the isMine property is there... but wasn't

expected?

That's my bad. On a previous adventure, when we added the isMine property, we only added

it when it was true . If a DragonTreasure did not belong to me, the field wasn't there at all...

and it probably should have been. So let's update the test. And now... it's green!

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 /** @var $paginator iterable<DragonTreasure> */

 $paginator = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 foreach ($paginator as $treasure) {

 $treasure->setIsOwnedByAuthenticatedUser($this->security-

>getUser() === $treasure->getOwner());

 }

 return $paginator;

 }

 }

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 35

36

 // ... lines 37 - 45

46

47

48

 // ... lines 49 - 218

219

Re-run everything

symfony php bin/phpunit

POST: No State Provider

Uhhh. down to one failure: testPostToCreateTreasure - with a 500 error. Pop that open in

our browser. Bah! It's our:

“You must call setIsOwnedByAuthenticatedUser() .”

But how is that possible? No matter what, we are setting that value inside our state provider!

However... the POST operation is unique: it's the only operation that does not use a provider.

Ok, Delete doesn't show a provider, but it uses the ItemProvider to load the one item it's

about to delete.

For Post , the JSON is deserialized directly into a TreasureEntity .. then saved. The state

provider is never needed or used.... which means when it serializes to JSON, that property is

still not set.

The fix is in the state processor for DragonTreasure : right before or after saving, we need to

run this same logic. Copy this. We do have a state processor already for DragonTreasure .

class DragonTreasureResourceTest extends ApiTestCase

{

 public function testGetCollectionOfTreasures(): void

 {

 $this->assertSame(array_keys($json->decoded()['hydra:member'][0]),

[

 'isMine',

]);

 }

}

It's meant to set the owner if it's not set... but let's hijack it for this. Right after the save, paste

that. Oh, but the way we created this in the previous episode means that it's called for every

ApiResource. So we need the same if statement from up here: if $data is an instanceof

DragonTreasure , then set that property. I'll... update a couple of variables.

src/State/DragonTreasureSetOwnerProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 25

26

27

28

29

30

So, the object saves, we set the property... and then it's serialized to JSON. Try those tests

again:

symfony php bin/phpunit

All green! Woo! So we already know that we can run code before or after an item saves by

having a custom state processor. But what if we need to run code only when something specific

changes? Like when a DragonTreasure changes from unpublished to published. We'll dive

into that next, starting with making our state processor a bit simpler.

class DragonTreasureSetOwnerProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 if ($data instanceof DragonTreasure) {

 $data->setIsOwnedByAuthenticatedUser($data->getOwner() ===

$this->security->getUser());

 }

 }

}

Chapter 5: Simpler State Processor

Publishing a DragonTreasure is easy: make a Patch request to the treasure endpoint with

isPublished set to true and... celebration! But... what if, when a DragonTreasure is

published, we need to run some custom code - maybe trigger some notifications on the site.

One option is to create a custom operation - like maybe

POST /api/treasures/5/publish . You can do that - and it might be fun to look at in a

future tutorial. But who wants extra work? We can keep that simple Patch request and still run

the code that we want. How? By using a state processor and detecting the change.

Let's start by creating a test that publishes a treasure. At the bottom, copy this last test, paste,

and rename it testPublishTreasure . We start with a user that owns a treasure with

isPublished false . Then we log in as that user, make a ->patch() request to

/api/treasures/ using the id... and send isPublished: true . This should be a 200

status code... and then ->assertJsonMatches() that isPublished is true .

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Simple enough! Copy that test name, spin over and run it:

symfony php bin/phpunit --filter=testPublishTreasure

Whoops! It fails: expected false to be the same as true . That's from the last line: the JSON

still has isPublished false. Maybe... the field isn't writable? Check the groups above that

property. Ah: in a previous tutorial, we made this field writable by admin users, but not normal

users. Add treasure:write .

class DragonTreasureResourceTest extends ApiTestCase

{

 public function testPublishTreasure(): void

 {

 $user = UserFactory::createOne();

 $treasure = DragonTreasureFactory::createOne([

 'owner' => $user,

 'isPublished' => false,

]);

 $this->browser()

 ->actingAs($user)

 ->patch('/api/treasures/'.$treasure->getId(), [

 'json' => [

 'isPublished' => true,

],

])

 ->assertStatus(200)

 ->assertJsonMatches('isPublished', true)

 ;

 }

}

src/Entity/DragonTreasure.php

 // ... lines 1 - 90

91

92

 // ... lines 93 - 130

131

132

 // ... lines 133 - 273

274

That means anyone with access to the Patch operation can write to this field... which in reality,

thanks to the security on that operation... and a custom voter we created... is just admin

users and the owner.

src/Entity/DragonTreasure.php

 // ... lines 1 - 30

31

 // ... lines 32 - 33

34

 // ... lines 35 - 43

44

45

46

 // ... lines 47 - 49

50

 // ... lines 51 - 68

69

 // ... lines 70 - 90

91

 // ... lines 92 - 275

Try the test now:

symfony php bin/phpunit --filter=testPublishTreasure

Got it! To run some code when the treasure is published, we need a state processor. And we

already have one for `DragonTreasure! We originally created it to set the owner to the currently

authenticated user. So... should we jam the new code into here or create a second processor?

It's up to you, but I like to have one processor per resource class. It just makes my life simpler.

But let's rename this class to be more clear: DragonTreasureStateProcessor .

class DragonTreasure

{

 #[Groups(['admin:read', 'admin:write', 'owner:read',

'treasure:write'])]

 private bool $isPublished = false;

}

#[ApiResource(

 operations: [

 new Patch(

 security: 'is_granted("EDIT", object)',

),

],

)]

class DragonTreasure

Changing How Our State Processor Decorates

In the last tutorial, we learned that there are two ways to add a custom state provider or

processor into the system. We used the first method a few minutes ago with the state provider:

create a normal boring service... use #[Autowire] to inject the core services... then set the

provider option on DragonTreasure to point to it.

The other way - which we did in the last tutorial for this class - is to decorate the core processor.

Here, we decorated the PersistProcessor from Doctrine... which means that whenever any

API resource is saved, when it tries to use the core PersistProcessor , our service is called

instead. This was easy to set up because all we needed was #[AsDecorator] and... bam!

Our service started being called for all our resources. But that's also why we need this extra

code that checks which object is being saved.

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 17

18

19

20

21

22

 // ... lines 23 - 28

29

30

Both ways are fine. But for consistency with the provider, let's refactor this to use the other

method. This is 3 steps. First, remove #[AsDecorator] . Suddenly, instead of overriding a

core service, this is a normal, boring service that nobody is using at the moment. Second,

because we're no longer decorating a core service, Symfony won't know what to pass for

$innerProcessor . Break this onto multiple lines... then use the #[Autowire] trick to point

to the core PersistProcessor . And I'll clean up the old use statement.

#[AsDecorator('api_platform.doctrine.orm.state.persist_processor')]

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 if ($data instanceof DragonTreasure && $data->getOwner() === null

&& $this->security->getUser()) {

 $data->setOwner($this->security->getUser());

 }

 }

}

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 33

34

Step 3 is to tell API Platform when to use this processor. In DragonTreasure , we want this to

be used for both our Post and Patch operations. Set processor to

DragonTreasureStateProcessor::class ... and repeat that down for Patch .

src/Entity/DragonTreasure.php

 // ... lines 1 - 19

20

 // ... lines 21 - 31

32

 // ... lines 33 - 34

35

 // ... lines 36 - 41

42

 // ... line 43

44

45

46

 // ... line 47

48

49

 // ... lines 50 - 71

72

 // ... lines 73 - 93

94

 // ... lines 95 - 278

Done! API Platform will call our processor... and it contains the core PersistProcessor so

we can make it do the real work. Re-run the test to give us infinite confidence:

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function __construct(

 #[Autowire(service: PersistProcessor::class)]

 private ProcessorInterface $innerProcessor,

 private Security $security

)

 {

 }

}

use App\State\DragonTreasureStateProcessor;

#[ApiResource(

 operations: [

 new Post(

 processor: DragonTreasureStateProcessor::class,

),

 new Patch(

 processor: DragonTreasureStateProcessor::class,

),

)]

class DragonTreasure

symfony php bin/phpunit --filter=testPublishTreasure

That feels great.

And the nice thing about doing the processor with this method is that you don't need this

conditional code: this will always be a DragonTreasure . To help my editor and prove it,

assert() that $data is an instanceof DragonTreasure .

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

24

 // ... lines 25 - 29

30

31

And my editor is already yelling:

“Hey this code down here isn't needed anymore dude!”

So, remove that too. Now that we've refactored our state processor, let's get back to the task at

hand: running custom code when a treasure becomes published.

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 assert($data instanceof DragonTreasure);

 }

}

Chapter 6: Running Code "On Publish"

Oh, quick, minor thing about state processors. The make:state-processor command

created the process() method with a void return. And... that makes sense. API Platform

passes us the data and our job is just to save that... not return anything.

However, technically the process() method can return something. And, for consistency, I will

return something. Remove the void type and, at the bottom, return $data .

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

 // ... lines 24 - 30

31

32

33

I'll repeat this in UserHashPasswordStateProcessor for consistency.

src/State/UserHashPasswordStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

 // ... lines 20 - 23

24

25

26

Here's the deal: if you return something, that will be the "thing" that is ultimately serialized and

returned as JSON. If you do not return anything, it will serialize $data . So, by returning

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 return $data;

 }

}

class UserHashPasswordStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 return $this->innerProcessor->process($data, $operation,

$uriVariables, $context);

 }

}

$data ... we're not changing any behavior. But it's interesting to know that you could return

something different.

Detecting Changes: previous_data vs UnitOfWork

Ok, back to our goal. After we save, we need to detect if the isPublished field changed from

false to true, so we can run some custom code. But by the time the state processor is called,

the JSON from the user has already been used to update the object. So $data will already

have isPublished true.

In the last tutorial, we had a similar situation with a validator where we needed to check if the

owner of a DragonTreasure had changed. This logic lives in

TreasureAllowToChangeValidator . We start with $value - which is a collection of

DragonTreasure objects, loop over them, then use Doctrine's UnitOfWork to see what

each DragonTreasure looked like when it was originally loaded from the database.

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 27

28

29

 // ... lines 30 - 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 $unitOfWork = $this->entityManager->getUnitOfWork();

 foreach ($value as $dragonTreasure) {

 $originalData = $unitOfWork-

>getOriginalEntityData($dragonTreasure);

 $originalOwnerId = $originalData['owner_id'];

 $newOwnerId = $dragonTreasure->getOwner()->getId();

 if (!$originalOwnerId || $originalOwnerId === $newOwnerId) {

 return;

 }

 // the owner is being changed

 $this->context->buildViolation($constraint->message)

 ->addViolation();

 }

 }

}

Should we use that same trick here to see what the isPublished property originally looked

like? We could... but there's an easier way!

API Platform has a concept of "previous data". When the request starts, API Platform clones the

top-level object. So, if we're editing a DragonTreasure , it grabs that from the database using

our state provider, clones it and, then keeps that "original" clone around in case it comes in

handy. We can use that to see if the value of isPublished changed.

But wait, why didn't we just this "previous data" thing in the last tutorial for the validator? The

reason is subtle. For the validator, the top-level object was a User object. When PHP clones an

object, it's a "shallow" clone: any string, int or boolean properties are copied to the clone. But

any object properties - like the DragonTreasure objects - are not copied: the clone and the

original User objects both point to the same DragonTreasure objects in memory. So when

the owner of those treasures is updated... that affected both the main object and the "previous

object" clone. That is why we had to go deeper and use UnitOfWork .

But in this case, the isPublished property is a boring scalar boolean property. So if we can

get the previous data, that will have the correct, original, isPublished value.

Great! So... how do we get the previous data? Notice we're passed an argument called

$context ... which is full of useful info. Let's dd() that.

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

24

 // ... lines 25 - 32

33

34

Then copy the test name we're working on and... run it:

symfony php bin/phpunit --filter=testPublishTreasure

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 dd($context);

 }

}

Oooo: a bunch of good stuff here. We have the current operation object... and here it is:

previous_data . Check out that beautiful isPublished property: it's false!

Get rid of the dd() . At the bottom, say

$previousData = $context['previous_data'] . And, if it's not there - which will

happen for a POST request - set it to null . I'll paste in the rest of the code that detects if

isPublished changed from false to true. Actually... this is not the best code I've ever written -

it's kinda confusing and won't let you publish immediately via a POST ... but it'll work for our

purposes. Inside, add a dump.

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 30

31

32

33

34

35

36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 42

Let's do it! Run the test:

symfony php bin/phpunit --filter=testPublishTreasure

And... we hit the dump!

Testing for and Creating Notifications

Our project has an unused Notification entity that I created before recording just for this

feature: it relates to a treasure and has a message. Nothing fancy. Let's create one of these

when we publish... by first testing for it. TDD!

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $previousData = $context['previous_data'] ?? null;

 if ($previousData instanceof DragonTreasure

 && $data->getIsPublished()

 && $previousData->getIsPublished() !== $data->getIsPublished()

) {

 dd('published!');

 }

 }

At the end of the test, say NotificationFactory - that's a Foundry factory that I created,

::repository() - to get a repository helper - then ->assert()->count(1) .

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 220

221

222

 // ... lines 223 - 239

240

241

242

With Foundry, our database is always empty at the start of a test: so checking for 1 row is

perfect.

Back in the processor, remove the dd() ... then check that the test fails our new assertion:

symfony php bin/phpunit --filter=testPublishTreasure

Excellent! Back over, start by autowiring a private EntityManagerInterface

$entityManager . Then, below, I'll paste in some boring code that creates a Notification

and persists it.

class DragonTreasureResourceTest extends ApiTestCase

{

 public function testPublishTreasure(): void

 {

 NotificationFactory::repository()->assert()->count(1);

 }

}

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 24

25

26

 // ... lines 27 - 33

34

35

36

37

38

39

40

41

42

43

44

 // ... lines 45 - 46

47

48

Coolio. And the test says...

symfony php bin/phpunit --filter=testPublishTreasure

... that we rock! Next up: time to get crazy by creating a totally custom ApiResource class that is

not an entity.

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $previousData = $context['previous_data'] ?? null;

 if ($previousData instanceof DragonTreasure

 && $data->getIsPublished()

 && $previousData->getIsPublished() !== $data->getIsPublished()

) {

 $notification = new Notification();

 $notification->setDragonTreasure($data);

 $notification->setMessage('Treasure has been published!');

 $this->entityManager->persist($notification);

 $this->entityManager->flush();

 }

 }

}

Chapter 7: Totally Custom Resource

So far, we have two API resource classes: DragonTreasure and User . And both are entity

classes. But having your #[ApiResource] attribute above an entity class isn't a requirement.

You can create any normal boring PHP class you want, sprinkle this #[ApiResource]

attribute on top, and wham, bam! It becomes part of your API. Well, there is some work left, but

we'll see that in a moment.

Why would you want to create a custom class for your API instead of using an entity? Two main

reasons. First: because the data you're serving doesn't come from the database... or it comes

from a mixture of different database tables. Or second: the data you're fetching is coming from

the database... but because your API looks different enough from your entity, you want to clean

things up by having a class for your API separate from your entity class. We'll play with both

cases, starting with the first: when your data comes from somewhere other than a database.

Creating the Class

Here's the situation: each day, we post a one-of-a-kind quest for our dragons to complete. We

want to expose these quests as a new API resource. They'll be able to list all past quests, fetch

a single quest by the date, or update the status of a quest if they complete it. That's pretty easy.

But we're not going to store this data in the database. We're going to pretend that the data

comes from somewhere else.

So, instead of making an entity, we're going to create a brand-new class and put it in this

ApiResource/ directory. This directory was added for us by the API Platform recipe when we

originally installed it... and it's meant to be the home for your API resource classes. Add a new

PHP class... and let's call it DailyQuest .

To make this part of your API, just add #[ApiResource] above the class.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

That's it! Swing by the docs and... tada! It's already in our API documentation! Though, it does

look a bit odd: the single GET operation is missing. Normally, we would see something like

/api/daily_quests/{id} . We'll uncover the mystery of why that's missing in a minute.

ApiResource Class Directories

Oh, and, by the way: to find all of our API resource classes, API Platform scans just two

directories looking for this attribute: src/Entity/ and src/ApiResource . Though, this can

be tweaked in /config/packages/api_platform.yaml with a mapping paths config.

Okay, so... how could this possibly, already be part of our API? It's just a class. Heck, it doesn't

even have any properties! Try the GET collection endpoint. Hit "Execute" and... we get a 404.

So... it's not actually working. If we try the POST endpoint - we're just sending empty data - it

returns a 201 status code as if it was successful... but behind the scenes, absolutely nothing

just happened. No data was created or saved.

Look back at our favorite "upgrade" page on the documentation: the one that talks about

providers and processors. If we add the #[ApiResource] attribute above an entity class, we

get these processors and providers for free. It turns out that... this is really the only difference

between adding #[ApiResource] above a random class and adding above an entity. When

you use #[ApiResource] on an entity, API Platform automatically gives you processors and

providers. When you create a custom class, you start with no providers and no processors. This

means that API Platform has no idea how to load data when you make a GET request... nor

how to process the data at the end of a POST or PATCH request.

Adding those missing pieces is our job! Let's start that next.

namespace App\ApiResource;

use ApiPlatform\Metadata\ApiResource;

#[ApiResource]

class DailyQuest

{

}

Chapter 8: Custom Resource State Provider

We have a shiny new API resource class and... for the most part, we'll use it like normal.

Customizing ApiResource Options

For example, instead of DailyQuests , maybe we change the shortName to just Quest .

When we peek at the docs, as expected, the title changes... along with all the URLs.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

Making the State Provider

To be able to load data and have this collection endpoint not return a 404, we need a state

provider. And it's not just the GET endpoints. The PUT endpoint uses a state provider, as well

as DELETE and PATCH : these all first load the resource, before editing or deleting it.

So let's make a state provider! We've done this before. At your terminal, run:

./bin/console make:state-provider

Call it DailyQuestStateProvider . Awesome name!

Spin back over, open the State/ directory and... there it is! Our job is simple: to return the

DailyQuest object or objects for the current operation.

#[ApiResource(

 shortName: 'Quest'

)]

class DailyQuest

{

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

Let's start super basic: return an array with two hard-coded new DailyQuest() objects.

They're both empty... because that class doesn't have any properties.

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 19

To tell API Platform to use the shiny new provider, in DailyQuest , add provider set to

DailyQuestStateProvider::class .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 5

6

7

8

 // ... line 9

10

11

12

 // ... lines 13 - 16

namespace App\State;

use ApiPlatform\Metadata\Operation;

use ApiPlatform\State\ProviderInterface;

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 // Retrieve the state from somewhere

 }

}

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 return [

 new DailyQuest(),

 new DailyQuest(),

];

 }

use App\State\DailyQuestStateProvider;

#[ApiResource(

 provider: DailyQuestStateProvider::class,

)]

class DailyQuest

Let's give this a whirl! Dash back over to the docs to "Execute" the collection endpoint. And...

yes! No more 404! We get a 200... and it returned 2 items! All they have are the JSON-LD fields

- @id and @type - but that makes sense since the class doesn't have any other properties.

Adding the Identifier

So, yay! But, before we run wild and add more properties, we need to talk about why the GET

one endpoint is missing. We have the GET collection endpoint, but no GET -a-single-item

endpoint. Why?

Every API resource needs an "identifier". Right now, our class does not have an identifier... and

that causes the two GET routes to collide. Let me show you!

Spin over and run:

php bin/console debug:router

I love this. API Platform creates an actual route for every operation of every API resource. I'll

make this a little smaller... better. You can see all the routes for the quests. Here's the one for

_get_collection and, above it, the one for _get_single ... but with the same URL!

Usually, the URL would be /api/quests/{id} ... where id is known as the identifier. But...

our DailyQuest doesn't have any properties... so API Platform has no idea what to use for the

identifier.

So what's the solution? The easiest is to add an $id property: public int $id ... and, for

simplicity, let's add a constructor where we can pass the int $id . Set the property inside.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

20

Over in DailyQuestStateProvider , invent a few IDs: how about 4 and 5 .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

Cool, now dump the routes again:

php bin/console debug:router

Behold! The single GET has a different URL with {id} . The id was also missing from put ,

patch , and delete ... and it's there now too. Over on the docs, when we refresh... we see the

same thing.

The identifier is important because it's used in the URLs... and so it's also used to generate the

@id IRI string for each item. Here, you can see the @id is now pointing to /api/quests/4 .

A non-traditional Identifier with identifier: true

class DailyQuest

{

 public int $id;

 public function __construct(int $id)

 {

 $this->id = $id;

 }

}

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 return [

 new DailyQuest(4),

 new DailyQuest(5),

];

 }

}

But wait, how did API Platform know that the id is the all-important "identifier"... and not just

some normal property? I'm... honestly... not entirely sure. But it seems that the name id is

special... somewhere in API platform. If you name a property id , API Platform says:

“Oh, that must be your identifier!”

And... it's usually not wrong! But, there is a more explicit way to say that a property is an

identifier. Next, instead of an integer identifier, let's see if we can use a date identifier, so we

have URLs like /api/quests/2023-06-05 .

Chapter 9: Using a Custom (Date) Identifier

For our DailyQuest API endpoints, we set up an id as the identifier. But what we really want

is a date... so we can have fancy URLs like /api/quests/2023-06-05 .

Let's try it! In DailyQuest , instead of public int $id , say

public \DateTimeInterface $day . And in the constructor, replace the argument with

\DateTimeInterface $day ... and $this->day = $day .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

20

Next, in DailyQuestStateProvider , we'll say... how about new \DateTime('now') and

new \DateTime('yesterday') .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

When we refresh the docs... we're back to where we were before: we're missing the ID on PUT ,

DELETE , and PATCH , and our single GET is gone. That's because API Platform doesn't know

class DailyQuest

{

 public \DateTimeInterface $day;

 public function __construct(\DateTimeInterface $day)

 {

 $this->day = $day;

 }

}

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 return [

 new DailyQuest(new \DateTime('now')),

 new DailyQuest(new \DateTime('yesterday')),

];

 }

}

that the $day property is meant to be our identifier. Though, if we try the GET collection

endpoint... hey! The day field does show up inside the JSON like a normal property!

What we want to do is tell API Platform:

“Hey! This isn't a normal property: day is our identifier.”

We do that by adding an #[ApiProperty] attribute above this with identifier: true .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

15

16

 // ... lines 17 - 21

22

Debugging IRI Generation Errors

When we check, this does, in fact, fix all of our routes. But when we try the collection endpoint...

we get a 400 error:

“Unable to generate an IRI for the item of type DailyQuest .”

So API Platform loaded our two DailyQuest objects... but when it tried to generate the @id

property (the IRI), for some reason, it exploded!

To find out more, go down to the web debug toolbar and open up that request in the profiler. On

the Exception tab, there were two exceptions on this page: a nested exception situation.

The top level - Unable to generate an IRI - doesn't really tell us why there was a

problem. Down here, we can see:

“We were not able to resolve the identifier matching parameter "day".”

This error isn't super clear either, but it's closer. It's really saying:

use ApiPlatform\Metadata\ApiProperty;

class DailyQuest

{

 #[ApiProperty(identifier: true)]

 public \DateTimeInterface $day;

}

“Yo! I tried to generate the IRI by using the day field... but that's a DateTimeInterface

object... and I don't know how to convert that to a string.”

We actually chose a pretty tricky IRI to work with, and I think that's cool. API Platform does have

a system called "URI variable transformer". The {day} is a variable in the route... and you can

help "transform" the DateTimeInterface object into something that can be used in that

string. The "Identifiers" documentation talks about this.

But there's also a simple solution. Create a new function called getDayString() which will

return a string . Inside, return $this->day->format() with the format we want:

Y-m-d .

Making a Method the Identifier

The trick is to make this method the identifier: move the ApiProperty from the actual

property... down above this.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 21

22

23

24

25

26

27

Perfect! Back over here... the routes still look correct. You can see we have {dayString}

now. And when we try our GET collection endpoint... check it out! We see

"@id": "/api/quests/ and then the date string. That's exactly what we wanted!

Though, now we have a dayString field in the JSON... as well as the day itself. Let's think.

We really don't need the day field at all: it exists internally just to help the dayString . And

because the dayString is in the URL, having that as a field also seems unnecessary. Can we

hide these?

class DailyQuest

{

 #[ApiProperty(identifier: true)]

 public function getDayString(): string

 {

 return $this->day->format('Y-m-d');

 }

}

Hiding Specific Fields from your API

Sure! And we don't even need to use serialization groups! We're going to go deeper into this

later, but above the day property, we can hide this entirely from our API by using an

#[Ignore] attribute from Symfony's serializer.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 7

8

 // ... lines 9 - 13

14

15

16

17

 // ... lines 18 - 28

29

If we head over here and "Execute" that... boom! That field is gone: it can't be read or written.

We could do the same thing for getDayString() . But another option is to say

readable: false . This means it won't be readable, but it will still technically be writable.

However, because there's no setDayString , it's not actually writable.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 23

24

25

 // ... lines 26 - 28

29

Now, when we "Execute" this... that field disappears too.

This is the setup we want! We have the ID we want, we don't have any extra fields that we don't

want, and we can now add whatever fields that we do want. To do that, we're going to build an

Enum.

Create a src/Enum/ directory... and, inside, a new PHP class, or really enum, called

DailyQuestStatusEnum . I'll paste some code here.

use Symfony\Component\Serializer\Annotation\Ignore;

class DailyQuest

{

 #[Ignore]

 public \DateTimeInterface $day;

}

class DailyQuest

{

 #[ApiProperty(readable: false, identifier: true)]

 public function getDayString(): string

}

src/Enum/DailyQuestStatusEnum.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

This is just a way for us to keep track of the status of each DailyQuest . Back over in that

class, let's add some properties: public string $questName ,

public string $description and whatever other properties we need in our API, like

public int $difficultyLevel , and a public DailyQuestStatusEnum called

$status .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 18

19

20

21

22

 // ... lines 23 - 33

34

Null Fields are Hidden

Nice! Let's try this! Head over... and Execute! Hmm, we don't see any of the new fields yet.

That's because they're not populated and, by default, API Platform hides fields that are null or

uninitialized.

But if we refresh the page and go down to the documentation for the response... it shows that

these are part of the API.

Head over to DailyQuestStateProvider so we can populate them. Say

return $this->createQuests() : a new private function we'll create. I'll paste that in as

well: you can grab the code from the code block on this page.

namespace App\Enum;

enum DailyQuestStatusEnum: string

{

 case ACTIVE = 'active';

 case COMPLETED = 'completed';

}

class DailyQuest

{

 public string $questName;

 public string $description;

 public int $difficultyLevel;

 public DailyQuestStatusEnum $status;

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

This creates 50 quests - each one a day further in the past - and populates simple data for the

rest of the fields. Some of the quests will be ACTIVE , and others COMPLETED .

Oh, and notice that I'm using getDayString() as the key for this array. We don't need to do

that: they keys in the array returned by your collection provider are not important. I only did this

because it's going to be handy in a few minutes when we create the get one operation.

Testing time! Move over, hit "Execute" again and... look at that! We have 50 items with data on

all of them. That's gorgeous!

Next: Let's get our provider working for the item operations: meaning when we fetch a single

item. The item provider is used for the GET one operation, PUT , PATCH and DELETE .

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 return $this->createQuests();

 }

 private function createQuests(): array

 {

 $quests = [];

 for ($i = 0; $i < 50; $i++) {

 $quest = new DailyQuest(new \DateTimeImmutable(sprintf('- %d

days', $i)));

 $quest->questName = sprintf('Quest %d', $i);

 $quest->description = sprintf('Description %d', $i);

 $quest->difficultyLevel = $i % 10;

 $quest->status = $i % 2 === 0 ? DailyQuestStatusEnum::ACTIVE :

DailyQuestStatusEnum::COMPLETED;

 $quests[$quest->getDayString()] = $quest;

 }

 return $quests;

 }

}

Chapter 10: Custom Resource Item Provider

Let's try to get a single item. I'll change the date, hit "Execute", and... 200 status code. Hold

your horses... this is returning a collection: the exact same data as our collection endpoint!

Collection vs Item Operations

Ok, each operation can have its own provider. But when we put provider directly under

#[ApiResource] , this becomes the provider for every operation. That's peachy... given you

don't forget that some operations fetch a collection of resources while other fetch a single item.

Inside our provider, the $operation helps us know the difference. dd() that...

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 9

10

11

12

13

14

 // ... line 15

16

 // ... lines 17 - 32

33

Then, over here, copy the URL, paste it in a new tab and add .jsonld to the end. There we

go! This is a Get operation. If we try to fetch the collection, it's GetCollection .

Back in the provider,

if ($operation instanceof CollectionOperationInterface) ,

return $this->createQuests() .

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 dd($operation);

 }

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 36

37

Below, we know this is an "item" operation.

URI Variables

So this does keep the collection operation working. Now, we need a way to extract the date

string from the URL so we can find the one quest that matches. How can we get that?

dd($uriVariables) .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

 // ... lines 21 - 38

When we refresh... behold: there's a dayString inside! Notice that, in DailyQuest , we

never configure what the URL should look like. You can do that, but by default, API Platform

automatically figures out what the route and URL should look like. Run:

php bin/console debug:router

use ApiPlatform\Metadata\CollectionOperationInterface;

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 return $this->createQuests();

 }

 }

}

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 dd($uriVariables);

 }

For the item endpoints, it's /api/quests/{dayString} : the dayString is a wildcard in the

route. In the provider, $uriVariables will contain every variable part of the URI - so

dayString in our case. That makes us dangerous.

Returning a Single Items

Down here, we need to return a single DailyQuest or null. Say

$quests = $this->createQuests() , then

return $quests[$uriVariables['dayString']] or null if it's not set.

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

21

22

 // ... lines 23 - 40

Remember: this works because the array uses dayString for each key. In a real app, we

would want to do this more efficiently: it doesn't make sense to load every quest... just to return

one. But for our test app, this will work fine.

Ok, try that endpoint. Got it! One result. And if we try a random date that doesn't exist... like

"2013"... we get a 404. API Platform sees that we returned null and it handled the 404 for us.

We are now the proud parents of a fully functional state provider! Though we'll talk about this

more soon - including topics like pagination. But next: let's shift our focus to creating a state

processor for our custom resource.

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $quests = $this->createQuests();

 return $quests[$uriVariables['dayString']] ?? null;

 }

Chapter 11: Custom Resource State Processor

We haven't configured the operations key on our #[ApiResource] . And so, we get every

default operation. But we really only need a few. Add operations with a

new GetCollection() , new Get() to fetch a single quest and new Patch() so users

can update the status of an existing quest when they complete it.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 13

14

 // ... line 15

16

17

18

19

20

 // ... line 21

22

23

 // ... lines 24 - 43

Upon refreshing... I love it!

Speaking of that Patch operation, when it's used, API Platform will call the state processor, so

we can save... or do whatever we want. We don't have one yet, so that'll be our next job.

Adding a Patch Test

But let's start with a test. Down in tests/Functional/ , create a new class called

DailyQuestResourceTest . Make this extend the ApiTestCase that we created in the last

tutorial and use ResetDatabase from Foundry to make sure our database is empty at the

start of every test. Also use Factories .

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

#[ApiResource(

 operations: [

 new GetCollection(),

 new Get(),

 new Patch(),

],

)]

class DailyQuest

tests/Functional/DailyQuestResourceTest.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

Ok, we don't need these... since we're not going to talk to the database... but if we decide to

later on, we're ready.

Down here, add public function testPatchCanUpdateStatus() . The first thing we

need is a new \DateTime() that represents $yesterday : -1 day .

tests/Functional/DailyQuestResourceTest.php

 // ... lines 1 - 12

13

14

15

 // ... lines 16 - 26

27

 // ... lines 28 - 29

Remember: in our provider, we're creating daily quests for today through the last 50 days. When

we make a PATCH request, our item provider is called to "load" the object. So we need to use a

date that we know will be found.

Now say $this->browser() , ->patch() ... and the URL: /api/quests/ with

$yesterday->format('Y-m-d') . Pass a second options argument with json and an array

with 'status' => 'completed' .

The status field is an enum... but because it's backed by a string, the serializer will

deserialize it from the string active or completed . Finish with ->assertStatus(200) ,

->dump() (that will be handy in a second), and then ->assertJsonMatches() to check

that status changed to completed .

use Zenstruck\Foundry\Test\Factories;

use Zenstruck\Foundry\Test\ResetDatabase;

class DailyQuestResourceTest extends ApiTestCase

{

 use ResetDatabase;

 use Factories;

}

 public function testPatchCanUpdateStatus()

 {

 $yesterday = new \DateTime('-1 day');

 }

tests/Functional/DailyQuestResourceTest.php

 // ... lines 1 - 12

13

14

 // ... line 15

16

17

18

19

20

 // ... line 21

22

23

24

25

26

27

 // ... lines 28 - 29

Wonderful! We're not really going to save the updated status... but we should at least see that

the final JSON has status completed . Copy this test name... and over here, run:

symfony php bin/phpunit --filter= and paste that name:

symfony php bin/phpunit --filter=testPatchCanUpdateStatus

And... whoops! We get a 415. The error says:

“The content-type application/json is not supported.”

Ah... I forgot to add a header to my PATCH request. Add headers set to an array with

Content-Type , application/merge-patch+json .

 public function testPatchCanUpdateStatus()

 {

 $this->browser()

 ->patch('/api/quests/'.$yesterday->format('Y-m-d'), [

 'json' => [

 'status' => 'completed',

],

])

 ->assertStatus(200)

 ->dump()

 ->assertJsonMatches('status', 'completed')

 ;

 }

tests/Functional/DailyQuestResourceTest.php

 // ... lines 1 - 12

13

14

 // ... line 15

16

17

 // ... lines 18 - 20

21

22

 // ... lines 23 - 25

26

27

 // ... lines 28 - 29

We talked about this in the last tutorial: this tells the system what type of patch we have. This is

the only one that's supported right now, but it's still required.

If we try this... it passes! But wait, I think I tricked myself! Comment-out the status and then

the test... still passes? Yup, change that to -2 days ... and $yesterday to just $day .

In our provider, we make every other quest active or complete: and yesterday starts as

complete. Whoops! When we try the test now... it fails. Add the status back to the JSON and

now... got it! The test passes!

Behind the scenes, here's the process. One: API Platform calls our provider to fetch the one

DailyQuest for this date. Two: the serializer updates that DailyQuest using the JSON sent

on the request. Three: the state processor is called. And four: the DailyQuest is serialized

back into JSON.

Creating the State Processor

Except... in our case, there is no step three... because we haven't created a state processor yet!

Let's add one!

php bin/console make:state-processor

and call it DailyQuestStateProcessor .

 public function testPatchCanUpdateStatus()

 {

 $this->browser()

 ->patch('/api/quests/'.$yesterday->format('Y-m-d'), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 }

Yet another name sparkling with genius. Go check it out: it's empty and full of potential.

src/State/DailyQuestStateProcessor.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

In DailyQuest , the processor should be used for the Patch operation, so add

processor: DailyQuestStateProcessor::class .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 14

15

 // ... line 16

17

 // ... lines 18 - 19

20

21

22

23

 // ... line 24

25

26

 // ... lines 27 - 46

To prove that this is working, dd($data) .

src/State/DailyQuestStateProcessor.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

Okay! Try the test again:

class DailyQuestStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 // Handle the state

 }

}

#[ApiResource(

 operations: [

 new Patch(

 processor: DailyQuestStateProcessor::class,

),

],

)]

class DailyQuest

class DailyQuestStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 dd($data);

 }

}

symfony php bin/phpunit --filter=testPatchCanUpdateStatus

And... boom! The status is set to completed .

By the way, we added the processor option directly to the Patch() operation, but we can

also put it down here on the #[ApiResource()] attribute directly.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 14

15

 // ... line 16

17

 // ... lines 18 - 19

20

 // ... line 21

22

 // ... line 23

24

25

26

 // ... lines 27 - 46

That makes no difference... because this is the only operation we have that even uses a

processor: GET method operations never call a processor.

State Processor Logic

Anyway, this is normally where we would save the data or... do something, like send an email if

this were a "reset password" API resource.

To make things a bit realistic, let's add a $lastUpdated property to DailyQuest and update

it here. Add public \DateTimeInterface $lastUpdated .

#[ApiResource(

 operations: [

 new Patch(),

],

 processor: DailyQuestStateProcessor::class,

)]

class DailyQuest

src/ApiResource/DailyQuest.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 33

34

 // ... lines 35 - 45

46

Then populate that inside the state provider: $quest->lastUpdated equals

new \DateTimeImmutable() ... with some randomness: between 10 and 100 days ago.

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 23

24

25

 // ... line 26

27

 // ... lines 28 - 32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 38

39

40

Finally, head over to the state processor. We know that this is only used for DailyQuest

objects... so $data will be one of those. Help your editor with

assert($data instanceof DailyQuest) and, below,

$data->lastUpdated = new \DateTimeImmutable('now') .

class DailyQuest

{

 public \DateTimeInterface $lastUpdated;

}

class DailyQuestStateProvider implements ProviderInterface

{

 private function createQuests(): array

 {

 for ($i = 0; $i < 50; $i++) {

 $quest->lastUpdated = new \DateTimeImmutable(sprintf('- %d

days', rand(10, 100)));

 }

 }

}

src/State/DailyQuestStateProcessor.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

Cool! We don't have a test assertion for that field, but we are still dumping the response... and

we can see it here. I'm looking at my watch and... that is the correct time in my little corner of

the world. Our state processor is alive!

Celebrate by going back to the test and removing that dump.

Next: Let's make our resource more interesting by adding a relation to another API resource: a

relation to dragon treasure.

class DailyQuestStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 assert($data instanceof DailyQuest);

 $data->lastUpdated = new \DateTimeImmutable('now');

 }

}

Chapter 12: Relating Custom ApiResources

Inside DailyQuest , add a new property: public array $treasures .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 34

35

 // ... lines 36 - 46

47

This will hold an array of dragon treasures that you can win if you complete this quest: treasures

like a fancy magician's hat... a talking frog... the world's second largest slinky... or all four corner

pieces of a brownie! Mmmmmm...

Adding an array Relations Property

In PHP land, this is just like any other property. Over in our provider, populate it:

$quest->treasures = ... and then we'll set that to something. Instead of a boring empty

array, we need some DragonTreasure objects. Up at the top, add

public function __construct() to autowire a

private DragonTreasureRepository $treasureRepository .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 52

53

class DailyQuest

{

 public array $treasures = [];

}

use App\Repository\DragonTreasureRepository;

class DailyQuestStateProvider implements ProviderInterface

{

 public function __construct(

 private DragonTreasureRepository $treasureRepository,

)

 {

 }

}

Below, grab some treasures: $treasures = $this->treasureRepository->findBy()

passing an empty array for the criteria - so it'll return everything - no orderBy , and a limit of

10 .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 30

31

32

33

 // ... lines 34 - 51

52

53

Yea, we're just finding the first 10 treasures in the database. I'll paste in some boring code that

will grab a random set of these DragonTreasure objects. Put that onto the treasures

property.

use App\Repository\DragonTreasureRepository;

class DailyQuestStateProvider implements ProviderInterface

{

 public function __construct(

 private DragonTreasureRepository $treasureRepository,

)

 {

 }

 private function createQuests(): array

 {

 $treasures = $this->treasureRepository->findBy([], [], 10);

 }

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 30

31

32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 43

44

45

46

 // ... lines 47 - 48

49

 // ... lines 50 - 51

52

53

Cool! And, even though we don't care right now, to make sure our test keeps passing, at the top

here, add DragonTreasureFactory::createMany(5) ... because if there are zero

treasures, weird things will happen in our provider... and the dragons will stage their fiery

uprising.

use App\Repository\DragonTreasureRepository;

class DailyQuestStateProvider implements ProviderInterface

{

 public function __construct(

 private DragonTreasureRepository $treasureRepository,

)

 {

 }

 private function createQuests(): array

 {

 $treasures = $this->treasureRepository->findBy([], [], 10);

 for ($i = 0; $i < 50; $i++) {

 $randomTreasuresKeys = array_rand($treasures, rand(1, 3));

 $randomTreasures = array_map(fn($key) => $treasures[$key],

(array) $randomTreasuresKeys);

 $quest->treasures = $randomTreasures;

 }

 }

}

tests/Functional/DailyQuestResourceTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

 // ... lines 18 - 29

30

31

Ok, does this new property show up in our API? Head to /api/quests.jsonld to see.. a

familiar error:

“You must call setIsOwnedByAuthenticatedUser() before

isOwnedByAuthenticatedUser() .”

We know this: it comes from DragonTreasure ... all the way at the bottom.

src/Entity/DragonTreasure.php

 // ... lines 1 - 93

94

95

 // ... lines 96 - 263

264

265

266

267

268

269

270

271

 // ... lines 272 - 276

277

Apparently, the serializer is trying to access this field, but we never set it... which makes sense...

because the provider and processor for DragonTreasure aren't called when we're using a

DailyQuest endpoint.

use App\Factory\DragonTreasureFactory;

class DailyQuestResourceTest extends ApiTestCase

{

 public function testPatchCanUpdateStatus()

 {

 // quests need at least some treasures to be available

 DragonTreasureFactory::createMany(5);

 }

}

class DragonTreasure

{

 public function isOwnedByAuthenticatedUser(): bool

 {

 if (!isset($this->isOwnedByAuthenticatedUser)) {

 throw new \LogicException('You must call

setIsOwnedByAuthenticatedUser() before isOwnedByAuthenticatedUser()');

 }

 return $this->isOwnedByAuthenticatedUser;

 }

}

Why The Relation is Embedded

But... hold on a second. This shouldn't even be a problem. Let me show you what I mean. To

temporarily silence this error, and understand what's going on, find that property... there it is...

and give it a default value of false .

src/Entity/DragonTreasure.php

 // ... lines 1 - 93

94

95

 // ... lines 96 - 147

148

 // ... lines 149 - 276

277

Spin over, refresh, and... whoa! It works! Here's our daily quest... and here are the treasures.

But... this is not, quite what we expected. Each treasure is an embedded object.

Remember: when you have a relationship to an object that is an ApiResource , like

DragonTreasure , that object should only be embedded if the parent class and child class

share serialization groups. Like, if we had normalizationContext with groups set to

quest:read like this... where the quest:read group is above $treasures , and, in

DragonTreasure , we had at least one property that also had quest:read on it.

But, if you do not have this situation - heck, we're not using groups at all - then the serializer

should render each DragonTreasure as an IRI string. This should be an array of strings not

embedded objects!

The problem is that the serializer looks at this $treasures property and doesn't realize that it

holds an array of DragonTreasure objects. It knows it's an array, but before it starts

serializing, it doesn't know what is inside. And so, instead of sending them through the system

that serializes ApiResource objects, it sends them through the code that serializes normal

objects... which results in it just serializing all the properties.

This isn't a problem with entities because the serializer is smart: it reads the Doctrine

relationship metadata to figure out that a property is a collection of some other

#[ApiResource] object. Long story short, this is simple to fix... it's just hard to understand at

first. Above the property, add some PHPDoc to help the serializer: @var DragonTreasure[] .

class DragonTreasure

{

 private bool $isOwnedByAuthenticatedUser = false;

}

src/ApiResource/DailyQuest.php

 // ... lines 1 - 9

10

 // ... lines 11 - 26

27

28

 // ... lines 29 - 35

36

37

38

39

 // ... lines 40 - 50

51

Try it now... bam! We get IRI strings! I won't bother, but we could undo the default value we

added because this object won't be serialized...which is what gave us this error in the first place.

So, other than the embedded object surprise, adding relations to our custom resource is no

biggie! Next: instead of embedding DragonTreasure objects directly, let's see how we can

invent a new class and new data structure to represent these treasures.

use App\Entity\DragonTreasure;

class DailyQuest

{

 /**

 * @var DragonTreasure[]

 */

 public array $treasures = [];

}

Chapter 13: Embedding Custom DTO's

One goal of the daily quests resource is to showcase the bountiful treasures a dragon can win

by completing a quest. Embedding an array of DragonTreasure objects and showing their

IRIs is a nice way to do that! But it's not the only way.

Creating the Custom (non-ApiResource) Class

Idea time: forget about pointing to the exact treasures. What if we simply render the name, cool

factor, and value of each as a custom array of embedded data? Check it out. In the

src/ApiResource/ directory, though this class could live anywhere, create a new class

called DailyQuestTreasure . This will represent the treasure that you could win by

completing a DailyQuest .

Inside, create a public function __construct with a public string $name ,

public int $value and public int $coolFactor . I'm using public properties for

simplicity and even including all three as arguments to the constructor to make life even easier.

src/ApiResource/QuestTreasure.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

But, I am not going to make this an ApiResource . Well, we could do that... if we need our API

users to be able to fetch DailyQuestTreasure data directly... or update them. But that's not

the point of this class. This will simply be a data structure that we attach to DailyQuest .

namespace App\ApiResource;

class QuestTreasure

{

 public function __construct(

 public string $name,

 public int $value,

 public int $coolFactor,

)

 {

 }

}

Over in DailyQuest , this will no longer hold an array of DragonTreasure objects: it will hold

an array of QuestTreasure objects. Oh, actually, to keep things shorter... there we go... call it

QuestTreasure ... then over here, QuestTreasure .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 35

36

37

38

39

 // ... lines 40 - 50

51

Now that we have the property set up, head to the provider to populate it. Instead of setting the

random dragon treasures onto this directly, we need to create an array of QuestTreasure

objects. For each over the random treasures as $treasure ... then $questTreasures[]

equals new QuestTreasure and pass in the data: $treasure->getName() ,

$treasure->getValue() and $treasure->getCoolFactor() . Finish with

$quest->treasures = $questTreasures .

class DailyQuest

{

 /**

 * @var QuestTreasure[]

 */

 public array $treasures = [];

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

14

 // ... lines 15 - 31

32

33

 // ... lines 34 - 36

37

 // ... lines 38 - 46

47

48

49

50

51

52

53

54

55

 // ... lines 56 - 57

58

 // ... lines 59 - 60

61

62

"Relations" that are Normal Objects

Before and after this change, our DailyQuest class had a property that held an array of

objects. The key difference is that, before, it held an array of objects that were API resources.

But now, it holds an array of normal, boring objects that are not API resources.

What difference does that make? Check it out. Boom! Embedded objects! When API Platform

serializes the treasures property, it sees that our QuestTreasure is not an

ApiResource . So it serializes it in the normal way: by embedding each property.

This is beautifully simple. And it's something I want you to remember: you can always create

new data classes if you want to embed some extra data.

The .well-known genId

use App\ApiResource\QuestTreasure;

class DailyQuestStateProvider implements ProviderInterface

{

 private function createQuests(): array

 {

 for ($i = 0; $i < 50; $i++) {

 $questTreasures = [];

 foreach ($randomTreasures as $treasure) {

 $questTreasures[] = new QuestTreasure(

 $treasure->getName(),

 $treasure->getValue(),

 $treasure->getCoolFactor(),

);

 }

 $quest->treasures = $questTreasures;

 }

 }

}

But I bet you noticed this weird @id with .well-known/genId . This... is a randomly-

generated string which exists, I believe, because JSON-LD resources are supposed to have an

@id . But since we don't really have a place where you can fetch individual Quest Treasures...

API Platform gives us this fake one.

Now, in theory, you could turn that off by saying #[ApiProperty()] with genId: false .

src/ApiResource/DailyQuest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 26

27

28

 // ... lines 29 - 38

39

40

 // ... lines 41 - 51

52

Unfortunately, this doesn't seem to work for array properties... maybe I'm doing something

wrong. I get that id. But it does work for single objects. To prove it, change this to a single

QuestTreasure . We don't need our @var anymore because this now has a proper type.

src/ApiResource/DailyQuest.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 35

36

37

 // ... lines 38 - 48

49

Over in our provider, I'll change a few things super quickly... to get just one random

QuestTreasure . Finish with $quest->treasure equals this one QuestTreasure . Use

$randomTreasure for all the variable names.

use ApiPlatform\Metadata\ApiProperty;

class DailyQuest

{

 #[ApiProperty(genId: false)]

 public array $treasures = [];

}

class DailyQuest

{

 #[ApiProperty(genId: false)]

 public QuestTreasure $treasure;

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 31

32

33

 // ... lines 34 - 36

37

 // ... lines 38 - 44

45

46

47

48

49

50

 // ... lines 51 - 52

53

 // ... lines 54 - 55

56

57

I love it! Now when we refresh... we see one embedded object and no generated @id field.

Next up: with a custom resource like this, we don't get pagination on our collection resource

automatically. Yup, it's returning all 50 items. So let's add that.

class DailyQuestStateProvider implements ProviderInterface

{

 private function createQuests(): array

 {

 for ($i = 0; $i < 50; $i++) {

 $randomTreasure = $treasures[array_rand($treasures)];

 $quest->treasure = new QuestTreasure(

 $randomTreasure->getName(),

 $randomTreasure->getValue(),

 $randomTreasure->getCoolFactor(),

);

 }

 }

}

Chapter 14: Pagination on a Custom Resource

When we fetch the collection of quests, we see all 50 of them! There's no pagination... a fact I

can prove because, at the bottom we don't see any extra data about pagination.

Usually... if we peek at the treasures collection... at the bottom of the response, API Platform

adds a hydra:view field that describes how you can paginate through these resources. But

over here for quests... zilch!

Pagination Comes from the Provider

But where does pagination come from in API Platform? It turns out that pagination is completely

the responsibility of your state provider. It's... pretty simple actually. Whatever your collection

provider returns - whether it's an array of quests... or some sort of iterable of quests - is what is

serialized to JSON. But, if it returns an iterable object that happens to implement a special

PaginatorInterface , API Platform will see that and render the hydra:view pagination

details.

Using The TraversablePaginator

So, if we want our collection to support pagination, step one is, instead of returning this array, to

return an object that implements that interface. And, fortunately, API Platform already has a

class that can help us!

Set the array to a $quests variable. Then return new TraversablePaginator from API

Platform. This takes a few arguments. First, a traversable - basically the results that should be

shown for the current page. Right now, we'll still use all 50 quests. Oh, except this needs to be

an iterable... so wrap it in a new ArrayIterator .

Next is the current page - hardcode that to 1 for now - then items per page - hardcode that to 10

- and finally the total number of items, which for now, I'm just going to count $quests .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

15

 // ... lines 16 - 21

22

23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 37

38

 // ... lines 39 - 64

65

This is not a very smart paginator yet: it will always be on page 1 and will show every result. But

when we go over, refresh... and scroll to the bottom, we do see the pagination info! According to

this, there are 5 pages of results... which makes sense: 10 items per page and 50 total items.

But you'll also see that we're still returning 50 items. There's no real pagination happening!

Why? Because it's up to us to figure out which page we're on and to pass only the correct

results to the paginator. If we pass it 50 items, it'll render 50 items, regardless of what we tell it

are the max per page.

Organizing our Variables

To help us do that, let's set a few variables: $currentPage hardcoded to 1, $itemsPerPage

hardcoded to 10 and $totalItems . For this, call a new private method

countTotalQuests() .

use ApiPlatform\State\Pagination\TraversablePaginator;

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $quests = $this->createQuests();

 return new TraversablePaginator(

 new \ArrayIterator($quests),

 1,

 10,

 count($quests),

);

 }

 }

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 21

22

23

24

25

26

27

 // ... lines 28 - 36

37

 // ... lines 38 - 41

42

 // ... lines 43 - 74

75

I'll hit Alt+Enter and add that method at the bottom. This will return an int ... and I'm just going

to return 50...

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 21

22

23

24

25

26

27

 // ... lines 28 - 36

37

 // ... lines 38 - 41

42

 // ... lines 43 - 70

71

72

73

74

75

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $currentPage = 1;

 $itemsPerPage = 10;

 $totalItems = $this->countTotalQuests();

 }

 }

}

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $currentPage = 1;

 $itemsPerPage = 10;

 $totalItems = $this->countTotalQuests();

 }

 }

 private function countTotalQuests(): int

 {

 return 50;

 }

}

because that's the total possible quests we have in our "fake" database. If you were using a

database, you'd count every available row. Change the code in createQuests() to use this.

This probably looks a bit silly: why am I creating a private method to return something so

simple? Well, what I really want to highlight are the two distinct "jobs" of pagination. First, to

return the correct subset of the 50 results - which we'll do in a moment. Second, to return the

count of the total number of items. When you use Doctrine, it executes 2 separate queries for

this: one to fetch the current page's results with a LIMIT and OFFSET, and a second COUNT

query to count every row.

Current Page, Limit, Offset: The Pagination Service

Ok, back on top, let's use these variables: $currentPage , $itemsPerPage and

$totalItems .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 21

22

23

24

25

26

27

 // ... lines 28 - 30

31

32

33

34

35

36

37

 // ... lines 38 - 41

42

 // ... lines 43 - 70

71

72

73

74

75

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $currentPage = 1;

 $itemsPerPage = 10;

 $totalItems = $this->countTotalQuests();

 return new TraversablePaginator(

 new \ArrayIterator($quests),

 $currentPage,

 $itemsPerPage,

 $totalItems,

);

 }

 }

 private function countTotalQuests(): int

 {

 return 50;

 }

}

Ok cool... but what we really need to do is determine the actual current page and then use that

to return only a subset of the results. Like, if we're showing 10 per page... and we're on page 2,

we should return quests 11 through 20.

Pagination works via a ?page query parameter: ?page=2 should mean we're on page 2. But

our code isn't reading this yet. Look: it still thinks we're on page 1... because we've hardcoded

that. To get the correct page, we could try to read the query parameter directly... but we don't

need to! API Platform gives us a service that already holds all the pagination info.

On top, add a second constructor argument called private Pagination - from API platform

$pagination .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

16

17

18

19

20

21

22

 // ... lines 23 - 78

79

Below, set $currentPage to $this->pagination->getPage() , which needs the

$context that we have as an argument on this method. Then $itemsPerPage set to

$this->pagination->getLimit() passing $operation and $context . We can also

get an $offset in a similar way, which is super handy. If we're on page 2 and the limit is 10,

the Pagination service will calculate that the offset should be 11. Dump all four variables

below.

use ApiPlatform\State\Pagination\Pagination;

class DailyQuestStateProvider implements ProviderInterface

{

 public function __construct(

 private DragonTreasureRepository $treasureRepository,

 private Pagination $pagination,

)

 {

 }

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 40

41

 // ... lines 42 - 45

46

 // ... lines 47 - 78

79

Let's check this out! Go back to page 1, refresh and look at that! Page 1, 30 items per page, the

limit and offset 0. If we go to page=2 , then it's page 2, the number per page is still 30 and the

offset is 30.

Where is it getting 30 as the items per page? That's the default in API Platform for any resource.

But this is something you can configure on your #[ApiResource] attribute: change

paginationItemsPerPage to, how about, 10.

use ApiPlatform\State\Pagination\Pagination;

class DailyQuestStateProvider implements ProviderInterface

{

 public function __construct(

 private DragonTreasureRepository $treasureRepository,

 private Pagination $pagination,

)

 {

 }

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $currentPage = $this->pagination->getPage($context);

 $itemsPerPage = $this->pagination->getLimit($operation,

$context);

 $offset = $this->pagination->getOffset($operation, $context);

 $totalItems = $this->countTotalQuests();

 dd($currentPage, $itemsPerPage, $offset, $totalItems);

 }

 }

}

src/ApiResource/DailyQuest.php

 // ... lines 1 - 15

16

 // ... lines 17 - 23

24

 // ... lines 25 - 26

27

28

29

 // ... lines 30 - 49

50

Now try it. That changes to 10 and the offset is 10. If we go to page 3, our per page is still 10.

And now it's saying:

“Hey, since we're on page 3, you should start at result 20.”

Fetching the Correct Results for the Current Page

We're in great shape now. Our final job is to use this info to return the correct subset of results,

instead of all the quests. To do that, pass $offset and $itemsPerPage to

createQuests() .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 23

24

25

26

 // ... lines 27 - 29

30

31

32

 // ... lines 33 - 39

40

 // ... lines 41 - 44

45

 // ... lines 46 - 77

78

#[ApiResource(

 paginationItemsPerPage: 10,

)]

class DailyQuest

{

}

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $totalItems = $this->countTotalQuests();

 $quests = $this->createQuests($offset, $itemsPerPage);

 }

 }

}

Down here, add int $offset and int $limit with a default of 50. And use those:

$i = $offset and then $i <= $offset plus $limit .

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 23

24

25

26

 // ... lines 27 - 29

30

31

32

 // ... lines 33 - 39

40

 // ... lines 41 - 44

45

 // ... line 46

47

48

 // ... lines 49 - 52

53

 // ... lines 54 - 68

69

 // ... lines 70 - 71

72

 // ... lines 73 - 77

78

Ok team check it out! We're on page 3 and... these are the items from page 3! It's more obvious

if we go to page 1. See the descriptions: description 1, 2, 3 and so on. So, pagination is working

on our collection!

Though, in this simple example, I need to make sure I don't break the item provider. Because

we're looking up the day string as an array key, we need to return all the quests. To make sure

that happens, pass 0 and 50.

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $totalItems = $this->countTotalQuests();

 $quests = $this->createQuests($offset, $itemsPerPage);

 }

 }

 private function createQuests(int $offset, int $limit = 50): array

 {

 for ($i = $offset; $i < ($offset + $limit) && $i < $totalQuests;

$i++) {

 }

 }

}

src/State/DailyQuestStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 23

24

25

 // ... lines 26 - 41

42

 // ... lines 43 - 44

45

 // ... lines 46 - 77

78

In a real app, you would make this smarter by, for example, querying for the one item you

need... instead of loading all of them.

So that's pagination for a custom resource. What about filtering? We're going to talk about

creating custom filters in a future tutorial. But spoiler alert: the filtering logic is also something

that happens right here inside the collection provider.

Next: let's remove all the API resource stuff from our User entity and add it to a new class

that's going to be dedicated to our API. Woh.

class DailyQuestStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $quests = $this->createQuests(0, $this->countTotalQuests());

 }

}

Chapter 15: User Class Dto

The fastest way to get started with API Platform is by adding these #[ApiResource]

attributes above your entity classes. That's because API Platform gives you free state providers

that query from the database (which includes pagination and filters) and free state processors

that save things to the database.

To use DTOs or Not?

But, as we've seen with DailyQuest , that's not required. And if your API starts to look pretty

different from your entities - like you have fields in your API that don't exist in your entity or are

named differently - it might make sense to separate your entity and API resource classes.

Right now, our entities are API resources... and that has added some complexity. For example,

we have a custom isMine field which is powered by this isOwnedByAuthenticatedUser

property: a non-persisted property that we populate via a state provider. And one of the most

noticeable things is our huge use of serialization groups. We have to use serialization groups,

like treasure:read , so that we can include the properties we want and avoid the properties

that we don't want.

This has saved us some time... but increased complexity. So let's get crazy and use a dedicated

class for our API from the start. That's often referred to as a "DTO", or "Data Transfer Object". I'll

use that term a lot - but for us, it just means "the dedicated class for our API" - like the

DailyQuest class.

Removing the API Stuff from User

Alright, folks, commence cleanup! It's time to wipe out all the API-related grime from our pristine

User entity. Remove the #[ApiResource()] attribute... both of them, filters and validation.

You may still want validation constraints if you're using your entity with the form system... but

since we're not, let's clear it. I'm also clearing anything related to serialization... and hunting

down hopefully everything that's hiding.

Woh. This class is a lot smaller now. I think that's everything... the use statements on top look

good... so... awesome!

Let's also remove the state processor for User , which hashes the plain password. We are

going to re-implement many of the things we just deleted, but I want to start with a clean look at

things.

Alright, go check out the API docs. We're reduced to "Quest" and "Treasure". I love it!

Creating the DTO / Dedicated ApiResource Class

We're going to start like we did with the DailyQuest . In the src/ApiResource/ directory,

create a new class called UserApi ... to indicate this is the user class for our API. Inside, add

#[ApiResource] above it.

src/ApiResource/UserApi.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

So far, this is just like any other custom API resource. It shows up in the docs... and if we try the

GET collection operation, it fails with a 404. Heck, we're even missing the "ID" part in the URL of

the item operations.

To fix that, in UserApi , add a public ?int $id = null property... because our users will

still be identified by their database id. Oh, and I'm using a public property just to make life

easier... and because this class will stay simple, so it's not a big deal.

namespace App\ApiResource;

use ApiPlatform\Metadata\ApiResource;

#[ApiResource]

class UserApi

{

}

src/ApiResource/UserApi.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

The moment we do this... API Platform recognizes that id as the identifier, and our operations

are looking good.

While we're here, let's also tweak the shortName . This is called UserApi , which is a terrible

name - so change it: shortName: 'User' .

src/ApiResource/UserApi.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

Suddenly... this is starting to look like what we had before!

The big missing pieces, like with DailyQuest , are the state provider and state processor. Let's

add the state provider next.... but with a twist that leverages a brand-new feature that's going to

save us a ton of work.

namespace App\ApiResource;

use ApiPlatform\Metadata\ApiResource;

#[ApiResource]

class UserApi

{

 public ?int $id = null;

}

#[ApiResource(

 shortName: 'User',

)]

class UserApi

{

 public ?int $id = null;

}

Chapter 16: stateOptions + entityClass Magic

When we create a non-entity API resource, we're responsible for loading and saving the data.

What's frustrating is that, if we make a custom state provider for UserApi , it will do the exact

same thing as the core Doctrine state provider: query the database. It's a bummer to reinvent all

of that logic ourselves. This, historically, has been the Achille's heel of DTO's.

Checking out the Core CollectionProvider

Crack open the core CollectionProvider from Doctrine ORM. If you ever wanted to see

what the CollectionProvider looks like, here it is! It's more complex than I imagined. It

creates the QueryBuilder , calls handleLinks() (which intelligently joins to other tables

based on the data you need), and houses the query extension system. In the last tutorial, we

created a query extension for DragonTreasure so it would only return published items. And

part of that extension system, though we can't see it here, is where pagination and filtering is

added.

So, this class gives us a lot... and I want to reuse it. So, darn it, let's yolo this thing and try to!

Trying to use the CollectionProvider

Head over to UserApi , say provider , and point to CollectionProvider (the one from

Doctrine ORM).

src/ApiResource/UserApi.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

13

14

15

Let's see what happens! At the browser, go to the endpoint directly - /api/users.jsonld .

And... we get an error:

“Call to a member function getRepository() on null.”

Coming from the core CollectionProvider . Boo. But not surprising. Our UserApi isn't an

entity... and so when it tries to figure out how to query for it, explosions!

Hello stateOptions + entityClas

But psst... want to hear a secret? There is a way we can hint to the provider that data for this

class should come from the User entity. It looks like this: stateOptions set it to a

new Options object (making sure to grab the one from ORM), and inside,

entityClass: User::class .

use ApiPlatform\Doctrine\Orm\State\CollectionProvider;

#[ApiResource(

 shortName: 'User',

 provider: CollectionProvider::class,

)]

class UserApi

{

 public ?int $id = null;

}

src/ApiResource/UserApi.php

 // ... lines 1 - 4

5

6

 // ... line 7

8

9

10

11

12

13

14

15

16

17

18

Let's see what happens now! When we head over and refresh... whoa! It looks like that worked!

We see "totalItems: 11"... with items 1-11 all right here. We only have an $id property, but I

guess that makes sense... since we only have an $id property inside our UserApi .

Let's add a few more properties! How about public ?string $email = null and

public ?string $username = null . Both of these properties also live in our User entity.

src/ApiResource/UserApi.php

 // ... lines 1 - 14

15

16

17

18

19

20

21

22

When we refresh... those pop up too! This is working.... but how? What the heck is going on?

How this all Works

If we could peek under API Platform's hood, we would see that the underlying API resource

objects are UserApi . So what we're seeing here is the JSON for a collection of UserApi

objects.

use ApiPlatform\Doctrine\Orm\State\CollectionProvider;

use ApiPlatform\Doctrine\Orm\State\Options;

use App\Entity\User;

#[ApiResource(

 shortName: 'User',

 provider: CollectionProvider::class,

 stateOptions: new Options(entityClass: User::class),

)]

class UserApi

{

 public ?int $id = null;

}

class UserApi

{

 public ?int $id = null;

 public ?string $email = null;

 public ?string $username = null;

}

But there are several places in the system that look for stateOptions and, if it's present, will

use the entityClass from that. The CollectionProvider we opened a moment ago - the

one from Doctrine ORM - is one of those cases. It grabs the entityClass from

stateOptions if there is one... then uses that when it does the query.

In fact, as soon as we have this stateOptions + entityClass thing, API Platform sets the

provider and the processor automatically to the core Doctrine ones. So we don't even need to

have the provider key: it's set for us.

src/ApiResource/UserApi.php

 // ... lines 1 - 8

9

10

11

12

13

14

 // ... lines 15 - 19

20

Okay, but if the provider is querying for User entity objects, how and when is that converted to

UserApi objects... so that they can be serialized to JSON? The answer is during

serialization... and it's a bid odd. Thanks to stateOptions , API Platform is actually serializing

the User entity object. But to get the list of the properties that it should serialize, it reads the

metadata from UserApi . Then, it grabs the property values from User ... and puts them onto a

UserApi instance. Essentially, it serializes the User entity into a UserApi object... and then

to JSON.

This seems to work well... but with one, major limitation.

Limitation: No Custom Properties

Add a property that is not on our entity, like public int $flameThrowingDistance = 0 .

There is no $flameThrowingDistance property over on User .

#[ApiResource(

 shortName: 'User',

 stateOptions: new Options(entityClass: User::class),

)]

class UserApi

{

}

src/ApiResource/UserApi.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 20

21

22

When we try this... explosion! If we scroll down a bit, we see that this comes from the normalizer

system... which is part of the serializer. It looks at UserApi , thinks "Oh, I need a

$flameThrowingDistance field", tries to fetch that from User , and, since it's not there,

boom!

So the colossal, monstrous, titanic limitation of the entityClass strategy is... we can't have

extra fields on our UserApi class. But no worries: we'll find a path around this in the next

chapter. For now, remove the extra property.

Oh, and one other limitation that you may have noticed is that we don't have the JSON-LD fields

@id or @type . We'll handle that while we're fixing the issue with custom fields... like the

multitasking wizards we are.

Adding a Relation Property

Let's add another property: public array $dragonTreasures = []? We do have a

$dragonTreasures property over on User that holds a collection of DragonTreasure

objects.

src/ApiResource/UserApi.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

So if we go over and test this out... it works fine! Though, surprisingly, it's embedding the

dragonTreasures instead of returning them as IRIs. This is the same problem we saw

earlier, and the fix is the same.

class UserApi

{

 public int $flameThrowingDistance = 0;

}

class UserApi

{

 public array $dragonTreasures = [];

}

I do want to point out one interesting thing about this, though. When it embeds the

dragonTreasures , one of the properties is owner . Right now, that owner is actually the

User entity. Since the User entity is no longer an API resource, it adds this random genid

thing.

I'll talk about this more in a bit, but once we start creating DTOs and using those instead of

entities, we'll probably want to use DTOs for all of our API resources... instead of mixing entities

and DTOs... because it creates issues like this.

Anyway, fix this by advertising that this is an array of DragonTreasure . I'm using a slightly

different array syntax there, but it doesn't really matter.

src/ApiResource/UserApi.php

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

15

 // ... lines 16 - 21

22

23

24

25

26

If we try this again... back to IRIs! Woo!

Built-in Pagination

So far, we know that stateOptions does three things. One: It automatically sets the provider

and processor to use the core Doctrine provider and processor. Two: the provider is smart

enough to query from this entity. This also works for single items, like /users/1.jsonld . And

three: The serializer serializes the User entity into a UserApi object.

The fact that stateOptions causes the core Doctrine state provider to be used has some

very important other side effects. First, we get pagination for free. Add

paginationItemsPerPage: 5 , go over, and refresh. We see that the total number of items

is "11"... but it only shows five... and the pages are down here.

use App\Entity\DragonTreasure;

class UserApi

{

 /**

 * @var array<int, DragonTreasure>

 */

 public array $dragonTreasures = [];

}

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

 // ... lines 17 - 26

27

Second, the collection provider also makes the query extension system work. We don't have

any query extensions for User , but we do have one for DragonTreasure . Later on, when we

convert DragonTreasure to its own DTO class, this extension is still going to work.

The third and final goodie is that the filter system still works! Watch: above UserApi , add

#[ApiFilter()] with SearchFilter::class and properties: with username set to

partial .

src/ApiResource/UserApi.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 16

17

18

19

20

21

 // ... lines 22 - 31

32

Go back and look at the documentation... whoops. I autocompleted the SearchFilter from

ODM. Delete that, then I'll hit Alt+Enter to grab the one from ORM .

Refresh the docs again... and look at the /api/users endpoint. It is advertising that there's a

username filter, and it is going to work! In the other tab, add ?username=Clumsy .

And... yes! It only returns those 5 results! So the filter system works! Though, one thing to note

is that, when we say username , we're referring to the $username property on the User

entity. As far as the filter is concerned, we don't even need a username in UserApi .

#[ApiResource(

 shortName: 'User',

 paginationItemsPerPage: 5,

 stateOptions: new Options(entityClass: User::class),

)]

class UserApi

{

}

use ApiPlatform\Doctrine\Orm\Filter\SearchFilter;

use ApiPlatform\Metadata\ApiFilter;

#[ApiFilter(SearchFilter::class, properties: [

 'username' => 'partial',

])]

class UserApi

{

}

So: we're reusing all of this core Doctrine provider logic, we have pagination, filters and.... it's

the best thing since ice cream sandwiches. Except... for that big, scary limitation: that our DTO

can't have custom fields. And... that's really the whole point of a DTO: to gain the flexibility of

having different fields than your entity. So let's see how to fix that limitation next.

Chapter 17: Entities, DTO's & The "Central" Object

This entity class thing seems almost too good to be true. It gives us all the flexibility, in theory, of

a custom class, while reusing all the core Doctrine provider and processor logic. But hold your

horses because there are two, albeit fixable, snags.

Most importantly, we're not allowed to have custom property names. This will cause an error

when it tries to serialize. Second, I haven't mentioned it yet, but write operations - like POST or

PATCH - don't work at all. Well... if we, posted to our endpoint, the data would be deserialized...

but it wouldn't be saved to the database.

The Problem with Write Operations

We can try this because we already have a test for it. Open UserResourceTest and, down

here, copy testPostToCreateUser() . Spin over and run that with:

symfony php bin/phpunit --filter=testPostToCreateUser

And... 400 error! Open that up. Uh oh:

“Unable to generate an IRI for the item of type App\ApiResource\UserApi .”

Here's what happens. The serializer deserializes this JSON into a UserApi object. Yay! That

UserApi object is then passed to the core Doctrine persist processor: the thing that normally

saves entities to the database. But because UserApi is not an entity, that processor does...

nothing. Then, when UserApi is serialized back to JSON, the $id is still null - because

nothing was ever saved to the database - and... so the IRI can't be generated for it.

We could fix this by creating a custom state processor for UserApi that saves this to the

database. But even if we did, the write operations, like POST and PATCH , just aren't designed

to work out of the box with this entityClass solution. The reason... is a bit technical, but

important.

Understanding the "Central Object" for an Operation

Internally, for every API request, API Platform has a central object that it's working on. If we

fetch a single item, that central object is that single item. And that's really important. It's used in

various places, like the security attribute: when we use is_granted , the object variable

will be that "central" object. For example, if we make a Patch() request, that means we're

editing a dragon treasure... so the central object will be a DragonTreasure entity. Easy

peasy!

What's the catch? Well, when you use the entityClass solution with a read operation (so,

one of these GET requests), the central object will be the entity. So the User entity will be the

central object. But with a write operation (most importantly, the POST operation to create a new

user), that central object will suddenly be a UserApi object. That causes some serious

inconsistency: the central object will sometimes be an entity... and other times the DTO. Good

luck making a security system that works with both of those... and isn't completely

confusing.

Also, when the User entity is the central object, that's when we run into the problem that

prevents us from having custom fields on our DTO.

So, if we could make the UserApi be the central object in all cases, then we'd have consistent

security... and we could also fix our big custom properties problem.

How can we pull that off? By writing a custom state provider that returns UserApi objects.

Think about it: because the core Doctrine collection provider returns User entity objects, those

become the central objects. If we, instead, return UserDto objects, problem solved. If this

doesn't all make sense yet, I'm not surprised. Let's walk through this step-by-step.

Decorating the Core State Provider

Start by running:

php bin/console make:state-provider

Call it EntityToDtoStateProvider . My goal is to create a generic state provider that will

work for all cases where we have an API resource class that pulls data from an entity. So, we'll

mostly keep user-specific code out of here.

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

Over in UserApi , set provider to EntityToDtoStateProvider .

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 15

16

 // ... line 17

18

 // ... lines 19 - 21

22

23

 // ... lines 24 - 33

34

Ok! In EntityToDtoStateProvider , we could manually query for our User entity objects,

turn those into UserApi objects... then return them. But that's the whole thing we're trying to

avoid! We want to continue to reuse all of that nice Doctrine query logic: that's the beauty of

stateOptions .

To do that, like we've done before, we're going to decorate the core Doctrine provider. Say

public function __construct() with

private ProviderInterface $collectionProvider . And to help Symfony know which

namespace App\State;

use ApiPlatform\Metadata\Operation;

use ApiPlatform\State\ProviderInterface;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 // Retrieve the state from somewhere

 }

}

use App\State\EntityToDtoStateProvider;

#[ApiResource(

 provider: EntityToDtoStateProvider::class,

)]

class UserApi

{

}

to pass in, use the #[Autowire()] attribute and say service: CollectionProvider

(make sure you get the one from Doctrine ORM), followed by ::class .

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 15

16

 // ... line 17

18

 // ... lines 19 - 21

22

23

 // ... lines 24 - 33

34

Down here, add $entities = $this->collectionProvider->provide() , passing

$operation , $uriVariables , and $context . Below, dd($entities)

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

use App\State\EntityToDtoStateProvider;

#[ApiResource(

 provider: EntityToDtoStateProvider::class,

)]

class UserApi

{

}

use ApiPlatform\Doctrine\Orm\State\CollectionProvider;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function __construct(

 #[Autowire(service: CollectionProvider::class)] private

ProviderInterface $collectionProvider

)

 {

 }

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entities = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 dd($entities);

 }

}

Let's see what happens! Head back over, refresh the endpoint, and... got it! We are calling the

core provider, and it's returning a paginator object. To see what's hiding inside that Paginator ,

say dd(iterator_to_array($entities)) .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

22

23

24

Back over here... this show five User entity objects.

At this point, our new provider isn't doing... anything special. If we returned $entities , we'd

be exactly where we started: with User entities as the central object. Our goal is to return

UserApi objects... and we're going to do that next.

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entities = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 dd(iterator_to_array($entities));

 }

}

Chapter 18: Provider: Transforming Entities to
DTOs

Let's keep track of the goal. When we first used stateOptions , it triggered the core Doctrine

collection provider to be used. That's great... except that it returns User entities, meaning that

those became the central objects for the UserApi endpoints. That causes a serious limitation

when serializing: our UserApi properties need to match our User properties... otherwise the

serializer explodes.

To fix that and give us full control, we've created our own state provider that calls the core

collection provider. But instead of returning these User entity objects, we're going to return

UserApi objects so that they become the central objects and serialize normally.

Mapping to the DTO

Create a $dtos array and foreach over $entities as $entity . Then add to the $dtos

array by calling a new method: mapEntityToDto($entity) .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

22

23

24

Hit "alt" + "enter" to add that method at the bottom. This will return an object . Well... it will be

a UserApi object... but we're trying to keep this class generic. I'll paste in some logic - you can

copy this from the code block on this page - then hit "alt" + "enter" to add the missing use

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entities = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 dd(iterator_to_array($entities));

 }

}

statement. This code is user-specific... but we'll make it more generic later, so we can reuse this

class for dragon treasures.

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 23

24

25

26

27

 // ... lines 28 - 29

30

31

32

33

34

35

36

37

38

39

40

41

42

But isn't this refreshingly boring and understandable code? Just transferring properties from the

User $entity ... onto the DTO. The only thing that's kind of fancy is where we change this

collection to an array... because this property is an array on UserApi .

Finally, at the bottom of provide() , return $dtos .

use App\ApiResource\UserApi;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $dtos = [];

 foreach ($entities as $entity) {

 $dtos[] = $this->mapEntityToDto($entity);

 }

 }

 private function mapEntityToDto(object $entity): object

 {

 $dto = new UserApi();

 $dto->id = $entity->getId();

 $dto->email = $entity->getEmail();

 $dto->username = $entity->getUsername();

 $dto->dragonTreasures = $entity->getDragonTreasures()->toArray();

 return $dto;

 }

}

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Thanks to this, the central objects will be UserApi objects... and these will be serialized

normally: no fanciness where the serializer tries to go from a User entity into a UserApi .

Drumoll please! Tada! It works... with the same result as before! But now we have the power to

add custom properties.

Adding Custom Properties

Add back the public int $flameThrowingDistance .

use App\ApiResource\UserApi;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $dtos = [];

 foreach ($entities as $entity) {

 $dtos[] = $this->mapEntityToDto($entity);

 }

 return $dtos;

 }

 private function mapEntityToDto(object $entity): object

 {

 $dto = new UserApi();

 $dto->id = $entity->getId();

 $dto->email = $entity->getEmail();

 $dto->username = $entity->getUsername();

 $dto->dragonTreasures = $entity->getDragonTreasures()->toArray();

 return $dto;

 }

}

src/ApiResource/UserApi.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 34

35

36

Then, in the provider, this is where we have an opportunity to set those custom properties, like

$dto->flameThrowingDistance = rand(1, 10) .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 38

39

40

41

42

43

And... voilà! We are so freakin' dangerous right now! We're reusing the core Doctrine

CollectionProvider , but with the ability to add custom fields. Oh! And I forgot to mention:

the JSON-LD fields @id and @type are back. We did it!

Fixing Pagination

Though, it looks like we're now missing pagination. The filter is documented... but the

hydra:view field that documents the pagination is gone! Ok, really, pagination does still work.

Watch: if I go to ?page=2 , the first "user 1" user... becomes "user 6". Yup, internally, the core

CollectionProvider from Doctrine is still reading the current page and querying for the

correct set of objects for that page. We're missing the hdra:view field at the bottom that

describes the pagination simply because we're no longer returning an object that implements

PaginationInterface .

Remember, this $entities variable is actually a Pagination object. Now that we're just

returning an array, it makes API Platform think that we don't support pagination.

class UserApi

{

 public int $flameThrowingDistance = 0;

}

class EntityToDtoStateProvider implements ProviderInterface

{

 private function mapEntityToDto(object $entity): object

 {

 $dto->flameThrowingDistance = rand(1, 10);

 return $dto;

 }

}

The solution is dead-simple. Instead of returning $dtos ,

return new TraversablePaginator() with a new \ArrayIterator() of $dtos . For

the other arguments, we can grab those from the original paginator. To help,

assert($entities instanceof Paginator) (the one from Doctrine ORM). Then, down

here, use $entities->getCurrentPage() , $entities->getItemsPerPage() , and

$entities->getTotalItems() .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 21

22

23

24

25

 // ... lines 26 - 31

32

33

34

35

36

37

38

 // ... lines 39 - 50

51

The core collection provider already did all that hard work for us. What a pal. Refresh now. The

results don't change... but down here, hydra:view is back!

Next: Let's get this working for our item operations, like GET one or PATCH . We'll also leverage

our new system to add something to UserApi that we previously had.... but this time, we're

going to do it in a much cooler way.

use ApiPlatform\Doctrine\Orm\Paginator;

use ApiPlatform\State\Pagination\TraversablePaginator;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entities = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 assert($entities instanceof Paginator);

 return new TraversablePaginator(

 new \ArrayIterator($dtos),

 $entities->getCurrentPage(),

 $entities->getItemsPerPage(),

 $entities->getTotalItems()

);

 }

}

Chapter 19: Entity -> DTO Item State Provider

What about the item endpoint? If we go to /api/users/6.jsonld ... it looks like it works...

but it's a trap! It's just the collection format... with a single item!

We know that there are two core providers: CollectionProvider and an item provider,

whose job is to return one item or null. Because we set provider to

EntityToDtoStateProvider , it's using this one provider for every operation. And that's

ok... as long as we make it smart enough to handle both cases.

We saw how to do this earlier: $operation is the key. Add

if ($operation instanceof CollectionOperationInterface) . Now we can warp

all of this code up here. Lovely!

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 21

22

23

24

25

 // ... lines 26 - 31

32

33

34

35

36

37

38

 // ... lines 39 - 50

51

use ApiPlatform\Doctrine\Orm\Paginator;

use ApiPlatform\State\Pagination\TraversablePaginator;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entities = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 assert($entities instanceof Paginator);

 return new TraversablePaginator(

 new \ArrayIterator($dtos),

 $entities->getCurrentPage(),

 $entities->getItemsPerPage(),

 $entities->getTotalItems()

);

 }

}

Below, this will be our item provider. dd($uriVariables) .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 13

14

15

 // ... lines 16 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 // ... lines 44 - 55

56

Calling the Core Item Provider

When we try the item operation... nice! That's what we expect to see: the id value, which is the

dynamic part of the route.

Just like with the collection provider, we do not want to do the querying work manually. Instead,

we'll... "delegate" it the core Doctrine item provider. Add a second argument... we can just copy

the first... type-hinted with ItemProvider (the one from Doctrine ORM), and called

$itemProvider .

use ApiPlatform\Metadata\CollectionOperationInterface;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 $entities = $this->collectionProvider->provide($operation,

$uriVariables, $context);

 assert($entities instanceof Paginator);

 $dtos = [];

 foreach ($entities as $entity) {

 $dtos[] = $this->mapEntityToDto($entity);

 }

 return new TraversablePaginator(

 new \ArrayIterator($dtos),

 $entities->getCurrentPage(),

 $entities->getItemsPerPage(),

 $entities->getTotalItems()

);

 }

 dd($uriVariables);

 }

}

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 4

5

 // ... lines 6 - 14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 63

64

I like it! Back below, let it do the work with

$entity = $this->itemProvider->provide() passing $operation ,

$uriVariables and $context .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 24

25

26

 // ... lines 27 - 43

44

 // ... lines 45 - 50

51

 // ... lines 52 - 63

64

This will give us an $entity object or null. If we don't have an $entity object,

return null . That will trigger a 404. But if we do have an $entity object, we don't want to

return that directly. Remember, the whole point of this class is to take the $entity object and

transform it into a UserApi DTO.

So instead, return $this->mapEntityToDto($entity) .

use ApiPlatform\Doctrine\Orm\State\ItemProvider;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function __construct(

 #[Autowire(service: CollectionProvider::class)] private

ProviderInterface $collectionProvider,

 #[Autowire(service: ItemProvider::class)] private

ProviderInterface $itemProvider,

)

 {

 }

}

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entity = $this->itemProvider->provide($operation, $uriVariables,

$context);

 }

}

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 24

25

26

 // ... lines 27 - 43

44

45

46

47

48

49

50

51

 // ... lines 52 - 63

64

That feels good. And... the endpoint works beautifully. If we try an invalid id, our provider returns

null and API Platform takes care of the 404.

Only Showing Published Dragon Treasures

Side note: if you follow some of these related treasures, they may 404 as well. Let's see... we

have 21 and 27. 21 works for me... and for 27... that also works... of course. Anyway, the reason

some might 404 is that, right now, if I go back, the dragonTreasures property includes all the

treasures related to this user: even the unpublished ones. But in a previous tutorial, we created

a query extension that prevented unpublished treasures from being loaded.

Back when the User entity was our API resource, we avoided returning unpublished treasures

from this property. We created getPublishedDragonTreasures() and made that the

dragonTreasures property.

But in our state provider, we're setting all of them. This is an easy fix: change to

getPublishedDragonTreasures() .

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $entity = $this->itemProvider->provide($operation, $uriVariables,

$context);

 if (!$entity) {

 return null;

 }

 return $this->mapEntityToDto($entity);

 }

}

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 52

53

54

 // ... lines 55 - 58

59

 // ... lines 60 - 62

63

64

Actually, undo that... then refresh the collection endpoint. Ok, we see treasures 16 and 40 down

here... then after using the new method... only 16! "40" is unpublished.

That was easy! And it highlights something cool. In order to have a dragonTreasures field

that returned something special when our User entity was an ApiResource, we needed a

dedicated method and a SerializedName attribute. But with a custom class, we don't need

any weirdness. We can do whatever we want in the state provider. Our classes stay shiny and

clean!

Next: Let's get our users saving with a state processor: a delicate dance that involves handling

new and existing users.

class EntityToDtoStateProvider implements ProviderInterface

{

 private function mapEntityToDto(object $entity): object

 {

 $dto->dragonTreasures = $entity->getPublishedDragonTreasures()-

>getValues();

 }

}

Chapter 20: DTO -> Entity State Processor

We've checked off the "provider" side of things for our new UserApi class. So let's shift our

focus to the processor so we can save things. And we do have some rather delightful tests for

our User endpoints. Open UserResourceTest .

The Anatomy of the Request & State Processor

Ok, testPostToCreateUser() , posts some data, creates the user, then tests to make sure

that the password we posted works by logging in. Add ->dump() to help us see what's going

on. Then, copy that method name and run it:

symfony php bin/phpunit --filter=testPostToCreateUser

No surprise... it fails:

“Current response status code is 400, but 201 expected.”

The dump is really helpful. It's our favorite error!

“Unable to generate an IRI for the item of type UserApi .”

We already talked about what's happening: the JSON is deserialized into a UserApi object.

Good! Then the core Doctrine PersistProcessor is called because that's the default

processor when using stateOptions . But... because our UserApi isn't an entity,

PersistProcessor does nothing. Finally, API Platform serializes the UserApi back into

JSON... but without the id populated, it fails to generate the IRI.

Watch! Over in UserApi , temporarily default $id to 5 . When we try the test now...

symfony php bin/phpunit --filter=testPostToCreateUser

It appears to work. Ok, it fails... but only later... down here in UserResourceTest line 33. It is

getting through the POST successfully.

Creating the State Processor

Look at the response on top, it is returning this user JSON. But, still, nothing is saving. Change

the id back to null. We need to fix this lack of saving by creating a new state processor. So spin

over and run:

php bin/console make:state-processor

Call it EntityClassDtoStateProcessor because, again, we're going to make this class

generic so that it works for any API resource class that's tied to a Doctrine entity. We'll use it

later for DragonTreasure .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

With the empty processor generated, go hook it up in UserApi with

processor: EntityClassDtoStateProcessor::class .

namespace App\State;

use ApiPlatform\Metadata\Operation;

use ApiPlatform\State\ProcessorInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 // Handle the state

 }

}

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

 // ... lines 11 - 13

14

 // ... lines 15 - 17

18

 // ... line 19

20

 // ... lines 21 - 23

24

25

 // ... lines 26 - 37

38

Henceforth, every time we POST, PATCH, or DELETE this resource, this processor will be

called.

Mapping the DTO Back to an Entity

But what is this $data variable exactly? You may have a guess, but just in case, let's

dd($data) ... and rerun the test.

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

 // ... lines 11 - 13

14

 // ... lines 15 - 17

18

 // ... line 19

20

 // ... lines 21 - 23

24

25

 // ... lines 26 - 37

38

symfony php bin/phpunit --filter=testPostToCreateUser

use App\State\EntityClassDtoStateProcessor;

#[ApiResource(

 processor: EntityClassDtoStateProcessor::class,

)]

class UserApi

{

}

use App\State\EntityClassDtoStateProcessor;

#[ApiResource(

 processor: EntityClassDtoStateProcessor::class,

)]

class UserApi

{

}

Yup, it's a UserApi object! The JSON we sent is deserialized into this UserApi object, and

then that is passed to our state processor. The UserApi object is the "central object" inside of

API Platform for this request.

Our job in the state processor is simple but important: to convert this UserApi back to a User

entity so that we can save it. Say assert($data instanceof UserApi) and, inside,

$entity = set to a new helper function: $this->mapDtoToEntity($data) . Below,

dd($entity) .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 19

20

21

22

23

24

25

26

 // ... lines 27 - 47

48

Then go add that new private function mapDtoToEntity() , which will accept an

object $dto argument and return another object .

Again, we know this will really accept a UserApi object and return a User entity... but we're

trying to keep this class generic so we can reuse it later. Though we are going to have some

user-specific code down here temporarily. In fact, to help our editor, add another

assert($dto instanceof UserApi) .

use App\ApiResource\UserApi;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 assert($data instanceof UserApi);

 $entity = $this->mapDtoToEntity($data);

 dd($entity);

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 46

47

48

Querying for the Existing Entity

We need to think about two different cases. The first is when we POST to create a brand-new

user. In that case, $dto will have a null id. And that means we should create a fresh User

object. The other case is if we were making, for example, a PATCH request to edit a user. In

that case, the item provider will first load that User entity from the database... our provider will

turn that into a UserApi object with id equal to 6 ... and that will eventually be passed to us

here. If the id is 6... we don't want to create a new User object: we want to query the

database for tha existing User . Our job is to handle both situations.

Undo the changes to the test so we don't break anything... and now, if $dto->id , we need

to query for an existing User . To do that, on top, add a constructor with

private UserRepository $userRepository .

use App\ApiResource\UserApi;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 assert($data instanceof UserApi);

 $entity = $this->mapDtoToEntity($data);

 dd($entity);

 }

 private function mapDtoToEntity(object $dto): object

 {

 assert($dto instanceof UserApi);

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 47

48

Back down here, say $entity = $this->userRepository->find($dto->id) .

If we don't find that User , throw a big giant exception that will trigger a 500 error with

Entity %d not found .

use App\Repository\UserRepository;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository

)

 {

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 46

47

48

You might be wondering:

“Shouldn't this trigger a 404 error instead?”

The answer, in this case, is no. If we're in this situation, it means the item state provider has

already successfully queried for a User with this id. So there should be no way for us to

suddenly not find it. There are some exceptions to this, like if you allowed your user to change

their id ... or if you allowed users to create brand-new objects and set the id manually... but for

most situations, including ours, if this happens, something went weird.

Next up, if we don't have an id , say $entity = new User() .

use App\Repository\UserRepository;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository

)

 {

 }

 private function mapDtoToEntity(object $dto): object

 {

 assert($dto instanceof UserApi);

 if ($dto->id) {

 $entity = $this->userRepository->find($dto->id);

 if (!$entity) {

 throw new \Exception(sprintf('Entity %d not found', $dto-

>id));

 }

 }

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 27

28

29

30

31

32

33

34

35

36

37

38

39

 // ... lines 40 - 46

47

48

Done! In both cases, down here, we're going to map the $dto object to the $entity object.

This code is boring... so I'll speed through this. For the password, put a TODO temporarily

because we still need to hash that. Also add a TODO for handle dragon treasures . Just

focus on the easy stuff... and at the bottom, return $entity .

use App\Entity\User;

use App\Repository\UserRepository;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository

)

 {

 }

 private function mapDtoToEntity(object $dto): object

 {

 assert($dto instanceof UserApi);

 if ($dto->id) {

 $entity = $this->userRepository->find($dto->id);

 if (!$entity) {

 throw new \Exception(sprintf('Entity %d not found', $dto-

>id));

 }

 } else {

 $entity = new User();

 }

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

If we've done things correctly, we'll take the UserApi , transform that into an $entity and

dump it. Rerun the test:

symfony php bin/phpunit --filter=testPostToCreateUser

use App\Entity\User;

use App\Repository\UserRepository;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository

)

 {

 }

 private function mapDtoToEntity(object $dto): object

 {

 assert($dto instanceof UserApi);

 if ($dto->id) {

 $entity = $this->userRepository->find($dto->id);

 if (!$entity) {

 throw new \Exception(sprintf('Entity %d not found', $dto-

>id));

 }

 } else {

 $entity = new User();

 }

 $entity->setEmail($dto->email);

 $entity->setUsername($dto->username);

 $entity->setPassword('TODO properly');

 // TODO: handle dragon treasures

 return $entity;

 }

}

And... 404! Let's see what happened here. Oh... of course. I never put my test back together.

This should be ->post('/api/users') . Try that again and... got it! There's our User entity

object with the email and username transferred correctly!

Next: Let's save this by leveraging the core Doctrine PersistProcessor and

RemoveProcessor . We'll also handle hashing the password. By the end, our user tests will be

passing with flying colors.

Chapter 21: Leveraging the Core Processor

Look at us go! In our state processor, we have successfully transformed the UserApi into a

User entity. So let's save it! We could inject the entity manager, persist and flush... and call it a

day. But I'd rather offload that work to the core PersistProcessor . Search for that file and

open it.

It does the simple persisting and flushing... but it also has some pretty complex logic for PUT

operations. We're not really using those, but the point is: better to reuse this class than try to roll

our own logic.

Calling the Core PersistProcessor

How we do that should be familiar by this point. Add a

private ProcessorInterface $persistProcessor ... and so Symfony knows precisely

which service we want, include the #[Autowire()] attribute, with service set to

PersistProcessor (in this case, there's only one to choose from) ::class .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 53

54

use ApiPlatform\Doctrine\Common\State\PersistProcessor;

use ApiPlatform\State\ProcessorInterface;

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository,

 #[Autowire(service: PersistProcessor::class)] private

ProcessorInterface $persistProcessor,

)

 {

 }

}

Very nice! Below, save with $this->persistProcessor->process() passing $entity ,

$operation , $uriVariables , and $context ... which are all the same arguments we have

up here.

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

12

13

14

15

16

17

18

19

20

21

 // ... line 22

23

24

 // ... lines 25 - 28

29

 // ... lines 30 - 31

32

 // ... lines 33 - 53

54

Oh, and like before, when we generated this class, it generated process() with a void

return type. That's not exactly correct. You don't have to return anything from state processors,

but you can. And whatever you do return - in this case, we'll return $data - will ultimately

become the "thing" that is serialized and returned back to the user. If you don't return anything,

it will use $data .

use ApiPlatform\Doctrine\Common\State\PersistProcessor;

use ApiPlatform\State\ProcessorInterface;

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository,

 #[Autowire(service: PersistProcessor::class)] private

ProcessorInterface $persistProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $this->persistProcessor->process($entity, $operation,

$uriVariables, $context);

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

12

13

14

15

16

17

18

19

20

21

 // ... line 22

23

24

 // ... lines 25 - 28

29

30

31

32

 // ... lines 33 - 53

54

Setting the id onto the DTO

Ok, I think this should work (Famous last words...).

symfony php bin/phpunit --filter=testPostToCreateUser

And... it bombs. We're still getting a 400 error, and it's still

Unable to generate an IRI for the item .

use ApiPlatform\Doctrine\Common\State\PersistProcessor;

use ApiPlatform\State\ProcessorInterface;

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository,

 #[Autowire(service: PersistProcessor::class)] private

ProcessorInterface $persistProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $this->persistProcessor->process($entity, $operation,

$uriVariables, $context);

 return $data;

 }

}

So... what's going on? We map the UserApi to a new User object and save the new User ...

which causes Doctrine to assign the new id to that entity object. But we never take that new id

and put it back onto our UserApi .

To fix this, after saving, add $data->id = $entity->getId() .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

12

13

14

15

16

17

18

19

20

21

 // ... line 22

23

24

 // ... lines 25 - 28

29

30

31

32

33

 // ... lines 34 - 54

55

And if we try it now...

symfony php bin/phpunit --filter=testPostToCreateUser

use ApiPlatform\Doctrine\Common\State\PersistProcessor;

use ApiPlatform\State\ProcessorInterface;

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserRepository $userRepository,

 #[Autowire(service: PersistProcessor::class)] private

ProcessorInterface $persistProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $this->persistProcessor->process($entity, $operation,

$uriVariables, $context);

 $data->id = $entity->getId();

 return $data;

 }

}

it still fails... but we got further this time! The response looks good. It returned a 201 status code

with the new user info. It's failing on the part of the test where it tries to use the password to log

in. That's because our password is currently set to... TODO . We'll fix that in a minute.

Handling the Delete Operation

But first, when we set the processor on the top level #[ApiResource] , this became the

processor for all operations: POST , PUT , PATCH , and DELETE . POST , PUT , and PATCH are

all pretty much the same: save the object to the database. But DELETE is different: we're not

saving, we're removing.

To handle that, check if ($operation instanceof DeleteOperationInterface) .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

16

 // ... lines 17 - 25

26

27

 // ... lines 28 - 31

32

 // ... lines 33 - 35

36

 // ... lines 37 - 41

42

 // ... lines 43 - 63

64

Like with saving, deleting isn't hard... but it's still better to offload this work to the core Doctrine

remove processor. So, up here, copy the argument... and inject another processor:

RemoveProcessor ... and rename this to $removeProcessor .

use ApiPlatform\Metadata\DeleteOperationInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 if ($operation instanceof DeleteOperationInterface) {

 }

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 5

6

7

 // ... lines 8 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 31

32

 // ... lines 33 - 35

36

 // ... lines 37 - 41

42

 // ... lines 43 - 63

64

Back down here, say $this->removeProcessor->process() and pass $entity ,

$operation , $uriVariables , and $context just like the other processor.

use ApiPlatform\Doctrine\Common\State\RemoveProcessor;

use ApiPlatform\Metadata\DeleteOperationInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 #[Autowire(service: RemoveProcessor::class)] private

ProcessorInterface $removeProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 if ($operation instanceof DeleteOperationInterface) {

 }

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 5

6

7

 // ... lines 8 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 31

32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 41

42

 // ... lines 43 - 63

64

A key thing to note is that we're going to return null . In the case of a DELETE operation,

we don't return anything in the response... which we accomplish by returning null from here. I

don't have a test set up for this, but we'll take a leap of faith and assume it works. Ship it!

use ApiPlatform\Doctrine\Common\State\RemoveProcessor;

use ApiPlatform\Metadata\DeleteOperationInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 #[Autowire(service: RemoveProcessor::class)] private

ProcessorInterface $removeProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 if ($operation instanceof DeleteOperationInterface) {

 $this->removeProcessor->process($entity, $operation,

$uriVariables, $context);

 }

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 5

6

7

 // ... lines 8 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 31

32

33

34

35

36

 // ... lines 37 - 41

42

 // ... lines 43 - 63

64

Hashing the Password

Just one more problem to tackle: hashing the plain password. We've done this before, so no

biggie. Before we do too much here, open UserApi ... and add a

public ?string $password = null ... with a comment. This will always hold null or the

"plaintext" password if the user sends one. We're never going to need to handle the hashed

password in our API, so we don't need any space for that... which is nice!

Back in the processor, if ($dto->password) , then we know we need to hash that and set it

on the user. If a new user is being created, this will always be set... but when updating a user,

we'll make this field optional. If it's not set, do nothing so the user's current password stays.

use ApiPlatform\Doctrine\Common\State\RemoveProcessor;

use ApiPlatform\Metadata\DeleteOperationInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 #[Autowire(service: RemoveProcessor::class)] private

ProcessorInterface $removeProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 if ($operation instanceof DeleteOperationInterface) {

 $this->removeProcessor->process($entity, $operation,

$uriVariables, $context);

 return null;

 }

 }

}

To do the hashing, on top, add one more argument:

private UserPasswordHasherInterface $userPasswordHasher . Then back below,

$entity->setPassword() set to $this->userPasswordHasher->hashPassword() ,

passing $entity (the User object) and the plain password: $dto->password .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 13

14

 // ... line 15

16

17

18

 // ... lines 19 - 21

22

23

24

25

26

 // ... lines 27 - 45

46

47

 // ... lines 48 - 60

61

62

63

 // ... lines 64 - 66

67

68

Phew. Let's try the test again. And... it fails... with

“The annotation "@The" in property UserApi::$password was never imported.”

So... that's me tripping on my keyboard and adding an extra @ . Remove that... then try again:

symfony php bin/phpunit --filter=testPostToCreateUser

It passes! Which means it fully-logged in using that password! Though, uh oh, look at the

dumped JSON response: this is after we POST to create the user. In the JSON response, it

includes the plaintext password property that the user just set. Whoops!

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private UserPasswordHasherInterface $userPasswordHasher,

)

 {

 }

 private function mapDtoToEntity(object $dto): object

 {

 if ($dto->password) {

 $entity->setPassword($this->userPasswordHasher-

>hashPassword($entity, $dto->password));

 }

 }

}

The Flow of a Write Request

Let's break this down. Our state provider is used for all GET operations as well as the PATCH

operation. And notice, we are not setting the password ever. We don't want to return that field

in the JSON, so we're, correctly, not mapping it from our entity to our DTO. That's good!

But the POST operation is the one situation where the provider is never called. This data is

deserialized directly into a new UserApi object and that's passed to our processor. This

means that our DTO does have the plain password set on it... And, ultimately, that DTO object is

what is serialized and sent back to the user.

This is a long way of saying that, in UserApi , this password is meant to be a write-only field.

The user should never be able to read this. Next: let's talk about how we can do customizations

like this inside of UserApi , while avoiding the complexity of serialization groups.

Chapter 22: Controlling Fields without Groups

When your API resource is on an entity, serialization groups are a must because you'll definitely

have some properties that you want to show or not show. But serialization groups add

complexity. One of the big benefits of having a separate class for your API is not needing

serialization groups. Because... the whole point of your API class is to represent your API... so,

in theory, you'll want every property to be part of your API.

But, in the real world, that's not always true. And we just ran into one case: password should

be a write-only field. Let's try to replicate some of the complexity that our User entity originally

had, but by avoiding serialization groups.

In UserResourceTest , down here, remove the ->dump() ... and after we

->assertStatus(201) , assert that the password property is not returned. To do that, we

can say ->use(function(Json $json)) . The use() function comes from browser and

there are a few different objects - like Json - that you can ask it to pass you via the type-hint. In

this case, browser takes the JSON from the last response, puts it into a Json object and

passes it to us. Use it by saying $json->assertMissing('password') .

tests/Functional/UserResourceTest.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 15

16

17

18

 // ... lines 19 - 26

27

28

29

 // ... lines 30 - 36

37

38

 // ... lines 39 - 87

88

use Zenstruck\Browser\Json;

class UserResourceTest extends ApiTestCase

{

 public function testPostToCreateUser(): void

 {

 $this->browser()

 ->use(function (Json $json) {

 $json->assertMissing('password');

 })

 ;

 }

}

If we try that now:

symfony php bin/phpunit --filter=testPostToCreateUser

It fails because password does exist.

readable: false

Okay, let's take a tour of how we can customize our API fields without groups. One of the

easiest, (and, coincidentally, my favorite) is to use #[ApiProperty()] with

readable: false .

src/ApiResource/UserApi.php

 // ... lines 1 - 7

8

 // ... lines 9 - 24

25

26

 // ... lines 27 - 35

36

37

 // ... lines 38 - 44

45

We want this to be writable, but not readable.

symfony php bin/phpunit --filter=testPostToCreateUser

And... that fixes things! Beautiful.

Let's repeat this for id ... because id is pretty useless since we have @id .

use ApiPlatform\Metadata\ApiProperty;

class UserApi

{

 #[ApiProperty(readable: false)]

 public ?string $password = null;

}

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 26

27

28

29

30

 // ... lines 31 - 38

39

 // ... lines 40 - 88

89

When we run that... it fails because id is being returned. So now, copy... just the

readable: false part... add #[ApiProperty] above id , paste, and I'll also add

identifier: true ... just to be explicit.

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

27

28

 // ... lines 29 - 45

46

And now...

symfony php bin/phpunit --filter=testPostToCreateUser

That passes.

writable: false

Let's keep going. Copy the next test name - testPatchToUpdateUser - and run it:

class UserResourceTest extends ApiTestCase

{

 public function testPostToCreateUser(): void

 {

 ->use(function (Json $json) {

 $json->assertMissing('password');

 $json->assertMissing('id');

 })

 }

}

class UserApi

{

 #[ApiProperty(readable: false, identifier: true)]

 public ?int $id = null;

}

symfony php bin/phpunit --filter=testPatchToUpdateUser

It passes immediately! Yay! ->patch() is already working. To dive deeper into other ways we

can hide or show fields, also send a flameThrowingDistance field in the JSON set to 999.

And down here, ->dump() the response.

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 40

41

42

 // ... lines 43 - 44

45

 // ... lines 46 - 53

54

55

56

 // ... lines 57 - 90

91

Before we try this, find EntityClassDtoStateProcessor . Right after we set the id ,

dump($data) . Those two dumps will help us understand exactly how this all works.

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 27

28

29

 // ... lines 30 - 40

41

42

 // ... lines 43 - 44

45

 // ... lines 46 - 68

69

Now run the test:

class UserResourceTest extends ApiTestCase

{

 public function testPatchToUpdateUser(): void

 {

 $this->browser()

 ->dump()

 ->assertStatus(200);

 }

}

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $data->id = $entity->getId();

 dump($data);

 }

}

symfony php bin/phpunit --filter=testPatchToUpdateUser

And... awesome. The first dump on top - from the state processor - shows

flameThrowingDistance 999, which means the field is writable. And below, the response

returned 999, which means the field is also readable. Yup... this is a normal, boring field. If the

user sends the field in JSON, that new value is deserialized onto the object.

Ok, experimentation time! In UserApi , above the property, start with the same

#[ApiProperty()] and readable: false . We've already seen this.

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 44

45

46

47

When we run the test, on top, the "999" was written onto the UserApi , but it doesn't show up

in the response. It's writable, but not readable.

If we also pass writable: false ... and try again. On top, the value is just "10". The field is

not writable, so the field in the JSON was ignored.

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 44

45

46

47

It's also not in the response: it's not readable or writable.

The readable/writable options alone are probably going to solve most situations. But next, let's

learn some other tricks and see why you probably want to make sure that your identifier is not

writable.

class UserApi

{

 #[ApiProperty(readable: false)]

 public int $flameThrowingDistance = 0;

}

class UserApi

{

 #[ApiProperty(readable: false, writable: false)]

 public int $flameThrowingDistance = 0;

}

Chapter 23: Other Conditional Field Strategies

Let's keep playing with how we can hide or show fields. Remove the #[ApiProperty]

attribute. Then, on top, set the normalizationContext option. We used this in previous

tutorials... but this time, instead of groups , set a key called

AbstractNormalizer::IGNORED_ATTRIBUTES and then set that to an array. Inside, put

flameThrowingDistance .

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 44

45

46

47

Whether a field is readable or writable really comes down to the serializer. This tells the

serializer:

“Yo! When you're normalizing - so going to JSON - ignore this property.”

This should make it writable, but not readable. When we try it...

symfony php bin/phpunit --filter=testPostToCreateUser

That's exactly what happens! To wrap it in a "do not write" sign, duplicate this move with

denormalizationContext .

class UserApi

{

 #[ApiProperty(readable: false, writable: false)]

 public int $flameThrowingDistance = 0;

}

src/ApiResource/UserApi.php

 // ... lines 1 - 10

11

 // ... lines 12 - 15

16

 // ... line 17

18

19

 // ... lines 20 - 23

24

 // ... lines 25 - 27

28

29

 // ... lines 30 - 48

49

Copy that, put a "de" on the front of it, and now when we try it:

symfony php bin/phpunit --filter=testPostToCreateUser

Yup! flameThrowingDistance is "1" - so it is not writable, and down here... it's not readable

either. Sweet.

So this is just a different option that should work the same as ApiProperty ... though I have

seen complex cases where this context option worked when the ApiProperty solution did

not. Anyway, delete those.

The #[Ignore] Attribute

The last way to ignore a field - if you want to ignore it completely - is to add an attribute called...

#[Ignore] ! This comes from Symfony's serializer system.

use Symfony\Component\Serializer\Normalizer\AbstractNormalizer;

#[ApiResource(

 normalizationContext: [AbstractNormalizer::IGNORED_ATTRIBUTES =>

['flameThrowingDistance']],

 denormalizationContext: [AbstractNormalizer::IGNORED_ATTRIBUTES =>

['flameThrowingDistance']],

)]

class UserApi

{

}

src/ApiResource/UserApi.php

 // ... lines 1 - 10

11

 // ... lines 12 - 25

26

27

 // ... lines 28 - 45

46

47

48

When we try the test:

symfony php bin/phpunit --filter=testPostToCreateUser

Perfect: It is not writable nor readable. Cool!

Alrighty, let's hit the reset button on all that dummy code. Get rid of the #[Ignore] ... and let's

see if we have any extra use statements up here. Then, over in our processor, remove the

->dump() ... and in our test, get rid of that extra field and the other ->dump() . All clean!

Avoiding Writable on the Identifier

On this topic of readable and writable, right now, we can actually change the id field in a

PATCH request. Watch: set this to 47 ... which I just made up, and... it fails with a 500 error!

Open up the error:

“Entity 47 not found.”

That's coming from our state processor. It's coming from down here... it reads the id up here

and tries to find that in the database... but it's not there. If we had used a valid id , it would have

queried for that other User entity... then we would have updated the properties on that!. That's

a big no-no. At least with how our code is written, by making id writable, we're allowing the

user to change which user is being modified.

Let's look at the full flow. First, our provider found the original User entity with the id from the

URL... and mapped that over to a UserApi object. Good so far. Then, during deserialization,

use Symfony\Component\Serializer\Annotation\Ignore;

class UserApi

{

 #[Ignore]

 public int $flameThrowingDistance = 0;

}

the id on the UserApi object was changed to 47 . Finally, in the state processor, we tried to

query for an entity with id=47 ... which is ultimately what we would have saved to the database.

Over in UserApi , to fix this, above id , add writable: false .

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

27

28

 // ... lines 29 - 45

46

Or we could use the #[Ignore] attribute that we saw a second ago... since we don't want this

to be readable or writable. The id property helps generate the IRI... but it's not really part of our

API.

If we run that test now... it passes because it's ignoring the new id field in the JSON. Life is

good.

While we're here, in UserApi , there are two other properties that, for now, I want to make

read-only. Above $dragonTreasures , make this writable: false ... though we are going

to make this writable later.

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 42

43

44

 // ... lines 45 - 47

48

Below, do the same for $flameThrowingDistance ... because this is a fake property that

we're generating as a random number.

class UserApi

{

 #[ApiProperty(readable: false, writable: false, identifier: true)]

 public ?int $id = null;

}

class UserApi

{

 #[ApiProperty(writable: false)]

 public array $dragonTreasures = [];

}

src/ApiResource/UserApi.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 42

43

44

 // ... line 45

46

47

48

Using "security" to hide/show a field

Oh, and another way to control whether a field is readable or writable is the security

attribute. For example, if $flameThrowingDistance were only readable or writable if you

had a certain role, you could use the security attribute to check for that. We'll see this a bit

later.

Different Input/Output Classes?

Finally, I want to mention one last strategy for conditional fields... even though we won't do it. If

the input JSON and output JSON for your API resource start to look really different, it is possible

to have separate classes for your input and your output. You could have something like a

UserApiRead and a separate UserApiWrite . The UserApiRead would be used for the

read operations like GET and GET collection. And UserApiWrite would be used for PUT ,

PATCH , and POST operations.

Though, full disclosure: I haven't actually played with this yet. It should work, but there are

probably some road bumps and details along the way. One other thing to keep in mind is that,

on UserApiWrite , you could, in theory, set the output to UserApiRead . That would allow

the user to send data in the format of UserApiWrite , but be returned JSON from

UserApiRead . But, to make this work, after saving the UserApiWrite in your state

processor, you would need to turn it into a UserApiRead and return that.

Anyway, that's definitely more advanced, but if it's interesting, and you try it, let me know!

Next up: Let's polish our new API resource by re-adding validation and security.

class UserApi

{

 #[ApiProperty(writable: false)]

 public array $dragonTreasures = [];

 #[ApiProperty(writable: false)]

 public int $flameThrowingDistance = 0;

}

Chapter 24: DTO Validation & Security

Let's talk about validation! When we ->post() to our endpoint, the internal object will be our

UserApi object... which means that's what will be validated. Watch. Send no fields to the

POST request... and run that test:

symfony php bin/phpunit --filter=testPostToCreateUser

Oh uh: 500 error! And... I bet you can guess why. It says:

“User::setEmail() : Argument #1 ($email) must be of type string”

Coming from our state processor on line 59. Because there are no validation constraints at all

on UserApi , the email property remains null . Then, over here on line 59, we try to transfer

that null email onto our entity. It doesn't like that, there's a short fist fight, and we see this

error. And even if it did accept a null value, it would eventually fail in the database because the

email isn't allowed to be null there.

We're missing validation. Fortunately, it's easy to add... once you know that validation will

happen on the UserApi object, not the entity.

Configuration the Operations

But before we run wild and add constraints, let's specify the operations ... so we only have

the ones we need: new Get() , new GetCollection() , new Post() ... we'll add some

config to that in a moment... as well as new Patch() and new Delete() .

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

11

12

13

14

 // ... lines 15 - 20

21

 // ... line 22

23

24

25

26

 // ... line 27

28

29

30

31

 // ... lines 32 - 35

36

 // ... lines 37 - 39

40

41

 // ... lines 42 - 66

67

Back when our User entity was the #[ApiResource] , the Post() operation had an extra

validationContext option with groups set to Default and postValidation .

use ApiPlatform\Metadata\Delete;

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

use ApiPlatform\Metadata\Post;

#[ApiResource(

 operations: [

 new Get(),

 new GetCollection(),

 new Post(

),

 new Patch(),

 new Delete(),

],

)]

class UserApi

{

}

src/ApiResource/UserApi.php

 // ... lines 1 - 9

10

11

12

13

14

 // ... lines 15 - 20

21

 // ... line 22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 35

36

 // ... lines 37 - 39

40

41

 // ... lines 42 - 66

67

Thanks to that, when the Post() operation happened, it would run all the normal validators

plus any that were in this postValidation group. We'll see why we need that in a moment.

Adding the Constraints

Ok, constraint time! $id isn't even writable... we want $email to be #[NotBlank] ... and be

an #[Email] .

use ApiPlatform\Metadata\Delete;

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

use ApiPlatform\Metadata\Post;

#[ApiResource(

 operations: [

 new Get(),

 new GetCollection(),

 new Post(

 validationContext: ['groups' => ['Default',

'postValidation']],

),

 new Patch(),

 new Delete(),

],

)]

class UserApi

{

}

src/ApiResource/UserApi.php

 // ... lines 1 - 18

19

 // ... lines 20 - 39

40

41

 // ... lines 42 - 44

45

46

47

 // ... lines 48 - 66

67

We want $username to be #[NotBlank] ...

src/ApiResource/UserApi.php

 // ... lines 1 - 18

19

 // ... lines 20 - 39

40

41

 // ... lines 42 - 44

45

46

47

48

49

50

 // ... lines 51 - 66

67

then $password is an interesting one. $password should be allowed to be blank if we're

doing a PATCH request to edit it... but required on a POST request. To accomplish that, add

#[NotBlank] but with a groups option set to postValidation .

use Symfony\Component\Validator\Constraints as Assert;

class UserApi

{

 #[Assert\NotBlank]

 #[Assert\Email]

 public ?string $email = null;

}

use Symfony\Component\Validator\Constraints as Assert;

class UserApi

{

 #[Assert\NotBlank]

 #[Assert\Email]

 public ?string $email = null;

 #[Assert\NotBlank]

 public ?string $username = null;

}

src/ApiResource/UserApi.php

 // ... lines 1 - 18

19

 // ... lines 20 - 39

40

41

 // ... lines 42 - 44

45

46

47

48

49

50

 // ... lines 51 - 55

56

57

 // ... lines 58 - 66

67

This constraint will only be run when we're validating the postValidation group... which

means it will only be run for the Post() operation.

Okay, that should do it! Run the test now:

symfony php bin/phpunit --filter=testPostToCreateUser

And... a beautiful 422 status code!

UniqueEntity constraint?

By the way, one of the other validation constraints we had before on the User entity was

#[UniqueEntity] . That prevented someone from creating two users with the same email

or username . I don't have that on UserApi , but we should. The #[UniqueEntity]

constraint, unfortunately, only works on entities... so we'd need to create a custom validator to

have that on UserApi . We're not going to worry about that right, but I wanted to point it out.

Anyway, back over on the test, re-add the fields. Validation, check!

use Symfony\Component\Validator\Constraints as Assert;

class UserApi

{

 #[Assert\NotBlank]

 #[Assert\Email]

 public ?string $email = null;

 #[Assert\NotBlank]

 public ?string $username = null;

 #[Assert\NotBlank(groups: ['postValidation'])]

 public ?string $password = null;

}

Adding Security

The next thing we need to re-add - code that used to live on User - is security. Up here on the

API level, for the entire resource, require is_granted("ROLE_USER") .

src/ApiResource/UserApi.php

 // ... lines 1 - 20

21

 // ... lines 22 - 35

36

 // ... lines 37 - 39

40

 // ... lines 41 - 43

44

45

 // ... lines 46 - 70

71

This means that we need to be logged in to use any of the operations for this resource... by

default. Then we overrode that. In Post() , we definitely can't be logged in yet because we're

registering our user. Say, security set to is_granted("PUBLIC_ACCESS") which is a

special attribute that will always pass.

src/ApiResource/UserApi.php

 // ... lines 1 - 20

21

 // ... line 22

23

 // ... lines 24 - 25

26

27

 // ... line 28

29

 // ... lines 30 - 33

34

 // ... line 35

36

 // ... lines 37 - 39

40

 // ... lines 41 - 43

44

45

 // ... lines 46 - 70

71

#[ApiResource(

 security: 'is_granted("ROLE_USER")',

)]

class UserApi

{

}

#[ApiResource(

 operations: [

 new Post(

 security: 'is_granted("PUBLIC_ACCESS")',

),

],

 security: 'is_granted("ROLE_USER")',

)]

class UserApi

{

}

Down here for Patch() , we had security('is_granted("ROLE_USER_EDIT")') .

src/ApiResource/UserApi.php

 // ... lines 1 - 20

21

 // ... line 22

23

 // ... lines 24 - 25

26

27

 // ... line 28

29

30

31

32

 // ... line 33

34

 // ... line 35

36

 // ... lines 37 - 39

40

 // ... lines 41 - 43

44

45

 // ... lines 46 - 70

71

In our app, we decided that you need to have this special tole to be able to edit users.

Ok! Let's run all the tests for User :

symfony php bin/phpunit tests/Functional/UserResourceTest.php

And... oh. Not bad! Three out of four! The failure comes from

testTreasuresCannotBeStolen() . That doesn't sound good!

If we check that out... this is a interesting test: we ->patch() to update a $user , and then try

to set the dragonTreasures property to a treasure that is owned by a different user. You can

see that this $dragonTreasure is owned by $otherUser ... but we're currently updating

$user .

#[ApiResource(

 operations: [

 new Post(

 security: 'is_granted("PUBLIC_ACCESS")',

),

 new Patch(

 security: 'is_granted("ROLE_USER_EDIT")'

),

],

 security: 'is_granted("ROLE_USER")',

)]

class UserApi

{

}

What we're attempting to do is steal this $dragonTreasure from $otherUser and make it

part of $user . Dragons do not appreciate being robbed, so we're asserting that this is a 422

status code... because previously, we had a custom validator that prevented this.

Well, it still exists - it's this TreasuresAllowedOwnerChangeValidator - but it's not being

applied to UserApi ... and it needs to be updated to work with it. We'll do this later.

More importantly right now, the dragonTreasures property isn't even writable! In UserApi ,

above $dragonTreasures , we have writable: false . In a bit, we're going to change that

so that we can write dragonTreasures again. And when we do, we'll bring back that validator

and make sure this test passes.

Next: If you look at the processor or the provider we created, these classes are pretty generic.

They could almost work for UserApi and a future DragonTreasureApi class... and any

other DTO class we create that's tied to an entity. The only part that's specific to User is the

code that maps to and from the User entity and the UserApi class.

If we could handle that mapping... in some system that lives outside our provider and

processor... we could reuse them. Let's make this a reality next!

Chapter 25: MicroMapper: Central DTO Mapping

Doing the data transformation, from UserApi to the User entity, or the User entity to

UserApi , is the only part of our provider and processor that isn't generic and reusable. Rats! If

it wasn't for that code, we could create a DragonTreasureApi class and do this whole thing

over again with, like almost no work! Fortunately, this is a well-known problem called "data

mapping".

For this tutorial, I tried a few data mapping libraries, most notably

jane-php/automapper-bundle , which is super-fast, advanced, and fun to use. However, it

isn't quite as flexible as I needed... and extending it looked complex. Honestly... I got stuck in a

few places... though I know that work is being done to make this package even friendlier.

The point is, we're not going to use that library. Instead, to handle the mapping, I created a

small package of my own. It's easy to understand, and gives us full control... even if it's not quite

as cool as jane's automapper.

Installing micro-mapper

So let's get it installed! Run:

composer require symfonycasts/micro-mapper

That kind of sounds like a superhero. Now that we have this in our app, we have one new

micromapper service that's good at converting data from one object to another. Let's start by

using it in our processor.

Using the MicroMapper Service

Up on top, autowire a private MicroMapperInterface $microMapper .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 14

15

16

17

18

19

 // ... lines 20 - 23

24

25

26

27

28

 // ... lines 29 - 51

52

And down here, for all the mapping stuff, copy the existing logic, because we'll need it in a

minute. Replace it with return $this->microMapper->map() . This has two main

arguments: The $from object, which will be $dto and the toClass, so User::class .

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 14

15

16

17

18

19

 // ... lines 20 - 23

24

25

26

27

28

 // ... lines 29 - 47

48

49

50

51

52

Done! Well... not quite, but let's try running testPostToCreateUser anyway.

symfony php bin/phpunit --filter=testPostToCreateUser

use Symfonycasts\MicroMapper\MicroMapperInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper

)

 {

 }

}

use Symfonycasts\MicroMapper\MicroMapperInterface;

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper

)

 {

 }

 private function mapDtoToEntity(object $dto): object

 {

 return $this->microMapper->map($dto, User::class);

 }

}

And... it fails with a 500 error. The interesting thing is what that 500 error says. Let's "View Page

Source" so we can read this even better. It says

“No mapper found for App\UserResource\UserApi -> App\Entity\User ”

And this comes from MicroMapper . This basically says:

“Hey, I don't know how to convert a UserApi object to a User object! Halp!”

Creating a Mapper

MicroMapper isn't magic... it's really the opposite. To teach micro mapper how to do this

conversion, we need to create a class that explains what we want. That's called a mapper class.

And these are fun!

Let me start by closing a few things... and then creating a new Mapper/ directory in src/ .

Inside of that, add a new PHP class called... how about UserApiToEntityMapper , because

we're going from UserApi to the User entity.

This class needs 2 things. First, to implement MapperInterface .

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 22

23

And second, above the class, to describe what it's mapping to and from, we need an

#[AsMapper()] attribute with from: UserApi::class and to: User::class .

namespace App\Mapper;

use Symfonycasts\MicroMapper\MapperInterface;

class UserApiToEntityMapper implements MapperInterface

{

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

 // ... lines 13 - 22

23

To help the interface, go to "Code Generate" (or "command" + "N" on a Mac) and generate the

two methods it needs: load() and populate() . For starters, let's

dd($from, $toClass) .

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

namespace App\Mapper;

use App\ApiResource\UserApi;

use App\Entity\User;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: UserApi::class, to: User::class)]

class UserApiToEntityMapper implements MapperInterface

{

}

namespace App\Mapper;

use App\ApiResource\UserApi;

use App\Entity\User;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: UserApi::class, to: User::class)]

class UserApiToEntityMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 dd($from, $toClass);

 // TODO: Implement load() method.

 }

 public function populate(object $from, object $to, array $context):

object

 {

 // TODO: Implement populate() method.

 }

}

Now, just by creating this and giving it #[AsMapper] , when we use MicroMapper to do this

transformation, it should call our load() method. Let's see if it does!

Run the test:

symfony php bin/phpunit --filter=testPostToCreateUser

And... got it! There's the UserApi object we're passing, and it's passing us the User class.

The purpose of load() is to load the $toClass object and return it, like by querying for a

User entity or creating a new one.

To do the query, on top, add public function __construct() and inject the normal

UserRepository $userRepository . Down here, this will hold the same code that we saw

earlier. I like to say $dto = $from and assert($dto instanceof UserApi) . That helps

my brain and my editor.

Next, if our $dto has an id , then call $this->userRepository->find($dto->id) .

Else, create a brand new User() object.

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

 // ... lines 26 - 30

31

 // ... lines 32 - 36

37

It's that simple. And if, for some reason, we don't have a $userEntity ,

throw new \Exception('User not found') , similar to what we did before. Down here,

return $userEntity .

use App\Repository\UserRepository;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private UserRepository $userRepository,

)

 {

 }

 public function load(object $from, string $toClass, array $context):

object

 {

 $dto = $from;

 assert($dto instanceof UserApi);

 $userEntity = $dto->id ? $this->userRepository->find($dto->id) :

new User();

 }

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 36

37

So we've initialized our $to object and returned it. And that's the point of load() : to do the

least amount of work to get the $to object... but without populating the data.

Internally, after calling load() , micro mapper will then call populate() and pass us the

User entity object that we just returned. To see this, let's dd($from, $to) .

use App\Repository\UserRepository;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private UserRepository $userRepository,

)

 {

 }

 public function load(object $from, string $toClass, array $context):

object

 {

 $dto = $from;

 assert($dto instanceof UserApi);

 $userEntity = $dto->id ? $this->userRepository->find($dto->id) :

new User();

 if (!$userEntity) {

 throw new \Exception('User not found');

 }

 return $userEntity;

 }

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Run that test:

symfony php bin/phpunit --filter=testPostToCreateUser

Perfect! Here's our "from" UserApi object, and the new User entity.

Now... you might be wondering why we have both a load() method and a populate()

method... when it seems like these could just be one method. And you'd mostly be right! But

there's a technical reason why they're separated, and it'll come in handy later when we talk

use App\Repository\UserRepository;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private UserRepository $userRepository,

)

 {

 }

 public function load(object $from, string $toClass, array $context):

object

 {

 $dto = $from;

 assert($dto instanceof UserApi);

 $userEntity = $dto->id ? $this->userRepository->find($dto->id) :

new User();

 if (!$userEntity) {

 throw new \Exception('User not found');

 }

 return $userEntity;

 }

 public function populate(object $from, object $to, array $context):

object

 {

 dd($from, $to);

 }

}

about relationships. But for now, you can imagine these two methods are really just one,

continuous process: load() is called, then populate() .

And no surprise, this is where we will take the data from the $from object and put it onto the

$to object. Once again, to keep me sane, I'll say $dto = $from and

assert($dto instanceof UserApi) ... then $entity = $to and

assert($entity instanceof User) .

The code down here is going to be really boring... so I'll paste it. At the bottom,

return $entity .

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

We're using $this->userPasswordHasher here... so we also need to make sure, at the top,

to add private UserPasswordHasherInterface $userPasswordHasher .

class UserApiToEntityMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $dto = $from;

 assert($dto instanceof UserApi);

 $entity = $to;

 assert($entity instanceof User);

 $entity->setEmail($dto->email);

 $entity->setUsername($dto->username);

 if ($dto->password) {

 $entity->setPassword($this->userPasswordHasher-

>hashPassword($entity, $dto->password));

 }

 // TODO dragonTreasures if we change them to writeable

 return $entity;

 }

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

15

 // ... line 16

17

18

19

20

 // ... lines 21 - 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

So this is basically the same code we had before... but in a different spot.

Let's see what the test thinks!

symfony php bin/phpunit --filter=testPostToCreateUser

It passes! This is huge! We've offloaded this work to our mapper... which means our processor

is almost completely generic. Now we can remove the UserPasswordHasher that we don't

need anymore... and the UserRepository up here. We can even remove those use

statements.

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private UserPasswordHasherInterface $userPasswordHasher,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $dto = $from;

 assert($dto instanceof UserApi);

 $entity = $to;

 assert($entity instanceof User);

 $entity->setEmail($dto->email);

 $entity->setUsername($dto->username);

 if ($dto->password) {

 $entity->setPassword($this->userPasswordHasher-

>hashPassword($entity, $dto->password));

 }

 // TODO dragonTreasures if we change them to writeable

 return $entity;

 }

}

We still do need to write the mapping code, but now it lives in a nice, central location.

Mapping the Other Direction

Ready to repeat this for the provider. Close the processor... and open it up. This time, we're

going from the User entity to UserApi . Copy all of this code, delete it and, just like before,

autowire MicroMapperInterface $microMapper . Down here, this simplifies to

return $this->microMapper->map() going from our $entity to UserApi::class .

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 11

12

 // ... line 13

14

 // ... line 15

16

17

18

 // ... lines 19 - 20

21

22

23

24

25

 // ... lines 26 - 54

55

56

57

58

59

Sweet! If we tried this now, we'd get a 500 error because we don't have a mapper for it. Back in

src/Mapper/ , create a new class called UserEntityToApiMapper ... implement

MapperInterface ... and above the class, add #[AsMapper()] . In this case, we're going

from: User::class , to: UserApi::class .

use App\ApiResource\UserApi;

use Symfonycasts\MicroMapper\MicroMapperInterface;

class EntityToDtoStateProvider implements ProviderInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper

)

 {

 }

 private function mapEntityToDto(object $entity): object

 {

 return $this->microMapper->map($entity, UserApi::class);

 }

}

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

 // ... lines 13 - 37

38

Implement both of the methods we need... and we start pretty much the same way as before,

with $entity = $from and assert($entity instanceof User) .

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 21

22

 // ... lines 23 - 37

38

Down here, to create the DTO, we don't need to do any queries. We're always going to

instantiate a fresh new UserApi() . Set the ID onto it with

$dto->id = $entity->getId() ... then return $dto .

namespace App\Mapper;

use App\ApiResource\UserApi;

use App\Entity\User;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: User::class, to: UserApi::class)]

class UserEntityToApiMapper implements MapperInterface

{

}

namespace App\Mapper;

use App\ApiResource\UserApi;

use App\Entity\User;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: User::class, to: UserApi::class)]

class UserEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof User);

 }

}

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 37

38

Ok, the job of the load() method is really to create the $to object and... at least make sure it

has its identifier if there is one.

Everything else we need to do is down here in populate() . Start our usual way:

$entity = $from , $dto = $to and two asserts:

assert($entity instanceof User) and assert($dto instanceof UserApi) .

Below that, use the exact code we had before. We're just transferring the data. At the bottom,

return $dto .

namespace App\Mapper;

use App\ApiResource\UserApi;

use App\Entity\User;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: User::class, to: UserApi::class)]

class UserEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof User);

 $dto = new UserApi();

 $dto->id = $entity->getId();

 return $dto;

 }

}

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Phew! Let's try this! Head over to your browser, refresh this page, and... oh...

“Full authentication is required to access this resource.”

namespace App\Mapper;

use App\ApiResource\UserApi;

use App\Entity\User;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: User::class, to: UserApi::class)]

class UserEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof User);

 $dto = new UserApi();

 $dto->id = $entity->getId();

 return $dto;

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $entity = $from;

 $dto = $to;

 assert($entity instanceof User);

 assert($dto instanceof UserApi);

 $dto->email = $entity->getEmail();

 $dto->username = $entity->getUsername();

 $dto->dragonTreasures = $entity->getPublishedDragonTreasures()-

>getValues();

 $dto->flameThrowingDistance = rand(1, 100);

 return $dto;

 }

}

Of course. That's because we added security! Head back over to the homepage, click this

username and password shortcut... boop... and now try to refresh that page. It works! We are

missing some of the data, though, which is my fault.

I said $dto = new UserApi() . So instead of modifying the $to object I'm being passed, I

created a new one... and the original wasn't modified. There we go. If I try it again... much

better.

So this is huge people! Our provider and processor are now generic! Let's finish the process of

making them work for any API resource class next

Chapter 26: Reusable Entity->Dto Provider &
Processor

Our UserAPI is now a fully functional API resource class! We've got our

EntityToDtoStateProvider , which calls the core state provider from Doctrine, and that

gives us all the good stuff, like querying, filtering, and pagination. Then, down here, we leverage

the MicroMapper system to convert the $entity objects into UserApi objects.

And we do the same thing in the processor. We use MicroMapper to go from UserApi to our

User entity... then call the core Doctrine state processor to let it do the saving or deleting. I love

that!

Our dream is to create a DragonTreasureApi and repeat all of this magic. And if we can

make these processor and provider classes completely generic... that's going to be super easy.

So let's do it!

Making the Provider Generic

Start in the provider. If you search for "user", there's only one spot: where we tell MicroMapper

which class to convert our $entity into. Can... we fetch this dynamically? Up here, our

provider receives the $operation and $context . Let's dump both of these.

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 26

27

28

29

 // ... lines 30 - 53

54

 // ... lines 55 - 59

60

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 dd($operation, $context);

 }

}

Since this is in our provider... we can just go refresh the Collection endpoint and... boom! This is

a GetCollection operation... and check it out. The operation object stores the ApiResource

class that it's attached to!

So over here, it's simple: $resourceClass = $operation->getClass() . Now that we've

got that, down here, make it an argument - string $resourceClass - and pass that

instead. Finally, we need to add $resourceClass as the argument when we call

mapEntityToDto() there... and right there. Remove the use statement we don't need

anymore and... just like that... it still works!

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 25

26

27

28

29

 // ... lines 30 - 33

34

35

36

 // ... lines 37 - 43

44

 // ... lines 45 - 51

52

53

54

55

56

57

58

59

Making the Processor Generic

We're on a roll! Head to the processor and search for "user". Ah, we have the same problem

except, this time, we need the User entity class.

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 $resourceClass = $operation->getClass();

 if ($operation instanceof CollectionOperationInterface) {

 foreach ($entities as $entity) {

 $dtos[] = $this->mapEntityToDto($entity, $resourceClass);

 }

 }

 return $this->mapEntityToDto($entity, $resourceClass);

 }

 private function mapEntityToDto(object $entity, string

$resourceClass): object

 {

 return $this->microMapper->map($entity, $resourceClass);

 }

}

Ok! Up on top, dd($operation) . And for this, we need to run one of our tests:

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 25

26

27

28

 // ... lines 29 - 43

44

 // ... lines 45 - 49

50

symfony php bin/phpunit --filter=testPostToCreateUser

And... got it! We see the Post operation... and the class is, of course, UserApi . But this time

we need the User class. Remember: in UserApi , we use stateOptions to say that

UserApi is tied to the User entity. And now, we can read this info from the operation. If we

scroll down a bit... there it is: the stateOptions property with the Options object, and

entityClass inside.

Cool! Back in the processor, towards the top... remove the dd() and start with

$stateOptions = $operation->getStateOptions() . Then, to help my editor (and also

in case I misconfigure something), assert($stateOptions instanceof Options) (the

one from Doctrine ORM).

You can use different Options classes for $stateOptions ... like if you're getting data from

ElasticSearch, but we know we're using this one from Doctrine. Below, say

$entityClass = $stateOptions->getEntityClass() .

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 dd($operation);

 }

}

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 26

27

28

29

30

31

 // ... lines 32 - 46

47

 // ... lines 48 - 52

53

And... we don't need this assert() down here, then pass $entityClass to

mapDtoToEntity() . Finally, use that with string $entityClass ... and also pass it here.

src/State/EntityClassDtoStateProcessor.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 26

27

28

29

30

31

 // ... lines 32 - 46

47

 // ... lines 48 - 52

53

When we search for "user" now... we can get rid of the two use statements... and... we're

clean! It's generic! Try the test!

symfony php bin/phpunit --filter=testPostToCreateUser

That's it! We're ready! We have a reusable provider and processor! Next, let's create a

DragonTreasureApi class, repeat this magic, and see how quickly we can get things to fall

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $stateOptions = $operation->getStateOptions();

 assert($stateOptions instanceof Options);

 $entityClass = $stateOptions->getEntityClass();

 }

}

class EntityClassDtoStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 $stateOptions = $operation->getStateOptions();

 assert($stateOptions instanceof Options);

 $entityClass = $stateOptions->getEntityClass();

 }

}

into place!

Chapter 27: Quick! Create a DragonTreasure DTO

Time to convert our DragonTreasure ApiResource into a proper DTO class! We'll start by

deleting a ton of stuff: everything related to API Platform in DragonTreasure ... so we have a

clean slate to start from. We'll add back what we need little-by-little. Goodbye filter stuff... the

validators... all the serialization group stuff... and then we can do some cleanup on our

properties. We had some fairly complex code in here... and while we won't add all of it back, we

will add the most important things.

src/Entity/DragonTreasure.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

namespace App\Entity;

use App\Repository\DragonTreasureRepository;

use Carbon\Carbon;

use Doctrine\DBAL\Types\Types;

use Doctrine\ORM\Mapping as ORM;

use function Symfony\Component\String\u;

#[ORM\Entity(repositoryClass: DragonTreasureRepository::class)]

class DragonTreasure

{

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column]

 private ?int $id = null;

 #[ORM\Column(length: 255)]

 private ?string $name = null;

 #[ORM\Column(type: Types::TEXT)]

 private ?string $description = null;

 /**

 * The estimated value of this treasure, in gold coins.

 */

 #[ORM\Column]

 private ?int $value = 0;

 #[ORM\Column]

 private ?int $coolFactor = 0;

 #[ORM\Column]

 private \DateTimeImmutable $plunderedAt;

 #[ORM\Column]

 private bool $isPublished = false;

 #[ORM\ManyToOne(inversedBy: 'dragonTreasures')]

 #[ORM\JoinColumn(nullable: false)]

 private ?User $owner = null;

 /**

 * @var bool Non-persisted property to help determine if the treasure

is owned by the authenticated user

 */

47

 // ... lines 48 - 169

170

Lemme scroll down to make sure we got everything. Yea, that should be it! We now have a

good old-fashioned, boring entity class. In src/ApiPlatform/ , let's also delete

AdminGroupsContextBuilder . This was a complex way to make fields readable or writable

by our admin... but we're going to solve that with ApiProperty security. Also get rid of the

custom normalizer... which added a field and an extra group. And finally, remove the custom

DragonTreasureStateProvider and DragonTreasureStateProcessor classes.

Query Extensions are Still Called!

But we did keep one thing: DragonTreasureIsPublishedExtension . Because the new

system will still use the core Doctrine CollectionProvider , this query extension stuff will

continue to work and be called. That's just one less thing we need to worry about.

Head over and refresh the documentation. Ok! Only Quest and User . Though, you may

notice some DragonTreasure stuff down here... because UserApi has a relation to the

DragonTreasure entity. So even though DragonTreasure isn't an API resource, API

Platform still tries to document what that field is on User . It doesn't really matter, because we're

going to fix that and completely use API classes everywhere

Creating the DTO Class

In src/ApiResource/ , create the new class: DragonTreasureApi .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 2

3

 // ... lines 4 - 18

19

20

 // ... lines 21 - 24

25

Next, in UserApi , steal some of the basic code from our #[ApiResource] ... paste that over

here, and, for now, delete operations . We can also get rid of these use statements. Perfect!

 private bool $isOwnedByAuthenticatedUser = false;

}

namespace App\ApiResource;

class DragonTreasureApi

{

}

We will use a shortName - Treasure - give this 10 items per page, and remove the

security line. The most important thing is that we have provider and processor (just as

they are here), and stateOptions , which will point to DragonTreasure::class .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 2

3

4

5

 // ... line 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 24

25

Also grab the $id property. Like before, we don't really want this to be part of our API, so it's

readable: false and writable: false . Down here, add

public ?string $name = null .

namespace App\ApiResource;

use ApiPlatform\Doctrine\Orm\State\Options;

use ApiPlatform\Metadata\ApiResource;

use App\Entity\DragonTreasure;

use App\State\EntityClassDtoStateProcessor;

use App\State\EntityClassDtoStateProvider;

#[ApiResource(

 shortName: 'Treasure',

 paginationItemsPerPage: 10,

 provider: EntityClassDtoStateProvider::class,

 processor: EntityClassDtoStateProcessor::class,

 stateOptions: new Options(entityClass: DragonTreasure::class),

)]

class DragonTreasureApi

{

}

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Great start! We have one tiny class and... what the heck, let's just go try it! Refresh the docs.

Yes! Our Treasure operations are here! If we try the collection endpoint... we get:

“No mapper found for DragonTreasure -> DragonTreasureApi ”

Adding the Mapper Class

That's fantastic! The only real work we need to do is implement those mappers. So let's go!

In the src/Mapper/ directory, create a class called

DragonTreasureEntityToApiMapper . We've done this before: implement

MapperInterface and add the #[AsMapper()] attribute. We're going

from: DragonTreasure::class to: DragonTreasureApi::class .

namespace App\ApiResource;

use ApiPlatform\Doctrine\Orm\State\Options;

use ApiPlatform\Metadata\ApiProperty;

use ApiPlatform\Metadata\ApiResource;

use App\Entity\DragonTreasure;

use App\State\EntityClassDtoStateProcessor;

use App\State\EntityClassDtoStateProvider;

#[ApiResource(

 shortName: 'Treasure',

 paginationItemsPerPage: 10,

 provider: EntityClassDtoStateProvider::class,

 processor: EntityClassDtoStateProcessor::class,

 stateOptions: new Options(entityClass: DragonTreasure::class),

)]

class DragonTreasureApi

{

 #[ApiProperty(readable: false, writable: false, identifier: true)]

 public ?int $id = null;

 public ?string $name = null;

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

 // ... lines 13 - 34

35

And just like that, micro mapper knows to use this. Generate the two methods for the interface:

load() and populate() . For sanity, add $entity = $from , and assert() that

$entity is an instanceof DragonTreasure .

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 21

22

 // ... lines 23 - 34

35

Down here, create the DTO object with $dto = new DragonTreasureApi() . And

remember, the job of load() is to create the object and put an identifier on it if there is one. So

add $dto->id = $entity->getId() . Finally, return $dto .

namespace App\Mapper;

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: DragonTreasure::class, to: DragonTreasureApi::class)]

class DragonTreasureEntityToApiMapper implements MapperInterface

{

}

namespace App\Mapper;

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: DragonTreasure::class, to: DragonTreasureApi::class)]

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof DragonTreasure);

 }

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 34

35

For populate() , steal a few lines from above that set the $entity variable... then also say

$dto = $to , and add one more assert() that $dto is an

instanceof DragonTreasureApi .

namespace App\Mapper;

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: DragonTreasure::class, to: DragonTreasureApi::class)]

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof DragonTreasure);

 $dto = new DragonTreasureApi();

 $dto->id = $entity->getId();

 return $dto;

 }

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 33

34

35

The only property we have on our DTO right now is name , so all we need is

$dto->name = $entity->getName() . At the end, return $dto .

namespace App\Mapper;

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: DragonTreasure::class, to: DragonTreasureApi::class)]

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof DragonTreasure);

 $dto = new DragonTreasureApi();

 $dto->id = $entity->getId();

 return $dto;

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $entity = $from;

 $dto = $to;

 assert($entity instanceof DragonTreasure);

 assert($dto instanceof DragonTreasureApi);

 }

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

And, people! We just created a class that maps from the entity to the DTO... and our state

provider is using micro mapper internally... so I think this should... just work!

And... it does! Wow! With just the API Resource class and this one mapper, we now have a

database-powered custom API Resource class. Woo!

Adding A Relation Field

namespace App\Mapper;

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: DragonTreasure::class, to: DragonTreasureApi::class)]

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function load(object $from, string $toClass, array $context):

object

 {

 $entity = $from;

 assert($entity instanceof DragonTreasure);

 $dto = new DragonTreasureApi();

 $dto->id = $entity->getId();

 return $dto;

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $entity = $from;

 $dto = $to;

 assert($entity instanceof DragonTreasure);

 assert($dto instanceof DragonTreasureApi);

 $dto->name = $entity->getName();

 return $dto;

 }

}

Now things get interesting. Every DragonTreasure entity has an owner, which is a

relationship to the User entity. In our API, we're going to have the same relationship. But

instead of this being a relation from DragonTreasureApi to a User entity object, it will be to

a UserApi object.

Check it out! Say public ?UserApi $owner = null .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

27

Then let's go populate that in the mapper. Down here, say $dto->owner = ... but... hold on a

second. This isn't as simple as saying $entity->getOwner() , because that's a user entity

object. We need a UserApi object! Can you think of anything that's really good at converting a

User entity to UserApi? That's right, MicroMapper!

Up here on top, inject private MicroMapperInterface $microMapper ... and, down

here, say $dto->owner = $this->microMapper->map() to map from

$entity->getOwner() - the User entity object - to UserApi::class .

class DragonTreasureApi

{

 public ?UserApi $owner = null;

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 39

40

 // ... lines 41 - 48

49

50

How cool is that? One thing to be aware of is that if, in your system, $entity->getOwner()

might be null , you should code for that. Like, if you have an owner, call the mapper, else just

set owner to null ... or don't set it at all. For us, we're always going to have an owner, so this

should be safe.

Let's try it! Refresh and... oooh. We have an owner field and it's an IRI. Why is that showing up

as an IRI? Because API Platform recognizes that the UserApi object is an API resource. And

how does it show API resources that are relations? That's right! It sets them as an IRI. So that's

exactly what we wanted to see.

Adding More Fields

Let's fill in the rest of the fields we need: I'll go through this super-fast. One of the fields I'm

adding is $shortDescription . That was a custom field before... but it'll be simpler now.

Another custom field we had was $isMine , which will also just be a normal property.

use Symfonycasts\MicroMapper\MicroMapperInterface;

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $dto->owner = $this->microMapper->map($entity->getOwner(),

UserApi::class);

 }

}

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Over in our mapper, let's set everything. I'll speed through the boring parts. But

$shortDescription is a bit interesting. Before, in DragonTreasure , we had a

getShortDescription() method and that was exposed directly as the API field.

With the new setup, it's a normal property like anything else, and we handle setting the custom

data in our mapper: $shortDescription is equal to

$entity->getShortDescription() . Finally, for $dto->isMine , temporarily hardcode

that to true .

class DragonTreasureApi

{

 public ?string $description = null;

 public int $value = 0;

 public int $coolFactor = 0;

 public ?UserApi $owner = null;

 public ?string $shortDescription = null;

 public ?string $plunderedAtAgo = null;

 public ?bool $isMine = null;

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 31

32

33

 // ... lines 34 - 40

41

42

43

44

45

46

 // ... lines 47 - 48

49

50

Let's check it! Refresh and... that's beautiful!

In tests/Functional/ , we have DragonTreasureResourceTest . In here, we have

testGetCollectionOfTreasures() , which tests to make sure that we only see published

items. If our query extension is still working, this will pass. This also checks to make sure we

see the correct keys.

Let's see if this works:

symfony php bin/phpunit --filter=testGetCollectionOfTreasures

It does. Mind blown.

Populating the Weird isMine Field

Before we finish, let's fix the hard coded true on isMine . This is easy, but shows off just how

nice it is to work with custom fields. In our mapper, this is a service, so we can inject other

services like the $security service. Then, we can populate that with whatever data we want.

So isMine is true if $this->security->getUser() equals the DragonTreasure ,

getOwner() (which is a User entity object).

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $dto->description = $entity->getDescription();

 $dto->value = $entity->getValue();

 $dto->coolFactor = $entity->getCoolFactor();

 $dto->shortDescription = $entity->getShortDescription();

 $dto->plunderedAtAgo = $entity->getPlunderedAtAgo();

 $dto->isMine = true;

 }

}

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 7

8

 // ... lines 9 - 13

14

15

16

 // ... line 17

18

19

20

21

 // ... lines 22 - 33

34

35

 // ... lines 36 - 47

48

 // ... lines 49 - 50

51

52

Try the test one more time to make sure this is working, and... it is. Woo!

Next: I want to dive deeper into relationships in our DTO-powered API. Because, if you're not

careful, we can get the dreaded infinite recursion!

use Symfony\Bundle\SecurityBundle\Security;

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function __construct(

 private Security $security,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $dto->isMine = $this->security->getUser() && $this->security-

>getUser() === $entity->getOwner();

 }

}

Chapter 28: Dtos, Mapping & Max Depth of
Relations

Head to /api/users.jsonld to see... a circular reference coming from the serializer. Yikes!

Let's think: API Platform serializes whatever we return from the state provider. So head there....

and find where the collection is created. Dump the DTOs. These are what's being serialized, so

the problem must be here.

src/State/EntityToDtoStateProvider.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 25

26

27

 // ... line 28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 44

45

 // ... lines 46 - 53

54

 // ... lines 55 - 59

60

Refresh and... no surprise: we see 5 UserApi objects. Ah, but here's the problem: the

dragonTreasures field holds an array of DragonTreasure entity objects... and each has

an owner that points to a User entity... and that points back to a collection of

DragonTreasure entities... which causes the serializer to serializer forever and ever. But

that's not even the real problem! I know, I'm full of good news. The real problem is that the

UserApi object should really relate to a DragonTreasureApi , not a DragonTreasure

entity.

Over in UserApi , this will now be an array of DragonTreasureApi . Once we start going

the DTO route, for maximum smoothness, we should relate DTOs to other DTOs... instead of

mixing them with entities.

class EntityToDtoStateProvider implements ProviderInterface

{

 public function provide(Operation $operation, array $uriVariables =

[], array $context = []): object|array|null

 {

 if ($operation instanceof CollectionOperationInterface) {

 dd($dtos);

 }

 }

}

src/ApiResource/UserApi.php

 // ... lines 1 - 42

43

44

 // ... lines 45 - 61

62

63

64

65

66

 // ... lines 67 - 69

70

To populate the DTO objects, go to the mapper: UserEntityToApiMapper . Down here, for

dragonTreasures , we can't do this anymore because that will give us DragonTreasure

entity objects. What we basically want to do is convert from DragonTreasure to

DragonTreasureApi . And so, once again, it's micro mapper to the rescue!

Micro-Mapping DragonTreasure -> DragonTreasureApi

Add public function __construct() with

private MicroMapperInterface $microMapper . Down here, add some fancy code:

$dto->dragonTreasures = set to array_map() , with a function that has a

DragonTreasure argument. We'll finish that in a second... but first pass the array that it will

loop over: $entity->getPublishedDragonTreasures()->toArray() .

So: we get an array of the published DragonTreasure objects and PHP loops over them and

calls our function for each one - passing the DragonTreasure . Whatever we return will

become an item inside a new array that's set onto dragonTreasures . And what we want to

return is a DragonTreasureApi object. Do that with

$this->microMapper->map($dragonTreasure, DragonTreasureApi::class) .

class UserApi

{

 /**

 * @var array<int, DragonTreasureApi>

 */

 #[ApiProperty(writable: false)]

 public array $dragonTreasures = [];

}

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

 // ... lines 21 - 41

42

43

44

 // ... lines 45 - 47

48

49

Circular Relationships

Cool! When we refresh to try it... we're greeted with a different circular reference problem. Fun!

This one comes from MicroMapper... and it's a problem that will happen whenever you have

relationships that refer to each other.

Think about it: we ask Micro Mapper to convert a DragonTreasure entity to

DragonTreasureApi . Simple. To do that, it uses our mapper. And guess what? In our

mapper, we ask it to convert the owner - a User entity - to an instance of UserApi . To do

that, micro mapper goes back to UserEntityToApiMapper and... the process repeats. We're

in a loop: to convert a User entity, we need to convert a DragonTreasure entity... which

means we need to convert its owner ... which is that same User entity.

Setting Mapping Depth

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\MicroMapperInterface;

class UserEntityToApiMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

 $dto->dragonTreasures = array_map(function(DragonTreasure

$dragonTreasure) {

 return $this->microMapper->map($dragonTreasure,

DragonTreasureApi::class);

 }, $entity->getPublishedDragonTreasures()->getValues());

 }

}

The fix lives in your mapper, when calling the map() function. Pass a third argument, which is a

"context"... kind of an array of options. You can pass whatever you want, but Micro Mapper itself

only has 1 option that it cares about. Set MicroMapperInterface::MAX_DEPTH to 1.

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

 // ... lines 21 - 41

42

43

44

45

46

 // ... lines 47 - 49

50

51

Let's see what that does. When we refresh... look at the dump, which comes from the state

provider. It maps the User entities to UserApi objects... and we see 5. We can also see that

the dragonTreasures property is populated with DragonTreasureApi objects. So it did do

the mapping from DragonTreasure to DragonTreasureApi . But when it went to map the

owner of that DragonTreasure to a UserApi , it's there... but it's empty. It's a shallow

mapping.

When we pass MAX_DEPTH => 1 , we're saying:

“Yo! I want you to fully map this DragonTreasure entity to DragonTreasureApi . That is

depth 1. But if the micro mapper is called again to map any deeper, skip that.”

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use Symfonycasts\MicroMapper\MicroMapperInterface;

class UserEntityToApiMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

 $dto->dragonTreasures = array_map(function(DragonTreasure

$dragonTreasure) {

 return $this->microMapper->map($dragonTreasure,

DragonTreasureApi::class, [

 MicroMapperInterface::MAX_DEPTH => 1,

]);

 }, $entity->getPublishedDragonTreasures()->getValues());

 }

}

Well, not exactly skip. When the mapper is called the 2nd time to map the User entity to

UserApi , it calls the load() method on that mapper... but not populate() . So we end up

with a UserApi object with an id ... but nothing else. That fixes our circular loop. And, we don't

really care that the owner property is an empty object... because our JSON never renders that

deeply!

Watch. Remove the dd() so we can see the results. And... perfect! The result is exactly what

we expect! For DragonTreasures , we're only showing the IRI.

So, as a rule, when calling micro mapper from inside a mapper class, you'll probably want to set

MAX_DEPTH to 1 . Heck, we could set MAX_DEPTH to 0 ! Though the only reason to do that

would be a slight performance improvement.

This time, when we map $dragonTreasure to DragonTreasureApi , try

MAX_DEPTH => 0 .

src/Mapper/UserEntityToApiMapper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 32

33

34

 // ... lines 35 - 41

42

43

44

45

46

 // ... lines 47 - 49

50

51

This will cause the depth to be hit immediately. When it goes to map the DragonTreasure

entity to DragonTreasureApi , it will use the mapper, but only call the load() method. The

populate() method will never be called. Put the dd() back. What we end up with is a

shallow object for DragonTreasureApi .

class UserEntityToApiMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $dto->dragonTreasures = array_map(function(DragonTreasure

$dragonTreasure) {

 return $this->microMapper->map($dragonTreasure,

DragonTreasureApi::class, [

 MicroMapperInterface::MAX_DEPTH => 0,

]);

 }, $entity->getPublishedDragonTreasures()->getValues());

 }

}

This might seem weird, but it's technically okay... because this dragonTreasures array is

going to be rendered as IRI strings... and the only thing API Platform needs to build that IRI is...

the id ! Check it out! Remove the dump and reload the page. It looks exactly the same. We just

saved ourselves a tiny bit of work.

So, to be on the safe side - in case you embed the object - use MAX_DEPTH => 1 . But if you

know that you're using IRIs, you can set MAX_DEPTH to 0 .

Over here, let's do the same thing: MicroMapperInterface::MAX_DEPTH set to 0 because

we know that we're only showing the IRI here as well.

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

 // ... lines 36 - 41

42

43

44

 // ... lines 45 - 52

53

54

Forcing a JSON Array

One other thing you may have noticed is that dragonTreasures suddenly looks like an object

- with its squiggly braces instead of square brackets. Well, in PHP it is an array - array_map

returns an array with the 0 key set to something and the 2 key to set to something. But

because of the missing 1 key, when it's serialized to JSON it looks like an associative array, or

an "object" in JSON.

If we change the toArray() to getValues() and refresh the page... perfect! We're back to

a regular array of items.

Next: We can read from our new DragonTreasureApi resource, but we can't write to it yet.

Let's create a DragonTreasureApiToEntityMapper and re-add things like security and

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $dto->owner = $this->microMapper->map($entity->getOwner(),

UserApi::class, [

 MicroMapperInterface::MAX_DEPTH => 0,

]);

 }

}

validation.

Chapter 29: Making DragonTreasureApi Writable

Let's get our write endpoints working for DragonTreasureApi ! If you look down here, we

have a test called testPostToCreateTreasure() . That sounds like a good one! Over in

your terminal, run it:

symfony php bin/phpunit --filter=testPostToCreateTreasure

And... it goes kaboom! It ran a few tests... and they all say the same thing:

“No mapper found for DragonTreasureApi -> DragonTreasure ”

Ok, when we POST, it deserializes the JSON into a new DragonTreasureApi object and

then calls our processor. Our processor takes that API object and tries to use MicroMapper to

map it to the DragonTreasure entity. Since we're missing the mapper from

DragonTreasureApi to DragonTreasure , kablooie!

Creating the Mapper

We know the drill! In src/Mapper/ , create a new DragonTreasureApiToEntityMapper .

Inside, implement MapperInterface , use #[AsMapper()] to say that we are mapping

from: DragonTreasureApi::class , to: DragonTreasure::class ... and add the

two methods.

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 45

46

This will be very similar to our UserApiToEntityMapper . In load() , if we have an ID, we

want to query for that object. Add a constructor, with

private DragonTreasureRepository $repository . Down here, include the now-

familiar $dto = $from , and assert that $dto is an instanceof DragonTreasureApi .

To make life even easier, steal some code from our other mapper. Copy this... and plop it over

here. But Hit "Cancel" because we don't need that use statement... and rename this to just

$entity . So if the $dto has an id , it means we're editing it and we want to find the existing

one. Else, we're going to create a new DragonTreasure() . And while it shouldn't happen,

we have an Exception in case the treasure wasn't found.

One interesting thing about the DragonTreasure entity is that it has a constructor argument:

the name. And we don't have a setName() method: the only way to set it is through the

constructor. So, to transfer the name from the $dto onto the entity, pass it to the constructor.

namespace App\Mapper;

use App\ApiResource\DragonTreasureApi;

use App\Entity\DragonTreasure;

use App\Repository\DragonTreasureRepository;

use Symfonycasts\MicroMapper\AsMapper;

use Symfonycasts\MicroMapper\MapperInterface;

#[AsMapper(from: DragonTreasureApi::class, to: DragonTreasure::class)]

class DragonTreasureApiToEntityMapper implements MapperInterface

{

}

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 45

46

Two quick notes about this. Yes, this means that you can't change the name of an existing

treasure via the API. And that's expected: if we've written our DragonTreasure without a

setName() method, then we're intending for the name to be set once and never changed.

Second, this is the one case where we do populate a bit of data inside load() . We normally

save that work for populate() , but it can't be avoided here, and that's ok.

Head down to populate() and start with the same code from load() . Also add

$entity = $to ... and one more assert() that

$entity instanceof DragonTreasure . Just say TODO for a moment.

use App\Repository\DragonTreasureRepository;

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private DragonTreasureRepository $repository,

)

 {

 }

 public function load(object $from, string $toClass, array $context):

object

 {

 $dto = $from;

 assert($dto instanceof DragonTreasureApi);

 $entity = $dto->id ? $this->repository->find($dto->id) : new

DragonTreasure($dto->name);

 if (!$entity) {

 throw new \Exception('DragonTreasure not found');

 }

 return $entity;

 }

}

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 33

34

35

36

37

38

39

 // ... lines 40 - 43

44

45

46

I want to make sure our mapper is at least being called. Earlier, when we ran the test, it

executed three tests that match the name. So let's make the method a bit more unique. This is

called testPostToCreateTreasure() and it uses the normal login mechanism, so add

WithLogin at the end. When we run the test with the new name:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithLogin

A 500 error! Let's see what's going on. Okay, good! We got further! It's now exploding when it

hits the database. So it is trying to save, and it's complaining because owner_id is null.

Adding Validation Constraints

Reminder time: the owner field is supposed to be optional. If we don't pass an owner, it should

automatically be set to the authenticated user. We had code for that before, and we'll re-add it in

a moment.

But this failure is actually coming from earlier: from line 71, right here. This test starts by

checking our validation. It submits no JSON, and makes sure that our validation constraints

save the day. We don't have any validation constraints, so instead of failing validation, it tries to

save. Boo.

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $dto = $from;

 $entity = $to;

 assert($dto instanceof DragonTreasureApi);

 assert($entity instanceof DragonTreasure);

 return $entity;

 }

}

Let's re-add the constraints... this time to our API class. For $name , #[NotBlank] ,

$description , #[NotBlank] , $value will be #[GreaterThanOrEqual(0)] and

$coolFactor will be #[GreaterThanOrEqual(0)] and also

#[LessThanOrEqual(10)] .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 10

11

12

13

 // ... lines 14 - 21

22

23

 // ... lines 24 - 26

27

28

29

30

31

32

33

34

35

36

37

38

 // ... lines 39 - 46

47

Try the test again.

symfony php bin/phpunit --filter=testPostToCreateTreasureWithLogin

We're probably going to hit that same error, and... yep - 500 error. But look! Now it's coming

from line 78! That means we are getting the validation error status code here. Then, below,

when we POST valid data, it attempts to save it to the database, but can't because, like we saw

a second ago, the owner_id is still null.

Automatically Setting the Owner

use Symfony\Component\Validator\Constraints\GreaterThanOrEqual;

use Symfony\Component\Validator\Constraints\LessThanOrEqual;

use Symfony\Component\Validator\Constraints\NotBlank;

class DragonTreasureApi

{

 #[NotBlank]

 public ?string $name = null;

 #[NotBlank]

 public ?string $description = null;

 #[GreaterThanOrEqual(0)]

 public int $value = 0;

 #[GreaterThanOrEqual(0)]

 #[LessThanOrEqual(10)]

 public int $coolFactor = 0;

}

This is one of the great things about these mapper objects. In

DragonTreasureApiToEntityMapper , normally, we're going to do things like

$entity->setValue($dto->value) : just transferring data from one to the other. But we

can also do custom things - like setting weird fields that require calculations or... setting the

owner to the currently-authenticated user.

Check it out: if ($dto->owner) , then we're going to set that onto the entity. Well, we won't

do it yet, just dd() for now. This is the case where we do include the owner field in the

JSON... and we'll talk more about that soon.

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 35

36

37

 // ... lines 38 - 42

43

44

 // ... lines 45 - 46

47

 // ... lines 48 - 52

53

54

For the else , this is when the user does not send an owner field. To set it to the currently

authenticated user, on top, inject the Security service onto a new property. Then back below,

set owner to $this->security->getUser() .

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 if ($dto->owner) {

 dd($dto->owner);

 }

 }

}

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 12

13

14

15

 // ... line 16

17

18

19

20

21

 // ... lines 22 - 35

36

37

 // ... lines 38 - 42

43

44

45

46

47

 // ... lines 48 - 52

53

54

Beautiful! We are still missing the other field setting... so if we try to run the test... it will still hit a

500. But, if you check out the error, it's failing because description is null. The owner is

being set.

So let's fill in the other fields: $entity->setDescription($dto->description) ,

$entity->setCoolFactor($dto->coolFactor) , and

$entity->setValue($dto->value) .

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private Security $security,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 if ($dto->owner) {

 dd($dto->owner);

 } else {

 $entity->setOwner($this->security->getUser());

 }

 }

}

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 12

13

14

15

 // ... line 16

17

18

19

20

21

 // ... lines 22 - 35

36

37

 // ... lines 38 - 42

43

44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 58

Boring but clear work. Also include a TODO down for published . We'll talk more about that

shortly.

Ok, run the test now:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithLogin

And... it passes. Woo! Try all the tests from DragonTreasure :

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private Security $security,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 if ($dto->owner) {

 dd($dto->owner);

 } else {

 $entity->setOwner($this->security->getUser());

 }

 $entity->setDescription($dto->description);

 $entity->setCoolFactor($dto->coolFactor);

 $entity->setValue($dto->value);

 // TODO: set published

And... ooo. We have several failures, related to missing headers, security, validation, etc. Let's

make this green next.

Chapter 30: DTO & Security

Our DragonTreasureApi is looking great! Back when this resource was an entity, we added

quite a few cool customizations and included tests for those. Past "us" rocks.

The plan now is to put those thing back piece-by-piece and see how we can simplify the

implementation inside our new DTO-powered setup.

Be crazy and run all the dragon treasure tests:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

Quite a few fail... and one of them says:

“Current response status code is 422, but 403 expected.”

This testPostToCreateTreasureDeniedWithoutScope is related to security, and that

makes sense. DragonTreasureApi is entirely missing security!

Adding Security Back

Start like we did with UserApi : by specifying the operations we want. Start with new Get() ,

new GetCollection() , and new Post() . In the original system, Post() had a

security option set to 'is_granted("ROLE_TREASURE_CREATE") .

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 12

13

14

15

 // ... line 16

17

18

19

20

21

 // ... lines 22 - 35

36

37

 // ... lines 38 - 42

43

44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 58

This is directly related to that test failure, which checks to make sure that our API token has that

role. Well... if I spell "create" correctly, at least.

We also had a Patch() operation and that also had a security option. This leveraged a

custom voter to check if the current user can EDIT this treasure. More on that in a minute.

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private Security $security,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 if ($dto->owner) {

 dd($dto->owner);

 } else {

 $entity->setOwner($this->security->getUser());

 }

 $entity->setDescription($dto->description);

 $entity->setCoolFactor($dto->coolFactor);

 $entity->setValue($dto->value);

 // TODO: set published

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 19

20

 // ... line 21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 33

34

 // ... lines 35 - 38

39

40

41

 // ... lines 42 - 64

65

And finally, we had new Delete() , which we decided only admins could do. Enforce that with

is_granted("ROLE_ADMIN") .

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

use ApiPlatform\Metadata\Post;

#[ApiResource(

 operations: [

 new Get(),

 new GetCollection(),

 new Post(

 security: 'is_granted("ROLE_TREASURE_CREATE")',

),

 new Patch(

 security: 'is_granted("EDIT", object)',

),

],

)]

class DragonTreasureApi

{

}

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 7

8

9

10

11

12

 // ... lines 13 - 19

20

 // ... line 21

22

23

24

25

26

27

28

29

30

31

32

33

34

 // ... lines 35 - 38

39

40

41

 // ... lines 42 - 64

65

Okay, we had six failures earlier and now:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

We're down to five. Progress! Let's zoom in on testPatchToUpdateTreasure and run just

that:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

use ApiPlatform\Metadata\Delete;

use ApiPlatform\Metadata\Get;

use ApiPlatform\Metadata\GetCollection;

use ApiPlatform\Metadata\Patch;

use ApiPlatform\Metadata\Post;

#[ApiResource(

 operations: [

 new Get(),

 new GetCollection(),

 new Post(

 security: 'is_granted("ROLE_TREASURE_CREATE")',

),

 new Patch(

 security: 'is_granted("EDIT", object)',

),

 new Delete(

 security: 'is_granted("ROLE_ADMIN")',

)

],

)]

class DragonTreasureApi

{

}

Back over here... check out what it's doing. Ok, it creates a User , a treasure, logs in as the

owner, tries to change the value of that treasure, makes sure we get a 200 status code, and

finally, checks that we see the updated value. Right now, we're getting a 403 instead of 200.

Updating the Security Voter for the DTO

A 403 status is a security failure. For some reason, we're not allowed to make a Patch()

request to this treasure... even though we're the owner! Rude!

Ok: Patch() is using is_granted("EDIT", object) . This "EDIT", object thing is

handled by a custom voter called DragonTreasureVoter that we created in a previous

tutorial. So, either this voter is not being called or its saying that we shouldn't have access.

To see what's going on under the hood, dump($attribute, $subject) . This

supports() method is called any time a security decision is made across the entire system,

so it should get hit.

When we run the test again:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

There's the dump! It dumps EDIT , which comes from the Patch() operation. But here's the

kicker: the object is now a DragonTreasureApi , which makes sense! But our

DragonTreasureVoter was written to work with the entity, not DragonTreasureApi .

No problem! Let's update this voter to work with the DTO. For clarity, rename this to

DragonTreasureApiVoter . Then, we'll support if DragonTreasureApi is the $subject .

And down here, this $subject should also be DragonTreasureApi . dd($subject) ... and

below, let's fix the code. This says that if the user doesn't have this role (actually a scope, which

relates to the token scopes), return false .

src/Security/Voter/DragonTreasureApiVoter.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 18

19

20

21

22

23

24

25

26

 // ... lines 27 - 36

37

38

 // ... lines 39 - 53

54

55

56

The most important part is this: if the $subject - which is a DragonTreasureApi - has an

owner that equals $user - the currently authenticated user - then return true: access granted!

Comment out this dd() real quick. What we need now is $subject->owner .

Well, that's not quite right... and if we put that dd() back, we can see why. Run the test:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

This dump - the $subject - is, of course, a DragonTreasureApi . But remember, its owner

property isn't a User entity: it's a UserApi object. So we can't just compare the UserApi

object to the $user entity object.

We also need to be careful because of our mapper. Thanks to the depth, the UserApi isn't

populated: it's a shallow object. That's okay - we can compare the id of the objects - just keep

this in mind.

use App\ApiResource\DragonTreasureApi;

class DragonTreasureApiVoter extends Voter

{

 protected function supports(string $attribute, mixed $subject): bool

 {

 return in_array($attribute, [self::EDIT])

 && $subject instanceof DragonTreasureApi;

 }

 protected function voteOnAttribute(string $attribute, mixed $subject,

TokenInterface $token): bool

 {

 assert($subject instanceof DragonTreasureApi);

 dd($subject);

 return false;

 }

}

So, the tl;dr is: compare the id property to $user->getId() . Oh, and it didn't autocomplete

getId() ... but we can help our editor by making this instanceof check specifically that this

is a User entity, which it always will be in our app.

Now use getId() ... and I'll code defensively by adding a ? ... in case this

DragonTreasureApi doesn't have an owner: like for a treasure we're creating right now.

src/Security/Voter/DragonTreasureApiVoter.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 10

11

12

 // ... lines 13 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 29

30

31

32

 // ... lines 33 - 37

38

 // ... lines 39 - 40

41

42

 // ... lines 43 - 46

47

48

49

 // ... lines 50 - 51

52

53

54

55

56

Phew! Head over and try it now!

use App\ApiResource\DragonTreasureApi;

use App\Entity\User;

class DragonTreasureApiVoter extends Voter

 protected function supports(string $attribute, mixed $subject): bool

 {

 return in_array($attribute, [self::EDIT])

 && $subject instanceof DragonTreasureApi;

 }

 protected function voteOnAttribute(string $attribute, mixed $subject,

TokenInterface $token): bool

 {

 if (!$user instanceof User) {

 return false;

 }

 assert($subject instanceof DragonTreasureApi);

 switch ($attribute) {

 case self::EDIT:

 if ($subject->owner?->id === $user->getId()) {

 return true;

 }

 }

 return false;

 }

}

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

Adding the application/merge-patch+json Header

Progress! The current response status code is now 415. This is thanks to a small detail we

talked about a few times:

“The content-type application/json is not supported. Supported MIME types are

application/merge-patch+json .”

When we make a PATCH request, we need to have a headers key with Content-Type set

to application/merge-patch+json . The reason we didn't need that before, as I

mentioned in a previous tutorial... is due to some funny business with formats which made that,

accidentally, unnecessary for this resource. But now we do need it.

Let's quickly add that to all of our patch() requests. There's a bunch of them. Zoom!

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 116

117

118

 // ... lines 119 - 121

122

 // ... line 123

124

 // ... lines 125 - 127

128

129

 // ... lines 130 - 134

135

 // ... line 136

137

 // ... lines 138 - 142

143

144

 // ... line 145

146

 // ... line 147

148

 // ... line 149

150

 // ... lines 151 - 154

155

156

 // ... line 157

158

159

 // ... line 160

161

162

 // ... lines 163 - 168

169

 // ... line 170

171

 // ... lines 172 - 174

175

176

class DragonTreasureResourceTest extends ApiTestCase

{

 public function testPatchToUpdateTreasure()

 {

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 }

 public function testPatchUnpublishedWorks()

 {

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 // ... lines 177 - 178

179

180

 // ... lines 181 - 182

183

184

 // ... lines 185 - 189

190

 // ... line 191

192

 // ... lines 193 - 195

196

197

 // ... lines 198 - 200

201

202

203

204

205

 // ... lines 206 - 211

212

 // ... line 213

214

 // ... lines 215 - 217

218

219

 // ... lines 220 - 223

224

225

 // ... line 226

227

228

 // ... lines 229 - 234

235

 // ... line 236

237

 // ... lines 238 - 240

241

242

 // ... lines 243 - 244

245

 // ... lines 246 - 247

248

249

 ;

 }

 public function testAdminCanPatchToEditTreasure(): void

 {

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 }

 public function testOwnerCanSeeIsPublishedAndIsMineFields(): void

 {

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 }

 public function testPublishTreasure(): void

 {

 $this->browser()

 ->patch('/api/treasures/'.$treasure->getId(), [

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 }

}

Let's see if we have any luck!

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

And... ooh... it dies. It hit our dump! That's coming from

DragonTreasureApiToEntityMapper : when the owner is sent in the JSON. Comment

this out for a moment so we can see the full picture. Run the test again:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

“Current response status code is 200, but 422 expected.”

Coming from down on line 157. So, looking at our test, most of it passes. Line 157 is way down

here. This means that we are able to send a patch() request and have that update!

And the full flow here is fascinating! When we make a patch() request to a treasure, API

Platform starts by using our data provider to find the DragonTreasure entity. Then we map

that to a DragonTreasureApi object. Next, the new value is deserialized onto that

DragonTreasureApi . Finally, in our processor, we map the updated DragonTreasureApi

back to a DragonTreasure entity, and that is ultimately what saves. The

DragonTreasureApi is then serialized and returned as JSON.

So this is working... and I love how all the pieces come together.

Updating the Custom Validator

Where we're failing is all the way down here. This checks to see if we're allowed to change the

owner to someone else. We log in as $user and edit our own treasure... but try to change the

treasure to another owner! This is like a dragon Santa Claus that sneaks into other dragon's

caves for a late-night delivery of treasure. That's super nice... but not something we want to

allow.

Previously, we had a custom validator that prevented this. So let's re-add that!

Open DragonTreasureApi and find the $owner property. Add #[IsValidOwner] : a

validator we created in an earlier tutorial.

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 15

16

 // ... lines 17 - 40

41

42

 // ... lines 43 - 58

59

60

 // ... lines 61 - 66

67

You'll find it in src/Validator/ . Previously, this validator expected its constraint to be used

above a property that held a User entity. We're putting it on a property that holds a UserApi .

So like with the voter, we need to update it for the new reality.

Right here, assert() that $value is an instanceof UserApi .

src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 25

26

 // ... lines 27 - 41

42

43

Down here, we need to check if the value (meaning the UserApi that's on this property) is not

equal to the currently authenticated user. Once again, we'll use the ids to compare this. And...

also once again, I'll use assert() to help my editor. Now... it's happy about getId() ... but

not about my missing semicolon!

use App\Validator\IsValidOwner;

class DragonTreasureApi

{

 #[IsValidOwner]

 public ?UserApi $owner = null;

}

use App\ApiResource\UserApi;

class IsValidOwnerValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 assert($value instanceof UserApi);

 }

}

src/Validator/IsValidOwnerValidator.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 25

26

 // ... lines 27 - 37

38

 // ... lines 39 - 40

41

42

43

Moment of truth! Run that test:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

It passes! Try everything:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

And... ah! We're down to just three failures. And they're all related to the same thing: the

isPublished property. Our DragonTreasureApi doesn't even have an isPublished

property yet. We saved that for last because it's a little different and interesting. Let's tackle it

next.

use App\ApiResource\UserApi;

class IsValidOwnerValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 assert($value instanceof UserApi);

 if ($value->id !== $user->getId()) {

 }

 }

}

Chapter 31: Field Security with Patch

In a heroic twist of bravery, we've decided to run all the dragon treasure tests:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

And... we have three failures, including one from testAdminCanPatchToEditTreasure on

line 200... which says ->assertJsonMatched('isPublished', true) . That's failing

because... we don't have an isPublished field in our DragonTreasureApi at all!

Adding the isPublished Field

That's because this is an interesting field. Previously, this field was readable only by admin

users or the owner. Let's re-add this field and keep that behavior. Say

public bool $isPublished = false .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 40

41

42

 // ... lines 43 - 58

59

 // ... lines 60 - 68

69

Then... head into the mapper to populate this. Down here, get rid of the TODO and say

$entity->setIsPublished($dto->isPublished) .

class DragonTreasureApi

{

 public bool $isPublished = false;

}

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 35

36

37

 // ... lines 38 - 51

52

 // ... lines 53 - 54

55

56

So if we change isPublished in the API call, the new value will sync back to the entity.

On the other side... it doesn't matter where... say

$dto->isPublished = $entity->getIsPublished() .

src/Mapper/DragonTreasureEntityToApiMapper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

 // ... lines 36 - 41

42

 // ... lines 43 - 53

54

55

Cool! We don't have any security yet... so when we run the tests:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

A few pass, but the original one still fails - testGetCollectionOfTreasures - because it's

not expecting the isPublished to be there.

Conditionally Showing isPublished via Security

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $entity->setIsPublished($dto->isPublished);

 }

}

class DragonTreasureEntityToApiMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 $dto->isPublished = $entity->getIsPublished();

 }

}

Check it out: this is the first test, and at the bottom, we've asserted that these are the exact

properties we should have if we fetch treasures as an anonymous user. So since we're not the

owner or an admin, we should not see isPublished

How can do we that? Earlier, we worked on DragonTreasureApiVoter . When we call this

with the EDIT attribute, it checks to see if we're an admin, and if we are, it grants access. It

also checks to see if we're the owner. This is exactly the logic we want to use to determine if the

isPublished field should be serialized.

So... let's use it! Above this property, say

#[ApiProperty(security: 'is_granted("EDIT", object)')] .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 40

41

42

 // ... lines 43 - 58

59

60

 // ... lines 61 - 69

70

If you want, you can change this attribute to something else - like OWNER - if that's more clear.

EDIT sounds a little funny here... since we're just deciding if we should include this field in the

response... not "edit" it... but it's up to you.

More importantly, let's see if this does the trick. Run the tests:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

It fixed our first test! The isPublished field is no longer being shown. But, curiously, we made

another test fail. Whac-A-Mole! Now it's testPublishTreasure - failing on line 244.

Let's pop over and search for that. Okay, as the name suggests, we're testing to see if we can

publish this treasure. We create a treasure that is 'isPublished' => false , log in as its

owner, then send a patch() request to set isPublished to true . Finally, we assert that

the JSON in the response has isPublished true. And that's what's failing.

class DragonTreasureApi

{

 #[ApiProperty(security: 'is_granted("EDIT", object)')]

 public bool $isPublished = false;

}

The ApiProperty Security Option on Patch Operations

Why? It took me a bit of debugging to unravel this mystery. The problem is that, when the JSON

is deserialized, isPublished is not writable.

The security expression is called both when serializing and deserializing: when taking the

JSON from the request and updating the object. For some reason, during deserialization, our

security expression is returning false!

The reason is... arguably a bug: I have an issue open on API Platform. When you make a

patch() request, our data provider first loads the object from the database. Despite this, when

the expression is called during deserialization, object is always null. And because our voter

only supports if object is a DragonTreasureApi , this returns false . Ultimately, no voters

support this, and when that happens, access is denied. The end result is that isPublished is

not writable.

The workaround is a bit weird, but stay with me here. We're basically going to allow access to

this field if object === null or is_granted("EDIT", object) .

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 40

41

42

 // ... lines 43 - 58

59

60

61

62

63

64

 // ... lines 65 - 73

74

Think about this. If we're reading a DragonTreasure , then object is never null . We will

always have an object, so the voter will always be called. This object === null will only

happen during deserialization: when we're checking to see if we can write this field. This

effectively makes the field always writable. That seems like a problem, but it's not, because we

already have security up here on Post() and Patch() . For Patch , only the owner can

class DragonTreasureApi

{

 // Object is null ONLY during deserialization: so this allows

isPublished

 // to be writable in ALL cases (which is ok because the operations are

secured).

 // During serialization, object will always be a DragonTreasureApi, so

our

 // voter is called.

 #[ApiProperty(security: 'object === null or is_granted("EDIT",

object)')]

 public bool $isPublished = false;

}

edit this object. So once you've passed the Patch security, we already know that you can edit

this object. So, down here, it's okay to let us always edit this field.

If this looks too weird to you, another strategy is to leave API security off of the field entirely.

Then, we would use the mapper to handle conditionally setting the isPublished field. We

could put some security logic right here that basically says:

“Only set the isPublished field on the DTO if you're the owner. Otherwise, leave

isPublished null as the default.”

It's good to remember that we do have full control of the data via our mappers.

Okay, let's go back and re-add our security expression. Oh! And go back to the mapper as well:

I just realized that we also want to keep that isPublished code... just not in the if

statement.

All right, now head over and rerun all the tests.

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

And... oooh! So close! We're down to just one failure in testPublishTreasure . This tests

that, when a treasure is published, we send a notification. Let's see how we can tackle that in

our new system next!

Chapter 32: Triggering a "Publish"

We're down to just one test failure: it's in testPublishTreasure . Let's check it out. Ok, this

tests to make sure that a notification is created in the database when the status of a treasure

changes from 'isPublished' => false to 'isPublished' => true . Previously, we

implemented this via a custom state processor.

But now, we could put this into our mapper class! In DragonTreasureApiToEntityMapper ,

we could check to see if the entity was 'isPublished' => false and is now changing to

'isPublished' => true . If it is, create a notification right there. If this sounds good to you,

go for it!

However, for me, putting the logic here doesn't quite feel right... just because it's a "data

mapper", so it smells a bit strange to do something beyond just mapping the data.

Creating the State Processor

So, let's go back to our original solution: creating a state processor. Over at you terminal, run:

php bin/console make:state-processor

Call it DragonTreasureStateProcessor . Our goal should feel familiar: we'll add some

custom logic here, but call the normal state processor to let it do the heavy lifting.

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

To do that, add a __construct() method with

private EntityClassDtoStateProcessor $innerProcessor . Down here, use that

with return $this->innerProcessor->process() passing the arguments it needs:

$data , $operation , $uriVariables , and $context . Ah, and you can see this is

highlighted in red. This isn't really a void method, so remove that.

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ok, let's hook up our API resource to use this! Inside DragonTreasureApi , change the

processor to DragonTreasureStateProcessor .

namespace App\State;

use ApiPlatform\Metadata\Operation;

use ApiPlatform\State\ProcessorInterface;

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = []): void

 {

 // Handle the state

 }

}

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function __construct(

 private EntityClassDtoStateProcessor $innerProcessor,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 return $this->innerProcessor->process($data, $operation,

$uriVariables, $context);

 }

}

src/ApiResource/DragonTreasureApi.php

 // ... lines 1 - 13

14

 // ... lines 15 - 20

21

 // ... lines 22 - 37

38

 // ... line 39

40

41

42

 // ... lines 43 - 73

74

At this point, we haven't really changed anything: the system will call our new processor... but

then it just calls the old one. And so when we run the tests:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php

Everything still works except for that last failure.

Detecting the isPublished Change

So let's add our notification code! Originally, we figured out if isPublished was changing from

false to true by using the "previous data" that's inside the $context . Dump

$context['previous_data'] to see what that looks like.

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

 // ... lines 19 - 20

21

22

Now, run just this test:

use App\State\DragonTreasureStateProcessor;

#[ApiResource(

 processor: DragonTreasureStateProcessor::class,

)]

class DragonTreasureApi

{

}

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 dd($context['previous_data']);

 }

}

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

Cool! The previous data is the DragonTreasureApi with isPublished: false .. because

that's the value our entity starts with in the test. Let's also dump $data .

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

Okay, the original one has isPublished: false , and the new one has

isPublished: true ! And that makes us dangerous.

Back over, we wrote the notification code in a previous tutorial... so I'll just paste it in. This is

delightfully boring! We use $previousData and $data to detect the state change from

isPublished false to true... then create a Notification .

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

The only thing that's kind of interesting is that the Notification entity is related to a

DragonTreasure entity... so we query for the $entity using the repository and the id

from the DTO class.

Let's inject the services we need: private EntityManagerInterface $entityManager

so we can save and private DragonTreasureRepository $repository .

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 assert($data instanceof DragonTreasureApi);

 $result = $this->innerProcessor->process($data, $operation,

$uriVariables, $context);

 $previousData = $context['previous_data'] ?? null;

 if ($previousData instanceof DragonTreasureApi

 && $data->isPublished

 && $previousData->isPublished !== $data->isPublished

) {

 $entity = $this->repository->find($data->id);

 $notification = new Notification();

 $notification->setDragonTreasure($entity);

 $notification->setMessage('Treasure has been published!');

 $this->entityManager->persist($notification);

 $this->entityManager->flush();

 }

 return $result;

 }

}

src/State/DragonTreasureStateProcessor.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

There we go! Moment of truth:

symfony php bin/phpunit tests/Functional/DragonTreasureResourceTest.php --filte

use App\Entity\Notification;

use App\Repository\DragonTreasureRepository;

use Doctrine\ORM\EntityManagerInterface;

class DragonTreasureStateProcessor implements ProcessorInterface

{

 public function __construct(

 private EntityClassDtoStateProcessor $innerProcessor,

 private EntityManagerInterface $entityManager,

 private DragonTreasureRepository $repository,

)

 {

 }

 public function process(mixed $data, Operation $operation, array

$uriVariables = [], array $context = [])

 {

 assert($data instanceof DragonTreasureApi);

 $result = $this->innerProcessor->process($data, $operation,

$uriVariables, $context);

 $previousData = $context['previous_data'] ?? null;

 if ($previousData instanceof DragonTreasureApi

 && $data->isPublished

 && $previousData->isPublished !== $data->isPublished

) {

 $entity = $this->repository->find($data->id);

 $notification = new Notification();

 $notification->setDragonTreasure($entity);

 $notification->setMessage('Treasure has been published!');

 $this->entityManager->persist($notification);

 $this->entityManager->flush();

 }

 return $result;

 }

}

The test passes! Heck, at this point, all of our treasure tests pass! We've completely converted

this complex API resource to our DTO-powered system! High five!

Next: Let's make it possible to write the $owner property on dragon treasure. This involves a

trick that will help us better understand how API Platform loads relation data.

Chapter 33: Writable Relation Fields

Open up DragonTreasureResourceTest and check out

testPostToCreateTreasureWithLogin() . We've talked a lot about making our resources

able to return relation fields. The main trick is simply to populate those fields from inside our

data mapper. Then API Platform handles transforming them into IRIs.

One thing we haven't talked about is being able to write to one of these relation fields.

Writing to the owner Property

When we use this post() endpoint, we don't need to send an owner field. That's because,

nestled in DragonTreasureApiToEntityMapper , we have code that says:

“If an owner is not sent in the JSON, automatically set it to the currently authenticated user.”

But, you are allowed to send the owner property and set it to yourself. Let's try that. Set

owner to '/api/users/'.$user->getId() .

tests/Functional/DragonTreasureResourceTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 61

62

63

 // ... lines 64 - 65

66

 // ... lines 67 - 71

72

 // ... lines 73 - 76

77

78

 // ... lines 79 - 80

81

82

 // ... lines 83 - 251

class DragonTreasureResourceTest extends ApiTestCase

{

 public function testPostToCreateTreasureWithLogin(): void

 {

 $this->browser()

 ->post('/api/treasures', HttpOptions::json([

 'owner' => '/api/users/'.$user->getId(),

]))

 ;

 }

How Relation Fields are Deserialized

When we do that, it should hit this part of our code. Battle stations! Run

symfony php bin/phpunit and execute just this test:

symfony php bin/phpunit --filter=testPostToCreateTreasureWithLogin()

Perfect! It hits and dumps a UserApi object. This is cool. Actually, dump the entire $dto so

we can see things in more detail.

symfony php bin/phpunit --filter=testPostToCreateTreasureWithLogin()

Fantabulous. When we send this JSON data, the serializer deserializes all of this into a

DragonTreasureApi object. This string goes onto the name property, this string goes onto

the description property, and so on. Over here, we see that: string... string... 1,000... and 5.

Super simple.

But something special happens when the field you're sending is a relation, meaning the property

holds an object that is an #[ApiResource] . Specifically, this IRI string is transformed into a

UserApi object! But... how and who does that? The answer is: a bit of team work between the

serializer system and the state provider.

Until now, as far as we know, the only time that the state provider is used is when we fetch a

resource... like if we fetch a user here or here, or if we PATCH or DELETE a user. In all of those

cases, API Platform leverages the user state provider to find the one or many users.

But there's one other spot where a state provider is used: when someone sends JSON that

contains an IRI string on a relation field.

During the deserialization process, the serializer takes this IRI string, sees that it's for a

UserApi object, then it calls its state provider to load that. Whatever that state provider returns

will ultimately be set onto the owner property of DragonTreasureApi . This magic has

always been happening... but I just love understanding the mechanics behind it. Nerd alert!

Mapping the Relation Field

Anyway, in our mapper, our job is pretty straightforward. We know that $dto->owner is a

UserApi object. And what we ultimately need is a User entity. So, once again, we'll use the

mapping system to go from UserApi over to User . Up here, inject a

MicroMapperInterface $microMapper .

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

24

 // ... lines 25 - 60

61

And below, say $entity->setOwner() ... but use $this->microMapper->map() to go

from $dto->owner to User::class . And remember, any time we map a relationship, we

should add a MAX_DEPTH as well. Set MicroMapperInterface::MAX_DEPTH to 0 .

use Symfonycasts\MicroMapper\MicroMapperInterface;

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

}

src/Mapper/DragonTreasureApiToEntityMapper.php

 // ... lines 1 - 11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

24

 // ... lines 25 - 38

39

40

 // ... lines 41 - 45

46

47

48

49

50

51

52

 // ... lines 53 - 59

60

61

Using 0 is enough because that will cause our mapper to query for the User object... it just

won't continue and populate the individual property data from UserApi to User. We would

only need to do that if we were allowing owner to be an embedded object, like creating a new

one on the fly.... or if we were doing something crazy like adding the @id to load a user... then

modifying that user all at once. Crazy, probably-not-realistic things that we talked about in

previous tutorials.

And even if a user did try this right now, API Platform wouldn't allow it because you can only

write embedded data on a field if we've set up the serialization groups for this.

Anyway, the only thing we're concerned about is making sure that we're loading the correct

User entity object. Run the test again and...

use Symfonycasts\MicroMapper\MicroMapperInterface;

class DragonTreasureApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 if ($dto->owner) {

 $entity->setOwner($this->microMapper->map($dto->owner,

User::class, [

 MicroMapperInterface::MAX_DEPTH => 0,

]));

 } else {

 $entity->setOwner($this->security->getUser());

 }

 }

}

symfony php bin/phpunit --filter=testPostToCreateTreasureWithLogin()

It's good! We are now allowed to write the owner field!

Next: Let's shift our focus to making the dragonTreasures field on User writable. This is a

relation field... but because it's a collection, it'll need an extra trick.

Chapter 34: Writing to a Collection Relation

We are so close to completely re-implementing our API using these custom classes. So excited!

Let's run every test to see where we stand.

symfony php bin/phpunit

And... everything passes except one. This trouble-maker test is

UserResourceTest::testTreasuresCannotBeStolen . Let's go check it out!

Open tests/Functional/UserResourceTest.php and search for

testTreasuresCannotBeStolen() . Here it is.

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

 // ... lines 76 - 89

90

Let's read the story. We update a user and attempt to change its dragonTreasures property

to contain a treasure owned by someone else. The test looks for a 422 status code - because

we want to prevent stealing treasures - but the test fails with a 200.

But apart from the whole stealing thing, this is the first test that we've seen that writes to a

collection relation field. And that is an interesting topic all on its own.

Avoid Writable Collection Fields?

First, if you can, I'd recommend against allowing collection relationship fields like this to be

writable. I mean, you absolutely can... but it adds complexity. For example, like this test shows,

we need to worry about how setting the dragonTreasures property changes the owner on

that treasure. And there's already a different way to do this: make a patch() request to this

treasure and... change the owner . Simple!

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCannotBeStolen(): void

 {

 $user = UserFactory::createOne();

 $otherUser = UserFactory::createOne();

 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$otherUser]);

 $this->browser()

 ->actingAs($user)

 ->patch('/api/users/' . $user->getId(), [

 'json' => [

 'username' => 'changed',

 'dragonTreasures' => [

 '/api/treasures/' . $dragonTreasure->getId(),

],

],

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ->assertStatus(422);

 }

}

But, if you still want to allow your collection relation to be writable in your DTO system, fine,

here's how to do it. I'm kidding - it's not too bad.

Testing the Collection Write

Start by duplicating this test. Rename it to testTreasuresCanBeRemoved . I totally typo'ed

that - mine says cannot , which is the opposite of what I want to test - so make sure you get

that right in your code.

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

 // ... lines 59 - 74

75

 // ... lines 76 - 109

110

Now we can dress this up a bit. Make the first $dragonTreasure owned by $user . Then

create a second $dragonTreasure also owned by $user , but we won't need a variable for

it... you'll see. Finally, add a third $dragonTreasure called $dragonTreasure3 that's

owned by $otherUser .

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCanBeRemoved(): void

 {

 }

}

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

59

60

61

62

63

 // ... lines 64 - 82

83

 // ... lines 84 - 117

118

So we have three dragonTreasures , two owned by $user , and one by $otherUser .

Down here, we patch to modify $user . Remove username - we don't care about that - then

send two dragonTreasures : the first and the third: /api/treasures/

$dragonTreasure3->getId() .

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCanBeRemoved(): void

 {

 $user = UserFactory::createOne();

 $otherUser = UserFactory::createOne();

 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$user]);

 DragonTreasureFactory::createOne(['owner' => $user]);

 $dragonTreasure3 = DragonTreasureFactory::createOne(['owner' =>

$otherUser]);

 }

}

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

 // ... lines 76 - 81

82

83

 // ... lines 84 - 117

118

We're going to test for two things. First, that the second treasure is removed from this user.

Think about it: $user started with these two treasures... and the fact that this second treasure's

IRI is not sent means that we want it to be removed from $user .

Second, I added $dragonTreasure3 temporarily to prove that treasures can be stolen. This

is currently owned by $otherUser , but we pass it to dragonTreasures ... and we're going to

verify that the owner of $dragonTreasure3 changes from $otherUser to $user . That's

not the end behavior we want, but it'll help us get all the relation writing working. Then we'll

worry about preventing that.

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCanBeRemoved(): void

 {

 $user = UserFactory::createOne();

 $otherUser = UserFactory::createOne();

 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$user]);

 DragonTreasureFactory::createOne(['owner' => $user]);

 $dragonTreasure3 = DragonTreasureFactory::createOne(['owner' =>

$otherUser]);

 $this->browser()

 ->actingAs($user)

 ->patch('/api/users/' . $user->getId(), [

 'json' => [

 'dragonTreasures' => [

 '/api/treasures/' . $dragonTreasure->getId(),

 '/api/treasures/' . $dragonTreasure3->getId(),

],

],

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ;

 }

}

Down here, ->assertStatus(200) then extend the test by saying

->get('/api/users/' . $user->getId()) and ->dump() .

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

 // ... lines 79 - 81

82

83

 // ... lines 84 - 117

118

I want to see what the user looks like after the update. Finally, assert that the length of the

dragonTreasures field - I need quotes on that - is 2, for treasures 1 and 3. Then assert that

dragonTreasures[0] is equal to '/api/treasures/'. , followed by

$dragonTreasure->getId() . Copy that, paste, and assert that the 1 key is

$dragonTreasure3 .

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCanBeRemoved(): void

 {

 $user = UserFactory::createOne();

 $otherUser = UserFactory::createOne();

 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$user]);

 DragonTreasureFactory::createOne(['owner' => $user]);

 $dragonTreasure3 = DragonTreasureFactory::createOne(['owner' =>

$otherUser]);

 $this->browser()

 ->actingAs($user)

 ->patch('/api/users/' . $user->getId(), [

 'json' => [

 'dragonTreasures' => [

 '/api/treasures/' . $dragonTreasure->getId(),

 '/api/treasures/' . $dragonTreasure3->getId(),

],

],

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ->assertStatus(200)

 ->get('/api/users/' . $user->getId())

 ->dump()

 ;

 }

}

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

 // ... lines 84 - 117

118

Lovely! That test took some work, but it'll be super useful. Let's... just run it and see what

happens! Copy the method name and, over at your terminal, run:

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCanBeRemoved(): void

 {

 $user = UserFactory::createOne();

 $otherUser = UserFactory::createOne();

 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$user]);

 DragonTreasureFactory::createOne(['owner' => $user]);

 $dragonTreasure3 = DragonTreasureFactory::createOne(['owner' =>

$otherUser]);

 $this->browser()

 ->actingAs($user)

 ->patch('/api/users/' . $user->getId(), [

 'json' => [

 'dragonTreasures' => [

 '/api/treasures/' . $dragonTreasure->getId(),

 '/api/treasures/' . $dragonTreasure3->getId(),

],

],

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ->assertStatus(200)

 ->get('/api/users/' . $user->getId())

 ->dump()

 ->assertJsonMatches('length("dragonTreasures")', 2)

 ->assertJsonMatches('dragonTreasures[0]', '/api/treasures/' .

$dragonTreasure->getId())

 ->assertJsonMatches('dragonTreasures[1]', '/api/treasures/' .

$dragonTreasure3->getId())

 ;

 }

}

And by "cannot be removed", I, of course, mean that it can be removed. That was some good 'ol

copy/paste madness right there. There we go. And... it fails, on line 81. This means that the

request was successful... but the dragonTreasures are still the original two:

/api/treasures/2 instead of /api/treasures/3 . No changes were made to the

treasures.

Why? Let's find out next and leverage the property accessor component to make sure the

changes save correctly.

Chapter 35: Writable Collection via the
PropertyAccessor

To see what's going on here, head to the mapper: UserApiToEntityMapper . The patch()

request will take this data, populate it onto UserApi ... then we map it back to the entity in this

mapper.

And... the reason the test fails is pretty obvious: we're not mapping the dragonTreasures

property from the DTO to the entity!

Let's dump($dto) so we can see what it looks like after deserializing the data.

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

 // ... lines 37 - 46

47

 // ... lines 48 - 50

51

52

Run the test again:

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

And... whoa. The dragonTreasures in the DTO is still the original two. This tells me that this

field is being completely ignored: it's not being deserialized. And I bet you know the reason.

Inside UserApi , the $dragonTreasures property isn't writable ! But it is pretty cool to

see writable: false doing its job.

class UserApiToEntityMapper implements MapperInterface

{

 public function populate(object $from, object $to, array $context):

object

 {

 dump($dto);

 }

}

src/ApiResource/UserApi.php

 // ... lines 1 - 42

43

44

 // ... lines 45 - 61

62

63

64

65

 // ... lines 66 - 68

69

When we run the test again, you'll see the difference.

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

Yup! Still two treasures but the IDs are "1" and "3". So UserApi looks correct.

Going from DragonTreasureApi -> DragonTreasure

Now, we need to take this array of DragonTreasureApi objects and map them to

DragonTreasure entity objects so we can set them onto the User entity. Once again, we

need micro mapper!

You know the drill: add private MicroMapperInterface $microMapper ... and back

down here... start with $dragonTreasureEntities = [] . I'm going to keep this simple and

use a good old-fashioned foreach . Loop over $dto->dragonTreasures as

$dragonTreasureApi . Then say $dragonTreasureEntities[] equals

$this->microMapper->map() , passing $dragonTreasureApi and

DragonTreasure::class . And as you may have already guessed, we're going to pass

MicroMapperInterface::MAX_DEPTH set to 0 .

class UserApi

{

 /**

 * @var array<int, DragonTreasureApi>

 */

 public array $dragonTreasures = [];

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

 // ... lines 24 - 37

38

39

 // ... lines 40 - 50

51

52

53

54

55

56

 // ... lines 57 - 59

60

61

0 is fine here because we just need to make sure that the dragon treasure mapper queries for

the correct DragonTreasure entity. If it has a relation, like owner , we don't care if that object

is fully mapped & populated. Down here, dd($dragonTreasureEntities) .

use Symfonycasts\MicroMapper\MicroMapperInterface;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $dragonTreasureEntities = [];

 foreach ($dto->dragonTreasures as $dragonTreasureApi) {

 $dragonTreasureEntities[] = $this->microMapper-

>map($dragonTreasureApi, DragonTreasure::class, [

 MicroMapperInterface::MAX_DEPTH => 0,

]);

 }

 }

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 19

20

21

22

23

 // ... lines 24 - 37

38

39

 // ... lines 40 - 50

51

52

53

54

55

56

57

 // ... lines 58 - 59

60

61

Try it out!

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

And... looks good! We have 2 treasures with id: 1 ... and way down here id: 3 .

Calling the Adder/Remover Methods

So all we need to do now is set that onto the User object. Say $entity->set ... but... uh oh.

We don't have a setDragonTreasures() method! And that's on purpose! Look inside the

User entity. It has a getDragonTreasures() method, but no setDragonTreasures() .

Instead, it has addDragonTreasure() and removeDragonTreasure() .

use Symfonycasts\MicroMapper\MicroMapperInterface;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private MicroMapperInterface $microMapper,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $dragonTreasureEntities = [];

 foreach ($dto->dragonTreasures as $dragonTreasureApi) {

 $dragonTreasureEntities[] = $this->microMapper-

>map($dragonTreasureApi, DragonTreasure::class, [

 MicroMapperInterface::MAX_DEPTH => 0,

]);

 }

 dd($dragonTreasureEntities);

 }

}

I won't dive too deeply into why we can't have a setter, but it relates to the fact that we need to

set the owning side of the Doctrine relationship. We talk about this in our Doctrine relations

tutorial.

The point is, if we were able to just call ->setDragonTreasures() , it wouldn't save correctly.

We need to call the adder and remover methods.

And this is tricky! We need to look at $dragonTreasureEntities , compare that with the

current dragonTreasures property, then call the correct adders and removers for which ever

treasures are new or removed. In our case, we need to call removeDragonTreasure() for

the middle one and addDragonTreasure() for this third one.

Writing this code sounds... annoying... and complicated. Fortunately, Symfony has something

that does this! It's a service called the "Property Accessor".

Head up here... and add private PropertyAccessorInterface $propertyAccessor .

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

18

 // ... lines 19 - 21

22

23

24

25

 // ... lines 26 - 63

64

Property Accessor is good at setting properties. It can detect if a property is public... or if it has a

setter method... or even adder, or remover methods. To use it, say

$this->propertyAccessor->setValue() passing the object that we're setting data onto -

the User $entity , the property we're setting - dragonTreasures - and finally, the value:

$dragonTreasureEntities .

Down here, let's dd($entity) so we can see how it looks.

use Symfony\Component\PropertyAccess\PropertyAccessorInterface;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private PropertyAccessorInterface $propertyAccessor,

)

 {

 }

}

src/Mapper/UserApiToEntityMapper.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

18

 // ... lines 19 - 21

22

23

24

25

 // ... lines 26 - 39

40

41

 // ... lines 42 - 58

59

60

 // ... lines 61 - 62

63

64

Deep breath. Try it:

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

Scroll up... to the User object. Look at dragonTreasures ! It has two items with id: 1 and

id: 3 ! It correctly updated the dragonTreasures property! How the heck did it do that? By

calling addDragonTreasure() for id 3 and removeDragonTreasure() for id 2.

I can prove it. Down here, add dump('Removing treasure'.$treasure->getId()) .

When we run the test again...

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

There it is! Removing treasure 2! Life is good. Remove this dump() ... as well as the other one

over here.

use Symfony\Component\PropertyAccess\PropertyAccessorInterface;

class UserApiToEntityMapper implements MapperInterface

{

 public function __construct(

 private PropertyAccessorInterface $propertyAccessor,

)

 {

 }

 public function populate(object $from, object $to, array $context):

object

 {

 $this->propertyAccessor->setValue($entity, 'dragonTreasures',

$dragonTreasureEntities);

 dd($entity);

 }

}

Let's see some green. Run the test one last time... hopefully:

symfony php bin/phpunit --filter=testTreasuresCanBeRemoved

It passes! The final response contains treasures 1 and 3 . What happened to treasure 2? It

was actually deleted from the database entirely. Behind the scenes, its owner was set to null .

Then, thanks to orphanRemoval , any time the owner of one of these dragonTreasures is

set to null , it gets deleted. That's something we talked about in a previous tutorial.

Before we move on, we need to clean up the test. Remove the part where we are stealing

$dragonTreasure3 . We'll get rid of that object there, the part where we set it down here,

change the length to 1 , and just test that one. So this now truly is a test for removing a

treasure.

Celebrate by removing this ->dump() .

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

 // ... lines 80 - 113

114

But... treasures can still be stolen, which is lame. Let's fix the validator for this... but also make it

a lot simpler, thanks to the DTO system, next.

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCanBeRemoved(): void

 {

 $user = UserFactory::createOne();

 $otherUser = UserFactory::createOne();

 $dragonTreasure = DragonTreasureFactory::createOne(['owner' =>

$user]);

 DragonTreasureFactory::createOne(['owner' => $user]);

 $this->browser()

 ->actingAs($user)

 ->patch('/api/users/' . $user->getId(), [

 'json' => [

 'dragonTreasures' => [

 '/api/treasures/' . $dragonTreasure->getId(),

],

],

 'headers' => ['Content-Type' => 'application/merge-

patch+json']

])

 ->assertStatus(200)

 ->get('/api/users/' . $user->getId())

 ->assertJsonMatches('length("dragonTreasures")', 1)

 ->assertJsonMatches('dragonTreasures[0]', '/api/treasures/' .

$dragonTreasure->getId())

 ;

 }

}

Chapter 36: Simpler Validator for Checking State
Change

We're down to one failing test. Apparently we can steal treasures by patching a user and

sending dragonTreasures set to a treasure that's owned by someone else. This should give

us a 422 status code, but we get 200.

But no huge deal: we fixed this in the previous tutorial. Now we just need to reactivate and

adapt that validator.

Re-Adding the Constraint

In UserApi , above the $dragonTreasures property, we can remove #[ApiProperty]

and add #[TreasuresAllowedOwnerChange] .

src/ApiResource/UserApi.php

 // ... lines 1 - 17

18

 // ... lines 19 - 43

44

45

 // ... lines 46 - 65

66

67

 // ... lines 68 - 70

71

In the last tutorial, we put this above that same $dragonTreasures property, but inside the

User entity. The validator would loop over each DragonTreasure , use Doctrine's

UnitOfWork to get the $originalOwnerId , and then check to see if the $newOwnerId is

different from the original. If it was, it would build a violation.

Adapting the Validator

use App\Validator\TreasuresAllowedOwnerChange;

class UserApi

{

 #[TreasuresAllowedOwnerChange]

 public array $dragonTreasures = [];

}

First things first: the constraint will not be used on a property that holds a Collection object

anymore: the new property holds a simple array. Also dd($value) .

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 23

24

 // ... lines 25 - 41

42

43

Over in the test, on top, put a dump() that says Real owner is with

$otherUser->getId() . That'll help us track if it's stolen.

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 80

81

82

 // ... lines 83 - 85

86

 // ... lines 87 - 99

100

 // ... lines 101 - 114

115

Okay, run just this test:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

And... perfect! The "Real owner" is supposed to be 2 , and the dump from the validator shows a

single DragonTreasureApi object.

Reminder: this dump is the dragonTreasures property for the UserApi that's being

updated. And, though we can't see it here, that user's id is 1. But, in the dump, look at the

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 dd($value);

 }

}

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCannotBeStolen(): void

 {

 dump('Real owner is ' . $otherUser->getId());

 }

}

owner: it's still 2 ! That's still the correct owner!

When we make the PATCH request, this treasure is loaded from the database, transformed into

a DragonTreasureApi , then set onto the dragonTreasures property of the UserApi .

But, nothing has - yet - changed the treasure's owner : it still has the original owner .

The problematic part comes later when our state processor, really,

UserApiToEntityMapper , maps the dragonTreasures property from UserApi to the

User entity. That causes User.addDragonTreasure() to be called... and that causes

DragonTreasure.setOwner() to be called... with the new User object.

So even though things kind of seem ok right now in the validator - the owner is still the original -

the treasure will ultimately be stolen. Watch: add a return to the validator so it always passes.

And in UserResourceTest , ->get('/api/users/'.$otherUser->getId()) and

->dump() .

tests/Functional/UserResourceTest.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 80

81

82

 // ... lines 83 - 85

86

87

88

 // ... lines 89 - 98

99

100

101

 // ... lines 102 - 115

116

Run the test:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

And... yup! The dragonTreasures field is empty for $otherUser because their treasure

was stolen! They're mad!

class UserResourceTest extends ApiTestCase

{

 public function testTreasuresCannotBeStolen(): void

 {

 dump('Real owner is ' . $otherUser->getId());

 $this->browser()

 ->get('/api/users/' . $otherUser->getId())->dump()

 ->assertStatus(422);

 }

}

Changing the Constraint to be above the Class

To sort out this mess in the validator, we need to know two things. First, what the original owner

is for each treasure. And we have that: each DragonTreasureApi object stills has its original

owner. Second, we need to know which user these treasures belong to now: which UserApi

object this property belongs to. And we don't have that.

To get it, we can move the constraint from this specific property - where all we have access to

are the DragonTreasureApi objects - up to the class. That will give us access to the entire

UserApi object.

src/ApiResource/UserApi.php

 // ... lines 1 - 43

44

45

46

 // ... lines 47 - 63

64

65

66

67

 // ... lines 68 - 70

71

Step 1 is easy... move the constraint to be above the class! To allow this, open the constraint

class. Get rid of the annotation stuff - since annotations are dead... and we're not using them.

Then change this from TARGET_PROPERTY and TARGET_METHOD to TARGET_CLASS .

src/Validator/TreasuresAllowedOwnerChange.php

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 19

20

For some reason, my editor adds an extra \ there, so delete that. We also need to override a

method. I'm not sure why we have to specify the target in both places... this method is specific

to the validation system, but no big deal: return self::CLASS_CONSTRAINT .

Also add a return type - string|array . That'll avoid a deprecation notice.

#[TreasuresAllowedOwnerChange]

class UserApi

{

 /**

 * @var array<int, DragonTreasureApi>

 */

 public array $dragonTreasures = [];

}

#[\Attribute(\Attribute::TARGET_CLASS | \Attribute::IS_REPEATABLE)]

class TreasuresAllowedOwnerChange extends Constraint

{

}

src/Validator/TreasuresAllowedOwnerChange.php

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 15

16

17

18

19

20

Back over in the validator, dd($value) ... then rerun the test:

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 23

24

 // ... lines 25 - 41

42

43

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

Let's see... yes! It dumps the entire UserApi object with ID 1 . Good stuff! The

dragonTreasures property holds that single treasure... and down here, we see its original

owner! Now we can just check to see if the new owner is different from the original owner. Easy!

Back in the validator, assert() that $value is an instanceof UserApi .

#[\Attribute(\Attribute::TARGET_CLASS | \Attribute::IS_REPEATABLE)]

class TreasuresAllowedOwnerChange extends Constraint

{

 public function getTargets(): string|array

 {

 return self::CLASS_CONSTRAINT;

 }

}

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 dd($value);

 }

}

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 19

20

 // ... lines 21 - 35

36

37

Then, foreach over $value->dragonTreasures as $dragonTreasureApi .

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 19

20

21

22

 // ... lines 23 - 34

35

36

37

The positively lovely thing is that we don't need any of this $unitOfWork stuff anymore.

Delete it! Then say $originalOwnerId = $dragonTreasureApi->owner->id . The

$newOwnerId will be $value->id . That's it!

To code defensively, you can add a ? here... in case there isn't an owner... like if this is a new

treasure.

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 assert($value instanceof UserApi);

 }

}

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 assert($value instanceof UserApi);

 foreach ($value->dragonTreasures as $dragonTreasureApi) {

 }

 }

}

src/Validator/TreasuresAllowedOwnerChangeValidator.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 19

20

21

22

 // ... lines 23 - 24

25

26

 // ... lines 27 - 34

35

36

37

The logic down here ain't broke, so nothing to fix: if we don't have the $originalOwnerId or

the $originalOwnerId equals $newOwnerId , everything is cool. Else, build this violation.

Remove this $unitOfWork line here as well, those use statements... and this

EntityManagerInterface constructor. Thanks to the new DTO system, we now have a

very boring custom validator.

Try the test again... and cross your fingers and toes for good luck:

symfony php bin/phpunit --filter=testTreasuresCannotBeStolen

We got it! High-five something, then remove this ->dump() from the top. Deep breath: run the

entire test suite:

symfony php bin/phpunit

All green! We have completely rebuilt our system using DTOs! Woohoo!

And... we're done! It took a bit of work to get this all set up, but that's the whole point of DTOs!

There's more groundwork in the beginning in exchange for more flexibility and clarity later on,

especially if you're building a really robust API that you want to keep stable.

class TreasuresAllowedOwnerChangeValidator extends ConstraintValidator

{

 public function validate($value, Constraint $constraint): void

 {

 assert($value instanceof UserApi);

 foreach ($value->dragonTreasures as $dragonTreasureApi) {

 $originalOwnerId = $dragonTreasureApi->owner?->id;

 $newOwnerId = $value->id;

 }

 }

}

As always, if you have questions, comments, or want to POST about the cool stuff you're

building, we're here for you down in the comments. All right friends, seeya next time!

With <3 from SymfonyCasts

