
All about Uploading Files in
Symfony

Chapter 1: Setting up with the Symfony Local Web
Server

Yo friends! It's file upload time! Woo! We are going to absolutely crush this topic... yea know...

because file uploads are a critical part of the Internet. Where would we be if we couldn't upload

selfies... or videos of Victor's cat... or SPAM our friends with memes!?!?! That's not a world I want

to live in.

But... is uploading a file really that hard: add a file input to a form, submit, move the file onto your

filesystem and... done! Meme unlocked! Well... that's true... until you start thinking about storing

files in the cloud, like S3. Oh, and don't forget to add validation to make sure a user can't upload

any file type - like an executable or PHP script! And you'll need to make sure the filename is

unique so it doesn't overwrite other files... but also... it's kind of nice to keep the original

filename... so it's not just some random hash if the user downloads it later. Oh, and once it's

uploaded, we'll need a way to link to that file... except if you need to do a security check before

letting the user download the file. Then you'll need to handle things in a totally different way.

Um... so wow! Things got complex! That's awesome! Because we're going to attack all of this...

and more.

Downloading the Course Code

If you want to upload the maximum knowledge into your brain... you should definitely download

the course code from this page and code along with me. After unzipping the file, you'll find a

start/ directory that has the same code you see here. Open the README.md file for all the

setup details... and a few extras.

The last setup step in our tutorials is usually to open a terminal, move into the project and run:

php bin/console server:run

to start the built in web server. You can totally do this. But, but, but! I want to show you a new tool

that I'm loving: the Symfony local web server.

Downloading the Symfony Local Web Server

Find your browser and go to https://symfony.com/download. The Symfony local web server - or

Symfony "client" - is a single, standalone file that is full of superpowers. At the top, you'll see

instructions about how to download it. These steps are different depending on your operating

system - but it should auto-select the right one.

For me, I'll copy this curl command, find my terminal, paste and enter! This downloaded a single

executable file called symfony . To make sure I can type that command from anywhere, I'll move

this into a global bin directory. By the way, you only need to do these steps once on your

computer... so you're done forever!

Unless we've mucked things up, we should now be able to run this from anywhere: try it!

symfony

Say hello to the Symfony CLI! It lists the most popular commands, but there are a lot more - run:

symfony help

Woh. We'll talk more about this tool in another tutorial. But, to start a local web server, just say:

symfony serve

Ah. The first time you run this, you'll get an error about running:

symfony server:ca:install . Let's do that:

symfony server:ca:install

You'll probably need to type in your admin password. This command installs a local SSL certificate

authority... which is awesome because when we run symfony serve , it creates a local web

server that supports https! Woh! We get free https locally! Sweet!

https://symfony.com/download

Find your browser and go to https://127.0.0.1:8000 - or localhost, it's the same thing. Say

hello to The SpaceBar! This is the app we've been building in our Symfony 4 series: a news site

for space-traveling friends from across the galaxy.

Try logging in with admin1@thespacebar.com and password engage . Then go to

/admin/article .

This is the admin section for the articles on the site. Each article has an image... but until now,

that image has basically been hardcoded. Click to edit one of the articles. Our first goal is clear:

add a file upload field to this form so we can upload the article image, and then render that on the

frontend.

But we're going to keep things simple to start... and take a deep and wonderful look into the

fundamentals of how files are uploaded on the web and how that looks inside Symfony. Let's go!

Chapter 2: Uploads, multipart/form-data &
UploadedFile

This page uses a Symfony form. And we will learn how to add a file upload field to a form object.

But... let's start simpler - with a good old-fashioned HTML form.

The controller behind this page live at src/Controller/ArticleAdminController.php ,

and we're on the edit() action. Create a totally new, temporary endpoint:

public function temporaryUploadAction() . We're going to create an HTML form in our

template, put an input file field inside, and make it submit to this action. Add the @Route() with,

how about, /admin/upload/test and name="upload_test" . But... don't do anything else

yet.

src/Controller/ArticleAdminController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 69

70

71

72

73

74

 // ... line 75

76

 // ... lines 77 - 113

114

Copy the route name, then open the template for the edit page:

templates/article_admin/edit.html.twig . The Symfony form lives inside the

_form.html.twig template. So, above that form tag, add a new form tag, with

method="POST" and action="" set to {{ path('upload_test') }} . Inside, we only

need one thing <input type="file"> . We need to give this a name so we can reference it on

the server: how about name="image" .

Finally, add <button type="submit"> and I'll add some classes so that this isn't the ugliest

button ever. Say: Upload!

class ArticleAdminController extends BaseController

{

 /**

 * @Route("/admin/upload/test", name="upload_test")

 */

 public function temporaryUploadAction(Request $request)

 {

 }

}

templates/article_admin/edit.html.twig

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 24

That's it! The simplest possible file upload setup: one field, one button.

Fetching the File in the Controller

In some ways, uploading a file is really no different than any other form field: you're always just

sending data to the server where each data has a key equal to its name attribute. So, the same

as any form, to read the submitted data, we'll need the request object. Add a new argument with a

Request type-hint - the one from HttpFoundation - $request . Then say: dd() - that's dump &

die - $request->files->get('image') . I'm using image because that's the name attribute

used on the field.

src/Controller/ArticleAdminController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 72

73

74

75

76

 // ... lines 77 - 115

Cool! What do you think this will dump out? A string filename? An array? An object? Let's find out!

Choose a file - I'll go into my I <3 Space directory, and select the astronaut photo! Upload!

multipart/form-data

 <form method="POST" action="{{ path('upload_test') }}">

 <input type="file" name="image">

 <button type="submit" class="btn btn-primary">Upload!</button>

 </form>

 <hr>

 {{ include('article_admin/_form.html.twig', {

 button_text: 'Update!'

 }) }}

use Symfony\Component\HttpFoundation\Request;

 public function temporaryUploadAction(Request $request)

 {

 dd($request->files->get('image'));

 }

Oh! It's... null!? I did not see that coming. If you're ever uploading a file and it's totally not working,

you've probably made the same mistake I just did. Go back to the template and add an attribute to

the form enctype="multipart/form-data" .

templates/article_admin/edit.html.twig

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

 // ... lines 11 - 24

Yep! Mysteriously, you never need this on your forms... until you have a file upload field. It

basically tells your browser to send the data in a different format. We're going to see exactly what

this means soon cause we are crushing the magic behind uploads.

Fortunately, PHP understand this format and this format supports file uploads. Refresh the form

so the new attribute is rendered. Let's choose the astronaut again. And before hitting Upload,

open up your developer tools and go to the Network tab: I want to see what this request looks like.

Hit upload!

Nice! This time we get an UploadedFile object full of useful data.

But before we dive into that, look down at the network tools and find the POST request we just

made. If you look at the request headers... here it is: our browser sent a

Content-Type: multipart/form-data header. This is because of the enctype attribute.

It also added this weird boundary=----WebkitFormBoundary , blah, blah, blah thing.

Ok: this stuff is super-nerdy-cool. Normally, when you do not have that enctype attribute, when

you submit a form, all of the data is sent in the body of the request in a big string full of what looks

like query parameters. That's kind of invisible to us, because PHP parses all of that and makes

the data available.

But when you add the multipart/form-data attribute, it tells our browser to send the data in

a different format. It's actually kind of hard to see what the body of these requests look like -

Chrome hides it. No worries! Through the magic of TV... boom! This is what the body of that

request looks like.

Weird, right! Each field is separated by this mysterious WebkitFormBoundary thing... which is

the string that we saw in the Content-Type header! Our form only has one field, but if we had

multiple, this separator would be between every field. Our browsers invents this string, separates

 <form method="POST" action="{{ path('upload_test') }}"

enctype="multipart/form-data">

 </form>

each piece of data with it, then sends this separator up with the request so that the server knows

how to parse everything.

Why is this cool? Because we can now send up multiple pieces of information about our

name="image" field, like the original filename on our system and what type of file it is... which,

by the way, can be totally faked by the user. More on that later. After all that, we've got the data

itself!

If you look all the way at the bottom, it has another WebKitFormBoundary line. If there were

more fields on this form, you'd see their data below - all separated by another "boundary".

So... that's it! It literally tells our browser to send the data in a different format - and PHP

understands both formats just fine. We need this format when doing file uploads because a file

upload is more than just its contents: we also want to send some metadata. And also, due to how

the data is encoded, if you were able to send binary data on a normal request - without the

multipart/form-data encoding - it would increase the amount of data you need to upload by

as much as three times! Not great for uploads!

The UploadedFile Object

Once the data arrives at the server, PHP automatically reads in the file and saves it to a

temporary location on your server. Symfony then takes all of these details and puts it into a nice,

neat UploadedFile object. You can see the originalName : astronaut.jpeg , the

mimeType and - importantly - the location on the filesystem where the file is temporarily stored.

If we do nothing with that file, PHP will automatically delete it at the end of the request. So... our

job is clear! We need to move that into a final location and... do a bunch of other things, like make

sure it has a unique filename and the correct file extension. Let's handle that next.

Chapter 3: Where & How to Store the File

For now, the form is still submitting to this test endpoint. We'll change that soon by moving it into

the actual article form. But, to finish a successful file upload, we need move the uploaded file from

the temporary spot on the filesystem to its final location.

Where to Store Uploads?

So... where should we store the uploaded article images? The first question to ask is: can these

uploaded files be public to everyone? Or do we need to do some sort of security check before a

user can view or download them? For article images, they can be public. But we'll talk about

private files later.

Ok, so if someone needs to be able to view these images, it means they need to live somewhere

in the public/ directory. Later, we're going to talk about storing files in the cloud! Like S3, which

honestly, is an awesome idea. But right now, we're going to keep it simple and store things directly

on our server.

So how about storing things in... I don't know... public/uploads? Create that new directory.

Then, inside, create an empty .gitignore file. The reason I'm doing this might be confusing at

first. My goal is to ignore any files added to this directory from git... because we don't want to

commit uploaded files. But I would also like to make sure that this directory at least exists when I

clone the repository.

Find your terminal and add the empty .gitignore file:

git add public/uploads/.gitignore

Next, open up the real .gitignore file - the one at the root of your app - and ignore the entire

/public/uploads directory. It's a bit weird, but thanks to this, we will ignore all files in

public/uploads except for the .gitignore file we already added.

.gitignore

 // ... lines 1 - 17

18

19

Why did we do this? Well, unfortunately, you can't add a directory to git. So by adding this

.gitignore file, it will guarantee that the public/uploads directory will exist when you clone

the repository. Honestly, the file could be named anything, it's just sort of a common practice to

use an empty .gitignore file for this.

Check it out: create a new file in public/uploads called foo . Then, find your terminal and run:

git status

We see the new public/uploads/.gitignore file but we do not see the foo file. That's

perfect. Delete that.

Moving the Uploaded File

Let's get to work inside of our controller to move the file. First, set the uploaded file to a new

$uploadedFile variable. And, unfortunately, the phpdoc on this get() method is a bit

generic... so it doesn't tell our editor that this will be an UploadedFile object. Because I'm

obsessed with auto-completion, let's add inline doc about this: this will be an UploadedFile

object - but not the one from Guzzle - the one from HttpFoundation in Symfony.

src/Controller/ArticleAdminController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 73

74

75

76

77

 // ... lines 78 - 79

80

 // ... lines 81 - 118

119

/public/uploads/

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ArticleAdminController extends BaseController

{

 public function temporaryUploadAction(Request $request)

 {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $request->files->get('image');

 }

}

And guess what? This UploadedFile object has a super useful method on it: move() ! Give it

the destination directory and it'll take care of the rest. To get that directory, say

$destination = and we need to get the path to our uploads/ directory. The best way is to

read a parameter: $this->getParameter('kernel.project_dir') - to get the absolute

path to the root of the app - then /public/uploads . Then add $uploadedFile->move()

and pass it $destination .

Hold Command or Ctrl and click this method. Ah, it returns a File object that represents the new

file. Let's see what this looks like: surround this entire call with dd() .

src/Controller/ArticleAdminController.php

 // ... lines 1 - 73

74

75

 // ... lines 76 - 77

78

79

80

 // ... lines 81 - 120

Alright team! Find your browser, refresh and re-post that upload. I... think it worked! The dumped

file object tells me that there is a new file in our public/uploads/ directory. Let's go check it

out! There it is! Well, I think that's it... but sheesh - the filename is terrible. Let's check its file size:

ls -la public/uploads/

Yea... that looks correct - it's about 1.8 megabytes. So... we moved the file... but that is a terrible

filename. Let's fix that next.

 public function temporaryUploadAction(Request $request)

 {

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads';

 dd($uploadedFile->move($destination));

 }

Chapter 4: Unique (but not Insane) Filenames

I told the UploadedFile object to move the file into public/uploads . And it did... but I kinda

get the feeling it wasn't trying very hard. I mean, that is a horrible filename. Well, to be fair, this is

the temporary filename that PHP decided to use.

Using the Original Filename

Fortunately, the move() method has a second argument: the name to give to the file. The easiest

name to use is: $uploadedFile->getClientOriginalName() . This is the name that the file

had on my computer: it's one of the pieces of data that is sent up on the request, along with the

file contents.

src/Controller/ArticleAdminController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 73

74

75

 // ... lines 76 - 78

79

80

81

82

83

 // ... lines 84 - 121

122

Move over and resubmit the form again. There it is: astronaut.jpg !

Security Concerns

But there are a few problems with this. Number one is security. Boo security! I know, I know, if the

world were more butterflies and ice cream cones, we wouldn't need to worry about this stuff. But

when it comes to file uploads, security concerns are real.

class ArticleAdminController extends BaseController

{

 public function temporaryUploadAction(Request $request)

 {

 dd($uploadedFile->move(

 $destination,

 $uploadedFile->getClientOriginalName()

));

 }

}

Right now, our upload form has no validation at all. So even though we are intending for this to be

an image, the user could upload anything. And to make things worse, the file will then be publicly

accessible. Someone could basically use our site as a private file storage, even storing viruses

and trying to trick people into downloading it from our trusted domain. We'll talk about validation a

bit later: it is critical that you do not allow your users to upload any file type.

Side note: no matter how you build your app or what safeguards you put it place, you should

always make sure that your web server will only parse your main public/index.php file

through PHP. If your server is configured to execute any file ending in .php through PHP, that is

a huge security risk. Ok, back to butterflies and ice cream.

Even after we add validation to guarantee that the uploaded file is actually an image, the user

could still successfully upload an image with a .exe or .php file extension! Even if we validate

the file type, allowing fake extensions is weird... and could be risky.

So problem number one is security and we'll tackle part of it in a minute and the other part when

we talk about validation.

Problem number two is that the filename is not guaranteed to be unique! If someone else uploads

a file called astronaut.jpg , boom! My schweet photo is gone!

Making Filenames Unique

There are a few ways to handle the unique problem - but the easiest one is just to add some sort

of unique id to the filename. Set $newFilename to uniqid() , a '-' then

$uploadedFile->getClientOriginalName() . Below, use $newFilename .

src/Controller/ArticleAdminController.php

 // ... lines 1 - 73

74

75

 // ... lines 76 - 78

79

80

81

82

83

84

85

 // ... lines 86 - 125

 public function temporaryUploadAction(Request $request)

 {

 $newFilename = uniqid().'-'.$uploadedFile->getClientOriginalName();

 dd($uploadedFile->move(

 $destination,

 $newFilename

));

 }

Let's try that! Better. It's kind of an ugly hash on the beginning of the filename, but it does solve

the unique problem. You can also use a shorter hash or, when we actually save this data to our

Article object, you could use the Article id instead of the hash. Or, if you really want to keep

the original filename exactly as it was, well... we'll talk about that later when we upload

"references" to our Article.

Correcting the File Extension

The other thing I want to solve is the possibility that someone uploads an image with a totally

insane file extension - like .potato . We can fix this really nicely. Create a new variable called

$originalFilename set to pathinfo() with

$uploadedFile->getClientOriginalName() and the constant PATHINFO_FILENAME .

This will give us the original filename - astronaut.jpg - but without the file extension: so, just

astronaut . Then, for the filename, use $originalFilename , a dash, the uniqid() , a

period, and now the real extension of the file: $uploadedFile->guessExtension() . Oh, see

how there are two methods: ->guessClientExtension() and ->guessExtension()? The

difference is important: the guessExtension() method looks at the file contents, determines

the mime type, and returns the file extension for that. But the guessClientExtension() uses

the mime type the user sent... which can't be trusted.

src/Controller/ArticleAdminController.php

 // ... lines 1 - 73

74

75

 // ... lines 76 - 79

80

81

 // ... lines 82 - 86

87

 // ... lines 88 - 127

So, we're not validating that this is an image file yet, but no matter what they upload, we should

now get the correct file extension.

Give it a try! Nice! We've got a .jpeg ending.

 public function temporaryUploadAction(Request $request)

 {

 $originalFilename = pathinfo($uploadedFile-

>getClientOriginalName(), PATHINFO_FILENAME);

 $newFilename = $originalFilename.'-'.uniqid().'.'.$uploadedFile-

>guessExtension();

 }

Optional: Normalizing Filenames

There's one last thing you might want to do... and it's really optional. Go back to the form. One of

my files has uppercase letters and spaces inside. Let's try uploading that. It works! There is no

problem with storing spaces or... most weird characters on a filesystem. But if you want to

guarantee cleaner filenames, there's an easy way to do that. I'll use a class called Urlizer : this

comes from the gedmo/doctrine-extensions library. It has a nice method called urlize()

and we can wrap our $originalFilename in that to make it a bit cleaner.

src/Controller/ArticleAdminController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 74

75

76

 // ... lines 77 - 81

82

 // ... lines 83 - 87

88

 // ... lines 89 - 128

Try that out. Nice! So now we have a unique, normalized filename that at least looks a bit like the

original filename. Later, we'll see how we can keep the exact original filename in all cases... if you

care. But unless your users are downloading these files, the exact filenames aren't usually that

important.

Next: it's time to put this upload field properly into our Symfony form and save the filename to the

Article entity.

use Gedmo\Sluggable\Util\Urlizer;

 public function temporaryUploadAction(Request $request)

 {

 $newFilename = Urlizer::urlize($originalFilename).'-

'.uniqid().'.'.$uploadedFile->guessExtension();

 }

Chapter 5: File Upload Field in a Form

We're rocking! We know what it looks like to upload a file in Symfony: we can work with the

UploadedFile object and we know how to move the file around. That feels good!

It's time to talk about how to work with a file upload field inside a Symfony form. And then, we also

need to save the filename of the uploaded image to our Article entity. Because, ultimately, on

the homepage, we need to render each image next to the article.

What your Entity Should Look Like

In the src/Entity directory, let's look at the Article entity. Ok great: the entity is already

setup! It has an $imageFilename field that is a string. This is important: the uploaded file will be

stored... somewhere: on your server, in the cloud, in your imagination - it doesn't matter. But in the

database, the only thing you will store is the string filename.

Adding the FileType to the Form

The form that handles this page lives at src/Form/ArticleFormType.php . In

ArticleAdminController ... if you scroll up a little bit... here is the edit() action and you

can see it using this ArticleFormType . Right now, this is a nice traditional form: it handles the

request and saves the Article to the database. Beautifully... boring!

In ArticleFormType , add a new field with ->add() and call it imageFilename because

that's the name of the property inside Article . For the type, use FileType::class .

src/Form/ArticleFormType.php

 // ... lines 1 - 11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 28

29

30

 // ... lines 31 - 34

35

 // ... lines 36 - 53

54

55

 // ... lines 56 - 88

89

 // ... lines 90 - 152

153

But... there's a problem with this. And if you already see it, extra credit points for you! Move over

and refresh. Woh.

“The form's view data is expected to be an instance of class File but it is a string .”

Um... ok. The problem is not super obvious... but it clearly hates something about our new field.

Here's the explanation: we know that when you upload a file, Symfony gives you an

UploadedFile object, not a string . But, the imageFilename field here on Article ... that

is a string ! Connecting the form field directly to the string property doesn't make sense. We're

missing a layer in the middle: something that can work with the UploadedFile object, move the

file, and then set the new filename onto the property.

Using an Unmapped Field

How can we do that? Change the field name to just imageFile . There is no property on our

entity with this name... so this, on its own, will not work. Pretty commonly, you'll see people create

this property on their entity, just to make the form work. They don't persist this property to the

database with Doctrine... so the idea works, but I don't love it.

Instead, we'll use a trick that we talked a lot about in our forms tutorial: add an option to the field:

'mapped' => false .

use Symfony\Component\Form\Extension\Core\Type\FileType;

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFilename', FileType::class)

 ;

 }

}

src/Form/ArticleFormType.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 28

29

30

 // ... lines 31 - 34

35

 // ... lines 36 - 53

54

55

56

57

 // ... lines 58 - 90

91

 // ... lines 92 - 154

155

If you've never seen this before, we'll explain it in a minute. Now that we have a new imageFile

field, let's go render it! Open edit.html.twig . Remove the HTML form - we're done with that.

The Symfony form lives in _form.html.twig . After the title, add

{{ form_row(articleForm.imageFile }} .

templates/article_admin/_form.html.twig

1

2

3

4

5

 // ... lines 6 - 23

24

Nothing special here.

This submits back to ArticleAdminController::edit() . Go inside the

$form->isValid() block. When you have an unmapped field, the data will not be put onto

your Article object. So, how can we get it? dd($form['imageFile']->getData()) .

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFile', FileType::class, [

 'mapped' => false

])

 ;

 }

}

{{ form_start(articleForm) }}

 {{ form_row(articleForm.title, {

 label: 'Article title'

 }) }}

 {{ form_row(articleForm.imageFile) }}

{{ form_end(articleForm) }}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 48

49

50

 // ... lines 51 - 55

56

57

 // ... lines 58 - 66

67

 // ... lines 68 - 71

72

 // ... lines 73 - 128

129

Let's try that! Go back to your browser and hit enter on the URL: we need the form to totally re-

render. Hey! There's our new field! Select the astronaut again. Um... did that work? Cause... I

don't see the filename on my field. Yes: it did work - we don't see anything because of a display

bug if you're using Symfony's Bootstrap 4 form theme. We'll talk about that later. But, the file is

attached to the field. Hit Update!

Yes! It's our beloved UploadedFile object! We totally know how to work with that! Oh, but

before we do: I want to point out something cool. Inspect element and find the form tag. Hey! It

has the enctype="multipart/form-data" attribute! We get that for free because we use the

{{ form_start() }} function to render the <form> tag. As soon as there is even one file

upload field in the form, Symfony adds this attribute for you. High-five team!

Moving the Uploaded File

Time to finish this. Let's upload a different file - earth.jpeg . And... there's the dump. We have

two jobs in our controller: move this file to the final location and store the new filename on the

$imageFilename property. Back in the controller, scroll down to

temporaryUploadAction() , steal all its code, and delete it.

Up in edit() , remove the dd() and set this to an $uploadedFile variable. Add the same

inline phpdoc as last time

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 dd($form['imageFile']->getData());

 }

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 48

49

50

 // ... lines 51 - 55

56

57

58

59

 // ... lines 60 - 77

78

 // ... lines 79 - 82

83

 // ... lines 84 - 121

122

then paste the code. Yep! We'll move the file to public/uploads and give it a unique filename.

Take off the dd() around move() .

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $form['imageFile']->getData();

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads';

 }

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 48

49

50

 // ... lines 51 - 55

56

57

58

59

60

61

62

63

64

65

66

67

 // ... lines 68 - 77

78

 // ... lines 79 - 82

83

 // ... lines 84 - 121

122

Now, call $article->setImageFilename($newFilename)

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $form['imageFile']->getData();

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads';

 $originalFilename = pathinfo($uploadedFile-

>getClientOriginalName(), PATHINFO_FILENAME);

 $newFilename = Urlizer::urlize($originalFilename).'-

'.uniqid().'.'.$uploadedFile->guessExtension();

 $uploadedFile->move(

 $destination,

 $newFilename

);

 }

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 48

49

50

 // ... lines 51 - 55

56

57

58

59

60

61

62

63

64

65

66

67

68

 // ... lines 69 - 77

78

 // ... lines 79 - 82

83

 // ... lines 84 - 121

122

and let Doctrine save the entity, just like it already was.

Beautiful! I do want to point out that the $newFilename string that we're storing in the database

is just the filename: it doesn't contain the directory or the word uploads : it's... the filename. Oh,

for my personal sanity, let's upload things into an article_image sub-directory: that'll be

cleaner when we start uploading multiple types of things. Remove the old files.

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $form['imageFile']->getData();

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads';

 $originalFilename = pathinfo($uploadedFile-

>getClientOriginalName(), PATHINFO_FILENAME);

 $newFilename = Urlizer::urlize($originalFilename).'-

'.uniqid().'.'.$uploadedFile->guessExtension();

 $uploadedFile->move(

 $destination,

 $newFilename

);

 $article->setImageFilename($newFilename);

 }

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 48

49

50

 // ... lines 51 - 55

56

57

58

59

 // ... lines 60 - 77

78

 // ... lines 79 - 82

83

 // ... lines 84 - 121

122

Moment of truth! Find your browser, roll up your sleeves, and refresh! Um... it probably worked? In

the uploads/ directory... yea! There's our Earth file! Let's see what the database looks like - find

your terminal and run:

php bin/console doctrine:query:sql 'SELECT * FROM article WHERE id = 1'

Let's see, the id of this article is 1. Yes! the image_filename column is totally set! Fist-pumping

time!

Avoid Processing when no Upload

Oh, but there is one tiny thing we need to clean up before moving on. What if we just want to, I

don't know, edit the article's title, but we don't need to change the image. No problem - hit Update!

Oh... That's HTML5 validation. You might remember from the forms tutorial that this required

attribute is added to every field... unless you're using form field type guessing. It's annoying - fix it

by adding 'required' => false .

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $form['imageFile']->getData();

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads/article_image';

 }

 }

}

src/Form/ArticleFormType.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 28

29

30

 // ... lines 31 - 34

35

 // ... lines 36 - 53

54

 // ... line 55

56

57

58

 // ... lines 59 - 91

92

 // ... lines 93 - 155

156

Let's try it again. Refresh, change the title, submit and... oof.

“Call to a member function getClientOriginalName on null”

Of course! We're not uploading a file! So the $uploadedFile variable is null! That's ok! If the

user didn't upload a file, we don't need to do any of this logic. In other words,

if ($uploadedFile) , then do all of that. Otherwise, skip it!

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFile', FileType::class, [

 'required' => false,

])

 ;

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 48

49

50

 // ... lines 51 - 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

 // ... lines 71 - 79

80

 // ... lines 81 - 84

85

 // ... lines 86 - 123

124

Refresh now. Got it!

Next: This is looking good! Except that... we need this exact same logic in the new() action. To

make a truly killer upload system, we need to refactor the upload logic into a reusable service.

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $form['imageFile']->getData();

 if ($uploadedFile) {

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads/article_image';

 $originalFilename = pathinfo($uploadedFile-

>getClientOriginalName(), PATHINFO_FILENAME);

 $newFilename = Urlizer::urlize($originalFilename).'-

'.uniqid().'.'.$uploadedFile->guessExtension();

 $uploadedFile->move(

 $destination,

 $newFilename

);

 $article->setImageFilename($newFilename);

 }

 }

 }

}

Chapter 6: Centralizing Upload Logic

We've got a pretty nice system so far: moving the file, unique filenames and putting the filename

string into the database. But it is kind of a lot of logic to put in the controller... and we already need

to reuse this code somewhere else: in the new() action.

Creating the Service

That's why I like to isolate my upload logic into a service class. In the Service/ directory - or

really anywhere - create a new class: how about UploaderHelper?

src/Service/UploaderHelper.php

1

2

3

 // ... lines 4 - 6

7

8

9

 // ... lines 10 - 21

22

This class will handle all things related to uploading files. Create a

public function uploadArticleImage() : it will take the UploadedFile as an argument

- remember the one from HttpFoundation - and return a string . That will be the string

filename that was ultimately saved.

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... line 7

8

9

10

11

 // ... lines 12 - 20

21

22

<?php

namespace App\Service;

class UploaderHelper

{

}

use Symfony\Component\HttpFoundation\File\UploadedFile;

class UploaderHelper

{

 public function uploadArticleImage(UploadedFile $uploadedFile): string

 {

 }

}

Ok! Let's go steal some code for this. In fact, we're going to steal pretty much all the logic here...

and paste it in. Make sure to retype the r on Urlizer to get the use statement on top.

src/Service/UploaderHelper.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

And at the bottom, return $newFilename .

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 16

17

18

 // ... lines 19 - 28

29

30

31

Perfect! Well... not perfect, because the $this->getParameter() method is a shortcut that

only works in the controller. If you need a parameter - or any configuration - from inside a service,

you need to add it via dependency injection. Add the public function __construct()

with, how about, a string $uploadsPath argument. Instead of just injecting the

use Gedmo\Sluggable\Util\Urlizer;

class UploaderHelper

{

 public function uploadArticleImage(UploadedFile $uploadedFile): string

 {

 $destination = $this-

>getParameter('kernel.project_dir').'/public/uploads/article_image';

 $originalFilename = pathinfo($uploadedFile-

>getClientOriginalName(), PATHINFO_FILENAME);

 $newFilename = Urlizer::urlize($originalFilename).'-

'.uniqid().'.'.$uploadedFile->guessExtension();

 $uploadedFile->move(

 $destination,

 $newFilename

);

 }

}

class UploaderHelper

{

 public function uploadArticleImage(UploadedFile $uploadedFile): string

 {

 return $newFilename;

 }

}

kernel.project_dir parameter, we'll pass in the whole string to where uploads should be

stored.

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

 // ... lines 16 - 30

31

I'll put my cursor on that argument name, hit Alt + Enter and select initialize fields to create

that property and set it. Now, below, we can say $this->uploadsPath and then

/article_image .

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 16

17

18

19

20

 // ... lines 21 - 29

30

31

Cool! Let's worry about configuring the $uploadsPath argument to our service in a minute. After

all, Symfony's service system is so awesome, it'll tell me exactly what I need to configure once we

try this.

For now, go back into ArticleAdminController and use this. Start by adding another

argument: UploaderHelper $uploaderHelper . And celebrate by removing all of the logic

below and replacing it with

$newFilename = $uploaderHelper->uploadArticleImage($uploadedFile) .

class UploaderHelper

{

 private $uploadsPath;

 public function __construct(string $uploadsPath)

 {

 $this->uploadsPath = $uploadsPath;

 }

}

class UploaderHelper

{

 public function uploadArticleImage(UploadedFile $uploadedFile): string

 {

 $destination = $this->uploadsPath.'/article_image';

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 17

18

19

 // ... lines 20 - 49

50

51

 // ... lines 52 - 56

57

 // ... lines 58 - 59

60

61

62

63

 // ... lines 64 - 72

73

 // ... lines 74 - 77

78

 // ... lines 79 - 116

117

Dang - that is nice! There is still a little bit of logic here: the form logic and the logic that sets the

filename on the Article - but I'm comfortable with that. And we now have this great new

method: pass it an UploadedFile object, and it'll move it into the correct directory and give it a

unique filename.

Binding the $uploadsPath Argument

Let's take it for a test drive! Go back, refresh the form and... it works! Naw, I'm kidding - we knew

this error was coming... but isn't it beautiful?

“Cannot resolve argument $uploadHelper of the edit() method: Cannot autowire service

UploadHelper : argument $uploadsPath of method __construct() is type-hinted

string , you should configure its value explicitly.”

That's programming poetry people! And it makes sense: autowiring doesn't work for scalar

arguments. We got this: open config/services.yaml . We could configure the specific

argument for this specific service. But if you've watched our Symfony series, you know that I like

use App\Service\UploaderHelper;

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em, UploaderHelper $uploaderHelper)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 if ($uploadedFile) {

 $newFilename = $uploaderHelper-

>uploadArticleImage($uploadedFile);

 $article->setImageFilename($newFilename);

 }

 }

 }

}

to use the bind feature. The argument name is $uploadsPath . So, below _defaults and

bind , add $uploadsPath set to %kernel.project_dir%/public/uploads .

config/services.yaml

 // ... lines 1 - 9

10

 // ... line 11

12

 // ... lines 13 - 19

20

 // ... lines 21 - 22

23

 // ... lines 24 - 47

This means: anywhere that $uploadsPath is used as an argument for a method that's

autowired - usually a controller action or the constructor of a service - pass in this value.

Exceeding upload_max_filesize

Let's go see if that fixed things - reload. Now we see the form. To test this fully, let's empty out the

article_image/ directory. This time, let's upload the stars photo. Hit update.

Woh! The file "empty string" does not exist!? What the heck! Let's do some digging. When we call

guessExtension() , internally, Symfony looks at the contents of the temporary uploaded file to

determine what's inside. But... that file is missing! In fact, PHP is telling us that the temporary file

name is... an empty string! It's madness!

Why is this happening? I'll give you a clue: the file we just uploaded is 3mb. Go to your terminal

and run

php -i | grep upload

There it is: the upload_max_filesize in my php.ini is 2 megabytes, which is PHP's default

value. I have a bunch of things to say about this. First, make sure you set this value to whatever

you really want your max to be. You may also need to bump the post_max_size setting - that

defaults to 8 mb, and also will cause uploads to fail if they're bigger than this.

Second, if you're getting super weird results while uploading, this is probably the problem. And

third, once we add validation to our upload field, we'll get a really nice validation error instead of

services:

 _defaults:

 bind:

 $uploadsPath: '%kernel.project_dir%/public/uploads'

this crazy fatal error. Symfony has our back.

So let's try a smaller file - our astronaut - it's 1.9 mb. Hit update and... yes! It worked!

Adding the Logic to new() Action

Now that all of our logic is isolated, we can easily repeat this in the new() action. We do need to

copy these 5 lines or so, but I'm happy with that.

Up in new() , add the argument - UploaderHelper $uploaderHelper - and inside the

isValid() block, paste!

src/Controller/ArticleAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 23

24

25

 // ... lines 26 - 28

29

30

31

32

33

34

35

36

37

38

39

 // ... lines 40 - 46

47

 // ... lines 48 - 51

52

 // ... lines 53 - 124

125

This uses the same form, with the same unmapped field, so it'll all just work.

Next: let's talk about validation.

class ArticleAdminController extends BaseController

{

 public function new(EntityManagerInterface $em, Request $request,

UploaderHelper $uploaderHelper)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 /** @var Article $article */

 $article = $form->getData();

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $form['imageFile']->getData();

 if ($uploadedFile) {

 $newFilename = $uploaderHelper-

>uploadArticleImage($uploadedFile);

 $article->setImageFilename($newFilename);

 }

 }

 }

}

Chapter 7: File Validation

I've ignored it long enough - sorry! We've gotta add some validation to the upload field. Because...

right now, we can upload any file type - it's madness! This is supposed to be an image field

people! We need to only allow pngs, jpegs, gifs, image stuff.

Validating an Unmapped Field

Normally we add validation to the entity class: we would go into the Article class, find the

property, and add some annotations. But... the field we want to validate is an unmapped form field

- there is no imageFile property in Article .

No worries: for unmapped fields, you can add validation directly to the form with the

constraints option. And when it comes to file uploads, there are two really important

constraints: one called File and an even stronger one called Image . Add new Image() - the

one from the Validator\Constraints .

src/Form/ArticleFormType.php

 // ... lines 1 - 18

19

20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 35

36

 // ... lines 37 - 54

55

 // ... lines 56 - 57

58

59

60

61

62

 // ... lines 63 - 95

96

 // ... lines 97 - 159

160

The Image Constraint

And... that's all we need! That's enough to make sure the user uploads an image. Check it out:

find your browser, Google for "Symfony image constraint" and click into the docs.

The Image constraint extends the File constraint - so both basically have the same behavior:

you can define a maxSize or configure different mimeTypes . The Image constraint just adds...

more super-powers. First, it pre-configures the mimeType option to only allow images. And you

get a crazy-amount of other image stuff - like minWidth , maxWidth or allowPortrait .

So let's test it! Refresh the page and browse. Oh, the Symfony Best Practices PDF snuck into my

directory. Select that, update and... boom! This file is not a valid image.

Validating the File Size

Go back to the docs and click to see the File constraint. The other most common option is

maxSize . To see what that looks like, set it to something tiny, like 5k .

use Symfony\Component\Validator\Constraints\Image;

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFile', FileType::class, [

 'constraints' => [

 new Image()

]

])

 ;

 }

}

src/Form/ArticleFormType.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 35

36

 // ... lines 37 - 54

55

 // ... lines 56 - 57

58

59

60

61

62

63

64

 // ... lines 65 - 97

98

 // ... lines 99 - 161

162

Ok: browse and select any of the files. Hit update and... perfect: the file is too large.

Change that back to 5M , or whatever makes sense for you.

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFile', FileType::class, [

 'constraints' => [

 new Image([

 'maxSize' => '5k'

])

]

])

 ;

 }

}

src/Form/ArticleFormType.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 35

36

 // ... lines 37 - 54

55

 // ... lines 56 - 57

58

59

60

61

62

63

64

 // ... lines 65 - 97

98

 // ... lines 99 - 161

162

Validation and upload_max_filesize

Oh, but, remember a few minutes ago when we tried to upload the stars photo? It's 3 megabytes,

which is way under the 5 megabytes we just set, but above my php.ini upload_max_filesize

setting. That caused a really nasty error.

Well, try selecting it again and updating. Yes! When you use the File or Image constraint, they

also catch any PHP-level upload errors and display them quite nicely. You can customize this

message.

Making the Upload Field Required

And... that's it! Sure, there are a more options and you can control all the messages - but that's

easy enough. Except... there is one tricky thing: how can we make the upload field required? Like,

when someone creates an article, they should be required to upload an image before saving it.

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFile', FileType::class, [

 'constraints' => [

 new Image([

 'maxSize' => '5M'

])

]

])

 ;

 }

}

Simple, right? Just add a new NotNull() constraint to the imageFile field. Wait, no, that

won't work. If we did that, we would need to upload a file even if we were just editing a field on the

article: we would literally need to upload an image every time we changed anything.

Okay: so we want the imageFile to be required... but only if the Article doesn't already have

an imageFilename . Start by breaking this onto multiple lines. Then say

$imageConstraints = , copy the new Image() stuff and paste it here.

src/Form/ArticleFormType.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 35

36

 // ... lines 37 - 45

46

 // ... lines 47 - 53

54

55

 // ... line 56

57

58

59

60

61

62

63

 // ... lines 64 - 66

67

68

 // ... lines 69 - 101

102

 // ... lines 103 - 165

166

Down below, set 'constraints' => $imageConstraints . Oh... and let's spell that

correctly.

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('location', ChoiceType::class, [

])

 ;

 $imageConstraints = [

 new Image([

 'maxSize' => '5M'

])

];

 $builder

 ->add('imageFile', FileType::class, [

])

 ;

 }

}

src/Form/ArticleFormType.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 61

62

63

 // ... lines 64 - 65

66

67

68

 // ... lines 69 - 101

102

 // ... lines 103 - 165

166

Now we can conditionally add the NotNull() constraint exactly when we need it. Scroll up a

little. In our forms tutorial, we used the data option to get the Article object that this form is

bound to. If this is a "new" form, there may or may not be an Article object - so this will be an

Article object or null . I also used that to create an $isEdit variable to figure out if we're on

the edit screen or not.

We can leverage that by saying if this is not the edit page or if the article doesn't have an image

filename, then take $imageConstraints and add new NotNull() . We'll even get fancy and

customize the message: Please upload an image .

class ArticleFormType extends AbstractType

{

 public function buildForm(FormBuilderInterface $builder, array

$options)

 {

 $builder

 ->add('imageFile', FileType::class, [

 'constraints' => $imageConstraints

])

 ;

 }

}

src/Form/ArticleFormType.php

 // ... lines 1 - 19

20

21

22

23

 // ... lines 24 - 57

58

59

60

61

62

63

64

65

66

67

68

 // ... lines 69 - 109

110

 // ... lines 111 - 173

174

Just saying if !$isEdit is probably enough... but just in case, I'm checking to see if, somehow,

we're on the edit page, but the imageFilename is missing, let's require it.

Cool: testing time! Refresh the entire form, but don't select an upload: we know that this

Article does have an image already attached. Hit update and... works fine! Now try creating a

new Article, fill in a few of the required fields, hit create and... boom! Please upload an image!

Validation, check! Next, let's fix how this renders: we've gotta see the filename after selecting a

file - seeing nothing is bummin' me out.

use Symfony\Component\Validator\Constraints\NotNull;

class ArticleFormType extends AbstractType

{

 $imageConstraints = [

 new Image([

 'maxSize' => '5M'

])

];

 if (!$isEdit || !$article->getImageFilename()) {

 $imageConstraints[] = new NotNull([

 'message' => 'Please upload an image',

]);

 }

 }

}

Chapter 8: Upload Field Styling & Bootstrap

If you use the Bootstrap 4 theme with Symfony... things get weird with upload fields! Yea, there is

a good reason for why, but out-of-the-box, it's... just super weird. The problem? Select a file and...

get rewarded by seeing absolutely nothing! Did the file actually attach? We should see the

filename somewhere. What happened?

Why Doesn't it Work?

The thing is... styling a file upload field is kinda hard. So, if you really want to control how it looks

and make it super shiny, Bootstrap allows you to create a "custom" file input structure, which is

what Symfony uses by default. Check this out: see the <input type="file"...> field? That's

hidden by Bootstrap! Try removing the opacity: 0 part and... say hello to the real file upload

field... with the filename that we selected!

Bootstrap hides the input so that it, or we, can completely control how this whole field looks.

Everything you actually see comes from the label : it takes up the entire width. Even the

"Browse" button comes from some :after content.

The great thing about this is that styling a label element is easy. The sad panda part is that we

don't see the filename when we select a file! We can fix that - but it takes a little bit of JavaScript.

Customizing the Text in the Upload Field

Before we do that, we can also put a message in the main part of the file field by putting some

content in the label element. But... it doesn't work like a normal label.

In the templates/ directory, open article_admin/_form.html.twig . Here's our

imageFile field. The second argument to form_row is an array of variables you can use to

customize... basically anything. One of the most important ones is called attr : it's how you

attach custom HTML attributes to the input field. Pass an attribute called placeholder set to

Select an article image .

templates/article_admin/_form.html.twig

1

 // ... lines 2 - 4

5

6

7

8

9

 // ... lines 10 - 27

28

This would normally add a placeholder attribute to the input so you can have some text on the

field if it's empty. But when you're dealing with a file upload field with the Bootstrap theme, this is

used in a different way... but it accomplishes the same thing.

Refresh! Cool! The empty part of the file field now gets this text.

Showing the Selected Filename

But if you select a file... the filename still doesn't show. Let's fix that already. Look at the structure

again: Symfony's form theme is using this custom-file-input class on the input. Ok, so what

we need to do is this: on change of that field, we need to set the HTML of the label to the

filename, which is something we have access to in JavaScript.

To keep things simple, open base.html.twig : we'll write some JavaScript that will work across

the entire site. I'd recommend using Webpack Encore, and putting this code in your main entry file

if you want it to be global. But, without Encore, down here works fine.

Use $('.custom-file-input') - that's the class that's on the input field itself,

.on('change') and pass this a callback with an event argument. Inside, we need to find the

label element: I'll do that by finding the parent of the input and then looking for the

custom-file-label class so we can set its HTML.

{{ form_start(articleForm) }}

 {{ form_row(articleForm.imageFile, {

 attr: {

 'placeholder': 'Select an article image'

 }

 }) }}

{{ form_end(articleForm) }}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 82

83

 // ... lines 84 - 86

87

 // ... line 88

89

 // ... lines 90 - 93

94

95

96

97

98

In the callback, set var inputFile = event.currentTarget - that's the DOM node for the

input type="file" element. Next,

$(inputFile).parent().find('.custom-file-label').html() and pass this the

filename that was just selected: inputFile.files[0].name . The 0 part looks a bit weird, but

technically a file upload field can upload multiple files. We're not doing that, so we get to take this

shortcut.

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 82

83

 // ... lines 84 - 86

87

 // ... line 88

89

90

91

92

93

94

95

96

97

98

<html lang="en">

 <body>

 {% block javascripts %}

 <script>

 $('.custom-file-input').on('change', function(event) {

 });

 </script>

 {% endblock %}

 </body>

</html>

<html lang="en">

 <body>

 {% block javascripts %}

 <script>

 $('.custom-file-input').on('change', function(event) {

 var inputFile = event.currentTarget;

 $(inputFile).parent()

 .find('.custom-file-label')

 .html(inputFile.files[0].name);

 });

 </script>

 {% endblock %}

 </body>

</html>

Give it a try! Refresh... browse... select rocket.jpg and... yea! Our placeholder gets replaced

by the filename. That's what we expect and the field is easier to style thanks to this.

Next: the upload side of things is looking good. It's time to start rendering the URL to the upload

files... but without letting things get crazy-disorganized. I want to love our setup.

Chapter 9: URL to Public Assets

The hardest part of handling uploads... probably isn't the uploading part! For me, it's rendering the

URLs to the uploaded files, thumbnailing and creating endpoints to download private files. Oh,

and we gotta keep this organized: I do not want a bunch of upload directory names sprinkled over

50 files in my code. It's bad for sanity, I mean, maintenance, and will make it hard to move your

uploads to the cloud later... which we are going to do.

Look back at the homepage: all of these images work except for one. But, this is actually the

image that we uploaded! Inspect element on that and check its path:

/images/astronaut-blah-blah.jpeg . Check out one of the working images. Ah yes: until

now, in the fixtures, we set the $imageFilename string to one of the filenames that are

hardcoded and committed into the public/images/ directory, like asteroid.jpeg .

These aren't really uploaded assets: we were just faking it! Check out the template:

templates/article/homepage.html.twig . There it is! We're using the asset() ... ah,

wrong spot. Here we go: we're saying {{ asset(article.imagePath) }} , which calls

getImagePath() inside Article . That just prefixes the filename with images/ and returns it!

So if imageFilename is asteroid.jpeg in the database, this returns

images/asteroid.jpeg .

Pointing the Path to uploads/

Now that the true uploaded assets are stored in a different directory, we can just update this path!

In Article , change this to uploads/article_image/ and then

$this->getImageFilename() .

src/Entity/Article.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 184

185

186

187

188

 // ... lines 189 - 307

308

Cool! Try it out! It works! We don't care about the broken images from the fixtures: we'll fix them

soon. But the actual uploaded image does render.

Getting Organized

Great first step. Now, let's get organized! One problem is that we have the directory name -

article_image - in Article and also in UploaderHelper where we move the file around.

That's not too bad - but as we start adding more file uploads to the system, we're going to have

more duplication. I don't like having these important strings in multiple places.

So, in UploaderHelper , why not create a constant for this? Call it ARTICLE_IMAGE and set it

to the directory name: article_image .

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 32

33

Down below, use that: self::ARTICLE_IMAGE .

class Article

{

 public function getImagePath()

 {

 return 'uploads/article_image/'.$this->getImageFilename();

 }

}

class UploaderHelper

{

 const ARTICLE_IMAGE = 'article_image';

}

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 18

19

20

21

22

 // ... lines 23 - 31

32

33

And in Article , do the same thing: UploaderHelper::ARTICLE_IMAGE .

src/Entity/Article.php

 // ... lines 1 - 5

6

 // ... lines 7 - 18

19

20

 // ... lines 21 - 185

186

187

188

189

 // ... lines 190 - 308

309

Small step, and when we refresh, it works fine.

Centralizing the Public Path

Let's keep going! Back in Article , the path starts with uploads ... because that's part of the

public path to the asset. That's not a huge problem, but I actually don't want that uploads string

to live here. Why? Well, I kinda don't want my entity to really care where or how we're storing our

uploads. Like, if our site grows and we move our uploads to the cloud, we would need to change

this uploads string to a full CDN URL in all entities with an upload field. And, that URL might

even need to be dynamic - we might use a different CDN locally versus on production! Nope, I

don't want my entity to worry about any of these details.

Remove the uploads/ part from the path.

class UploaderHelper

{

 public function uploadArticleImage(UploadedFile $uploadedFile): string

 {

 $destination = $this->uploadsPath.'/'.self::ARTICLE_IMAGE;

 }

}

use App\Service\UploaderHelper;

class Article

{

 public function getImagePath()

 {

 return 'uploads/'.UploaderHelper::ARTICLE_IMAGE.'/'.$this-

>getImageFilename();

 }

}

src/Entity/Article.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 185

186

187

188

189

 // ... lines 190 - 308

309

Now getImagePath() returns the path to the image relative to wherever our app decides to

store uploads. In UploaderHelper , add a new public function getPublicPath() . This

will take a string $path - that will be something like article_image/astronaut.jpeg - and

it will return a string, which will be the actual public path to the file. Inside,

return 'uploads/'.$path; .

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 33

34

35

36

37

38

That may feel like a micro improvement, but it's awesome! Thanks to this, we can call

getPublicPath() from anywhere in our app to get the URL to an uploaded asset. If we move

to the cloud, we only need to change the URL here! Awesome!

uploaded_asset() Twig Extension

Except... how can we call this from Twig? Because, if we refresh right now... it definitely does not

work. No worries: let's create a custom Twig function. Open src/Twig/AppExtension - this is

the Twig extension we created in our Symfony series. Here's the plan: in the homepage template,

instead of using the asset() function, let's use a new function called uploaded_asset() .

We'll pass it article.imagePath - and it will ultimately call getPublicPath() .

class Article

{

 public function getImagePath()

 {

 return UploaderHelper::ARTICLE_IMAGE.'/'.$this->getImageFilename();

 }

}

class UploaderHelper

{

 public function getPublicPath(string $path): string

 {

 return 'uploads/'.$path;

 }

}

templates/article/homepage.html.twig

 // ... lines 1 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 39

40

 // ... lines 41 - 65

In AppExtension , copy getFilters() , paste and rename it to getFunctions() . Return an

array, and, inside, add a new TwigFunction() with uploaded_asset and

[$this, 'getUploadedAssetPath'] .

src/Twig/AppExtension.php

 // ... lines 1 - 10

11

 // ... line 12

13

14

 // ... lines 15 - 21

22

23

24

25

26

27

 // ... lines 28 - 56

57

Copy that new method name, scroll down and add it:

public function getUploadedAssetPath() with a string $path argument. It will also

return a string.

 {% for article in articles %}

 <img class="article-img" src="{{

uploaded_asset(article.imagePath) }}">

 {% endfor %}

use Twig\TwigFunction;

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getFunctions(): array

 {

 return [

 new TwigFunction('uploaded_asset', [$this,

'getUploadedAssetPath'])

];

 }

}

src/Twig/AppExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 42

43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 56

57

Using a Service Subscriber

Inside: we need to get the UploaderHelper service so we can call getPublicPath() on it.

Normally we do this by adding it as an argument to the constructor. But, in a few places in

Symfony, for performance purposes, we should do something slightly different: we use what's

called a "service subscriber", because it allows us to fetch the services lazily. If this is a new

concept for you, go check out our Symfony Fundamentals course - it's a really cool feature.

The short explanation is that this class has a getSubscribedServices() method where we

can choose which services we need. These are then included in the $container object and we

can fetch them out by saying $this->container->get() .

Add UploaderHelper::class to the array.

src/Twig/AppExtension.php

 // ... lines 1 - 5

6

 // ... lines 7 - 12

13

14

 // ... lines 15 - 49

50

51

52

 // ... line 53

54

55

56

57

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getUploadedAssetPath(string $path): string

 {

 }

}

use App\Service\UploaderHelper;

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public static function getSubscribedServices()

 {

 return [

 UploaderHelper::class,

];

 }

}

https://symfonycasts.com/screencast/symfony-doctrine/service-subscriber

Then, above, we can

return $this->container->get(UploaderHelper::class)->getPublicPath($path) .

src/Twig/AppExtension.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 42

43

44

45

46

47

48

 // ... lines 49 - 56

57

Let's give it a try! Refresh! We got it! That took some work, but I promise you'll be super happy

you did this.

Next: let's also update the image path in the show page, and learn a bit about what the asset()

function does internally and how we can do the same thing automatically in UploaderHelper .

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getUploadedAssetPath(string $path): string

 {

 return $this->container

 ->get(UploaderHelper::class)

 ->getPublicPath($path);

 }

}

Chapter 10: The asset() Function & assets.context

When we go to the show page... of course, it doesn't work yet! We need to update the template.

Copy the uploaded_asset() code, open show.html.twig ... here it is, and paste.

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 25

26

27

 // ... lines 28 - 78

79

 // ... lines 80 - 86

Easy! Reload the page now. Oh... it still doesn't work. Inspect element on the image. Ah, the path

is right, but because there is no / at the beginning, and because the current URL is a sort of sub-

directory, it's looking for the image in the wrong place. If you hack in the / ... it pops up!

Adding this opening slash is actually one of the jobs of the asset() function. Try this: wrap this

entire thing in asset() .

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 25

26

27

 // ... lines 28 - 78

79

 // ... lines 80 - 86

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <img class="show-article-img" src="{{

uploaded_asset(article.imagePath) }}">

 </div>

 </div>

{% endblock %}

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <img class="show-article-img" src="{{

asset(uploaded_asset(article.imagePath)) }}">

 </div>

 </div>

{% endblock %}

Now refresh. It works! But, wrapping asset() around uploaded_asset() is kind of annoying:

can't we just handle this internally in UploaderHelper?

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 25

26

27

 // ... lines 28 - 78

79

 // ... lines 80 - 86

After all, this method is supposed to return the public path to an asset: we shouldn't need to do

any other "fixes" on the path after.

The easiest way to fix things would be to add a / at the beginning. That would totally work! But...

allow me to nerd-out for a minute and explain an edge-case that the asset() function usually

handles for us. Imagine if your site were deployed under a subdirectory of a domain. Like, instead

of the URL on production being thespacebar.com , it's thegalaxy.org/thespacebar - our

app does not live at the root of the domain. If you have a situation like this, hardcoding a / at the

beginning of the URL won't work! It would need to be /thespacebar/ .

The asset() function does this automatically: it detects that subdirectory and... just handles it!

To really make our getPublicPath() shine, I want to do the same thing here.

Using the RequestStackContext

To do this, we're going to work with a service that you don't see very often in Symfony: it's the

service that's used internally by the asset() function to determine the subdirectory. In the

constructor, add another argument: RequestStackContext $requestStackContext . I'll hit

Alt + Enter and select initialize fields to create that property and set it.

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <img class="show-article-img" src="{{

uploaded_asset(article.imagePath) }}">

 </div>

 </div>

{% endblock %}

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 16

17

18

 // ... line 19

20

21

 // ... lines 22 - 43

44

Down in getPublicPath() , return $this->requestStackContext->getBasePath()

and then '/uploads/'.$path .

src/Service/UploaderHelper.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 37

38

39

40

41

42

43

44

If our app lives at the root of the domain - like it does right now - this will just return and empty

string. But if it lives at a subdirectory like thespacebar , it'll return /thespacebar .

Try it! Oh... wow - huge error! This RequestStackContext service is such a low-level service,

that Symfony doesn't make it available to be used for autowiring. Check out the error, it says:

“Yo! You can't autowire the $requestStackContext argument: it's type-hinted with a class

called RequestStackContext , but there isn't a service with this id. Maybe you can create a

service alias for this class that points to the assets.context service.”

This is a bit technical and we talk about this in our Symfony Fundamentals course. Symfony sees

that the RequestStackContext type-hint is not autowireable, but it also sees that there is a

use Symfony\Component\Asset\Context\RequestStackContext;

class UploaderHelper

{

 public function __construct(string $uploadsPath, RequestStackContext

$requestStackContext)

 {

 $this->requestStackContext = $requestStackContext;

 }

}

class UploaderHelper

{

 public function getPublicPath(string $path): string

 {

 // needed if you deploy under a subdirectory

 return $this->requestStackContext

 ->getBasePath().'/uploads/'.$path;

 }

}

service in the container - called assets.context - that is an instance of this class!

Check it out: copy the full class name and then go into config/services.yaml . At the bottom,

paste the full class name, go copy the service id they suggested, and say @assets.context .

config/services.yaml

 // ... lines 1 - 9

10

 // ... lines 11 - 47

48

This creates a service alias. Basically, there is now a new service that lives in the container called

Symfony\Component\Asset\Context\RequestStackContext . And if you fetch it, it'll

really just give you the assets.context service. The key thing is that this makes the class

autowireable.

To prove it, find your terminal and run:

php bin/console debug:autowiring request

to search for all autowireable classes that contain that string. Hey! There is our

RequestStackContext ! If we had run this a minute ago, it would not have been there.

Refresh the page now. Got it! And if you look at the path, yep! It's

/uploads/article_image/astronaut.jpeg . If we lived under a subdirectory, that

subdirectory would be there. Small detail, but our site is still super portable.

Next, let's create thumbnails of our image so the user doesn't need to download the full size.

services:

 Symfony\Component\Asset\Context\RequestStackContext: '@assets.context'

Chapter 11: Thumbnailing with LiipImagineBundle

Go back to the homepage. We're rendering these images with a width and height of 100. But the

image behind this is way bigger! That's wasteful: we don't want the user to wait to download these

gigantic images, just to see the tiny thumbnail.

Hello LiipImagineBundle

Google for LiipImagineBundle and find its GitHub page. They have a bunch of docs right here...

but most of the information actually lives over on Symfony.com. Click "Download the Bundle" to

get there... and then I'll go back to the homepage - lots of good stuff here.

Start back on the Installation page. Copy the composer require line, find your terminal, paste

and... go go go!

composer require "liip/imagine-bundle:^2.1"

While we're waiting, head back over to the docs. Thanks to Flex, we don't need to enable the

bundle or register the routes - that's automatic. Go back to the homepage of the docs... and click

the "Filter Sets" link.

This bundle is pretty sweet. You start by creating something called a "filter set" and giving it a

name - like my_thumb or whatever you want. Next, you tell the bundle which filters, or

transformations, to apply when you use the my_thumb filter set. And there are a ton of them: you

can change the size with the thumbnail filter, add a background, add border color, replace the

image entirely with a cat gif - pretty much anything you can dream of. We'll just use the

thumbnail transformation, but seriously - check out the full list.

Configuring the Filter Set

Let's go check on the install. Excellent! It's done. And the message is right on: it says we need to

get to work in the new config file: liip_imagine.yaml . Go open that:

config/packages/liip_imagine.yaml . Uncomment the root key to activate the bundle,

leave the driver alone - it defaults to gd - and uncomment filter_sets .

config/packages/liip_imagine.yaml

1

2

3

4

5

6

 // ... lines 7 - 42

Let's create our first filter set called squared_thumbnail_small . We'll use this on the

homepage to reduce the images down to 100 by 100. To do that, uncomment the filters key

and I'll copy the thumbnail example from below, move it up here, and uncomment it.

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 42

Set the size to 200 by 200 so it looks good on Retina displays. The mode: outbound is how the

thumbnail is applied - you can also use inbound .

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

 // ... lines 17 - 42

And... I think we're ready to go! Copy the squared_thumbnail_small name and go into

homepage.html.twig . To use this, it's so nice: |imagine_filter() and then the name.

liip_imagine:

valid drivers options include "gd" or "gmagick" or "imagick"

driver: "gd"

#

define your filter sets under this option

 filter_sets:

liip_imagine:

 filter_sets:

 squared_thumbnail_small:

 filters:

liip_imagine:

 filter_sets:

 squared_thumbnail_small:

 filters:

 thumbnail:

 size: [200, 200]

 mode: outbound

 allow_upscale: true

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 20

21

22

23

24

 // ... lines 25 - 37

38

39

40

 // ... lines 41 - 63

64

The Thumbnailing Process

Let's go try it! Watch the image src closely. Refresh! It includes the https://127.0.0.1 part,

but that's not important. The path -

/media/cache/resolve/squared_thumbnail_small/... blah, blah blah - looks like a

path to a physical file, but it's not! This is actually a Symfony route and it's handled by a Symfony

controller!

Check it out: at your terminal, run:

php bin/console debug:router

There it is! The first time we refresh, LiipImagineBundle generates this URL. When our browser

tries to download the image, it's handled by a controller from the bundle. That controller opens the

original image, applies all the filters - just a thumbnail in our case - and returns the transformed

image. That's a slow operation: our browser has to wait for all of that to finish.

But, watch what happens when we refresh. Did you see it? The path changed! It was

/media/cache/resolve - but the resolve part is now gone! This time, the image is not handled

by a Symfony route. Look at your public/ directory: there is now a media/ directory with

cache/squared_thumbnail_small/uploads/article_image/astronaut-...jpeg .

{% block body %}

 {% for article in articles %}

 <div class="article-container my-1">

 <a href="{{ path('article_show', {slug: article.slug})

}}">

 <img class="article-img" src="{{

uploaded_asset(article.imagePath)|imagine_filter('squared_thumbnail_small')

}}">

 </div>

 {% endfor %}

{% endblock %}

The full process looks like this. The first time we refreshed, LiipImagineBundle noticed that no

thumbnail file existed yet. So, it created the URL that pointed to the Symfony route & controller.

The page finished rendering, and our browser make a second request to that URL to load the

image. That request was handled by the controller from the bundle which thumbnailed the image,

saved it to the filesystem, and returned it to the user. That's slow.

But when we reloaded the page the second time, LiipImagineBundle noticed that the filename

already existed and generated a URL directly to that real file. The request for that image was

super fast.

Oh, also check out the .gitignore file. Thanks to the Flex recipe, we're already ignoring the

public/media directory: we do not want to commit this stuff: it'll just regenerate if it's missing.

So, yea - it all kinda works perfectly!

Next, let's add another filter set for the show page and add an image preview to the article form.

Chapter 12: Image Preview on the Form

Let's render a thumbnail on the show page too. The size here is restricted to a width of 250. Copy

the first filter, paste, and call this one, how about, squared_thumbnail_medium . Set the size

to 500 by 500.

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

 // ... lines 7 - 16

17

18

19

20

21

22

 // ... lines 23 - 49

Copy the name and this time go into show.html.twig . Add the |imagine_filter() and

paste!

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 25

26

27

 // ... lines 28 - 78

79

 // ... lines 80 - 86

Reload! It works! The first time it has the resolve in the URL and is handled by a Symfony route

& controller. The second time, it points directly to the file that was just saved. Awesome!

liip_imagine:

 filter_sets:

 squared_thumbnail_medium:

 filters:

 thumbnail:

 size: [500, 500]

 mode: outbound

 allow_upscale: true

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <img class="show-article-img" src="{{

uploaded_asset(article.imagePath)|imagine_filter('squared_thumbnail_medium')

}}">

 </div>

 </div>

{% endblock %}

Adding an Image Preview to the Form

While we're kicking butt, go back to the article admin section and click to edit the article we've

been working on. Hmm, it's not obvious that this article has an image attached... or what it looks

like. We need a little image thumbnail next to this field.

We got this. Open the form template templates/article_admin/_form.html.twig . Let's

think: to render an image, we could create a form theme that automatically makes the

form_row() function render an image preview for file fields. That's cool. Or, we can keep it

simple and do it right here.

Create a <div class="row"></div> and another <div class="col-sm-9"><div>

inside to set up a mini grid. Move the file field here. Now add a div with class="col-sm-3" :

this is where we'll render the image... if there is one.

templates/article_admin/_form.html.twig

1

 // ... lines 2 - 5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 17

18

19

 // ... lines 20 - 38

39

To do that, we need the Article object. Copy the image path logic from the homepage and then

go find the controller for the admin section: ArticleAdminController . When we render the

template - this is in the new() action - we're only passing the form variable. In edit() , we're

doing the same thing. We could add an article variable here - that's a fine option. But, we

don't need to.

Back in the template, we can say {% if articleForm.vars.data %} - that will be the

Article object - then .imageFilename . If we have an image filename, print

 and paste. Replace article with articleForm.vars.data . And

{{ form_start(articleForm) }}

 <div class="row">

 <div class="col-sm-9">

 {{ form_row(articleForm.imageFile, {

 attr: {

 'placeholder': 'Select an article image'

 }

 }) }}

 </div>

 <div class="col-sm-3">

 </div>

 </div>

{{ form_end(articleForm) }}

yes, I should add an alt attribute - please do that! Set the height to 100, because the actual

thumbnail is 200 for quality reasons.

templates/article_admin/_form.html.twig

1

 // ... lines 2 - 5

6

 // ... lines 7 - 13

14

15

16

17

18

19

 // ... lines 20 - 38

39

Try it! Refresh and... yes! To make sure we didn't break anything, try creating a new article.

Whoops... we broke something!

“Impossible to access attribute imageFilename on a null variable”

Ah, we need to be careful: articleForm.vars.data may be null on a "new" form - it

depends how you set it up. The easiest fix is to add |default . It's kinda weird... when you add

|default , it suppresses the error and just returns null if there were any problems, which, for

the if statement, is the same as false . It looks weird, but works great. Try it. All better.

templates/article_admin/_form.html.twig

1

 // ... lines 2 - 5

6

 // ... lines 7 - 13

14

15

16

17

18

19

 // ... lines 20 - 38

39

{{ form_start(articleForm) }}

 <div class="row">

 <div class="col-sm-3">

 {% if articleForm.vars.data.imageFilename %}

 <img src="{{

uploaded_asset(articleForm.vars.data.imagePath)|imagine_filter('squared_thumbn

}}" height="100">

 {% endif %}

 </div>

 </div>

{{ form_end(articleForm) }}

{{ form_start(articleForm) }}

 <div class="row">

 <div class="col-sm-3">

 {% if articleForm.vars.data.imageFilename|default %}

 <img src="{{

uploaded_asset(articleForm.vars.data.imagePath)|imagine_filter('squared_thumbn

}}" height="100">

 {% endif %}

 </div>

 </div>

{{ form_end(articleForm) }}

Next, we have a real upload system (yay!) but our article data fixtures are broken: they're just

setting imageFilename to a random filename that won't actually exist in the uploads/

directory. How can we fix that? By using our file upload system inside the fixtures! Well, at least,

sort of.

Chapter 13: File Uploads & Data Fixtures

Open up src/DataFixtures/ArticleFixtures.php . Here's how this works: this function

creates 10 articles whenever we run bin/console doctrine:fixtures:load . It's a cool

helper we created in our Symfony series. But, the setImageFilename() stuff is now a

problem. We know that the image filename needs to be the name of a file that lives inside of the

uploads/article_image directory - something like astronaut-blah-blah.jpg . Right

now, the fixtures use faker to select a random item in $articleImages - this private property.

So, it's setting imageFilename to either asteroid.jpeg , mercury.jpeg or

lightspeed.png .

This worked before because those images are committed to our repository in the

public/images directory and we were pointing to that path in our template. When we run

doctrine:fixtures:load , it does create 10 Article objects and it does set the image filename

to one of these three filenames. But on the homepage... it doesn't work! There is no

upload/article_image/lightspeed.png file. We need to re-think how this works.

Faking the File Upload

How? By faking the file upload inside the fixtures. It's kinda...beautiful! Our UploaderHelper

service is already really good at moving things into the right spot - why not reuse it here?

Inside ArticleFixtures , create a public function __construct() . Add an

UploaderHelper $uploaderHelper argument and I'll hit ALT + Enter and select initialize

fields to create that property and set it.

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 26

27

28

29

30

31

32

 // ... lines 33 - 90

91

Next, lets "cut" the 3 files in the public/images directory: we're going to move them to a

different spot, because they no longer need to be publicly accessible. You'll see what I mean. In

the src/DataFixtures directory, create a new folder here called images/ and paste them!

Yep! They are no longer in the public/images/ directory.

Because these test images are committed to git, I'm going to commit this move - it'll help us in a

minute when things... ah... sorta go wrong horribly wrong. Yes! We are planning for disaster!

Here's the idea: we'll use the UploaderHelper down here, point it at one of these 3 files, and

have it, sort of, "fake" upload it. Start with $randomImage = , copy the faker code, and paste.

This is now one of the three random image filenames.

use App\Service\UploaderHelper;

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 private $uploaderHelper;

 public function __construct(UploaderHelper $uploaderHelper)

 {

 $this->uploaderHelper = $uploaderHelper;

 }

}

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 33

34

35

36

 // ... lines 37 - 63

64

 // ... lines 65 - 78

79

 // ... lines 80 - 81

82

 // ... lines 83 - 90

91

Next, in UploaderHelper , what I'd like to do is call uploadArticleImage() and basically

say:

“Hey! Pretend like asteroid.jpeg is a file that was just uploaded. And... ya know... do all

your normal stuff and move it into the uploads/ directory.”

This is easier than you think: in the fixtures class, set $imageFilename to

$this->uploaderHelper->uploadArticleImage() . What I want to do is now say

new UploadedFile() and point it at one of the images. The problem is that you can't really

create a fake UploadedFile object. Internally, it's bound to the PHP uploading process - weird

stuff will happen if you try to create one outside of that context.

Hello File Object

That's ok! It just means we need to dig deeper! Go back into UploaderHelper . Hold Command

or Ctrl and click to open the UploadedFile class. This lives in the

Symfony\HttpFoundation\File namespace and extends a class called File that lives in

the same directory.

The File class is awesome: it simply represents... any file on your filesystem, regardless of

whether it's an uploaded file or just a normal file. And, if you look closely, the vast majority of the

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 protected function loadData(ObjectManager $manager)

 {

 $this->createMany(10, 'main_articles', function($count) use

($manager) {

 $randomImage = $this->faker-

>randomElement(self::$articleImages);

 });

 }

}

methods we've been using come from this class - not from UploadedFile . And we can create a

File object outside of an upload context.

So back in ArticleFixtures , instead of creating a new UploadedFile() , say

new File() - the one from HttpFoundation . Pass this the path to the random image:

__DIR__.'/images/' and then $randomImage , which will be one of these image filenames.

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 10

11

 // ... line 12

13

14

 // ... lines 15 - 33

34

35

36

 // ... lines 37 - 63

64

65

66

 // ... lines 67 - 78

79

 // ... lines 80 - 81

82

 // ... lines 83 - 90

91

Now, take $imageFilename - that'll be whatever the final filename is on the system after moving

it, and set that onto the entity.

That's beautiful! In UploaderHelper , we need to make this work not with an UploadedFile

object, but with the parent File . Change the type-hint to File - again, make sure you get the

one from HttpFoundation or you will have no fun. To keep things clear, I'll Refactor -> Rename

this variable to $file .

use Symfony\Component\HttpFoundation\File\File;

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 protected function loadData(ObjectManager $manager)

 {

 $this->createMany(10, 'main_articles', function($count) use

($manager) {

 $randomImage = $this->faker-

>randomElement(self::$articleImages);

 $imageFilename = $this->uploaderHelper

 ->uploadArticleImage(new

File(__DIR__.'/images/'.$randomImage));

 });

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 23

24

25

 // ... lines 26 - 34

35

36

37

38

 // ... lines 39 - 40

41

 // ... lines 42 - 48

49

Let's see: everything looks happy, ah - except for getClientOriginalName() : that method

does not exist in File - it only exists in UploadedFile . Ok, let's get fancy then: if $file is an

instanceof UploadedFile , we can say

$originalFilename = $file->getClientOriginalName() . Else, set

$originalFilename to $file->getFilename() - that's just the name of the file on the

filesytem.

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 23

24

25

 // ... lines 26 - 27

28

29

30

31

32

 // ... lines 33 - 40

41

 // ... lines 42 - 48

49

use Symfony\Component\HttpFoundation\File\File;

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 $file->move(

 $destination,

 $newFilename

);

 }

}

use Symfony\Component\HttpFoundation\File\File;

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 if ($file instanceof UploadedFile) {

 $originalFilename = $file->getClientOriginalName();

 } else {

 $originalFilename = $file->getFilename();

 }

 }

}

After this, delete the pathinfo() stuff - we can move that to the next line. Inside urlize() ,

re-add the pathinfo() and pass the same second argument: PATHINFO_FILENAME .

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 23

24

25

 // ... lines 26 - 27

28

29

30

31

32

33

 // ... lines 34 - 40

41

 // ... lines 42 - 48

49

I think that's all we need! Let's completely clear out the uploads/ directory. Now, find your

terminal and run:

php bin/console doctrine:fixtures:load

Copying the Files Before Moving

Woh! The file src/DataFixtures/images/asteroid.jpeg does not exist? Hmm. Check

this out: it did upload two files before going all "explody" on us. Oh, but those original files are

missing! Of course! We're using $file->move() . So it is working, but instead of copying the

files, it's moving them, and the originals are disappearing.

Let's get those files back. Run:

use Symfony\Component\HttpFoundation\File\File;

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 if ($file instanceof UploadedFile) {

 $originalFilename = $file->getClientOriginalName();

 } else {

 $originalFilename = $file->getFilename();

 }

 $newFilename = Urlizer::urlize(pathinfo($originalFilename,

PATHINFO_FILENAME)).'-'.uniqid().'.'.$file->guessExtension();

 }

}

git status

And undelete them with:

git checkout src/DataFixtures/images

Much better. Let's clean out the uploads directory again.

We do want to use $file->move() because we do want to move the uploaded file in normal

circumstances. So, to get around this, in the fixtures, let's copy the original file to a temporary

spot. Start with $fs = new Filesystem() - that's a handy object for doing filesystem

operations.

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 34

35

36

37

 // ... lines 38 - 64

65

66

 // ... lines 67 - 82

83

 // ... lines 84 - 85

86

 // ... lines 87 - 94

95

Next, $targetPath = sys_get_temp_dir().'/'.$randomImage . And then use

$fs->copy() . We want to copy the original file path into $targetPath .

use Symfony\Component\Filesystem\Filesystem;

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 protected function loadData(ObjectManager $manager)

 {

 $this->createMany(10, 'main_articles', function($count) use

($manager) {

 $randomImage = $this->faker-

>randomElement(self::$articleImages);

 $fs = new Filesystem();

 });

 }

}

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 34

35

36

37

 // ... lines 38 - 65

66

67

68

 // ... lines 69 - 82

83

 // ... lines 84 - 85

86

 // ... lines 87 - 94

95

Inside File , pass the temporary path.

use Symfony\Component\Filesystem\Filesystem;

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 protected function loadData(ObjectManager $manager)

 {

 $this->createMany(10, 'main_articles', function($count) use

($manager) {

 $fs = new Filesystem();

 $targetPath = sys_get_temp_dir().'/'.$randomImage;

 $fs->copy(__DIR__.'/images/'.$randomImage, $targetPath, true);

 });

 }

}

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 34

35

36

37

 // ... lines 38 - 65

66

67

68

69

70

 // ... lines 71 - 82

83

 // ... lines 84 - 85

86

 // ... lines 87 - 94

95

Ok, let's try it again!

php bin/console doctrine:fixtures:load

No error, our original files still exist and... we have a directory full of, fake uploaded files. Now try

the homepage. Beautiful. What I really love about this is that we're not doing anything fancy or

tricky in our fixtures: we're literally using our upload system.

Cleanup into a Private Method

Though, I don't love having all of this logic right in the middle of this already-long function: it's not

super obvious what it does. Let's do some cleanup: copy all of this. And at the bottom, create a

new private function fakeUploadImage() that will return a string .

use Symfony\Component\Filesystem\Filesystem;

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 protected function loadData(ObjectManager $manager)

 {

 $this->createMany(10, 'main_articles', function($count) use

($manager) {

 $fs = new Filesystem();

 $targetPath = sys_get_temp_dir().'/'.$randomImage;

 $fs->copy(__DIR__.'/images/'.$randomImage, $targetPath, true);

 $imageFilename = $this->uploaderHelper

 ->uploadArticleImage(new File($targetPath));

 });

 }

}

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 90

91

92

 // ... lines 93 - 99

100

101

Paste all that logic and return the $this->uploaderHelper line. It selects a random image,

uploads it and returns the path.

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 90

91

92

93

94

95

96

97

98

99

100

101

Back up top, delete all this stuff and say $imageFilename = $this->fakeUploadImage() .

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 private function fakeUploadImage(): string

 {

 }

}

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 private function fakeUploadImage(): string

 {

 $randomImage = $this->faker->randomElement(self::$articleImages);

 $fs = new Filesystem();

 $targetPath = sys_get_temp_dir().'/'.$randomImage;

 $fs->copy(__DIR__.'/images/'.$randomImage, $targetPath, true);

 return $this->uploaderHelper

 ->uploadArticleImage(new File($targetPath));

 }

}

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

36

37

 // ... lines 38 - 64

65

 // ... lines 66 - 77

78

 // ... lines 79 - 80

81

 // ... lines 82 - 100

101

Let's run those fixtures one more time!

php bin/console doctrine:load:fixtures

When it finishes... we have some new files... and the homepage is shiny! That's a solid fixture

system.

Next: we'll take our first step towards storing uploaded files in the cloud by integrating the

gorgeous Flysystem library.

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 protected function loadData(ObjectManager $manager)

 {

 $this->createMany(10, 'main_articles', function($count) use

($manager) {

 $imageFilename = $this->fakeUploadImage();

 });

 }

}

Chapter 14: Flysystem: Filesystem Abstraction

I keep talking about how we're going to eventually move our uploads off of our server and put

them onto AWS S3. But right now, our entire upload system is very tied to our local filesystem. For

example, $file->move()? Yea, that will always move things physically on your filesystem.

One of my favorite tools to help with this problem is a library called Flysystem. It's written by our

friend Frank - who co-authored our React tutorial. He also spoke at SymfonyCon in 2018 about

Flysystem and that presentation is available right here on SymfonyCasts.

Flysystem gives you a nice service object that you can use to write or read files. Then, behind the

scenes, you can swap out whether you want to use a local filesystem, S3, Dropbox or pretty much

anything else. It gives you an easy way to work with the filesystem, but that filesystem could be

local or in the cloud.

OneupFlysystemBundle

In Symfony, we have an excellent bundle for this library: Google for OneupFlysystemBundle, find

their GitHub page, then click into the docs. Copy the library name, find your terminal and run:

 Tip

A newer version of this bundle exists, which uses a newer version of the underlying

league/flysystem library. To use the same version as we use in this tutorial, install version

3 of the bundle. If you install the newer version, we'll do our best to add notes to guide you

through any changes :).

composer require "oneup/flysystem-bundle:^3"

Adapters & Filesystems

https://symfonycasts.com/screencast/symfonycon2018/file-storage-modern-php-apps

While Jordi is preparing our packages, go back to their docs. Flysystem has two important

concepts, which you can see here in the config example. First, we need to set up an "adapter",

which is a lower-level object. Give it any name - like my_adapter . Then, this key - local - is

the critical part: this says that you want to use the local adapter - an adapter that stores things

on the local filesystem. Click the AwsS3 adapter link. If you want to use this adapter and store

your files in S3, you'll use the key awss3v3 . Every adapter also has different options. We're

going to start with the local adapter, but move to s3 later.

But the real star, is the filesystem. Same thing: you give it any nickname, like my_filesystem

and then say: this filesystem uses the my_adapter adapter. We'll talk about visibility later.

The filesystem is the object that we'll work with directly to read, write & delete files.

Ok, go check on Composer. It's done and thanks to the recipe, we have a new

config/packages/oneup_flysystem.yaml file with the same config we just saw in the

docs.

config/packages/oneup_flysystem.yaml

1

2

3

4

5

6

7

8

9

10

Configuring the Adapter & Filesystem

Let's create 1 adapter and 1 filesystem for our uploads. Call the adapter, how about,

public_uploads_adapter . I'm saying "public uploads" because this will put things into the

public/ directory: they will be publicly accessible. We'll talk about private uploads soon - those

are files where you need to do some security checks before you allow a user to see them.

Change the directory to %kernel.project_dir% and then /public/uploads .

Read the documentation: https://github.com/1up-

lab/OneupFlysystemBundle/tree/master/Resources/doc/index.md

oneup_flysystem:

 adapters:

 default_adapter:

 local:

 directory: '%kernel.cache_dir%/flysystem'

 filesystems:

 default_filesystem:

 adapter: default_adapter

 alias: League\Flysystem\Filesystem

 Tip

If you're using version 4 of oneup/flysystem-bundle , the directory config is now

called location .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

6

 // ... lines 7 - 10

That is the root of this filesystem: everything will be stored relative to this. Give the filesystem a

similar name - public_uploads_filesystem - and set adapter: to

public_uploads_adapter .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

 // ... lines 3 - 6

7

8

9

Filesystem Alias?

What about this alias key? Let's see what that does. First, when you configure a filesystem

here, it creates a service. Find your terminal and run:

php bin/console debug:container flysystem

There it is: oneup_flysystem.public_uploads_filesystem_filesystem . That service

was created thanks to our config and we'll use it soon in UploaderHelper . The bundle also

created another service called: League\Flysystem\Filesystem . Well, actually, it's an alias:

I'll type 61 to view more info about it. Yep! This points to our public_uploads_filesystem

service. The purpose of this is that it allows us to type-hint League\Flysystem\Filesystem

and Symfony will autowire our filesystem service.

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 local:

 directory: '%kernel.project_dir%/public/uploads'

oneup_flysystem:

 filesystems:

 public_uploads_filesystem:

 adapter: public_uploads_adapter

If you only have 1 filesystem, having this alias is great. But if you have multiple, well, you can only

autowire one of them. I'm going to remove the alias - I'll show you another way to access the

filesystem service.

Ok, config done! Next, let's start using this shiny new Filesystem service.

Chapter 15: Using the Filesystem

Config done! Let's get to work in UploaderHelper . Instead of passing the $uploadsPath ,

which we were using to store things, change this to FilesystemInterface - the one from

Flysystem - $filesystem . Use that below, and rename the property to $filesystem .

 Tip

If you're using version 4 of oneup/flysystem-bundle (so, flysystem v2), autowire

Filesystem instead of FilesystemInterface from League\Flysystem .

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 10

11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 18

19

20

21

22

23

 // ... lines 24 - 47

48

Now, in the method, instead of $file->move() , we can say

$this->filesystem->write() , which is used to create new files. Pass this

self::ARTICLE_IMAGE.'/'.$newFilename and then the contents of the file:

file_get_contents() with $file->getPathname() .

use League\Flysystem\FilesystemInterface;

class UploaderHelper

{

 private $filesystem;

 public function __construct(FilesystemInterface $filesystem,

RequestStackContext $requestStackContext)

 {

 $this->filesystem = $filesystem;

 $this->requestStackContext = $requestStackContext;

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 33

34

35

36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 47

48

That's it! This File object has a ton of different methods for getting the filename, the full path,

the file without the extension and more. Honestly, I get them all confused and have to Google

them. getPathname() gives us the absolute file path on the filesystem.

Above, we can get rid of the unused $destination variable. Because the filesystem's root is

public/uploads/ , the only thing we need to pass to write() is the path relative to that:

article_image/ and then $newFilename .

I think we're ready! Let's clear out the uploads/ directory again. And then try our fixtures:

php bin/console doctrine:fixtures:load

Oh! It does not work!

Binding the Filesystem for Autowiring

“Unused binding $uploadsPath in service UniqueUserValidator .”

This is a bad error message from Symfony, at least the second half of the message. A minute ago,

we had an argument here called $uploadsPath . Open up config/services.yaml . Ah, that

worked because we have $uploadsPath configured as a global bind. And when you configure a

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 $this->filesystem->write(

 self::ARTICLE_IMAGE.'/'.$newFilename,

 file_get_contents($file->getPathname())

);

 }

}

bind, it must be used in at least one place in your app. If it's not used anywhere, you get this error.

It's kinda nice: Symfony is saying:

“Hey! You configured this bind... but you're not using it - are you maybe... messing something

up on accident?”

The UniqueUserValidator part of the message is really a bug in the error message, which

makes this a bit confusing.

Anyways, remove that bind and try the fixtures again:

php bin/console doctrine:fixtures:load

This is the error I was waiting for.

“Cannot autowire service UploaderHelper argument $filesystem of __construct()

references FilesystemInterface but no such service exists.”

There are two ways to fix this. First, we could re-add the alias option and point it at this

FilesystemInterface :

config/packages/oneup_flysystem.yaml

oneup_flysystem:

 # ...

 filesystems:

 public_uploads_filesystem:

 adapter: public_uploads_adapter

 alias: League\Flysystem\Filesystem

Or, we can create a new bind. I'll do the second, because it works better if you have multiple

filesystem services, which we will soon. First, rename the argument to be more descriptive, how

about $publicUploadFilesystem :

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 18

19

20

21

 // ... line 22

23

 // ... lines 24 - 47

48

Then, under bind, set $publicUploadFilesystem to the filesystem service id - you can see it

in the error. It suggests two services that implement the FilesystemInterface type-hint - we

want the second one. Type @ then paste.

config/services.yaml

 // ... lines 1 - 9

10

 // ... lines 11 - 19

20

 // ... lines 21 - 22

23

 // ... lines 24 - 48

One more time for the fixtures!

php bin/console doctrine:fixtures:load

Ok, no error! Check out the public/uploads/ directory. Yes! We have files! Refresh the

homepage. We are good! We still need to tweak a few more details, but our app is now way more

ready to work locally or in the cloud.

class UploaderHelper

{

 public function __construct(FilesystemInterface

$publicUploadsFilesystem, RequestStackContext $requestStackContext)

 {

 $this->filesystem = $publicUploadsFilesystem;

 }

}

services:

 bind:

 $publicUploadsFilesystem:

'@oneup_flysystem.public_uploads_filesystem_filesystem'

Chapter 16: Flysystem: Streaming & Defensive
Coding

There are a few minor problems with our new Flysystem integration. Let's clean them up before

they bite us!

Streaming

The first is that using file_get_contents() eats memory: it reads the entire contents of the

file into PHP's memory. That's not a huge deal for tiny files, but it could be a big deal if you start

uploading bigger stuff. And, it's just not necessary.

For that reason, in general, when you use Flysystem , instead of using methods like

->write() or ->update() , you should use ->writeStream() or ->updateStream() .

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 43

44

 // ... lines 45 - 51

52

It works the same, except that we need to pass a stream instead of the contents. Create the

stream with $stream = fopen($file->getPathname()) and, because we just need to

read the file, use the r flag. Now, pass stream instead of the contents.

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 $this->filesystem->writeStream(

);

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 33

34

35

36

37

38

 // ... lines 39 - 43

44

 // ... lines 45 - 51

52

Yea... that's it! Same thing, but no memory issues. But we do need to add one more detail after: if

is_resource($stream) , then fclose($stream) . The "if" is needed because some

Flysystem adapters close the stream by themselves.

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 33

34

35

36

37

38

39

40

41

 // ... lines 42 - 43

44

 // ... lines 45 - 51

52

Deleting the Old File

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 $stream = fopen($file->getPathname(), 'r');

 $this->filesystem->writeStream(

 self::ARTICLE_IMAGE.'/'.$newFilename,

 $stream

);

 }

}

class UploaderHelper

{

 public function uploadArticleImage(File $file): string

 {

 $stream = fopen($file->getPathname(), 'r');

 $this->filesystem->writeStream(

 self::ARTICLE_IMAGE.'/'.$newFilename,

 $stream

);

 if (is_resource($stream)) {

 fclose($stream);

 }

 }

}

Ok, for problem number two, go back to /admin/article . Log back in with password engage ,

edit an article, and go select an image - how about astronaut.jpg . Hit update and... it works!

So what's the problem? Well, we just replaced an existing image with this new one. Does the old

file still exist in our uploads directory? Absolutely! But it probably shouldn't. When an article image

is updated, let's delete the old file.

In UploaderHelper , add a second argument - a nullable string argument called

$existingFilename .

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 47

48

 // ... lines 49 - 55

56

This is nullable because sometimes there may not be an existing file to delete. At the bottom, it's

beautifully simple: if an $existingFilename was passed, then

$this->filesystem->delete() and pass that the full path, which will be

self::ARTICLE_IMAGE.'/'.$existingFilename .

src/Service/UploaderHelper.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 42

43

44

45

 // ... lines 46 - 47

48

 // ... lines 49 - 55

56

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 }

}

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 if ($existingFilename) {

 $this->filesystem-

>delete(self::ARTICLE_IMAGE.'/'.$existingFilename);

 }

 }

}

Done! You can see the astronaut file that we're using right now. Oh, but first, head over to

ArticleAdminController : we need to pass this new argument. Let's see - this is the

edit() action - so pass $article->getImageFilename() .

src/Controller/ArticleAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 57

58

59

 // ... lines 60 - 64

65

 // ... lines 66 - 67

68

69

 // ... line 70

71

 // ... lines 72 - 80

81

 // ... lines 82 - 85

86

 // ... lines 87 - 124

125

In new() , you can really just pass null - there will not be an article image. But I'll pass

getImageFilename() to be consistent.

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em, UploaderHelper $uploaderHelper)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 if ($uploadedFile) {

 $newFilename = $uploaderHelper-

>uploadArticleImage($uploadedFile, $article->getImageFilename());

 }

 }

 }

}

src/Controller/ArticleAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 23

24

25

 // ... lines 26 - 28

29

 // ... lines 30 - 35

36

37

 // ... line 38

39

 // ... lines 40 - 46

47

 // ... lines 48 - 51

52

 // ... lines 53 - 124

125

Oh, and there's one other place we need update: ArticleFixtures . Down here, just pass

null : we are never updating.

src/DataFixtures/ArticleFixtures.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 90

91

92

 // ... lines 93 - 97

98

99

100

101

Try it! Here is the current astronaut image. Now, move over, upload rocket.jpg this time and

update! Back in the directory... there's rocket and astronaut is gone! Love it!

Avoiding Errors

class ArticleAdminController extends BaseController

{

 public function new(EntityManagerInterface $em, Request $request,

UploaderHelper $uploaderHelper)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 if ($uploadedFile) {

 $newFilename = $uploaderHelper-

>uploadArticleImage($uploadedFile, $article->getImageFilename());

 }

 }

 }

}

class ArticleFixtures extends BaseFixture implements

DependentFixtureInterface

{

 private function fakeUploadImage(): string

 {

 return $this->uploaderHelper

 ->uploadArticleImage(new File($targetPath), null);

 }

}

In a perfect system, the existing file will always exist, right? I mean, how could a filename get set

on the entity... without being uploaded? Well, what if we're developing locally... and maybe we

clear out the uploads directory to test something - or we clear out the uploads directory in our

automated tests. What would happen?

Let's find it! Empty uploads/ . Back in our browser, the image preview still shows up because

this is rendering a thumbnail file - which we didn't delete - but the original image is totally gone.

Select earth.jpeg , update and... it fails! It fails on $this->filesystem->delete() .

This may be the behavior you want: if something weird happens and the old file is gone, please

explode so that I know. But, I'm going to propose something slightly less hardcore. If the old file

doesn't exist for some reason, I don't want the entire process to fail... it really doesn't need to.

The error from Flysystem is a FileNotFoundException from League\Flysystem . In

UploaderHelper wrap that line in a try-catch. Let's catch that FileNotFoundException -

the one from League\Flysystem

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 12

13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 47

48

49

50

51

 // ... line 52

53

54

 // ... lines 55 - 56

57

 // ... lines 58 - 64

65

Logging Problems

use League\Flysystem\FileNotFoundException;

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 if ($existingFilename) {

 try {

 $this->filesystem-

>delete(self::ARTICLE_IMAGE.'/'.$existingFilename);

 } catch (FileNotFoundException $e) {

 }

 }

 }

}

That'll fix that problem... but I don't love doing this. Honestly, I hate silencing errors. One of the

benefits of throwing an exception is that we can configure Symfony to notify us of errors via the

logger. At SymfonyCasts, we send all errors to a Slack channel so we know if something weird is

going on... not that we ever have bugs. Pfff.

Here's what I propose: a soft failure: we don't fail, but we do log that an error happened. Back on

the constructor, autowire a new argument: LoggerInterface $logger . I'll hit Alt + Enter

and select initialize fields to create that property and set it.

src/Service/UploaderHelper.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 20

21

22

23

24

 // ... lines 25 - 26

27

28

 // ... lines 29 - 64

65

Now, down in the catch, say $this->logger->alert() - alert is one of the highest log levels

and I usually send all logs that are this level or higher to a Slack channel. Inside, how about: "Old

uploaded file %s was missing when trying to delete" - and pass $existingFilename .

use Psr\Log\LoggerInterface;

class UploaderHelper

{

 private $logger;

 public function __construct(FilesystemInterface

$publicUploadsFilesystem, RequestStackContext $requestStackContext,

LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 47

48

49

50

51

52

53

54

 // ... lines 55 - 56

57

 // ... lines 58 - 64

65

Thanks to this, the user gets a smooth experience, but we get notified so we can figure out how

the heck the old file disappeared.

Move over and re-POST the form. Now it works. And to prove the log worked, check out the

terminal tab where we're running the Symfony web server: it's streaming all of our logs here.

Scroll up and... there it is!

“Old uploaded file "rocket..." was missing when trying to delete”

Checking for Filesystem Failure

Ok, there's one more thing I want to tighten up. If one of the calls to the Filesystem object

fails... what do you think will happen? An exception? Hold Command or Ctrl and click on

writeStream() . Check out the docs: we will get an exception if we pass an invalid stream or if

the file already exists. But for any other type of failure, maybe a network error... instead of an

exception, the method just returns false!

Actually, that's not completely true - it depends on your adapter. For example, if you're using the

S3 adapter and there's a network error, it may throw its own type of exception. But the point is

this: if any of the Filesystem methods fail, you might not get an exception: it might just return false.

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 if ($existingFilename) {

 try {

 $this->filesystem-

>delete(self::ARTICLE_IMAGE.'/'.$existingFilename);

 } catch (FileNotFoundException $e) {

 $this->logger->alert(sprintf('Old uploaded file "%s" was

missing when trying to delete', $existingFilename));

 }

 }

 }

}

For that reason, I like to code defensively. Assign this to a $result variable.

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 39

40

 // ... lines 41 - 42

43

 // ... lines 44 - 65

66

 // ... lines 67 - 73

74

Then say: if ($result === false) , let's throw our own exception - I do want to know that

something failed:

“Could not write uploaded file "%s"”

and pass $newFilename .

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 $result = $this->filesystem->writeStream(

);

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 39

40

 // ... lines 41 - 42

43

 // ... line 44

45

46

47

 // ... lines 48 - 65

66

 // ... lines 67 - 73

74

Copy that and do the same for delete :

“Could not delete old uploaded file "%s"”

with $existingFilename .

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 $result = $this->filesystem->writeStream(

);

 if ($result === false) {

 throw new \Exception(sprintf('Could not write uploaded file

"%s"', $newFilename));

 }

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 29

30

31

 // ... lines 32 - 52

53

54

55

56

57

58

59

60

 // ... line 61

62

63

 // ... lines 64 - 65

66

 // ... lines 67 - 73

74

I'm throwing this error instead of just logging something because this would truly be an

exceptional case - we shouldn't let things continue. But, it's your call.

Let's make sure this all works: move over and select the stars file - or... actually the "Earth from

Moon" photo. Update and... got it!

Next: let's teach LiipImagineBundle to play nice with Flysytem. After all, if we move Flysystem to

S3, but LiipImagineBundle is still looking for the source files locally... well... we're not going to

have a great time.

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 if ($existingFilename) {

 try {

 $result = $this->filesystem-

>delete(self::ARTICLE_IMAGE.'/'.$existingFilename);

 if ($result === false) {

 throw new \Exception(sprintf('Could not delete old

uploaded file "%s"', $existingFilename));

 }

 } catch (FileNotFoundException $e) {

 }

 }

 }

}

Chapter 17: Flysystem <3 LiipImagineBundle

Flysystem is killing it for us! But... there's a problem hiding... like, a it-won't-actually-work-in-the-

real-world kind of problem. Yikes! In theory, we should be able to go into the

oneup_flysystem.yaml file right now, change the adapter to S3 and everything would work.

In theory.

How LiipImagineBundle Finds Images

The problem is LiipImagineBundle. Open up templates/article/homepage.html.twig :

we call uploaded_asset() , pass that article.imagePath and that value is passed into

imagine_filter . So basically, a string like uploads/article_image/something.jpg is

passed to the filter.

The problem? By default, LiipImagineBundle reads the source image file from the filesystem. If we

refactored to use S3... well... imagine would be looking in the wrong place!

You can see this by running:

php bin/console debug:config liip_imagine

This is the current config for this bundle, which includes all of its default values. Near the bottom,

see that "loaders" section? The "loader" is the piece that's responsible for reading the source

image. It defaults to using the filesystem and it knows to look in the public/ directory! So when

we pass it upload/article_image/ some filename, it finds it perfectly. Well... it works until

our files don't live on the server anymore.

The solution? We need this to use Flysystem.

Flysystem Loader

Let's go to back to the LiipImagineBundle documentation: find their GitHub page and then click

down here on the "Download the Bundle" link as an easy way to get into their full docs. Now, go

back to the main page and... down here near the bottom, it talks about different "data loaders".

The default is "File System", we want Flysystem.

Let's see... yea, we've already installed the bundle. Copy this loaders section - we already have

our Flysystem config all set up. Then, open our liip_imagine.yaml file and, really, anywhere,

paste!

This creates a loader called profile_photos - that name can be anything. Let's use

flysystem_loader . The critical part is the key flysystem : that says to use the "Flysystem"

loader that comes with the bundle. The only thing it needs to know, is the service id of the

filesystem that we want to use.

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

7

8

 // ... lines 9 - 57

For that, go back to config/services.yaml and copy the long service id from the bind

section. Back in liip_imagine.yaml , paste!

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

7

8

9

 // ... lines 10 - 57

We now have a "loader" called flysystem_loader , and a "loader's" job is to... ya know, "load"

the source file. You can technically have multiple loaders, though I've never had to do that. To

always have LiipImagineBundle load the files via Flysystem, below, add data_loader set to the

loader's name: flysystem_loader . I'll add a comment:

“default loader to use for all filter sets”

liip_imagine:

 loaders:

 flysystem_loader:

 flysystem:

liip_imagine:

 loaders:

 flysystem_loader:

 flysystem:

 filesystem_service:

oneup_flysystem.public_uploads_filesystem_filesystem

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

7

8

9

10

11

12

 // ... lines 13 - 57

Because, you can technically specify which loader you want to use on each filterset. Again, I've

never had to do that: we always want to use flysystem.

Cool! Let's try it! Go into the public/ directory... let me find it... and delete all the existing

thumbnails - let's delete media/cache/ entirely. By doing this, the bundle will use the data

loader to get the contents of each image so that it can recreate the thumbnails.

Correcting the Path to LiipImagineBundle

Testing time! Let's go back to, how about, the homepage. And... it doesn't work. Drat! Inspect

element. Hmm, it does start with the media/cache/resolve part. Then, the path at the end is -

uploads/article_image/lightspeed...png . That's the path that we're passing to the

filter.

Go back to the homepage template. The problem now - and it's really cool - is that we told

LiipImagineBundle to use Flysystem to load files... but the root of our filesystem is the

public/uploads directory. In other words, if you want to read a file from our filesystem, the

path needs to be relative to this directory. In other words, it should not contain the uploads/ part

The fix? Remove the uploaded_asset() function: we can just pass article.imagePath ,

which will be article_image/ the filename.

liip_imagine:

 loaders:

 flysystem_loader:

 flysystem:

 filesystem_service:

oneup_flysystem.public_uploads_filesystem_filesystem

 # default loader to use for all filter sets

 data_loader: flysystem_loader

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 8

9

 // ... lines 10 - 21

22

23

24

 // ... lines 25 - 37

38

39

 // ... line 40

41

 // ... lines 42 - 61

62

63

64

I love this! Need to thumbnail something? Just pass it the Flysystem path: you don't need the

word uploads or anything like that. The uploaded_asset() function will still be useful if you

want the public path to an asset without thumbnailing, but if you're using imagine_filter ,

passing the short, relative path is all you need.

Try it! Refresh! It still doesn't work? Oh yea! A few minutes ago, we deleted all of the original

images from the fixtures. But we did re-upload a few of them. So if you scroll down... here we go -

here's the Earth image we uploaded. So, it is now working perfectly.

Let's reload our fixtures to make sure:

php bin/console doctrine:fixtures:load

Now the homepage... yes - everything is here. Let's make the same change in the other two

places we're thumbnailing. Click onto the show page. This lives in

templates/article/show.html.twig : remove uploaded_asset there. Refresh... good!

{% block body %}

 <div class="container">

 <div class="row">

 <div class="col-sm-12 col-md-8">

 <div class="article-container my-1">

 <a href="{{ path('article_show', {slug: article.slug})

}}">

 <img class="article-img" src="{{

article.imagePath|imagine_filter('squared_thumbnail_small') }}">

 </div>

 </div>

 </div>

 </div>

{% endblock %}

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 25

26

27

 // ... lines 28 - 78

79

 // ... lines 80 - 86

For the other one, go back to the admin article section - log back in with password "engage",

because we reloaded the database. When we're editing an image, yep, also broken.

Find this in templates/article_admin/_form.html.twig : take off uploaded_asset() .

templates/article_admin/_form.html.twig

1

 // ... lines 2 - 5

6

 // ... lines 7 - 13

14

15

16

17

18

19

 // ... lines 20 - 38

39

And... got it!

The Resolver: Saving the Images to Flysystem

So, the "data loader" is responsible for reading the original image. But, there's another important

concept from LiipImagineBundle called "resolvers". Click down on the "Flysystem Resolver" in

their docs. The resolver is responsible for saving the thumbnail image back to the filesystem after

all of the transformations. By default, no surprise, LiipImagineBundle writes things directly to the

{% block content_body %}

 <div class="row">

 <div class="col-sm-12">

 <img class="show-article-img" src="{{

article.imagePath|imagine_filter('squared_thumbnail_medium') }}">

 </div>

 </div>

{% endblock %}

{{ form_start(articleForm) }}

 <div class="row">

 <div class="col-sm-3">

 {% if articleForm.vars.data.imageFilename %}

 <img src="{{

articleForm.vars.data.imagePath|imagine_filter('squared_thumbnail_small')

}}" height="100">

 {% endif %}

 </div>

 </div>

{{ form_end(articleForm) }}

filesystem. So even if we moved Flysystem to s3, LiipImagineBundle would still be writing the

thumbnail files back to our server - into the public/media directory.

 Tip

You can also completely offload the processing and storage of your files to a cloud service like

rokka.io by leveraging LiipRokkaImagineBundle.

Let's change that! In the docs, copy the resolvers section. Back in our liip_imagine.yaml

file, paste that. It's pretty much the same as before: we'll call it flysystem_resolver and tell it

to save the images using the same filesystem service. Remove visibility - that sets the

Flysystem visibility, which is a concept we'll talk about soon. True is the default value anyways,

which basically means these files will be publicly accessible.

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 13

14

15

16

17

18

19

20

 // ... lines 21 - 67

cache_prefix is the subdirectory within the filesystem where the files should be stored and

root_url is the URL that all the paths will be prefixed with when the image paths are rendered.

Right now, it needs to be /uploads .

For example, if LiipImagineBundle stores a file called media/cache/foo.jpg into Flysystem,

we know that the public path to this will be /uploads/media/cache/foo.jpg . We'll talk more

about this setting later when we move to s3.

Ok, delete the media/ directory entirely. Oh, and I almost forgot the last step: add cache set to

flysystem_resolver - let's put an "r" on that.

liip_imagine:

 resolvers:

 flysystem_resolver:

 flysystem:

 filesystem_service:

oneup_flysystem.public_uploads_filesystem_filesystem

 cache_prefix: media/cache

 root_url: /uploads

https://github.com/liip/LiipRokkaImagineBundle

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 67

This tells the bundle to always use this resolver. I'm not sure why it's called "cache" - the bundle

seems to use "resolver" and "cache" to describe this one concept.

Ok! Moment of truth! Refresh. Ha! It works! Go check out where the thumbnails are stored: there

is no media/ directory anymore! The Flysystem filesystem points to the public/uploads

directory, so the media/cache directory lives there. And thanks to the /uploads root_url ,

when it renders the path, it knows to start with /uploads and then the path in Flysystem.

I love this! It's a bit tricky to get these two libraries to play together perfectly. But now we are much

more prepared to switch between local uploads and S3.

Next: we can generate public URLs to thumbnailed files or the original files. But, what if you need

to force all the URLs to include the domain name? This is something you don't think about until

you need to generate a PDF or send an email from a console command or worker. Then... it can

be a nightmare. Let's add this to our asset system in a way that we love.

liip_imagine:

 resolvers:

 flysystem_resolver:

 flysystem:

 filesystem_service:

oneup_flysystem.public_uploads_filesystem_filesystem

 cache_prefix: media/cache

 root_url: /uploads

 # default cache resolver for saving thumbnails

 cache: flysystem_resolver

Chapter 18: Absolute Asset Paths

One of the things I've noticed is that this word uploads - the directory where uploads are being

stored - is starting to show up in a few places. We have it here in our liip_imagine config file,

the oneup_flysystem.yaml file and in UploaderHelper : it's used in getPublicPath() .

Centralizing the uploads/ Path

It's not a huge problem, but repetition is a bummer and this will cause some issues when moving

to S3: we'll need to hunt down all of these paths and change them to point to the S3 domain.

Let's tighten this up. In services.yaml , create two new parameters: The first will be

uploads_dir_name set to uploads - this is the name of the directory where we are storing

uploaded files. Call the second one uploads_base_url and set this to almost the same thing:

/ and then %uploads_dir_name% . This represents the base URL to the uploaded assets.

config/services.yaml

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 51

Thanks to these, we can do some cleanup! In liip_imagine.yaml , we need the URL. Copy

uploads_base_url and then use %uploads_base_url% .

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 13

14

15

16

 // ... lines 17 - 18

19

 // ... lines 20 - 67

parameters:

 uploads_dir_name: 'uploads'

 uploads_base_url: '/%uploads_dir_name%'

liip_imagine:

 resolvers:

 flysystem_resolver:

 flysystem:

 root_url: '%uploads_base_url%'

Next, in oneup_flysystem.yaml , we need the directory name. Copy the other parameter:

%uploads_dir_name% .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

6

 // ... lines 7 - 10

The last place is in UploaderHelper . The getBasePath() call will give us the directory

where the site is installed - usually an empty string. Then we need to pass in the

uploads_base_url parameter.

Add a new argument to the constructor: string $uploadedAssetsBaseUrl . I'll create the

property by hand and give it a slightly different name: $publicAssetBaseUrl , not for any

particular reason. Set that in the constructor:

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 22

23

24

25

26

 // ... lines 27 - 29

30

31

 // ... lines 32 - 78

Back in getPublicPath() , use this: getBasePath() then

$this->publicAssetsBaseUrl , which will contain the / at the beginning.

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 local:

 directory: '%kernel.project_dir%/public/%uploads_dir_name%'

class UploaderHelper

{

 private $publicAssetBaseUrl;

 public function __construct(FilesystemInterface

$publicUploadsFilesystem, RequestStackContext $requestStackContext,

LoggerInterface $logger, string $uploadedAssetsBaseUrl)

 {

 $this->publicAssetBaseUrl = $uploadedAssetsBaseUrl;

 }

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 70

71

72

73

74

75

76

77

Cool! But, Symfony will not be able to autowire this string argument. You can see the error if you

try to reload any page. Yep!

We know how to fix that: back in services.yaml , add a bind: $uploadedAssetsBaseUrl

set to %uploads_base_url% . Now... it works!

config/services.yaml

 // ... lines 1 - 11

12

13

14

 // ... lines 15 - 21

22

 // ... lines 23 - 25

26

 // ... lines 27 - 51

Linking to the Full Image

Small step, but with all this config in one spot, we can do something kinda cool... with almost no

effort. But first, I want to triple check that all this public path stuff is setup correctly. Our

getPublicPath() method is currently used in one spot: by the uploaded_asset() Twig

function. But, we're not actually using this Twig function anywhere at the moment.

So try this: in the form, we're showing the thumbnail. It might be useful to allow the user to click

this and see the original image. That's pretty easy: add and use

uploaded_asset(articleForm.vars.data.imagePath) .

That's it! Wrap this around the img tag and let's also add target="_blank" .

class UploaderHelper

{

 public function getPublicPath(string $path): string

 {

 // needed if you deploy under a subdirectory

 return $this->requestStackContext

 ->getBasePath().$this->publicAssetBaseUrl.'/'.$path;

 }

}

services:

 # default configuration for services in *this* file

 _defaults:

 bind:

 $uploadedAssetsBaseUrl: '%uploads_base_url%'

templates/article_admin/_form.html.twig

1

 // ... lines 2 - 5

6

 // ... lines 7 - 13

14

15

16

17

18

19

20

21

 // ... lines 22 - 40

41

Cool. Test that - refresh and... click. Nice! This sends us directly to the source image.

Absolute URLs

Thanks to our setup, we can now solve a really annoying problem. Inspect element on the image:

notice that both the href and the image src paths do not contain the domain name. That's not

a problem at all in a normal web context. But if you ever try to render a page into a PDF with

something like wkhtmltopdf or create a console command to send an email that references an

uploaded file, well... suddenly, those paths will start to break! In those contexts, you need the

URLs to be absolute.

There are a few ways to solve this... and honestly, I went back and forth on the best approach. I

finally settled on something that we've used here on SymfonyCasts for years. Open your .env

file. We're going to create a brand new, custom environment variable called SITE_BASE_URL .

Set the default value to https://localhost:8000 .

.env

 // ... lines 1 - 33

34

Remember: this file is committed to git, so this is the default value. You can create a

.env.local file to override this value locally or on production. Or, of course, if it's easy, you can

override this by setting a real environment variable.

{{ form_start(articleForm) }}

 <div class="row">

 <div class="col-sm-3">

 {% if articleForm.vars.data.imageFilename %}

 <a href="{{ uploaded_asset(articleForm.vars.data.imagePath)

}}" target="_blank">

 <img src="{{

articleForm.vars.data.imagePath|imagine_filter('squared_thumbnail_small')

}}" height="100">

 {% endif %}

 </div>

 </div>

{{ form_end(articleForm) }}

SITE_BASE_URL=https://localhost:8000

Next, go back to services.yaml . And for the uploads_base_url , use %env()% and inside,

SITE_BASE_URL : that's the syntax for referencing an environment variable.

config/services.yaml

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

 // ... lines 11 - 51

And... just like that - every single path to every single uploaded asset will now be absolute.

Seriously! Test it out! Boom! Both the link href and the image src contain the

https://localhost:8000 part.

And, sure, you could add some config so that you could turn this on only when you need it... but I

don't really see the point. I'll keep absolute URLs always.

Next: let's start uploading private assets: stuff that can't be put into the public/ directory

because we need to check security before we let a user download it.

parameters:

 uploads_base_url: '%env(SITE_BASE_URL)%/%uploads_dir_name%'

Chapter 19: Setup for Uploading Private Article
References

New challenge folks! Our alien authors are begging for a new feature: they want to be able to

upload "supporting" files and attach them to the article - like PDFs that they're referencing,

images... text notes... really anything. But these files will only be visible to anyone that can edit an

article. I'll call these "article references" and every article will be able to have zero to many

references, which is where things start to get interesting.

Creating the ArticleReference Entity

Let's create the new entity:

php bin/console make:entity

Call it ArticleReference and give it an article property. This will be a relation back to

the Article class. This will be a ManyToOne relation: each Article can have many

ArticleReferences. Then, this will be not null in the database: every ArticleReference must

be related to an Article . Say yes to map the other side of the relationship - it's convenient to be

able to say $article->getArticleReferences() . And no to orphan removal - we won't be

using that feature.

Nice! Ok, this needs a few more fields: filename a string that will hold the filename on the

filesystem, originalFilename , a string that will hold the original filename that was on the

user's system - more on that later - and mimeType - we'll use that to store what type of file it is -

which will come in handy later.

And... done! Next run:

php bin/console make:migration

Let's go make sure the migration file doesn't contain any surprises... yep!

“CREATE TABLE article_reference ”

... with a foreign key back to article . Run that with:

php bin/console doctrine:migrations:migrate

Removing Extra Adder/Remover

Before we get back to work, open the Article entity. The command did create the

$articleReferences property that allows us to say

$article->getArticleReferences() . That's super convenient. It also added

addArticleReference() and removeArticleReference() . I'm going to delete these: I'm

just not going to need them: I'll read the references from the article, but never set them from this

direction.

src/Entity/Article.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 89

90

91

92

93

 // ... line 94

95

96

 // ... lines 97 - 98

99

100

 // ... lines 101 - 315

316

317

318

319

320

321

322

323

Form CollectionType

Ok team: let's think about how we want this to work. The user needs to be able to upload multiple

reference files to each article. A lot of you may be expecting me to use Symfony's

CollectionType : that's a special field that allows you to embed a collection of fields into a form

- like multiple upload fields.

Well... sorry. We are definitely not going to use CollectionType . That field is hard enough to

work with if you want to be able to add or delete rows. Adding uploading to that? Oof, that's crazy

talk.

We're going to do something different. And it's going to be a much better user experience

anyways! We're going to leave the main form alone and build a separate "article reference

upload", sort of, "widget", next to it that'll eventually upload via AJAX, allow deleting, editing and

re-ordering. It's gonna be schweet!

class Article

{

 /**

 * @ORM\OneToMany(targetEntity="App\Entity\ArticleReference",

mappedBy="article")

 */

 private $articleReferences;

 public function __construct()

 {

 $this->articleReferences = new ArrayCollection();

 }

 /**

 * @return Collection|ArticleReference[]

 */

 public function getArticleReferences(): Collection

 {

 return $this->articleReferences;

 }

}

Adding the HTML Form

Open the edit template: templates/article_admin/edit.html.twig . Everything we're

going to do will be inside of this template, not the new template. The reason is simple: trying to

upload files to a new entity - something that hasn't been saved to the database - is super hard!

You need to store files in a temporary spot, keep track of them, and assign them to the entity

when your user does finally save - if they ever do that. So, totally possible - but complex. If you

can, have your user fill in some basic data, save your new entity to the database, then show the

upload fields.

Anyways, let's add an <hr> and set up a bit of structure: div class="row" and

div class="col-sm-8" . Say "Details" here and move the entire form inside. Now add a

div class="col-sm-4" and say "References".

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

 // ... lines 20 - 26

Let's see how this looks... nice! Form on the left, upload widget thingy on the right.

Here's the plan: add a <form> tag with the normal method="POST" and

enctype="multipart/form-data" . Inside, add a single upload field:

<input type="file" name=""> , how about reference . Then,

<button type="submit"> , some classes to make it not ugly, and "Upload".

{% block content_body %}

 <h1>Edit the Article! ?</h1>

 <hr>

 <div class="row">

 <div class="col-sm-8">

 <h3>Details</h3>

 {{ include('article_admin/_form.html.twig', {

 button_text: 'Update!'

 }) }}

 </div>

 <div class="col-sm-4">

 <h3>References</h3>

 </div>

 </div>

{% endblock %}

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 31

Cool! Yes, we are going to talk about allowing the user to upload multiple files at once. Don't

worry, things are going to get much fancier.

Next, let's get the endpoint setup for this upload and store everything in the database, including a

few pieces of information about the file that we did not store for the article images.

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <h3>References</h3>

 <form action="" method="POST" enctype="multipart/form-data">

 <input type="file" name="reference">

 <button type="submit" class="btn btn-sm btn-

primary">Upload</button>

 </form>

 </div>

 </div>

{% endblock %}

Chapter 20: Uploading References

Unlike the main form on this page, this form will submit to a different endpoint. And instead of

continuing to put more things into ArticleAdminController , let's create a new controller for

everything related to article references: ArticleReferenceAdminController . Extend

BaseController - that's just a small base controller we created in our Symfony series: it

extends the normal AbstractController . So nothing magic happening there.

src/Controller/ArticleReferenceAdminController.php

1

2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 19

20

The Upload Endpoint

Back in the new class, create public function uploadArticleReference() and, above,

@Route : make sure to get the one from Symfony/Component . Set the URL to, how about,

/admin/article/{id}/references - where the {id} is the Article id that we want to

attach the reference to. Add name="admin_article_add_reference" . Oh, and let's also set

methods={"POST"} .

<?php

namespace App\Controller;

class ArticleReferenceAdminController extends BaseController

{

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 4

5

 // ... line 6

7

8

9

10

11

12

13

 // ... line 14

15

16

17

 // ... line 18

19

20

That's optional, but it'll let us create another endpoint later with the same URL that can be used to

fetch all the references for a single article.

Let's keep going! Because the article {id} is in the URL, add an Article $article

argument. Oh, and we need security! You can only upload a file if you have access to edit this

article. In our app, we check that with this @IsGranted("MANAGE", subject="article")

annotation, which leverages a custom voter that we created in our Symfony series. It basically

makes sure that you are the author of this article or a super admin.

use App\Entity\Article;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\Routing\Annotation\Route;

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references",

name="admin_article_add_reference", methods={"POST"})

 */

 public function uploadArticleReference(Article $article, Request

$request)

 {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

 // ... line 18

19

20

Finally, we're ready to fetch the file: add the Request argument - the one from

HttpFoundation - and let's dd($request->files->get()) and then the name from the

input field: reference .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

Solid start. Copy the route name and head back to the template. Set the action attribute to

{{ path() }} , the route name, and for the placeholder part, I'll use multiple lines and pass id

set to article.id . Oh wait... we don't have an article variable inside this template. We do

have the articleForm variable, and we could get the Article from that... but to shorten

things, let's properly pass it in.

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references",

name="admin_article_add_reference", methods={"POST"})

 * @IsGranted("MANAGE", subject="article")

 */

 public function uploadArticleReference(Article $article, Request

$request)

 {

 }

}

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references",

name="admin_article_add_reference", methods={"POST"})

 * @IsGranted("MANAGE", subject="article")

 */

 public function uploadArticleReference(Article $article, Request

$request)

 {

 dd($request->files->get('reference'));

 }

}

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 17

18

19

20

 // ... lines 21 - 22

23

24

25

26

 // ... lines 27 - 33

Find the edit() action of ArticleAdminController and pass an article variable. Now

we can say article.id .

src/Controller/ArticleAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 57

58

59

 // ... lines 60 - 82

83

 // ... line 84

85

86

87

 // ... lines 88 - 125

126

Phew! Ok, let's check this out: refresh and inspect element on the form. Yep, the URL looks right

and the enctype attribute is there. Ok, try it: select the Symfony Best Practices doc and...

upload! Yes! It's our favorite UploadedFile object!

These article references are special because we need to keep them private: they should only be

accessible to the author or a super admin. The process for uploading & downloading private files

is, a bit different.

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <form action="{{ path('admin_article_add_reference', {

 id: article.id

 }) }}" method="POST" enctype="multipart/form-data">

 </form>

 </div>

 </div>

{% endblock %}

class ArticleAdminController extends BaseController

{

 public function edit(Article $article, Request $request,

EntityManagerInterface $em, UploaderHelper $uploaderHelper)

 {

 return $this->render('article_admin/edit.html.twig', [

 'article' => $article,

]);

 }

}

Setting up UploaderHelper

But, we'll start in very similar way: by opening our favorite service, and all-around nice class,

UploaderHelper . Down here, add a new

public function uploadArticleReference() that will have a File argument and

return a string ... pretty much the same as the other method, except that we won't need an

$existingFilename because we won't let ArticleReference objects be updated. If you

want to upload a modified file - cool! Delete the old ArticleReference and upload a new one.

You'll see what I mean as we keep building this out.

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 70

71

72

 // ... line 73

74

 // ... lines 75 - 81

82

To get started, just dd($file) .

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 70

71

72

73

74

 // ... lines 75 - 81

82

Back in the controller, let's finish this whole darn thing. Set the file to an $uploadedFile object

and I'll add the same inline documentation that says that this is an UploadedFile object - the

one from HttpFoundation .

class UploaderHelper

{

 public function uploadArticleReference(File $file): string

 {

 }

}

class UploaderHelper

{

 public function uploadArticleReference(File $file): string

 {

 dd($file);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 6

7

8

 // ... line 9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 19

20

21

22

23

 // ... lines 24 - 37

38

39

Then say $filename = ... oh - we don't have the UploaderHelper service yet! Add that

argument: UploaderHelper $uploaderHelper . Then

$filename = $uploaderHelper->uploadArticleReference($uploadedFile) .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 19

20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 37

38

39

We know that won't work yet... but if we use our imagination, we know that... someday, it should

return the new filename that was stored on the filesystem. To put this value into the database, we

need to create a new ArticleReference object and persist it.

Tightening Up ArticleReference

use App\Service\UploaderHelper;

use Doctrine\ORM\EntityManagerInterface;

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $request->files->get('reference');

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 $filename = $uploaderHelper->uploadArticleReference($uploadedFile);

 }

}

Oh, but before we do - go open that class. This is a very traditional entity: it has some properties

and everything has a getter and a setter. That's great, but because every ArticleReference

needs to have its Article property set... and because an ArticleReference will never

change articles, find the setArticle() method and... obliterate it!

Instead, add a public function __construct() with a required Article argument. Set

that onto the article property. This is an optional step - but it's always nice to think critically

about your entities: what methods do you not need?

src/Entity/ArticleReference.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 39

40

41

42

43

 // ... lines 44 - 89

90

Saving ArticleReference & the Original Filename

Back up in our controller, say $articleReference = new ArticleReference() and pass

$article . Call $article->setFilename($filename) to store the unique filename where

this file was stored on the filesystem.

class ArticleReference

{

 public function __construct(Article $article)

 {

 $this->article = $article;

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 19

20

21

 // ... lines 22 - 26

27

28

 // ... lines 29 - 37

38

39

But remember! There are a couple of new pieces of info that we can set on ArticleReference

- like the original filename. Set that to $uploadedFile->getClientOriginalName() . Now,

technically this method can return null , though, I'm not actually sure if that's something that can

happen in any realistic scenario. But, just in case, add ?? $filename . So, if the client original

name is missing for some reason, fall back to $filename .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 19

20

21

 // ... lines 22 - 26

27

28

29

 // ... lines 30 - 37

38

39

Finally, just in case we ever want to know what type of file this is, we'll store the file's mime type.

Set this to $uploadedFile->getMimeType() . This can also return null - so default it to

use App\Entity\ArticleReference;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 $articleReference = new ArticleReference($article);

 $articleReference->setFilename($filename);

 }

}

use App\Entity\ArticleReference;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 $articleReference = new ArticleReference($article);

 $articleReference->setFilename($filename);

 $articleReference->setOriginalFilename($uploadedFile-

>getClientOriginalName() ?? $filename);

 }

}

application/octet-stream , which is sort of a common way to say "I have no idea what this

file is".

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 19

20

21

 // ... lines 22 - 26

27

28

29

30

 // ... lines 31 - 37

38

39

With that done, save this: add the EntityManagerInterface $entityManager argument,

then $entityManager->persist($articleReference) and

$entityManager->flush() .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 19

20

21

 // ... lines 22 - 31

32

33

 // ... lines 34 - 37

38

39

Finish with return redirectToRoute() and send the user back to the edit page:

admin_article_edit passing this id set to $article->getId() .

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 $articleReference = new ArticleReference($article);

 $articleReference->setFilename($filename);

 $articleReference->setOriginalFilename($uploadedFile-

>getClientOriginalName() ?? $filename);

 $articleReference->setMimeType($uploadedFile->getMimeType() ??

'application/octet-stream');

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 $entityManager->persist($articleReference);

 $entityManager->flush();

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 19

20

21

 // ... lines 22 - 34

35

36

37

38

39

Yep - that's the route on the edit endpoint.

Alright! With any luck, it should hit our dd() statement. Go back to your browser: I already have

the Symfony Best Practices PDF selected. Hit update... yea! UploadedFile coming from

UploaderHelper .

Next: let's move the uploaded file... except that... we can't move it using the filesystem service

object we have now... because we can't store these private files in the public/ directory. Hmm...

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager)

 {

 return $this->redirectToRoute('admin_article_edit', [

 'id' => $article->getId(),

]);

 }

}

Chapter 21: Storing Private Files

Here's the tricky part: we can't just go into UploaderHelper and use the Flysystem filesystem

like we did before to save the uploaded file... because that writes everything into the

public/uploads/ directory. If we need to check security before letting a user download a file,

then it can't live in the public/ directory.

And that means we need a second Flysystem filesystem: one that can store things somewhere

outside the public/ directory. Side note: it is possible to solve the "private" uploads problem

with just one filesystem using signed URLs, and we'll talk about it later when we move to S3.

Creating a Private Filesystem

But for now, a great solution is to create a private filesystem. Open the

config/packages/oneup_flysystem.yaml file. Copy the public_uploads_adapter ,

paste and call it private_uploads_adapter . You can store the files anywhere, as long as it's

not in public/ . But, the var/ directory is sort of meant for this type of thing. So let's say:

var/uploads . Oh, and I could re-use my uploads_dir_name parameter here - but it won't

give us any benefit. That parameter is really meant to keep the upload directory and public path to

assets in sync. But these files won't have a public path anyways... we'll make them downloadable

in an entirely different way.

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

 // ... lines 4 - 7

8

9

10

 // ... lines 11 - 17

Next, for filesystems, do the same thing: make a private_uploads_filesystem that will use

the private_uploads_adapter .

oneup_flysystem:

 adapters:

 private_uploads_adapter:

 local:

 directory: '%kernel.project_dir%/var/uploads'

config/packages/oneup_flysystem.yaml

 // ... line 1

2

 // ... lines 3 - 11

12

 // ... lines 13 - 14

15

16

Cool! Next, in UploaderHelper , we're already passing the $publicUploadFilesystem as

an argument. We will also need the private one. Before we add it here, go into services.yaml .

Remember, under _defaults , we're binding the $publicUploadFilesystem argument to

the public fileystem service. Let's do the same for the private one. Call it

$privateUploadFilesystem and change the service id to point to the "private" one.

config/services.yaml

 // ... lines 1 - 11

12

 // ... line 13

14

 // ... lines 15 - 21

22

 // ... lines 23 - 25

26

 // ... lines 27 - 52

 Tip

If you're using version 4 of oneup/flysystem-bundle (so, flysystem v2), autowire

Filesystem instead of FilesystemInterface from League\Flysystem .

Now, copy that argument name and, in UploaderHelper , add a second argument:

FilesystemInterface $privateUploadFilesystem . Create a new property on top called

$privateFilesystem and set it below:

$this->privateFilesystem = $privateUploadFilesystem

oneup_flysystem:

 filesystems:

 private_uploads_filesystem:

 adapter: private_uploads_adapter

services:

 _defaults:

 bind:

 $privateUploadsFilesystem:

'@oneup_flysystem.private_uploads_filesystem_filesystem'

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

 // ... lines 20 - 26

27

28

 // ... line 29

30

 // ... lines 31 - 33

34

 // ... lines 35 - 110

Re-using the Upload Logic

Ok, we're ready! Most of the logic in uploadArticleImage() should be reusable: we're

basically going to do the same thing... just through the private filesystem: we need to figure out

the filename and stream it through Flysystem. The only part of this method that we don't need is

the $existingFilename . We don't need to delete an existing file... because we're not going to

allow files to be "updated" for a specific ArticleReference - we'll just have the user delete

them and re-upload the new file.

Refactoring time! Copy all of this code down through the fclose() and, at the bottom, create a

new private function called uploadFile() . This will take in the File object that we're

uploading... and we also need to pass the directory name - you'll see what that is in a moment.

Then add a bool $isPublic flag so that this method knows whether to store things in the

public or private filesystem.

class UploaderHelper

{

 private $privateFilesystem;

 public function __construct(FilesystemInterface

$publicUploadsFilesystem, FilesystemInterface $privateUploadsFilesystem,

RequestStackContext $requestStackContext, LoggerInterface $logger, string

$uploadedAssetsBaseUrl)

 {

 $this->privateFilesystem = $privateUploadsFilesystem;

 }

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 85

86

87

 // ... lines 88 - 107

108

109

To start, paste that exact logic

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

and, at the bottom, return $newFilename . Oh, and I should also probably add a return type.

class UploaderHelper

{

 private function uploadFile(File $file, string $directory, bool

$isPublic)

 {

 }

}

class UploaderHelper

{

 private function uploadFile(File $file, string $directory, bool

$isPublic)

 {

 if ($file instanceof UploadedFile) {

 $originalFilename = $file->getClientOriginalName();

 } else {

 $originalFilename = $file->getFilename();

 }

 $newFilename = Urlizer::urlize(pathinfo($originalFilename,

PATHINFO_FILENAME)).'-'.uniqid().'.'.$file->guessExtension();

 $stream = fopen($file->getPathname(), 'r');

 $result = $this->filesystem->writeStream(

 self::ARTICLE_IMAGE.'/'.$newFilename,

 $stream

);

 if ($result === false) {

 throw new \Exception(sprintf('Could not write uploaded file

"%s"', $newFilename));

 }

 if (is_resource($stream)) {

 fclose($stream);

 }

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 67

68

69

 // ... lines 70 - 92

93

94

95

Let's see... the first thing we need to do is handle this $isPublic argument. So Let's say

$filesystem = $isPublic ? and, if it is public, use $this->filesystem , otherwise use

$this->privateFilesystem . Below, replace $this->filesystem with $filesystem .

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 67

68

69

 // ... lines 70 - 76

77

 // ... lines 78 - 79

80

 // ... lines 81 - 82

83

 // ... lines 84 - 93

94

95

The other thing we need to update is the directory: it's hardcoded to ARTICLE_IMAGE . Replace

that with $directory : this is the directory inside the filesystem where the file will be stored.

class UploaderHelper

{

 private function uploadFile(File $file, string $directory, bool

$isPublic): string

 {

 return $newFilename;

 }

}

class UploaderHelper

{

 private function uploadFile(File $file, string $directory, bool

$isPublic): string

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 $result = $filesystem->writeStream(

);

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 67

68

69

 // ... lines 70 - 79

80

81

82

83

 // ... lines 84 - 93

94

95

All done! Back up in uploadArticleImage() , re-select all that code we just copied, delete it,

do a happy dance and replace it with $newFilename = $this->uploadFile() passing the

$file , the directory - self::ARTICLE_IMAGE - and whether or not this file should be public,

which is true .

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 36

37

38

39

 // ... lines 40 - 53

54

 // ... lines 55 - 94

95

Now we can do the same thing down in uploadArticleReference . Oh, but first, we need to

create another constant for the directory

const ARTICLE_REFERENCE = 'article_reference .

class UploaderHelper

{

 private function uploadFile(File $file, string $directory, bool

$isPublic): string

 {

 $result = $filesystem->writeStream(

 $directory.'/'.$newFilename,

 $stream

);

 }

}

class UploaderHelper

{

 public function uploadArticleImage(File $file, ?string

$existingFilename): string

 {

 $newFilename = $this->uploadFile($file, self::ARTICLE_IMAGE, true);

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... line 15

16

 // ... lines 17 - 94

95

Back down, all we need is return $this->uploadFile() , with $file ,

self::ARTICLE_REFERENCE and false so that it uses the private filesystem.

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 55

56

57

58

59

 // ... lines 60 - 94

95

I think that's it! Let's test this puppy out! Move over and refresh to re-POST the form. No error...

but I have no idea if that worked... because we're not rendering anything yet. Check out the var/

directory... var/uploads/article_reference/symfony-best-practices... , we got it!

Of course, there's absolutely no way for anyone to access this file... but we'll fix that up soon

enough.

Next: unless we really, really, trust our authors, we probably shouldn't let them upload any file

type. Let's tighten up validation.

class UploaderHelper

{

 const ARTICLE_REFERENCE = 'article_reference';

}

class UploaderHelper

{

 public function uploadArticleReference(File $file): string

 {

 return $this->uploadFile($file, self::ARTICLE_REFERENCE, false);

 }

}

Chapter 22: Mime Type Validation

Unless the authors that can upload these files are super, super trusted, like, you invited them to

your wedding and they babysit your dog when you're on vacation level of trusted... we need some

validation. Right now, an author could upload literally any file type to the system.

No problem: find the controller. Hmm, there's no form here. In ArticleAdminController , we

put the validation on the form. Then we could check $form->isValid() and any errors

rendered automatically.

Manually Validating

But because we're not inside a form, we need to validate directly... which is totally fine! Add

another argument: ValidatorInterface $validator . This is the service that the form

system uses internally for validation.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

 // ... line 15

16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 50

51

52

Then, before we do anything with that uploaded file, say

$violations = $validator->validate() . Pass this the object that you want to validate.

For us, it's the $uploadedFile object itself. If we stopped here, it would read any validation

annotations off of that class and apply those rules... which would be zero rules! This is a core

class! There's no validation rules, and we can't just open up that file and add them. No worries:

pass a second argument: the constraint to validate against.

use Symfony\Component\Validator\Validator\ValidatorInterface;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 26

27

28

 // ... lines 29 - 31

32

 // ... lines 33 - 50

51

52

Remember: there are two main constraints for uploads: the Image constraint that we used before

and the more generic File constraint, which we need here because the user can upload more

than just images. Say new File() - the one from the Validator component.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 12

13

 // ... lines 14 - 15

16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 26

27

28

29

 // ... line 30

31

32

 // ... lines 33 - 50

51

52

This constraint has two main options. The first is maxSize . Set it to 1k ... just so we can see the

error.

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

);

 }

}

use Symfony\Component\Validator\Constraints\File;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

 new File([

])

);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 26

27

28

29

30

31

32

 // ... lines 33 - 50

51

52

This $violations variable is basically an array of errors... except it's not actually an array - it's

an object that holds errors. To check if anything failed validation, we can say if

$violations->count() is greater than 0 . For now, let's just dd($violations) so we can

see what it looks like.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 26

27

 // ... lines 28 - 31

32

33

34

35

36

 // ... lines 37 - 50

51

52

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

 new File([

 'maxSize' => '1k'

])

);

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

);

 if ($violations->count() > 0) {

 dd($violations);

 }

 }

}

Cool! Move over, select the Best Practices PDF - that's definitely more than 1kb - and upload! Say

hello to the ConstraintViolationList : a glorified array of ConstraintViolation error

objects. And there's the message: the file is too large. If you want, you can customize that

message by passing the maxSizeMessage option... cause it is kind of a nerdy message.

Displaying the Validation Errors

So, in theory, you can have multiple validation rules and multiple errors. To keep things simple,

let's show the first error if there is one. Use $violation = $violations[0] to get it. The

ConstraintViolationList class implements ArrayAccess , which is why we can use this

syntax. Oh, and let's help out my editor by telling it that this is a ConstraintViolation object.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 22

23

24

 // ... lines 25 - 34

35

36

37

 // ... lines 38 - 42

43

 // ... lines 44 - 57

58

59

And now... hmm... how should we show this error to the user? This controller will eventually turn

into an AJAX, or API endpoint that communicates via JSON. But because this is still a normal

form submit, the easiest option is to put the error into a flash message and display it on the next

page. Say $this->addFlash() , pass it an "error" type, and then

$violation->getMessage() .

use Symfony\Component\Validator\ConstraintViolation;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 if ($violations->count() > 0) {

 /** @var ConstraintViolation $violation */

 $violation = $violations[0];

 }

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

 // ... lines 25 - 34

35

36

37

38

 // ... lines 39 - 42

43

 // ... lines 44 - 57

58

59

Finish by stealing the redirect code from the bottom to send us back to the edit page.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

 // ... lines 25 - 34

35

36

37

38

39

40

41

42

43

 // ... lines 44 - 57

58

59

To render that flash message, open templates/base.html.twig and scroll down... I'm

looking for the flash message logic we added in our Symfony series. There it is! We're rendering

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 if ($violations->count() > 0) {

 /** @var ConstraintViolation $violation */

 $violation = $violations[0];

 $this->addFlash('error', $violation->getMessage());

 }

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 if ($violations->count() > 0) {

 /** @var ConstraintViolation $violation */

 $violation = $violations[0];

 $this->addFlash('error', $violation->getMessage());

 return $this->redirectToRoute('admin_article_edit', [

 'id' => $article->getId(),

]);

 }

 }

}

success messages, but we don't have anything to render error messages. Copy this, paste,

and loop over error . Make it look scary with alert-danger .

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 73

74

75

76

77

78

 // ... lines 79 - 102

103

104

Cool! Test it out - refresh! And... nice! It redirects and there is our error.

Validating the Mime Types

This is great... but what we really want to do is control the types of files that are uploaded. Change

the max size to 5m and add a mimeTypes option set to an array.

 Tip

To allow files larger than 2MB, you'll probably need to tweak the upload_max_filesize

setting in your php.ini file. Then, don't forget to restart your web server!

<html lang="en">

 <body>

 {% for message in app.flashes('error') %}

 <div class="alert alert-danger">

 {{ message }}

 </div>

 {% endfor %}

 </body>

</html>

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

 // ... lines 25 - 27

28

29

30

31

32

 // ... lines 33 - 39

40

41

42

 // ... lines 43 - 66

67

68

Let's see... what do we want to allow? Well, probably any image is ok - so we can use image/*

and definitely we should allow application/pdf .

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

 new File([

 'maxSize' => '5M',

 'mimeTypes' => [

]

])

);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

 // ... lines 25 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 39

40

41

42

 // ... lines 43 - 66

67

68

But... what else? It's tricky: there are a lot of mime types out there. A nice way to cheat is to press

Shift+Shift and look for a core class called MimeTypeExtensionGuesser .

This is a pretty neat class: it's what Symfony uses behind the scenes to "guess" the correct file

extension based on the mime type of a file. It's useful right now because it has a huge list of mime

types and their extensions. Check it out: search for 'doc' . There it is: application/msword .

And if you keep digging for other things like docx or xls , you can get a pretty good list of stuff

you might want to accept.

Close this file and go back to the option: I'll paste in a few mime types. This covers a lot your

standard "document" stuff. Oh, I forgot one! Add application/vnd.ms-excel .

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

 new File([

 'maxSize' => '5M',

 'mimeTypes' => [

 'image/*',

 'application/pdf',

]

])

);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

24

 // ... lines 25 - 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 // ... lines 44 - 67

68

69

Let's try it out! Go back, select the Best Practices PDF, Upload and... no error! Try it again - but

with this earth.zip file - that's a zip of two photos. Submit and... error! But wow is that a wordy

error. You an change that message with the mimeTypesMessage option.

Requiring the File

Oh! There's one last case we need to validate for. Hit enter on the URL to refresh the form. Do

nothing and hit upload. Ah!!! Whoops! Everything explodes inside UploaderHelper ... because

there is no uploaded file! The horror!

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

 new File([

 'maxSize' => '5M',

 'mimeTypes' => [

 'image/*',

 'application/pdf',

 'application/msword',

 'application/vnd.ms-excel',

 'application/vnd.openxmlformats-

officedocument.wordprocessingml.document',

 'application/vnd.openxmlformats-

officedocument.spreadsheetml.sheet',

 'application/vnd.openxmlformats-

officedocument.presentationml.presentation',

 'text/plain'

]

])

);

 }

}

Back in the controller, the second argument to validate() can accept an array of validation

constraints. Put the new File into an array. Then add: new NotBlank() with a custom

message: please select a file to upload.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 13

14

 // ... lines 15 - 17

18

19

 // ... lines 20 - 23

24

25

 // ... lines 26 - 28

29

30

31

32

33

 // ... lines 34 - 43

44

45

46

 // ... lines 47 - 70

71

72

Refresh one more time. The huge error is replaced by a much more pleasant validation message.

Next: the author can upload a file reference... but it is literally impossible for them to download it.

How can we make these private files accessible, but still check security first?

use Symfony\Component\Validator\Constraints\NotBlank;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 $violations = $validator->validate(

 $uploadedFile,

 [

 new NotBlank(),

 new File([

])

]

);

 }

}

Chapter 23: Endpoint for Downloading Private Files

When we upload an article reference file, it successfully gets moved into the

var/uploads/article_reference/ directory. That's great. And that means those files are

not publicly accessible to anyone... which is what we wanted.

Listing the Uploaded References

Except... how can we allow authors to access them? As a first step, let's at least list the files on

the page. In edit.html.twig , add a with some Bootstrap classes.

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 23

24

 // ... lines 25 - 33

34

35

36

 // ... lines 37 - 43

Then loop with {% for reference in article.articleReferences %} . Inside, add an

 , a bunch of classes to make it look fancy, and then print, how about,

reference.originalFilename .

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <ul class="list-group small">

 </div>

 </div>

{% endblock %}

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 17

18

19

20

21

22

23

24

 // ... lines 25 - 33

34

35

36

 // ... lines 37 - 43

This is pretty cool: when we move the files onto the server, we give them a weird filename. But

because we saved the original filename, we can show that here: the author has no idea we're

naming their files crazy things internally.

Let's see how this looks. Nice! 2 uploaded PDF's.

The Download Controller

To add a download link, we know that we can't just link to the file directly: it's not public. Instead,

we're going to link to a Symfony route and controller and that controller will check security and

return the file to the user. Let's do this in ArticleReferenceAdminController . Add a new

public function, how about, downloadArticleReference() .

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <ul class="list-group small">

 {% for reference in article.articleReferences %}

 <li class="list-group-item d-flex justify-content-

between align-items-center">

 {{ reference.originalFilename }}

 {% endfor %}

 </div>

 </div>

{% endblock %}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 78

79

80

 // ... line 81

82

83

Add the @Route() above this with /admin/article/references/{id}/download - where

the {id} this time is the id of the ArticleReference object. Then,

name="admin_article_download_reference" and methods={"GET"} , just to be extra

cool.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 75

76

77

78

79

80

 // ... line 81

82

83

Because the {id} is the id of the ArticleReference , we can add that as an argument:

ArticleReference $reference . Just dd($reference) so we can see if this is working.

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference)

 {

 }

}

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/references/{id}/download",

name="admin_article_download_reference", methods={"GET"})

 */

 public function downloadArticleReference(ArticleReference $reference)

 {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 75

76

77

78

79

80

81

82

83

Love it! Copy the route name and head back into the template. Add a here for styling

and an anchor with href="{{ path() }}" , the route name, and id: reference.id . For

the text, I'll use the Font Awesome download icon.

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 17

18

19

20

 // ... lines 21 - 22

23

24

25

26

27

28

29

30

 // ... lines 31 - 39

40

41

42

 // ... lines 43 - 49

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/references/{id}/download",

name="admin_article_download_reference", methods={"GET"})

 */

 public function downloadArticleReference(ArticleReference $reference)

 {

 dd($reference);

 }

}

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <ul class="list-group small">

 {% for reference in article.articleReferences %}

 <li class="list-group-item d-flex justify-content-

between align-items-center">

 <a href="{{

path('admin_article_download_reference', {

 id: reference.id

 }) }}">

 {% endfor %}

 </div>

 </div>

{% endblock %}

Try it out! Refresh and... download! So far so good.

Creating a Read File Stream

In some ways, our job in the controller is really simple: read the contents of the file and send it to

the user. But... we don't actually want to read the contents of the file into a string and then put it in

a Response. Because if it's a large file, that will eat up PHP memory.

This is already why, in UploaderHelper , we're using a stream to write the file. And now, we'll

use a stream to read it. To keep all this streaming logic centralized in this class, add a new

public function readStream() with a string $path argument and bool $isPublic so

we know which of these two filesystems to read from.

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 70

71

72

 // ... lines 73 - 81

82

 // ... lines 83 - 110

111

Above the method, advertise that this will return a resource - PHP doesn't have a resource

return type yet. Inside, step 1 is to get the right filesystem using the $isPublic argument.

class UploaderHelper

{

 public function readStream(string $path, bool $isPublic)

 {

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 67

68

69

70

71

72

73

 // ... lines 74 - 81

82

 // ... lines 83 - 110

111

Then, $resource = $filesystem->readStream($path) .

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 67

68

69

70

71

72

73

74

75

 // ... lines 76 - 81

82

 // ... lines 83 - 110

111

 Tip

If you're using version 4 of oneup/flysystem-bundle (so, flysystem v2), you don't

need to code defensively anymore! All methods will throw an exception automatically if the

operation fails.

class UploaderHelper

{

 /**

 * @return resource

 */

 public function readStream(string $path, bool $isPublic)

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 }

}

class UploaderHelper

{

 /**

 * @return resource

 */

 public function readStream(string $path, bool $isPublic)

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 $resource = $filesystem->readStream($path);

 }

}

That's... pretty much it! But hold Cmd or Ctrl and click to see the readStream() method. Ah

yes, if this fails, Flysystem will return false . So let's code defensively:

if ($resource === false) , throw a new \Exception() with a nice message:

“Error opening stream for %s”

and pass $path . At the bottom, return $resource .

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

 // ... lines 83 - 110

111

This is great! We now have an easy way to get a stream to read any file in our filesystems... which

will work if the file is stored locally or somewhere else.

Checking Security

In the controller add the UploaderHelper argument. Oh, but before we use this, I forgot to

check security! That was the whole point! The goal is to allow these files to be downloaded by

anyone who has access to edit the article. We've been checking that via the

@IsGranted('MANAGE') annotation - which leverages a custom voter we created in the

class UploaderHelper

{

 /**

 * @return resource

 */

 public function readStream(string $path, bool $isPublic)

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 $resource = $filesystem->readStream($path);

 if ($resource === false) {

 throw new \Exception(sprintf('Error opening stream for "%s"',

$path));

 }

 return $resource;

 }

}

Symfony series. We can use this annotation here because the article in the annotation refers

to the $article argument to the controller.

But in this new controller, we don't have an article argument, so we can't use the annotation in

the same way. No problem: add $article = $reference->getArticle() and then run the

security check manually: $this->denyAccessUnlessGranted() with that same 'MANAGE'

string and $article .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 79

80

81

82

83

 // ... lines 84 - 92

93

94

Refresh to try it. We still have access because we're logged in as an admin.

Next, let's take our file stream and send it to the user! We'll also learn how to control the filename

and force the user's browser to download it.

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $article = $reference->getArticle();

 $this->denyAccessUnlessGranted('MANAGE', $article);

 }

}

Chapter 24: Streaming the File Download

We have a method that will allow us to open a stream of the file's contents. But... how can we

send that to the user? We're used to returning a Response object or a JsonResponse object

where we already have the response as a string or array. But if you want to stream something to

the user without reading it all into memory, you need a special class called StreamedResponse .

Add $response = new StreamedResponse() . This takes one argument - a callback. At the

bottom, return this.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 11

12

 // ... lines 13 - 18

19

20

 // ... lines 21 - 79

80

81

 // ... lines 82 - 84

85

 // ... lines 86 - 89

90

91

92

93

 // ... lines 94 - 95

Here's the idea: we can't just start streaming the response or echo'ing content right now inside the

controller: Symfony's just not ready for that yet, it has more work to do, more headers to set, etc.

That's why we normally create a Response object and later, when it's ready, Symfony echo's the

response's content for us.

With a StreamedResponse , when Symfony is ready to finally send the data, it executes our

callback and then we can do whatever we want. Heck, we can echo 'foo' and that's what the

user would see.

use Symfony\Component\HttpFoundation\StreamedResponse;

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response = new StreamedResponse(function() use ($reference,

$uploaderHelper) {

 });

 return $response;

 }

Add a use statement and bring $reference and $uploaderHelper into the callback's scope

so we can use them. To send a file stream to the user, it looks a little strange. Start with

$outputStream set to fopen('php://output') and wb .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 11

12

 // ... lines 13 - 18

19

20

 // ... lines 21 - 79

80

81

 // ... lines 82 - 84

85

86

 // ... lines 87 - 89

90

91

92

93

 // ... lines 94 - 95

We usually use fopen to write to a file. But this special php://output allows us to write to the

"output" stream - a fancy way of saying that anything we write to this stream will just get "echo'ed"

out. Next, set $fileStream to $uploaderHelper->readStream() and pass this the path to

the file - something like

article_reference/symfony-best-practices-blah-blah.pdf .

Oh, except, we don't have an easy way to do that yet! In our Article entity, we added a nice

getImagePath() method that read the constant from UploaderHelper and added the

filename. I like that.

Let's copy that and go do the exact same thing in ArticleReference . At the bottom, paste and

rename this to getFilePath() . Let's add a return type too - I probably should have done that in

Article . Then, re-type the r on UploaderHelper to get the use statement, change the

constant to ARTICLE_REFERENCE and update the method call to getFilename() .

use Symfony\Component\HttpFoundation\StreamedResponse;

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response = new StreamedResponse(function() use ($reference,

$uploaderHelper) {

 $outputStream = fopen('php://output', 'wb');

 });

 return $response;

 }

src/Entity/ArticleReference.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 91

92

93

94

95

96

Great! Back in the controller, pass $reference->getFilePath() and then false for the

$isPublic argument.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 79

80

81

 // ... lines 82 - 84

85

86

87

 // ... lines 88 - 89

90

91

92

93

 // ... lines 94 - 95

Finally, now that we have a "write" stream and a "read" stream, we can use a function called

stream_copy_to_stream() to... do exactly that! Copy $fileStream to $outputStream .

use App\Service\UploaderHelper;

class ArticleReference

{

 public function getFilePath(): string

 {

 return UploaderHelper::ARTICLE_REFERENCE.'/'.$this->getFilename();

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response = new StreamedResponse(function() use ($reference,

$uploaderHelper) {

 $outputStream = fopen('php://output', 'wb');

 $fileStream = $uploaderHelper->readStream($reference-

>getFilePath(), false);

 });

 return $response;

 }

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 79

80

81

 // ... lines 82 - 84

85

86

87

88

89

90

91

92

93

 // ... lines 94 - 95

There ya go! The fanciest way of echo'ing content that you've probably ever seen, but it avoids

eating memory.

Setting the Content-Type

Try it out! Refresh and... it works... sort of. We are sending the file contents... but the browser is

clearly not handling it well. The reasons is that we haven't told the browser what type of file this is,

so it's just treating it like the world's ugliest web page.

And... hey! Remember when we stored the $mimeType of the file in the database? Whelp, that's

about to come in handy... big time! Add $response->headers->set() with Content-Type

set to $reference->getMimeType() .

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response = new StreamedResponse(function() use ($reference,

$uploaderHelper) {

 $outputStream = fopen('php://output', 'wb');

 $fileStream = $uploaderHelper->readStream($reference-

>getFilePath(), false);

 stream_copy_to_stream($fileStream, $outputStream);

 });

 return $response;

 }

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 79

80

81

 // ... lines 82 - 90

91

 // ... lines 92 - 93

94

95

Try it again. Hello PDF!

Content-Disposition: Forcing Download

Another thing you might want to do is force the browser to download the file. It's really up to you.

By default, based on the Content-Type , the browser may try to open the file - like it is here - or

have the user download it. To force the browser to always download the file, we can leverage a

header called Content-Disposition .

This header has a very specific format, so Symfony comes with a helper to create it. Say

$disposition = HeaderUtils::makeDisposition() . For the first argument, we'll tell it

whether we want the user to download the file, or open it in the browser by passing

HeaderUtils::DISPOSITION_ATTACHMENT or DISPOSITION_INLINE .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 80

81

82

 // ... lines 83 - 92

93

94

 // ... line 95

96

 // ... lines 97 - 99

100

101

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response->headers->set('Content-Type', $reference->getMimeType());

 }

}

use Symfony\Component\HttpFoundation\HeaderUtils;

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $disposition = HeaderUtils::makeDisposition(

 HeaderUtils::DISPOSITION_ATTACHMENT,

);

 }

}

Next, pass it the filename.

This is especially cool because, without this, the browser would probably try to call the file... just...

"download" - because that's the last part of the URL. Now it will use

$reference->getOriginalFilename() .

 Tip

If your original filename is not in ASCII characters, add a 3rd argument to

HeaderUtils::makeDisposition to provide a "fallback" filename.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 80

81

82

 // ... lines 83 - 92

93

94

95

96

 // ... lines 97 - 99

100

101

Before we set this header, I just want you to see what it looks like. So, dd($disposition)

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 80

81

82

 // ... lines 83 - 92

93

94

95

96

97

 // ... lines 98 - 99

100

101

use Symfony\Component\HttpFoundation\HeaderUtils;

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $disposition = HeaderUtils::makeDisposition(

 HeaderUtils::DISPOSITION_ATTACHMENT,

 $reference->getOriginalFilename()

);

 }

}

use Symfony\Component\HttpFoundation\HeaderUtils;

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $disposition = HeaderUtils::makeDisposition(

 HeaderUtils::DISPOSITION_ATTACHMENT,

 $reference->getOriginalFilename()

);

 dd($disposition);

 }

}

move over, refresh and... there it is. It's just a string, like any other header - but it has this specific

format, which is why Symfony has a helper method.

Set this on the actual response with

$response->headers->set('Content-Disposition', $disposition) .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 80

81

82

 // ... lines 83 - 96

97

 // ... lines 98 - 99

100

101

Try it one more time. Yes! It downloads and uses the original filename.

Next: let's make this all way cooler by uploading instantly via AJAX.

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response->headers->set('Content-Disposition', $disposition);

 }

}

Chapter 25: Dropzone: AJAX Upload

When I started creating this tutorial, I got a lot of requests for things to talk about... which, by the

way - thank you! That was awesome! Your requests absolutely helped drive this tutorial. One

request that I heard over and over again was: handling multiple file uploads at a time.

It makes sense: instead of uploading files one-by-one, an author should be able to select a bunch

at a time! This is something that's totally supported by the web: if you add a multiple attribute

to a file input, boom! Your browser will allow you to select multiple files. In Symfony, we would

then be handling an array of UploadedFile objects, instead of one.

But, I'm not going to show how to do that. Mostly... because I don't like the user experience! What

if I select 10 files, wait for all of them to upload, then one is too big and fails validation? If you're

not inside a form, you could probably save 9 of them and send back an error. But if you're inside a

form, good luck: unless you do some serious work, none of them will be saved because the entire

form was invalid!

I also want my files to start uploading as soon as I select them and I want a progress bar.

Basically... I want to handle uploads via JavaScript. In fact, over the next few videos, we're going

to create a pretty awesome little widget for uploading multiple files, deleting them, editing their

filenames and even re-ordering them.

Installing Dropzone

First: the upload part. Google for a library called Dropzone: it's probably the most popular

JavaScript library for handling file uploads. It creates a little... "drop zone"... and when you drop a

file here or select a file, it starts uploading. Super nice!

Search for a Dropzone CDN. I normally use Webpack Encore, and so, whenever I need a third-

party library, I install it via yarn and import it when I need to use it. If you're using Encore, you can

do this - and I recommend it. But in this tutorial, to keep things simple, we're not using Encore.

And so, in our edit template, we're including a normal JavaScript file that lives in the

public/js/ directory: admin_article_form.js , which holds some pretty traditional

JavaScript.

To get Dropzone rocking, copy the minified JavaScript file and go to the template Actually, copy

the whole script tag with SRI - that'll include the nice integrity attribute.

templates/article_admin/edit.html.twig

 // ... lines 1 - 47

48

 // ... lines 49 - 50

51

 // ... line 52

53

Grab the minified link tag too. We don't have a stylesheets block yet, so we need to add one:

{% block stylesheets %}{% endblock %} , call {{ parent() }} and paste the link

tag.

templates/article_admin/edit.html.twig

 // ... lines 1 - 41

42

43

44

45

46

 // ... lines 47 - 54

Dropzone basically "takes over" your form tag. You don't need a button anymore... or even the file

input. The form tag does need a dropzone class... but that's it!

{% block javascripts %}

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/dropzone/5.5.1/min/dropzone.min.js

integrity="sha256-cs4thShDfjkqFGk5s2Lxj35sgSRr4MRcyccmi0WKqCM="

crossorigin="anonymous"></script>

{% endblock %}

{% block stylesheets %}

 {{ parent() }}

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/dropzone/5.5.1/min/dropzone.min.c

integrity="sha256-e47xOkXs1JXFbjjpoRr1/LhVcqSzRmGmPqsrUQeVs+g="

crossorigin="anonymous" />

{% endblock %}

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 33

34

35

36

37

38

39

40

 // ... lines 41 - 54

Try it! Refresh and... hello Dropzone!

How Dropzone Uploads

When you select a file with Dropzone, it's smart enough to upload to the action URL on our

form. So... in theory... it should just... sort of work.

Back in the controller, scroll up to the upload endpoint and dump($uploadedFile) . I'm not

using dd() - dump and die - because this will submit via AJAX - and by using dump() without

die'ing, we'll be able to see it in the profiler.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 25

26

27

28

29

30

 // ... lines 31 - 76

77

 // ... lines 78 - 101

102

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <form action="{{ path('admin_article_add_reference', {

 id: article.id

 }) }}" method="POST" enctype="multipart/form-data"

class="dropzone">

 </form>

 </div>

 </div>

{% endblock %}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $request->files->get('reference');

 dump($uploadedFile);

 }

}

Ok: select a file. The first cool thing is that the file upload AJAX request showed up down on the

web debug toolbar! I'll click the hash and open that up in a new tab.

This is awesome! We're now looking at all the profiler data for that AJAX request! Actually...

hmm... that's not true. Look closely: it says that we were redirected from a POST request to the

admin_article_add_reference route. We're looking at the profiler for the article edit page!

This is a bit confusing. Click the "Last 10" link to see a list of the last 10 requests made into our

app. Now it's more obvious: Dropzone made a POST request to

/admin/article/41/references - that's our upload endpoint. But, for some reason, that

redirected us to the edit page. Click the token link to see the profiler for the POST request.

Check out the Debug tab. There it is: this is the dump from our controller... and it's null. Where's

our upload? The problem is that, by default, Dropzone uploads a field called file . But in the

controller, we're expecting it to be called reference .

Customizing Dropzone

We could fix this in the controller... but we can also configure Dropzone to use the reference

key. We're going to do that because, in general, as cool as it is that we can just add a "dropzone"

class to our form and it mostly works, to really get this system working, we're going to need to

customize a bunch of things on Dropzone.

Open up admin_article_form.js . First, at the very top, add

Dropzone.autoDiscover = false . That tells Dropzone to not automatically configure itself

on any form that has the dropzone class: we're going to do it manually.

public/js/admin_article_form.js

1

2

 // ... lines 3 - 42

Try it out - close the extra tab and refresh. Hmm... still there? Maybe a force refresh? Now it's

gone. The dropzone class still gives us some styling, but it's not functional anymore.

To get it working again, inside the document.ready() , call a new initializeDropzone()

function.

Dropzone.autoDiscover = false;

public/js/admin_article_form.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 29

30

 // ... lines 31 - 42

Copy that name, and, below, add it: function initializeDropzone() . If I were using

Webpack Encore, I'd probably organize this function into its own file and import it.

public/js/admin_article_form.js

 // ... lines 1 - 31

32

 // ... lines 33 - 40

41

The goal here is to find the form element and initialize Dropzone on it. To do that, let's add

another class on the form: js-reference-dropzone .

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 33

34

35

36

37

38

39

40

 // ... lines 41 - 54

Copy that, and back inside our JavaScript, say

var formElement = document.querySelector() with .js-reference-dropzone .

$(document).ready(function() {

 initializeDropzone();

});

function initializeDropzone() {

}

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <form action="{{ path('admin_article_add_reference', {

 id: article.id

 }) }}" method="POST" enctype="multipart/form-data"

class="dropzone js-reference-dropzone">

 </form>

 </div>

 </div>

{% endblock %}

public/js/admin_article_form.js

 // ... lines 1 - 31

32

33

 // ... lines 34 - 40

41

Yes, yes, I'm using straight JavaScript here instead of jQuery to be a bit more hipster - no big

reason for that. There's also a jQuery plugin for Dropzone. Next, to avoid an error on the "new"

form that doesn't have this element, if !formElement , return .

public/js/admin_article_form.js

 // ... lines 1 - 31

32

33

34

35

36

 // ... lines 37 - 40

41

Finally, initialize things with var dropzone = new Dropzone(formElement) . And now we

can pass an array of options. The one we need now is paramName . Set it to reference .

public/js/admin_article_form.js

 // ... lines 1 - 31

32

33

34

35

36

37

38

39

40

41

That should do it! Head over and select another file - how about earth.jpeg . And... cool! It

looks like it worked. Click to open the profiler for the AJAX request.

Oh... careful - once again, we got redirected! So this is the profiler for the edit page. Click the link

to go back to the profiler for the POST request and go back to the Debug tab. Yes! Now we're

getting the normal UploadedFile object.

function initializeDropzone() {

 var formElement = document.querySelector('.js-reference-dropzone');

}

function initializeDropzone() {

 var formElement = document.querySelector('.js-reference-dropzone');

 if (!formElement) {

 return;

 }

}

function initializeDropzone() {

 var formElement = document.querySelector('.js-reference-dropzone');

 if (!formElement) {

 return;

 }

 var dropzone = new Dropzone(formElement, {

 paramName: 'reference'

 });

}

Close this and refresh. Look at the list! There is earth.jpeg ! It worked! Of course, it's a little

weird that it redirected after success... and if there were a validation error... that would also cause

a redirect... and so it would look successful to Dropzone. The problem is that our endpoint isn't set

up to be an API endpoint. Let's fix that next and make Dropzone read our validation errors.

Chapter 26: API Endpoint & Errors with Dropzone

The AJAX upload finishes successfully... but the response is a redirect... which doesn't break

anything technically... but it's weird. Our endpoint isn't setup to be an API endpoint - it's 100%

traditional: we're redirecting on error and success.

But now that we are using this as an API endpoint, let's fix that! And... this kinda simplifies things.

For the validation error, we can say return $this->json($violations, 400) .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 24

25

26

 // ... lines 27 - 51

52

53

54

 // ... lines 55 - 66

67

 // ... lines 68 - 91

92

How nice is that? And at the bottom, we don't really need to return anything yet, but it's pretty

standard to return the JSON of a resource after creating it. So,

return $this->json($articleReference) .

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 if ($violations->count() > 0) {

 return $this->json($violations, 400);

 }

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 24

25

26

 // ... lines 27 - 64

65

66

67

 // ... lines 68 - 91

92

Let's try it! Move over, refresh... even though we don't need to... and select astronaut.jpg .

This time... it fails! Let's see what the error looks like. Hmm, actually, better: click to open the

profiler - you can always see the error there. Oh:

“A circular reference has been detected when serializing object of class Article .”

This is a super common problem with the serializer, and we saw it earlier. We're serializing

ArticleReference . And, by default, that will serialize all the properties that have getter

methods... including the article property. Then when it serializes the Article , it finds the

$articleReferences property and tries to serialize the ArticleReference objects... in an

endless loop.

The easiest way to fix this is to define a serialization group. In ArticleReference , above the

id property, add @Groups and let's invent one called main . Put this above all the fields that we

actually want to serialize, how about $id , $filename , $originalFilename and

$mimeType . We're not actually using the JSON response yet so it doesn't matter - but we will

use it in a few minutes.

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 return $this->json($articleReference);

 }

}

src/Entity/ArticleReference.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

14

 // ... lines 15 - 17

18

19

20

 // ... lines 21 - 27

28

 // ... line 29

30

31

32

 // ... line 33

34

 // ... line 35

36

37

38

 // ... line 39

40

 // ... line 41

42

43

44

 // ... lines 45 - 100

101

Back in the controller, let's break this onto multiple lines. The second argument is the status code

and we should actually use 201 - that's the proper status code when you've created a resource.

Next is headers - we don't need anything custom, and, for context, add an array with groups set

to ['main'] .

use Symfony\Component\Serializer\Annotation\Groups;

class ArticleReference

{

 /**

 * @Groups("main")

 */

 private $id;

 /**

 * @Groups("main")

 */

 private $filename;

 /**

 * @Groups("main")

 */

 private $originalFilename;

 /**

 * @Groups("main")

 */

 private $mimeType;

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 24

25

26

 // ... lines 27 - 65

66

67

68

69

70

71

72

73

74

 // ... lines 75 - 98

99

Let's see if that fixed things. Close the profiler and select "stars". Duh - I totally forgot - the stars

file is too big - you can see it failed. But when you hover over it... object Object? That's not a

great error message... We'll fix that in a minute.

Select Earth from the Moon.jpg and... nice! It works and the JSON response looks

awesome!

Displaying Errors Correctly

Ok, let's look back at what happened with stars. This failed validation and so the server returned a

400 status code. Dropzone did notice that - it knows it failed. But, by default, Dropzone expects

the Response to be just a string with the error message, not a nice JSON structure with a

detail key like we have.

No worries: we just need a little extra JavaScript to help this along. Back in

admin_article_form.js , add another option called init and set that to a function .

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 return $this->json(

 $articleReference,

 201,

 [],

 [

 'groups' => ['main']

]

);

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 31

32

 // ... lines 33 - 37

38

 // ... line 39

40

 // ... lines 41 - 45

46

47

48

Dropzone calls this when it's setting itself up, and it's a great place to add extra behavior via

events. For example, want to do something whenever there's an error? Call

this.on('error') and pass that a callback with two arguments: a file object that holds

details about the file that was uploaded and data - the data sent back from the server.

public/js/admin_article_form.js

 // ... lines 1 - 31

32

 // ... lines 33 - 37

38

 // ... line 39

40

41

 // ... lines 42 - 44

45

46

47

48

Because the real validation message lives on the detail key, we can say: if data.detail ,

this.emit('error') passing file and the actual error message string: data.detail .

function initializeDropzone() {

 var dropzone = new Dropzone(formElement, {

 init: function() {

 }

 });

}

function initializeDropzone() {

 var dropzone = new Dropzone(formElement, {

 init: function() {

 this.on('error', function(file, data) {

 });

 }

 });

}

public/js/admin_article_form.js

 // ... lines 1 - 31

32

 // ... lines 33 - 37

38

 // ... line 39

40

41

42

43

44

45

46

47

48

That's it! Refresh the whole thing... and upload the stars file again. It failed... but when we hover

on it! Nice! There's our validation error.

Next: now that our files are automatically uploaded via AJAX, the reference list should also

automatically update when each upload finishes. Let's render that whole section with JavaScript.

function initializeDropzone() {

 var dropzone = new Dropzone(formElement, {

 init: function() {

 this.on('error', function(file, data) {

 if (data.detail) {

 this.emit('error', file, data.detail);

 }

 });

 }

 });

}

Chapter 27: Rendering the File List Client Side

Here's the plan. Since we're using Dropzone to upload things via Ajax, I want to transform this

entire section into a fully JavaScript-driven dynamic widget. Some of this stuff we're going to talk

about isn't strictly related to handling uploads, but I got a lot of requests to show a full upload

"gallery" where you can upload, edit, delete and re-order files. So... let's do that!

Select another file to upload, like rocket.jpeg . It uploads... but you don't see it on the list until

we refresh. Lame! Instead of rendering this list inside Twig, let's render it via JavaScript. Once

we've done that, updating it dynamically will be easy!

Article References Collection Endpoint

To power the frontend, we need a new API endpoint that will return all of the references for a

specific Article. We got this: go into ArticleReferenceAdminController and create a new

public function called getArticleReferences() .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 79

80

81

 // ... line 82

83

 // ... lines 84 - 107

108

Add the @Route() above this with /admin/article/{id}/references .

This time, the id is the article id. URLs aren't technically important, but this is on purpose: in an

API, /admin/article/{id} would be the URL to get info about a specific article. Adding

/references onto that is a nice way to read its references.

Now add the methods="GET" - yes you can leave off the curly braces when there's just one

method - and name="admin_article_list_references" .

class ArticleReferenceAdminController extends BaseController

{

 public function getArticleReferences(Article $article)

 {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 75

76

77

 // ... line 78

79

80

81

 // ... line 82

83

 // ... lines 84 - 107

108

Down in the method, add the Article argument and don't forget the security check:

@IsGranted("MANAGE", subject="article") . We can use the annotation this time

because we do have an article argument. Then, oh, it's beautiful:

return $this->json($article->getArticleReferences()); .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 75

76

77

78

79

80

81

82

83

 // ... lines 84 - 107

108

How nice is it!? Let's check it out: in the browser, take off the /edit and replace it with

/references . And... oh boy, it explodes!

“Semantical error: Couldn't find constant article... make sure annotations are installed and

enabled.”

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references", methods="GET",

name="admin_article_list_references")

 */

 public function getArticleReferences(Article $article)

 {

 }

}

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references", methods="GET",

name="admin_article_list_references")

 * @IsGranted("MANAGE", subject="article")

 */

 public function getArticleReferences(Article $article)

 {

 return $this->json($article->getArticleReferences());

 }

}

Well, they are - this is a total rookie mistake I made with my annotations. On the @IsGranted

annotation, it should be subject="article" . Try it again. Here we go - that's the error I was

expecting: our favorite circular reference has been detected.

This is the exact same thing we saw a second ago when we tried to serialize a single

ArticleReference . And the fix is the same: we need to use the main serialization group.

Pass 200 as the status code, no custom headers, but one custom groups option set to main .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 79

80

81

82

83

84

85

86

87

88

89

90

 // ... lines 91 - 114

115

Try it again. Gorgeous! That contains everything we need to render the list in JavaScript.

JavaScript Rendering

To do that, we're not going to use Vue.js or React. Those are both wonderful options, and if you're

serious about building some high-quality front-end apps, you need to give them a serious look.

But, to keep the concepts understandable, I'm going to stick to jQuery and a few modern

JavaScript techniques.

Start in edit.html.twig . Find the list and completely empty it: we'll fill this in via JavaScript.

But add a new class so we can find it: js-reference-list . Let's also add a data-url

attribute: I want to print the URL to our new endpoint to make it easy for JavaScript to fetch the

references. Copy the new route name, paste it into path and add pass the id route wildcard set

to article.id .

class ArticleReferenceAdminController extends BaseController

{

 public function getArticleReferences(Article $article)

 {

 return $this->json(

 $article->getArticleReferences(),

 200,

 [],

 [

 'groups' => ['main']

]

);

 }

}

templates/article_admin/edit.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 25

26

27

28

 // ... lines 29 - 42

The ReferenceList JavaScript Class

Next, in admin_article_form.js , I'm going to paste in a class that I've started: you can copy

this from the code block on this page. This uses the newer "class" syntax from JavaScript... which

is compatible with most browsers, but not all of them. That's why I've added this note to use

Webpack Encore, which will rewrite the new syntax so that it's compatible with whatever browsers

you need.

{% block content_body %}

 <div class="row">

 <div class="col-sm-4">

 <ul class="list-group small js-reference-list" data-url="{{

path('admin_article_list_references', {id: article.id}) }}">

 </div>

 </div>

{% endblock %}

public/js/admin_article_form.js

 // ... lines 1 - 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 // ... lines 66 - 84

Before we dive into this class, let's start using it up on our document.ready() function. Say

var referenceList = new ReferenceList() and pass it $('.js-reference-list')

- that's the element we just added the attribute to.

// todo - use Webpack Encore so ES6 syntax is transpiled to ES5

class ReferenceList

{

 constructor($element) {

 this.$element = $element;

 this.references = [];

 this.render();

 $.ajax({

 url: this.$element.data('url')

 }).then(data => {

 this.references = data;

 this.render();

 })

 }

 render() {

 const itemsHtml = this.references.map(reference => {

 return `

<li class="list-group-item d-flex justify-content-between align-items-

center">

 ${reference.originalFilename}

 <span

class="fa fa-download">

`

 });

 this.$element.html(itemsHtml.join(''));

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 31

32

 // ... lines 33 - 84

And... yea! The class mostly takes care of the rest! In the constructor() , we take in the

jQuery element and store it on this.$element . It also keeps track of all the references that it

has, which starts empty and calls this.render() , whose job is to completely fill the ul

element.

this.references.map is a fancy way to loop over the references array, which is empty at the

start, but won't be forever. For each reference, it creates a string of HTML that is basically a copy

of what we had in our template before. This uses a feature called template literals that allows us

to create a multi-line string with variables inside - like reference.originalFilename and

referenced.id . The data from the references will ultimately come from our new endpoint, so

I'm using the same keys that our JSON has.

I did hardcode the URL to the download endpoint instead of doing something fancier. You could

generate that with FOSJsRoutingBundle if you want, but hardcoding it is also not a huge deal.

Finally, at the bottom, we take all that HTML and stick it into the element. This is a bit similar to

what React does, but definitely less powerful.

Back up in the constructor, the references array starts empty, but we immediately make an Ajax

call by reading the data-url attribute off of our element. When it finishes, we set

this.references to its data and once again call this.render() .

Phew! Let's see if it actually works! Refresh and... yes! If you watched closely, it was empty for a

moment, then filled in once the AJAX call finished.

Dynamically Adding the Row

Now that we're rendering this in JavaScript, we have a clean way to add a new row whenever a

file finishes uploading. Back inside the init function for Dropzone, add another event listener:

this.on('success') and pass a callback with the same file and data arguments. To

start, just console.log(data) so we can see what it looks like.

$(document).ready(function() {

 var referenceList = new ReferenceList($('.js-reference-list'));

});

public/js/admin_article_form.js

 // ... lines 1 - 66

67

 // ... lines 68 - 72

73

 // ... line 74

75

76

77

78

 // ... lines 79 - 84

85

86

87

Ok, refresh, select any file and... in the console... nice! We already did the work of returning the

new ArticleReference JSON on success... even though we didn't need it before. Thanks

past us!

And now, we're dangerous. If we can somehow take that data, put it into the references

property in our class and re-render, we'll be good!

To help that, add a new function called addReference() . This will take in a new reference and

then push it onto this.references . Then call this.render() .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 49

50

51

52

53

 // ... lines 54 - 69

70

 // ... lines 71 - 96

For people that are used to React, I do want to mention two things. First, we're mutating, um,

changing the this.references property when we say this.references.push() .

Changing "state", which is basically what this is, is a big "no no" in React. But in our simpler

system, it's fine. Second, each time we call this.render() , it is completely emptying the ul

and re-adding all the HTML from scratch. Front-end frameworks like React or Vue are way

smarter than this and are able to update just the pieces that changed.

function initializeDropzone() {

 var dropzone = new Dropzone(formElement, {

 init: function() {

 this.on('success', function(file, data) {

 console.log(file, data);

 });

 }

 });

}

class ReferenceList

{

 addReference(reference) {

 this.references.push(reference);

 this.render();

 }

}

Anyways, inside of initializeDropzone() , add a referenceList argument: we're going

to force this to get passed to us. I'll even document that this will be an instance of the

ReferenceList class.

public/js/admin_article_form.js

 // ... lines 1 - 71

72

73

74

75

 // ... lines 76 - 94

95

Back on top, pass in the object - referenceList .

public/js/admin_article_form.js

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 31

32

 // ... lines 33 - 96

And now inside success, instead of console.log() , we'll say

referenceList.addReference(data) .

public/js/admin_article_form.js

 // ... lines 1 - 74

75

 // ... lines 76 - 80

81

 // ... line 82

83

84

85

86

 // ... lines 87 - 92

93

94

95

Cool! Give your page a nice refresh. And... let's see: astronaut.jpg is the last file on the list

currently. So let's upload Earth from the Moon.jpeg . It uploads and... boom! So fast! We

can even instantly downloaded it.

/**

 * @param {ReferenceList} referenceList

 */

function initializeDropzone(referenceList) {

}

$(document).ready(function() {

 initializeDropzone(referenceList);

});

function initializeDropzone(referenceList) {

 var dropzone = new Dropzone(formElement, {

 init: function() {

 this.on('success', function(file, data) {

 referenceList.addReference(data);

 });

 }

 });

}

Next: let's keep leveling up: authors need a way to delete existing file references.

Chapter 28: Deleting Files

The next thing our file gallery needs is the ability to delete files. I know this tutorial is all about

uploading... but in these chapters, we're sorta, accidentally creating a nice API for our Article

references. We already have the ability to get all references for a specific article, create a new

reference and download a reference's file. Now we need an endpoint to delete a reference.

Add a new function at the bottom called deleteArticleReference() . Put the @Route()

above this with /admin/article/references/{id} ,

name="admin_article_delete_reference" and - this will be important -

methods={"DELETE"} . We do not want to make it possible to make a GET request to this

endpoint. First, because that's crazy-dangerous. And second, because if we kept building out the

API, we would want to have a different endpoint for making a GET request to

/admin/article/references/{id} that would return the JSON for that one reference.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 115

116

117

118

119

120

 // ... lines 121 - 122

123

124

Inside, add the ArticleReference $reference argument and then we'll add our normal

security check. In fact, copy it from above and put it here.

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/references/{id}",

name="admin_article_delete_reference", methods={"DELETE"})

 */

 public function deleteArticleReference(ArticleReference $reference)

 {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 115

116

117

118

119

120

121

122

123

124

The deleteFile() Service Method

Ok: how can we delete a file? Through the magic of Flysystem of course! And the best place for

that logic to live is probably UploaderHelper . We already have functions for uploading two

types of files, getting the public path and reading a stream. Copy the readStream() function

declaration, paste, rename it to deleteFile() and remove the return type.

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 83

84

85

 // ... lines 86 - 92

93

 // ... lines 94 - 121

122

We'll start the same way: by grabbing whichever filesystem we need.

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/references/{id}",

name="admin_article_delete_reference", methods={"DELETE"})

 */

 public function deleteArticleReference(ArticleReference $reference)

 {

 $article = $reference->getArticle();

 $this->denyAccessUnlessGranted('MANAGE', $article);

 }

}

class UploaderHelper

{

 public function deleteFile(string $path, bool $isPublic)

 {

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 83

84

85

86

 // ... lines 87 - 92

93

 // ... lines 94 - 121

122

Next say $result = $filesystem->delete() and pass that $path .

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 83

84

85

86

87

88

 // ... lines 89 - 92

93

 // ... lines 94 - 121

122

Finally, code defensively: if $result === false , throw a new exception with

Error deleting "%s" and $path .

class UploaderHelper

{

 public function deleteFile(string $path, bool $isPublic)

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 }

}

class UploaderHelper

{

 public function deleteFile(string $path, bool $isPublic)

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 $result = $filesystem->delete($path);

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 83

84

85

86

87

88

89

90

91

92

93

 // ... lines 94 - 121

122

The DELETE Endpoint

That's nice! Back in the controller, add an UploaderHelper argument, oh and we're also going

to need the EntityManagerInterface service as well. Remove the reference from the

database with $entityManager->remove($reference) and

$entityManager->flush() . Then $uploaderHelper->deleteFile() passing that

$reference->getFilePath() and false so it uses the private filesystem.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 119

120

121

 // ... lines 122 - 124

125

126

127

128

 // ... lines 129 - 130

131

132

class UploaderHelper

{

 public function deleteFile(string $path, bool $isPublic)

 {

 $filesystem = $isPublic ? $this->filesystem : $this-

>privateFilesystem;

 $result = $filesystem->delete($path);

 if ($result === false) {

 throw new \Exception(sprintf('Error deleting "%s"', $path));

 }

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function deleteArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper, EntityManagerInterface $entityManager)

 {

 $entityManager->remove($reference);

 $entityManager->flush();

 $uploaderHelper->deleteFile($reference->getFilePath(), false);

 }

}

Quick note: in the real world, if there was a problem deleting the file from Flysystem - which is

definitely possible when you're storing in the cloud - then you could end up with a situation where

the row is deleted in the database, but the file still exists! If you changed the order, you'd have the

opposite problem: the file might get deleted, but then the row stays because of a temporary

connection error to the database.

If you're worried about this, use a Doctrine transaction to wrap all of this logic. If the file was

successfully deleted, commit the transaction. If not, roll it back so both the file and row stay.

Anyways, what should this endpoint return? Well... how about... nothing! Return a

new Response() - the one from HttpFoundation - with null as the content and a 204

status code. 204 means: the operation was successful but I have nothing else to say!

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 12

13

 // ... lines 14 - 19

20

21

 // ... lines 22 - 119

120

121

 // ... lines 122 - 129

130

131

132

Hooking up the JavaScript

That's it! That is a nice endpoint! Head back to our JavaScript so we can put this all together.

First, down in the render() function, add a little trash icon next to the download link. I'll make

this a button... just because semantically, it requires a DELETE request, so it's not something the

user can click without JavaScript. Give it a js-reference-delete class so we can find it,

some styling classes and, inside, we'll use FontAwesome for the icon.

use Symfony\Component\HttpFoundation\Response;

class ArticleReferenceAdminController extends BaseController

{

 public function deleteArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper, EntityManagerInterface $entityManager)

 {

 return new Response(null, 204);

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 74

75

76

77

78

 // ... lines 79 - 80

81

 // ... line 82

83

84

85

86

87

 // ... lines 88 - 89

90

91

 // ... lines 92 - 117

Copy that class name and go back up to the constructor. Here say

this.$element.on('click') and then pass .js-reference-delete . This is called a

delegate event handler. It's handy because it allows us to attach a listener to any

.js-reference-delete elements, even if they're added to the HTML after this line is

executed. For the callback, I'll pass an ES6 arrow function so that the this variable inside is still

my ReferenceList object. Call a new method: this.handleReferenceDelete() and

pass it the event object.

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... lines 38 - 41

42

43

44

 // ... lines 45 - 51

52

 // ... lines 53 - 90

91

 // ... lines 92 - 117

class ReferenceList

{

 render() {

 const itemsHtml = this.references.map(reference => {

 return `

<li class="list-group-item d-flex justify-content-between align-items-

center" data-id="${reference.id}">

 <button class="js-reference-delete btn btn-link"><span class="fa fa-

trash"></button>

`

 });

 }

}

class ReferenceList

{

 constructor($element) {

 this.$element.on('click', '.js-reference-delete', (event) => {

 this.handleReferenceDelete(event);

 });

 }

}

Copy that name, head down, and paste to create that. Inside, we need to do two things: make the

AJAX request to delete the item from the server and remove the reference from the references

array and call this.render() so it disappears.

Start with const $li = . I'm going to use the button that was just clicked to find the

element that's around everything - you'll see why in a second. So,

const $li = $(event.currentTarget) to get the button that was clicked, then

.closest('.list-group-item') .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 58

59

60

 // ... lines 61 - 72

73

 // ... lines 74 - 90

91

 // ... lines 92 - 117

To create the URL for the DELETE request, I need the id of this specific article reference. To get

that, add a new data-id attribute on the li set to ${reference.id} . I'm adding this here

instead of directly on the button so that we could re-use it for other behaviors.

Now we can say const id = $li.data('id') and $li.addClass('disabled') to

make it look like we're doing something during the AJAX call.

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 58

59

60

61

62

 // ... lines 63 - 72

73

 // ... lines 74 - 90

91

 // ... lines 92 - 117

class ReferenceList

{

 handleReferenceDelete(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 }

}

class ReferenceList

{

 handleReferenceDelete(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 $li.addClass('disabled');

 }

}

Make that with $.ajax() with url() set to '/admin/article/references/'+id and

method "DELETE":

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 58

59

60

61

62

 // ... line 63

64

65

66

 // ... lines 67 - 71

72

73

 // ... lines 74 - 90

91

 // ... lines 92 - 117

To handle success, chain a .then() on this with another arrow function.

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 58

59

60

61

62

 // ... line 63

64

65

66

67

 // ... lines 68 - 71

72

73

 // ... lines 74 - 90

91

 // ... lines 92 - 117

class ReferenceList

{

 handleReferenceDelete(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 $li.addClass('disabled');

 $.ajax({

 url: '/admin/article/references/'+id,

 method: 'DELETE'

 });

 }

}

class ReferenceList

{

 handleReferenceDelete(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 $li.addClass('disabled');

 $.ajax({

 url: '/admin/article/references/'+id,

 method: 'DELETE'

 }).then(() => {

 });

 }

}

Now that the article reference has been deleted from the server, let's remove it from

this.references . A nice way to do that is by saying:

this.references = this.references.filter() and passing this an arrow function with

return reference.id !== id .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 58

59

60

61

62

 // ... line 63

64

65

66

67

68

69

70

 // ... line 71

72

73

 // ... lines 74 - 90

91

 // ... lines 92 - 117

This callback function will be called once for each item in the array. If the function returns true,

that item will be put into the new references variable. If it returns false, it won't be. The end

effect is that we get an identical array, except without the reference that was just deleted.

After this, call this.render() .

class ReferenceList

{

 handleReferenceDelete(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 $li.addClass('disabled');

 $.ajax({

 url: '/admin/article/references/'+id,

 method: 'DELETE'

 }).then(() => {

 this.references = this.references.filter(reference => {

 return reference.id !== id;

 });

 });

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

 // ... lines 74 - 90

91

 // ... lines 92 - 117

Let's try it! Refresh and... cool! There's our delete icon - it looks a little weird, but we'll fix that in a

minute. Let's see, in var/uploads we have a rocket.jpeg file. Let's delete that one. Ha! It

disappeared! The 204 status code looks good and... the file is gone!

It's strange when things work on the first try!

Alignment Tweak

While we're here, let's fix this alignment issue - it's weirding me out. Down in the render()

function, add a few Bootstrap classes to the download link and make the delete button smaller.

Try that. Better... but it's still just a touch off. Add vertical-align: middle to the download

icon. It's subtle but... yep - the buttons are lined up now.

class ReferenceList

{

 handleReferenceDelete(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 $li.addClass('disabled');

 $.ajax({

 url: '/admin/article/references/'+id,

 method: 'DELETE'

 }).then(() => {

 this.references = this.references.filter(reference => {

 return reference.id !== id;

 });

 this.render();

 });

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 74

75

76

77

78

 // ... lines 79 - 80

81

82

83

84

85

86

87

 // ... lines 88 - 89

90

91

 // ... lines 92 - 117

Next: our users are begging for another feature: the ability to rename the file after it's been

uploaded.

class ReferenceList

{

 render() {

 const itemsHtml = this.references.map(reference => {

 return `

<li class="list-group-item d-flex justify-content-between align-items-

center" data-id="${reference.id}">

 <a href="/admin/article/references/${reference.id}/download"

class="btn btn-link btn-sm"><span class="fa fa-download" style="vertical-

align: middle">

 <button class="js-reference-delete btn btn-link btn-sm"><span

class="fa fa-trash"></button>

`

 });

 }

}

Chapter 29: Edit Endpoint & Deserialization

I want more fancy! Seriously, we're going to add pretty much everything we can think of to make

this a sweet, flexible, sort of, file "gallery". What about allowing the user to update a file

reference?

Okay, well, we're not going to allow the user to update the actual attached file, there's just no

point. Want to upload a newer version of a file? Just delete the old one and upload the new one.

Feature, done!

But we could allow them to change the filename. Remember: this is the original filename. And,

yea, if they uploaded a file called astronaut.jpeg , it would be totally cool to let them change

that to something else after. Let's do it!

The Update API Endpoint

Let's keep thinking about our ArticleReference routes as a set of nice, RESTful API

endpoints. We already have an endpoint to create and delete an ArticleReference . This will

be an endpoint to edit a reference... except that the only field the user will be allowed to edit will

be the originalFilename .

Copy the beginning of our delete endpoint, paste, close it up and we'll call this

updateArticleReference() . Keep the same URL, but change the route name to

admin_article_update_reference - it should be reference, not references, let's fix that in

both places - I don't think I'm referencing that route name anywhere. And instead of

methods={"DELETE"} , use methods={"PUT"} .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 132

133

134

135

136

137

138

139

140

141

Cool! Let's think about how we want this endpoint to work. First, our JavaScript will send a

request with a JSON body that contains the data that should be updated on the

ArticleReference . In this case, the data will have only one field: originalFilename .

Deserializing JSON

So far, we've been using $this->json() to turn an object or multiple objects into JSON. This

uses Symfony's serializer behind the scenes. Now we're going to use the serializer to do the

opposite: to turn JSON back into an ArticleReference object. That's called deserialization

and... it's... pretty freakin' awesome!

Let's add a few more arguments: SerializerInterface $serializer and Request - the

one from HttpFoundation - so we can read the raw JSON body.

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/references/{id}",

name="admin_article_update_reference", methods={"PUT"})

 */

 public function updateArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper, EntityManagerInterface $entityManager)

 {

 $article = $reference->getArticle();

 $this->denyAccessUnlessGranted('MANAGE', $article);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 15

16

 // ... lines 17 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 162

163

164

To automagically turn the JSON into an ArticleReference object, say

$serializer->deserialize() . The serializer only has these two methods: serialize()

and deserialize() .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 141

142

 // ... lines 143 - 149

150

 // ... lines 151 - 162

163

164

This method needs the raw JSON from the request - that's $request->getContent() , what

type of object to turn this into - ArticleReference::class - and the format of the data:

json , because the serializer can also handle XML or any crazy format you dream up.

use Symfony\Component\Serializer\SerializerInterface;

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 $serializer->deserialize(

);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 141

142

143

144

145

 // ... lines 146 - 149

150

 // ... lines 151 - 162

163

164

Finally, we can pass some options - called "context". By default, deserialize() will always

create a new object... but we want it to update an existing object. To do that, pass an option called

object_to_populate set to $reference .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 141

142

143

144

145

146

147

 // ... line 148

149

150

 // ... lines 151 - 162

163

164

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 $serializer->deserialize(

 $request->getContent(),

 ArticleReference::class,

 'json',

);

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 $serializer->deserialize(

 $request->getContent(),

 ArticleReference::class,

 'json',

 [

 'object_to_populate' => $reference,

]

);

 }

}

Oh, and when we've been serializing, we've been passing a groups option, which tells the

serializer to put the properties from the "main" group into the JSON. We can do the same thing

here: we don't want a clever user to be able to update the internal filename or the id : we need to

restrict their power to changing the originalFilename .

Above $originalFilename , turn the groups value into an array and give it a second group:

input .

src/Entity/ArticleReference.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 33

34

 // ... line 35

36

37

38

 // ... lines 39 - 100

101

In the controller, way back down here, set groups to input . So if any other fields or passed,

they'll just be ignored.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 141

142

143

144

145

146

147

148

149

150

 // ... lines 151 - 162

163

164

class ArticleReference

{

 /**

 * @Groups({"main", "input"})

 */

 private $originalFilename;

}

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 $serializer->deserialize(

 $request->getContent(),

 ArticleReference::class,

 'json',

 [

 'object_to_populate' => $reference,

 'groups' => ['input']

]

);

 }

}

And... yea, that's it! We do need to think about validation - but, pff, we'll handle that later - like in 2

minutes. Right now we can celebrate with $entityManager->persist($reference) ...

which we technically don't need because this isn't a new object, but I usually add it, and

$entityManager->flush() .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 151

152

153

 // ... lines 154 - 162

163

164

What should we return? Typically after you edit a resource in an API, we return that resource

again. Scroll all the way up to our upload endpoint and steal the JSON logic. We could also

refactor this into a private method if we wanted to avoid duplication. Back down in our method,

paste, rename the variable to $reference and use 200 as the status code: we're not creating a

resource in this case.

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 $entityManager->persist($reference);

 $entityManager->flush();

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 154

155

156

157

158

159

160

161

162

163

164

Ok, that endpoint should be good! Or at least, we're ready to hook up our JavaScript so we can

find out if it explodes when we use it! That's next.

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request)

 {

 return $this->json(

 $reference,

 200,

 [],

 [

 'groups' => ['main']

]

);

 }

}

Chapter 30: JavaScript for Editing a Reference

To make this all work, but to avoid going totally insane and coding JavaScript for the next 30

minutes, we're going to turn the printed string into an input text body and, on "blur" - so when we

click away from it, we'll make an AJAX request to save the new filename.

Let's copy the original filename code and replace it with <input type="text" and value="

that original filename stuff. Let's also add two classes: one from Bootstrap to make things look

nice and another - js-edit-filename - so that we can find this field in JavaScript. Oh, one

more detail: add a style attribute with width: auto - just another styling thing.

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 92

93

94

95

96

97

98

 // ... lines 99 - 103

104

105

106

 // ... lines 107 - 108

109

110

 // ... lines 111 - 136

Next: copy the js- class name and head back up to the constructor. We're going to do the same

thing we did with our delete link: this.$element.on('blur') , this time with

.js-edit-filename and then our arrow function. Inside that, call a new function:

this.handleReferenceEditFilename() and pass that the event .

class ReferenceList

{

 render() {

 const itemsHtml = this.references.map(reference => {

 return `

<li class="list-group-item d-flex justify-content-between align-items-

center" data-id="${reference.id}">

 <input type="text" value="${reference.originalFilename}" class="form-

control js-edit-filename" style="width: auto;">

`

 });

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... lines 38 - 45

46

47

48

 // ... lines 49 - 55

56

 // ... lines 57 - 109

110

 // ... lines 111 - 136

Keep going: copy the method name, scroll down a bit, and create that function, which will accept

an event object. Let's also steal the first two lines from handleReferenceDelete() : we're

going to start the exact same way.

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 78

79

80

81

 // ... lines 82 - 91

92

 // ... lines 93 - 109

110

 // ... lines 111 - 136

Heck, we're going to make an AJAX request to the same URL! Just with the PUT method

insteadof DELETE .

When we send that AJAX request, we're only going to send one piece of data: the

originalFilename that's in the text box. But I want you to pretend that we're allowing multiple

fields to be updated on the reference. So, more abstractly, what we were really want to do is find

the reference that's being updated from inside this.references , change the

originalFilename data on it, JSON-encode that entire object, and send it to the endpoint.

If that doesn't make sense yet, don't worry. To find the reference object that's being updated right

now, say const reference = this.references.find() and pass this an arrow function

class ReferenceList

{

 constructor($element) {

 this.$element.on('blur', '.js-edit-filename', (event) => {

 this.handleReferenceEditFilename(event);

 });

 }

}

class ReferenceList

{

 handleReferenceEditFilename(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 }

}

with a reference argument. Inside, return reference.id === id .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 78

79

80

81

82

83

84

 // ... lines 85 - 91

92

 // ... lines 93 - 109

110

 // ... lines 111 - 136

This loops over all the references and returns the first one it finds that matches the id... which

should only be one. Now change the originalFilename property to

$(event.currentTarget) - that will give us the input element - .val() .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 78

79

80

81

82

83

84

85

 // ... lines 86 - 91

92

 // ... lines 93 - 109

110

 // ... lines 111 - 136

Ok! We're ready to send the AJAX request! Copy the first-half of the AJAX call from the delete

function, remove the .then() stuff, change the method to PUT and, for the data, just pass

reference .

class ReferenceList

{

 handleReferenceEditFilename(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 const reference = this.references.find(reference => {

 return reference.id === id;

 });

 }

}

class ReferenceList

{

 handleReferenceEditFilename(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 const reference = this.references.find(reference => {

 return reference.id === id;

 });

 reference.originalFilename = $(event.currentTarget).val();

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

 // ... lines 93 - 109

110

 // ... lines 111 - 136

There is a small problem with this - so if you see it, hang on! But, the idea is cool: we're sending

up all of the reference data. And yes, this will send more fields than we need, but that's ok! The

deserializer just ignores that extra stuff.

Testing time! Refresh the whole page. Oh wow - we have an extra < sign! As cool as that looks,

let's scroll down to render and... there it is - remove that.

Refresh again. Let's tweak the filename and then click off to trigger the "blur". Uh oh!

“Cannot set property originalFilename of undefined.”

Hmm. Look back at our code: for some reason it's not finding our reference. Oh, duh:

return referenced.id === id .

Ok, let's see if I've finally got everything right. Refresh, add a dash to the filename, click off and...

500 error! That's progress! Open the profiler for that request in a new tab. Ok: a "Syntax Error"

coming from a JsonDecode class. Oh, and look at the data that's passed to the

deserialize() function! That's not JSON!

Silly mistake. When we set the data key to the reference object, jQuery doesn't send up that

data as JSON, it uses the standard "form submit" format. We want

class ReferenceList

{

 handleReferenceEditFilename(event) {

 const $li = $(event.currentTarget).closest('.list-group-item');

 const id = $li.data('id');

 const reference = this.references.find(reference => {

 return reference.id === id;

 });

 reference.originalFilename = $(event.currentTarget).val();

 $.ajax({

 url: '/admin/article/references/'+id,

 method: 'PUT',

 data: reference

 });

 }

}

JSON.stringify(reference) .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 78

79

 // ... lines 80 - 86

87

 // ... lines 88 - 89

90

91

92

 // ... lines 93 - 109

110

 // ... lines 111 - 136

I think we've got it this time. Refresh, tweak the filename, click off and... no errors! Check out the

network tab. Yeah 200 ! The response returns the updated originalFilename and, if you

scroll down to the request body... cool! You can see the raw JSON that was sent up.

Validation

The last thing we need to do is... add validation. I know, it's always that annoying last detail once

you've got the "happy" path working perfectly. But, right now, we could leave the filename

completely blank and our system would be ok with that. Well ya know what? I am totally not ok

with that!

Ultimately, our endpoint modifies the ArticleReference object and that is what we should

validate. Above the originalFilename field, add @NotBlank() and let's also use

@Length() . The length can be 255 in the database, but let's use max=100 .

class ReferenceList

{

 handleReferenceEditFilename(event) {

 $.ajax({

 data: JSON.stringify(reference)

 });

 }

}

src/Entity/ArticleReference.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 34

35

 // ... lines 36 - 37

38

39

40

41

 // ... lines 42 - 103

104

Then, inside our endpoint, there's no form here, but that's fine. Add the

ValidatorInterface $validator argument. And right after we update the object with the

serializer, add $violations = $validator->validate() and pass it the $reference

object. Then if $violations->count() > 0 ,

return $this->json($violations, 400) .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 136

137

138

 // ... lines 139 - 151

152

153

154

155

 // ... lines 156 - 167

168

169

We're actually not going to handle that in JavaScript - I'll leave rendering the errors up to you -

you could highlight the element in red and print the error below... whatever you want.

But let's at least make sure it works. Clear out the filename, hit tab to blur and... there it is! A 400

error with our beautiful error response. To handle this in JavaScript, you'll chain a .catch() onto

use Symfony\Component\Validator\Constraints as Assert;

class ArticleReference

{

 /**

 * @Assert\NotBlank()

 * @Assert\Length(max=100)

 */

 private $originalFilename;

}

class ArticleReferenceAdminController extends BaseController

{

 public function updateArticleReference(ArticleReference $reference,

EntityManagerInterface $entityManager, SerializerInterface $serializer,

Request $request, ValidatorInterface $validator)

 {

 $violations = $validator->validate($reference);

 if ($violations->count() > 0) {

 return $this->json($violations, 400);

 }

 }

}

the end of the AJAX call and then do whatever you want.

Ok, what else can we add to our upload widget? How about the ability to reorder the list. That's

next.

Chapter 31: Reordering the Files

What else do you want to add to our file gallery widget? How about allowing them to be

reordered? Yea, that isn't really related to uploading either, but a lot of people asked for it... so,

let's do it!

Adding the position Field

To start, the ArticleReference entity needs a field that can store its order in the list. Find your

terminal and run:

php bin/console make:entity

Update ArticleReference and add one new field position . This is an integer and make it

not nullable. Cool!

Go find the property... there it is. Make it default to 0: until the user decides to reorder stuff, setting

them all to 0 is fine.

src/Entity/ArticleReference.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 48

49

50

51

52

 // ... lines 53 - 120

121

Create the migration with the usual:

php bin/console make:migration

class ArticleReference

{

 /**

 * @ORM\Column(type="integer")

 */

 private $position = 0;

}

and go to the src/Migrations directory so we can make sure it doesn't contain any surprises.

Looks perfect! Close that and run:

php bin/console doctrine:migrations:migrate

Adding the Sortable Library

Ok, the database is ready! For the frontend, there are a ton of libraries that can help you sort and

reorder stuff. I'm going to use one called Sortable. It's got a lot of support and tons of options.

We'll need a few of them.

If you're using Webpack Encore, I'd recommend installing this via yarn and then importing the

library when you need it. Because we're not, I'll Google for "sortablejs cdn". It's this one, from

jsdelivr - the first is a different library. It turns out "Sortable"... is a pretty generic name.

Click to copy the HTML+SRI script tag, then go find the edit template. Scroll down to the

JavaScript block and... paste!

templates/article_admin/edit.html.twig

 // ... lines 1 - 35

36

 // ... lines 37 - 39

40

 // ... line 41

42

Hey! We now have a global Sortable variable.

Integrating Sortable

Next, open admin_article_form.js and scroll up to the constructor so we can start using

this. Here's the plan: we're going to make each element - each "row" - sortable. And when we

finish dragging, we'll send an AJAX request to save the new positions.

{% block javascripts %}

 <script

src="https://cdn.jsdelivr.net/npm/sortablejs@1.8.3/Sortable.min.js"

integrity="sha256-uNITVqEk9HNQeW6mAAm2PJwFX2gN45l8a4yocqsFI6I="

crossorigin="anonymous"></script>

{% endblock %}

Add this.sortable = Sortable.create() . We're storing the instance of our new sortable

object onto a property because we'll need it later. Pass this the parent of the elements that should

be sortable. So... hmm... in our case, we want to attach sortable to the element that's

around everything. Fortunately, that's exactly what this.$element represents! So we can say

this.$element , and, this actually wants a raw HTMLElement, not a jQuery object, so add

[0] .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... line 38

39

 // ... lines 40 - 56

57

 // ... lines 58 - 110

111

 // ... lines 112 - 137

Give it a test! Refresh... and grab... sweet! When we finish ordering, nothing saves yet, but we'll

get there.

Making it Nicer!

Before we do, I think we can make this a bit nicer. Pass a second argument to create() : an

array of options. Pass one called handle set to .drag-handle .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... line 38

39

40

 // ... line 41

42

 // ... lines 43 - 59

60

 // ... lines 61 - 114

115

 // ... lines 116 - 141

class ReferenceList

{

 constructor($element) {

 this.sortable = Sortable.create(this.$element[0]);

 }

}

class ReferenceList

{

 constructor($element) {

 this.sortable = Sortable.create(this.$element[0], {

 handle: '.drag-handle',

 });

 }

}

With this, instead of being able to grab anywhere to start sorting, we'll only be able to grab

elements with this class. Down in render, how about, before the text field, add

 , and fa and fa-reorder .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

 // ... lines 37 - 97

98

99

100

101

102

 // ... lines 103 - 108

109

110

111

 // ... lines 112 - 113

114

115

 // ... lines 116 - 141

Oh, and while we're making this fancy, add animation: 150 ... it just makes it look cooler. Try it!

There's our drag handle and... nice - it's a bit smoother.

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... line 38

39

40

41

42

 // ... lines 43 - 59

60

 // ... lines 61 - 114

115

 // ... lines 116 - 141

This library doesn't require any CSS, which is cool... but we can make it a little nicer by adding

some. In the public/css/ directory, open styles.css . This is a nice, boring, normal CSS file

that's included on every page.

class ReferenceList

{

 render() {

 const itemsHtml = this.references.map(reference => {

 return `

<li class="list-group-item d-flex justify-content-between align-items-

center" data-id="${reference.id}">

`

 });

 }

}

class ReferenceList

{

 constructor($element) {

 this.sortable = Sortable.create(this.$element[0], {

 handle: '.drag-handle',

 animation: 150,

 });

 }

}

Add .sortable-ghost . When you're dragging, Sortable adds this class to where the element

will be added if you stop sorting at that moment. Give this a background color. Oh, and also, give

the drag-handle a cursor: grab .

public/css/styles.css

 // ... lines 1 - 251

252

253

254

255

256

257

258

Try it one more time - do a force refresh if it doesn't show up at first. And... there's the blue

background!

Ok, the database is setup and the frontend is ready. Next, let's add an API endpoint to save the

positions and make sure they're rendered in the right order.

/* Sortable */

.sortable-ghost {

 background-color: lightblue;

}

.drag-handle {

 cursor: grab;

}

Chapter 32: Reordering Endpoint & AJAX

Let's upload all of these files. How nice is that? One fails because it's the wrong type and another

fails because it's too big. But we get nice errors and all the rest worked. And this gives us a lot

more to play with for reordering!

Getting the Sorted Ids

To make an AJAX call when we finishing dragging, add a new option: onEnd set to an arrow

function. Inside console.log(this.sortable) - that's the sortable object we stored earlier

.toArray() .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... line 38

39

 // ... lines 40 - 41

42

43

44

45

 // ... lines 46 - 62

63

 // ... lines 64 - 117

118

 // ... lines 119 - 144

Check it out: refresh the page, drag one of these... and go look at the console. Woh! Those are

the reference ids... in the right order! Try it again: move this one up and... yep! The id 11 just

moved up a few spots.

But... how the heck is this working? How does sortable know what the ids are? Well, honestly...

we got lucky. It knows thanks to the data-id attribute that we put on each li! We added that for

our own JavaScript... but the Sortable library also knows to read that!

class ReferenceList

{

 constructor($element) {

 this.sortable = Sortable.create(this.$element[0], {

 onEnd: () => {

 console.log(this.sortable.toArray());

 }

 });

 }

}

The Reorder Endpoint

This is amazing! This is the exact data we need to send to the server! Open up

ArticleReferenceAdminController and find downloadArticleReference() . If you

look closely, about half of the methods in this controller have an {id} route wildcard where the id

is for an ArticleReference . Those endpoints are actions that operating on a single item. The

other half of the endpoints, the ones on top, also have an {id} wildcard, but these are for the

Article .

What about our new endpoint? We'll be reordering all of the references for one article... so it's a

bit more like these ones on top. Copy this entire action for getting article references, change the

name to reorderArticleReferences and put /reorder on the URL. Make this a

method="POST" and name it admin_article_reorder_references .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

 // ... lines 109 - 184

185

If you're wondering about the URL or the method POST , well, this endpoint isn't very RESTful.. it

doesn't fit into the nice create-read-update-delete model... and that's ok. Usually when I have a

weird endpoint like this, I use POST.

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references/reorder", methods="POST",

name="admin_article_reorder_references")

 * @IsGranted("MANAGE", subject="article")

 */

 public function reorderArticleReferences(Article $article)

 {

 return $this->json(

 $article->getArticleReferences(),

 200,

 [],

 [

 'groups' => ['main']

]

);

 }

}

Inside the method, here's the plan: our JavaScript will send a JSON body containing an array of

the ids in the right order. This array exactly. Add the Request argument so we can get read that

data and the EntityManagerInterface so we can save stuff.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 97

98

99

 // ... lines 100 - 121

122

 // ... lines 123 - 198

199

To decode the JSON this time, it's so simple! I'm going to skip using Symfony's serializer. Say

$orderedIds = json_decode() passing that $request->getContent() and true so it

gives us an associative array.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 97

98

99

100

 // ... lines 101 - 121

122

 // ... lines 123 - 198

199

Then, if orderedIds === false , something went wrong. Let's return this->json() and,

to at least somewhat match the validation responses we've had so far, let's set a detail key to,

how about, Invalid body with 400 for the status code.

class ArticleReferenceAdminController extends BaseController

{

 public function reorderArticleReferences(Article $article, Request

$request, EntityManagerInterface $entityManager)

 {

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function reorderArticleReferences(Article $article, Request

$request, EntityManagerInterface $entityManager)

 {

 $orderedIds = json_decode($request->getContent(), true);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 97

98

99

100

101

102

103

104

 // ... lines 105 - 121

122

 // ... lines 123 - 198

199

Using the Ordered Ids to Update the Database

Ok, cool: we've got the array of ids in the new order we want. Use this to say

$orderedIds = array_flip($orderedIds) . This deserves some explanation. The original

array is a map from the position to the id - the keys are 0, 1, 2, 3 and so on. After the flip, we have

a very handy array: the key is the id and the value is its new position.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 97

98

99

100

101

102

103

104

105

106

107

 // ... lines 108 - 121

122

 // ... lines 123 - 198

199

class ArticleReferenceAdminController extends BaseController

{

 public function reorderArticleReferences(Article $article, Request

$request, EntityManagerInterface $entityManager)

 {

 $orderedIds = json_decode($request->getContent(), true);

 if ($orderedIds === null) {

 return $this->json(['detail' => 'Invalid body'], 400);

 }

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function reorderArticleReferences(Article $article, Request

$request, EntityManagerInterface $entityManager)

 {

 $orderedIds = json_decode($request->getContent(), true);

 if ($orderedIds === null) {

 return $this->json(['detail' => 'Invalid body'], 400);

 }

 // from (position)=>(id) to (id)=>(position)

 $orderedIds = array_flip($orderedIds);

 }

}

To use this, foreach over $article->getArticleReferences() as $reference . And

inside, $reference->setPosition() passing this

$orderedIds[$reference->getId()] to look up the new position.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 97

98

99

100

101

102

103

104

105

106

107

108

109

110

 // ... lines 111 - 121

122

 // ... lines 123 - 198

199

And yes, we could code more defensively - like checking to make sure each array key was

actually sent. And I would do that if this were a public API that other people used, or if invalid data

could cause some harm.

Anyways, at the bottom, save: $entityManager->flush() .

class ArticleReferenceAdminController extends BaseController

{

 public function reorderArticleReferences(Article $article, Request

$request, EntityManagerInterface $entityManager)

 {

 $orderedIds = json_decode($request->getContent(), true);

 if ($orderedIds === null) {

 return $this->json(['detail' => 'Invalid body'], 400);

 }

 // from (position)=>(id) to (id)=>(position)

 $orderedIds = array_flip($orderedIds);

 foreach ($article->getArticleReferences() as $reference) {

 $reference->setPosition($orderedIds[$reference->getId()]);

 }

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

 // ... lines 113 - 121

122

 // ... lines 123 - 198

199

Sending the AJAX Request

Ok, let's hook up the JavaScript! Back in admin_article_form.js , scroll up... let's see - find

the onEnd() of sortable. Say $.ajax() and give this the url key. For the URL, remember, the

ul element has a data-url attribute, which is the path to the

admin_article_list_references route, so /admin/article/{id}/references . Not

by accident, the URL that we want is that plus /reorder .

class ArticleReferenceAdminController extends BaseController

{

 public function reorderArticleReferences(Article $article, Request

$request, EntityManagerInterface $entityManager)

 {

 $orderedIds = json_decode($request->getContent(), true);

 if ($orderedIds === null) {

 return $this->json(['detail' => 'Invalid body'], 400);

 }

 // from (position)=>(id) to (id)=>(position)

 $orderedIds = array_flip($orderedIds);

 foreach ($article->getArticleReferences() as $reference) {

 $reference->setPosition($orderedIds[$reference->getId()]);

 }

 $entityManager->flush();

 }

}

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... lines 38 - 41

42

43

 // ... lines 44 - 46

47

48

49

 // ... lines 50 - 66

67

 // ... lines 68 - 121

122

 // ... lines 123 - 148

So let's do a little bit of code re-use... and a little bit of hardcoding: in general, I don't worry too

much about hardcoding URLs in JavaScript. Copy this.$element.data('url') from below,

paste, and add /reorder . Then, method set to POST and data set to

JSON.stringify(this.sortable.toArray()) .

public/js/admin_article_form.js

 // ... lines 1 - 34

35

36

37

 // ... lines 38 - 41

42

43

44

45

46

47

48

49

 // ... lines 50 - 66

67

 // ... lines 68 - 121

122

 // ... lines 123 - 148

Ok, let's do this! Move over and refresh. No errors yet... Move "astronaut-1.jpg" down two spots

and... hey! A 200 status code on that AJAX request! That's a good sign. Refresh and... aw! It's

right back up on top!

class ReferenceList

{

 constructor($element) {

 onEnd: () => {

 $.ajax({

 });

 }

 });

 }

}

class ReferenceList

{

 constructor($element) {

 onEnd: () => {

 $.ajax({

 url: this.$element.data('url')+'/reorder',

 method: 'POST',

 data: JSON.stringify(this.sortable.toArray())

 });

 }

 });

 }

}

Changing the Endpoint Order

Oh wait... the problem is that we're not rendering the list correctly! This list loads by making an

Ajax request. In the controller... here's the endpoint: getArticleReferences() . And it gets

the data from $article->getArticleReferences() . The problem is that this method

doesn't know that it should order the reference's by position.

Open up the Article entity and, above $articleReferences , add

@ORM\OrderBy({"position"="ASC"}) .

src/Entity/Article.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 89

90

91

92

93

94

 // ... lines 95 - 323

324

Let's go check out the endpoint: I'll click to open the URL in a new tab. Woohoo!

astronaut-1.jpg is third! Refresh the main page. Boom! The astronaut is right were we sorted

it. Let's move it down a bit further... move the Symfony Best Practices up from the bottom and

refresh. The sorting sticks. Awesome!

Next, instead of saving the uploaded files locally, let's upload them to AWS S3.

class Article

{

 /**

 * @ORM\OneToMany(targetEntity="App\Entity\ArticleReference",

mappedBy="article")

 * @ORM\OrderBy({"position"="ASC"})

 */

 private $articleReferences;

}

Chapter 33: Configuring S3 Bucket & IAM User

Friends, I think it's finally time to store the uploaded files up... in the cloud. We're going to use

Amazon S3. But thanks to Flysystem, we could easily use a different service - they have a bunch

of adapters. Google again for OneupFlysystemBundle... and click into their docs so we can see

how to implement the s3 adapter. Search for S3 and... there it is.

Configuring the AWS S3 Adapter

The first thing we need is this aws/aws-sdk-php package. Copy that, move over to your

terminal and run:

composer require "aws/aws-sdk-php:^3.87"

Creating the S3 Bucket

While we're waiting for that, let's create the S3 bucket that will store our stuff! I'm already logged

into the S3 section of AWS. Click "Create bucket" and let's call it sfcasts-spacebar . Choose

whatever region makes sense for you - but remember that, because you'll need it later.

On the next screen, if you need encryption or logging or any of these things, check them. But we'll

just click next again to get to permissions. There are a few things we need to do here. First,

uncheck the two top boxes for "Block new public ACLs" and "Remove public access granted

through public ACLs". By unchecking these boxes, we can now have private files and public files

all in the same bucket. Click "Next" again and then "Create bucket".

IAM Permissions

Awesome! Bucket done! To be able to actually access this bucket... I'm going to open an new tab

for the IAM service. Click "Users" and add a new user. Let's call it:

sfcasts-spacebar-s3-access .

Okay. Check yes for "programmatic access", but don't check console access. This user will exist

solely so we can use its credentials in our app to talk to S3.

For permissions, this is always the tricky part, at least for me. There are a lot of existing "policies"

that can grant different permissions to different services... I'm going to open another tab to IAM

and click to create a new policy.

There's a builder to help create the policy... or you can click the JSON tab to do it yourself. So...

what do we put here? Fortunately, Flysystem has our back. In its docs for AWS S3, scroll down

and... nice! It gives us the IAM permissions we need! Copy that, go back, and paste. Tweak the

bucket name to be our bucket name. Let's see... it's sfcasts-spacebar . Back on the policy,

paste that in both spots.

{

 "Version": "2012-10-17",

 "Statement": [{

 "Sid": "Stmt1420044805001",

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket",

 "s3:GetObject",

 "s3:GetObjectAcl",

 "s3:PutObject",

 "s3:PutObjectAcl",

 "s3:ReplicateObject",

 "s3:DeleteObject"

],

 "Resource": [

 "arn:aws:s3:::your-bucket-name",

 "arn:aws:s3:::your-bucket-name/*"

]

 }]

}

This policy basically gives the new user full access to this specific bucket. Click "Review policy"

and give it a name, how about sfcasts-spacebar-full-s3-bucket-access . Ok, create

policy!

With that done, close that tab and go back to the original IAM tab where we're creating our new

user. Click the little refresh button and search for sfcasts . The second policy was from me

testing this earlier. Check the first box and hit "Next". Skip the tags... looks good... and create

user!

Congrats! The hardest part is over! This gives us two things we need: a key and a secret. Next:

let's set these as environment variables in our app and configure Flysystem to talk to S3!

Chapter 34: Flysystem & S3

With our key & secret in hand, and this unescapable feeling of power that they're giving us, let's

hook up Flysystem to use an S3 adapter. Oh, first, go check on that library we were installing.

Done! This is a PHP library for interacting with any AWS service, and it has nothing to do with

Symfony or Flysystem. Copy the example configuration. Our first job is to register a service for

this S3Client class that comes from that library.

Registering the S3Client Service

Let's close all these tabs so we can concentrate. Open config/services.yaml and, at the

bottom, paste that config! But I'm going to simplify this: copy the class name, remove it, and paste

that as the service id. Why? First, because, when possible, it's just easier to use the class name

as the service id instead of inventing a string id. And second, this will allow us to autowire the

S3Client service into any of our services or controllers. We won't need that for what we're

doing, but it's nice.

config/services.yaml

 // ... lines 1 - 53

54

55

56

57

58

59

60

61

This takes just one argument: a big array of config. This old looking API version is actually still the

most recent. For region, this depends on what region you chose for your bucket. Mine is

us-east-1 because I selected Virginia. If you selected a different region, it won't work. Kidding!

Just do some Googling to find the right region id.

What about the key and secret? These are the values IAM gave us after creating the user.

But, we probably don't want to put their values right here and commit them to the repository.

Instead, open the .env file and, inside of the custom vars section we created in a previous

 Aws\S3\S3Client:

 arguments:

 -

 version: '2006-03-01' # or 'latest'

 region: "region-id" # 'eu-central-1' for example

 credentials:

 key: "s3-key"

 secret: "s3-secret"

tutorial, let's invent two new environment variables AWS_S3_ACCESS_ID and

AWS_S3_ACCESS_SECRET .

.env

 // ... lines 1 - 32

33

34

 // ... lines 35 - 38

If you want, you could copy the values and put them directly into this file. But remember, the

.env file is committed to your git repository... and you really don't want any secret value to be

committed. Instead, create a new file at the root of your app called .env.local . This file is also

read by Symfony and any values will override the ones in .env . It's also ignored from git via our

.gitignore file.

Copy the two keys from .env and paste them here. And now we can grab the real values. Copy

the id, paste, then show the secret, copy, and paste that.

Environment variables, set! To use them, head back to services.yaml . Replace the key with

the special environment variable syntax: %env()% and inside, AW ... go copy the name -

AWS_S3_ACCESS_ID . Re-use that syntax for the secret: AWS_S3_ACCESS_SECRET .

config/services.yaml

 // ... lines 1 - 53

54

55

56

57

58

59

60

61

If you forget about Flysystem for a minute, we now have a fully functional S3Client service that

we an autowire and use to do anything with our new bucket! The question now is: how can we tell

Flysystem to use this?

The Flysystem AWS-S3-V3 Adapter

Go back to the OneupFlysystemBundle docs. Ok, so once the service is set up, we apparently

need to go into the actual config for this bundle and change to a new adapter: awss3v3 .

AWS_S3_ACCESS_ID=

AWS_S3_ACCESS_SECRET=

 Aws\S3\S3Client:

 arguments:

 -

 version: '2006-03-01'

 region: 'us-east-1'

 credentials:

 key: '%env(AWS_S3_ACCESS_ID)%'

 secret: '%env(AWS_S3_ACCESS_SECRET)%'

But to use that... hmm... it's not too obvious on this page. Go back to the Flysystem docs about

S3 and scroll up. Here we go: the Flysystem S3 adapter is its own separate package. Copy this

line, find your terminal and paste:

composer require "league/flysystem-aws-s3-v3:^1.0"

Once that finishes... there. Now we can use this awss3v3 adapter. Open up

config/packages/oneup_flysystem.yaml . Remove all that local config. Replace it with

awss3v3: . The first sub-key this needs is: client , which points to the service id for the

S3Client .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

 // ... lines 6 - 19

Add client: , copy the service id, and paste.

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

6

 // ... lines 7 - 19

The adapter also needs to know what S3 bucket it should be talking to. This is also something

that you might not want to commit to your repository, because production will probably use a

different bucket than when you're developing locally. So, back in our trusty .env file, add a third

environment variable AWS_S3_ACCESS_BUCKET ... well, I could just call this AWS_S3_BUCKET ... I

didn't really mean to keep that ACCESS part in there. But, no problem.

.env

 // ... lines 1 - 34

35

 // ... lines 36 - 39

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 awss3v3:

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 awss3v3:

 client: Aws\S3\S3Client

AWS_S3_BUCKET_NAME=

Just like before, copy that, duplicate it in .env.local and give it a real value, which... if you go

back to S3, is sfcasts-spacebar . Paste that.

Finally, copy the new variable's name, open oneup_flysystem.yaml , and set bucket to

%env(AWS_S3_ACCESS_BUCKET)% .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

6

7

 // ... lines 8 - 19

That's it! What about the private_uploads_adapter? Well, temporarily, copy the config from

the public adapter and paste it exactly down there. We're actually not going to need two

filesystems anymore... but we'll talk about that soon.

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

6

7

 // ... lines 8 - 19

Oh, and don't forget the % sign at the end of the %env()% syntax! I did do that correctly in

services.yaml .

Ok, I think we're ready! Both filesystems will use an awss3v3 adapter and each of those knows

to us the S3Client service that's reading our key and secret. So... it should... just kinda work!

The easiest way to find out is to reload the fixtures:

php bin/console doctrine:fixtures:load

And yes, I do recommend using S3 when developing locally if that's what you're using on

production. You could change the adapter to be the local adapter, but the less differences you

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 awss3v3:

 client: Aws\S3\S3Client

 bucket: '%env(AWS_S3_BUCKET_NAME)%'

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 awss3v3:

 client: Aws\S3\S3Client

 bucket: '%env(AWS_S3_BUCKET_NAME)%'

have between your local environment & production, the better.

Fixtures done! Go and refresh the S3 page. Hey! We have an article_image directory and it's

full of images! I think it worked! Go the homepage and... nothing works. That's because our paths

are all still pointing at the local server - not at S3. Let's fix that next!

Chapter 35: S3 Asset Paths

Hey! Flysystem is now talking to S3! We know this because we can see the article_image

directory and all the files inside of it. But when we went back to the homepage and refreshed,

nothing worked!

Check out the image src URL: this is definitely wrong, because this now needs to point to S3

directly. But! Things get even more interesting if you go back to the S3 page and refresh. We have

a media/ directory! And if you dig, there are the thumbnails! Woh!

This means that this thumbnail request did successfully get processed by a Symfony route and

controller and it did correctly grab the source file from S3, thumbnail it and write it back to S3.

That's freaking cool! And it worked because we already made LiipImagineBundle play nicely with

Flysystem. We told the "loader" to use Flysystem - that's the thing that downloads the source

image when it needs to thumbnail it - and the resolver to use Flysystem, which is the thing that

actually saves the final image.

Correcting our Base URL

So if our system is working so awesomely... why don't the images show up? It's because of the

hostname in front of the images: it's pointing at our local server, but it should be pointing at S3.

Click any of the images on S3. Here it is: every object in S3 has its own, public URL. Well actually,

every object has a URL, but whether or not anyone can access that URL is another story. More on

that later. I'm going to copy the very beginning of that, and then go open services.yaml .

Earlier, we created a parameter called uploads_base_url . LiipImagineBundle uses this to

prefix every URL that it renders. The current value includes 127.0.0.1:8000 because that's

our SITE_BASE_URL environment variable value. That worked fine when things were stored

locally... but not anymore!

Change this to https://s3.amazonaws.com/ and then our bucket name, which is already

available as an environment variable: %env()% , then go copy AWS_S3_ACCESS_BUCKET , and

paste.

config/services.yaml

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 61

This is our new base URL. What about the uploads_dir_name parameter? We're not using

that at all anymore! Trash it.

Ok, let's try it! Refresh and... it actually works! I mean... of course, it works!

Correcting the Absolute URLs

There's one other path we need to fix: the absolute path to uploaded assets that are not

thumbnailed. Open up src/Service/UploaderHelper.php and find the

getPublicPath() method... there it is. This is a super-handy method: it allows us to get the

full, public path to any uploaded file. This $publicAssetBaseUrl property... if you look on top,

it comes from an argument called $uploadedAssetsBaseUrl . And in services.yaml , that

is bound to the uploads_base_url parameter... that we just set!

There are a few layers, but it means that, in UploaderHelper the $publicAssetBaseUrl

property is now the long S3 URL, which is perfect!

Head back to down getPublicPath() . Even before we changed uploads_base_url to

point to S3, we were already setting it to the absolute URL to our domain... which means that this

method already had a subtle bug!

Check it out: the original purpose of this code was to use

$this->requestStackContext->getBasePath() to "correct" our paths in case our site

was deployed under a sub-directory of a domain - like https://space.org/thespacebar . In

that case, getBasePath() would equal thespacebar and would automatically prefix all of our

URLs.

But ever since we started including the full domain in $publicAssetBaseUrl , this would create

a broken URL! We could remove this. Or, to make it still work if $publicAssetsBaseUrl

happens to not include the domain, above this, set $fullPath = , copy the path part, replace

that with $fullPath , and paste.

parameters:

 uploads_base_url: 'https://s3.amazonaws.com/%env(AWS_S3_BUCKET_NAME)%'

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 60

61

62

63

 // ... lines 64 - 69

70

71

72

 // ... lines 73 - 127

128

Then, if strpos($fullPath, '://') !== false , we know that $fullpath is already

absolute. In that case, return it! That's what our code is doing. But if it's not absolute, we can keep

prefixing the sub-directory.

src/Service/UploaderHelper.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 60

61

62

63

64

65

66

67

68

69

70

71

72

 // ... lines 73 - 127

128

Hey! The files are uploading to S3 and our public paths are pointing to the new URLs perfectly.

Next, we can simplify! Remember how we have one public filesystem and one private filesystem?

With S3, we only need one.

class UploaderHelper

{

 public function getPublicPath(string $path): string

 {

 $fullPath = $this->publicAssetBaseUrl.'/'.$path;

 return $this->requestStackContext

 ->getBasePath().$fullPath;

 }

}

class UploaderHelper

{

 public function getPublicPath(string $path): string

 {

 $fullPath = $this->publicAssetBaseUrl.'/'.$path;

 // if it's already absolute, just return

 if (strpos($fullPath, '://') !== false) {

 return $fullPath;

 }

 // needed if you deploy under a subdirectory

 return $this->requestStackContext

 ->getBasePath().$fullPath;

 }

}

Chapter 36: S3 & Private Object via ACLs

Head to /admin/article and log back in since we cleared our database recently:

admin1@thespacebar.com , password engage . Edit any of the articles. Everything should

work just fine: I'll select a few references to upload and... it works nicely. It is a bit slower now that

the server is sending the files to S3 in the background, though that should be less noticeable once

we're on production, especially if our server is also hosted on AWS.

So... can we download these? Try it! Yea, it works great! Open up

ArticleReferenceAdminController and search for "download". Here it is: the download is

handled by downloadArticleReference : we open a file stream from Flysystem - which is

now from S3 - and stream that back to the user. By planning ahead and using Flysystem, when

we switched to S3, nothing had to change!

But, there is one tiny problem. Back on the page, click the image. Access denied!? This should

show us the full-size, original image. Hmm, the URL looks right. And, indeed! The problem isn't

the path, the problem is with that file's permissions on S3.

Each file, or "object" on S3 can be set to be publicly accessible or private. File are private by

default. In fact, the only reason that we can see the thumbnails, which are also stored in S3... is

that LiipImagineBundle is smart enough to make sure that when it saves the files to S3, it saves

them as public.

When an author uploads an article image, we need to do the same thing: we do want the original

images to be public.

Giving the Images Public ACL

Head over to UploaderHelper and find uploadFile() . So far, we've been using the

$isPublic argument to choose between the public and private filesystem objects. But when we

changed to S3, I temporarily made these two filesystems identical. That wasn't on accident: with

S3, we don't need two filesystems anymore! We can use the same one for both public and private

files, and control the visibility on a file-by-file basis.

Check it out: remove the $filesystem = part and always use $this->filesystem .

src/Service/UploaderHelper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 108

109

110

111

112

 // ... lines 113 - 117

118

 // ... lines 119 - 129

130

To tell Flysystem that a file should be public or private, add a third argument to writeStream() :

an array of options. The option we want is visibility . If $isPublic is true, use

AdapterInterface - the one from Flysystem - ::VISIBILITY_PUBLIC . Otherwise,

AdapterInterface::VISIBILITY_PRIVATE .

src/Service/UploaderHelper.php

 // ... lines 1 - 5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 108

109

110

111

112

113

114

115

116

117

118

 // ... lines 119 - 129

130

Cool, right? That won't instantly change the permissions on the files we've already uploaded. So

let's go upload a new one. Close the tab, select a new file, how about rocket.jpg and...

update! The thumbnail still works and if you click it, yes! The original file is public!

class UploaderHelper

{

 $newFilename = Urlizer::urlize(pathinfo($originalFilename,

PATHINFO_FILENAME)).'-'.uniqid().'.'.$file->guessExtension();

 $stream = fopen($file->getPathname(), 'r');

 $result = $this->filesystem->writeStream(

);

}

use League\Flysystem\AdapterInterface;

class UploaderHelper

{

 $newFilename = Urlizer::urlize(pathinfo($originalFilename,

PATHINFO_FILENAME)).'-'.uniqid().'.'.$file->guessExtension();

 $stream = fopen($file->getPathname(), 'r');

 $result = $this->filesystem->writeStream(

 $directory.'/'.$newFilename,

 $stream,

 [

 'visibility' => $isPublic ?

AdapterInterface::VISIBILITY_PUBLIC : AdapterInterface::VISIBILITY_PRIVATE

]

);

}

By the way, you can see this setting when you're looking at the individual files in S3. Click back to

the root of the bucket, find the rocket.jpg file and click it. Under "Permissions", here we go. My

account has all permissions, of course, and under "Public Access", Everyone has "Read object"

access.

Remove that Extra Private Filesystem!

Hey! This is awesome! Thanks to the object-by-object permissions super-power of S3, we don't

need an extra "private" filesystem at all! We can do some serious cleanup! Start in

config/packages/oneup_flysystem.yaml : remove the private_uploads_adapter

and filesystem.

config/packages/oneup_flysystem.yaml

1

2

3

4

5

6

7

8

9

10

11

Next, in services.yaml , because there's no private_upload_filesystem anymore,

remove that bind.

config/services.yaml

 // ... lines 1 - 10

11

 // ... line 12

13

 // ... lines 14 - 20

21

22

23

24

25

 // ... lines 26 - 60

Read the documentation: https://github.com/1up-

lab/OneupFlysystemBundle/tree/master/Resources/doc/index.md

oneup_flysystem:

 adapters:

 public_uploads_adapter:

 awss3v3:

 client: Aws\S3\S3Client

 bucket: '%env(AWS_S3_BUCKET_NAME)%'

 filesystems:

 public_uploads_filesystem:

 adapter: public_uploads_adapter

services:

 _defaults:

 bind:

 $markdownLogger: '@monolog.logger.markdown'

 $isDebug: '%kernel.debug%'

 $publicUploadsFilesystem:

'@oneup_flysystem.public_uploads_filesystem_filesystem'

 $uploadedAssetsBaseUrl: '%uploads_base_url%'

That will break UploaderHelper because we're using that bind on top. But... we don't need it

anymore! Remove the $privateFilesystem property and the

$privateUploadFilesystem argument.

src/Service/UploaderHelper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

21

22

 // ... lines 23 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 127

128

But, we're still using that property in two places... the first is down in readStream . Now that

everything is stored in one filesystem, delete that old code, remove the unused argument and

always use $this->filesystem . Reading a stream is the same for public and private files.

src/Service/UploaderHelper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 75

76

77

78

 // ... lines 79 - 84

85

 // ... lines 86 - 123

124

Repeat that in deleteFile() : delete the extra logic & argument, and use

$this->filesystem always.

class UploaderHelper

{

 private $filesystem;

 private $requestStackContext;

 public function __construct(FilesystemInterface

$publicUploadsFilesystem, RequestStackContext $requestStackContext,

LoggerInterface $logger, string $uploadedAssetsBaseUrl)

 {

 $this->filesystem = $publicUploadsFilesystem;

 $this->requestStackContext = $requestStackContext;

 $this->logger = $logger;

 $this->publicAssetBaseUrl = $uploadedAssetsBaseUrl;

 }

}

class UploaderHelper

{

 public function readStream(string $path)

 {

 $resource = $this->filesystem->readStream($path);

 }

}

src/Service/UploaderHelper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 86

87

88

89

 // ... lines 90 - 93

94

 // ... lines 95 - 123

124

Let's see... these two methods are called from ArticleReferenceAdminController . Take

off that second argument for readStream() .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 126

127

128

 // ... lines 129 - 131

132

133

134

 // ... lines 135 - 136

137

 // ... lines 138 - 145

146

 // ... lines 147 - 198

199

Then, search for "delete", and remove the second argument from deleteFile() as well.

class UploaderHelper

{

 public function deleteFile(string $path)

 {

 $result = $this->filesystem->delete($path);

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper)

 {

 $response = new StreamedResponse(function() use ($reference,

$uploaderHelper) {

 $outputStream = fopen('php://output', 'wb');

 $fileStream = $uploaderHelper->readStream($reference-

>getFilePath());

 });

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 150

151

152

 // ... lines 153 - 158

159

 // ... lines 160 - 161

162

 // ... lines 163 - 198

199

That felt great! There's one more piece of cleanup we can do, it's optional, but nice. Using the

word "public" in the adapter and filesystem isn't accurate anymore! Let's use uploads_adapter

and uploads_filesystem .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

 // ... lines 5 - 8

9

10

11

We reference this in a few spots. In liip_imagine.yaml , take out the public_ in these two

spots.

class ArticleReferenceAdminController extends BaseController

{

 public function deleteArticleReference(ArticleReference $reference,

UploaderHelper $uploaderHelper, EntityManagerInterface $entityManager)

 {

 $uploaderHelper->deleteFile($reference->getFilePath());

 }

}

oneup_flysystem:

 adapters:

 uploads_adapter:

 filesystems:

 uploads_filesystem:

 adapter: uploads_adapter

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 5

6

7

8

9

 // ... lines 10 - 13

14

15

16

17

 // ... lines 18 - 67

And in services.yaml , update the "bind" in the same way. Hmm, and I think I'll change the

argument name it's binding to: just $uploadFilesystem .

config/services.yaml

 // ... lines 1 - 10

11

 // ... line 12

13

 // ... lines 14 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 60

That will break UploaderHelper : we need to rename the argument there. But, let's just see

what happens if we... "forget" to do that. Refresh the page:

“Unused binding $uploadFilesystem in S3Client .”

This is that generic... and somewhat "inaccurate" error that says that we've configured a bind

that's never used! The error is even better if we temporarily delete the bind entirely. Ah, here it is:

“Cannot autowire UploaderHelper : argument $publicUploadFilesystem references an

interface, but that interface cannot be autowired.”

This is saying: Hey! I don't know what you want me to send for this argument! Put the bind back,

then, in UploaderHelper ... here it is. Change the argument to match the bind:

liip_imagine:

 loaders:

 flysystem_loader:

 flysystem:

 filesystem_service:

oneup_flysystem.uploads_filesystem_filesystem

 resolvers:

 flysystem_resolver:

 flysystem:

 filesystem_service:

oneup_flysystem.uploads_filesystem_filesystem

services:

 _defaults:

 bind:

 $uploadsFilesystem:

'@oneup_flysystem.uploads_filesystem_filesystem'

$uploadFilesystem .

src/Service/UploaderHelper.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 27

28

29

30

 // ... lines 31 - 33

34

 // ... lines 35 - 123

124

Oh, and there's one more thing we can get rid of! Do we need the public/uploads directory

anymore? No! Delete it! And inside .gitignore , we can remove the custom

public/uploads/ line we added.

So by putting things in S3... it simplifies things!

Next: now that I've been complimenting our S3 setup and saying how awesome it, I have a...

confession to make! We've just introduced a hidden performance bug. Let's crush it!

class UploaderHelper

{

 public function __construct(FilesystemInterface $uploadsFilesystem,

RequestStackContext $requestStackContext, LoggerInterface $logger, string

$uploadedAssetsBaseUrl)

 {

 $this->filesystem = $uploadsFilesystem;

 }

}

Chapter 37: Cached S3 Filesystem For Thumbnails

Check this out: I'm going to turn off my Wifi! Gasp! What do you think will happen? I mean, other

than I'm gonna miss all my Tweets and Instagrams! What will happen when I refresh? The page

will load, but all the images will be broken, right?

In the name of science, I command us to try it!

Woh! An error!?

“Error executing ListObjects on https://sf-casts-spacebar ... Could not contact DNS servers.”

What? Why is our Symfony app trying to connect to S3?

Here's the deal: on every request... for every thumbnail image that will be rendered, our Symfony

app makes an API request to S3 to figure out if the image has already been thumbnailed or if it

still needs to be. Specifically, LiipImagineBundle is doing this.

This bundle has two key concepts: the resolver and the loader. But there are actually three things

that happen behind the scenes. First, every single time that we use |imagine_filter() , the

resolver takes in that path and has to ask:

“Has this image already been thumbnailed?”

And if you think about it, the only way for the resolver to figure this out is by making an API

request to S3 to ask:

“Yo S3! Does this thumbnail file already exist?”

If it does exist, LiipImagineBundle renders a URL that points directly to that image on S3. If not, it

renders a URL to the Symfony route and controller that will use the loader to download the file

and the resolver to save it back to S3.

Phew! The point is: on page load, our app is making one request to S3 per thumbnail file that the

page renders. Those network requests are super wasteful!

https://sf-casts-spacebar/

The Cached Filesystem

What's the solution? Cache it! Go back to OneupFlysystemBundle and find the main page of their

docs. Oh! Apparently I need Wifi for that! There we go. Go back to their docs homepage and

search for "cache". You'll eventually find a link about "Caching your filesystem".

This is a super neat feature of Flysystem where you can say:

“Hey Flysystem! When you check some file metadata, like whether or not a file exists, cache

that so that we don't need to ask S3 every time!”

Actually, it's even more interesting & useful. LiipImagineBundle calls the exists() method on

the Filesystem object to see if the thumbnail file already exists. If that returns false, the cached

filesystem does not cache that. But if it returns true, it does cache it. The result is this: the first

time LiipImagineBundle asks if a thumbnail image exists, Flysystem will return false, and Liip will

know to generate it. The second time it asks, because the "false" value wasn't cached, Flysystem

will still talk to S3, which will now say:

“Yea! That file does exist.”

And because the cached adapter does cache this, the third time LiipImagineBundle calls

exists , Flysystem will immediately return true without talking to S3.

 Tip

If you're using version 4 of oneup/flysystem-bundle (so, flysystem v2), the

league/flysystem-cached-adapter will not work - it was not updated to support

flysystem v2. Someone has created a cached adapter -

https://github.com/Lustmored/flysystem-v2-simple-cache-adapter - but configuring it requires

extra steps.

To get this rocking, copy the composer require line, find your terminal and paste to download this

"cached" Flysystem adapter.

composer require league/flysystem-cached-adapter

https://github.com/Lustmored/flysystem-v2-simple-cache-adapter

While we're waiting, go check out the docs. Here's the "gist" of how this works, it's 3 parts. First,

you have some existing filesystem - like my_filesystem . Second, via this cache key, you

register a new "cached" adapter and tell it how you want things to be cached. And third, you tell

your existing filesystem to process its logic through that cached adapter. If that doesn't totally

make sense yet, no worries.

For how you want the cached adapter to cache things, there are a bunch of options. We're going

to use the one called PSR6. You may or may not already know that Symfony has a wonderful

cache system built right into it. Anytime you need to cache anything, you can just use it!

Configuring Symfony's Cache Pool

Start by going to config/packages/cache.yaml . This is where you can configure anything

related to Symfony's cache system, and we talked a bit about it in our Symfony Fundamentals

course. The app key determines how the cache.app service caches things, which is a general-

purpose cache service you can use for anything, including this! Or, to be fancier - I like being

fancy - you can create a cache "pool" based on this.

Check it out. Uncomment pools and create a new cache pool below this called

cache.flysystem.psr6 . The name can be anything. Below, set adapter to cache.app .

config/packages/cache.yaml

1

2

 // ... lines 3 - 17

18

19

20

That's it! This creates a new cache service called cache.flysystem.psr6 that, really... just

uses cache.app behind the scenes to cache everything. The advantage is that this new service

will automatically use a cache "namespace" so that its keys won't collide with other keys from

other parts of your app that also use cache.app .

In your terminal, run:

php bin/console debug:container psr6

framework:

 cache:

 pools:

 cache.flysystem.psr6:

 adapter: cache.app

There it is! A new fancy cache.flysystem.psr6 service.

Back in oneup_flysystem.yaml , let's use this! On top... though it doesn't matter where, add

cache: and put one new cached adapter below it: psr6_app_cache . The name here also

doesn't matter - but we'll reference it in a minute.

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

 // ... lines 5 - 21

And below that add psr6: . That exact key is the important part: it tells the bundle that we're

going to pass it a PSR6-style caching object that the adapter should use internally. Finally, set

service to what we created in cache.yaml : cache.flysystem.psr6 .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

3

4

5

6

 // ... lines 7 - 21

At this point, we have a new Flysystem cache adapter... but nobody is using it. To fix that,

duplicate uploads_filesystem and create a second one called

cached_uploads_filesystem . Make it use the same adapter as before, but with an extra

key: cache: set to the adapter name we used above: psr6_app_cache .

config/packages/oneup_flysystem.yaml

 // ... line 1

2

 // ... lines 3 - 13

14

 // ... lines 15 - 17

18

19

20

Thanks to this, all Filesystem calls will first go through the cached adapter. If something is cached,

it will return it immediately. Everything else will get forwarded to the S3 adapter and work like

normal. This is classic object decoration.

oneup_flysystem:

 cache:

 psr6_app_cache:

oneup_flysystem:

 cache:

 psr6_app_cache:

 psr6:

 service: cache.flysystem.psr6

oneup_flysystem:

 filesystems:

 cached_uploads_filesystem:

 adapter: uploads_adapter

 cache: psr6_app_cache

After all of this work, we should have one new service in the container. Run:

php bin/console debug:container cached_uploads

There it is: oneup_flysystem.cached_uploads_filesystem_filesystem . Finally, go

back to liip_imagine.yaml . For the loader, we don't really need caching: this downloads the

source file, which should only happen one time anyways. Let's leave it.

But for the resolver, we do want to cache this. Add the cached_ to the service id. The resolver is

responsible for checking if the thumbnail file exists - something we do want to cache - and for

saving the cached file. But, "save" operations are never cached - so it won't affect that.

config/packages/liip_imagine.yaml

1

 // ... lines 2 - 13

14

15

16

17

18

19

 // ... lines 20 - 69

Let's try this! Refresh the page. Ok, everything seems to work fine. Now, check your tweets, like

some Instagram photos, then turn off your Wifi again. Moment of truth: do a force refresh to fully

make sure we're reloading. Awesome! Yea, the page looks terrible - a bunch of things fail. But our

server did not fail: we are no longer talking to S3 on every request. Big win.

Next, let's use a super cool feature of S3 - signed URLs - to see an alternate way of allowing

users to download private files, which, for large stuff, is more performant.

liip_imagine:

 resolvers:

 flysystem_resolver:

 flysystem:

 # use the cached version so we're not checking to

 # see if the thumbnailed file lives on S3 on every request

 filesystem_service:

oneup_flysystem.cached_uploads_filesystem_filesystem

Chapter 38: Private Downloads & Signed URLs

I have one more performance enhancement I want to do. If you click download, it works great! But

if these files were bigger, you'd start to notice that the downloads would be kinda slow! Open up

ArticleReferenceAdminController and search for download. Remember: we're reading a

stream from S3 and sending that directly to the user. That's cool... but it also means that there's a

middleman in the process: our server! That slows things down. Couldn't we somehow give the

user direct access to the file on S3?

Go back to our bucket, head to its root directory, then click into article_reference . If you

click any of these files, each does have a URL. But if you try to go to it, it's not public. That's great

because these files are meant to be private... but it sorta ruins our idea of pointing users directly

to this URL.

Well, good news! We can have our cake and eat it too... as we say... for some reason in English.

Um, we can have the best of both worlds with... signed URLs.

Hello Signed URLs

Signed URLs are not something that we can create with Flysystem - it's specific to S3. So, instead

of using our Filesystem object, we'll deal with S3 directly, which turns out to be pretty awesome!

Google for "S3 PHP client signed url" to find their docs about this. Signed URLs let us say:

“Hey S3! I want to create a public URL to download this file... but I only want the link to be valid

for, like, 20 minutes.”

Cool, right! Because the link is temporary, it's ok to let users use it.

We'll do this by interacting with the S3Client object directly... which is super awesome because,

a few minutes ago, we registered an S3Client service so we could use it with Flysystem. Half

our job is already done!

The other thing we'll need is the bucket name.

Creating the Signed URL

Head back to downloadArticleReference() . Remove the UploaderHelper argument -

we won't need that anymore - and add S3Client $s3client . Also add

string $s3BucketName .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 21

22

23

 // ... lines 24 - 127

128

129

 // ... lines 130 - 139

140

 // ... lines 141 - 192

193

That won't autowire, so copy the argument name, open up services.yaml and add a bind for

this $s3BucketName: . For the value, copy the environment variable bucket syntax from before

and... paste.

config/services.yaml

 // ... lines 1 - 10

11

 // ... line 12

13

 // ... lines 14 - 20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 61

Cool! Back in the controller, copy the $disposition line - we're going to put this back in a

minute. Then, delete everything after the security check, paste the $disposition line, but

comment it out for now.

Ok, let's go steal some code from the docs! We already have the S3Client object, so just grab

the rest. Paste that then... let's see... replace my-bucket with the $s3BucketName variable.

For Key , that's the file path: $reference->getFilePath() . And, for

$request = $s3Client->createPresignedRequest() , you can use whatever lifetime

use Aws\S3\S3Client;

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

S3Client $s3Client, string $s3BucketName)

 {

 }

}

services:

 _defaults:

 bind:

 $s3BucketName: '%env(AWS_S3_BUCKET_NAME)%'

you want. These files are pretty small, so we don't need too much time - but let's make the URLs

live for 30 minutes.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 21

22

23

 // ... lines 24 - 127

128

129

130

131

132

133

134

135

136

137

 // ... lines 138 - 139

140

 // ... lines 141 - 192

193

Now that we have this "request" thing... how can we get the URL? Back on their docs, scroll

down... here it is: $request->getUri() .

When the user hits our endpoint, what we want to do is redirect them to the URL. Do that with

return new RedirectResponse() , (string) - they mentioned that in the docs, it turns the

URI into a string - then $request->getUri() .

use Aws\S3\S3Client;

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

S3Client $s3Client, string $s3BucketName)

 {

 $article = $reference->getArticle();

 $this->denyAccessUnlessGranted('MANAGE', $article);

 $command = $s3Client->getCommand('GetObject', [

 'Bucket' => $s3BucketName,

 'Key' => $reference->getFilePath()

]);

 $request = $s3Client->createPresignedRequest($command, '+30

minutes');

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 12

13

 // ... lines 14 - 21

22

23

 // ... lines 24 - 127

128

129

130

131

132

133

134

135

136

137

138

139

140

 // ... lines 141 - 192

193

Let's try it! Refresh! And... download! Ha! It works! We're loading this directly from S3. This long

URL contains a signature that proves to S3 that the request was pre-authenticated and should

last for 30 minutes.

Forcing S3 Response Headers

But we did lose one thing: our Content-Disposition header! This gave us two nice things: it

forced the user to download the file instead of loading it "inline", and it controlled the download

filename.

Hmm, this is tricky. Now that the user is no longer downloading the file directly from us, we don't

really have a way to set custom headers on the response. Well, actually, that's a big ol' lie! There

are two ways to do that. First, you can set custom headers on each object in S3. Or you can hint

to S3 that you want it to set custom headers on your behalf when the user goes to the signed

URL.

How? Add another option to getCommand() : ResponseContentType set to

$reference->getMimeType() . That'll hint to S3 that we want it to set a Content-Type

use Symfony\Component\HttpFoundation\RedirectResponse;

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

S3Client $s3Client, string $s3BucketName)

 {

 $article = $reference->getArticle();

 $this->denyAccessUnlessGranted('MANAGE', $article);

 $command = $s3Client->getCommand('GetObject', [

 'Bucket' => $s3BucketName,

 'Key' => $reference->getFilePath()

]);

 $request = $s3Client->createPresignedRequest($command, '+30

minutes');

 return new RedirectResponse((string) $request->getUri());

 }

}

header on the download response.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 127

128

129

 // ... lines 130 - 137

138

139

140

141

 // ... line 142

143

 // ... lines 144 - 146

147

 // ... lines 148 - 201

And ResponseContentDisposition . Move the $disposition code up above, then use

that value down here.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 127

128

129

 // ... lines 130 - 132

133

134

135

136

137

138

139

140

141

142

143

 // ... lines 144 - 146

147

 // ... lines 148 - 201

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

S3Client $s3Client, string $s3BucketName)

 {

 $command = $s3Client->getCommand('GetObject', [

 'Bucket' => $s3BucketName,

 'Key' => $reference->getFilePath(),

 'ResponseContentType' => $reference->getMimeType(),

]);

 }

class ArticleReferenceAdminController extends BaseController

{

 public function downloadArticleReference(ArticleReference $reference,

S3Client $s3Client, string $s3BucketName)

 {

 $disposition = HeaderUtils::makeDisposition(

 ResponseHeaderBag::DISPOSITION_ATTACHMENT,

 $reference->getOriginalFilename()

);

 $command = $s3Client->getCommand('GetObject', [

 'Bucket' => $s3BucketName,

 'Key' => $reference->getFilePath(),

 'ResponseContentType' => $reference->getMimeType(),

 'ResponseContentDisposition' => $disposition,

]);

 }

Cool, right? Go download the file one more time. Ha! It downloads and uses the original filename.

This is probably the best way to allow users to download private files. Oh, and if you need even

faster downloads... cause S3 isn't that fast for large files, you can do the same thing with

Cloudfront. Cloudfront is another service that gives users faster access to S3 files, and has a

similar process for creating signed URLs.

Ok friends, only one thing left, and it's a fun one! Let's talk about how our file upload endpoint

might look different if we were building a pure API.

Chapter 39: API-Style Uploads

How does a file upload work if you're building an API? Well, you have two options. First, you can

make your API endpoint look exactly like what we already built in

uploadArticleReference() .

Using our Current Endpoint with an API Client

Let me show you what I mean. I'm going to use Postman to interact with our endpoint as if it were

truly meant to be an API endpoint used by API clients. For the URL, copy the URL in the browser,

paste, and change /edit to /references . Yep, that'll hit our controller. Make this a POST

request.

What about the body of the request? What should that look like? Well, because we wrote our

endpoint to basically handle a traditional form-submit, the format will be form-data . For the key,

remember that we're expecting the file data on a field called reference . Change the field type

to "file" and select earth.jpeg .

That's it! Before trying this, our site is being served over https thanks to the Symfony local web

server and some certificate magic it does behind the scenes. But Postman doesn't know to use

that magic, so the certificate won't work. In the Postman preferences - I've already done it - turn

SSL verification off. Or you can run the Symfony web server with the --allow-http flag if you

want to avoid this.

Ok, send the request! Oh... what's this? Check out the preview. The login page, of course!

Uploading requires a valid user. Just to play around, let's remove the @IsGranted()

temporarily.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 21

22

23

24

25

26

27

28

 // ... lines 29 - 75

76

 // ... lines 77 - 198

199

Try it again. Beautiful! It works!

So, the first way to build an upload endpoint for an API is... like this! An endpoint that requires the

multipart form data format that we checked out at the beginning of this tutorial. Any API client will

be able to work with this and a lot of API's are built this way.

Pure API Endpoint with JSON: base64_decode

But, there's another way. And if you're building an API, this might feel a little bit more natural. To

see it, change the body to "raw", or actually, to JSON so we can set the request body manually,

instead of Postman building it for us from the nice form-data GUI.

When we change to use a JSON body, Postman helpfully auto-sets the Content-Type header

to application/json , which depending on your API, you may or may not need. But it's always

a good practice.

Ok, let's think about this from the perspective of a user of our API: if I want to send a file reference

to a server, usually I'd expect the body to look something like this

{"filename": "space.txt"} with, maybe a bunch of other fields. Because... in an API, the

request usually contains JSON! Not the weird form-data format.

Of course, space.txt isn't the content of a file, but we would still probably want to be able to

send the original filename. For the data, hmm, I'm just making this up, what if we create a data

key and put the binary data right here? That's great! Oh, except... you can't put binary data in

JSON: it's just not supported.

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references",

name="admin_article_add_reference", methods={"POST"})

 */

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator)

 {

 }

}

API's work around this fact by expecting the client to base64 encode the data. Search for "base64

encode online" to find a site that can base64 encode some stuff for us really easily. Let's type in

some text that we want to encode and... oops! We're on the decode side. Switch to encode and...

there we go! We get this simple, encoded string. By the way, the main downside to this approach

is that base64 encoded data is slightly bigger than the original data. On small or medium files, this

makes very little difference. But if you're uploading huge files, using the base64 encoded data will

slow things down, because more data needs to be transferred.

Anyways, paste that on the data key. We know this won't work... because our controller is totally

not set up to receive JSON, but pff. Let's try it anyways. Hit send and... validation error!

“Please select a file to upload”

Deserializer & A Model Class

Love it! Let's get to work. Back in our controller, to see what it looks like, let's make this endpoint

capable of handling both ways of uploading files: form-data and JSON.

We can figure out which situation we're in by looking at the Content-Type header. So, if

$request->headers->get('Content-Type') === 'application/json' , we'll do our

new thing, else, run the normal code. And... this is pretty cool... the only part that'll really be

different is the $uploadedFile part. Move that into the else.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 27

28

29

30

 // ... lines 31 - 42

43

44

45

46

 // ... lines 47 - 214

215

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 } else {

 /** @var UploadedFile $uploadedFile */

 $uploadedFile = $request->files->get('reference');

 }

}

In the first part of the if, just like a normal API endpoint, we need to decode the JSON request

content into something useful. To do that, let's use the serializer! Search for "deser", there it is.

Earlier, we used deserialize() to turn the JSON into an ArticleReference object. That

worked because the keys in that JSON matched the property names in that class.

But in this case, look at the fields: filename and data . We do have an originalFilename

field, and we could rename the filename key to that... but we definitely do not have... and do

not want a data property on ArticleReference that's equal to a base64 encoded version of

our file. That makes no sense.

This is a classic case where the data of an endpoint doesn't match the structure of our entity. And

that's cool! Instead of using the entity, we can create a new model class.

Inside src/ , let's create a new Api/ directory - just for organization - and inside, a new class:

how about ArticleReferenceUploadApiModel . The whole point of this class is to help us

deal with the data for this endpoint. So, its properties should match the data. Add

public $filename and public $data .

src/Api/ArticleReferenceUploadApiModel.php

1

2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 11

12

 // ... lines 13 - 16

17

18

Yes! Gasp! They're public! Because this class will only be used for this one, narrow, purpose, it's

ok to make life a bit easier with public properties. If this makes you want to scream and tackle me,

I get it! Just make them private and add the getter & setter methods. That will work perfectly.

While we're here, don't forget about validation: add @Assert\NotBlank above both of these.

<?php

namespace App\Api;

class ArticleReferenceUploadApiModel

{

 public $filename;

 public $data;

}

src/Api/ArticleReferenceUploadApiModel.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

We're ready! Back in the controller add a new argument at the end:

SerializerInterface $serializer . Then, it's beautiful, really

$uploadApiModel = $serializer->deserialize() . This takes three arguments: the raw

JSON - $request->getContent() - the type of object it should be turned into -

ArticleReferenceUploadApiModel::class - and the input format, json .

<?php

namespace App\Api;

use Symfony\Component\Validator\Constraints as Assert;

class ArticleReferenceUploadApiModel

{

 /**

 * @Assert\NotBlank()

 */

 public $filename;

 /**

 * @Assert\NotBlank()

 */

 public $data;

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 22

23

24

 // ... lines 25 - 27

28

29

30

31

32

33

34

35

 // ... lines 36 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 214

215

We don't need a context this time, because we're not deserializing into an existing object and we

don't need to use groups.

And because this object has some constraints, we'll need to check validation up here:

$violations = $validator->validate($uploadApiModel) . And if

$violations->count() > 0 , return the normal, $this->json($violations, 400) .

use App\Api\ArticleReferenceUploadApiModel;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 $uploadApiModel = $serializer->deserialize(

 $request->getContent(),

 ArticleReferenceUploadApiModel::class,

 'json'

);

 } else {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 22

23

24

 // ... lines 25 - 27

28

29

30

 // ... lines 31 - 36

37

38

39

40

 // ... lines 41 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 214

215

At the bottom, let's dd($uploadApiModel) so we can see if this crazy idea is working.

use App\Api\ArticleReferenceUploadApiModel;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 $violations = $validator->validate($uploadApiModel);

 if ($violations->count() > 0) {

 return $this->json($violations, 400);

 }

 } else {

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 22

23

24

 // ... lines 25 - 27

28

29

30

 // ... lines 31 - 36

37

38

39

40

41

42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 214

215

You ready to try this? Spin back over to Postman, high-five someone near you and... send! Hey!

Check out that beautiful dump! The text is still encoded, but that's a killer first step. Leave the

filename blank to check validation. Looks great.

Let's finish this next: we still need to base64 decode that data and push it into our normal file

upload system. Let's do that in a clean way that we can love.

use App\Api\ArticleReferenceUploadApiModel;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 $violations = $validator->validate($uploadApiModel);

 if ($violations->count() > 0) {

 return $this->json($violations, 400);

 }

 dd($uploadApiModel);

 } else {

 }

}

Chapter 40: Coding the API Upload Endpoint

Our controller is reading this JSON and decoding it into a nice

ArticleReferenceUploadApiModel object. But the data property on that is still base64

encoded.

base64_decode from the Model Class

Decoding is easy enough. But let's make our new model class a bit smarter to help with this. First,

change the data property to be private. If we only did this, the serializer would no longer be able

to set that onto our object.

src/Api/ArticleReferenceUploadApiModel.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 16

17

 // ... lines 18 - 25

26

Hit "Send" to see this. Yep! the data key is ignored: it's not a field the client can send, because

there's no setter for it and it's not public. Then, validation fails because that field is still empty.

So, because I've mysteriously said that we should set the property to private, add a

public function setData() with a nullable string argument... because the user could

forget to send that field. Inside, $this->data = $data .

class ArticleReferenceUploadApiModel

{

 private $data;

}

src/Api/ArticleReferenceUploadApiModel.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 16

17

 // ... lines 18 - 20

21

22

23

 // ... line 24

25

26

Now, create another property: private $decodedData . And inside the setter,

$this->decodedData = base64_decode($data) . And because this is private and does not

have a setter method, if a smart user tried to send a decodedData key on the JSON, it would be

ignored. The only valid fields are filename - because it's public - and data - because it has a

setter.

src/Api/ArticleReferenceUploadApiModel.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 16

17

18

19

20

21

22

23

24

25

26

Try it again. It's working and the decoded data is ready! It's a simple string in our case, but this

would work equally well if you base64 encoded a PDF, for example.

Saving a Temporary File

Let's look at the controller. We know the "else" part, that's the "traditional" upload part, is working

by simply setting an $uploadedFile object and letting the rest of the controller do its magic.

class ArticleReferenceUploadApiModel

{

 private $data;

 public function setData(?string $data)

 {

 $this->data = $data;

 }

}

class ArticleReferenceUploadApiModel

{

 private $data;

 private $decodedData;

 public function setData(?string $data)

 {

 $this->data = $data;

 $this->decodedData = base64_decode($data);

 }

}

So, if we can create an UploadedFile object up here, we're in business! It should go through

validation... and process.

If you remember from our fixtures, we can't actually create UploadedFile objects - it's tied to

the PHP upload process. But we can create File objects. Open up ArticleFixtures . At the

bottom, yep! We create a new File() - that's the parent class of UploadedFile and pass it

$targetPath , which is the path to a file on the filesystem. UploaderHelper can already

handle this.

In the controller, we can do the same thing. Start by setting $tmpPath to

sys_get_temp_dir() plus '/sf_upload'.uniqueid() to guarantee a unique, temporary

file path. Yep, we're literally going to save the file to disk so our upload system can process it. We

could also enhance UploaderHelper to be able to handle the content as a string, but this way

will re-use more logic.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

31

 // ... lines 32 - 43

44

 // ... lines 45 - 47

48

 // ... lines 49 - 50

51

 // ... lines 52 - 96

97

 // ... lines 98 - 219

220

To get the raw content, go back to the model class. We need a getter. Add

public function getDecodedData() with a nullable string return type. Then,

return $this->decodedData .

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 $tmpPath = sys_get_temp_dir().'/sf_upload'.uniqid();

 } else {

 }

 }

}

src/Api/ArticleReferenceUploadApiModel.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 26

27

28

29

30

31

Now we can say:

file_put_contents($tmpPath, $uploadedApiModel->getDecodedData()) . Oh, I'm

not getting any auto-completion on that because PhpStorm doesn't know what the

$uploadedApiModel object is. Add some inline doc to help it. Now, $this-> , got it -

getDecodedData() .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

31

32

33

 // ... lines 34 - 36

37

 // ... lines 38 - 43

44

45

 // ... lines 46 - 47

48

 // ... lines 49 - 50

51

 // ... lines 52 - 96

97

 // ... lines 98 - 219

220

class ArticleReferenceUploadApiModel

{

 public function getDecodedData(): ?string

 {

 return $this->decodedData;

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 /** @var ArticleReferenceUploadApiModel $uploadApiModel */

 $uploadApiModel = $serializer->deserialize(

);

 $tmpPath = sys_get_temp_dir().'/sf_upload'.uniqid();

 file_put_contents($tmpPath, $uploadApiModel->getDecodedData());

 } else {

 }

 }

}

Finally, set $uploadedFile to a new File() - the one from HttpFoundation . Woh! That

was weird - it put the full, long class name here. Technically, that's fine... but why? Undo that, then

go check out the use statements. Ah: this is one of those rare cases where we already have

another class imported with the same name: File . Let's add our use statement manually, then

alias is to, how about, FileObject . I know, a bit ugly, but necessary.

Below, new FileObject() and pass it the temporary path. Let's dd() that.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 11

12

 // ... lines 13 - 23

24

25

 // ... lines 26 - 28

29

30

31

 // ... lines 32 - 43

44

45

46

47

48

 // ... lines 49 - 50

51

 // ... lines 52 - 96

97

 // ... lines 98 - 219

220

Phew! Back on Postman, hit send. Hey! That looks great! Copy that filename, then, wait! That was

just the directory - copy the actual filename - called pathname , find your terminal and I'll open

that in vim .

Getting the "Client Original Name"

Yes! The contents are perfect! So... are we done? Let's find out! Take off the dd() , move over

and... this is our moment of glory... send! Oh, boo! No glory, just errors. Life of a programmer.

use Symfony\Component\HttpFoundation\File\File as FileObject;

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 $tmpPath = sys_get_temp_dir().'/sf_upload'.uniqid();

 file_put_contents($tmpPath, $uploadApiModel->getDecodedData());

 $uploadedFile = new FileObject($tmpPath);

 dd($uploadedFile);

 } else {

 }

 }

}

“Undefined method getClientOriginalName() on File.”

This comes from down here on line 84. Ah yes, the UploadedFile object has a few methods

that its parent File does not. Notably getClientOriginalName() .

No problem, back up, create an $originalName variable on both sides of the if. For the API

style, set it to $uploadApiModel->filename : the API client will send this manually. For the

else , set $originalName to $uploadedFile->getClientOriginalName() . Now, copy

$originalName , head back down to setOriginalFilename() and paste! And if for some

reason it's not set, we can still use $filename as a backup. But that's definitely impossible for

our API-style thanks to the validation rules.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

31

 // ... lines 32 - 46

47

48

 // ... lines 49 - 50

51

52

 // ... lines 53 - 83

84

 // ... lines 85 - 97

98

 // ... lines 99 - 220

221

Deep breath. Let's try it again. Woh! Did that just work? It looks right. Go refresh the browser. Ha!

We have a space.txt file! And we can even download it! Go check out S3 - the

article_reference directory.

Oh, interesting! The files are prefixed with sf-uploads - that's the temporary filename we

created on the server. That's because UploaderHelper uses that to create the unique

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if ($request->headers->get('Content-Type') === 'application/json')

{

 $originalFilename = $uploadApiModel->filename;

 } else {

 $originalFilename = $uploadedFile->getClientOriginalName();

 }

 $articleReference->setOriginalFilename($originalFilename ??

$filename);

 }

}

filename. And really, that's fine! These filenames are 100% internal. But if it bothers you, you

could use the original filename to help make the temporary file.

Anyways... we did it! A fully JSON-driven API upload endpoint. Fun, right?

Removing the Temporary File

Before we finish... and ride off into the sunset, as champions of uploading in Symfony, let's make

sure we delete that temporary file after we finish.

All the way down here, before persist, but after we've tried to read the mime type from the file,

add, if is_file($uploadedFile->getPathname()) , then delete it:

unlink($uploadedFile->getPathname()) .

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

 // ... lines 31 - 84

85

86

87

88

 // ... line 89

90

91

92

 // ... lines 93 - 102

103

 // ... lines 104 - 225

226

The if is sorta unnecessary, but I like it. To double-check that this works, let's

dd($uploadedFile->getPathname()) , go find Postman and send. Copy the path, find your

terminal, and try to open that file. It's gone!

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 $articleReference->setMimeType($uploadedFile->getMimeType() ??

'application/octet-stream');

 if (is_file($uploadedFile->getPathname())) {

 unlink($uploadedFile->getPathname());

 }

 $entityManager->persist($articleReference);

 }

}

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

 // ... lines 31 - 84

85

86

87

88

89

90

91

92

 // ... lines 93 - 102

103

 // ... lines 104 - 225

226

Celebrate by removing that dd() and sending one last time. I'm so happy.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

 // ... lines 31 - 86

87

88

89

 // ... lines 90 - 101

102

 // ... lines 103 - 224

225

Oh, and don't forget to put security back: @IsGranted("MANAGE", subject="article") . In

a real project, wherever I test my API endpoints - like Postman or via functional tests, I would

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 $articleReference->setMimeType($uploadedFile->getMimeType() ??

'application/octet-stream');

 if (is_file($uploadedFile->getPathname())) {

 unlink($uploadedFile->getPathname());

 dd($uploadedFile->getPathname());

 }

 $entityManager->persist($articleReference);

 }

}

class ArticleReferenceAdminController extends BaseController

{

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 if (is_file($uploadedFile->getPathname())) {

 unlink($uploadedFile->getPathname());

 }

 }

}

actually authenticate myself properly so they worked, instead of temporarily hacking out security.

Generally speaking, removing security is, uh, not a great idea.

src/Controller/ArticleReferenceAdminController.php

 // ... lines 1 - 23

24

25

26

27

28

29

30

31

 // ... lines 32 - 102

103

 // ... lines 104 - 225

226

Hey! That's it! We did it! Woh! I had a ton of a fun making this tutorial - we got to play with

uploads, a bunch of cool libraries and... the cloud. Uploading is fairly simple, but there can be a lot

of layers to keep track of, like Flysystem and LiipImagineBundle.

As always, let us know what you're building and if you have questions, ask them in the comments.

Alright friends, seeya next time!

class ArticleReferenceAdminController extends BaseController

{

 /**

 * @Route("/admin/article/{id}/references",

name="admin_article_add_reference", methods={"POST"})

 * @IsGranted("MANAGE", subject="article")

 */

 public function uploadArticleReference(Article $article, Request

$request, UploaderHelper $uploaderHelper, EntityManagerInterface

$entityManager, ValidatorInterface $validator, SerializerInterface

$serializer)

 {

 }

}

With <3 from SymfonyCasts

