AssetMapper: Modern JS with
Zero Build System




Chapter 1: A World without Build Systems?

Whoa, hey! Welcome to my frontend laboratory where we're going to do something that |
honestly thought | would never do again. Something bold! Something... maybe just a bit crazy.

We're going to write a modern frontend with zero build system.

How we got here

Back-story time! 7 years ago | was talking about how modern JavaScript requires a build
system. | was shouting to the world that we needed to transition from creating JavaScript and

CSS files in a "public" directory towards building them with a system, like Webpack or Vite.

These build systems were created because browsers didn't support modern features that we
wanted to use. I'm talking about the import statement, const, the class syntax, and so on. If
you tried to run this kind of JavaScript in a browser, you would have been greeted with sad error

messages.

So, the build system would transpile (that's a fancy word for "convert") that new looking
JavaScript to old looking JavaScript, so it could run in the browser. It would also combine
JavaScript and CSS files, so we would have fewer requests, it could create versioned

filenames, process TypeScript and JSX, Sass, and much more.

These systems are incredibly powerful. But they also add complexity and can slow down
coding. So I'm here, 7 years later to say that... we might not need those build systems anymore!
In this tutorial, we're going to write all the modern JavaScript that we know and love... but with
zero build system, and no Node. Just you and the browser: the way the Gods of the Internet

intended it.

|s this for Every Project?

Now, | admit, doing this won't be the best option for every project. If you want to use TypeScript,

or you're using React, Vue or Next.js, you'll probably still want a build system... and you should



probably use their build system. Skipping a build system also means no automatic tree-shaking

- if you know and care about that - though we'll learn how that can still work.

For the most part, coding with and without a build system is identical, but I'll point out the small
differences along the way. And if you're wondering about things like Sass preprocessors, or
Tailwind, you can totally use those and we'll see how. The final site is also going to be as

performant and fast as one built with a build system.

Project Setup

Okay, let's get to work! Coding without a build system is a joy: no node or batteries required. So
you should absolutely download the course code from this page and code along with me. After
you unzip that file, you'll have a start/ directory with the same code that you see here. Pop
open this README . md file. As usual, it holds all the setup details you'll need. I've done most of

them already. The last step is to find your terminal, move into the project, and run:

symfony serve -d

to use the symfony binary to start the built-in web server. I'll hold "command"”, click and... hello

Mixed Vinyl! But wow is this thing weird and ugly-looking.

This is a Symfony 6.3 project - the same project we've built in the Symfony series. It has
Doctrine installed... but there's nothing particularly special about it, and right now, it has literally
zero CSS and JavaScript. There's no assets/ directory and nothing hiding inside the

public/ directory.

The first thing | want to explore is the reality that our browser can handle more modern stuff
than we might realize... certainly much more than / realized a few months ago. Let's see what all

the hype is about by taking our browser for a modern JavaScript test drive next.



Chapter 2: Doing Modern JS Right in your Browser

Before we talk about anything related to Symfony, we're going to strip things down to the bare

minimum and prove that we can code modern JavaScript, right in our browser.

Directly Loading_Some JavaScript

Go directly into the public/ directory and create a new app.js file. To start, just

console.log() a message.

This won't be processed by Symfony or anything. In templates/base.html. twig, up here
in the javascripts block, though that doesn't make any difference, add a boring <script>
tag for this: <script src="{{ asset('app.js') }}">.lamusing the asset()

function... but that's not doing anything either.

templates/base.html. twig

T /7 ... lines 1 - 2

3 <head>

? /... lines 4 - 14

15 {% block javascripts %}

16 <script src="{{ asset('app.js') }}"></script>
$ /7 ... line 17

18 {% endblock %}

19 </head>

$ /7 ... lines 20 - 69

Ok, head to the browser, open up your Console and... refresh. There's the log! It's snooze-

worthy, but working.

Writing_Modern JavaScript

Time to make things interesting! Back in app.js, copy the mix nhame. Let's create a class:
class MixedVinyl, with a constructor and some properties. This uses the class syntax

introduced in ES6, or ECMAScript 6... basically version "6" of JavaScript. You'll hear ES6 a lot



because most modern features you're used to came from this version - released way back in
2015.

public/app.js

1 class MixedVinyl {

2 constructor(title, year) {
3 this.title = title;

4 this.year = year;

5 3

6

7 describe() {

T /7 ... line 8

9 3
10 }

$ /7 ... lines 11 - 14

In the describe() method, I'm leveraging string interpolation - another modern feature from
ESG6 - to return the string. Below, use this: const - yet another ES6 feature -
mix = new MixedVinyl() and pass in the mix name and year. Finally,

console.log(mix.describe()).

public/app.js

1 class MixedVinyl {

$ /7 ... lines 2 - 6

7 describe() {

8 return “${this.title} was released in ${this.year}’;
9 }

10 }

11

12 const mix = new MixedVinyl('Awesome Mix Vol. 1', 2014);
13 console.log(mix.describe());

Cool! This is the kind of code I like to write every day. Unfortunately, this is also the kind of code

that browsers have historically choked on!

So, normally, we would have a build system like Encore that would read this modern code and
rewrite it to old JavaScript... so it would work in our browser. But... tada! It already works in our
browser! We don't need to do anything. And that's not just because I'm using a new browser.

This is going to work in every browser.

If you're ever unsure, go to https://caniuse.com to check it out. Let's look up "ES6 class". Yup,

it's basically supported by everything... except for IE 11, which is dead.


https://caniuse.com/

Using_"import" in the Browser

But what about the import statement? Copy the class MixedVinyl then create another
file directly inside public/ called vinyl. js. Paste this in and then export it:

export default class.

public/vinyl.js

1 export default class {

2 constructor(title, year) {

3 this.title = title;

4 this.year = year;

5 ¥

6

7 describe() {

8 return “${this.title} was released in ${this.year}’;
9 ¥
10 }

$ /7 ... lines 11 - 12

Back over in app.js, import MixedVinyl from and, just like we do in Encore, use the

relative path: ./vinyl.js.

public/app.js

1 import MixedVinyl from './vinyl.js';
? /... lines 2 - 5

Though, notice that | am including the . js file extension... which you can do in Encore, but it's

not required. More on that later - but this was on purpose.

Importing_as a Module

So... does my browser support the import statement? Let's find out! Refresh. Booo:

“Cannot use import statement outside a module”

Ok, not a "code red" kind of boo, more like a "code orange”. Head back to base.html. twig.
When you hear the word "module”, it's referring to files that leverage export and import.
And if you want your JavaScript to be able to use these, you need to load the original file "as a

module”. It's a simple change. Copy the asset () function and now say



<script type="module">. Then, instead of src, inside, we're going to write some

JavaScript to import our app.js file.

templates/base.html. twig

T /7 ... lines 1 - 2

3 <head>

? /... lines 4 - 14

15 {% block javascripts %}

16 <script type="module">import '{{ asset('app.js') }}';</script>
$ /7 ... line 17
18 {% endblock %}
19 </head>

$ /7 ... lines 20 - 69

This may look nutty at first, but... we're simply importing the path to our app. js file. By doing
this, app.Jjs will execute exactly like it did before... but as a "module”... which just means that

import and export statements "should" work.

Do they? They do! OMG, our browser supports the import statement!

Importing_3rd Party Package URLS

We can even import third-party packages. To find one, I'm going to use my favorite CDN:
"jsDelivr". We'll be using this quite a bit throughout the tutorial. But you don't need to use
jsDelivr's CDN in your final code. It's a mirror of every NPM package... and so it's a convenient

place to find what we need.

Search for the popular "lodash" package. When we select it, it shows us a <script> tag we
could use. Click on "ESM", which is short for ECMAScript modules. When you're coding with
imports and exports, you want the ESM version of a package: it's a version that properly

"exports" modules.

Now check out that script tag:

<script type="module">
import lodash from '[...]'

</script>



That looks very similar to the code we have over here! We won't use this exactly, but | am going
to copy the URL. Now go back to app.js. To use lodash we can say import _ from and
paste that full URL.

public/app.js

? /... line 1
2 import _ from 'https://cdn.jsdelivr.net/npm/lodash@4.17.21/+esm';
$ /7 ... lines 3 - 6

Yes, importing from a full URL is totally allowed. Or we could download this file locally: I'll talk

more about that later. Below, let's say _.camelCase () to call one of its methods.

Let's try it! Spin over, refresh, and... look at that!. There's no build system here: we're just
playing with files inside the public/ directory. And yet, we're writing modern JavaScript,

importing and exporting modules and using a third-party NPM package. That's pretty amazing.

What Features are Missing?

However, there are two remaining problems. First, importing packages using the full URL is
annoying. | want to be able to say import from 'lodash' The second problem is asset
versioning. To have a performant system, we need the final files downloaded by the browser to
have version hashes in their filenames, like app.1234abcd. js. We need this so that we can
instruct browsers to perform long-term caching. And we can't get this by creating & serving files

directly from public/.

These are precisely the two things that Symfony's new AssetMapper component will help us
solve. But | wanted to start with raw JavaScript so that we could see how... most of what we're
doing is not solved by Symfony or AssetMapper or Al: it's solved by your browser and the

modern web.

Ok, let's delete these two files so | don't get confused... and also remove the import inside of

base.html. twig. Don't worry! We'll see all of that code in a different way soon.

Next: Let's install AssetMapper and get it rocking.



Chapter 3: Installing AssetMapper

We now know that we can run modern JavaScript directly in our browser. But to help smooth

the process, we're going to install a new Symfony component called AssetMapper.

Find your terminal and run:

composer require symfony/asset-mapper symfony/asset

I'm including the second package because it gives us that nice asset () function in Twig. It's

already installed in this project - just make sure you have it in yours.

Before we start: AssetMapper is experimental in Symfony 6.3, so there will likely be some
backwards compatibility breaks before 6.4. But as we will see, the concepts are solid, and you

can deploy a super-performant site with AssetMapper today.

Changes from the Flex Recipe

Ok, run:

git status

Oooh: the Flex recipe for AssetMapper added several things. Time for a quick tour! First, it gave
us an assets/ directory... which looks pretty much identical to what you would get if you
installed WebpackEncore. We have an app. js file - this will be the main, one file that's

executed - and also app.css: the main CSS file.



assets/app.js

1 /*

2 * Welcome to your app's main JavaScript file!

3+

4 * This file will be included onto the page via the importmap() Twig
function,

5 * which should already be in your base.html.twig.

6 */

7 console.log('This log comes from assets/app.js - welcome to AssetMapper!
&)

assets/styles/app.css

1 body {
2 background-color: skyblue;
3 }

In templates/base.html. twig, the recipe also added a 1ink tag to point to app.css.
We're going to talk more about stylesheets later, but you can already see that the CSS setup is

perfectly straightforward.

templates/base.html. twig

$ /7 ... lines 1 - 2

3 <head>

? /... lines 4 - 11

12 {% block stylesheets %}
13 <link rel="stylesheet" href="{{ asset('styles/app.css') }}">
14 {% endblock %}

$ /... line 15

16 {% block javascripts %}
17 {{ importmap() }}

T /7 ... line 18

19 {% endblock %}

20 </head>

$ /7 ... lines 21 - 70

The recipe added one more important line to this file: {{ importmap() }}. That partners

with a new importmap.php file. Those are important, and we'll go into detail about them soon.

The takeaway is that the recipe created a few files in the assets/ and added a 1ink tag to

base.html. twig. But otherwise, there's not a lot going on yet.

AssetMapper "Paths"



Looking back at the terminal, the recipe also created a new asset_mapper.yaml file. Let's

open that up: config/packages/asset_mapper.yaml.

config/packages/asset_mapper.yaml

1 framework:

2 asset_mapper:

3 # The paths to make available to the asset mapper.
4 paths:

5 - assets/

AssetMapper has one, main concept: you point it at a directory or set of directories, like
assets/, and it makes all the files inside available publicly, as if they lived in the public/

directory. We'll see how that's accomplished in a minute.

But before we do anything else, refresh the page and... the background turned blue! That's
coming from the app.css file. And, in the console log, we see a message that's coming from
assets/app.js. So, somehow, magically, just by running a composer require command,
these two files are already exposed publicly and are being loaded onto the page. Next, let's

learn how this is all working.



Chapter 4. Mapping Assets

AssetMapper isn't that big of a deal. Sure it dresses cool and has good dance moves, but it's

really quite simple. It has two main features.

Feature number one: we configure "paths” - like the assets/ directory - and it makes the files

inside available publicly.

Let's see this in action. If you downloaded the course code, you should have a tutorial/
directory with an important penguin.png file inside. Copy that. Inside assets/, we can
organize things however we want. So let's create an images/ directory and transport our

penguin there.

Now, remember, without the magic of AssetMapper, the only files that our browser should be
able to access are those inside the public/ directory. So it should be impossible to add an

img tag that loads our penguin. But... it is possible.

Using_the "Logical Path"

Head into, how about, templates/base.html. twig. Anywhere - I'll go above the body
block - add an img with src="{{ asset() }}" passing this the path to our file relative to

the assets/ directory. So images/penguin.png.

templates/base.html. twig

? /... lines 1 - 20

21 <body class="bg-gray-800 text-white">

$ /7 ... lines 22 - 49

50 <img src="{{ asset('images/penguin.png') }}">
$ // ... lines 51 - 69

70 </body>

$ /7 ... lines 71 - 72

That's it. This is known as the "logical path" to the asset. Because we've pointed AssetMapper

at the assets/ directory, we can refer to things inside of that via their path relative to that root.



And there's a great way to see all assets that are in the AssetMapper paths by going to the

terminal and running:

php bin/console debug:asset

Awesome! First, on top, it shows the AssetMapper paths, including the assets/ directory. This
project also has Pagerfanta installed. And we're already seeing how bundles can add their own
AssetMapper paths to make their own files available publicly. This won't be important for us, but

we could point the browser at any files inside that directory of the bundle.

Below, we see our image file, our CSS file, and our JavaScript file. These are their filesystem

paths and these are their logical paths.

Versioned Filenames

The point is, by using the asset () function and the logical path to an asset, when we refresh...
it works! Woh! And if we Inspect Element, check out the URL! It contains a version hash in the

middle! I'm actually going to view the page source... it's a little easier to see.

So not only is penguin.png available publicly, but the path is not just penguin.png: it
contains a version hash. If we modified the source penguin.png file - like gave it a cool
bowtie - the version hash would automatically change forcing anyone using our site to download

the fresh file. Booyal

This is also how app.css is loaded! Up near the top, the link tag uses
asset('styles/app.css'), which is the logical path in AssetMapper to that file. And so it

also output with a nice, versioned filename.

How Are the Files Made Public?

Okay, but how does this work? If you're like me, you want to know how the sausages are made.
Well, in the dev environment, it works thanks to a core event listener... basically a fancy,

internal Symfony controller.



For example, when the browser loads this image, that request goes through Symfony. It sees
that we're trying to load /assets/images/penguin-versionhash.png, it finds the source

file and serves it.

We can prove it! On the main tab, click any icon on the web debug toolbar to go into the profiler,
then click "Last 10" to see the 10 most recent requests through Symfony. And there it is: the

request that served the penguin image. Adorable.

In production, loading our files through Symfony would not be fast enough. So, instead, during

deploy, you'll run a new console command:

php bin/console asset-map:compile

We're going to talk more about deployment later. But this is really cool! It copies each file of
every AssetMapper path into the public/assets/ directory using their versioned filename.
That's it.

Suddenly, this file is no longer being served by Symfony: we're seeing a real, physical file! Over

in public/assets/, yep! We can see the final files in all their glory.

But... while we're developing, remove that directory so that everything continues to load

dynamically.

Moving_favicons into AssetMapper

And actually, while we're here, see those favicons inside the public/ directory? We're linking
to them at the top of base.html. twig. That totally works: the asset () function can still

refer to things inside the public/ directory.



templates/base.html. twig

0

3
0
8

10

20

// ... lines 1 - 2
<head>
// ... lines 4 - 7
<link rel="apple-touch-icon" sizes="180x180" href="{{

asset('apple-touch-icon.png') }}">

<link rel="icon" type="image/png" sizes="32x32" href="{{
asset('favicon-32x32.png') }}">

<link rel="icon" type="image/png" sizes="16x16" href="{{
asset('favicon-16x16.png') }}">

// ... lines 11 - 19
</head>
// ... lines 21 - 72

But... with almost no work, we can add free asset versioning to these! Step 1. move them into

the assets/images/ directory. Step 2: prefix each path with images/ to get their logical

path.

And..

. just like that, we still see the favicon up here... but more importantly, if we view the page

source, those are now versioned!

Let's go a bit deeper into CSS files next. Like, how can we refer to background images from

inside of CSS... if the final filename is versioned?



Chapter 5: CSS & Background Images

When we're talking about the frontend of a site, we're mostly talking about two things, CSS and
JavaScript. Let's start with the CSS side of things... which is dead simple with AssetMapper. You
create a CSS file inside the assets/ directory then include it with a good old-fashioned 1ink

tag that uses the file's logical path. That's it. Zero magic.

This s a bit different than Encore. With a build system like Encore, you may be familiar with
doing things like this: import './styles/app.css. That kind of thing will not work in a
browser environment. Import statement are for importing JavaScript files, period. Ok, you can
technically lazily-load CSS like this, but that's an edge-case we don't need to worry about right

now.

The point is, you can't import CSS files from JavaScript files and that's ok: adding a 1ink tag

works great.

Referencing_Images from inside CSS Files

Ok: so we know that we can refer to any file in the assets/ directory using the asset()

function... which we've now done twice.

But what if we need to refer to a file - like this image - from inside a CSS file?

templates/base.html. twig

T /7 ... lines 1 - 20

21 <body class="bg-gray-800 text-white">

$ // ... lines 22 - 49

50 <img src="{{ asset('images/penguin.png') }}">
$ /7 ... lines 51 - 69

70 </body>

$ /... lines 71 - 72

Check it out. Up here, we have a little record icon in the upper-left corner. Change that to be a
span with class="bg-1logo" so we can include our penguin image instead. Copy that

bg-1logo class head to app.css, add .bg-logo and... I'll add some basic styles.



templates/base.html. twig

? /... lines 1 - 26

21 <body class="bg-gray-800 text-white">

$ /7 ... lines 22 - 25

26 <a href="{{ path('app_homepage') }}" class="flex">
27 <span class="bg-logo"></span>

$ /7 ... line 28

29 </a>

$ /7 ... lines 30 - 69

70 </body>

$ /7 ... lines 71 - 72

The big question is: how can we set the background image... since the final penguin.png will
have a versioned filename? The answer is: exactly how you would normally do it: url() and

then the relative path to the file: ../images/penguin.png.

assets/styles/app.css

? /... lines 1 - 3
4 .bg-logo {

5 display: inline-block;

6 width: 32px;

7 height: 32px;

8 background-image: url('../images/penguin.png');
9 background-size: contain;
10 background-repeat: no-repeat;
1 }

This is exactly how you do it in Encore and exactly how you would do it if these files were being

served directly to our browser. We simply need to write "correct” code and it'll work.

Let's add 2 more styles for the background... then testing time! Refresh and... yes, it does work!

Inspect that image... then look at the final CSS file. Let's open this in a new tab.

Perfect! For the most part, the final files exactly match the source files. No magic. However, in
this case, AssetMapper did make one small change. In the original file, we referred to
../1images/penguin.png. But over here we have
../1mages/penguin-versionhash.png. Yup, AssetMapper made that tiny change to keep

things working, despite the versioned filenames.
The point is: you get to code like normal... and everything just works.

Next: let's invite some third-party CSS like Bootstrap and fonts... to the party!



Chapter 6: 3rd Party CSS

We talked about adding CSS to our site, but what about third-party CSS like Bootstrap? With a

build system such as Encore, we have a package. json file, and we can run:

npm install bootstrap

In AssetMapper, because there's no Node, we don't have a such an easy system for grabbing

CSS packages. But we can still get them.

Finding_Packages on jsDelivr

| like to use jsDelivr for this: a CDN for all NPM packages. Even if you don't ultimately use it as a

CDN, it's a nice way to find and download what you need.

Search for "Bootstrap” and... there it is. A lot of times, you'll find the CSS file you need right up
here, like this. I'll hit "Copy HTML + SRI". If you don't see the CSS file here... or you need a
different one, you can click the "Files" tab to browse the entire package. For example -

dist/css/ and then whatever you need.

Okay, we know that CSS with AssetMapper is delightfully boring... so go back over to the

stylesheets block and, above styles/app.css, paste the new 1link tag.



templates/base.html. twig

0
3

0
12

13

15

21

// ... lines 1 - 2
<head>
// ... lines 4 - 11
{% block stylesheets %}
<link rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.cs
integrity="sha256-fx038NkLY4U1TCrBDiu5FWPEa9eiZu®@1EiLryshJbCo=""
crossorigin="anonymous">

// ... line 14
{% endblock %}
// ... lines 16 - 20
</head>
// ... lines 22 - 74

If you want to avoid using the CDN, you could download this file directly into your project.

Because there's no package system like NPM, | would probably create an assets/vendor/

directory and put the file inside of that. Then | would commit that assets/vendor/ directory to

Git to keep it in your project and versioned. Committing vendor files into your project isn't

amazing, but it's not a huge deal and is your best option right now if you want to avoid a CDN.

You'll see me do this later for a JavaScript. file.

Ok, let's see if this is working! Scroll down to the middle of the page and add a button with

btn btn-primary to use a few common Bootstrap styles.

templates/base.html. twig

0
22

0
51

0
72

0

// ... lines 1 - 21
<body class="bg-gray-800 text-white">
// ... lines 23 - 50

<button class="btn btn-primary">Primary Button</button>
// ... lines 52 - 71
</body>
// ... lines 73 - 74

When we head over to the site and refresh... it works! Lovely!

Bootstrap Sass?

Ok, but what if | want to modify Bootstrap? Bootstrap itself is built with Sass. So, if you want,

you can build Sass files that override Bootstrap variables - for example to change default colors.



There are two important things about this. First, you absolutely can use Sass with AssetMapper.
There are details in the documentation about how to do that... and hopefully we'll add a bundle

soon to make it even easier.

& Go Deeper!

Check the Sass bundle at https://github.com/SymfonyCasts/sass-bundle

Also, in a moment, we're going to add Tailwind CSS to our site, which doesn't require Sass, but

has a very similar workflow because Tailwind needs to be "built".

And, if you do want to use Sass with Bootstrap, one simple way get the Bootstrap source code

is via the official Composer package for Bootstrap - so:

composer require twbs/bootstrap

If this is something you want, check out the AssetMapper docs.

Bootstrap CSS Variables

The second important thing is that, depending on what you want to do, you may not need to use
Sass to customize Bootstrap. That's because Bootstrap also exposes CSS variables, though

they're not as powerful.

We can see this down in the "Customize" "CSS Variables" section. CSS variables are a browser
feature that allow you to set variables inside of CSS then reference them. No fancy-pants Sass

needed.

For example, over in app.css...on top... add a :root pseudo selector, which is a common
place to initialize variables that will be used later. Here, override a CSS variable that Bootstrap

provides and uses: --bs-border-radius. Setitto 1rem.

assets/styles/app.css

1 :root {
2 --bs-border-radius: 1rem;
3 }

$ /7 ... lines 4 - 15


https://github.com/SymfonyCasts/sass-bundle

That should make the borders noticeably larger. Back at the browser... it works! The border
radius is now larger across the site. That's one of the variables you would find in the Bootstrap

documentation.

However, it's not always this simple. Let's say we want to override this primary color. You might
think you could do that by searching for "primary"... up here... and overriding something like

--bs-primary. That's sort of correct.

If you inspect our button, this color is the actual background color. But watch. Try to override

that by changing it to a slightly lighter color. Then head back and try it. It doesn't do anything.

assets/styles/app.css

1 :root {

2 --bs-primary: #0delfd;
$ /... line 3

Al b

T /7 ... lines 5 - 16

Copy the CDN URL, pop that into your browser, and take off the .min so we can see what's
going on. On top, it's setting all of those nice CSS variables. Look for btn-primary. | won't
get too deep here, but inside of .btn-primary, it's setting these CSS variables to these hard-

coded colors, instead of using other CSS variables that we can control.

So what do we do? In this case, we're kind of back to the basic strategy of overriding CSS...

though we can at least use CSS variables when we do this.

Spin back over to app.css and I'll paste in some styling for .btn-primary. This overrides
the variables that are set by Bootstrap to a different color. We are, at least, using the
bs-primary variable: we set it up here, and can reference it in as many spots as we want. So,

pretty basic CSS overriding, but with less repetition.

assets/styles/app.css

$ /7 ... lines 1 - 4
5 .btn-primary {

6 --bs-btn-bg: var(--bs-primary);

7 --bs-btn-border-color: var(--bs-primary);

8 --bs-btn-disabled-bg: var(--bs-primary);

9 --bs-btn-disabled-border-color: var(--bs-primary);
10 --bs-btn-hover-bg: #0bbfd7;

11 --bs-btn-hover-border-color: #0ba7d7;

12 }

? /... lines 13 - 24



And when we try it... it does change the color. Sweet! So CSS variables are one way to

customize Bootstrap, but Sass is still an even more powerful option.

Next: let's grab one more external styling thing: an open source font!



Chapter 7: Adding Fonts

Another common CSS need is a custom font. My favorite source for fonts is

https://fontsource.org where you can search through a huge number of fonts that have various

open source licenses.

For example, one popular font is "Inter". Here, you can download the file, and it gives some

install instructions, which are interesting: it uses the font as an npm package.
We're not using npm, but we can use npm packages: and we know how.

Head over to jsDelivr to find it. Notice that the package is called
@fontsource-variable/inter. I'm going to search for @fontsource/inter. And... just
like with Bootstrap, there's the CSS file! For the font nerds out there, if you looked inside of this
file, you would see that this is the 400 weight, and it's the file you would normally use if you

installed this via npm and imported it.

Copy that URL and paste it in the browser to see what it looks like.

Variable Fonts?

Notice that, back on FontSource, they recommend using a package starting with
@fontsource-variable. Variable fonts are cool: instead of needing a different font file for
each font weight like 400 vs 800, a single variable font can contain all the weights, while still

keeping the file size reasonably small. FontSource starting offering variable fonts quite recently.

Change the URL to use @fontsource-variable. This is what we actually want. Copy it,

head back over to base.html.twig, add <link rel="stylesheet">, and paste.


https://fontsource.org/

templates/base.html. twig

? /... lines 1 - 2

3 <head>

? /7 ... lines 4 - 11
12 {% block stylesheets %}
13 <link rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/@fontsource-
variable/inter@5.0.3/index.min.css">

$ // ... lines 14 - 15
16 {% endblock %}
? /... lines 17 - 21

22 </head>
$ /7 ... lines 23 - 75

Thanks to this, we can go over to app.css, inside of the body tag, and say

font-family: 'Inter Variable', adding sans-serif as a backup.

assets/styles/app.css

? /... lines 1 - 12

13 body {

T /7 ... line 14

15 font-family: 'Inter Variable',K sans-serif;
16 }

$ /... lines 17 - 25

Let's check it! Watch this text closely. Boom! It updated thanks to that new font.

If you're wondering why | didn't just search for the @fontsource-variable package on
jsDelivr originally, fair question: that's what | would normally do. jsDelivr is a mirror of every
NPM package. However, due to a bug in the API of npmjs.com, right now, these new "variable"
packages can't be found in the search. The bug has apparently been fixed - so hopefully the

issue will melt away soon.

The point is, jsDelivr does have the package we need, we just can't find it via the search. It's

kind of annoying, but should be temporary.

Next: Let's make our CSS a bit fancier by introducing Tailwind. That's going to be especially

interesting because Tailwind requires a build step.



Chapter 8: Tailwind CSS

The HTML on our site is already styled with Tailwind: all the classes you see here come from it.

So if we can get Tailwind installed, we should have a much less ugly site.

Tailwind is interesting because it's not just a CSS file you include: it requires a build step. And
that's totally fine! Even though we don't have a build system for everything doesn't mean we

can't choose to add one for some specific things.

Using TailwindBundle

Before we dive in... about a week after | recorded this, we created a bundle that makes it super

easy to add Tailwind. It's called, creatively, TailwindBundle! Seeing how you can set up a small

build system is still interesting - but if you want to skip this chapter and head over to that bundle

instead, it won't hurt my feelings. The bundle basically automates what we're about to do.

Downloading_the Standalone Executable

To get all of this working, we need the Tailwind binary file. As we see here, we could install it
with Node... and that's a really flexible option. You would have a package. json file... but

instead of it containing WebpackEncore and a ton of other stuff, it would just have Tailwind.

The other option, which avoids the need for Node entirely, is to use the standalone executable.
Click the "Standalone CLI build" to go to the Tailwind release page. Find the version you need:
for me, it's "tailwind-macos-arm64". You can download that here, but I'll copy the link address...

so | can download it fancily via curl: curl -s10 then paste!

It doesn't matter where you put this, but I'm going to move it into the bin/ directory and
rename it to tailwindcss... instead of that long name. Finally, because other machines - like
the computers of our co-workers or the machine that deploys our site - might need a different

version of this file, let's ignore it.


https://github.com/symfonycasts/tailwind-bundle

.gitignore
$ /7 ... lines 1 - 14
15 /bin/tailwindcss

So yes, this does mean that everyone will need to download their own Tailwind binary.

The very last step is to make this executable. On a Linux-based system, that's:

chmod +x bin/tailwindcss

Oh, and there is an extra, very-very last step if you're on a Mac. Run:

open bin/tailwindcss

If this is the first time you've downloaded the file, it will ask you to verify that you do want to

open it from a security standpoint.

Initializing_Tailwind

Okay! We now have the bin/tailwindcss executable, which does not require Node. From
here, we can follow the normal docs. This is something | really like about the new frontend
philosophy. If you do need a build system, you can just use Tailwind's build system directly and

follow their instructions: no need for a Symfony-specific solution.

Here, it says that we need to run:

tailwindcss init

So let's do that!

./bin/tailwindcss init



This creates a shiny new tailwind.config. js file. Let's go check it out!

tailwind.config.js

1 /** @type {import('tailwindcss').Config} */
module.exports = {

content: [],

theme: {

extend: {},

plugins: [],

3
// ... lines 9 - 10

2

3

4

5

6 1}
>

8

)

The most important thing is to configure the content key. This tells Tailwind where it should
look for HTML that may contain Tailwind classes. Search for their Symfony-specific
documentation. Down here, they have exactly what we want! Copy the content key... then

paste! | mean... paste it in the correct spot!

tailwind.config.js

T /7 ... line 1

2 module.exports = {

3 content: [

4 "./assets/**/*.js",

5 "./templates/**/*.html.twig",
6 1

$ /7 ... lines 7 - 10

1 }

$ /7 ... lines 12 - 13

The last step is to copy the three base directive lines for Tailwind... and put those inside
app.css. I'll remove the Bootstrap stuff... but keep a little bit of our custom code down here.

Nice!

assets/styles/app.css

1 @tailwind base;
@tailwind components;

2
3 @tailwind utilities;
T /7 ... lines 4 - 17

Building_ the CSS File




Finally, we're ready to build! At your command line, run bin/tailwind, use -1i to point to the
input assets/styles/app.css file, then -o to tell it where to output the final code. Use
assets/styles/app.tailwind.css so it's in the same directory, which is important so that
any relative image paths will still work. At the end, add -w so it will keep running and watching

for changes:

./bin/tailwindcss -i assets/styles/app.css -0 assets/styles/app.tailwind.css -w

And that's it! Built! Over here, we have an app.tailwind.css file containing all the goodies.

Awesomel!

In base.html. twig, instead of pointing at app.css - which is now kind of an "internal”

source file - point this at app.tailwind.css.

templates/base.html. twig

? /7 ... lines 1 - 2

3 <head>

$ /7 ... lines 4 - 11

12 {% block stylesheets %}

$ // ... lines 13 - 14

15 <link rel="stylesheet" href="{{
asset('styles/app.tailwind.css') }}">

16 {% endblock %}

$ /7 ... lines 17 - 21

22 </head>

$ /... lines 23 - 75

Moment of truth. Back to the browser! Refresh. Our site is styled! That means we can get rid of
the Bootstrap stuff: remove the Bootstrap CDN link... since we were just demonstrating how that

works... and also the button down here.

That looks good!

Ignoring_the Built File

But what about this app.tailwind.css built file? Do we ignore that from git? Do we commit

it? It's up to you! We can commit it - it would make deploying easier, but we generally don't want



to commit built stuff. | will ignore it... then we'll see how that works into our deployment process

a bit later.
T /7 ... lines 1 - 15

16 /assets/styles/app.tailwind.css

Ok, done! Next: Let's turn to JavaScript.



Chapter 9: JavaScript & importmap

Remove the <img> tag, so we can see our normal page. Don't worry about our little penguin

guy: we still have him up here in the logo.

When we refresh the page, notice that we do have a console.log() message... which says

it's coming from assets/app.js. If we head over to assets/app.js... yup! There it is!

assets/app.js

T 7/ ... lines 1 - 6
7 console.log('This log comes from assets/app.js - welcome to AssetMapper!
&)

How assets/app.js is Loaded

We know that we can write modern ES6 code in here, as well as import other files. We're going
to do all of that. But first: How and why is this file even being executed? Our CSS is being
loaded thanks to this nice, boring <link> tag. We don't see a <script> tag for app.js...

but we do see this importmap () function. And that's the key.

Back over on the site, View the page source. Down here... this is what importmap adds. We're

going to talk about each part, but the most important thing right now is at the bottom:
<script type="module">import 'app';</script>

Earlier, when we created an app.js file inside the public/ directory, this is almost exactly
the code we wrote to load it. We used import and then the path to that file. But... this time, it
just says app. Shouldn't it say something like /assets/app.12345. js"? How does it know
that app refers to the final version of this file? This is where the importmap part, up here,

shines.

The Wonderful importmap




This section is generated from an importmap.php file inside our project. The file isn't super-
interesting yet: it'll be more useful soon when we talk about third party JavaScript. But it does

have this app key that points to our assets/app.js file using its logical path.

importmap.php

? /... lines 1 - 15

16 return [

17 'app' => [

18 'path' => 'app.js',
19 'preload' => true,
20 1

21 1;

Thanks to that, this <script type="importmap"> dumps onto the page. When you import
something that doesn't start with a ".", "/", or "../", that's called a bare import. We usually see this
for third-party libraries. In the browser environment, when it sees a "bare import”, your browser
looks for an importmap on the page to find a matching entry. Our browser sees

import 'app', finds this key here, and that's the path it downloads. It effectively copies this
path here and pastes it down there. That's why our app. js file is being executed: it's team

work between the importmap and the extra <script type="module"> that bootstraps our

app!

The greatest thing about importmap is that it's not a Symfony thing: it's just an internet thing.
It's how your browser works. We do have this importmap .php file, which is a Symfony thing.

But once this is on the page, your browser is the star.

The importmap shim + Older Browsers

And importmap works in... most browsers. If you go to "caniuse.com™ and search for
"iImportmap"... it currently works in about 81% of browsers. That would be a huge problem,
except that the importmap () function also dumps a shim. You can see that here. Thanks to
this, if a browser doesn't support importmap, this adds that functionality. So, it's just going to

work.

Importing_Relative JavaScript Files




Head into app.js: let's write some modern code. In assets/, first create a new directory
called 1ib/. And inside that, a new file called vinyl. js. You can organize things however

you want, and this is one example of isolating some code into its own file.

I'll paste in the same class we had earlier. Back over in app.js, import that: import Vinyl
and | can hit "tab" to autocomplete the from './1lib/vinyl' part. Instantiate this using the

same code as before... and then console.log(mix.describe()).

assets/lib/vinyl.js

1 export default class {

2 constructor(title, year) {

3 this.title = title;

4 this.year = year;

5 3

6

7 describe() {

8 return “${this.title} was released in ${this.year} ;
9 3
10 }

$ /... lines 11 - 12

assets/app.js

1 dimport Vinyl from './lib/vinyl';

2

3 const mix = new Vinyl('Awesome Mix Vol. 1', 2014);
4 console.log(mix.describe());

Using_.js when Importing

| love it! We're coding like normal and using ./ to import. But when we go over and refresh... it

doesn't work. Check out the 404: /assets/1ib/vinyl coming from app.js.

So... what's going on here? We'll talk more later about debugging, but here's a hint: if you ever
notice that your browser is trying to download a path that doesn't include the "version" part in

the filename, something is wrong with your path... and you should check for typos.

Our problem is that we need to add the . js. It turns out that leaving the . js off is a Node
thing... and it works if you're programming in Node. But in true JavaScript environments, like in

your browser, you do need to include it.



assets/app.js

1 import Vinyl from './lib/vinyl.js';
$ /7 ... lines 2 - 5

If we refresh now... that was it! It was really my editor's fault that the .js was missing when it
autocompleted it. Fortunately, we can fix that! Go into your PhpStorm settings and search for
"use file extension". Under "Code Style" and "JavaScript", change "Use file extension" to

"Always".

This time... if we say import Vinyl and hit "tab", nice! We get the . js.

Automatic Importmap _Entries

But the fun doesn't stop: there's something interesting happening behind the scenes. Click into

this console.log() ... just as an easy way to see the source of the final app. js file.

Yup, its contents look exactly like the original file, including the
import from './lib/vinyl.js'. There's just one problem: that's not the final filename for

vinyl.js!

Pop over to the Network tools, select "JS", and search for "vinyl". All files served by
AssetMapper have a versioned part of their file name, and we see that for vinyl. js. But
then... how the heck does our browser read ./1ib/vinyl. js and know that it should

download this long filename?

The answer, if you view the page source, is... dramatic drumroll... the importmap. And | love
this. The importmap is constructed from two sources. The first source is obvious:
importmap.php. And we'll add more entries to it soon. The second source is more subtle.
Whenever our JavaScript imports another JavaScript file using a relative path, that imported file

is automatically added.

This is powerful. It means that our final code can look like it originally does: ./1ib/vinyl.js.
But thanks to the importmap, our browser will smartly download the real file with the long

version part in the name. This is really an internal detail, but it's cool to see how it works.

Okay, we've talked about importmaps a little... but we haven't seen its biggest superpower:

using third party packages. Let's explore that next.



Chapter 10: importmap:require - 3rd Party JS Libs

In our code, we get to use import statements with relative paths, ES6 classes: everything

we're used to. It's business as usual. Except, how can we use third-party packages?

As we saw earlier, we could import things via a full URL, like import _ from, and I'll paste in
the CDN URL that we used earlier. With that done, the rest is normal: add _.camelCase() to

the log.

assets/app.js

? /... line 1

2 import _ from 'https://cdn.jsdelivr.net/npm/lodash@4.17.21/+esm';
T /7 ... lines 3 - 4

5 console.log(_.camelCase(mix.describe()));

If we refresh and check the console... that works. But | don't like it! | don't want to have to
include this crazy URL everywhere | use lodash. And what happens if we upgrade lodash...

and | need to change the URL in 10 different files? Lame!

importmap:require to Fetch Node Packages

If we were using a build system, like Webpack, we could just say:

yarn add lodash

or
npm install lodash

We're not using yarn or npm, but we can do nearly the same thing. Over in the terminal, open
a new tab, and run php bin/console importmap:require followed by the name of the

NPM package we want: lodash:



php bin/console importmap:require lodash

Done! It added lodash to importmap.php and tells us we can use the package as usual.

This means we can say import _ from 'lodash'... and everything will work fine.

assets/app.js

$ /7 ... line 1
2 import _ from 'lodash';
$ /7 ... lines 3 - 6

How? When we ran the command, it made one tiny change: it added this section to
importmap.php. And as cool as this is, it's not magic. Behind the scenes, the command went
to the JSDelivr CDN, found the latest version of lodash, then added the 1lodash key set to
that URL.

If you head over and look at the page source... no surprise! We have a new lodash entry
inside the importmap! When our browser sees import _ from 'lodash', it looks inside
the importmap for lodash, finds this URL, and downloads it from there. Our browser is the

hero!

Telling_your Editor about the Packages

One bummer is that we don't get autocompletion in our editor. It says "Module not installed".
And if | say _. ... it doesn't really work. It's autocompleting camelCase... but only because I'm

using that down here.

| hope this will be better-supported in PhpStorm soon. There is a workaround, but it's a bit
manual. Copy the package, go into base.html. twig and add a temporary <script> tag
that points to this. Hit "alt" + "enter" and select "Download library". This downloads that into the

"External Libraries" section down here: /lodash.

Ok, remove that script tag. Back in app.js, it's still going to underline the import as if it
doesn't know what it is, but it does autocomplete when we use _. something. For example,

tail() is from lodash.



Updating_ Packages

What about updating the versions of packages inside importmap ? Whelp, there's a command
for that!

php bin/console importmap:update

That will loop through every package and update its URL to the latest version. This is already
the latest version... but if we change itto .19... then run the update command... it moves
back up to .21. The command could be more flexible - like by allowing you to update just one

package, or by having some version constraints - and those things may be added in the future.

importmap.php

T 7/ ... lines 1 - 15

16 return [

$ /7 ... lines 17 - 20

21 '"lodash' => [

22 'url' => 'https://cdn.jsdelivr.net/npm/lodash@4.17.21/+esm',
23 1

24 ],

Downloading_Packages Locally

Finally, if you don't want to rely on the CDN, you don't have to. To avoid it, when you require the

package - or any time later - pass the --download option:

php bin/console importmap:require lodash --download

In importmap. php, this still shows the source URL to the CDN, but it downloaded that file into

an assets/vendor/ directory. This downloaded_to points to the logical path for that file.



importmap.php

? /... lines 1 - 15

16 return [

$ /7 ... lines 17 - 20

21 'lodash' => [

22 'downloaded_to' => 'vendor/lodash.js',
T /7 ... line 23

24 1,

251K

The result? When we go over and refresh.... and "View Page Source"... the importmap now

points to the local file! We're no longer relying on the CDN.

But... now what? Do we commit this vendor/lodash. js file? The answer is... yes. At least at

this moment, that's the only way to version that file and keep it in your repository.

So even without npm or yarn, we can use any npm package we want. Woo! But sometimes,
instead of importing an entire package, we may only want to import a specific file. Let's talk

about how we can do that next.



Chapter 11: Importing Specific Package Files

Sometimes, instead of importing a package itself, you may want to import only part of it: like a

specific file. Lodash is a good example of this.

No Tree Shaking_in the Browser

But before we get there, instead of importing everything from lodash, you should be able to
say import { camelCase } from 'lodash'. Then, down here, you would use

camelCase directly.

assets/app.js

$ /7 ... line 1
2 import { camelCase } from 'lodash';
$ // ... lines 3 - 4

5 console.log(camelCase(mix.describe()));

However, when we move over and try this... error!

“The requested module 1odash does not provide an export named camelCase.”

This should work... and the reason it doesn't is complicated. Basically, due to the way that this
specific library packages their module, you can't import specific functions like this. It will work

with most other packages, however.

For example, if you say import { Modal } from 'bootstrap' (if you're using

Bootstrap), that will work. Bootstrap packages their files correctly.

However, using this syntax may not always be ideal with AssetMapper.

Here's the problem. If we ran this code through Encore, Encore would do something called "tree
shaking". This is where it would see that we're only importing camelCase from lodash. And
so, in the final JavaScript, it would only give us the code for camelCase, not the entire

lodash package.



In a browser environment, if you import from lodash, you're going to get all of lodash...
even if you're only importing one part of it. Now, that might not be that big of a deal. The full
build of 1odash is still only 24 kilobytes. But what if we are using a big package... but only

need to import one specific thing?

Importing_a Specific File

A lot of times, there's a specific file that we can import, like /camelCase. You'll usually find
details about these files in the docs... though you can also go look for them. Head back to
JSDelivr... and down here, search for "lodash". Below, click "Files" to see all the files that are

part of this package.
For lodash, it's a huge list... because this is a huge library. One of these is camelCase. js.

Ok! So let's try importing 1lodash/camelCase.

assets/app.js

? /... line 1
2 import camelCase from 'lodash/camelCase'’;
$ /7 ... lines 3 - 6

I'm not including the . js... but it's not going to work anyway. Watch: when we refresh... error!

“Failed to resolve module specifier lodash/camelCase. Relative references must start

with either /" "/" or "../"

This error means that we're importing something using a "bare" import, and it was not found in
the importmap. If we "View Page Source", we do have an importmap for lodash, but not
lodash/camelCase. Yup, that matching is done exactly. Ok, there is a way to do a, sort of,

"fuzzy" matching - lodash/* - but | don't use that.

The point is: if you want to use lodash/camelCase, you should add that to your importmap,

not lodash.

Watch: find your terminal and run:

php bin/console importmap:remove lodash



That will remove lodash from importmap.php and delete the file from assets/vendor/.

importmap.php

? /... lines 1 - 15

16 return [

17 'app' => [

18 'path' => 'app.js',
19 'preload' => true,
20 1

21 1;

Nice! Now run ./bin/console importmap:require with the package name / the path that

you want: lodash/camelCase.js.

php bin/console importmap:require lodash/camelCase.js

camelCase. js is the name of the file over on the CDN. But you'll notice that, a lot of times in
the docs, they'll reference lodash/camelCase without the . js. And in this case, you can
leave the . js off: it's up to you. That works because jsDelivr is friendly and makes both

versions of the URL work.

The result of the command? The same as before! We get a new entry in importmap.php

matching what we want to import and set to a URL.

importmap.php

$ /7 ... lines 1 - 15

16 return [

$ /... lines 17 - 20

21 'lodash/camelCase' => [
22 'url' =>

"https://cdn.jsdelivr.net/npm/lodash@4.17.21/camelCase/+esm',
23 1,
24 1;

Copy that URL so we can see it. There we go! It's the code from just camelCase. js.
And when we try the page... it works!

Here's the takeaway: if you need to import a specific file from a package, you can do that: just

pass the package name + file path to importmap:require.



Next, let's add Stimulus to our app!



Chapter 12: Adding Stimulus

We can write modern JavaScript in this file, we can import third-party packages: we're free to
dream up whatever code we want. But, if you're like me, you probably want to use Stimulus. So

let's get that installed.

Stimulus is just a JavaScript library, so we could say

php bin/console importmap:require '@hotwired/stimulus'

Then follow their docs on how to get things set up.

Installing_StimulusBundle

But Symfony has special integration with Stimulus. So instead, run:

composer require symfony/stimulus-bundle

StimulusBundle is a relatively new package that houses some Twig shortcuts that we'll use, like
stimulus_controller (). But, more deliciously, it has a recipe that will set our app up to

load Stimulus controllers effortlessly.

Check it out: thanks to the recipe, we now have an assets/controllers/ directory with

hello_controller.js inside.



assets/controllers/hello_controller.js

1 import { Controller } from '@hotwired/stimulus';

$ /7 ... lines 2 - 11

12 export default class extends Controller {

13 connect() {

14 this.element.textContent = 'Hello Stimulus! Edit me in
assets/controllers/hello_controller.js';

15 3}

16 }

Without touching anything else, open up templates/vinyl/homepage.html.twig and,
right after the <h1>, add a new <div>. Let's attach the new hello controller to this element.
Do that with: stimulus_controller () - that's one of the new functions that comes from

StimulusBundle - passing hello.

templates/vinyl/homepage.html. twig

T /7 ... lines 1 - 4
{% block body %}
<div class="px-4">
// ... line 7
<div {{ stimulus_controller('hello') }}></div>
// ... lines 9 - 33
34 </div>
35 {% endblock %}

© 0 & o O

That can't possibly work already... right? Refresh. It does. That's bananas! And down in the
console, we see logs about Stimulus initializing and our hello controller connecting. With just

one composer require line, Stimulus is alive!

How Stimulus Loads

Let's put on our detective hats and delve a bit deeper into how this works and what the recipe
actually did. In templates/base.html. twig, this is probably the least important change: it
added ux_controller_link_tags(). We'll talk about that in the next chapter when we
explore UX packages. But, in short, if a UX package come with their own CSS, this outputs that.

Right now, it's not doing anything.



templates/base.html. twig

? /... lines 1 - 2

3 <head>

? /7 ... lines 4 - 11

12 {% block stylesheets %}

13 {{ ux_controller_link_tags() }}
$ // ... lines 14 - 15

16 {% endblock %}

? /... lines 17 - 21

22 </head>

$ /7 ... lines 23 - 72

More importantly, the recipe added a new assets/bootstrap. js file. And, in
assets/app.js, it sprinkled in some code to import that file. So, app. js loads, that imports

bootstrap.js, and then that imports @symfony/stimulus-bundle.

assets/bootstrap.js

1 import { startStimulusApp } from '@symfony/stimulus-bundle’;
2

3 const app = startStimulusApp();

$ // ... lines 4 - 6

Ooh, that's a bare import! It doesn't start with "../" or "./"! That means our browser will look for it

in the importmap to figure out which file to load.

Ok! Go open importmap.php. Surprise! The recipe added two new entries: One for the
@hotwired/stimulus library itself and another for @symfony/stimulus-bundle, which

points to this weird looking path.

importmap.php

? /... lines 1 - 15

16 return [

$ /7 ... lines 17 - 23

24 '@hotwired/stimulus' => |
25 'url' =>

'"https://cdn.jsdelivr.net/npm/@hotwired/stimulus@3.2.1/+esm',
26 I,

27 '@symfony/stimulus-bundle' => [

28 'path' => '@symfony/stimulus-bundle/loader.js',
29 1

30 1;

Up here, when using a CDN, the entry will have a url key. When pointing to a local file, the

entry will have a path key, which will be the logical path to a file in AssetMapper.



But, what does this weird path point to? Spin over to your terminal and run:

php bin/console debug:asset

If you take an elevator to the top... voila! When we installed StimulusBundle, it added a new
"asset path" to our system, which points to
vendor/symfony/stimulus-bundle/assets/dist and it has a "Namespace prefix". This
means that, to point to a file in this directory, the logical path will start with

@symfony/stimulus-bundle.

So over here, when we say @symfony/stimulus-bundle/loader. js, we're referring to
this file right here: vendor/symfony/stimulus-bundle/assets/dist/loader.js.
That's a long way of saying, when we import @symfony/stimulus-bundle, it's actually
importing this vendor/symfony/stimulus-bundle/assets/dist/loader.js file. The
bundle exposes that file by adding the AssetMapper "asset path", which allows the recipe to add

an entry to importmap.php that points to it.

How our Controllers are Registered

Okay, so we're loading this 1loader. js file, and we can see that over here. In your browser,
refresh... go to your Network tools, and search for "loader”. There it is! Open this up in a new
tab.

This code has functions to start the Stimulus application and register the controllers from our
app - like hello_controller.js. But... wait. This is just a hard-coded file. How is it able to

dynamically find and load the files that live inside our assets/controllers/ directory?

The key is on top: import, isApplicationDebug, eagerControllers,
lazyControllers from ./controllers.js. This... is a bit of magic. Go back to the
Network tools and search for "controllers”... there itis - controllers. js. Open this new tab.
Woh! It has import controller_0 from ../../controllers/hello_controller.js,

which it then exports to a variable called eagerControllers.

This file is crafted dynamically by the bundle. If we look down in the vendor/ directory,

loader. js is a nice static file. But if you look at controllers. js, it doesn't look like at all



like what we have in the browser! When this file is served, AssetMapper intercepts it, looks
inside of our assets/controllers/ directory, finds all the controllers there, and then returns

dynamic contents based on these.

Watch. Create another file called goodbye-controller.js (you can use dashes or

underscores). Change the text to Goodbye controller!.

assets/controllers/goodbye_controller.js

1 import { Controller } from '@hotwired/stimulus';

2

3 export default class extends Controller {

4 connect() {

5 this.element.textContent = 'Goodbye controller!';
6 by

7}

You might expect that, when we refresh the file, we'll see the new controller pop in here. And
you're almost right. What really happens is... nothing! No change! Or you might even get a 404
error. That's because the content of this file just changed and so the hash will also change.

We're looking at an out-of-date version of the file!

Back on the site, if we refresh, we should see a new file with a new hash. We don't... due to a

caching bug which has already been fixed. To work around that, I'll run:

php bin/console cache:clear

Then go refresh. Now | see that this has a different file name, and the contents have

dynamically changed to include goodbye-controller.js!

So there you have it, the thrilling journey into the heart of how Stimulus and AssetMapper
became best friends. bootstrap. js loads a file that starts Stimulus... and that automatically
loads everything inside the assets/controllers/ directory... as well as any 3rd party UX

packages in assets/controllers. json. Let's talk about those 3rd party packages next.



Chapter 13: Symfony UX Stimulus Packages

We can now create custom Stimulus controllers with ease. The other half of StimulusBundle is
the ability to get more free Stimulus controllers by installing a UX package. Let's add one and

see how it works!

Installing Turbo

Let's start by adding Turbo. At your terminal, say:

composer require symfony/ux-turbo

Here's the juiciest part: just like when we added Stimulus, there's absolutely nothing else you
need to do to set this up. Refresh and... it just works! Turbo eliminates the need for full page
refreshes. Head over to your Network tools and click on "Fetch/XHR". Let's actually clear this
out so we can see everything. Perfect. Then, if we click up here... you can see that this is
coming from an AJAX call! Yup, those full page refreshes are gone. So Turbo just works.

There's no build system to get in the way, and that's beautiful.

UX Packages Often add Importmap Entries

In practice, this works because a new JavaScript file is being loaded called
turbo_controller. js. Filter the network calls to JavaScript... and refresh, because |
cleared them. There we go! Our page loads turbo_controller.js and that imports

@hotwired/turbo, which starts Turbo.

Open up importmap.php. When we installed the UX Turbo package, its recipe added this

new @hotwired/turbo entry.



importmap.php

? /... lines 1 - 15

16 return [

$ /7 ... lines 17 - 29

30 '@hotwired/turbo' => [

31 'url' =>
'"https://cdn.jsdelivr.net/npm/@hotwired/turbo@7.3.0/+esm',

32 1

33 1;

This is a really common pattern with UX packages: if a UX package depends on a third-party
package, its recipe will add that package to your importmap automatically. The result is that,

when that package is referenced - like import '@hotwired/turbo’' - itjust works.

How UX Controllers are Loaded

The real question is: who's loading turbo_controller. js, which lives deep inside the

symfony/ux-turbo PHP package?

The answer is: the same trick we learned a moment ago. Search for controllers and open
that file in a new tab. This is the dynamic file that StimulusBundle builds. As it turns out, it looks
for packages in our assets/controllers/ directory, which is these two, and it reads the
assets/controllers. json file. When we installed UX Turbo, it added this new section
here, which is where we activate different controllers. It activated one called turbo-core with
"enabled": true and added another deactivated one with "enabled": false. So when
this file is built, it parses the assets/controllers. json file, finds the controllers that we've

enabled, and adds them here.



assets/controllers.json

S

2 "controllers": {

3 "@symfony/ux-turbo": {

4 "turbo-core": {

5 "enabled": true,
6 "fetch": "eager"
7 3

8 "mercure-turbo-stream": {
9 "enabled": false,
10 "fetch": "eager"
11 }
12 }
13 3
14 "entrypoints": []
15 }

The final result is that it imports that controller file here and exports it so that the loader.js
file can register it in Stimulus. So any controllers in assets/controllers/ orin this file are

registered automatically.

autoimport & CSS Files

Head back into base.html. twig. When we installed StimulusBundle, its recipe came bearing
gifts - one of which was this ux_controller_link_tags() . Right now, that does nothing.
However, some UX packages come with CSS files. You'll find them under a key called
autoimport, which the recipe will add under the controller. This
ux_controller_link_tags() finds all the CSS files for all the controllers you have

activated, and it outputs them. Nothing too fancy.

Next: let's learn one more thing about Stimulus, which just happens to be one of my favorite

things: how to make our controllers lazy.



Chapter 14: Lazy Stimulus Controllers

It's getting messy in here: let me close a few files... then crack open
assets/controllers/goodbye-controller. js. Pretend, for a moment, that this
controller is huge. Or, more likely, it imports a big third-party package like d3 for charts. But,

we're only using this controller on some pages.

Here's the deal. In order to register your controllers with Stimulus, all of these files are
downloaded immediately. So the page loads, Stimulus starts up, all of these files are
downloaded, and any files they import are also downloaded. That's often ok, but if you're

importing something big, that can be wasteful.

To fix that, above the class, you can add a very special syntax -

/* stimulusFetch: 'lazy' */.

assets/controllers/goodbye_controller.js

? /... lines 1 - 2

3 /* stimulusFetch: 'lazy' */

4 export default class extends Controller {
? /... lines 5 - 7

8 1}

This works thanks to StimulusBundle. When it spots this, it tells Stimulus to hold its horses and
not download this JavaScript file or anything it imports until an element that matches this is on

the page.

Watch. Before making that change, if we searched for "goodbye", that controller was being
loaded, even though it's not used on this page. But now, refresh and search for "goodbye". It's
not there! Inspect the data-controller="hello" element. Change that to goodbye and...
boom! It works! You can see that it activated (that's what our Goodbye controller! does),

and if we look at the Network tab, now it downloaded. | love this feature.

This can also be done for third-party packages. If you look in assets/controllers.json...
Turbo isn't a very good example of this, but if we said "fetch": "lazy" on any of these,

they would have the same behavior that we just saw.



assets/controllers.json

S

2 "controllers": {

3 "@symfony/ux-turbo": {
4 "turbo-core": {

5 "enabled": true,
6 "fetch": "eager"
7 3

$ /7 ... lines 8 - 11

12 }

13 3

T /7 ... line 14

15 }

That's it! Easiest chapter ever! Use this to keep your initial page lightweight if you have some

heavy Stimulus controllers that are only used on certain page.

Next: sometimes, deep sigh, the tech gods frown upon us and things don't work. Let's learn a

few tips to help debug when that happens.



Chapter 15: Debugging

Sometimes things won't work. But, with AssetMapper, there are some telltale signs when things

go wrong. Let's see a few of the most common ways that things can... get weird.

Typo in Logical Path? Missing_Versioned Path

One of the fastest ways to mess things up isin /templates/vinyl/homepage.html. twig:
use the asset () function and pass an invalid path. Remember, in assets/images/, we
have penguin.png. So, images/penguin.png is its "logical path" in AssetMapper. Let's

say images/, but then duck.png.

templates/vinyl/homepage.html. twig

$ // ... lines 1 - 4
{% block body %}
<div class="px-4">
// ... lines 7 - 8
<img src="{{ asset('images/duck.png') }}">
// ... lines 10 - 34
35 </div>
36 {% endblock %}

© O & o O,

This is obviously not the right path... or even the right animal. So no surprise that, on the
homepage, we get a 404. The key thing about this 404, if we look at the console, is its
suspicious-looking path. Look closely: there's no version in the filename! This tells us that this
path was not found in any of the AssetMapper directories: it's an invalid logical path. And so,

AssetMapper ignored it and returned the raw, unversioned filename.

To help visualize the valid logical paths, remember that you can run:

php bin/console debug:asset

Up here, this is everything that you're allowed to pass to the asset () function. And there's

images/penguin.png. If we put images/penguin.png here instead... now it works.



templates/vinyl/homepage.html. twig

? /... lines 1 - 4
{% block body %}
<div class="px-4">
// ... lines 7 - 8
<img src="{{ asset('images/penguin.png') }}">
// ... lines 10 - 34
35 </div>
36 {% endblock %}

& O © o U

The key thing to look for is the version hash in the filename. If it's not there, AssetMapper

couldn't find your path.

Invalid Import Paths

Another common mistake is to mess up an import. Like... maybe in styles/app.css, we
mistype a part of thisimage url(). Or, in app.js, when importing vinyl. js, we forget the

.Jjs atthe end.

assets/app.js

$ /7 ... line 1
2 import Vinyl from './lib/vinyl';
? /... lines 3 - 7

Accidents like this give us the same result as the first mistake! When we refresh, we get a 404.
You can see that here. But again, the key thing is the missing version hash. That's a sign that

the path couldn't be found, so it couldn't be handled by AssetMapper.

In this case, the invalid path lives in app.js. When we're inside a template and use the
asset () function, we pass the logical path to a file. But if we're inside of app.js or
app.css, instead of the logical path, we use the relative path. This is by design. We get to
code inside of these files as if AssetMapper doesn't exist. We don't need to think about logical

paths, we just think:

“What relative path would | use if these files were all just being served directly to my

browser?”

Anyway, if the version hash is missing, we have an invalid path, which could be an invalid

logical path in a template or an invalid relative path in some import somewhere.



Seeing_a List of Invalid Paths

By the way, there's an almost hidden way to see if any invalid imports appear anywhere in your

code. First, run:

php bin/console cache:clear

That clears Symfony's cache, of course, but it also clears an internal cache in AssetMapper.

Now when we run

php bin/console debug:asset

it re-builds the cache for all of those assets internally. When it does that, it parses our files and

reports any missing imports. See?

“WARNING Unable to find asset ./1ib/vinyl imported from assets/app.js.”
And in this case, we even get an extra message:

“Try adding ".js" to the end of the import”

Good idea. If we add that . js back... things work again.

Importing_ Missing_"Packages"

The last common way to mess things up is to use a bare import - an import that doesn't start
with ./ or ../ - for something that does not appear in your importmap. Here, the intention is
to use the bootstrap library... but we don't have it in our importmap. The exact error will

vary based on your browser, but for me it says:

“Failed to resolve module specifier "bootstrap”. Relative references must start with either /",
”./II, Or ". ./”. ”

Translation:



“Hey! If you're trying to refer to a relative path, you forgot the ./ or ../ part, you goofball!

But if you're trying to import a package, you forgot to add it to your importmap!”

The solution is usually to run: php bin/console importmap:require to add that

package.

Next up: what if you have a bunch of CSS or JavaScript that you only want to load on a single
page or section of your site - like an admin section? How can we organize things so that we

don't have to load all of that code on every page?



Chapter 16: Page-Specific CSS & JS

Head over to /admin. Surprise! We do have an admin section on our site. Well... sort of. It's
only a big rectangle, but it represents a make-believe admin. Why? Well, suppose we have
some CSS and JS that are only needed here. If we write that in the normal way and in the
normal files, that code is going to be downloaded everywhere, including when someone goes to
the frontend of our site. That, at the very least, is wasteful. A better way is to only download the

admin CSS and JS when you visit the admin area!

My favorite way to do this is with lazy Stimulus controllers, and we've already talked about
those. But another option is to create an extra set of CSS and JavaScript that are explicitly

loaded only on these pages. Let's see how to do that with AssetMapper.

If we were using Webpack Encore, we'd open the webpack.config. js file and add a second
entry. That would result in a new CSS and JavaScript file. In AssetMapper, we can do

something really similar.

Creating_a new CSS File

Let's start with CSS, which is pretty darn simple. In the assets/styles/ directory, create an
admin.css file and, to see if things are working, add .admin-wrapper with some X-Y

padding.

assets/styles/admin.css

1 .admin-wrapper {
2 padding: O 3rem;
3 1}

That'll add a little space right here. Then, go into the template for this page -
templates/admin/dashboard.html. twig - and, right here, add that class:

class="admin-wrapper".



templates/admin/dashboard.html. twig

? /... lines 1 - 8

9 {% block body %}
10 <div class="admin-wrapper">
$ /7 ... lines 11 - 14

15 {% endblock %}

At this point, the new admin.css file is technically available publicly... because it's in the

assets/ directory. But, we're not using it yet. To do that, we need a link tag.

There's nothing special about this. Say {% block stylesheets %} and {% endblock %}
to override the block from the parent template. Then call {{ parent() }} toinclude the
normal stuff and, down here, add <link rel="stylesheet" pointing to

asset('styles/admin.css').And... let me fix my typo up here. That's what we want.

templates/admin/dashboard.html. twig

$ /7 ... lines 1 - 2
{% block stylesheets %}

{{ parent() }}

{% endblock %}

3
4
5
6 <link rel="stylesheet" href="{{ asset('styles/admin.css') }}">
7
? // ... lines 8 - 16

Back on the site... yup! The CSS is being applied: we've got extra padding. Refreshingly simple.

Creating_a Page-Specific JavaScript File

But... what about JavaScript? Once again, we'll start a lot like Encore. Create a new file...
maybe next to app.js called admin. js.Add console.log('admin.js file') sowe

can see if it's loading.

assets/admin.js

1 console.log('admin.js file!');

Like with the CSS file, this file is now publicly available... but nothing is loading it. Remember:
the app. js file is loaded thanks to this <script type="module"> line down here that
imports app. We automatically get this, over in base.html. twig, via the importmap()

Twig function.



So... is there a way to tell this function to also import our admin. js file? Actually, no! Why?

Mostly because... it's just so easy to add ourselves!

Watch: back in dashboard.html.twig, say {% block javascripts %},

{% endblock%}, then {{ parent() }}.Below that, add a <script> tag with
type="module" . Now we're going to code as if we're in a JavaScript file. Say import and
then the path to the JavaScript file. Effectively, we want something like - /assets/admin. js.

But, of course, to get the real path we use the asset () function and pass the logical path:

admin.js.
? /... lines 1 - 8
9 {% block javascripts %}
10 {{ parent() }}
11
12 <script type="module">
13 import '{{ asset('admin.js') }}';
14 </script>
15 {% endblock %}
$ 7/ ... lines 16 - 24

That's it! Let's try this thing! Refresh and check the console. Got it! Our admin. js file is being
loaded! If you check out the page source... down here... yep. You can see
<script type="module"> from the importmap() function where it says import 'app'.

And, after, we import admin. js via its path.

The original is just import 'app'... because we rely on the importmap to map that to its
URL. That's nice... but it's not actually necessary. Putting the path right here works fine too.

That's what we're doing for simplicity.

One of the things we saw in this chapter is that everything in the assets/ directory is exposed
publicly... which is the whole point of AssetMapper! But sometimes you may have a few files
that you want to put in that directory, but keep private. Let's check into AssetMapper's exclude

feature and other config options next.



Chapter 17: Excluding Files

We now have CSS - which we're building with Tailwind - we have JavaScript, we're bringing in
third-party JavaScript, and we're using modern JavaScript syntax. Our app has everything that a

real app has! Sure, it's kind of small, but we're almost ready to deploy it.

Checking_your Exposed Files

Before we do, let's do a quick audit on the assets that are inside AssetMapper. Find your

terminal and run:

php bin/console debug:asset

This lists all of our asset paths, which includes our main asset path - assets/ - plus a few
from bundles that have exposed their own directories. Below is a list of every file that will be

exposed publicly.

We're running this command to see if there's anything in this list that we do not want to publicly
expose. For example, this assets/styles/app.css file. This is really a source file: it's not
meant for the user to download directly. We're using Tailwind to build that into
app.tailwind.css, and that's what the user will download. It's not a huge deal that this is
available publicly, but it's a good example of how we can hide "source" files that we don't want

to expose.

Asset Mapper Config

Start by running

php bin/console config:dump framework asset_mapper



We're asking the system to give us example configuration for everything that can be configured
under framework, asset_mapper . When we first installed AssetMapper, its recipe gave us a
config/packages/asset_mapper.yaml file. Here, we have framework,

asset_mapper, and a key called paths. When we run this command... sure enough, up here

on top, it shows paths. Below that, we have some other interesting things.

The first is excluded_patterns. This is how we're going to hide certain files or paths - and
we'll talk more about that in a minute. You can also control the public_prefix, which is

where your files are output to in the public/ directory.

This extensions isn't super important... it's mostly just for the dev environment... and there
are a few other things like your importmap_path, and even some attributes you can put on

the <script> tag that's dumped by the importmap() function.

Excluding_Files / Patterns

So there's some good stuff in here... but you won't need to worry about most of it, aside from

excluded_patterns.

Copy that key, spin over to asset_mapper .yaml, and on the same level as paths, paste.

We want to exclude assets/styles/app.css.

config/packages/asset_mapper.yaml

1 framework:

2 asset_mapper:

$ /7 ... lines 3 - 5

6 excluded_patterns:

7 - 'assets/styles/app.css'

But this isn't quite correct. To prove it, run

php bin/console debug:asset

again. If you look up... assets/styles/app.css is still there! That's because
excluded_patterns is meant to be a glob. In other words, change this to

*/assets/styles/app.css... and surround it by quotes.



config/packages/asset_mapper.yaml

1 framework:

2 asset_mapper:

$ /7 ... lines 3 - 5

6 excluded_patterns:

7 - '*/assets/styles/app.css'

This says that any "filesystem path" that ends with /assets/styles/app.css will be

ignored. And when we try the command again...

php bin/console debug:asset

Awesome. This is what we want to see. Every file here will be dumped into the
/public/assets directory. The fact that assets/styles/app.css is not here means that

it will not be dumped into the public/ directory.

| think it's time to deploy our site! Let's get a deploy set up next on platform.sh.



Chapter 18: Deploying to Platform.sh

| have a wild idea. Let's deploy this site for real.

AssetMapper Deploy Requirements

You can deploy your code however you want... using any service or web server. It doesn't
matter with AssetMapper. The only requirement is that your web server supports HTTP/2 so that
our assets - the JavaScript and CSS files - can be downloaded in parallel super fast. HTTP/2 is
the reason why it's not terribly important that our files aren’t being combined to minimize

requests.

All web servers - nginx, Caddy, whatever - do support HTTP/2. Or you could add Cloudflare or a

similar service in front of your site which gives you this for free... along with some other benefits.

platform.sh Config_File Setup

Anyway, we're going to deploy with Platform.sh, which is a "Platform as a Service". That means
we can deploy just by creating a few config files. And this first section is all about getting that set

up. Once we're done, we'll talk about some specifics of deploying with AssetMapper.

So, let's get started! We're going to do most of this in the command line with the Symfony

binary. Start by running:

symfony project:init

This bootstraps a few platform.sh files, which you can see right here. .platform.app.yaml
contains instructions for how to deploy - like which commands to run, what version of PHP to
use, web server configuration and more. services.yaml is where you set up the services
you need - like databases, queues, etc - and routes.yaml sets up your domains, and is a bit

less important. Oh, and you can also add any custom php.ini config with this file.



I've been committing my progress along the way. So when | run

git status

it just shows these new files. Let's commit these and... great!

Registering_the platform.sh Project

Now that we have those local files, we need to dial up the folks at platform.sh and tell them that

we want to create a new project. We'll do that with:

symfony cloud:project:create

| already have some projects under Platform.sh.... which means | already have an
organization... and it already has my credit card. Thieves! If you're doing this for the first time,

you'll have a few extra steps.

Give your project a title, select a region - I'm using "eu-5" - and then it asks which branch will be

your production environment. I'm using the default main branch.

Next, it asks if we want to set "Mixed Vinyl" as the remote for this repository. This is kinda cool
because it exposes how platform.sh works. To deploy with platform.sh, we actually push our git

repository to a remote repository on their services. They see this, take the code, and deploy!

Anyway, I'm going to say "no" - but you can say "yes". Because I'm saying no, you'll see me do

this manually in a minute - and I'll explain more about it.

Finally, it asks to confirm pricing. This $12 USD per month is the developer rate that you can
pay to play around with stuff. It will be more expensive when you decide to deploy your site to
production for real. | love platform.sh because of how easy it makes my life, but there are

cheaper options.

This will take a minute or two to set everything up behind the scenes. When it finishes... ding!

We get some info, including the new Project ID.



Side Note: There is also a web interface on Platform.sh, so not everything needs to be done via

the command line. But, yea know, nerds like me prefer the command line.

Linking_the Local Code to the Remote Project

Copy the Project ID. At this point, we have some local config files - like .platform.app.yaml
- and we created a new "project” on platform.sh. But the two aren't linked together yet: our local

code doesn't know that it "belongs" to this project up on platform.sh.

To link them, run

symfony project:set-remote

and paste the Project ID.

Our First Deploy,

Done! Ready to deploy? Do it with:

symfony deploy

We're currently on the "main" branch, so it's pushing to, basically our "production” machine,
which is called an environment. One of the coolest parts of platform.sh is that you will deploy
your main branch to the "production” environment, but you can also deploy other git branches

to other platform.sh environments, which you can think of as other platform.sh servers.

Anyway, as | mentioned, behind the scenes, this command is just a shortcut to git push our

branch up to a git remote on the platform.sh servers. And doing that kicks off the deploy!

Oooh, this looks fancy and geeky. Tons of details here, including a warning about using an old
version of Composer. We'll fix that in a minute. Down here, we see that it's running
symfony composer install and doing some other steps: all the basic stuff you need to

deploy any Symfony app.



At the bottom, it gives us an SSL certificate, and if we keep scrolling... oooh, we have a
message about a database error! Ignore that for now because... when it finishes, it gives us a
URL!

Because we haven't configured any domains for the site, it gives us a temporary URL. Copy
that, spin over and... our site is alive! It doesn't have any styling... since we haven't talked about

AssetMapper, but it at least kinda works!

But how? How did it know to run composer install and those other things? What about that

Composer warning and the database error? Let's dive into all of that next.



Chapter 19: Configuring the Platform.sh Deploy

We just deployed a semi-working version of our site to platform.sh! All it took was one command

to bootstrap a few config files and another to create the project inside of platform.sh.

But... we had some errors and warnings along the way. On top of the output, we see a warning
about using an old composer version. In a minute, we'll see how and why composer is used
during the deploy. But when it is, for some reason, it's currently using an old version of

Composer.

Fortunately, it warns us and tells us how to fix it.

-platform.app.yaml and How Deploying Works

Copy this dependencies line. Then, open .platform.app.yaml. This is the main deploy

file: almost every deploy tweak you'll make will be made here.

There are two steps to the deploy process. The first is the build step where it's building your
code: you can think of this as the step that prepares all the physical files that your project
needs. Once the build step is done, it spins up a container, puts the files inside and then runs
the second and final part of the process: the deploy step. This is where you can run some

final commands.

See these symfony-build and symfony-deploy scripts? These are pre-made scripts that
contain most of what your app needs to deploy. If you downloaded them and opened them up,
you'd see things like running composer install, warming up the cache and running

database migrations. We can add custom stuff above or below.

The config has mounts - for directories that you want to keep persistent between deploys -

PHP extensions, your PHP version, and quite a bit more.

Using_a Newer Composer Version

Anywhere inside, paste the dependencies line... and make sure it's not indented.



.platform.app.yaml

? /... lines 1 - 4

5 dependencies:

6 php:

7 composer/composer: '"A2"
? // ... lines 8 - 53

And just like that, we're using Composer version 2.

Setting_up the Database Serve

The second error that we had, down near the bottom, was,
“could not find driver”

This come from when the symfony-deploy script tries to run our database migrations.
Locally, we're using Postgres. You can see that in docker-compose.yml. Do we have a

database up on Platform.sh yet? The answer is... actually yes.

In addition to the main deploy file - .platform.app.yaml - we have a /.platform
directory with a few other files. The most important is services.yaml. This is where we
define services like databases, Redis, Elasticsearch and others. When we initialized the project,

it noticed that we're using Postgres and added a database for us!

.platform/services.yaml

T /7 ... line 1

2 database:

3 type: postgresqgl:15
4 disk: 1024

The error we're getting isn't because it can't find the database: it's because our PHP install is

missing the PDO_PGSQL driver! And thanks to .platform.app.yaml, adding that is easy.

Find extensions, and add pdo_pgsql.



.platform.app.yaml

? /... lines 1 - 8
9 runtime:

10 extensions:

$ /7 ... lines 11 - 15
16 - pdo_pgsql
$ /7 ... lines 17 - 53

Ok, ready to re-deploy? Remember: deploying happens via a push, so we need to commit these

files. Run git commit -m with an inspirational message.

git commit -m "tweaking deploy script"

Now run:

symfony deploy
This runs the same steps as our first deploy, which we now understand include a build step

then a deploy step. It'll take a minute or two, but should be a bit faster because it doesn't need

to re-provision the SSL certificate.

Viewing_the Logs

At the very end... the migration command still failed, but with a different error:

“Connection refused”

Ah, ignore that for a minute. Instead, go back to the site and refresh. The homepage still works.
But... that's because our homepage doesn't use the database. If you hit "Browse Mixes"... 500
error! That 500 error is probably due to a database connection problem. But let's pretend that

we have no idea what's causing this. How could we figure that out? This is where the

symfony logs



command comes in handy. This connects to whatever platform.sh "environment" - or "server" -
that our current git branch is connected to and sends back log info. There are a bunch of
choices - but hit 2 to go to the "app" log. This represents the Symfony logs coming from our

app. And... oooh. | see several:

“connection to server [..] failed: Connection refused”

Adding_the Database "Relationship"

Let's think about this. We apparently do have Postgres set up, thanks to the services.yaml
file. But we never configured our app to talk to it. Remember, in .env, we have a
DATABASE_URL env var that's supposed to point our database. We never configured that on

our production site, so it's just using this default value. And no surprise, that's not working.

How can we configure DATABASE_URL to point to... wherever this database server is? The

answer is... we... uh... don't? And it's pretty cool.

Platform.sh has this idea of relationships. You have a number of services in services.yaml.

But your app can't talk to these until you link them together using what's called a "relationship".

Search .platform.app.yaml for "relationships". It's not here yet, so let's add that. Each
"relationship™ has an internal name. It could technically be anything, but, in practice, you should
use database. We'll see the significance of that in a moment. Set this to the word database,

because that's the key we have here, then : followed by the type of the service, which is

postgresql.
$ /7 ... lines 1 - 17
18 relationships:
19 database: "database:postgresqgl"
$ /7 ... lines 20 - 56

This syntax has always looked weird to me. The important thing is that the key could be
anything, like banana, but this database refers to this database overin services.yaml,

and postgresql refersto this postgresql.

But though the first database key could be anything, | used database on purpose. Symfony

does a really nice thing when it deploys via Platform.sh. It sees this relationship, notices it's for a



database, and then automatically exposes an environment variable containing the connection

info to that database!

What's this environment variable called? Since we used the key "database”, it will be called

DATABASE_URL. In other words, it's going to set this environment variable for us. I'll prove it!

SSHing_onto the Container

One of my favorite things about Platform.sh is that you can SSH onto your container. Watch:

symfony ssh

There we go. Once here, if you want to see every environment variable, run:

printenv

Look at that! You won't see anything that starts with "database", but we should after we deploy

this next change. Type exit, run

git status

and then

git add -p

That's what we want! Commit with

git commit -m "adding database relation"



symfony deploy

This time, it deploys way faster. Because we didn't change any application code, platform.sh
was smart enough to use our old app code, instead of doing all that building again. We can see
that:

“Reusing existing build for this tree ID”

And hey! This time, we see that it Successfully migrated! Yea! it ran our migration with
zero problems. When we spin over and check the site... it works. It's still missing all of our

styling... but we'll fix that next. The important thing is that the database is working.

You can see the difference that made if you run

symfony ssh

printenv

This time, there are several DATABASE_ variables, including the most important
DATABASE_URL.

Ok, the final missing piece from our deployed site is... all of its assets! Let's see what's needed

to deploy an AssetMapper site next.



Chapter 20: Deploying the Assets

How do we get our assets onto the site? If you "View Page Source", it looks like things are
working. We see the importmap and... down here, these paths look correct: they even have

the version part in their filenames.

Compiling Assets for Production

Unfortunately, all of these files return a 404. Boo. In the dev environment, when we're working

locally, these files don't physically exist. But an internal Symfony listener intercepts the request,

finds the file, and serves them.

But in the prod environment, that system isn't even active. It's too slow to run on production...
so everything just 404s. And that's okay! A long time ago, we learned about the command to fix
this:

php bin/console asset-map:compile

This command's job is simple: it takes all the assets that AssetMapper knows about and move
them into the public/assets/ directory. It's not a command you need to run locally, but it is

something you need to run when you deploy.

Copy this, head overto .platform.app.yaml, and go down to the build step. This is
pretty cool! We're going to let Symfony do its build thing, and afterward, add our own stuff.

Right here, add php bin/console asset-map:compile. That should do it!

Symfony + Platform.sh now detects AssetMapper and automatically runs this for you doing
build. Woo!



.platform.app.yaml

? /... lines 1 - 43

44 hooks:

45 build: |

$ // ... lines 46 - 49

50 NODE_VERSION=18 symfony-build

51

52 php bin/console asset-map:compile
$ // ... lines 53 - 58

Why are we running this during build and not deploy ? As a rule of thumb, if a command's
job is to "prepare" files, it should be in the build step. Or, another way to think about it is: if a
command does not require a connection to the database or any other running services, there's

a good chance it's a "build" thing.

@ Tip

Keep your "deploy" step as fast as possible because the incoming requests are held until it

finishes. You can find more information here: https://docs.platform.sh/overview/build-

deploy.html#deploy-steps

Head back over here and run:

git add -p

That whitespace bothers me... so I'll fix it and preserve my sanity. Then run git commit -m

with a fancy message.

git commit -m "asset-map:compile"

You know what's next. Punch it!

symfony deploy

Let's fast-forward to the good part. Here it is! We see it running the command!


https://docs.platform.sh/overview/build-deploy.html#deploy-steps
https://docs.platform.sh/overview/build-deploy.html#deploy-steps

“Compiling assets to /app/public/assets/ Compiled 16 assets”

It also writes a few other files inside the public/assets/ directory: manifest.json and
importmap. json. They help Symfony dump the importmap and other things onto the page

even faster.

And... done! Spin over, refresh, and... it still looks bad!? Ah, but things are not as bad as you
think! Head to the homepage and open your Console. Hey! Our JavaScript is running! We see

the console.log()!

Building_Tailwind on Deploy

So JavaScript, check! CSS... not so much. We still have a 404 on app.tailwind.css.

Remember: when you see a 404 to a filename that does not include a version part, like here, it
means that AssetMapper can't find that file. Can you spot the problem? This
app.tailwind.css is a file that we're building... and it's not committed to the repository! I'll
stop this command and re-run it so we can see the details. Yup, we're building the
app.tailwind.css file, ignoring it from Git, and since Platform.sh deploys using our files

from Git, that file is simply missing.

No big deal. This is just another thing we need to add to our build step... before we run

asset-map:compile so that the file is available.

I'll paste in the code for this. This is basically the same code we ran earlier to set things up
locally, except that we're using the 1inux-x64 build. We're downloading that, moving it into
the /bin directory (it doesn't really matter where it goes), making it executable, and then
running that same command so that the output file is there by the time asset-map:compile

runs.



.platform.app.yaml

T
a4

45

0
52

53
54
55

// ... lines 1 - 43
hooks:
build: |
// ... lines 46 - 51
curl -sLO

https://github.com/tailwindlabs/tailwindcss/releases/download/v3.3.2/tailwir
linux-x64

mv tailwindcss-linux-x64 bin/tailwindcss
chmod +x bin/tailwindcss

./bin/tailwindcss -1 assets/styles/app.css -0
assets/styles/app.tailwind.css

// ... lines 56 - 63

Oh, and don't forget about the TailwindBundle which makes using Tailwind - including this

deploy step - a bit easier.

Back over here, let's commit that new config change.... then deploy again:

symfony deploy

Even while it's deploying, we can see that this working. Last time, there were 16 files, now there

are 17. When it finishes, spin over, refresh and... it's alive! All the pages have CSS. | love it!

Now that we're on production, let's talk about the things we need to check to make sure our

assets are served blazingly fast.



Chapter 21: Long-Term Caching, Compression &
File Combining

It's time to celebrate! We're on production, and it was really just as simple as making sure

Tailwind was being built and running the asset-map:compile command.

Now that we're here, there are a few things we need to check on, to make sure our site is fast.

1) HTTP/2: You Definitely Need It

The first is to check that your web server is using HTTP/2. We talked about that earlier, so

hopefully you already got that rocking.

2)_Combining Files

The second thing is... well.. not really a thing at all. | just want to point out that nothing in
AssetMapper ever combined our files to reduce the number of HTTP requests. We're going to
talk more about this in a few minutes, but thanks to HTTP/2, you almost definitely do not need
to combine your files together. So if you were thinking that this was missing, it's not! It's by

design. That's good! One less thing.

3)_File Compression / Minification

But what about minifying our files? It's true: right now, our files are being served without
minification, and that is a problem. We do want our CSS and JavaScript files to be minified... or

at least compressed. And this is thing number three to think about.

But... this is something that can be done by our web server. Yup, if you ask kindly, you should
be able to convince your web server to compress your files so they're smaller when being sent
across the network. This is something that all web servers support, and it's done automatically

by Platform.sh.



Here's how we can see it. Go to "Network" tools and select JavaScript. Select one of the files
then go to "Headers". I'll make this a bit bigger. Okay, see this "Content-Encoding" response
header? That's compression. This "br" stands for something called Brotli, which is more
delicious than it sounds. Brotli is an advanced compression format. The other common value is
gzip. So all of our static files are already being compressed! We get that for free with
Platform.sh, so we can check that item off our list. Check your deploy system or web server

docs for details on how to do this in your situation.

But wait, are minifying and compressing the same thing or different? Actually, they're a bit
different. Both minifying and compressing greatly reduce the size of a file. We're using
compression. Minification can result in slightly smaller files - in part because it will remove code
comments - but it's not significant. Web servers themselves don't support minification, but if you
use Cloudflare, there is a way to enable auto-minification. It probably won't make a huge

difference, but you can try it.

4) Long-Term File Caching

The fourth and final thing that we need to do is make sure that all of our static files are set up for
long-term expiration. Because we have these nice versioned file names, when a user visits our
site, we want them to download this file one time and never, ever download it again. We want
them to cache it forever. Because, if we change anything inside of this file, the whole filename
will change! And the user's browser will naturally download the new version the next time they

visit the site.

Over here, under "Headers", we do see an "Expires" response header. Out of the box,
Platform.sh adds an "Expires" header for static assets, set to one hour. We can do much better
than that.

Overin .platform.app.yaml, under locations... there we go... we see... expires: 1h.
That's fine as a default for other static assets that we may have on our site. So I'm going to
leave that alone. But add another rule to be more specific. For the regex, if the URL matches
/assets/ anything, then set the expires header to 365d. Yes, 1 year - that's forever in

Internet time!



.platform.app.yaml

? /... lines 1 - 30

31 web:

32 locations:

88 VAL

$ /7 ... lines 34 - 36

37 rules:

38 'A\/assets\/.*":
39 expires: 365d
$ /7 ... lines 40 - 64

Cool! Lets commit that... and deploy, deploy!

symfony deploy

When that finishes, refresh. We won't see anything obvious... but let's check out one of our
JavaScript files, like app.js. We're looking for "Expires”. If you don't see it - or it's still short -
do a force refresh. This is weird case where the file didn't change, but we might still have the
cached version from a minute ago with the old header. And if you do see this, congratulations!

That's the goal.

So, our assets are being compressed, and they have long-term "Expires" headers. We've

checked all of our boxes for a performant site!

Next: We're going to prove the site is fast by using Lighthouse to profile the site's performance.
We'll learn about how files are downloaded, how pages are built, and we'll make our frontend

even more efficient.



Chapter 22: Optimizing & Profiling

Instead of me telling you the site is fast, let's prove it! In Chrome, there's a tool called
"Lighthouse", which you can also get for some other browsers. Run this for just performance

and select "Analyze page load".

This is the best way to see if you have any frontend performance problems. Our score will likely
be pretty high - simply because our site is small and quick - but we can use the report to zero-in
on a few possible problems. And... yep! We got a 98 with no build system! That's amazing. But

we can do even better.

Eliminate Render-Blocking Resources

If we scroll down, we can see where our problem areas are. The first is "Eliminate render-
blocking resources”, which points to our font file. A lot of what we're going to talk about has
nothing to do with AssetMapper: it's just frontend performance in general. If you open

templates/base.html. twig, we have a <link> tag that points to this font file.

templates/base.html. twig

T /7 ... lines 1 - 2

3 <head>

? /... lines 4 - 11

12 {% block stylesheets %}

$ /7 ... line 13

14 <link rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/@fontsource-
variable/inter@5.0.3/index.min.css">

$ /... line 15

16 {% endblock %}
$ /7 ... lines 17 - 21
22 </head>

? /... lines 23 - 72

When your site sees a <link rel="stylesheet"> tag, it downloads it before it renders the

page. So it basically freezes the rendering of the page until the download finishes.



But this is interesting. Open that file... and let's get a non-minified version. It has a bunch of
potential font faces. Here's how this works: our browser downloads this file immediately... but
the font files themselves won't be downloaded until and unless we use this font. Additionally,

font-display: swap tells the browser:

“Hey, it's ok to render some text that's supposed to use this font, even if the font isn't
downloaded yet. You can use the default system font first, show the text, finish downloading

this font file, and then use it.”

Essentially, this CSS file is written in a way where all of these font files are going to be
downloaded lazily. The problem, which isn't really a big problem, is that, at this point, our

browser just sees a CSS file and thinks:

“I need to download that CSS file right now and | can't render the page until that finishes!”

Once it does finally see the CSS contents, it discovers that there are a bunch of font files that it

can lazily download.

So, CSS files are render-blocking resources... which is normally great, because we don't want
the page to render unstyled for a half second before the CSS downloads. But this particular file

is funny because it is a "render-blocking" resource... but doesn't contain anything critical.

If we care enough to eliminate this render-blocking resource, we can move it into app.css.
Start by copying this file... or really just the font faces we need: a lot of these are for languages
that we're not using. I'll copy the two Latin fonts... though we likely don't even need this Latin
extension one. Then delete this CSS file entirely, go to assets/styles/app.css, and paste.
These aren't real URLSs... so go copy the URL... paste, take off the index.css... and that

should be fine. Copy the URL again... and do the same thing down here.



assets/styles/app.css

? // ... lines 1 - 4
5 /* inter-latin-ext-wght-normal */
@font-face {
font-family: 'Inter Variable';
font-style: normal;

© 00 N O

font-display: swap;

10 font-weight: 100 900;

11 src: url(https://cdn.jsdelivr.net/npm/@fontsource-
variable/inter@5.0.3/files/inter-latin-ext-wght-normal.woff2)
format ('woff2-variations');

12 unicode-range: U+0100-02AF,U+0300-0301,U+0303-0304,U+0308-

0309, U+0323,U+0329, U+1E0Q-1EFF, U+2020, U+20A0-20AB, U+20AD -
20CF,U+2113,U+2C60-2C7F, U+A720-A7FF;

13 }

14

15 /* inter-latin-wght-normal */

16 @font-face {

17 font-family: 'Inter Variable';

18 font-style: normal;

19 font-display: swap;

20 font-weight: 100 900;

21 src: url(https://cdn.jsdelivr.net/npm/@fontsource-
variable/inter@5.0.3/files/inter-latin-wght-normal.woff2) format('woff2-
variations');

22 unicode-range: U+0000-00FF,U+0131,U+0152-0153, U+02BB-
02BC, U+02C6, U+02DA, U+02DC, U+0300-0301, U+0303-0304, U+0308-

0309, U+0323, U+0329, U+2000-

206F,U+2074,U+20AC, U+2122,U+2191,U+2193, U+2212,U+2215, U+FEFF, U+FFFD,
23 }
$ /7 ... lines 24 - 37

Perfect. This is adding some complexity to our code for only a small gain, so I'd say this is a
lower priority. We have basically the same amount of CSS as before, but we've eliminated a

small, unnecessary blocking resource.

The other failure we have is similar. It's for FontAwesome - specifically, this JavaScript file.
That's also in base.html. twig. Since this <script> tag doesn't have defer or async on
it, this will also block the rendering of the page. If we want, we can add defer to this, which

says:

“Start download this immediately, but don't block the page while it's finishing.”



templates/base.html. twig

? /... lines 1 - 2

3 <head>

T /7 ... lines 4 - 16

17 {% block javascripts %}

$ /... line 18

19 <script defer src="https://kit.fontawesome.com/5a377fab5b.js"
crossorigin="anonymous"></script>

20 {% endblock %}

21 </head>

$ /7 ... lines 22 - 71

Because this is for FontAwesome fonts, the worst-case scenario is that the page loads and then

our font icons show up just a moment later.

Profiling Again!

Okay, now that we've changed a couple of things, let's test it. To save time redeploying, I'll go
back to my local site and run Lighthouse again. "Analyze page load"... make this a bit bigger,

and... awesome! We're getting 100 locally!

But if you look down here... we do still have some opportunities to improve. We see "Serve
images in next gen formats", which is a good thing to check on later, but not related to Symfony
or AssetMapper. This "Avoid serving legacy JavaScript to modern browsers" - | believe that's
referring to the importmap shim: the code that makes the importmap work on all browsers.

That's small & necessary, so not a big deal.

Avoiding_Chaining Critical Requests

But below that, we see "Avoid chaining critical requests”. This is probably the most important

item on this list.

Here's what's happening. As you can see, it downloads the HTML first. Once it does, it realizes
that it needs to download this CSS file. Once it downloads the CSS file, it realizes that it needs
to download this font file. See the problem? Instead of knowing - from the start - that it needs
these and downloading them all at once in parallel, our browser is finding out about them little
by little. Ultimately, it means this font file will take /longer to load because it can't start

downloading it until it downloads a few other files.



How can we fix this? Preloading. Let's talk about this important topic next.



Chapter 23: Preloading

We just discovered a problem: our browser needs to download the page... and a CSS file before
it even realizes that it needs to download this font. This may not be a huge deal, but there's a

cool solution: preloading.

Manually Adding_a link rel="preload"

Go find the font URL - it's this "normal” one - and copy it. Next, open base.html. twig and,
up here, add a <l1ink> tag. Unlike a normal <link rel="stylesheet" that pointsto a

CSS file, the purpose of this link tag will be to yell to the browser:
“Hey, you don't know it yet, but you should download this font file.”

To do that, say rel="preload" then href="" and paste that long URL. And when
preloading fonts, we need to add as="font", type="font/woff2", and

crossorigin="" atthe end.

templates/base.html. twig

$ /7 ... lines 1 - 2

3 <head>

? /... lines 4 - 10

11 <link rel="preload"
href="https://cdn.jsdelivr.net/npm/@fontsource-
variable/inter@5.0.3/files/inter-latin-wght-normal.woff2" as="font"
type="font/woff2" crossorigin>

? /... lines 12 - 21
22 </head>
T /7 ... lines 23 - 72

Ok, let's see what Lighthouse thinks of this! After... we still score 100 - yay! - and under "Avoid

chaining critical requests”, that font file is gone.

Preloading_via a Header




But... what about app.tailwind.css? The browser downloads the HTML and then
immediately sees the 1ink tag for this. Is there a way to hint to the browser that it needs to
download app.tailwind.css even before it downloads the HTML? The answer, surprisingly,

is yes!

But we need a Symfony component called "WebLink". At your terminal, run:

composer require symfony/web-1link

Once that's done, back in base.html. twig, add another preload down here that looks
similar: <link rel="preload" href="">. This time, use a Twig function called
preload() passing the normal asset() function to pointto styles/app.tailwind.css.

In this case, this preload function needs another option called as: 'style'.

templates/base.html. twig

? /7 ... lines 1 - 2

3 <head>

T /7 ... lines 4 - 10

11 <link rel="preload" href="{{
preload(asset('styles/app.tailwind.css'), { as: 'style' }) }}">

$ // ... lines 12 - 22

23 </head>

$ /7 ... lines 24 - 73

That's it! Go refresh the page and "View page source". No surprise: this outputs a preload
tag. And... so far, the preload() Twig function looks like nothing more than a semi-worthless

shortcut!

Even more, for the app.tailwind.css file, this 1ink tag is pointless! This basically tells the

browser:

“Hey, you should start downloading this CSS file.”

But... one line later, it would have found it anyway! So why did we do this? It turns out that the
preload() function does two things: it outputs the 1ink tag href ... but it also tells Symfony

that it should add a preload header to the response.

Go to the Network tools, select "All", find our main page, go to "Headers", and look under

"Response Headers" Woh! We have a new "Link" header called "preload" that points to our



CSS file! So as the browser starts downloading the response, at the very top it sees a hint that it

should start downloading that CSS file!

If we go back over to Lighthouse and analyze the page load again... down here... beautiful! That

entire section is gone.

preload JavaScript in importmap.php

There are a few other things here like "Keep request counts low and transfer sizes small”, but

these aren't really warnings: just something to keep in mind.

But on the topic of preloading, even though we don't have any more warnings, there is another

spot where preloading can improve performance, and it has to do with JavaScript.

Over in importmap.php, there's a key called preload that we haven't talked about. It's set

to true for app. Setthatto false.

importmap.php

? /... lines 1 - 15

16 return [

17 ‘app' => [

$ /7 ... line 18

19 'preload' => false,
20 1

$ /7 ... lines 21 - 32

33 1

Now, move over and run another Lighthouse report. We still get a score of 100, but if we go
down here, ah: "Avoid chaining critical requests" is back! And check it out! We have the HTML
page, down to app.js, then bootstrap.js, the Stimulus loader, Stimulus itself, controllers...

wow. A bunch of stuff is chaining.

This is the same problem we saw with the CSS and font files. First, our browser downloads the
HTML. Then it sees that it needs to download app.js. Once it downloads that file, it sees that
it needs to download bootstrap.js. Then, it realizes it needs to download the
stimulus-bundle/loader, and so on: one-by-one-by-one. Instead of downloading all of

those things in parallel, it has to discover them little-by-little.

preload fixes that. Change this back to true, refresh the page, and view page's source.



importmap.php

? /... lines 1 - 15

16 return [

17 ‘app' => [

$ /... line 18

19 'preload' => true,
20 1

$ /7 ... lines 21 - 32

33 1,

We know that the importmap () Twig function dumps the importmap and the

<script type="module">. But it also dumps these modulepreload things. These are
cool. Because we said 'preload' => true for app, itadds a

<link rel="modulepreload"> for app.js. That hints to the browser that it should start
downloading app.js immediately. Though, that's not really important because it would have

figured that out in about 1 microsecond anyway.

The real power is that AssetMapper then sees that assets/app.js imports bootstrap.js.
And because app.js is preloaded, it also preloads bootstrap.js. And since this imports
./1ib/vinyl. js, it also preloads ./1ib/vinyl. js. So it will download all three of these

files immediately.

At this point, if we ran Lighthouse again, it wouldn't complain about any of these chained
requests. But we still have room for improvement. On the network tools, for JavaScript, check
out the waterfall column. We see that a few files start downloading, and then a few more... and
a few more. So we still have this chaining problem, though it's apparently not a big enough deal

for Lighthouse to report on.

We know that bootstrap. js is being preloaded, but @symfony/stimulus-bundle isn'...
even though it's imported from bootstrap.js. Why doesn't the preload "follow" that import

like the others?

The key thing to understand is that, because we're preloading app.js, anything that app.js
imports with a relative import will automatically be preloaded as well. But anything we import
with a bare import, like lodash/camelCase or @symfony/stimulus-bundle, won't be
preloaded automatically. Perhaps they should, but they have their own entries inside of

importmap.php, so you control the preloading for those independently.

At this point, we're really optimizing performance - maybe over-optimizing. But if you want to

avoid this chaining problem, you could add preload to the items we know will be critical to the



page rendering. For example, @hotwired/stimulus is critical, stimulus-bundle is critical

because that's what loads our controllers, and @hotwired/turbo is also critical.

importmap.php

? /7 ... lines 1 - 15

16 return [

$ /... lines 17 - 23

24 '@hotwired/stimulus' => |
$ /7 ... line 25

26 'preload' => true,

27 1

28 '@symfony/stimulus-bundle' => [
$ /7 ... line 29

30 'preload' => true,

31 1

32 '@hotwired/turbo' => [

T /... line 33

34 'preload' => true,

35 1,

36 1;

When we refresh... nothing changes: we just have more modulepreload items in the HTML.
If we run Lighthouse one more time, we're still scoring 100, and you can see that there are no

major problems down here. Fantastic.

Preload Everything

By the way, if you're now thinking:

“Why don't we just preload everything?”

That's a good thought! But, don't! Your browser is smart, and without any preloads, it has a
highly-intelligent algorithm to determine the best order to download files to load things as fast as
possible. If you preloaded everything, the loading order probably wouldn't be as good. Just use

preloads for critical assets.

Ok! We made it! | think AssetMapper is a breath of fresh air - and | hope you feel the same!
There are some things it doesn't do, like tree-shaking or handling TypeScript. But for a large
number of projects, it's a great fit! And the cool thing is, you're still writing normal JavaScript. So

if you ever did need to move to a build system later, you could do that.



Let us know what you think, and hopefully we can make more improvements for Symfony 6.4.

Alright friends, see you next time!



With <3 from SymfonyCasts



