
Creating a Reusable (&
Amazing) Symfony Bundle

Chapter 1: Bootstrapping the Bundle & Autoloading

Heeeeey Symfony peeps! I'm excited! Because we're going to dive deep in to a super

interesting topic: how to create your own bundles. This is useful if you need to share code

between your own projects. Or if you want to share your great new open source library with the

whole world. Actually, forget that! This tutorial is going to be awesome even if you don't need to

do either of those. Why? Because we use third-party bundles every day. And by learning how to

create one, we're going to become experts in how they work and really get a look at Symfony

under the hood.

As always, you can earn free high-fives by downloading the source code from this page and

coding along with me. After unzipping the file, you'll find a start/ directory with the same code

that you see here. Follow the README.md file for steps on how to get your project setup.

The last step will be to open a terminal, move into the project, sip your coffee, and run:

php bin/console server:run

to start the built-in PHP web server.

Introducing KnpUIpsum

Head to your browser and go to http://localhost:8000 . Say hello to The Space Bar! This

is a Symfony application - the one we're building in our beginner Symfony series. Click into one

of the articles to see a bunch of delightful, fake text that we're using to make this page look real.

Each time you refresh, you get new random, happy content.

To find out where this is coming from, in the project, open src/Service/KnpUIpsum.php .

Yes! This is our new creation: it returns "lorem ipsum" dummy text, but with a little KnpUniversity

flare: the classic latin is replaced with rainbows, unicorns, sunshine and more of our favorite

things.

src/Service/KnpUIpsum.php

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 338

339

And, you know what? I think we all deserve more cupcakes, kittens & baguettes in our life. So I

want to share this functionality with the world, by creating the KnpULoremIpsumBundle! Yep,

we're going to extract this class into its own bundle, handle configuration, add tests, and do a

bunch of other cool stuff.

Right now, we're using this code inside of ArticleController : it's being passed to the

constructor. Below, we use that to generate the content.

namespace App\Service;

class KnpUIpsum

{

 private $unicornsAreReal;

 private $minSunshine;

 public function __construct(bool $unicornsAreReal = true, $minSunshine

= 3)

 {

 $this->unicornsAreReal = $unicornsAreReal;

 $this->minSunshine = $minSunshine;

 }

 /**

 * Returns several paragraphs of random ipsum text.

 *

 * @param int $count

 * @return string

 */

 public function getParagraphs(int $count = 3): string

 {

 $paragraphs = array();

 for ($i = 0; $i < $count; $i++) {

 $paragraphs[] = $this->addJoy($this->getSentences($this-

>gauss(5.8, 1.93)));

 }

 return implode("\n\n", $paragraphs);

 }

}

src/Controller/ArticleController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 75

76

Isolating into a new Bundle Directory

Ok, the first step to creating a new bundle is to move this code into its own location. Eventually,

all the code for the bundle will live in its own completely separate directory & repository. But,

sometimes, when you first start building, it's a bit easier to keep the code in your project: it let's

you hack on things really quickly & test them in your app.

So let's keep the code here for now, but isolate it from the app's code. To do that, create a new

lib/ directory. And then, another called LoremIpsumBundle : this will be the temporary

home for our shiny bundle. Inside, there are a few valid ways to organize things, but I like to

create a src/ directory.

namespace App\Controller;

class ArticleController extends AbstractController

{

 /**

 * Currently unused: just showing a controller with a constructor!

 */

 private $isDebug;

 private $knpUIpsum;

 public function __construct(bool $isDebug, KnpUIpsum $knpUIpsum)

 {

 $this->isDebug = $isDebug;

 $this->knpUIpsum = $knpUIpsum;

 }

 /**

 * @Route("/", name="app_homepage")

 */

 public function homepage()

 {

 return $this->render('article/homepage.html.twig');

 }

}

mkdir lib

mkdir lib/LoremIpsumBundle

mkdir lib/LoremIpsumBundle/src

 Tip

You can also just type one command instead of three:

mkdir -p lib/LoremIpsumBundle/src

Perfect! Now, move the KnpUIpsum class into that directory. And yea, you could put this into a

src/Service directory, or anywhere else you want.

New Vendor Namespace

Oh, but this namespace will not work anymore. We need a namespace that's custom to our

bundle. It could be anything, but usually it has a vendor part - like KnpU and then the name of

the library or bundle - LoremIpsumBundle .

lib/LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 340

And, that's it! If we had decided to put KnpUIpsum into a sub-directory, like Service , then we

would of course also add Service to the end of the namespace like normal.

Next, back in ArticleController , go up to the top, remove the use statement, and re-type

it to get the new one.

namespace KnpU\LoremIpsumBundle;

class KnpUIpsum

src/Controller/ArticleController.php

 // ... lines 1 - 2

3

 // ... line 4

5

 // ... lines 6 - 77

Handling Autoloading

So... will it work! Yea... probably not - but let's try it! Nope! But I do love error messages:

“Cannot autowire ArticleController argument $knpUIpsum... because the KnpUIpsum class

was not found.”

Of course! After creating the new lib/ directory, we need to tell Composer's autoloader to look

for the new classes there. Open composer.json , find the autoload section, and add a new

entry: the KnpU\\LoremIpsumBundle\\ namespace will live in

lib/LoremIpsumBundle/src/ .

composer.json

 // ... lines 1 - 36

37

38

39

 // ... line 40

41

42

 // ... lines 43 - 77

Then, open a new terminal tab. To make the autoload changes take effect, run:

composer dump-autoload

Registering the Service

Will it work now? Try it! Bah, not yet: but we're closer. The error changed: instead of "class not

found", now it says that no KnpUIpsum service exists. To solve this, open

namespace App\Controller;

use KnpU\LoremIpsumBundle\KnpUIpsum;

 "autoload": {

 "psr-4": {

 "KnpU\\LoremIpsumBundle\\": "lib/LoremIpsumBundle/src/",

 }

 },

config/services.yaml .

Thanks to the auto-registration code in here, we don't normally need to register our classes as

services: that's automatic. But, it's only automatic for classes that live in src/ . Yep, as soon as

we moved the class from src/ to lib/ , that service disappeared.

And that's ok! When you create a re-usable bundle, you actually don't want to rely on auto-

registration or autowiring. Instead, as a best-practice, you should configure everything explicitly

to avoid any surprises.

To do that, at the bottom of this file, add KnpU\LoremIpsumBundle\KnpUIpsum: ~ .

config/services.yaml

 // ... lines 1 - 5

6

 // ... lines 7 - 37

38

 Tip

If you're on Symfony 4.4 or higher, you can remove this

KnpU\LoremIpsumBundle\KnpUIpsum: ~ configuration line from the

config/services.yaml file.

This adds a new service for that class. And because we don't need to pass any options or

arguments, we can just set this to ~ . The class does have constructor arguments, but they have

default values.

Ok, try it again! Yes! It finally works! We've successfully isolated our code into its own directory

and we are ready to hack! Next, let's make this a bundle with a bundle class and start digging

into how bundles can automatically register services.

services:

 KnpU\LoremIpsumBundle\KnpUIpsum: ~

Chapter 2: Auto-Adding Services

At this point... we have a directory with a PHP class inside. And, honestly, we could just move

this into its own repository, put it on Packagist and be done! But in that case, it wouldn't be a

bundle, it would simply be a library, which is more or less defined as: a directory full of PHP

classes.

So what is the difference between a library and a bundle? What does a bundle give is that a

library does not? The "mostly-accurate" answer is simple: services. If we only created a library,

people could use our classes, but it would be up to them to add configuration to register them

as services in Symfony's container. But if we make a bundle, we can automatically add services

to the container as soon as our bundle is installed. Sure, bundles can also do a few other things

- like provide translations and other config - but providing services is their main super power.

So, we're going to create a bundle. Actually, the perfect solution would be to create a library with

only the KnpUIpsum class, and then also a bundle that requires that library and adds the

Symfony service configuration. A good example of this is KnpMenu and KnpMenuBundle.

Creating the Bundle Class

To make this a bundle, create a new class called KnpULoremIpsumBundle . This could be

called anything... but usually it's the vendor namespace plus the directory name.

Make this extend Bundle and... that's it! You almost never need to have any logic in here.

lib/LoremIpsumBundle/src/KnpULoremIpsumBundle.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

 // ... lines 8 - 11

To enable this in our app, open bundles.php and configure it for all environments. I'll remove

the use statement for consistency. Normally, this happens automatically when we install a

bundle... but since we just added the bundle manually, we gotta do it by hand.

namespace KnpU\LoremIpsumBundle;

class KnpULoremIpsumBundle extends Bundle

config/bundles.php

 // ... lines 1 - 2

3

 // ... lines 4 - 14

15

16

And, congratulations! We now have a bundle!

Creating the Extension Class

So.... what the heck does that give us? Remember: the super-power of a bundle is that it can

automatically add services to the container, without the user needing to configure anything. How

does that work? Let me show you.

Next to the bundle class, create a new directory called DependencyInjection . Then, add a

new class inside with the same name of the bundle, except ending in Extension . So,

KnpULoremIpsumExtension . Make this extend Extension from HttpKernel . This forces

us to implement one method. I'll go to the Code -> Generate menu, or Cmd+N on a Mac,

choose "Implement Methods" and select the one we need. Inside, just var_dump that we're

alive and... die!

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

10

11

12

13

14

Now move over and refresh. Yes! It hits our new code!

This is really important. Whenever Symfony builds the container, it loops over all the bundles

and, inside of each, looks for a DependencyInjection directory and then inside of that, a

class with the same name of the bundle, but ending in Extension . Woh. If that class exists, it

instantiates it and calls load() . This is our big chance to add any services we want! We can

go crazy!

return [

 KnpU\LoremIpsumBundle\KnpULoremIpsumBundle::class => ['all' => true],

];

namespace KnpU\LoremIpsumBundle\DependencyInjection;

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 var_dump('We\'re alive!');die;

 }

}

See this $container variable? It's not really a container, it's a container builder: something we

can add services to.

Adding services.xml

Right now, our service is defined in the config/services.yaml file of the application. Delete

that! We're going to put a service configuration file inside the bundle instead. Create a

Resources/ directory and another config/ directory inside: this is the best-practice location

for service config. Then, add services.xml . Yep, I said XML. Wait, don't run away!

You can use YAML to configure your services, but XML is the best-practice for re-usable

bundles... though it doesn't matter much. Using XML does have one tiny advantage: it doesn't

require the symfony/yaml component, which, at least in theory, makes your bundle feel a bit

lighter.

To fill this in... um, I cheat. Google for "Symfony Services", open the documentation, search for

XML, and stop when you find a code block that defines a service. Click the XML tab and steal

this! Paste it into our code. The only thing we need to do is configure a single service whose id

is the class of the service. So, use KnpU\LoremIpsumBundle\KnpUIpsum . We're not

passing any arguments, so we can use the short XML syntax for now.

lib/LoremIpsumBundle/src/Resources/config/services.xml

1

2

3

4

5

6

7

8

9

10

But this file isn't processed automatically. Go to the extension class and remove the

var_dump() . The code to load the config file looks a little funny:

$loader = new XmlFileLoader() from the DependencyInjection component. Pass this a

new FileLocator - the one from the Config component - with the path to that directory:

../Resources/config . Below that, add $loader->load('services.xml') .

<?xml version="1.0" encoding="UTF-8" ?>

<container xmlns="http://symfony.com/schema/dic/services"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://symfony.com/schema/dic/services

 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>

 <service id="KnpU\LoremIpsumBundle\KnpUIpsum" />

 </services>

</container>

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

Voilà! Refresh the page. It works! When the container builds, the load() method is called and

our bundle adds its service.

Next, let's talk about service id best-practices, how to support autowiring and public versus

private services.

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $loader = new XmlFileLoader($container, new

FileLocator(__DIR__.'/../Resources/config'));

 $loader->load('services.xml');

 }

}

Chapter 3: Autowiring & Public/Private Services

Head back to services.xml : there are a few really important details we need to get straight.

Best-Practice Service IDs

First, in our applications, we usually make the service id match the class name for simplicity:

and that's what we've done here. But, when you create a re-usable bundle, the best practice is

to use snake-case service id's. Change the key to class and add

id="knpu_lorem_ipsum.knpu_ipsum" .

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 11

Why is this the best practice? Well, the user could in theory change the class of this service to

one of their own classes. And, it would be pretty weird to have a service called

KnpU\LoremIpsumBundle\KnpUIpsum ... when that's not actually the class of the service.

Supporting Autowiring

Anyways, this simple change, totally borks our app! Woohoo! Refresh!

It once again says that no service exists for KnpUIpsum . Remember: we're autowiring that

class into our controller. And in order for autowiring to work, there must be a service whose id

matches the class used in the type-hint. By changing the id from the class to that weird, snake-

case string, we just broke autowiring!

No worries: we can solve this with a service alias. First, identify each service in your app that

you intend to be used directly by the user. Yea, I know, we only have one service. But often, a

 <services>

 <service id="knpu_lorem_ipsum.knpu_ipsum"

class="KnpU\LoremIpsumBundle\KnpUIpsum" />

 </services>

bundle will have several services, but only some of them are meant to be accessed by the user:

the others are just meant to support things internally.

For each "important" service, define an alias: <service id="" ...> and paste in the class

name. Then, alias="" and type the first service's id: knpu_lorem_ipsum.knpu_ipsum .

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 13

To see what this did, move over to your terminal and run:

 Tip

In newer versions of Symfony, the --show-private option is not needed anymore!

php bin/console debug:container --show-private knpu

Ok, there are two services: one has the snake-case id and the other is the full class name. If

you choose the second, it's just an alias to the snake-case service. But now that there is a

service whose id is the class name, anyone can once again autowire using that type-hint. This

fixes our page.

Yep, in ArticleController , the KnpUIpsum class is once-again autowired.

Public versus Private Services

Ok, there is one last thing you need to think about when setting up your services: whether or not

each service should be public or private. In Symfony 4.0, services are private by default, which

means that a user cannot fetch a service directly from the container with

$container->get() and then the service's id. Instead, you need to use dependency

injection, which includes autowiring.

 <services>

 <service id="KnpU\LoremIpsumBundle\KnpUIpsum"

alias="knpu_lorem_ipsum.knpu_ipsum" />

 </services>

And this is really the way people should code going forward: we really should not need services

to be public. But, since some people still do fetch services directly, you may want to make your

important services public. Let's do this: public="true" .

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 7

8

 // ... lines 9 - 13

And even though services are private by default, you should also add public="false" to the

others. This will make your services also behave the same on Symfony 3, where they are public

by default.

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 9

10

 // ... lines 11 - 13

This makes no difference in our app - it all still works.

Alright! With our services configured, let's talk about how we can allow the user to control the

behavior of those services via configuration.

 <service id="knpu_lorem_ipsum.knpu_ipsum"

class="KnpU\LoremIpsumBundle\KnpUIpsum" public="true" />

 <service id="KnpU\LoremIpsumBundle\KnpUIpsum"

alias="knpu_lorem_ipsum.knpu_ipsum" public="false" />

Chapter 4: All about the Bundle Extension Config
System

We're not passing any arguments to the service... but this class does have two very important

arguments: whether or not unicorns are real and the minimum times the word sunshine should

appear in each paragraph. But what if a user of our bundle wants more sunshine or - gasp -

they don't believe in unicorns? Right now, there's no way for them to control these arguments.

So if the bundle is responsible for registering the services & passing its arguments, how can the

user of that bundle control those arguments? The answer lives in the config/packages

directory.

Some important notes: first, our app automatically loads & processes all .yaml files it finds in

this directory. Second, the names of these files are not important: you could rename them to

anything else, .yaml . And third, the entire purpose of these files is to control the services that

are provided by different bundles. When Symfony sees the framework key, it passes this

configuration to the FrameworkBundle, which uses it to modify the services it provides.

The same for monolog : this config is passed to MonologBundle and it uses that when

registering its services.

Creating a New Config File

Create a new file: knpu_lorem_ipsum.yaml - but, we could call this anything. And just to see

what will happen, add some fake config: foo: , then bar: true .

config/packages/knpu_lorem_ipsum.yaml

1

2

Find your browser and refresh! Error! Check out the language carefully. It says that there is no

extension able to load the configuration for "foo". We know that word extension: we just created

our own extension: KnpULoremIpsumExtension .

foo:

 bar: true

Then, since foo is apparently invalid, it lists a bunch of valid keys, like framework ,

web_server , twig , etc. Here's the deal: when Symfony sees a root key like framework , it

looks at all of the bundles, well, really, the extension class for each bundle, to see if there is one

called FrameworkExtension . If there is, it passes the config to it. If there is not, it throws this

big, hairy, ugly exception.

Passing Config to our Extension

But check this out: go back to the list of valid keys. Thanks to our

KnpULoremIpsumExtension class, there's one called knp_u_lorem_ipsum ! Change the

root key to use that instead.

config/packages/knpu_lorem_ipsum.yaml

1

 // ... lines 2 - 3

Next, open our extension class, var_dump($configs) and die.

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

12

13

14

 // ... lines 15 - 16

17

18

Try it out! No error! And cool! That bar: true value is passed to the load method! We're one

step closer to using that config to tweak our service.

But, there are two weird things. First, the root key is... uh... not perfect. The knp_u_ is.. weird -

I want it be knpu_ ... but apparently Symfony disagrees: our extra capital "U" is confusing

things. We'll fix this in a bit.

The second weird thing is that the $configs value that's passed to load() is not just a

simple array with bar=true . Nope, it's an array of arrays. Inception. Why? Well, it's possible

that the user could add configuration for our bundle in multiple files. Like, we could have a dev

environment-specific YAML file. When that happens, instead of merging that config together, it

knp_u_lorem_ipsum:

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 var_dump($configs);die;

 }

}

would pass us the configuration from both files. For example, if knp_u_lorem_ipsum existed

in three different files, this array would have three different arrays inside. And, yep! It will be our

job to merge them together. But, that's actually going to be really cool.

But before we do that, let's fix our alias to be knpu_lorem_ipsum . It's not something you

often need to worry about, but the fix is super interesting.

Chapter 5: Custom Extension Alias

When you create an extension class, Symfony automatically calculates a "root" config key for it.

In our case, it calculated knp_u_lorem_ipsum ... it generated this based on our class name.

I'd rather have knpu_lorem_ipsum . But of course, that doesn't work... yet.

This root key is called the extension alias. And we can totally control it. How? In our extension

class, go to the Code->Generate menu, or Cmd+N on a mac, select "Override" methods, and

choose getAlias() . Then, return knpu_lorem_ipsum .

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

22

23

Here's how things really work. When Symfony boots, it loops over all the extension classes in

the system, calls getAlias() on each, and this becomes their config key. In the parent class,

well, the parent's parent class, there is a default getAlias() method which... surprise!

Removes the Extension suffix, and "underscores" what's left.

Cool! Easy fix! Find your browser and refresh to celebrate! Boo! Another error:

“Users will expect the alias of the default extension of a bundle to be the underscored version

of the bundle name. You can override some method if you want to use another alias.”

How Bundles Load Extensions

Ok. This is a bit odd, but, on the bright side, it'll give us a chance to do some exploring! Open up

our bundle class. It's empty... but it actually does a bunch of cool things. Hold Command or Ctrl

and click to open the base class. One of the methods is called getContainerExtension() .

class KnpULoremIpsumExtension extends Extension

{

 public function getAlias()

 {

 return 'knpu_lorem_ipsum';

 }

}

When Symfony builds the container, it loops over all bundle classes and calls this method,

which returns the extension object. Check out the createContainerExtension() method,

well, actually, the getContainerExtensionClass() method. Ah! This is the reason why

Symfony expects our extension to live in the DependencyInjection directory and to end in

the word Extension . All that magic comes from overrideable methods on our bundle class.

Scroll back up to getContainerExtension() . After it creates the container extension, it

does a sanity check: if the alias is different than it expected, it throws an exception. This was

originally added to prevent bundle authors from going crazy and creating custom aliases like

delicious_pizza or beam_me_up_scotty .

But, it's kind of annoying. The fix is easy. In our bundle class, go to the Code -> Generate menu,

or Cmd + N on a Mac, select Override Methods and choose getContainerExtension .

Then, if null === $this->extension , set $this->extension to a new

KnpULoremIpsumExtension . Return $this->extension at the bottom.

lib/LoremIpsumBundle/src/KnpULoremIpsumBundle.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

This does the same thing as the parent method, but without that sanity check.

Let's do it... refresh! Our custom alias is alive!!!

Now, it's time to use this $configs array to start allowing our end-users to modify our service.

This is one of my favorite parts.

class KnpULoremIpsumBundle extends Bundle

{

 /**

 * Overridden to allow for the custom extension alias.

 */

 public function getContainerExtension()

 {

 if (null === $this->extension) {

 $this->extension = new KnpULoremIpsumExtension();

 }

 return $this->extension;

 }

}

Chapter 6: Bundle Configuration Class

The KnpUIpsum class has two constructor args, but the user can't control these... yet. In

knpu_lorem_ipsum.yaml , here's my idea: allow the user to use two new config keys, like

unicorns_are_real and min_sunshine , and pass those values to our service as

arguments.

Comment-out the var_dump . Symfony's configuration system is smart: all the keys are

validated. If you typo a key - like secret2 under framework , when you refresh, you get a big

ol' error! Yep, each bundle creates its own "tree" of all the valid config keys.

In fact, find your terminal. Run:

php bin/console config:dump framework

This is an example of the entire tree of valid configuration for framework ! This is amazing, and

it's made possible by a special Configuration class. It's time to create our own!

Creating the Configuration Class

Inside the DependencyInjection directory, create a new class called Configuration .

Make this implement ConfigurationInterface : the one from the Config component.

We'll need to implement one method: go to the Code -> Generate menu, or Cmd+N on a Mac,

select "Implement Methods" and choose getConfigTreeBuilder() .

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 6

7

8

9

10

11

12

class Configuration implements ConfigurationInterface

{

 public function getConfigTreeBuilder()

 {

 }

}

This is one of the strangest classes you'll ever see. By using PHP code, we're going to define

the entire tree of valid config that can be passed to our bundle.

A great way to see how this class works is to look at an existing one! Type Shift+Shift to open a

class called FrameworkExtension , deep in the core of Symfony. Yep, this is the extension

class for FrameworkBundle! It has the same load() method as our extension.

In the same directory, if you click on the top tree, you'll find a class called Configuration .

Inside, it defines all of the valid config keys with a, sort of, nested tree format. This is a super

powerful and, honestly, super complex system. We're only going to use a few basic features. If

you need to define a more complex config tree, definitely steal, um, borrow, from these core

classes.

Building the Config Tree

Back in our class, start with $treeBuilder = new TreeBuilder() . Then,

$rootNode = $treeBuilder->root() and pass the name of our key:

knpu_lorem_ipsum .

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 21

22

 Tip

Since Symfony 4.3 you should pass the root node name to the TreeBuilder instead:

$treeBuilder = new TreeBuilder('knpu_lorem_ipsum');

$rootNode = $treeBuilder->getRootNode();

// ...

Now... just start building the config tree! $rootNode->children() , and below, let's create

two keys. The first will be for the "unicorns are real" value, and it should be a boolean. To add

 public function getConfigTreeBuilder()

 {

 $treeBuilder = new TreeBuilder();

 $rootNode = $treeBuilder->root('knpu_lorem_ipsum');

 }

that, say ->booleanNode('unicorns_are_real') , ->defaultTrue() and to finish

configuring this node, ->end() .

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 13

14

15

16

 // ... lines 17 - 21

22

The other option will an integer: ->integerNode('min_sunshine') , default it to 3, then

->end() . Call ->end() one more time to finish the children() .

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 13

14

15

 // ... line 16

17

18

19

 // ... lines 20 - 23

Weird, right!? Return the $treeBuilder at the bottom.

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 20

21

22

Using the Configuration Class

In our extension, we can use this to validate and merge all the config together. Start with

$configuration = $this->getConfiguration() and pass this $configs and the

container. This simply instantiates the Configuration class.

 public function getConfigTreeBuilder()

 {

 $rootNode

 ->children()

 ->booleanNode('unicorns_are_real')->defaultTrue()->end()

 }

 $rootNode

 ->children()

 ->integerNode('min_sunshine')->defaultValue(3)->end()

 ->end()

 ;

 public function getConfigTreeBuilder()

 {

 return $treeBuilder;

 }

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 25

26

Here's the really important part: $config = $this->processConfiguration() : pass the

configuration object and the original, raw array of $configs . var_dump() that final config

and die !

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 17

18

19

20

 // ... lines 21 - 27

Let's see what happens! Find your browser and... refresh! We get an error... which is awesome!

It says:

“Unrecognized option "bar" under "knpu_lorem_ipsum"”

This is telling us:

“Yo! "bar" is not one of the valid config keys!”

Back in knpu_lorem_ipsum.yaml , temporarily comment-out all of our config. And, refresh

again. Yes! No error! Instead, we see the final, validated & normalized config, with the two keys

we created in the Configuration class.

config/packages/knpu_lorem_ipsum.yaml

1

2

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $configuration = $this->getConfiguration($configs, $container);

 }

}

 public function load(array $configs, ContainerBuilder $container)

 {

 $config = $this->processConfiguration($configuration, $configs);

 var_dump($config);die;

 }

#knpu_lorem_ipsum:

bar: true

Put back the config, but use a real value: min_sunshine set to 5.

config/packages/knpu_lorem_ipsum.yaml

1

2

Refresh one last time. Woohoo! min_sunshine equals 5. These Configuration classes

are strange... but they take care of everything: validating, merging and applying default values.

Dynamically Setting the Arguments

We are finally ready to use this config. But... how? The service & its arguments are defined in

services.xml ... so we can't just magically reference those dynamic config values here.

Copy the service id and go back to the extension class. That container builder holds the

instructions on how to instantiate our service - like its class and what constructor arguments to

pass to it. And we - right here in PHP - can change those.

Check it out: start with $definition = $container->getDefinition() and pass the

service id. This returns a Definition object, which holds the service's class name,

arguments and a bunch of other stuff. Now we can say $definition->setArgument() : set

the first argument - which is index 0 - to $config[''] . The first argument is

$unicornsAreReal . So use the unicorns_are_real key. Set the second argument -

index one - to min_sunshine .

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 19

20

21

22

23

 // ... lines 24 - 28

29

knpu_lorem_ipsum:

 min_sunshine: 5

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $definition = $container-

>getDefinition('knpu_lorem_ipsum.knpu_ipsum');

 $definition->setArgument(0, $config['unicorns_are_real']);

 $definition->setArgument(1, $config['min_sunshine']);

 }

}

That's it! Go back and refresh! It works! Sunshine now appears at least 5 times in every

paragraph. Our dynamic value is being passed!

Oh, and, bonus! In your terminal, run config:dump again, but this time pass it

knpu_lorem_ipsum :

php bin/console config:dump knpu_lorem_ipsum

Yes! Our bundle now prints its config thanks to the Configuration class. If you want to get

really fancy - which of course we do - you can add documentation there as well. Add

->info() and pass a short description about why you would set this. Do the same for

min_sunshine .

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 13

14

15

16

17

 // ... lines 18 - 21

22

23

Run config:dump again:

php bin/console config:dump knpu_lorem_ipsum

Pretty, freakin' cool.

Next, let's get fancier with our config and allow entire services to be swapped out.

class Configuration implements ConfigurationInterface

{

 public function getConfigTreeBuilder()

 {

 $rootNode

 ->children()

 ->booleanNode('unicorns_are_real')->defaultTrue()-

>info('Whether or not you believe in unicorns')->end()

 ->integerNode('min_sunshine')->defaultValue(3)->info('How

much do you like sunshine?')->end()

 }

}

Chapter 7: Allowing Entire Services to be
Overridden

When you create a reusable library, you gotta think about what extension points you want to

offer your users. Right now, the user can control the two arguments to this class... but they can't

control anything else, like the actual words that are used in our fake text. These are hardcoded

at the bottom.

So... how could we allow the user to override these? One option that I like is to extract this code

into its own class, and allow the user to override that class entirely.

Check this out: in the bundle, create a new class called KnpUWordProvider . Give it a public

function called getWordList() that will return an array. Back in KnpUIpsum , steal the big

word list array and... return that from the new function.

lib/LoremIpsumBundle/src/KnpUWordProvider.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 140

141

142

143

Perfect! In KnpUIpsum , add a new constructor argument and type-hint it with

KnpUWordProvider . Make it the first argument, because it's required. Create a new property

for this - $wordProvider - then set it below: $this->wordProvider = $wordProvider .

class KnpUWordProvider

{

 public function getWordList(): array

 {

 return [

 'adorable',

 'active',

 'admire',

 'adventurous',

];

 }

}

lib/LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 17

18

19

20

 // ... lines 21 - 22

23

 // ... lines 24 - 209

210

With all that setup, down below in the original method, just return

$this->wordProvider->getWordList() .

lib/LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 205

206

207

208

209

 // ... lines 210 - 211

Our class is now more flexible than before. Of course, in services.xml , we need to tell

Symfony to pass in that new argument! Copy the existing service node so that we can register

the new provider as a service first. Call this one knpu_lorem_ipsum.knpu_word_provider

and set the class to KnpUWordProvider . Oh, but this service does not need to be public: no

one should need to use this service directly.

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 17

Above, we need to stop using the short service syntax. Instead, add a closing service tag. Then,

add an argument with type="service" and

class KnpUIpsum

{

 private $wordProvider;

 public function __construct(KnpUWordProvider $wordProvider, bool

$unicornsAreReal = true, $minSunshine = 3)

 {

 $this->wordProvider = $wordProvider;

 }

}

 private function getWordList(): array

 {

 return $this->wordProvider->getWordList();

 }

 <services>

 <service id="knpu_lorem_ipsum.knpu_word_provider"

class="KnpU\LoremIpsumBundle\KnpUWordProvider" />

 </services>

id="knpu_lorem_ipsum.knpu_word_provider" .

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

8

9

10

 // ... lines 11 - 14

15

 // ... lines 16 - 17

If you're used to configuring services in YAML, the type="service" is equivalent to putting

an @ symbol before the service id. The last change we need to make is in the extension class.

These are now the second and third arguments, so use the indexes one and two.

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 20

21

22

23

 // ... lines 24 - 28

29

Phew! Unless we messed something up, it should work! Try it! Yes! We still get fresh words

each time.

Making the Word Provider Configurable

So... we refactored our code to be more flexible... but it's still not possible for the user to

override the word provider. Here's my idea: in the Configuration class, add a new scalar

node - in other words, a string option - called word_provider . Default this to null , and you

can add some documentation to be super cool. If the user wants to customize the word list, they

will set this to the service id of their own word provider.

 <services>

 <service id="knpu_lorem_ipsum.knpu_ipsum"

class="KnpU\LoremIpsumBundle\KnpUIpsum" public="true">

 <argument type="service"

id="knpu_lorem_ipsum.knpu_word_provider" />

 </service>

 </services>

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $definition->setArgument(1, $config['unicorns_are_real']);

 $definition->setArgument(2, $config['min_sunshine']);

 }

}

lib/LoremIpsumBundle/src/DependencyInjection/Configuration.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 22

23

24

So, in the extension class, if the that value is not set to null, let's replace the first argument

entirely: $definition->setArgument() with 0 and $config['word_provider'] .

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 20

21

22

23

 // ... lines 24 - 25

26

 // ... lines 27 - 31

32

Creating our Custom Word Provider

We're not setting this config value yet, but when we refresh, great! We at least didn't break

anything... though we do have a small mistake...

Anyways, let's test the system properly by creating our own, new word provider. In

src/Service , create a class called CustomWordProvider . Make this extend the

KnpUWordProvider because I just want to add something to the core list. To override the

method, go to the Code -> Generate menu, or Cmd+N on a Mac - choose "Override methods"

and select getWordList() .

class Configuration implements ConfigurationInterface

{

 public function getConfigTreeBuilder()

 {

 $rootNode

 ->children()

 ->scalarNode('word_provider')->defaultNull()->end()

 }

}

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 if (null !== $config['word_provider']) {

 $definition->setArgument(0, $config['word_provider']);

 }

 }

}

src/Service/CustomWordProvider.php

 // ... lines 1 - 6

7

8

9

10

 // ... lines 11 - 14

15

16

Inside, set $words = parent::getWordList() . Then, add the word "beach"... because we

all deserve a little bit more beach in our lives. Return $words at the bottom.

src/Service/CustomWordProvider.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 17

Thanks to the standard service configuration in our app, this class is already registered as a

service. So all we need to do is go into the config/packages directory, open

knpu_lorem_ipsum.yaml , and set word_provider to

App\Service\CustomWordProvider .

config/packages/knpu_lorem_ipsum.yaml

1

 // ... line 2

3

Let's see if this thing works! Move over and refresh! Boooo!

“Argument 1 passed to KnpUIpsum::__construct() must be an instance of KnpUWordProvider

- because that's our type-hint - string given.”

Look below in the stack-trace: this is pretty deep code, but you can actually see that something

is creating a new KnpUIpsum , but passing the string class name of our provider as the first

argument... not the service!

class CustomWordProvider extends KnpUWordProvider

{

 public function getWordList(): array

 {

 }

}

 public function getWordList(): array

 {

 $words = parent::getWordList();

 $words[] = 'beach';

 return $words;

 }

knpu_lorem_ipsum:

 word_provider: App\Service\CustomWordProvider

Go back to our extension class. Here's the fix: when we set the argument to

$config['word_provider'] , this of course sets that argument to the string value! To fix

this in YAML, we would prefix the service id with the @ symbol. In PHP, wrap the value in a

new Reference() object. This tells Symfony that we're referring to a service.

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 22

23

 // ... lines 24 - 26

27

 // ... lines 28 - 32

33

Deep breath and, refresh! It works! And if you search for "beach"... yes! Let's go to the beach!

This is a great step! But there are two other nice improvements we can make: using a service

alias & introducing an interface. Let's add those next.

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $definition->setArgument(0, new

Reference($config['word_provider']));

 }

}

Chapter 8: Extensibility with Interfaces & Aliases

I want to make two other changes to the new "word provider" setup. The first is optional: it's

another common method for making the word provider configurable.

Go back into our services.xml file. Right now, we set the first argument inside of the XML

file, then override that argument in the extension class, if a different value is provided. Another

option - and we'll talk about the advantages later - is to use a service alias.

Copy the alias we created earlier in order to enable autowiring. Create a new alias whose id is

knpu_lorem_ipsum.word_provider and set the alias to the knp_word_provider

service id above.

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

 // ... line 15

16

 // ... lines 17 - 18

Thanks to this, there is now a new service in the container called

knpu_lorem_ipsum.word_provider . But when someone references it, it actually just

points to our knpu_lorem_ipsum.knpu_word_provider . Now, for the argument to

KnpUIpsum , pass the alias id instead.

lib/LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 7

8

9

10

 // ... lines 11 - 18

So far, this won't change anything. But open the extension class. Instead of changing the

argument, we can override the alias to point to their service id. Do this with

 <services>

 <service id="knpu_lorem_ipsum.word_provider"

alias="knpu_lorem_ipsum.knpu_word_provider" public="false" />

 </services>

 <service id="knpu_lorem_ipsum.knpu_ipsum"

class="KnpU\LoremIpsumBundle\KnpUIpsum" public="true">

 <argument type="service" id="knpu_lorem_ipsum.word_provider"

/>

 </service>

$container->setAlias() . First pass knpu_lorem_ipsum.word_provider and set this

alias to $config['word_provider'] . We don't need the new Reference() here

because the setAlias() method expects this to be a service ID.

lib/LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 21

22

23

24

 // ... lines 25 - 26

27

 // ... lines 28 - 32

33

And before even trying it, copy the service alias, find your terminal, and run:

php bin/console debug:container --show-private knpu_lorem_ipsum.word_provider

Yes! This is an alias to our CustomWordProvider . And that means that the first argument to

KnpUIpsum will use that. Refresh to make sure it still works. It does!

There's no amazing reason to use this alias strategy versus what we had before, but there are

two minor advantages. First, if we needed to reference the word provider service in multiple

places - probably in services.xml - using an alias is easier, because you don't need to

remember to, for example, replace 5 different arguments where the service is used. And

second, if we wanted this service to be used directly by our users, creating an alias is the only

way to give them a service id they can reference, even if they override the word provider to be

something else.

Creating a WordProviderInterface

Ok, our setup is really, really nice. But there is one restriction we're putting on our user that we

really do not need to! Open KnpUIpsum and scroll all the way to the constructor. The first

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 if (null !== $config['word_provider']) {

 $container->setAlias('knpu_lorem_ipsum.word_provider',

$config['word_provider']);

 }

 }

}

argument is type-hinted with KnpUWordProvider . This means that if the user wants to create

their own word provider, they must extend our original KnpUWordProvider . We are doing

this... because we just want to add a new word to the list, but this should not be required! All we

care about is that the service has a getWordList() method that returns an array.

In other words, this is the perfect use-case for an interface! Wooo! In the bundle, create a new

PHP class. Call it WordProviderInterface and change the "kind" from class to interface.

Inside, add the getWordList() method and make it return an array. This is also the perfect

place to add some documentation about what this method should do.

lib/LoremIpsumBundle/src/WordProviderInterface.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

With the interface done, go back to KnpUIpsum , change the type-hint to

WordProviderInterface . The user can now pass anything they want, as long as it has this

getWordList() method... because that is what we're using at the bottom of KnpUIpsum .

lib/LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 17

18

 // ... lines 19 - 209

210

Then, of course, we also need to go open our provider and make sure it implements this

interface: implements WordProviderInterface .

interface WordProviderInterface

{

 /**

 * Return an array of words to use for the fake text.

 *

 * @return array

 */

 public function getWordList(): array;

}

class KnpUIpsum

{

 public function __construct(WordProviderInterface $wordProvider, bool

$unicornsAreReal = true, $minSunshine = 3)

}

lib/LoremIpsumBundle/src/KnpUWordProvider.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 142

143

If you try it now... not broken! And yea, our CustomWordProvider will still extend

KnpUWordProvider , but that's now optional - we could just implement the interface directly.

Next, let's take a big step and move our bundle out of our code and give it it's own

composer.json file!

class KnpUWordProvider implements WordProviderInterface

{

}

Chapter 9: Proper Bundle composer.json File

We put the bundle into our app temporarily because it made it really easy to hack on the bundle,

test in the app and repeat.

But now that it's getting kinda stable, it's time to move the bundle into its own directory with its

own repository. It's like watching your kid grow up, and finally move into their own apartment.

Find your terminal, and kick that lazy bundle out of your house and into a new directory next

door:

mv lib/LoremIpsumBundle ../LoremIpsumBundle

In PhpStorm, let's open that second directory inside a new window, and re-decorate things a

little bit. Ok, a lot to keep track of: application code, bundle code and terminal. To confuse things

more, open a third terminal tab and move it into the bundle, which, sadly, does not have a git

repository yet!

Let's add one!

git init git status

Add everything and commit!

git add .

git commit -m "Unicorns"

Bootstrapping composer.json

To make this a shareable package, it needs its very-own composer.json file. To create it, run:

composer init

Let's call it knpuniversity/lorem-ipsum-bundle , give it a description, make sure the

author is correct, leave minimum-stability alone and, for "Package Type" - this is important! - use

symfony-bundle . That's needed so that Flex will automatically enable the bundle when it's

installed. For License, I'll use MIT - but more on that later. And finally, let's not add any

dependencies yet. And, generate! Let's definitely ignore the vendor/ directory.

LoremIpsumBundle/composer.json

1

2

3

4

5

6

7

8

9

10

11

12

13

Hello .gitignore file and hello composer.json ! This file has a few purposes. First, of

course, it's where we will eventually require any packages the bundle needs. We'll do that later.

But I am going to start at least by saying that we require php 7.1.3. That's the version that

Symfony 4.0 requires.

LoremIpsumBundle/composer.json

 // ... lines 1 - 11

12

13

14

 // ... lines 15 - 16

Autoloading Rules

Second, the composer.json file is where we define our autoloading rules: Composer needs

to know what namespace our bundle uses and where those classes live.

{

 "name": "knpuniversity/lorem-ipsum-bundle",

 "description": "Happy lorem ipsum",

 "type": "symfony-bundle",

 "license": "MIT",

 "authors": [

 {

 "name": "Ryan Weaver",

 "email": "ryan@knpuniversity.com"

 }

],

 "require": {}

}

 "require": {

 "php": "^7.1.3"

 }

Up until now, we put those autoload rules inside the main project. Let's steal that section and

remove the line for our bundle. Paste that into the bundle and remove the App line. The

KnpU\\LoremIpsumBundle\\ namespace lives in just, src/ .

LoremIpsumBundle/composer.json

 // ... lines 1 - 14

15

16

17

18

19

 // ... lines 20 - 21

Using a "path" Repository

So... yay! We have a standalone bundle with its own repository! But, I'm not quite ready to push

this to Packagist yet... and I kinda want to keep testing it inside my app. But, how? We can't

composer require it until it lives on Packagist, right?

Well, there is one trick. Google for "composer path package".

Click on the "Repositories" documentation and... all the way at the bottom... there's a path

option! This allows us to point to any directory on our computer that contains a

composer.json file. Then, suddenly, that library becomes available to composer require .

Copy the repositories section, find our application's composer.json and, at the bottom,

paste this. The library lives at ../LoremIpsumBundle .

 Tip

The course code contains LoremIpsumBundle project inside itself, hence you won't see

../ on the repository URL in the code blocks.

 "autoload": {

 "psr-4": {

 "KnpU\\LoremIpsumBundle\\": "src/"

 }

 }

composer.json

 // ... lines 1 - 75

76

77

78

79

80

81

 // ... lines 82 - 83

Thanks to that, our application now knows that there is a package called

knpuniversity/lorem-ipsum-bundle available. Back at the terminal, find the tab for our

application and composer require knpuniversity/lorem-ipsum-bundle , with a

:*@dev at the end.

composer require "knpuniversity/lorem-ipsum-bundle:*@dev"

A path package isn't quite as smart as a normal package: you don't have versions or anything

like that: it just uses whatever code is in that directory. This tells Composer to require that

package, but not worry about the version.

And, cool! On my system, it installed with a symlink, which means we can keep hacking on the

bundle and testing it live in the app.

Oh, and since Symfony flex noticed that our package has a symfony-bundle type, it actually

tried to configure a recipe, which would normally enable the bundle for us in bundles.php . It

didn't this time, only because we already have that code.

Now that everything is reconnected, it should work! Refresh the page. Yes! That bundle is

properly living on its own.

Next, we actually already have some tests for our bundle... but they still live in the app. Let's

move these into the bundle and start talking about properly adding the dependencies that it

needs.

 "repositories": [

 {

 "type": "path",

 "url": "LoremIpsumBundle"

 }

]

Chapter 10: Testing the Bundle

Hey! Someone already made some tests for our bundle!

tests/Service/KnpUIpsumTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 65

66

 Tip

The assertInternalType() method has been removed, you can use

assertIsString() instead:

$this->assertIsString($words);

If you want to know more about this:

https://github.com/sebastianbergmann/phpunit/issues/3369

So nice! Right now, they live in the app, but moving them into the bundle is our next job! But

first... let's make sure they're still working.

namespace App\Tests\Service;

class KnpUIpsumTest extends TestCase

{

 public function testGetWords()

 {

 $ipsum = new KnpUIpsum();

 $words = $ipsum->getWords(1);

 $this->assertInternalType('string', $words);

 $this->assertCount(1, explode(' ', $words));

 $words = $ipsum->getWords(10);

 $this->assertCount(10, explode(' ', $words));

 $words = $ipsum->getWords(10, true);

 $this->assertCount(10, $words);

 }

}

https://github.com/sebastianbergmann/phpunit/issues/3369

Find the terminal tab for the application and run:

./vendor/bin/simple-phpunit

The first time you run this, it'll download PHPUnit behind the scenes. Then... it does not pass!

“Class App\Service\KnpUIpsum not found”

Of course! When we moved this class into the new namespace, we did not update the test! No

problem - just re-type KnpUIpsum and hit tab to auto-complete and get the new use

statement.

tests/Service/KnpUIpsumTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 67

Perfect! But... I can already see another problem! When we added the first constructor

argument to KnpUIpsum , we also didn't update the test. I could use mocking here, but it's just

as easy to say new KnpUWordProvider . Repeat that in the two other places.

use KnpU\LoremIpsumBundle\KnpUIpsum;

tests/Service/KnpUIpsumTest.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

 // ... lines 14 - 23

24

 // ... line 25

26

27

28

 // ... lines 29 - 37

38

 // ... line 39

40

41

 // ... lines 42 - 43

44

45

 // ... lines 46 - 64

65

66

67

Ok, try those tests again!

./vendor/bin/simple-phpunit

Got it!

Adding Tests to your Bundle & autoload-dev

Time to move this into our bundle. We already have a src/ directory. Now create a new

directory next to that called tests/ . Copy the KnpUIpsumTest and put that directly in this

new folder. I'm putting it directly in tests/ because the KnpUIpsum class itself lives directly in

src/ .

use KnpU\LoremIpsumBundle\KnpUWordProvider;

class KnpUIpsumTest extends TestCase

{

 public function testGetWords()

 {

 $ipsum = new KnpUIpsum(new KnpUWordProvider());

 }

 public function testGetSentences()

 {

 $ipsum = new KnpUIpsum(new KnpUWordProvider());

 }

 public function testGetParagraphs()

 {

 for ($i = 0; $i < 100; $i++) {

 $ipsum = new KnpUIpsum(new KnpUWordProvider());

 }

 }

}

And the test file is now gone from the app.

But really... we shouldn't need to update much... or anything in the test class itself. In fact, the

only thing we need to change is the namespace. Instead of App\Tests\Services , start with

the same namespace as the rest of the bundle. So, KnpU\LoremIpsumBundle\Tests .

LoremIpsumBundle/tests/KnpUIpsumTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 67

But, if we're going to start putting classes in the tests/ directory, we need to make sure that

Composer can autoload these files. This isn't strictly required to make PHPUnit work, but it will

be needed if you add any helper or dummy classes to the directory and want to use them in

your tests.

And, it's easy! We basically want to add a second PSR-4 rule that says that the

KnpU\LoremIpsumBundle\Tests namespace lives in the tests/ directory. But... don't!

Instead, copy the entire section, paste and rename it to autoload-dev . Change the

namespace to end in Tests\\ and point this at the tests/ directory.

LoremIpsumBundle/composer.json

 // ... lines 1 - 19

20

21

22

23

24

 // ... lines 25 - 26

Why autoload-dev? The issue is that our end users will not be using anything in the

tests/ directory: this config exists just to help us when we are working directly on the bundle.

By putting it in autoload-dev , the autoload rules for the tests/ directory will not be added

to the autoload matrix of our users' applications, which will give them a slight performance

boost.

Installing symfony/phpunit-bridge

Ok: our test is ready. So let's run it! Move over to the terminal for the bundle and run... uh... wait

a second. Run, what? We haven't installed PHPUnit! Heck, we don't even have a vendor/

namespace KnpU\LoremIpsumBundle\Tests;

 "autoload-dev": {

 "psr-4": {

 "KnpU\\LoremIpsumBundle\\Tests\\": "tests/"

 }

 }

directory yet. Sure, you can run composer install to get a vendor/ directory... but with

nothing inside.

This should be no surprise: if we want to test our bundle, the bundle itself needs to require

PHPUnit. Go back to the terminal and run:

composer require symfony/phpunit-bridge --dev

Two important things. First, we're using Symfony's PHPUnit bridge because it has a few extra

features... and ultimately uses PHPUnit behind-the-scenes. Second, just like with autoloading,

our end users do not need to have symfony/phpunit-bridge installed in their vendor

directory. We only need this when we're working on the bundle itself. By adding it to

require-dev , when a user installs our bundle, it will not also install

symfony/phpunit-bridge .

Ignoring composer.lock

Now that we've run composer install , we have a composer.lock file! So, commit it!

Wait, don't! Libraries and bundles should actually not commit this file - there's just no purpose to

lock the dependencies: it doesn't affect our end-users at all. Instead, open the .gitignore file

and ignore composer.lock . Now when we run git status , yep! It's gone.

LoremIpsumBundle/.gitignore

 // ... line 1

2

phpunit.xml.dist

Ok, let's finally run the tests!

./vendor/bin/simple-phpunit

composer.lock

It - of course - downloads PHPUnit behind the scenes the first time and then... nothing! It... just

prints out the options??? What the heck? Well... our bundle doesn't have a

phpunit.xml.dist file yet... so it has no idea where our test files live or anything else!

A good phpunit.xml.dist file is pretty simple... and I usually steal one from a bundle I trust.

For example, Go to github.com/knpuniversity/oauth2-client-bundle. Find the

phpunit.xml.dist file, view the raw version and copy it. Back at our bundle, create that file

and paste it in.

LoremIpsumBundle/phpunit.xml.dist

1

2

3

4

5

6

7

8

 // ... lines 9 - 26

27

Oh, and before I forget, in .gitignore , also ignore phpunit.xml . The .dist version is

committed, but this allows anyone to have a custom version on their local copy that they do not

commit.

LoremIpsumBundle/.gitignore

 // ... lines 1 - 2

3

Check out the new file: the really important thing is that we set the bootstrap key to

vendor/autoload.php so that we get Composer's autoloading. This also sets a few

php.ini settings and... yes: we tell PHPUnit where our test files live.

Now I think it will work. Find your terminal and try it again:

./vendor/bin/simple-phpunit

It passes! Woo!

<?xml version="1.0" encoding="UTF-8"?>

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://schema.phpunit.de/4.1/phpunit.xsd"

 backupGlobals="false"

 colors="true"

 bootstrap="./vendor/autoload.php"

 >

</phpunit>

phpunit.xml

https://github.com/knpuniversity/oauth2-client-bundle

After seeing these fancy green colors, you might be thinking that our bundle is working! And if

you did... you'd be half right. Next, we'll build a functional test... which is totally going to fail.

Chapter 11: Service Integration Test

Thanks to the unit test, we can confidently say that the KnpUIpsum class works correctly. But...

that's only like 10% of our bundle's code! Most of the bundle is related to service configuration.

So what guarantees that the bundle, extension class, Configuration class and services.xml

files are all correct? Nothing! Yay!

And it's not that we need to test everything, but it would be great to at least have a "smoke" test

that made sure that the bundle correctly sets up a knpu_lorem_ipsum.knpu_ipsum service.

Bootstrapping the Integration Test

We're going to do that with a functional test! Or, depending on how you name things, this is

really more of an integration test. Details. Anyways, in the tests/ directory, create a new class

called FunctionalTest .

Make this extend the normal TestCase from PHPUnit, and add a

public function testServiceWiring() .

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 27

And here is where things get interesting. We basically want to initialize our bundle into a real

app, and check that the container has that service. But... we do not have a Symfony app lying

around! So... let's make the smallest possible Symfony app ever.

To do this, we just need a Kernel class. And instead of creating a new file with a new class, we

can hide the class right inside this file, because it's only needed here.

class FunctionalTest extends TestCase

{

 public function testServiceWiring()

 {

 }

}

Add class KnpULoremIpsumTestingKernel extends Kernel from... wait... why is this

not auto-completing the Kernel class? There should be one in Symfony's HttpKernel

component! What's going on?

Dependencies: symfony/framework-bunde?

Remember! In our composer.json , other than the PHP version, the require key is empty!

We're literally saying that someone is allowed to use this bundle even if they use zero parts of

Symfony. That's not OK. We need to be explicit about what dependencies are actually required

to use this bundle.

But... what dependencies are required, exactly? Honestly... most bundles simply require

symfony/framework-bundle . FrameworkBundle provides all of the core services, like the

router, session, etc. It also requires the http-kernel component, event-dispatcher and

probably anything else that your bundle relies on.

Requiring FrameworkBundle is not a horrible thing. But, it's technically possible to use the

Symfony framework without the FrameworkBundle, and some people do do this.

So we're going to take the tougher, more interesting road and not simply require that bundle.

Instead, let's look at the actual components our code uses. For example, open the bundle class.

Obviously, we depend on the http-kernel component. And in the extension class, we're

using config and dependency-injection . In Configuration , nothing new: just

config .

Ok! Our bundle needs the config , dependency-injection and http-kernel

components. And by the way, this is exactly why we're writing the integration test! Our bundle is

not setup correctly right now... but it wasn't very obvious.

Adding our Dependencies

In composer.json , add these: symfony/config at version ^4.0 . Copy this and paste it

two more times. Require symfony/dependency-injection and symfony/http-kernel .

LoremIpsumBundle/composer.json

 // ... lines 1 - 11

12

 // ... line 13

14

15

16

17

 // ... lines 18 - 32

Now, find your terminal, and run:

composer update

Perfect! Once that finishes, we can go back to our functional test. Re-type the "l" on Kernel

and... yes! There is the Kernel class from http-kernel .

This requires us to implement two methods. Go to the Code -> Generate menu - or Command +

N on a Mac - click "Implement Methods" and choose the two.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 16

17

18

19

20

21

22

23

24

25

26

Inside registerBundles , return an array and only enable our bundle:

new KnpULoremIpsumBundle() . Since we're not dependent on any other bundles - like

FrameworkBundle - we should, in theory, be able to boot an app with only this. Kinda cool!

 "require": {

 "symfony/config": "^4.0",

 "symfony/dependency-injection": "^4.0",

 "symfony/http-kernel": "^4.0"

 },

namespace KnpU\LoremIpsumBundle\Tests;

class KnpULoremIpsumTestingKernel extends Kernel

{

 public function registerBundles()

 {

 }

 public function registerContainerConfiguration(LoaderInterface

$loader)

 {

 }

}

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 26

27

28

29

30

31

32

 // ... lines 33 - 38

And... that's it! Our app is ready. Back in testServiceWiring , add

$kernel = new KnpULoremIpsumTestingKernel() and pass this test for the

environment, thought that doesn't matter, and true for debug. Next, boot the kernel, and say

$container = $kernel->getContainer() .

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 38

This is great! We just booted a real Symfony app. And now, we can makes sure our service

exists. Add $ipsum = $container->get() , copy the id of our service, and paste it here.

We can do this because the service is public.

Let's add some very basic checks, like $this->assertInstanceOf() that

KnpUIpsum::class is the type of $ipsum . And also, $this->assertInternalType()

that a string is what we get back when we call $ipsum->getParagraphs() .

 public function registerBundles()

 {

 return [

 new KnpULoremIpsumBundle(),

];

 }

class FunctionalTest extends TestCase

{

 public function testServiceWiring()

 {

 $kernel = new KnpULoremIpsumTestingKernel('test', true);

 $kernel->boot();

 $container = $kernel->getContainer();

 }

}

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 18

19

20

21

22

 // ... lines 23 - 38

The unit test truly tests this class - so we really only need a sanity check. I think it's time to try

this! Find your terminal, and run:

./vendor/bin/simple-phpunit

Yes! We're now sure that our service is wired correctly! So, this functional test didn't fail like I

promised in the last chapter. But the point is this: before we added our dependencies, our

bundle was not actually setup correctly.

And, woh! In the tests/ directory, we suddenly have a cache/ folder! That comes from our

kernel: it caches files just like a normal app. To make sure this doesn't get committed, open

.gitignore and ignore /tests/cache .

LoremIpsumBundle/.gitignore

 // ... lines 1 - 3

4

Next, let's get a little more complex by testing that some of our configuration options work.

 public function testServiceWiring()

 {

 $ipsum = $container->get('knpu_lorem_ipsum.knpu_ipsum');

 $this->assertInstanceOf(KnpUIpsum::class, $ipsum);

 $this->assertInternalType('string', $ipsum->getParagraphs());

 }

/tests/cache

Chapter 12: Complex Config Test

There is one important part of the bundle that is not tested yet: our configuration. If the user sets

the min_sunshine option, there's no test that this is correctly passed to the service.

And yea, again, you do not need to have a test for everything: use your best judgment. For

configuration like this, there are three different ways to test it. First, you can test the

Configuration class itself. That's a nice idea if you have some really complex rules. Second,

you can test the extension class directly. In this case, you would pass different config arrays to

the load() method and assert that the arguments on the service Definition objects are

set correctly. It's a really low-level test, but it works.

And third, you can test your configuration with an integration test like we created, where you

boot a real application with some config, and check the behavior of the final services.

If you do want to test the configuration class or the extension class, like always, a great way to

do this is by looking at the core code. Press Shift+Shift to open FrameworkExtensionTest .

If you did some digging, you'd find out that this test parses YAML files full of framework

configuration, parses them, then checks to make sure the Definition objects are correct

based on that configuration.

Try Shift + Shift again to open ConfigurationTest . There are a bunch of these, but the one

from FrameworkBundle is a pretty good example.

Dummy Test Word Provider

We're going to use the third option: boot a real app with some config, and test the final services.

Specifically, I want to test that the custom word_provider config works.

Let's think about this: to create a custom word provider, you need the class, like

CustomWordProvider , you need to register it as a service - which is automatic in our app -

and then you need to pass the service id to the word_provider option. We're going to do all

of that, right here at the bottom of this test class. It's a little nuts, and that's exactly why we're

talking about it!

Create a new class called StubWordList and make it implement

WordProviderInterface . This will be our fake word provider. Go to the Code -> Generate

menu, or Command + N on a Mac, and implement the getWordList() method. Just return an

array with two words: stub and stub2 .

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 66

67

68

69

70

71

72

73

Next, copy the testServiceWiring() method, paste it, and rename it to

testServiceWiringWithConfiguration() . Remove the last two asserts: we're going to

work more on this in a minute.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 25

26

27

28

29

30

31

32

33

34

 // ... line 35

36

37

 // ... lines 38 - 74

Configuring Bundles in the Kernel

namespace KnpU\LoremIpsumBundle\Tests;

class StubWordList implements WordProviderInterface

{

 public function getWordList(): array

 {

 return ['stub', 'stub2'];

 }

}

class FunctionalTest extends TestCase

{

 public function testServiceWiringWithConfiguration()

 {

 $kernel = new KnpULoremIpsumTestingKernel([

 'word_provider' => 'stub_word_list'

]);

 $kernel->boot();

 $container = $kernel->getContainer();

 $ipsum = $container->get('knpu_lorem_ipsum.knpu_ipsum');

 }

}

Here's the tricky part: we're using the same kernel in two different tests... but we want them to

behave differently. In the second test, I need to pass some extra configuration. This will look a

bit technical, but just follow me through this.

First, inside the kernel, go back to the Code -> Generate menu, or Command + N on a Mac,

and override the constructor. To simplify, instead of passing the environment and debug flag,

just hard-code those when we call the parent constructor.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 38

39

40

41

42

43

44

 // ... lines 45 - 60

61

 // ... lines 62 - 70

Thanks to that, we can remove those arguments in our two test functions above. But now, add

an optional array argument called $knpUIpsumConfig . This will be the configuration we want

to pass under the knpu_lorem_ipsum key.

At the top of the kernel, create a new private variable called $knpUIpsumConfig , and then

assign that in the constructor to the argument.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 38

39

40

41

42

43

44

45

 // ... lines 46 - 47

48

 // ... lines 49 - 64

65

 // ... lines 66 - 74

class KnpULoremIpsumTestingKernel extends Kernel

{

 public function __construct()

 {

 parent::__construct('test', true);

 }

}

class KnpULoremIpsumTestingKernel extends Kernel

{

 private $knpUIpsumConfig;

 public function __construct(array $knpUIpsumConfig = [])

 {

 $this->knpUIpsumConfig = $knpUIpsumConfig;

 }

}

Next, find the registerContainerConfiguration() method. In a normal Symfony app,

this is the method that's responsible for parsing all the YAML files in the config/packages

directory and the services.yaml file.

Instead of parsing YAML files, we can instead put all that logic into PHP with

$loader->load() passing it a callback function with a ContainerBuilder argument.

Inside of here, we can start registering services and passing bundle extension configuration.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 56

57

58

59

 // ... lines 60 - 62

63

64

 // ... lines 65 - 74

First, in all cases, let's register our StubWordList as a service:

$container->register() , pass it any id - like stub_word_list - and pass the class:

StubWordList::class . It doesn't need any arguments.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 58

59

60

 // ... lines 61 - 62

63

 // ... lines 64 - 74

Next, we need to pass any custom knpu_lorem_ipsum bundle extension configuration. Do

this with $container->loadFromExtension() with knpu_lorem_ipsum and, for the

second argument, the array of config you want: $this->knpUIpsumConfig .

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 58

59

 // ... lines 60 - 61

62

63

 // ... lines 64 - 74

 public function registerContainerConfiguration(LoaderInterface

$loader)

 {

 $loader->load(function(ContainerBuilder $container) {

 });

 }

 $loader->load(function(ContainerBuilder $container) {

 $container->register('stub_word_list', StubWordList::class);

 });

 $loader->load(function(ContainerBuilder $container) {

 $container->loadFromExtension('knpu_lorem_ipsum', $this-

>knpUIpsumConfig);

 });

Basically, each test case can now pass whatever custom config they want. The first won't pass

any, but the second will pass the word_provider key set to the service id:

stub_word_list .

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 25

26

27

28

29

30

 // ... lines 31 - 35

36

37

 // ... lines 38 - 74

The downside of an integration test is that we can't assert exactly that the StubWordList was

passed into KnpUIpsum . We can only test the behavior of the services. But since that stub

word list only uses two different words, we can reasonably test this with

$this->assertContains('stub', $ipsum->getWords(2)) .

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 34

35

36

 // ... lines 37 - 74

Ready to try this? Find your terminal and... run those tests!

./vendor/bin/simple-phpunit

Ah man! Our new test fails! Hmm... it looks like it's not using our custom word provider. Weird!

It's probably weirder than you think. Re-run just that test by passing

--filter testServiceWiringWithConfiguration :

class FunctionalTest extends TestCase

{

 public function testServiceWiringWithConfiguration()

 {

 $kernel = new KnpULoremIpsumTestingKernel([

 'word_provider' => 'stub_word_list'

]);

 }

}

 public function testServiceWiringWithConfiguration()

 {

 $this->assertContains('stub', $ipsum->getWords(2));

 }

./vendor/bin/simple-phpunit --filter testServiceWiringWithConfiguration

It still fails. But now, clear the cache directory:

rm -rf tests/cache

And try the test again:

./vendor/bin/simple-phpunit --filter testServiceWiringWithConfiguration

Holy Houdini Batman! It passed! In fact, try all the tests:

./vendor/bin/simple-phpunit

They all pass! Black magic! What the heck just happened?

When you boot a kernel, it creates a tests/cache directory that includes the cached

container. The problem is that it's using the same cache directory for both tests. Once the cache

directory is populated the first time, all future tests re-use the same container from the first test,

instead of building their own.

It's a subtle problem, but has an easy fix: we need to make the Kernel use a different cache

directory each time it's instantiated. There are tons of ways to do this, but here's an easy one.

Go back to the Code -> Generate menu, or Command + N on a Mac, and override a method

called getCacheDir() . Return __DIR__.'/cache/' then spl_object_hash($this) .

So, we will still use that cache directory, but each time you create a new Kernel, it will use a

different subdirectory.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 65

66

67

68

69

70

 // ... lines 71 - 79

Clear out the cache directory one last time. Then, run the tests!

./vendor/bin/simple-phpunit

They pass! Run them again:

./vendor/bin/simple-phpunit

You should now see four unique sub-directories inside cache/ . I won't do it, but to make things

even better, you could clear the cache/ directory between tests with a teardown() method

in the test class.

class KnpULoremIpsumTestingKernel extends Kernel

{

 public function getCacheDir()

 {

 return __DIR__.'/cache/'.spl_object_hash($this);

 }

}

Chapter 13: Adding Routes & Controllers

If you watch a lot of KnpU tutorials, you know that I love to talk about how the whole point of a

bundle is that it adds services to the container. But, even I have to admit that a bundle can do a

lot more than that: it can add routes, controllers, translations, public assets, validation config

and a bunch more!

Find your browser and Google for "Symfony bundle best practices". This is a really nice

document that talks about how you're supposed to build re-usable bundles. We're following, um,

most of the recommendations. It tells you the different directories where you should put different

things. Some of these directories are just convention, but some are required. For example, if

your bundle provides translations, they need to live in the Resources/translations

directory next to the bundle class. If you follow that rule, Symfony will automatically load them.

Adding a Route + Controller

Here's our new goal: I want to add a route & controller to our bundle. We're going to create an

optional API endpoint that returns some delightful lorem ipsum text.

Before we start, I'll open my PhpStorm preferences and, just to make this more fun, search for

"Symfony" and enable the Symfony plugin. Also search for "Composer" and select the

composer.json file so that PhpStorm knows about our autoload namespaces.

Back to work! In src/ , create a Controller directory and inside of that, a new PHP class

called IpsumApiController . We don't need to make this extend anything, but it's OK to

extend AbstractController to get some shortcuts... except what!?

AbstractController doesn't exist!

That's because the class lives in FrameworkBundle and... remember! Our bundle does not

require that! Ignore this problem for now. Instead, find our app code, open

AbstractController , copy its namespace , and use it to add the use statement manually

to the controller.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 5

6

 // ... line 7

8

 // ... lines 9 - 25

Next, add a public function called index . Here, we're going to use the KnpUIpsum class to

return a JSON response with some dummy text. When you create a controller in a reusable

bundle, the best practice is to register your controller as a proper service and use dependency

injection to get anything you need.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 22

23

 // ... lines 24 - 25

Add public function __construct() and type-hint the first argument with KnpUIpsum .

I'll press Alt+Enter and choose Initialize Fields so that PhpStorm creates and sets a property for

that.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 9

10

 // ... line 11

12

13

14

15

 // ... lines 16 - 25

Down below, return $this->json() - we will not have auto-complete for that method

because of the missing AbstractController - with a paragraphs key set to

$this->knpUIpsum->getParagraphs() and a sentences key set to

$this->knpUIpsum->getSentences()

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class IpsumApiController extends AbstractController

 public function index()

 {

 }

 private $knpUIpsum;

 public function __construct(KnpUIpsum $knpUIpsum)

 {

 $this->knpUIpsum = $knpUIpsum;

 }

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

 // ... lines 24 - 25

Excellent!

Registering your Controller as a Service

Next, we need to register this as a service. In services.xml , copy the first service, call this

one ipsum_api_controller , and set its class name. For now, don't add public="true"

or false : we'll learn more about this in a minute. Pass one argument: the main

knpu_lorem_ipsum.knpu_ipsum service.

LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

15

16

 // ... lines 17 - 19

20

 // ... lines 21 - 22

 public function index()

 {

 return $this->json([

 'paragraphs' => $this->knpUIpsum->getParagraphs(),

 'sentences' => $this->knpUIpsum->getSentences(),

]);

 }

 <services>

 <service id="knpu_lorem_ipsum.ipsum_api_controller"

class="KnpU\LoremIpsumBundle\Controller\IpsumApiController">

 <argument type="service" id="knpu_lorem_ipsum.knpu_ipsum" />

 </service>

 </services>

 Tip

In Symfony 5, you'll need a bit more config to get your controller service working:

<service id="knpu_lorem_ipsum.ipsum_api_controller" class="KnpU\LoremIpsumBu

 <call method="setContainer">

 <argument type="service" id="Psr\Container\ContainerInterface"/>

 </call>

 <tag name="container.service_subscriber"/>

 <argument type="service" id="knpu_lorem_ipsum.knpu_ipsum"/>

</service>

For a full explanation, see this thread: https://bit.ly/abstract-controller-tag

Perfect!

Routing

Finally, let's add some routing! In Resources/config , create a new routes.xml file. This

could be called anything because the user will import this file manually from their app.

To fill this in, as usual, we'll cheat! Google for "Symfony Routing" and, just like we did with

services, search for "XML" until you find a good example.

Copy that code and paste it into our file. Let's call the one route knpu_lorem_ipsum_api .

For controller , copy the service id, paste, and add a single colon then index .

LoremIpsumBundle/src/Resources/config/routes.xml

1

2

3

4

5

6

7

8

9

10

Fun fact: in Symfony 4.1, the syntax changes to a double :: and using a single colon is

deprecated. Keep a single : for now if you want your bundle to work in Symfony 4.0.

<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://symfony.com/schema/routing

 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="knpu_lorem_ipsum_api"

controller="knpu_lorem_ipsum.ipsum_api_controller:index" path="/" >

 <!-- settings -->

 </route>

</routes>

https://bit.ly/abstract-controller-tag

Finally, for path , the user will probably want something like /api/lorem-ipsum . But instead

of guessing what they want, just set this to / , or at least, something short. We'll allow the user

to choose the path prefix.

And that's it! But... how can we make sure it works? In a few minutes, we're going to write a

legitimate functional test for this. But, for now, let's just test it in our app!

In the config directory, we have a routes.yaml file, and we could import the routes.xml

file from here. But, it's more common to go into the routes/ directory and create a separate

file: knpu_lorem_ipsum.yaml .

Add a root key - _lorem_ipsum - this is meaningless, then resources set to

@KnpULoremIpsumBundle and then the path to the file:

/Resources/config/routes.xml . Then, give this a prefix! How about /api/ipsum .

config/routes/knpu_lorem_ipsum.yaml

1

2

3

Did it work? Let's find out: find your terminal tab for the application, and use the trusty old:

php bin/console debug:router

There it is! /api/ipsum/ . Copy that, find our browser, paste and.... nope. Error!

“Controller ipsum_api_controller cannot be fetched from the container because it is private.

Did you forget to tag the service with controller.service_arguments .”

The error is not entirely correct for our circumstance. First, yes, at this time, controllers are the

one type of service that must be public. If you're building an app, you can give it this tag, which

will automatically make it public. But for a reusable bundle, in services.xml , we need to set

public="true" .

_lorem_ipsum:

 resource: '@KnpULoremIpsumBundle/Resources/config/routes.xml'

 prefix: /api/ipsum

LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

 // ... line 15

16

 // ... lines 17 - 19

20

 // ... lines 21 - 22

Try that again! Now it works. And... you might be surprised! After all, our bundle references a

class that does not exist! This is a problem... at least, a minor problem. But, because

FrameworkBundle is included in our app, it does work.

But to really make things solid, let's add a proper functional test to the bundle that guarantees

that this route and controller work. And when we do that, it'll become profoundly obvious that we

are, yet again, not properly requiring all the dependencies we need.

 <services>

 <service id="knpu_lorem_ipsum.ipsum_api_controller"

class="KnpU\LoremIpsumBundle\Controller\IpsumApiController" public="true">

 </service>

 </services>

Chapter 14: Controller Functional Test

We just added a route and controller, and since this bundle is going to be used by, probably,

billions of people, I want to make sure they work! How? By writing a good old-fashioned

functional test that surfs to the new URL and checks the result.

In the tests/ directory, create a new Controller directory and a new PHP class inside

called IpsumApiControllerTest . As always, make this extend TestCase from PHPUnit,

and add a public function testIndex() .

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

How to Boot a Fake App?

The setup for a functional test is pretty similar to an integration test: create a custom test kernel,

but this time, import routes.xml inside. Then, we can use Symfony's BrowserKit to make

requests into that kernel and check that we get a 200 status code back.

Start by stealing the testing kernel from the FunctionalTest class. Paste this at the bottom,

and, just to avoid confusion, give it a different name: KnpULoremIpsumControllerKernel .

Re-type the l and hit tab to add the use statement for the Kernel class.

class IpsumApiControllerTest extends TestCase

{

 public function testIndex()

 {

 }

}

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Then, we can simplify: we don't need any special configuration: just call the parent constructor.

Re-type the bundle name and hit tab to get the use statement, and do this on the other two

highlighted classes below. Empty the load() callback for now.

Yep, we're just booting a kernel with one bundle... super boring.

Do we Need FrameworkBundle Now?

And here's where things get confusing. In composer.json , as you know, we do not have a

dependency on symfony/framework-bundle . But now... we have a route and controller...

and... well... the entire routing and controller system comes from FrameworkBundle! In other

words, while not impossible, it's incredibly unlikely that someone will want to import our route,

but not use FrameworkBundle.

class KnpULoremIpsumControllerKernel extends Kernel

{

 public function __construct()

 {

 parent::__construct('test', true);

 }

 public function registerBundles()

 {

 return [

 new KnpULoremIpsumBundle(),

];

 }

 public function registerContainerConfiguration(LoaderInterface

$loader)

 {

 $loader->load(function(ContainerBuilder $container) {

 });

 }

 public function getCacheDir()

 {

 return __DIR__.'/../cache/'.spl_object_hash($this);

 }

}

This means that we now depend on FrameworkBundle. Well actually, that's not entirely true.

Our new route & controller are optional features. So, in a perfect world, FrameworkBundle

should still be an optional dependency. In other words, we are not going to add it to the

require key. In reality, if you did, no big deal - but we're doing things the harder, more

interesting way.

This leaves us with a big ugly problem! In order to test that the route and controller work, we

need the route & controller system! We need FrameworkBundle! This is yet another case when

we need a dependency, but we only need the dependency when we're developing the bundle or

running tests. Find your terminal and run:

composer require symfony/framework-bundle --dev

Let this download. Excellent!

Importing Routes from the Kernel

Back in the test, thanks to FrameworkBundle, we can use a really cool trait to make life simpler.

Full disclosure, I helped created the trait - so of course I think it's cool. But really, it makes life

easier: use MicroKernelTrait . Remove registerContainerConfiguration() and,

instead go back again to the Code -> Generate menu - or Command + N on a Mac - and

implement the two missing methods: configureContainer() , and configureRoutes() .

 Tip

Starting in Symfony 5.1, the first argument to configureRoutes() should be

RoutingConfigurator $routes .

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 20

21

22

23

 // ... lines 24 - 36

37

38

39

40

 // ... line 41

42

43

44

45

 // ... lines 46 - 50

51

Cool! So... let's import our route! $routes->import() , then the path to that file:

__DIR__.'/../../src/Resources/config/routes.xml' .

 Tip

If you're using the RoutingConfigurator $routes argument to

configureRoutes() (Symfony 5.1 and later), then import with:

$routes->import(__DIR__.'/../../src/Resources/config/routes.xml')->prefix('/

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 36

37

38

39

40

 // ... lines 41 - 51

Setting up the Test Client

Nice! And... that's really all the kernel needs. Back up in testIndex() , create the new kernel:

new KnpULoremIpsumControllerKernel() .

class KnpULoremIpsumControllerKernel extends Kernel

{

 use MicroKernelTrait;

 protected function configureRoutes(RouteCollectionBuilder $routes)

 {

 }

 protected function configureContainer(ContainerBuilder $c,

LoaderInterface $loader)

 {

 }

}

 protected function configureRoutes(RouteCollectionBuilder $routes)

 {

 $routes->import(__DIR__.'/../../src/Resources/config/routes.xml',

'/api');

 }

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 13

14

15

16

17

18

 // ... lines 19 - 23

24

25

 // ... lines 26 - 57

Now, you can almost pretend like this a normal functional test in a normal Symfony app. Create

a test client: $client = new Client() - the one from FrameworkBundle - and pass it the

$kernel .

 Tip

In Symfony 4.3 and higher, use KernelBrowser instead of Client : the class was

renamed.

Use this to make requests into the app with $client->request() . You will not get auto-

completion for this method - we'll find out why soon. Make a GET request, and for the URL...

actually, down in configureRoutes() , ah, I forgot to add a prefix! Add /api as the second

argument. Make the request to /api/ .

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 15

16

17

 // ... line 18

19

20

 // ... lines 21 - 23

24

 // ... lines 25 - 57

class IpsumApiControllerTest extends TestCase

{

 public function testIndex()

 {

 $kernel = new KnpULoremIpsumControllerKernel();

 }

}

 public function testIndex()

 {

 $client = new Client($kernel);

 $client->request('GET', '/api/');

 }

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 42

43

44

45

46

 // ... lines 47 - 56

57

Cool! Let's dump the response to see what it looks like:

var_dump($client->getResponse()->getContent()) . Then add an assert that 200

matches $client->getResponse()->getStatusCode() .

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 13

14

15

16

17

 // ... lines 18 - 21

22

23

24

25

 // ... lines 26 - 57

Alright! Let's give this a try! Find your terminal, and run those tests!

./vendor/bin/simple-phpunit

Woh! They are not happy:

“Fatal error class BrowserKit\Client does not exist.”

Hmm. This comes from the http-kernel\Client class. Here's what's happening: we use

the Client class from FrameworkBundle, that extends Client from http-kernel , and that

class KnpULoremIpsumControllerKernel extends Kernel

{

 protected function configureRoutes(RouteCollectionBuilder $routes)

 {

 $routes->import(__DIR__.'/../../src/Resources/config/routes.xml',

'/api');

 }

}

class IpsumApiControllerTest extends TestCase

{

 public function testIndex()

 {

 var_dump($client->getResponse()->getContent());

 $this->assertSame(200, $client->getResponse()->getStatusCode());

 }

}

tries to use a class from a component called browser-kit , which is an optional dependency

of http-kernel . Geez.

Basically, we're trying to use a class from a library that we don't have installed. You know the

drill, find your terminal and run:

composer require "symfony/browser-kit:^4.0" --dev

When that finishes, try the test again!

./vendor/bin/simple-phpunit

Oof. It just looks awful:

“LogicException: Container extension "framework" is not registered.”

This comes from ContainerBuilder , which is called from somewhere inside

MicroKernelTrait . This is a bit tougher to track down. When we use MicroKernelTrait ,

behind the scenes, it adds some framework configuration to the container in order to

configure the router. But... our kernel does not enable FrameworkBundle!

No problem: add new FrameworkBundle to our bundles array.

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 35

36

37

38

 // ... line 39

40

41

42

 // ... lines 43 - 60

Then, go back and try the tests again: hold your breath:

 public function registerBundles()

 {

 return [

 new FrameworkBundle(),

];

 }

./vendor/bin/simple-phpunit

No! Hmm:

“The service url_signer has a dependency on a non-existent parameter "kernel.secret".”

This is a fancy way of saying that, for some reason, there is a missing parameter. It turns out

that FrameworkBundle has one required piece of configuration. In your application, open

config/packages/framework.yaml . Yep, right on top: the secret key.

This is used in various places for security, and, since it needs to be unique and secret, Symfony

can't give you a default value. For our testing kernel, it's meaningless, but it needs to exist. In

configureContainer() , add $c->loadFromExtension() passing it framework and

an array with secret set to anything. The FrameworkExtension uses this value to set that

missing parameter.

 Tip

In Symfony 5.1, to avoid a deprecation warning, you'll also need to set a router key with

utf8: true :

'secret' => 'F00',

'router' => ['utf8' => true],

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 48

49

50

51

52

53

54

 // ... lines 55 - 60

Do those tests... one, last time:

 protected function configureContainer(ContainerBuilder $c,

LoaderInterface $loader)

 {

 $c->loadFromExtension('framework', [

 'secret' => 'F00',

]);

 }

./vendor/bin/simple-phpunit

Phew! They pass! The response status code is 200 and you can even see the JSON. Go back

to the test and take out the var_dump() .

Next, let's get away from tests and talk about events: the best way to allow users to hook into

your controller logic.

Chapter 15: Dispatching Custom Events

What if a user wants to change the behavior of our controller? Symfony does have a way to

override controllers from a bundle... but not if that controller is registered as a service, like our

controller. Well, ok, thanks to Symfony's incredible container, there is always a way to override a

service. But let's not make our users do crazy things! If someone wants to tweak how our

controller behaves, let's make it easy!

How? By dispatching a custom event. Ready for our new goal? I want to allow a user to change

the data that we return from our API endpoint. Specifically, we're going to add a third key to the

JSON array from our app.

Custom Event Class

The first step to dispatching an event is to create an event class. Create a new Event directory

with a PHP class inside: call it FilterApiResponseEvent . I just made that up.

Make this extend a core Event class from Symfony. When you dispatch an event, you have

the opportunity to pass an Event object to any listeners. To be as awesome as possible, you'll

want to make sure that object contains as much useful information as you can.

 Tip

Starting from Symfony 4.4, you should use the Event class from

Symfony\Contracts\EventDispatcher : If you want to know more about this:

https://github.com/symfony/event-dispatcher/blob/4.4/Event.php

LoremIpsumBundle/src/Event/FilterApiResponseEvent.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 24

25

class FilterApiResponseEvent extends Event

{

}

https://github.com/symfony/event-dispatcher/blob/4.4/Event.php

In this case, a listener might want to access the data that we're about to turn into JSON. Cool!

Add public function __construct() with an array $data argument. I'll press Alt+Enter

and choose "Initialize Fields" to create a data property and set it.

LoremIpsumBundle/src/Event/FilterApiResponseEvent.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

 // ... lines 15 - 24

25

Then, we need a way for the listeners to access this. And, we also want any listeners to be able

to set this. Go back to the Code -> Generate menu, or Command + N on a Mac, choose "Getter

and Setters" and select data .

LoremIpsumBundle/src/Event/FilterApiResponseEvent.php

 // ... lines 1 - 15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 26

It's ready!

Dispatching the Event

Head to your controller: this is where we'll dispatch that event. First, set the data to a $data

variable and then create the event object: $event = new FilterApiResponseEvent()

passing it the data.

class FilterApiResponseEvent extends Event

{

 private $data;

 public function __construct(array $data)

 {

 $this->data = $data;

 }

}

 public function getData(): array

 {

 return $this->data;

 }

 public function setData(array $data)

 {

 $this->data = $data;

 }

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 21

22

23

 // ... lines 24 - 28

29

 // ... lines 30 - 32

33

34

I'm not going to dispatch the event quite yet, but at the end, pass $event->getData() to the

json method.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 31

32

33

 // ... lines 34 - 35

To dispatch the event, we need... um... the event dispatcher! And of course, we're going to pass

this in as an argument: EventDispatcherInterface $eventDispatcher . Press

Alt+enter and select "Initialize Fields" to add that as a property and set it in the constructor.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 13

14

 // ... line 15

16

17

 // ... line 18

19

20

 // ... lines 21 - 35

As soon as we do this, we need to also open services.xml and pass a second argument:

type="service" and id="event_dispatcher" .

class IpsumApiController extends AbstractController

{

 public function index()

 {

 $event = new FilterApiResponseEvent($data);

 }

}

 public function index()

 {

 return $this->json($event->getData());

 }

 private $eventDispatcher;

 public function __construct(KnpUIpsum $knpUIpsum,

EventDispatcherInterface $eventDispatcher)

 {

 $this->eventDispatcher = $eventDispatcher;

 }

LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

 // ... line 15

16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

Back in the controller, right after you create the event, dispatch it:

$this->eventDispatcher->dispatch() . The first argument is the event name and we

can actually dream up whatever name we want. Let's use:

knpu_lorem_ipsum.filter_api . For the second argument, pass the event.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 21

22

23

 // ... lines 24 - 29

30

 // ... lines 31 - 32

33

34

 Tip

Starting in Symfony 4.4, you only need to pass the $event argument:

$this->eventDispatcher->dispatch($event);

Then, instead of knpu_lorem_ipsum.filter_api , the event name becomes the event

class: in our case FilterApiResponseEvent::class .

And... yea, that's it! I mean, we haven't tested it yet, but this should work: our users have a new

hook point.

 <services>

 <service id="knpu_lorem_ipsum.controller.ipsum_api_controller"

class="KnpU\LoremIpsumBundle\Controller\IpsumApiController" public="true">

 <argument type="service" id="event_dispatcher" />

 </service>

 </services>

class IpsumApiController extends AbstractController

{

 public function index()

 {

 $this->eventDispatcher->dispatch('knpu_lorem_ipsum.filter_api',

$event);

 }

}

Being Careful with Optional Dependencies

But actually there's a small surprise. Find your terminal and re-run all the tests:

./vendor/bin/simple-phpunit

They fail! Check this out: it says that our controller service has a dependency on a non-existent

service event_dispatcher . But, the service id is event_dispatcher - that's not a typo!

The problem is that the event_dispatcher service - like many services - comes from

FrameworkBundle .

Open up the test that's failing: FunctionalTest . Inside, we're testing with a kernel that does

not include FrameworkBundle! We did this on purpose: FrameworkBundle is an optional

dependency.

Let me say it a different way: one of our services depends on another service that may or may

not exist. Since we want our bundle to work without FrameworkBundle, we need to make the

event_dispatcher service optional. To do that, add an on-invalid attribute set to null .

LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 13

14

 // ... line 15

16

17

 // ... lines 18 - 23

Thanks to this, if the event_dispatcher service doesn't exist, instead of an error, it'll just

pass null . That means, we need to make that argument optional, with = null , or by adding

a ? before the type-hint.

 <service id="knpu_lorem_ipsum.controller.ipsum_api_controller"

class="KnpU\LoremIpsumBundle\Controller\IpsumApiController" public="true">

 <argument type="service" id="event_dispatcher" on-

invalid="null" />

 </service>

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 35

36

Inside the action, be sure to code defensively: if there is an event dispatcher, do our magic.

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 29

30

31

32

 // ... lines 33 - 34

35

 // ... lines 36 - 37

Try the tests again:

./vendor/bin/simple-phpunit

Aw yea! Next, let's make our event easier to use by documenting it with an event constants

class. Then... let's make sure it works!

class IpsumApiController extends AbstractController

{

 public function __construct(KnpUIpsum $knpUIpsum,

EventDispatcherInterface $eventDispatcher = null)

 {

 }

}

 public function index()

 {

 if ($this->eventDispatcher) {

 $this->eventDispatcher-

>dispatch('knpu_lorem_ipsum.filter_api', $event);

 }

 }

Chapter 16: Event Constants & @Event Docs

There's one way we can make this better, and all high quality bundles do this: set the event

name as a constant, instead of just having this random string. It's even a bit cooler than it

sounds.

In the Event directory, create a new class: KnpULoremIpsumEvents . If your bundle

dispatches events, you should typically have one class that has a constant for each event. It's a

one-stop place to find all the event hook points.

LoremIpsumBundle/src/Event/KnpULoremIpsumEvents.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 14

15

Make this class final ... which isn't too important... but in general, you should considering

making any class in a shareable library final , unless you do want people to be able to sub-

class it. Using final is always a safe bet and can be removed later.

Anyways, add const FILTER_API = '' , go copy the event name and paste it here.

LoremIpsumBundle/src/Event/KnpULoremIpsumEvents.php

 // ... lines 1 - 13

14

 // ... lines 15 - 16

Now, of course, replace that string in the controller with

KnpULoremIpsumEvents::FILTER_API .

final class KnpULoremIpsumEvents

{

}

 const FILTER_API = 'knpu_lorem_ipsum.filter_api';

LoremIpsumBundle/src/Controller/IpsumApiController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 22

23

24

 // ... lines 25 - 30

31

32

33

 // ... lines 34 - 35

36

37

So, this is nice! Though, the reason I really like this is that it gives us a proper place to

document the purpose of this event: why you would listen to it and the types of things you can

do.

The Special @Event Documentation

But the coolest part is this: add @Event() , and then inside double quotes, put the full class

name of the event that listeners will receive. In other words, copy the namespace from the event

class, paste it here and add \FilterApiResponseEvent .

LoremIpsumBundle/src/Event/KnpULoremIpsumEvents.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

What the heck does this do? On a technical level, absolutely nothing! This is purely

documentation. But! Some systems - like PhpStorm - know to parse this and use it to help us

when we're building event subscribers. We'll see exactly what I'm talking about in a minute. But,

class IpsumApiController extends AbstractController

{

 public function index()

 {

 if ($this->eventDispatcher) {

 $this->eventDispatcher-

>dispatch(KnpULoremIpsumEvents::FILTER_API, $event);

 }

 }

}

final class KnpULoremIpsumEvents

{

 /**

 * Called directly before the Lorem Ipsum API data is returned.

 *

 * Listeners have the opportunity to change that data.

 *

 * @Event("KnpU\LoremIpsumBundle\Event\FilterApiResponseEvent")

 */

 const FILTER_API = 'knpu_lorem_ipsum.filter_api';

}

it's at least good documentation: if you listen to this event, this is the event object you should

expect.

Creating an EventSubscriber

And... we're done! I'm not going to write a test for this, but I do at least want to make sure it

works in my project. Move back over to the application code. Inside src/ , create a new

directory called EventSubscriber . Then, a new class called

AddMessageToIpsumApiSubscriber .

src/EventSubscriber/AddMessageToIpsumApiSubscriber.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 23

24

Like all subscribers, this needs to implement EventSubscriberInterface . Then I'll go to

the Code -> Generate menu, or Command + N on a Mac, select Implement Methods, and add

getSubscribedEvents .

src/EventSubscriber/AddMessageToIpsumApiSubscriber.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 25

Before we fill this in, I want to make sure that PhpStorm is fully synchronized with how our

bundle looks - sometimes the symlink gets stale. Right click on the

vendor/knpuniversity/lorem-ipsum-bundle directory, and click "Synchronize".

Cool: now it will definitely see the new event classes. When it's done indexing, return an array

with KnpULoremIpsumEvents::FILTER_API set to, how about, onFilterApi .

class AddMessageToIpsumApiSubscriber implements EventSubscriberInterface

{

}

 public static function getSubscribedEvents()

 {

 }

src/EventSubscriber/AddMessageToIpsumApiSubscriber.php

 // ... lines 1 - 10

11

12

13

14

15

16

 // ... lines 17 - 25

Ready for the magic? Thanks to the Symfony plugin, we can hover over the method name,

press Alt + Enter and select "Create Method". Woh! It added the onFilterApi method for me

and type-hinted the first argument with FilterApiResponseEvent ! But, how did it know that

this was the right event class?

src/EventSubscriber/AddMessageToIpsumApiSubscriber.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 22

23

 // ... lines 24 - 25

It knew that thanks to the @Event() documentation we added earlier.

Inside the method, let's say $data = $event->getData() and then add a new key called

message set to, the very important, "Have a magical day". Finally, set that data back on the

event with $event->setData($data) .

src/EventSubscriber/AddMessageToIpsumApiSubscriber.php

 // ... lines 1 - 17

18

19

20

21

22

23

 // ... lines 24 - 25

That is it! Thanks to Symfony's service auto-configuration, this is already a service and it will

already be an event subscriber. In other words, go refresh the API endpoint. It, just, works! Our

controller is now extensible, without the user needing to override it. Dispatching events is most

commonly done in controllers, but you could dispatch them in any service.

 public static function getSubscribedEvents()

 {

 return [

 KnpULoremIpsumEvents::FILTER_API => 'onFilterApi',

];

 }

 public function onFilterApi(FilterApiResponseEvent $event)

 {

 }

 public function onFilterApi(FilterApiResponseEvent $event)

 {

 $data = $event->getData();

 $data['message'] = 'Have a magical day!';

 $event->setData($data);

 }

Next, let's improve our word provider setup by making it a true plugin system with dependency

injection tags and compiler passes. Woh.

Chapter 17: Plugin System with Tags

At this point, the user can control the word provider. But, there's only ever one word provider.

That may be fine, but I want to make this more flexible! And, along the way, learn about one of

the most important, but complex systems that is commonly used in bundles: the tag & compiler

pass system.

First, let's make our mission clear: instead of allowing just one word provider, I want to allow

many word providers. I also want other bundles to be able to automatically add new word

providers to the system. Basically, I want a word provider plugin system.

Allowing Multiple Word Providers

To get this started, we need to refactor KnpUIpsum : change the first argument to be an array of

$wordProviders . Rename the property to $wordProviders , and I'll add some PHPDoc

above this to help with auto-completion: this will be an array of WordProviderInterface[] .

LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 9

10

11

12

13

14

15

 // ... lines 16 - 22

23

24

25

 // ... lines 26 - 27

28

 // ... lines 29 - 227

228

Let's also add a new property called wordList : in a moment, we'll use this to store the final

word list, so that we only need to calculate it once.

class KnpUIpsum

{

 /**

 * @var WordProviderInterface[]

 */

 private $wordProviders;

 public function __construct(array $wordProviders, bool

$unicornsAreReal = true, $minSunshine = 3)

 {

 $this->wordProviders = $wordProviders;

 }

}

LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 20

21

 // ... lines 22 - 229

The big change is down below in the getWordList() method. First, if

null === $this->wordList , then we need to loop over all the word providers to create

that word list.

Once we've done, that, at the bottom, return $this->wordList .

LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 210

211

212

213

 // ... lines 214 - 223

224

225

226

227

 // ... lines 228 - 229

Back in the if, create an empty $words array, then loop over $this->wordProviders as

$wordProvider . For each word provider, set $words to an array_merge of the words so

far and $wordProvider->getWordList() .

LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 212

213

214

215

216

217

 // ... lines 218 - 223

224

 // ... lines 225 - 229

After, we need a sanity check: if the count($words) <= 1 , throw an exception: this class

only works when there are at least two words. Finally, set $this->wordList to $words .

 private $wordList;

 private function getWordList(): array

 {

 if (null === $this->wordList) {

 }

 return $this->wordList;

 }

 if (null === $this->wordList) {

 $words = [];

 foreach ($this->wordProviders as $wordProvider) {

 $words = array_merge($words, $wordProvider-

>getWordList());

 }

 }

LoremIpsumBundle/src/KnpUIpsum.php

 // ... lines 1 - 212

213

 // ... lines 214 - 218

219

220

221

 // ... line 222

223

224

 // ... lines 225 - 229

Perfect! This class is now just a little bit more flexible. In config/services.xml , instead of

passing one word provider, add an <argument with type="collection" , them move the

word provider argument inside of this.

LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 6

7

8

9

10

11

12

 // ... lines 13 - 22

23

 // ... lines 24 - 25

There's no fancy plugin system yet, but things should still work. Find your browser and refresh.

Great! Even the article page looks fine.

Tagging the Service

Here's the burning question: how can we improve this system so that our application, or even

other bundles, can add new word providers to this collection? The answer... takes a few steps to

explain.

First, I want you to pass an empty collection as the first argument. Then, below on the word

provider service, change this to use the longer service syntax so that, inside, we can add

 if (null === $this->wordList) {

 if (count($words) <= 1) {

 throw new \Exception('Word list must contain at least 2

words, yo!');

 }

 $this->wordList = $words;

 }

 <services>

 <service id="knpu_lorem_ipsum.knpu_ipsum"

class="KnpU\LoremIpsumBundle\KnpUIpsum" public="true">

 <argument type="collection">

 <argument type="service"

id="knpu_lorem_ipsum.word_provider" />

 </argument>

 </service>

 </services>

<tag name=""> , and, invent a new tag string. How about: knpu_ipsum_word_provider .

LoremIpsumBundle/src/Resources/config/services.xml

 // ... lines 1 - 7

8

9

10

 // ... line 11

12

13

14

 // ... lines 15 - 25

If this makes no sense to you, no problem. Because, it will not work yet: when you refresh, big

error! At this moment, there are zero word providers.

If you've worked with Symfony for a while, you've probably used tags before. At a high-level, the

idea is pretty simple. First, you can attach tags to services... which... initially... does nothing. But

then, a bundle author - that's us! - can write some code that finds all services in the container

with this tag and dynamically add them to the collection argument!

When this is setup, our application - or even other bundles - can add services, give them this

tag, and they will automatically be "plugged" into the system. This is how Twig Extensions,

Event Subscribers, Voters, and many other parts of Symfony work.

The Easy Way

So... how do we hook this all up? Well, if your bundle will only need to support Symfony 3.4 or

higher, there's a super easy way. Just replace the <argument type="collection"> with

<argument type="tagged" tag="knpu_ipsum_word_provider" /> . This tells

Symfony to find all services with this tag, and pass them as a collection. And... you'd be done!

 Tip

You will also need to change the array $wordProviders constructor argument in

KnpUIpsum to iterable $wordProviders .

 <service id="knpu_lorem_ipsum.knpu_ipsum"

class="KnpU\LoremIpsumBundle\KnpUIpsum" public="true">

 <argument type="collection" /> <!-- filled in via a compiler

pass -->

 </service>

 <service id="knpu_lorem_ipsum.knpu_word_provider"

class="KnpU\LoremIpsumBundle\KnpUWordProvider">

 <tag name="knpu_ipsum_word_provider" />

 </service>

But, if you want to support earlier versions of Symfony, or you want to know how the compiler

pass system works, keep watching.

Chapter 18: Tags, Compiler Passes & Other
Nerdery

Let's review: we gave our service a tag. And now, we want to tell Symfony to find all services in

the container with this tag, and pass them as the first argument to our KnpUIpsum service. Like

I mentioned in the previous chapter, if you only need to support Symfony 3.4 or higher, there's a

shortcut. But if you need to support lower versions or want to geek out with me about compiler

passes, well, you're in luck!

First question: how can we find all services that have the knpu_ipsum_word_provider tag?

If you look in the extension class, you might think that we could do some magic here with the

$container variable. And... yea! It even has a method called findTaggedServiceIds() !

But... you actually can't do this logic here. Why? Well, when this method is called, not all of the

other bundles and extensions have been loaded yet. So if you tried to find all the services with a

certain tag, some of the services might not be in the container yet. And actually, you can't even

get that far: the ContainerBuilder is empty at the beginning of this method: it doesn't

contain any of the services from any other bundles. Symfony passes us an empty container

builder, and then merges it into the real one later.

Compiler Pass

The correct place for any logic that needs to operate on the entire container, is a compiler pass.

In the DependencyInjection directory - though it doesn't technically matter where this class

goes - create a Compiler directory then a new class called WordProviderCompilerPass .

Make this, implement a CompilerPassInterface , and then go to the Code -> Generate

menu - or Command + N on a Mac - click "Implement Methods" and select process() .

LoremIpsumBundle/src/DependencyInjection/Compiler/WordProviderCompilerPass.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

A compiler pass also receives a ContainerBuilder argument. But, instead of being empty,

this is full of all of the services from all of the bundles. That means that we can say

foreach ($container->findTaggedServiceIds() , pass this the tag we're using:

knpu_ipsum_word_provider , and say as $id => $tags .

LoremIpsumBundle/src/DependencyInjection/Compiler/WordProviderCompilerPass.php

 // ... lines 1 - 9

10

11

12

 // ... line 13

14

 // ... line 15

16

This is a little confusing: the $id key is the service ID that was tagged. Then, $tags is an

array with extra information about the tag. Sometimes, a tag can have other attributes, like

priority. You can also tag the same service with the same tag, multiple times.

Anyways, we don't need that info: let's just var_dump($id) to see if it works, then die .

LoremIpsumBundle/src/DependencyInjection/Compiler/WordProviderCompilerPass.php

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 17

Registering the Compiler Pass

class WordProviderCompilerPass implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 }

}

 public function process(ContainerBuilder $container)

 {

 foreach ($container-

>findTaggedServiceIds('knpu_ipsum_word_provider') as $id => $tags) {

 }

 }

 foreach ($container-

>findTaggedServiceIds('knpu_ipsum_word_provider') as $id => $tags) {

 var_dump($id);

 }

 die;

To tell Symfony about the compiler pass, open your bundle class. Here, go back to the Code ->

Generate menu - or Command + N on a Mac - choose "Override Methods" and select

build() . You don't need to call the parent build() method: it's empty. All we need here is

$container->addCompilerPass(new WordProviderCompilerPass()) .

LoremIpsumBundle/src/KnpULoremIpsumBundle.php

 // ... lines 1 - 9

10

11

12

13

14

15

 // ... lines 16 - 27

28

There are different types of compiler passes, which determine when they are executed relative

to other passes. And, there's also a priority. But unless you're doing something really fancy, the

standard type and priority work fine.

Thanks to this line, whenever the container is built, it should hit our die statement. Let's move

over to the browser and, refresh!

Yes! There is the one service that has the tag.

And now... it's easy! The code in a compiler pass looks a lot like the code in an extension class.

At the top, add

$definition = $container->getDefinition('knpu_lorem_ipsum.knpu_ipsum') .

Ultimately, we need to modify this services's first argument. Create an empty $references

array. And, in the foreach, just add stuff to it: $references[] = new Reference() and

pass in the $id .

Finish this with $definition->setArgument() , pass it 0 for the first argument, and the

array of reference objects.

class KnpULoremIpsumBundle extends Bundle

{

 public function build(ContainerBuilder $container)

 {

 $container->addCompilerPass(new WordProviderCompilerPass());

 }

}

LoremIpsumBundle/src/DependencyInjection/Compiler/WordProviderCompilerPass.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

We're done! Go back to our browser and try it! Woohoo! We're now passing an array of all of the

word provider services into the KnpUIpsum class.... which... yea, is just one right now.

Cleanup the Old Configuration

With this in place, we can remove our old config option. In the Configuration class, delete

the word_provider option. And in the extension class, remove the code that reads this.

LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 29

30

 public function process(ContainerBuilder $container)

 {

 $definition = $container-

>getDefinition('knpu_lorem_ipsum.knpu_ipsum');

 $references = [];

 foreach ($container-

>findTaggedServiceIds('knpu_ipsum_word_provider') as $id => $tags) {

 $references[] = new Reference($id);

 }

 $definition->setArgument(0, $references);

 }

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $loader = new XmlFileLoader($container, new

FileLocator(__DIR__.'/../Resources/config'));

 $loader->load('services.xml');

 $configuration = $this->getConfiguration($configs, $container);

 $config = $this->processConfiguration($configuration, $configs);

 $definition = $container-

>getDefinition('knpu_lorem_ipsum.knpu_ipsum');

 $definition->setArgument(1, $config['unicorns_are_real']);

 $definition->setArgument(2, $config['min_sunshine']);

 }

}

Tagging the CustomWordProvider

Next, move over to the application code, and in

config/packages/knpu_lorem_ipsum.yaml , yep, take out the word_provider key.

config/packages/knpu_lorem_ipsum.yaml

1

2

If you refresh now... it's going to work. But, not surprisingly, the word "beach" will not appear in

the text. Remember: "beach" is the word that we're adding with our CustomWordProvider .

This class is not being used. And... that make sense! We haven't tagged this service with

anything, so our bundle doesn't know to use it.

Before we do that, now that there are multiple providers, I don't need to extend the core provider

anymore. Implement the WordProviderInterface directly. Then, just return an array with

the one word: beach .

src/Service/CustomWordProvider.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

To tag the service, open config/services.yaml . This class is automatically registered as a

service. But to give it a tag, we need to override that: App\Service\CustomWordProvider ,

and, below, tags: [knpu_ipsum_word_provider] .

config/services.yaml

 // ... lines 1 - 5

6

 // ... lines 7 - 37

38

39

Let's try it! Refresh! Yes! It's alive!

knpu_lorem_ipsum:

 min_sunshine: 5

class CustomWordProvider implements WordProviderInterface

{

 public function getWordList(): array

 {

 return ['beach'];

 }

}

services:

 App\Service\CustomWordProvider:

 tags: ['knpu_ipsum_word_provider']

Setting up Autoconfiguration

But... there's something that's bothering me. Most of the time in Symfony, you don't need to

manually configure the tag. For example, earlier, when we created an event subscriber, we did

not need to give it the kernel.event_subscriber tag. Instead, Symfony was smart enough

to see that our class implemented EventSubscriberInterface , and so it added that tag for

us automatically.

So... what's the difference? Why can't the tag be automatically added in this situation? Well... it

can! But we need to set this up in our bundle. Open the extension class, go anywhere in the

load() method, and add

$container->registerForAutoconfiguration(WordProviderInterface::class) .

The feature that automatically adds tags is called autoconfiguration, and this method returns a

"template" Definition object that we can modify. Use

->addTag('knpu_ipsum_word_provider') .

LoremIpsumBundle/src/DependencyInjection/KnpULoremIpsumExtension.php

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 25

26

27

28

 // ... lines 29 - 33

34

Cool, right? Back in our app code, remove the service entirely. And now, try it! Hmm, no beach

the first time but on the second refresh... we got it!

We now have a true word provider plugin system. And creating a custom word provider is as

easy as creating a class that implements WordProviderInterface .

Next, let's finally put our library up on Packagist!

class KnpULoremIpsumExtension extends Extension

{

 public function load(array $configs, ContainerBuilder $container)

 {

 $container-

>registerForAutoconfiguration(WordProviderInterface::class)

 ->addTag('knpu_ipsum_word_provider');

 }

}

Chapter 19: Publishing to Packagist

Our bundle is ready to be shared with the world! So let's take care of a few last details, and

publish our bundle to Packagist!

Choosing a License

But, before we publish this anywhere, we need do some boring, but very important legal work.

Go to choosealicense.com and find the license that works best for you. Symfony is licensed

MIT, and that's definitely the best practice. Whatever you choose, copy the license, find your

bundle code, and at the root, create the LICENSE file.

https://choosealicense.com/

LoremIpsumBundle/LICENSE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Pushing to GitHub

Legal stuff, done! Next, find your terminal: there are a bunch of uncommitted changes. Oh,

before we add them, I made a mistake!

I have an extra tests/Controller/cache directory! Open IpsumApiControllerTest

and find the getCacheDir() method. I meant to change this to use the same cache directory

as FunctionalTest , which is already set to be ignored by git. Add a ../ to the path. Then,

delete the extra cache/ dir. There's also an extra logs directory, but it's empty, so just ignore

it.

MIT License

Copyright (c) [year] [fullname]

Permission is hereby granted, free of charge, to any person obtaining a

copy

of this software and associated documentation files (the "Software"), to

deal

in the Software without restriction, including without limitation the

rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE

SOFTWARE.

LoremIpsumBundle/tests/Controller/IpsumApiControllerTest.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 55

56

57

58

59

60

Now move back to your terminal, add everything to git, give it an inspiring message, and

commit!

With everything committed, let's push this to GitHub! Well, you can host it anywhere, but GitHub

is the most common place. I'll click "New Repository", choose the KnpUniversity organization,

and name it lorem-ipsum-bundle .

It's not required, but it's usually nice to name the repository the same as the package name in

composer.json . Give it a clever description, make sure it's public, and create repository!

Copy the code to push to an existing repository, go find your terminal, quick! Paste, hit enter,

wait impatiently... then... say hello to our new repository!

Registering on Packagist

With that done, we can now put our bundle up on Packagist! Go to packagist.org and make sure

you're logged in. Then, it's super easy: click "Submit", copy the GitHub URL, paste, and click

"Check".

This does some sanity checks in the background, like parsing your composer.json file and

waiting for Jordi to search for any similar packages on Packagist, to help avoid duplication.

Looks ok! Moment of truth: Submit!

Boom! We are a package!

Auto-updating with the GitHub Service Hook

class KnpULoremIpsumControllerKernel extends Kernel

{

 public function getCacheDir()

 {

 return __DIR__.'/../cache/'.spl_object_hash($this);

 }

}

https://packagist.org/

Oh, but notice this message:

“The package is not auto-updated. Please setup the Github Service Hook”

This is actually important. When we create a new tag in GitHub, we want Packagist to

automatically see it.

Go back to GitHub, click Settings, Integration & services, "Add service" and find Packagist.

You'll need to enter your username and a token you can find on your Packagist profile page.

Then, add service!

Requiring the new Package

And, for now, we're done! We have a real package! Next, open our application's

composer.json file. We're still using this path repository option. Let's finally install our

package properly. Remove the repositories section.

Then, go to the terminal for your app, and, first, remove the current package:

composer remove knpuniversity/lorem-ipsum-bundle

Gone! And thanks to the Flex recipe, it also removed the bundle from bundles.php . Cool!

Now, lets re-install it:

composer require knpuniversity/lorem-ipsum-bundle

This downloads dev-master , so the master branch, because there's no tag yet. And! Flex

re-added the bundle to bundles.php .

Writing a Decent README

Cool! But, go back to the GitHub page for our bundle. See anything missing? Yea, no README!

That's not ok! If you go back to the "Symfony bundle best practices" page, this has an example

README you can use to get started.

Head back to our code, I'll close a few files, then create a new README.md file. And, bam! I just

wrote us a README file!

LoremIpsumBundle/README.md

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 94

Don't worry, I'm not going to lecture you on how to write README files. Well, actually, can I take

just one minute to point out the most important parts that I think people sometimes forget?

To start, make sure your bundle has these four parts. One, at the top, say what the bundle does

in plain language! Two, show the composer require installation command. Three, give a

simple usage example, before talking about any other technical jargon. And four, show the

configuration.

After that, you can talk about whatever complex or theoretical stuff you want, like how to create

a word provider.

Also, when you create code examples, there are two common mistakes. First, make sure you

include the file path as a comment: people don't always know where a file should live. Second,

don't create the code blocks here. Believe me, you'll make a mistake. Code them in a real app,

paste them here, then tweak.

Hello LoremIpsumBundle!

LoremIpsumBundle is a way for you to generate "fake text" into

your Symfony application, but with *just* a little bit more joy

than your normal lorem ipsum.

Install the package with:

```console

composer require knpuniversity/lorem-ipsum-bundle --dev

```

And... that's it! If you're *not* using Symfony Flex, you'll also

need to enable the `KnpU\LoremIpsumBundle\KnpULoremIpsumBundle`

in your `AppKernel.php` file.

Usage

This bundle provides a single service for generating fake text, which

you can autowire by using the `KnpUIpsum` type-hint:

Oh, and for the configuration section, remember, you can run:

php bin/console config:dump knpu_lorem_ipsum

to get a full config tree to paste here. Oh, and, if the user needs to create a file - like

knpu_lorem_ipsum.yaml , say that explicitly: sometimes people think they're doing

something wrong if a file doesn't already exist.

A Recipe?

The last thing I would recommend is, if it makes sense, create a recipe for your bundle. Do this

at github.com/symfony/recipes-contrib. We're not going to do this, but if your bundle needs a

config file or any other setup, this is a huge way to make it easier to use.

If you don't create a recipe, Flex will at least enable the bundle automatically. And in a lot of

cases - like for this bundle - that's enough.

Ok, just one topic left, and it's fun! Let's setup continuous integration on Travis CI so that we can

be sure our tests are always passing.

https://github.com/symfony/recipes-contrib

Chapter 20: CI with Travis CI

Our bundle is missing only two things: it needs a stable release and it needs continuous

integration.

Before we automate our tests, we should probably make sure they still pass:

./vendor/bin/simple-phpunit

Bah! Boo Ryan: I let our tests get a bit out-of-date. The first failure is in FunctionalTest.php

in testServiceWiringWithConfiguration() .

Of course: we're testing the word_provider option, but that doesn't even exist anymore! We

could update this test for the tag system, but it's a little tricky due to the randomness of the

classes. To keep us moving, just delete the test. Also delete the configuration we added in the

kernel, and the loadFromExtension() call. But, just for the heck of it, I'll keep the custom

word provider and tag it to integrate our stub word list.

LoremIpsumBundle/tests/FunctionalTest.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 40

41

42

43

44

45

46

47

 // ... lines 48 - 52

53

 // ... lines 54 - 62

The second failure is in KnpUIpsumTest . Ah yea, the first argument to KnpUIpsum is now an

array. Wrap the argument in square brackets, then fix it in all three places.

class KnpULoremIpsumTestingKernel extends Kernel

{

 public function registerContainerConfiguration(LoaderInterface

$loader)

 {

 $loader->load(function(ContainerBuilder $container) {

 $container->register('stub_word_list', StubWordList::class)

 ->addTag('knpu_ipsum_word_provider');

 });

 }

}

LoremIpsumBundle/tests/KnpUIpsumTest.php

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 23

24

 // ... line 25

26

27

28

 // ... lines 29 - 37

38

 // ... line 39

40

41

 // ... lines 42 - 43

44

45

 // ... lines 46 - 64

65

66

67

Ok, try the tests again!

./vendor/bin/simple-phpunit

Yes! They pass.

Adding the .travis.yml File

The standard for continuous integration of open source libraries is definitely Travis CI. And if you

go back to the "Best Practices" docs for bundles, near the top, Symfony has an example of a

robust Travis configuration file! Awesome!

Copy this entire thing, go back to the bundle, and, at the root, create a new file -

.travis.yml . Paste!

class KnpUIpsumTest extends TestCase

{

 public function testGetWords()

 {

 $ipsum = new KnpUIpsum([new KnpUWordProvider()]);

 }

 public function testGetSentences()

 {

 $ipsum = new KnpUIpsum([new KnpUWordProvider()]);

 }

 public function testGetParagraphs()

 {

 for ($i = 0; $i < 100; $i++) {

 $ipsum = new KnpUIpsum([new KnpUWordProvider()]);

 }

 }

}

LoremIpsumBundle/.travis.yml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 59

language: php

sudo: false

cache:

 directories:

 - $HOME/.composer/cache/files

 - $HOME/symfony-bridge/.phpunit

env:

 global:

 - PHPUNIT_FLAGS="-v"

 - SYMFONY_PHPUNIT_DIR="$HOME/symfony-bridge/.phpunit"

matrix:

 fast_finish: true

 include:

 Tip

You can use GitHub Actions as an alternative to Travis CI. Here's a configuration example:

.github/workflows/ci.yaml

name: Lorem Ipsum Bundle CI

on:

 push:

 branches:

 - main

jobs:

 tests:

 name: Testing Lorem Ipsum Bundle

 # https://hub.docker.com/_/ubuntu/

 runs-on: ubuntu-22.04

 strategy:

 fail-fast: true

 matrix:

 php-versions: ['7.2','7.3','7.4']

 steps:

 - name: Checkout

 uses: actions/checkout@v2

 - name: Setup PHP, extensions and composer with shivammathur/setup-php

 uses: shivammathur/setup-php@v2

 with:

 php-version: ${{ matrix.php-versions }}

 extensions: mbstring, xml, ctype, iconv, intl, pdo_sqlite, dom, fi

 tools: composer:v2

 env:

 update: true

 - name: Install Composer dependencies

 run: composer install

 - name: Run tests

 run: SYMFONY_DEPRECATIONS_HELPER=disabled ./vendor/bin/simple-phpuni

We'll talk about some of the specifics of this file in a minute. But first, in your terminal, add

everything we've been working on, commit, and push.

Activating Travis CI

With the Travis config file in place, the next step is to activate CI for the repo. Go to travis-ci.org

and make sure you're signed in with GitHub. Click the "+" to add a new repository, I'll select the

"KnpUniversity" organization and search for lorem.

Huh. Not found. Because it's a new repository, it probably doesn't see it yet. Click the "Sync

Account" button to fix that. And... search again. There it is! If it's still not there for you, keep

trying "Sync Account": sometimes, it takes several tries.

Activate the repo, then click to view it. To trigger the first build, under "More options", click, ah,

"Trigger build"! You don't need to fill in any info on the modal.

Oh, and from now on, a new build will happen automatically whenever you push. We only need

to trigger the first build manually. And... go go go!

Adjusting PHP & Symfony Version Support

While this is working, let's go look at the .travis.yml file. It's... well... super robust: it tests

the library on multiple PHP version, uses special flags to test with the lowest version of your

library's dependencies and even tests against multiple versions of Symfony. Honestly, it's a bit

ugly, but the result is impressive.

Back on Travis CI, uh oh, we're starting to see failures! No! Let's click on one of them.

Interesting... it's some PHP version issue! Remember, we decided to support only PHP 7.1.3 or

higher. But... we're testing the bundle against PHP 7.0! We could allow PHP 7.0... but let's stay

with 7.1.3. In the Travis matrix, delete the 7.0 test, and change the --prefer-lowest to use

7.1.

https://travis-ci.org/

LoremIpsumBundle/.travis.yml

 // ... lines 1 - 12

13

 // ... line 14

15

 // ... lines 16 - 18

19

 // ... lines 20 - 21

22

23

24

 // ... lines 25 - 58

Go back to the main Travis page again. Hmm: two failures at the bottom deal with something

called symfony/lts . These make sure that Symfony works with the LTS - long-term support

version - of Symfony 2 - so Symfony 2.8 - as well as the LTS of version 3 - so Symfony 3.4.

Click into the LTS version 3 build. Ah, it can't install the packages: symfony/lts v3 conflicts

with symfony/http-kernel version 4.

The test is trying to install version 3 of our Symfony dependencies, but that doesn't work,

because our bundle requries everything at version 4!

And... that's maybe ok! If we only want to support Symfony 4, we can just delete that test. But I

think we should at least support Symfony 3.4 - the latest LTS.

To do that, in composer.json , change the version to ^3.4 || ^4.0 . Use this for all of our

Symfony libraries.

LoremIpsumBundle/composer.json

 // ... lines 1 - 11

12

 // ... line 13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 34

matrix:

 include:

 - php: 7.1

 # Test the latest stable release

 - php: 7.1

 - php: 7.2

 "require": {

 "symfony/config": "^3.4 || ^4.0",

 "symfony/dependency-injection": "^3.4 || ^4.0",

 "symfony/http-kernel": "^3.4 || ^4.0"

 },

 "require-dev": {

 "symfony/framework-bundle": "^3.4 || ^4.0",

 "symfony/phpunit-bridge": "^3.4 || ^4.0",

 "symfony/browser-kit": "^3.4 || ^4.0"

 },

The cool thing is, we don't actually know whether or not our bundle works with Symfony 3.4.

But... we don't care! The tests will tell us if there are any problems.

Also, in .travis.yml , remove the lts v2 test.

Ok, find your terminal, add, commit with a message, and... push!

This should immediately trigger a build. Click "Current"... there it is!

Let's fast-forward... they're starting to pass... and... cool! The first 5 pass! The last one is still

running and, actually, that's going to fail! But don't worry about it: this is testing our bundle

agains the latest, unreleased version of Symfony, so we don't care too much if it fails. But, I'll

show you why it's failing in a minute.

Tagging Version 1.0

Now that our tests are passing - woo! - it's time to tag our first, official release. You can do this

from the command line, but I kinda like the GitHub interface. Set the version to v1.0.0 , give it

a title, and describe the release. This is where I'd normally include more details about new

features or bugs we fixed. Then, publish!

You can also do pre-releases, which is a good idea if you don't want to create a stable version

1.0.0 immediately. On Packagist, the release should show up here automatically. But, I'm

impatient, so click "Update" and... yes! There's our version 1.0.0!

Oh, before I forget, back on Travis, go to "Build History", click master and, as promised, the last

one failed. I just want to show you why: it failed because of a deprecation warning:

“Referencing controllers with a single colon is deprecated in Symfony 4.1.”

Starting in Symfony 4.1, you should refer to your controllers with two colons in your route. To

stay compatible with 4.0, we'll leave it.

Installing the Stable Release

Now that we finally have a stable release, let's install it in our app. At your terminal, first remove

the bundle:

composer remove knpuniversity/lorem-ipsum-bundle

Wait.... then re-add it:

composer require knpuniversity/lorem-ipsum-bundle

Yes! It got v1.0.0.

We have an awesome bundle! It's tested, it's extendable, it's on GitHub, it has continuous

integration, it can bake you a cake and it has a stable release.

I hope you learned a ton about creating re-usable bundles... and even more about how Symfony

works in general. As always, if you have any questions or comments, talk to us down in the

comments section.

All right guys, seeya next time.

With <3 from SymfonyCasts

