
Design Patterns for Fun and
Proficiency

Chapter 1: Design Patterns & Their Types

Hey friends! Thanks for hanging out and giving me the privilege to guide us through some fun,

geeky, but also useful stuff. We're talking design patterns. The idea is simple: The same

problems that we face in our code every day have been faced a million times before. And often,

a way or "strategy" to solve that problem has already been perfected. These are called "design

patterns".

Why Should we Care?

A design pattern is nothing more than a "strategy" for writing code when you encounter a

particular problem. If you can start to identify which types of problems are solved by which

strategies, you'll walk into situations and immediately know what to do. Learning design patterns

gives you:

A) More tools in your developer toolkit when coding and B) A better understanding of core

libraries like Symfony, which leverages design patterns a lot.

It'll also make you way more fun at parties... assuming the only people at the party are

programmers... because you'll be able to smartly say things like:

“Yea, I noticed that you refactored to use the decorator pattern - great idea for extending that

class without violating the single responsibility principle.”

Dang, we're going to be super popular.

Design Pattern Types

Ok, so there are tons of design patterns. Though... only a small number are likely to be useful to

us in the real-world: we just won't ever face the problems that the others solve. These many

design patterns fall into three basic groups. You don't need to memorize these... it's just a nice

way to think about the three types of problems that design patterns solve.

The first type is called "creational patterns", and these are all about helping instantiate objects.

They include the factory pattern, builder pattern, singleton pattern, and others.

The second type is called "structural patterns". These help you organize things when you have

a bunch of objects and you need to identify relationships between them. One example of a

relationship would be a parent-child relationship, but there are many others. Yea, I know: this

one can be a little fuzzy. But we will see one structural pattern in this tutorial: the "decorator

pattern".

The third and final type of patterns is called "behavioral patterns", which help solve problems

with how objects communicate with each other, as well as assigning responsibilities between

objects. That's a fancy way of saying that behavioral patterns help you design classes with

specific responsibilities that can then work together... instead of putting all of that code into one

giant class. We'll talk about two behavioral patterns: the "strategy pattern" and the "observer

pattern".

Get that Project Set up!

Now that we've defined some of what we'll be looking at, it's time to get technical! We're going

to use these patterns in a real Symfony project to do real stuff. We'll only cover a few patterns in

this tutorial - some of my favorites - but if you finish and want to see more, let us know!

All right, to be the best design-pattern-er that you can be, you should definitely download the

course code from this page and code along with me. After you unzip it, you'll find a start/

directory that has the same code that you see here. Pop open this README.md file for all the

setup details. Though, this one's pretty easy: you just need run:

composer install

Our app is a simple command-line role-playing game where characters battle each other and

level up. RPG's are my favorite type of game - Shining Force for the win!

To play, run:

https://en.wikipedia.org/wiki/Shining_Force

./bin/console app:game:play

Sweet! We have three character types! Let's be a fighter. We're battling another fighter. Queue

epic battle sounds! And... we won! There was 11 rounds of fighting, 94 damage points dealt, 84

damage points received and glory for all!!! We can also battle again. And... woohoo! We're on a

roll!

This is a Symfony app, but a very simple Symfony app. It has a command class that sets things

up and prints the results. You tell it which character you want to be and it starts the battle.

src/Command/GameCommand.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 // ... lines 42 - 96

97

But most of the work is done via the game property, which is this GameApplication class.

This takes these two Character objects and it goes through the logic of having them "attack"

each other until one of them wins. At the bottom, it also contains the three character types,

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $io->text('Welcome to the game where warriors fight against each

other for honor and glory... and 🍕!');

 $characters = $this->game->getCharactersList();

 $characterChoice = $io->choice('Select your character',

$characters);

 $playerCharacter = $this->game->createCharacter($characterChoice);

 $playerCharacter->setNickname('Player ' . $characterChoice);

 $io->writeln('It\'s time for a fight!');

 $this->play($io, $playerCharacter);

 return Command::SUCCESS;

 }

}

which are represented by this Character class. You can pass in different stats for your

character, like $maxHealth , the $baseDamage that you do, and different $armor levels.

src/GameApplication.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 68

69

So GameApplication defines the three character types down here... then battles them up

above. That's basically it!

class GameApplication

{

 public function play(Character $player, Character $ai): FightResult

 {

 $player->rest();

 $fightResult = new FightResult();

 while (true) {

 $fightResult->addRound();

 $damage = $player->attack();

 if ($damage === 0) {

 $fightResult->addExhaustedTurn();

 }

 $damageDealt = $ai->receiveAttack($damage);

 $fightResult->addDamageDealt($damageDealt);

 if ($this->didPlayerDie($ai)) {

 return $this->finishFightResult($fightResult, $player,

$ai);

 }

 $damageReceived = $player->receiveAttack($ai->attack());

 $fightResult->addDamageReceived($damageReceived);

 if ($this->didPlayerDie($player)) {

 return $this->finishFightResult($fightResult, $ai,

$player);

 }

 }

 }

}

src/GameApplication.php

 // ... lines 1 - 37

38

39

40

41

42

43

44

45

46

 // ... lines 47 - 70

Next: let's dive into our first pattern - the "strategy pattern" - where we allow some characters to

cast magical spells. To make that possible, we're going to need to make the Character class

a lot more flexible.

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'fighter' => new Character(90, 12, 0.25),

 'archer' => new Character(80, 10, 0.15),

 'mage' => new Character(70, 8, 0.10),

 default => throw new \RuntimeException('Undefined Character'),

 };

 }

Chapter 2: Strategy Pattern

The first pattern we'll talk about is the "strategy pattern". This is a behavioral pattern that helps

organize code into separate classes that can then interact with each other.

Definition

Let's start with the technical definition:

“The strategy pattern defines a family of algorithms, encapsulates each one and makes them

interchangeable. It lets the algorithm vary independently from clients that use it.”

If that made sense to you, congrats! You get to teach the rest of the tutorial!

Let's try that again. Here's my definition:

“The strategy pattern is a way to allow part of a class to be rewritten from the outside.”

Imaginary Example

Let's talk about an imaginary example before we start coding. Suppose we have a

PaymentService that does a bunch of stuff... including charging people via credit card. But

now, we discover that we need to use this exact same class to allow people to pay via PayPal...

or via pirate treasure - that sounds more fun.

Anyways, how can we do that? The strategy pattern! We would allow a new

PaymentStrategyInterface object to be passed into PaymentService and then we

would call that.

Next, we would create two classes that implement the new interface:

CreditCardPaymentStrategy and PiratesBootyPaymentStrategy . That's it! We now

have control of which class we pass in. Yep! We just made part of the code inside

PaymentService controllable from the outside.

The Real Example

With that in mind, let's actually code this pattern.

Right now, we have three characters that are created inside of GameApplication . But the

fighter is dominating. To balance the game, I want to add special attack abilities for each

character. For example, the mage will be able to cast spells.

src/GameApplication.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 37

38

39

40

41

42

43

44

45

46

 // ... lines 47 - 68

69

Currently, the attack functionality is pretty boring: we take the character's baseDamage then

use this cool Dice::roll() function to roll a six-sided die for some randomness.

class GameApplication

{

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'fighter' => new Character(90, 12, 0.25),

 'archer' => new Character(80, 10, 0.15),

 'mage' => new Character(70, 8, 0.10),

 default => throw new \RuntimeException('Undefined Character'),

 };

 }

}

src/Character/Character.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 25

26

27

28

29

30

31

32

33

34

35

36

37

 // ... lines 38 - 70

71

But when a mage casts a spell, the damage it causes will be much more variable: sometimes a

spell works really well but... other times it makes like tiny fireworks that do almost zero damage.

Basically, for the mage, we need completely different code for calculating damage.

Pass in an Option?

So how can we do this? How can we allow one character - the mage - to have different damage

logic? The first idea that comes to my mind is to pass a flag into the character's constructor, like

$canCastSpells . Then in the attack() method, add an if statement so that we have

both types of attacks.

Cool... but what if an archer needs yet a different type of attack? We'd then have to pass

another flag and we'd end up with three variations inside of attack() . Yikes.

Sub-Class?

Ok then, another solution might be that we sub-class Character . We create a

MageCharacter that extends Character , then override the attack() method entirely. But,

darn it! We don't want to override all of attack() , we just want to replace part of it. We could

class Character

{

 public function attack(): int

 {

 $this->currentStamina -= (25 + Dice::roll(20));

 if ($this->currentStamina <= 0) {

 // can't attack this turn

 $this->currentStamina = self::MAX_STAMINA;

 return 0;

 }

 return $this->baseDamage + Dice::roll(6);

 }

}

get fancy by moving the part we want to reuse into a protected function so that we can call it

from our sub-class... but this is getting a little ugly. Ideally we can solve problems without

inheritance whenever possible.

Creating the "strategy" Interface

So let's back up. What we really want to do is allow this code to be different on a character-by-

character basis. And that is exactly what the strategy pattern allows.

Let's do this! The logic that we need the flexibility to change is this part here, where we

determine how much damage an attack did.

Ok, step 1 to the pattern is to create an interface that describes this work. I'm going to add a

new AttackType/ directory to organize things. Inside, create a new PHP class, change the

template to "Interface", and call it AttackType .

Cool! Inside, add one public function called, how about, performAttack() . This will

accept the character's $baseDamage - because that might be useful - then return the final

damage that should be applied.

src/AttackType/AttackType.php

 // ... lines 1 - 4

5

6

7

8

Awesome!

Adding Implementation of the Interface

Step 2 is to create at least one implementation of this interface. Let's pretend our mage has a

cool fire attack. Inside the same directory, create a class called FireBoltType ... and make it

implement AttackType . Then, go to "Code -> Generate" - or "command" + "N" on a Mac - and

select "Implement Methods" as a shortcut to add the method we need.

interface AttackType

{

 public function performAttack(int $baseDamage): int;

}

src/AttackType/FireBoltType.php

 // ... lines 1 - 6

7

8

9

10

 // ... line 11

12

13

For the magic attack, return Dice::roll(10) 3 times. So the damage done is the result of

rolling 3 10-sided dice.

src/AttackType/FireBoltType.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 14

And... our first attack type is done! While we're here, let's create two others. I'll add a

BowType ... and paste in some code. You can copy this from the code block on this page. This

attack has a chance of doing some critical damage. Finally, add a TwoHandedSwordType ...

and I'll paste in that code as well. This one is pretty straightforward: it's the $baseDamage plus

some random rolls.

src/AttackType/BowType.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

class FireBoltType implements AttackType

{

 public function performAttack(int $baseDamage): int

 {

 }

}

 public function performAttack(int $baseDamage): int

 {

 return Dice::roll(10) + Dice::roll(10) + Dice::roll(10);

 }

use App\Dice;

class BowType implements AttackType

{

 public function performAttack(int $baseDamage): int

 {

 $criticalChance = Dice::roll(100);

 return $criticalChance > 70 ? $baseDamage * 3 : $baseDamage;

 }

}

src/AttackType/TwoHandedSwordType.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

Passing in and Using the Strategy

We're ready for the 3rd and final step for this pattern: allow an AttackType interface to be

passed into Character so that we can use it below. So, quite literally, we're going to add a

new argument: private - so it's also a property - type-hinted with the AttackType interface

(so we can allow any AttackType to be passed in) and call it $attackType .

src/Character/Character.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 15

16

 // ... lines 17 - 19

20

21

 // ... line 22

23

 // ... lines 24 - 72

73

Below, remove this comment... because now, instead of doing the logic manually, we'll say

return $this->attackType->performAttack($this->baseDamage) .

use App\Dice;

class TwoHandedSwordType implements AttackType

{

 public function performAttack(int $baseDamage): int

 {

 $twoHandledSwordDamage = Dice::roll(12) + Dice::roll(12);

 return $baseDamage + $twoHandledSwordDamage;

 }

}

use App\AttackType\AttackType;

class Character

{

 public function __construct(

 private AttackType $attackType

) {

 }

}

src/Character/Character.php

 // ... lines 1 - 24

25

26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 71

And we're done! Our Character class is now leveraging the strategy pattern. It allows

someone outside of this class to pass in an AttackType object, effectively letting them control

just part of its code.

Taking Advantage of our Flexibility

To take advantage of the new flexibility, open up GameApplication , and inside of

createCharacter() , pass an AttackType to each of these, like

new TwoHandedSwordType() for the fighter , new BowType() for the archer , and

new FireBoltType() for the mage .

 public function attack(): int

 {

 $this->currentStamina -= (25 + Dice::roll(20));

 if ($this->currentStamina <= 0) {

 // can't attack this turn

 $this->currentStamina = self::MAX_STAMINA;

 return 0;

 }

 return $this->attackType->performAttack($this->baseDamage);

 }

src/GameApplication.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 40

41

42

43

44

45

46

 // ... line 47

48

49

 // ... lines 50 - 71

72

Sweet! To make sure we didn't break anything, head over and try the game.

php bin/console app:game:play

And... woohoo! It's still working!

Adding a Mixed Attack Character

What's great about the "strategy pattern" is that, instead of trying to pass options to

Character like $canCastSpells = true to configure the attack, we have full control.

To prove it, let's add a new character - a mage archer: a legendary character that has a bow

and casts spells. Double threat!

To support this idea of having two attacks, create a new AttackType called

MultiAttackType . Make it implement the AttackType interface and go to "Implement

Methods" to add the method.

use App\AttackType\BowType;

use App\AttackType\FireBoltType;

use App\AttackType\TwoHandedSwordType;

class GameApplication

{

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'fighter' => new Character(90, 12, 0.25, new

TwoHandedSwordType()),

 'archer' => new Character(80, 10, 0.15, new BowType()),

 'mage' => new Character(70, 8, 0.10, new FireBoltType()),

 };

 }

}

src/AttackType/MultiAttackType.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 18

19

20

In this case, I'm going to create a constructor where we can pass in an array of

$attackTypes . To help out my editor, I'll add some PHPDoc above to note that this is an

array specifically of AttackType objects.

src/AttackType/MultiAttackType.php

 // ... lines 1 - 6

7

8

9

10

11

12

 // ... lines 13 - 21

This class will work by randomly choosing between one of its available $attackTypes . So,

down here, I'll say $type = $this->attackTypes[] - whoops! I meant to call this

attackTypes with a "s" - then array_rand($this->attackTypes) . Return

$type->performAttack($baseDamage) .

src/AttackType/MultiAttackType.php

 // ... lines 1 - 13

14

15

16

17

18

19

 // ... lines 20 - 21

Done! This is a very custom attack, but with the "strategy pattern", it's no problem. Over in

GameApplication , add the new mage_archer character... and I'll copy the code above.

namespace App\AttackType;

class MultiAttackType implements AttackType

{

 public function performAttack(int $baseDamage): int

 {

 }

}

 /**

 * @param AttackType[] $attackTypes

 */

 public function __construct(private array $attackTypes)

 {

 }

 public function performAttack(int $baseDamage): int

 {

 $type = $this->attackTypes[array_rand($this->attackTypes)];

 return $type->performAttack($baseDamage);

 }

Let's have this be... 75, 9, 0.15 . Then, for the AttackType , say

new MultiAttackType([]) passing new BowType() and new FireBoltType() .

src/GameApplication.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

 // ... lines 13 - 41

42

43

44

 // ... lines 45 - 47

48

49

50

 // ... lines 51 - 73

74

Sweet! Below, we also need to update getCharacterList() so that it shows up in our

character selection list.

src/GameApplication.php

 // ... lines 1 - 51

52

53

54

55

56

57

58

59

60

 // ... lines 61 - 75

Okay, let's check out the legendary new character:

php bin/console app:game:play

Select mage_archer and... oh! A stunning victory against a normal archer . How cool is that?

use App\AttackType\MultiAttackType;

class GameApplication

{

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'mage_archer' => new Character(75, 9, .15, new

MultiAttackType([new BowType(), new FireBoltType()])),

 };

 }

}

 public function getCharactersList(): array

 {

 return [

 'fighter',

 'mage',

 'archer',

 'mage_archer'

];

 }

Next, let's use the "strategy pattern" one more time to make our Character class even more

flexible. Then, we'll talk about where you can see the "strategy pattern" in the wild and what

specific benefits it gives us.

Chapter 3: Strategy Part 2: Benefits & In the Wild

We just used the Strategy Pattern to allow things outside of the Character class to control

how attacks happen by creating a custom AttackType ... then passing it in when you create

the Character .

Naming Conventions?

If you've read up on this pattern, you might be wondering why we didn't name the interface

AttackStrategy after the pattern. The answer is... because we don't have to. In all

seriousness, the clarity and purpose of this class are more valuable than hinting the name of a

pattern. If we called this "attack strategy"... it might sound like it's responsible for actually

planning a strategy of attack. That's not what we intended. Hence our name: AttackType

src/AttackType/AttackType.php

 // ... lines 1 - 4

5

6

7

8

Another Strategy Pattern Example

Let's do one more quick strategy pattern example to further balance our characters. I want to be

able to control the armor of each character beyond just the number that's being passed in right

now. This is used down in receiveAttack() to figure out how much an attack can be

reduced by. This was fine before, but now I want to start creating very different types of armor

that each have different properties beyond just a number. We'll need to upgrade our code to

allow this.

interface AttackType

{

 public function performAttack(int $baseDamage): int;

}

src/Character/Character.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 37

38

39

40

41

42

43

44

45

 // ... lines 46 - 69

70

Once again, we could solve this by creating sub-classes, like CharacterWithShield . But

now you can hopefully see why that's not a great plan. If we had also used inheritance for

customizing how the attacks happen, we might end up with classes like

TwoHandedSwordWithShieldCharacter or

SpellCastingAndBowUsingWearingLeatherArmorCharacter . Yikes!

So rather than navigate that nightmare of never-ending sub-classes, we'll use the Strategy

Pattern. Let's revisit the three steps from earlier. Step one is to identify the code that needs to

change and create an interface for it.

In our case, we need to determine how much an attack should be reduced by. Cool: create a

new ArmorType/ directory and inside that, a new PHP class... which will actually be an

interface... and call it, how about, ArmorType .

To hold the armor-reducing code, say public function getArmorReduction() where

we pass in the $damage that we're about to do, and will return how much damage reduction

the armor should apply.

src/ArmorType/ArmorType.php

 // ... lines 1 - 4

5

6

7

8

Step two is to create at least one implementation of this. Create a new PHP class called

ShieldType and make it implement ArmorType . Below, I'll generate the

class Character

{

 public function receiveAttack(int $damage): int

 {

 $armorReduction = (int) ($damage * $this->armor);

 $damageTaken = $damage - $armorReduction;

 $this->currentHealth -= $damageTaken;

 return $damageTaken;

 }

}

interface ArmorType

{

 public function getArmorReduction(int $damage): int;

}

getArmorReduction() method. The shield is cool because it's going to have a 20% chance

to block an incoming attack entirely. Create a $chanceToBlock variable set to

Dice::roll(100) . Then, if the $chanceToBlock is > 80 , we're going to reduce all of the

damage. So return $damage . Else our shield is going to be meaningless and reduce the

damage by zero. Ouch!

src/ArmorType/ShieldType.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

While we're here, let's create two other types of armor. The first is a LeatherArmorType . I'll

paste in the logic: it absorbs 20% of the damage.

src/ArmorType/LeatherArmorType.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

And then create the cool IceBlockType : a little something for our magic folk. I'll paste that

logic in as well. This will absorb two eight-sided dice rolls added together.

use App\Dice;

class ShieldType implements ArmorType

{

 /**

 * Has 20% to fully block the attack

 */

 public function getArmorReduction(int $damage): int

 {

 $chanceToBlock = Dice::roll(100);

 return $chanceToBlock > 80 ? $damage : 0;

 }

}

class LeatherArmorType implements ArmorType

{

 /**

 * Absorbs 25% of the damage

 */

 public function getArmorReduction(int $damage): int

 {

 return floor($damage * 0.25);

 }

}

src/ArmorType/IceBlockType.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

Ok step three: allow an object of the ArmorType interface to be passed into Character ...

then use its logic. In this case, we won't need the $armor number at all. Instead, add a

private ArmorType $armorType argument.

src/Character/Character.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 16

17

 // ... lines 18 - 20

21

22

 // ... line 23

24

 // ... lines 25 - 70

71

Down below, in receiveAttack() , say

$armorReduction = $this->armorType->getArmorReduction() and pass in

$damage . And just to make sure things don't drift negative, add a max() after

$damageTaken passing $damage - $armorReduction and 0 .

class IceBlockType implements ArmorType

{

 /**

 * Absorbs 2d8

 */

 public function getArmorReduction(int $damage): int

 {

 return Dice::roll(8) + Dice::roll(8);

 }

}

use App\ArmorType\ArmorType;

class Character

{

 public function __construct(

 private ArmorType $armorType

) {

 }

}

src/Character/Character.php

 // ... lines 1 - 38

39

40

41

42

43

 // ... lines 44 - 46

47

 // ... lines 48 - 73

Done! Character now leverages the Strategy Pattern... again! Let's go take advantage of that

over in GameApplication .

Start by removing the armor number on each of these. Then I'll quickly pass in an ArmorType :

new ShieldType() , new LeatherArmorType() , and new IceBlockType() . For our

mage-archer , which is our weird character, we'll keep it weird by giving them a shield -

new ShieldType() . That's a lot to carry! Oh, and I also need to make sure I take off the

armor for that as well. Perfect!

src/GameApplication.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 13

14

15

 // ... lines 16 - 44

45

46

47

48

49

50

51

52

53

 // ... lines 54 - 76

77

 public function receiveAttack(int $damage): int

 {

 $armorReduction = $this->armorType->getArmorReduction($damage);

 $damageTaken = max($damage - $armorReduction, 0);

 }

use App\ArmorType\IceBlockType;

use App\ArmorType\LeatherArmorType;

use App\ArmorType\ShieldType;

class GameApplication

{

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'fighter' => new Character(90, 12, new TwoHandedSwordType(),

new ShieldType()),

 'archer' => new Character(80, 10, new BowType(), new

LeatherArmorType()),

 'mage' => new Character(70, 8, new FireBoltType(), new

IceBlockType()),

 'mage_archer' => new Character(75, 9, new MultiAttackType([new

BowType(), new FireBoltType()]), new ShieldType()),

 };

 }

}

Let's go try this team. Head over and run:

./bin/console app:game:play

And... it looks like it's working! Let's play as a mage-archer and... sweet! Well, I lost. That's

not sweet, but I tried my best! And you can see that the "damage dealt" and the "damage

received" still seem to be working. Awesome!

Pattern Benefits

So that's the Strategy Pattern! When do you need it? When you find that you need to swap out

just part of the code inside of a class. And what are the benefits? A bunch! Unlike inheritance,

we can now create characters with endless combinations of attack and armor behaviors. We

could also swap out an AttackType or ArmorType at runtime. This means that we could, for

example, read some configuration or environment variable and dynamically use it to change

one of the attack types of our characters on the fly. That's not possible with inheritance.

Pattern and SOLID Principle

If you watched our SOLID tutorial, the Strategy Pattern is a clear win for SRP - the single

responsibility principle - and OCP - the open closed principle. The Strategy Pattern allows us to

break big classes like Character into smaller, more focused ones, but still have them interact

with each other. That pleases SRP.

And OCP is happy because we now have a way to modify or extend the behavior of the

Character class without actually changing the code inside. We can pass in new armor and

attack types instead.

Strategy Pattern in the Real World

Finally, where might we see this pattern in the real world? One example, if you hit "shift" + "shift"

and type in Session.php , is Symfony's Session class. The Session is a simple key value

store, but different apps will need to store that data in different locations, like the filesystem or a

database.

Instead of trying to accomplish that with a bunch of code inside of the Session class itself,

Session accepts a SessionStorageInterface . We can pass whatever session storage

strategy we want. Heck, we could even use environment variables to swap to a different storage

at runtime!

Where else is the Strategy Pattern used? Well, it's subtle, but it's actually used in a lot of places.

Anytime you have a class that accepts an interface as a constructor argument, especially if that

interface comes from the same library, that's quite possibly the Strategy Pattern. It means that

the library author decided that, instead of putting a bunch of code in the middle of the class, it

should be abstracted into another class. And, by type-hinting an interface, they're allowing

someone else to pass in whatever implementation - or strategy they want.

Here's another example. Over on GitHub, I'm on the Symfony repository. Hit "t" and search for

JsonLoginAuthenticator . This is the code behind the json_login security authenticator.

One common need with the JsonLoginAuthenticator is to use it like normal... but then

take control of what happens on success: for example, to control the JSON that's returned after

authentication.

To allow for that JsonLoginAuthenticator allows you to pass in an

AuthenticationSuccessHandlerInterface . So instead of this class trying to figure out

what to do on success, it allows us to pass in a custom implementation that gives us complete

control.

Think you've got all that? Great! Let's talk about the Builder Pattern next.

Chapter 4: Builder Pattern

Time for "design pattern" number two: the "builder pattern". This is one of those creational

patterns that help you instantiate and configure objects. And, it's a bit easier to understand than

the "strategy pattern".

Official Definition

The official definition of the "builder pattern" is this:

“A creational design pattern that lets you build and configure complex objects step-by-step.”

That... actually made sense. Part two of the official definition says:

“the pattern allows you to produce different types and representations of an object using the

same construction code.”

In other words, you create a builder class that helps build other objects... and those object might

be of different classes or the same class with different data.

Simple Example

A simple example might be a pizza parlor that needs to create a bunch of pizzas, each with a

different crust, toppings, etc. To make life easier, the owner of the pizza parlor, who's a Symfony

developer by night, decides to create a PizzaBuilder class with easy methods like

addIngredient() , setDough() , and addCheese() . Then, they create a buildPizza()

method, which takes all of that info and does the heavy lifting of creating that Pizza object and

returning it. That buildPizza() method can be as complicated as needed. Anyone using this

class doesn't know or care about any of that. The method could also create different classes for

different situations if that's what our brave pizza-parlor-owner-slash-Symfony-dev needs for their

app.

Creating the Builder Class

Ok, let's create a builder in our project. Head over to GameApplication and go down to

createCharacter() . The problem is that we're building four different Character objects

and passing quite a bit of data to configure each one. And, what if we need to create these

Character objects in other places in our code? They're not super easy to build right now. We

could make some sub-class of Character that can set this data up automatically, like by

calling the parent constructor. But, like we talked about with the strategy pattern, that could get

really ugly when we start having odd combinations of things like a mage-archer with an

IceBlockType shield class.

And what if creating a Character object was even more difficult? Like, if it required making

database queries or other operations? Our goal is to make the instantiation of Character

objects easier and more clear. And we can accomplish that by creating a builder class.

Add a src/Builder/ directory for organization and, inside of that, a new PHP class called

CharacterBuilder . I'm creating this class but I am not creating a corresponding interface.

Builder classes often implement an interface like CharacterBuilderInterface , but they

don't need to. Later, we'll talk about why you might decide to add an interface in some

situations.

src/Builder/CharacterBuilder.php

 // ... lines 1 - 4

5

6

7

Methods and Method Chaining

Okay, inside, we get to create whatever methods we want to allow the outside world to craft

characters. For example, public function setMaxHealth() , which will accept an

int $maxHealth argument. I'm going to leave this method empty for the moment... but it well

eventually return itself: it will return CharacterBuilder . This is really common in the builder

pattern because it allows method chaining, also known as a "fluent interface". But, it's not a

requirement of the pattern.

All right, let's quickly fill in a few more methods, like setBaseDamage() ... and the last two are

the armor and attack types. So say setAttackType() . Remember, attack types are objects.

class CharacterBuilder

{

}

But instead of allowing an AttackType interface argument, I'm going to accept a string

argument called $attackType . Why? I don't have to this, but I'm trying to make it as easy as

possible to create characters. So instead of making someone else instantiate the attack types,

I'm going to allow them to pass a simple string - like the word bow - and, in a few minutes, we

will handle the complexity of instantiating the object for them.

Okay, copy that, and do the same for setArmorType() .

src/Builder/CharacterBuilder.php

 // ... lines 1 - 6

7

8

9

10

 // ... line 11

12

13

14

15

 // ... line 16

17

18

19

20

 // ... line 21

22

23

24

25

 // ... line 26

27

28

 // ... lines 29 - 32

33

And... that's it! Those are the only four things that you can control in a character.

The Creational Method

The final method that our builder needs is the one that will actually build the Character . You

can call this anything you want, how about buildCharacter() . And it is, of course, going to

return a Character object.

class CharacterBuilder

{

 public function setMaxHealth(int $maxHealth): self

 {

 }

 public function setBaseDamage(int $baseDamage): self

 {

 }

 public function setAttackType(string $attackType): self

 {

 }

 public function setArmorType(string $armorType): self

 {

 }

}

src/Builder/CharacterBuilder.php

 // ... lines 1 - 4

5

 // ... line 6

7

8

 // ... lines 9 - 28

29

30

 // ... line 31

32

33

To store the character stats, we're going to create four properties, which I'll paste in:

private int $maxHealth , private int $baseDamage , and then

private string $attackType and private string $armorType . Then, in each

method, assign that property and return $this . We'll do that for $baseDamage ...

$attackType ... and $armorType .

use App\Character\Character;

class CharacterBuilder

{

 public function buildCharacter(): Character

 {

 }

}

src/Builder/CharacterBuilder.php

 // ... lines 1 - 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 // ... lines 49 - 78

79

Beautiful! The buildCharacter() method is fairly straightforward: we do whatever ugly work

needed to create the Character . So I'll say return new Character() passing

$this->maxHealth and $this->baseDamage . The last two arguments require objects... so

they're a bit more complex. But that's ok! I don't mind if my builder gets a little complicated.

class CharacterBuilder

{

 private int $maxHealth;

 private int $baseDamage;

 private string $attackType;

 private string $armorType;

 public function setMaxHealth(int $maxHealth): self

 {

 $this->maxHealth = $maxHealth;

 return $this;

 }

 public function setBaseDamage(int $baseDamage): self

 {

 $this->baseDamage = $baseDamage;

 return $this;

 }

 public function setAttackType(string $attackType): self

 {

 $this->attackType = $attackType;

 return $this;

 }

 public function setArmorType(string $armorType): self

 {

 $this->armorType = $armorType;

 return $this;

 }

}

Doing some Heavy Lifting

I'll go to the bottom of this class and paste in two new private methods. These handle

creating the AttackType and ArmorType objects. Except... I need a bunch of use

statements for this, which I forgot. Whoops. So I'm going to re-type the end of these classes and

hit "tab" to add those use statements. There we go!

Okay, we can now use the two new private methods to map the strings to objects. This is the

heavy lifting - and the real value - of CharacterBuilder . Say

$this->createAttackType() and $this->createArmorType() .

src/Builder/CharacterBuilder.php

 // ... lines 1 - 5

6

7

8

 // ... line 9

10

11

12

 // ... lines 13 - 14

15

16

 // ... lines 17 - 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

use App\ArmorType\IceBlockType;

use App\ArmorType\LeatherArmorType;

use App\ArmorType\ShieldType;

use App\AttackType\BowType;

use App\AttackType\FireBoltType;

use App\AttackType\TwoHandedSwordType;

class CharacterBuilder

{

 public function buildCharacter(): Character

 {

 return new Character(

 $this->maxHealth,

 $this->baseDamage,

 $this->createAttackType(),

 $this->createArmorType(),

);

 }

 private function createAttackType(): AttackType

 {

 return match ($this->attackType) {

 'bow' => new BowType(),

 'fire_bolt' => new FireBoltType(),

 'sword' => new TwoHandedSwordType(),

 default => throw new \RuntimeException('Invalid attack type

given')

 };

 }

 private function createArmorType(): ArmorType

 {

 return match ($this->armorType) {

 'ice_block' => new IceBlockType(),

 'shield' => new ShieldType(),

 'leather_armor' => new LeatherArmorType(),

 default => throw new \RuntimeException('Invalid armor type

given')

 };

 }

}

And... our builder is done! Next: let's use this in GameApplication . Then, we'll make our

builder even more flexible (but not more difficult to use) by accounting for characters that use

multiple attack types.

Chapter 5: Builder Improvements

The first version of our builder class is done! Though, in GameApplication , the

mage_archer has two different attack types. Our CharacterBuilder doesn't support that

right now... but we'll add it in a minute.

Clearing State After Building?

Oh, one more thing about the builder class! In the "build" method, after you create the object,

you may choose to "reset" the builder object. For example, we could set the Character to a

variable, then, before we return it, reset $maxHealth and all the other properties back to their

original state. Why would we do this? Because it would allow for a single builder to be used over

and over again to create many objects - or, characters in this case.

src/Builder/CharacterBuilder.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 49

50

51

52

53

54

55

56

57

58

 // ... lines 59 - 78

79

However, I'm not going to do that... which just means that a single CharacterBuilder will be

meant to be used just one time to build one character. You can choose either option in your app:

there isn't a right or wrong way for the builder pattern.

Using the Builder

class CharacterBuilder

{

 public function buildCharacter(): Character

 {

 return new Character(

 $this->maxHealth,

 $this->baseDamage,

 $this->createAttackType(),

 $this->createArmorType(),

);

 }

}

All right, let's go use this! Inside of GameApplication , first, just to make life easier, I'm going

to create a private function at the bottom called createCharacterBuilder() which

will return CharacterBuilder . Inside, return new CharacterBuilder() .

src/GameApplication.php

 // ... lines 1 - 4

5

 // ... lines 6 - 14

15

16

 // ... lines 17 - 78

79

80

81

82

83

That's going to be nice because... up here in createCharacter() , we can use that. I'm

going to clear out the old stuff... and now, use the fluid way to make characters:

$this->createCharacterBuilder() , ->setMaxHealth(90) ,

->setBaseDamage(12) , ->setAttackType('sword') and

->setArmorType('shield') . Oh, and, though I didn't do it, it would be nice to add

constants on the builder for these strings, like sword and shield .

Finally, call ->buildCharacter() to... build that character!

use App\Builder\CharacterBuilder;

class GameApplication

{

 private function createCharacterBuilder(): CharacterBuilder

 {

 return new CharacterBuilder();

 }

}

src/GameApplication.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 38

39

40

41

42

43

44

45

46

47

 // ... lines 48 - 70

71

72

 // ... lines 73 - 100

101

That's really nice! And it would be even nicer if creating a character were even more complex,

like involving database calls.

To save some time, I'm going to paste in the other three characters, which look similar. Down

here for our mage_archer , I'm currently using the fire_bolt attack type. We do need to re-

add a way to have both fire_bolt and bow , but this should work for now.

class GameApplication

{

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'fighter' => $this->createCharacterBuilder()

 ->setMaxHealth(90)

 ->setBaseDamage(12)

 ->setAttackType('sword')

 ->setArmorType('shield')

 ->buildCharacter(),

 };

 }

}

src/GameApplication.php

 // ... lines 1 - 38

39

40

41

 // ... lines 42 - 48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 // ... lines 73 - 102

Let's try it out! At your terminal, run:

php bin/console app:game:play

Hey! It didn't explode! That's always a happy sign. And if I fight as an archer ... I win! Our app

still works!

Allow for Multiple Attack Types

 public function createCharacter(string $character): Character

 {

 return match (strtolower($character)) {

 'archer' => $this->createCharacterBuilder()

 ->setMaxHealth(80)

 ->setBaseDamage(10)

 ->setAttackType('bow')

 ->setArmorType('leather_armor')

 ->buildCharacter(),

 'mage' => $this->createCharacterBuilder()

 ->setMaxHealth(70)

 ->setBaseDamage(8)

 ->setAttackType('fire_bolt')

 ->setArmorType('ice_block')

 ->buildCharacter(),

 'mage_archer' => $this->createCharacterBuilder()

 ->setMaxHealth(75)

 ->setBaseDamage(9)

 ->setAttackType('fire_bolt') // TODO re-add bow!

 ->setArmorType('shield')

 ->buildCharacter(),

 default => throw new \RuntimeException('Undefined Character')

 };

 }

So what about allowing our mage_archer's two attack types? Well, that's the beauty of the

builder pattern. Part of our job, when we create the builder class, is to make life as easy as

possible for whoever uses this class. That's why I chose to use string $armorType and

$attackType instead of objects.

We can solve handling two different AttackTypes however we want. Personally, I think it

would be cool to be able to pass multiple arguments. So let's make that happen!

Over in CharacterBuilder , change the argument to ...$attackTypes with an "s", using

the fancy ... to accept any number of arguments. Then, since this will now hold an array,

change the property to private array $attackTypes ... and down here,

$this->attackTypes = $attackTypes .

src/Builder/CharacterBuilder.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 36

37

38

39

40

41

42

 // ... lines 43 - 86

87

Easy. Next we need to make a few changes down in buildCharacter() , like changing the

$attackTypes strings into objects. To do that, I'm going to say $attackTypes = and... get

a little fancy. You don't have to do this, but I'm going to use array_map() and the new short

fn syntax - (string $attackType) => $this->createAttackType($attackType) .

For the second argument of array_map() - the array that we actually want to map - use

$this->attackTypes .

class CharacterBuilder

{

 private array $attackTypes;

 public function setAttackType(string ...$attackTypes): self

 {

 $this->attackTypes = $attackTypes;

 return $this;

 }

}

src/Builder/CharacterBuilder.php

 // ... lines 1 - 50

51

52

53

 // ... lines 54 - 65

66

 // ... lines 67 - 88

Now, in the private method, instead of reading the property, read an $attackType argument.

src/Builder/CharacterBuilder.php

 // ... lines 1 - 67

68

69

70

 // ... lines 71 - 74

75

76

 // ... lines 77 - 88

Ok, we could have done this with a foreach loop... and if you like foreach loops better, do it.

Honestly, I think I've been writing too much JavaScript lately. Anyways, this basically says:

“I want to loop over all of the "attack type" strings and, for each one, call this function where

we change that $attackType string into an AttackType object. Then set all of those

AttackType objects onto a new $attackTypes variable.”

In other words, this is now an array of AttackType objects.

To finish this, say if (count($attackTypes) === 1) , then

$attackType = $attackTypes[0] to grab the first and only attack type. Otherwise, say

$attackType = new MultiAttackType() passing $attackTypes . Finally, at the

bottom, use the $attackType variable.

 public function buildCharacter(): Character

 {

 $attackTypes = array_map(fn(string $attackType) => $this-

>createAttackType($attackType), $this->attackTypes);

 }

 private function createAttackType(string $attackType): AttackType

 {

 return match ($attackType) {

 };

 }

src/Builder/CharacterBuilder.php

 // ... lines 1 - 50

51

52

 // ... line 53

54

55

56

57

58

 // ... line 59

60

 // ... lines 61 - 62

63

 // ... line 64

65

66

 // ... lines 67 - 88

Phew! You can see it's a bit ugly, but that's okay! We're hiding the creation complexity inside this

class. And we could easily unit test it.

Let's try things out. Run our command...

./bin/console app:game:play

... let's be a mage_archer and... awesome! No error! So... I'm going to assume that's all

working.

Ok, in GameApplication , we're instantiating the CharacterBuilder manually. But what if

the CharacterBuilder needs access to some services to do its job, like the EntityManager

so it can make database queries?

Next, let's make this example more useful by seeing how we handle the creation of this

CharacterBuilder object in a real Symfony app by leveraging the service container. We'll

also talk about the benefits of the builder pattern.

 public function buildCharacter(): Character

 {

 if (count($attackTypes) === 1) {

 $attackType = $attackTypes[0];

 } else {

 $attackType = new MultiAttackType($attackTypes);

 }

 return new Character(

 $attackType,

);

 }

Chapter 6: Builder in Symfony & with a Factory

What if, in order to instantiate the Character objects, CharacterBuilder needed to, for

example, make a query to the database? Well, when we need to make a query, we normally

give our class a constructor and then autowire the entity manager service. But

CharacterBuilder isn't a service. You could technically use it like a service, but a service is

a class where you typically only need a single instance of it in your app. In GameApplication

however, we're creating one CharacterBuilder per character. If we did try to autowire

CharacterBuilder into GameApplication , that would work. Symfony would autowire the

EntityManager into CharacterBuilder and then it would autowire that CharacterBuilder

object here. The problem is that we would then only have one CharacterBuilder ... when we

actually need four to create our four Character objects.

This is why builder objects are commonly partnered with a builder factory. Let me undo all of the

changes I just made to GameApplication ... and CharacterBuilder .

Creating a Factory

Over in the Builder/ directory, create a new class called CharacterBuilderFactory :

src/Builder/CharacterBuilderFactory.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 10

11

By the way, there is a pattern called the factory pattern, which we won't specifically cover in this

tutorial. But a "factory" is just a class whose job is to create another class. It, like the builder

pattern, is a creational pattern. Inside of the factory class, create a new method called, how

about... createBuilder() , which will return a CharacterBuilder . And inside of that, just

return new CharacterBuilder() :

namespace App\Builder;

class CharacterBuilderFactory

{

}

src/Builder/CharacterBuilderFactory.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

This CharacterBuilderFactory is a service. Even if we need five CharacterBuilder

objects in our app, we only need one CharacterBuilderFactory . We'll just call this method

on it five times.

That means, over in GameApplication , we can create a

public function __construct() and autowire

CharacterBuilderFactory $characterBuilderFactory . I'll also add private in

front to make it a property:

src/GameApplication.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

 // ... lines 14 - 105

106

Then, down inside createCharacterBuilder() , instead of creating this by hand, rely on

the factory: return $this->characterBuilderFactory->createBuilder() :

class CharacterBuilderFactory

{

 public function createBuilder(): CharacterBuilder

 {

 return new CharacterBuilder();

 }

}

use App\Builder\CharacterBuilderFactory;

class GameApplication

{

 public function __construct(private CharacterBuilderFactory

$characterBuilderFactory)

 {

 }

}

src/GameApplication.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 101

102

103

104

105

106

The nice thing about this factory (and this is really the purpose of the factory pattern in general)

is that we have centralized the instantiation of this object.

Getting Services into the Builder

How does that help our situation? Remember, the problem I imagined was this: What if our

character builder needed a service like the EntityManager?

With our new setup, we can make that happen. I don't actually have Doctrine installed in this

project, so instead of the EntityManager , let's require LoggerInterface $logger ... and

I'll again add private in front to turn that into a property:

src/Builder/CharacterBuilder.php

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 23

24

25

26

 // ... lines 27 - 96

97

Then, down in buildCharacter() , just to test that this is working, use it:

$this->logger->info('Creating a character') . I'll also pass a second argument

with some extra info like 'maxHealth' => $this->maxHealth and

'baseDamage' => $this->baseDamage :

class GameApplication

{

 private function createCharacterBuilder(): CharacterBuilder

 {

 return $this->characterBuilderFactory->createBuilder();

 }

}

use Psr\Log\LoggerInterface;

class CharacterBuilder

{

 public function __construct(private LoggerInterface $logger)

 {

 }

}

src/Builder/CharacterBuilder.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 55

56

57

58

59

60

61

 // ... lines 62 - 75

76

 // ... lines 77 - 96

97

CharacterBuilder now requires a $logger ... but CharacterBuilder is not a service

that we'll fetch directly from the container. We'll get it via CharacterBuilderFactory , which

is a service. So autowiring LoggerInterface will work here:

src/Builder/CharacterBuilderFactory.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

 // ... lines 12 - 16

17

Then, pass that manually into the builder as $this->logger :

src/Builder/CharacterBuilderFactory.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 12

13

14

15

16

17

class CharacterBuilder

{

 public function buildCharacter(): Character

 {

 $this->logger->info('Creating a character!', [

 'maxHealth' => $this->maxHealth,

 'baseDamage' => $this->baseDamage,

]);

 }

}

use Psr\Log\LoggerInterface;

class CharacterBuilderFactory

{

 public function __construct(private LoggerInterface $logger)

 {

 }

}

class CharacterBuilderFactory

{

 public function createBuilder(): CharacterBuilder

 {

 return new CharacterBuilder($this->logger);

 }

}

We're seeing some of the benefits of the factory pattern here. Since we've already centralized

the instantiation of CharacterBuilder , anywhere that needs a CharacterBuilder , like

GameApplication , doesn't need to change at all... even though we just added a constructor

argument! GameApplication was already offloading the instantiation work to

CharacterBuilderFactory .

To see if this is working, run:

./bin/console app:game:play -vv

The -vv will let us see log messages while we play. And... got it! Look! Our

[info] Creating a character message popped up. We can't see the other stats on this

screen, but they are in the log file. Awesome.

What does The Builder Pattern Solve?

So that's the builder pattern! What problems can it solve? Simple! You have an object that's

difficult to instantiate, so you add a builder class to make life easier. It also helps with the Single

Responsibility Principle. It's one of the strategies that helps abstract creation logic of a class

away from the class that will use that object. Previously, in GameApplication , we had the

complexity of both creating the Character objects and using them. We still have code here to

use the builder, but most of the complexity now lives in the builder class.

Does my Builder Need an Interface?

Frequently, when you study this pattern, it will tell you that the builder (CharacterBuilder ,

for example) should implement a new interface, like CharacterBuilderInterface , which

would have methods on it like setMaxHealth() , setBaseDamage() , etc. This is optional.

When would you need it? Well, like all interfaces, it's useful if you need the flexibility to swap

how your characters are created for some other implementation.

For example, imagine we created a second builder that implemented

CharacterBuilderInterface called DoubleMaxHealthCharacterBuilder . This

creates Character objects, but in a slightly different way... like maybe it doubles the

$maxHealth . If both of those builders implemented CharacterBuilderInterface , then

inside of our CharacterBuilderFactory , which would now now return

CharacterBuilderInterface , we could read some configuration to figure out which

CharacterBuilder class we want to use.

So creating that interface really has less to do with the builder pattern itself... and more to do

with making your code more flexible. Let me undo that fake code inside of

CharacterBuilderFactory . And... inside of CharacterBuilder , I'll remove that make-

believe interface.

Where Do We See the Builder Pattern?

And where do we see the builder pattern in the wild? This one is pretty easy to spot because

method chaining is such a common feature of builders. The first example that comes to mind is

Doctrine's QueryBuilder :

class CharacterRepository extends ServiceEntityRepository

{

 public function findHealthyCharacters(int $healthMin): array

 {

 return $this->createQueryBuilder('character')

 ->orderBy('character.name', 'DESC')

 ->andWhere('character.maxHealth > :healthMin')

 ->setParameter('healthMin', $healthMin)

 ->getQuery()

 ->getResult();

 }

}

It allows us to configure a query with a bunch of nice methods before finally calling

getQuery() to actually create the Query object. It also leverages the factory pattern: to

create the builder, you call createQueryBuilder() . That method, which lives on the base

EntityRepository is the "factory" responsible for instantiating the QueryBuilder .

Another example is Symfony's FormBuilder :

public function buildForm(FormBuilderInterface $builder, $options)

{

 $animals = ['🐑', '🦖', '🦄', '🐖'];

 $builder

 ->add('name', TextType::class)

 ->add('animal', ChoiceType::class, [

 'placeholder' => 'Choose an animal',

 'choices' => array_combine($animals, $animals),

]);

}

In that example, we don't call the buildForm() method, but Symfony eventually does call this

once we're done configuring it.

Ok team, let's talk about the observer pattern next.

Chapter 7: The Observer Pattern

Time for pattern number three - the observer pattern. Here's the technical definition:

The Definition

“The observer pattern defines a one-to-many dependency between objects so that when one

object changes state, all of its dependents are notified and updated automatically.”

Okay, not bad, but let's try my version:

“The observer pattern allows a bunch of objects to be notified by a central object when

something happens.”

This is the classic situation where you write some code that needs to be called whenever

something else happens. And there are actually two strategies to solve this: the observer

pattern and the pub-sub pattern. We'll talk about both. But first up - the observer pattern.

Anatomy of Observer

There are two different types of classes that go into creating this pattern. The first is called the

"subject". That's the central object that will do some work and then notify other objects before or

after that work. Those other objects are the second type, and they're called "observers".

This is pretty simple. Each observer tells the subject that it wants to be notified. Later, the

subject loops over all of the observers and "notifies" them... which means it calls a method on

them.

The Real-Life Challenge

Back in our app, we're going to make our game more interesting by introducing levels to the

characters. Each time you win a fight, your character will earn some XP or "experience points".

After you've earned enough points, the character will "level up", meaning it's base stats, like

$maxhealth and $baseDamage , will increase.

To write this new functionality, we could put the code right here inside of GameApplication

after the fight finishes. So... maybe down here in finishFightResult() , we would do the

XP calculation and see if the character can level up:

src/GameApplication.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 88

89

90

91

92

93

94

95

 // ... lines 96 - 105

106

But, to better organize our code, I want to put this new logic somewhere else and use the

observer pattern to connect things. GameApplication will be the subject, which means it will

be responsible for notifying any observers when a fight finishes.

Another reason, beyond code organization, that someone might choose the observer pattern is

if GameApplication lived in a third-party vendor library and that vendor library wanted to give

us - the user of the library - some way to run code after a battle finishes... since we wouldn't

have the luxury to just hack the code in GameApplication .

Creating the Observer Interface

Ok, step one to this pattern is to create an interface that all the observers will implement. For

organization's sake, I'll create an Observer/ directory. Inside, add a new PHP class, make

sure "Interface" is selected, and call it, how about, GameObserverInterface ... since these

classes will be "observing" something related to each game. FightObserverInterface

would also have been a good name:

class GameApplication

{

 private function finishFightResult(FightResult $fightResult, Character

$winner, Character $loser): FightResult

 {

 $fightResult->setWinner($winner);

 $fightResult->setLoser($loser);

 return $fightResult;

 }

}

src/Observer/GameObserverInterface.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... line 9

10

Inside we just need one public method. We can call it anything: how about

onFightFinished() :

src/Observer/GameObserverInterface.php

 // ... lines 1 - 4

5

6

7

8

9

10

Why do we need this interface? Because, in a minute, we're going to write code that loops over

all of the observers inside of GameApplication and calls a method on them. So... we need a

way to guarantee that each observer has a method, like onFightFinished() . And we can

actually pass onFightFinished() whatever arguments we want. Let's pass it a

FightResult argument because, if I want to run some code after a fight finishes, it'll probably

be useful to know the result of that fight. I'll also add a void return type:

src/Observer/GameObserverInterface.php

 // ... lines 1 - 4

5

6

7

8

9

10

Adding the Subscribe Code

Okay, step two: We need a way for every observer to subscribe to be notified on

GameApplication . To do that, create a public function called, how about,

subscribe() . You can name this anything. This is going to accept any

namespace App\Observer;

interface GameObserverInterface

{

}

use App\FightResult;

interface GameObserverInterface

{

 public function onFightFinished(FightResult $fightResult): void;

}

use App\FightResult;

interface GameObserverInterface

{

 public function onFightFinished(FightResult $fightResult): void;

}

GameObserverInterface , I'll call it $observer and it will return void . I'll fill in the logic in

a moment:

src/GameApplication.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 89

90

91

92

93

 // ... lines 94 - 116

117

The second part, which is optional, is to add a way to unsubscribe from the changes. Copy

everything we just did... paste... and change this to unsubscribe() :

src/GameApplication.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 94

95

96

97

98

 // ... lines 99 - 116

117

Perfect!

At the top of the class, create a new array property that's going to hold all of the observers. Say

private array $observers = [] and then, to help my editor, I'll add some

documentation: @var GameObserverInterface[] :

use App\Observer\GameObserverInterface;

class GameApplication

{

 public function subscribe(GameObserverInterface $observer): void

 {

 // TODO: Implement subscribe() method.

 }

}

class GameApplication

{

 public function unsubscribe(GameObserverInterface $observer): void

 {

 // TODO: Implement unsubscribe() method.

 }

}

src/GameApplication.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 125

126

Back down in subscribe() , populate this. I'll add a check for uniqueness by saying

if (!in_array($observer, $this->observers, true)) , then

$this->observers[] = $observer :

src/GameApplication.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 92

93

94

95

96

97

98

 // ... lines 99 - 125

126

Do something similar down in unsubscribe() . Say

$key = array_search($observer, $this->observers) and then

if ($key !== false) - meaning we did find that observer -

unset($this->observers[$key]) :

class GameApplication

{

 /** @var GameObserverInterface[] */

 private array $observers = [];

}

class GameApplication

{

 public function subscribe(GameObserverInterface $observer): void

 {

 if (!in_array($observer, $this->observers, true)) {

 $this->observers[] = $observer;

 }

 }

}

src/GameApplication.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 99

100

101

102

103

104

105

106

107

 // ... lines 108 - 125

126

Notifying the Observers

Finally, we're ready to notify these observers. Right after the fight ends,

finishFightResult() is called. So, right here, I'll say $this->notify($fightResult) :

src/GameApplication.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 108

109

110

 // ... lines 111 - 113

114

115

116

117

 // ... lines 118 - 134

135

We don't need to do this... but I'm going to isolate the logic of notifying the observers to a new

private function down here called notify() . It will accept the

FightResult $fightResult argument and return void . Then foreach over

$this->observers as $observer . And because we know that those are all

GameObserverInterface instances, we can call $observer->onFightFinished() and

pass $fightResult :

class GameApplication

{

 public function unsubscribe(GameObserverInterface $observer): void

 {

 $key = array_search($observer, $this->observers, true);

 if ($key !== false) {

 unset($this->observers[$key]);

 }

 }

}

class GameApplication

{

 private function finishFightResult(FightResult $fightResult, Character

$winner, Character $loser): FightResult

 {

 $this->notify($fightResult);

 return $fightResult;

 }

}

src/GameApplication.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 128

129

130

131

132

133

134

135

And... the subject - GameApplication - is done! By the way, sometimes the code that notifies

the observers - so notify() in our case - lives in a public method and is meant to be called

by someone outside of this class. That's just a variation on the pattern. Like with many of the

small details of these patterns, you can do whatever you feel is best. I'm showing you the way I

like to do things.

Next: let's implement an observer class, write the level-up logic, then hook it into our system.

class GameApplication

{

 private function notify(FightResult $fightResult): void

 {

 foreach ($this->observers as $observer) {

 $observer->onFightFinished($fightResult);

 }

 }

}

Chapter 8: The Observer Class

Now that we've finished our subject class - GameApplication - where we can call

subscribe() if we want to be notified after a fight finishes - let's turn to creating an observer

that will calculate how much XP the winner should earn and whether or not the character should

level up.

But first, we need to add a few things to the Character class to help. On top, add

private int $level that will default to 1 and a private int $xp that will default to 0 :

src/Character/Character.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

 // ... lines 18 - 85

86

Down here a bit, add public function getLevel(): int which will

return $this->level ... and another convenience method called addXp() that will accept

the new $xpEarned and return the new XP number. Inside say

$this->xp += $xpEarned ... and return $this->xp :

class Character

{

 private int $level = 1;

 private int $xp = 0;

}

src/Character/Character.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 65

66

67

68

69

70

71

72

73

74

75

76

 // ... lines 77 - 85

86

Finally, right after, I'm going to paste in one more method called levelUp() . We'll call this

when a character levels up: it increases the $level , $maxHealth , and $baseDamage :

src/Character/Character.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 65

66

67

68

69

70

71

72

73

74

75

76

 // ... lines 77 - 97

98

We could also level-up the attack and armor types if we wanted.

Creating the Observer Class

class Character

{

 public function getLevel(): int

 {

 return $this->level;

 }

 public function addXp(int $xpEarned): int

 {

 $this->xp += $xpEarned;

 return $this->xp;

 }

}

class Character

{

 public function levelUp(): void

 {

 // +%15 bonus to stats

 $bonus = 1.15;

 $this->level++;

 $this->maxHealth = floor($this->maxHealth * $bonus);

 $this->baseDamage = floor($this->baseDamage * $bonus);

 // todo: level up attack and armor type

 }

}

Ok, now let's create that observer. Inside the src/Observer/ directory, add a new PHP class.

Let's call it XpEarnedObserver . And all of our observers need to implement the

GameObserverInterface . Go to "Code generate", or Command+N on a Mac to implement

the onFightFinished() method:

src/Observer/XpEarnedObserver.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

For the guts of onFightFinished() , I'm going to delegate the real work to a service called

XpCalculator .

If you downloaded the course code, you should have a tutorial/ directory with

XpCalculator.php inside. Copy that, in src/ , create a new Service/ directory and paste

that inside. You can check this out if you want to, but it's nothing fancy:

namespace App\Observer;

use App\FightResult;

class XpEarnedObserver implements GameObserverInterface

{

 public function onFightFinished(FightResult $fightResult): void

 {

 // TODO: Implement onFightFinished() method.

 }

}

src/Service/XpCalculator.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

namespace App\Service;

use App\Character\Character;

class XpCalculator

{

 public function addXp(Character $winner, int $enemyLevel): void

 {

 $xpEarned = $this->calculateXpEarned($winner->getLevel(),

$enemyLevel);

 $totalXp = $winner->addXp($xpEarned);

 $xpForNextLvl = $this->getXpForNextLvl($winner->getLevel());

 if ($totalXp >= $xpForNextLvl) {

 $winner->levelUp();

 }

 }

 private function calculateXpEarned(int $winnerLevel, int $loserLevel):

int

 {

 $baseXp = 30;

 $rawXp = $baseXp * $loserLevel;

 $levelDiff = $winnerLevel - $loserLevel;

 return match (true) {

 $levelDiff === 0 => $rawXp,

 // You get less XP when the opponent is lower level than you

 $levelDiff > 0 => $rawXp - floor($loserLevel * 0.20),

 // You get extra XP when the opponent is higher level than you

 $levelDiff < 0 => $rawXp + floor($loserLevel * 0.20),

 };

 }

 private function getXpForNextLvl(int $currentLvl): int

 {

 $baseXp = 100;

 $xpNeededForCurrentLvl = $this-

>fibonacciProgressionFormula($baseXp, $currentLvl);

 $xpNeededForNextLvl = $this->fibonacciProgressionFormula($baseXp,

$currentLvl + 1);

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

It takes the Character that won, the enemy's level, and it figures out how much XP it should

award to the winner. Then, if they're eligible to level up, it levels-up that character.

Over in XpEarnedObserver , we can use that. Create a constructor so that we can autowire in

a private readonly (readonly just to be super trendy)

XpCalculator $xpCalculator :

src/Observer/XpEarnedObserver.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

 // ... lines 14 - 21

22

Below, let's set the $winner to a variable - $fightResult->getWinner() - and $loser

to $fightResult->getLoser() . Finally, say $this->xpCalculator->addXp() and

pass $winner and $loser->getLevel() :

 // Since the character holds the total amount of XP earned we need

to include

 // the XP needed for the current level.

 return $xpNeededForCurrentLvl + $xpNeededForNextLvl;

 }

 private function fibonacciProgressionFormula(int $baseXp, int

$currentLvl): int

 {

 $currentLvl--;

 if ($currentLvl === 0) {

 return 0;

 }

 return $baseXp * ($currentLvl-1) + ($baseXp * ($currentLvl));

 }

}

use App\Service\XpCalculator;

class XpEarnedObserver implements GameObserverInterface

{

 public function __construct(

 private readonly XpCalculator $xpCalculator

) {

 }

}

src/Observer/XpEarnedObserver.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 14

15

16

17

18

19

20

21

22

Connecting the Subject & Observer

Beautiful! The subject and observer are now done. The final step is to instantiate the observer

and make it subscribe to the subject: GameApplication . We're going to do this manually

inside of GameCommand .

Open up src/Command/GameCommand.php , and find execute() , which is where we're

currently initializing all of the code inside our app. In a few minutes, we'll see a more Symfony

way of connecting all of this. For right now, say

$xpObserver = new XpEarnedObserver() ... and pass that a new XpCalculator()

service so it's happy. Then, we can say $this->game (which is the GameApplication)

->subscribe($xpObserver) :

class XpEarnedObserver implements GameObserverInterface

{

 public function onFightFinished(FightResult $fightResult): void

 {

 $winner = $fightResult->getWinner();

 $loser = $fightResult->getLoser();

 $this->xpCalculator->addXp($winner, $loser->getLevel());

 }

}

src/Command/GameCommand.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 16

17

18

 // ... lines 19 - 25

26

27

28

29

30

31

 // ... lines 32 - 47

48

 // ... lines 49 - 103

104

So we're subscribing the observer before we actually run our app down here.

This means... we're ready! But, just to make it a bit more obvious if this is working, head back to

Character and add one more function here called getXp() , which will return int via

return $this->xp :

src/Character/Character.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 89

90

91

92

93

 // ... lines 94 - 102

103

This will allow us, inside of GameCommand ... if you scroll down a bit to printResults() ...

here we go... to add a few things like $io->writeIn('XP: ' . $player->getXp()) ...

and the same thing for Final Level , with $player->getLevel() :

use App\Observer\XpEarnedObserver;

use App\Service\XpCalculator;

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $xpObserver = new XpEarnedObserver(

 new XpCalculator()

);

 $this->game->subscribe($xpObserver);

 }

}

class Character

{

 public function getXp(): int

 {

 return $this->xp;

 }

}

src/Command/GameCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 78

79

80

 // ... lines 81 - 99

100

101

102

 // ... lines 103 - 104

105

106

Ok team - testing time! Spin over, run

./bin/console app:game:play

and let's play as the fighter , because that's still one of the toughest characters. And...

awesome! Because we won, we received 30 XP. We're still Level 1, so let's fight a few more

times. Aw... we lost, so no XP. Now we have 60 XP... 90 XP... woo! We leveled up! It says

Final Level: 2 . It's working!

What's great about this is that GameApplication doesn't need to know or care about the XP

and the leveling up logic. It just notifies its subscribers and they can do whatever they want.

Next, let's see how we could wire all of this up using Symfony's container. We'll also talk about

the benefits of this pattern and what parts of SOLID it helps with.

class GameCommand extends Command

{

 private function printResult(FightResult $fightResult, Character

$player, SymfonyStyle $io)

 {

 $io->writeln('Damage received: ' . $fightResult-

>getDamageReceived());

 $io->writeln('XP: ' . $player->getXp());

 $io->writeln('Final Level: ' . $player->getLevel());

 }

}

Chapter 9: Observer Inside Symfony + Benefits

We've implemented the Observer Pattern! The GameApplication is our subject, which

notifies all of the observers... and we have one at the moment: XpEarnedObserver . Inside

GameCommand , we connected all of this by manually instantiating the observer and

XpCalculator ... then calling $this->game->subscribe() :

src/Command/GameCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 25

26

27

28

29

30

31

 // ... lines 32 - 47

48

 // ... lines 49 - 105

106

But... that isn't very Symfony-like.

Both XpEarnedObserver and XpCalculator are services. So we would normally autowire

them from the container, not instantiate them manually. We are autowiring

GameApplication ... but our overall situation isn't quite right. In a perfect world, by the time

Symfony gives us this GameApplication , Symfony's container would have already hooked

up all of its observers so that it's ready to use immediately. How can we do that? Let's do it the

simple way first.

Manually Specifying the Services

Remove all of the manual code inside of GameCommand :

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $xpObserver = new XpEarnedObserver(

 new XpCalculator()

);

 $this->game->subscribe($xpObserver);

 }

}

src/Command/GameCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 25

26

27

28

29

30

31

 // ... lines 32 - 47

48

 // ... lines 49 - 105

106

We're going to recreate this same setup... but inside services.yaml . Open that... and at the

bottom, we need to modify the service App\GameApplication . But we don't need to

configure any arguments. In this case, we need to configure some calls . Here, I'm basically

telling Symfony:

“Yo! After you instantiate GameApplication , call the subscribe() method on it and

pass, as an argument, the @App\Observer\XpEarnedObserver service.”

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

27

28

So when we autowire GameApplication , Symfony will go grab the XpEarnedObserver

service and that service will, of course, get XpCalculator autowired into it. This is pretty

normal autowiring: the only special part is that Symfony will now call the subscribe() method

on GameApplication before it passes that object to GameCommand .

In other words, this should work. Let's give it a try! Run:

./bin/console app:game:play

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $xpObserver = new XpEarnedObserver(

 new XpCalculator()

);

 $this->game->subscribe($xpObserver);

 }

}

services:

 App\GameApplication:

 calls:

 - subscribe: ['@App\Observer\XpEarnedObserver']

There are no errors so far and... oh. We lost. Bad luck. Let's try again! We won and we received

30 XP. It's working!

Setting up Autoconfiguration

The downside to this solution is that every time we add a new observer, we'll need to go to

services.yaml and wire it manually. Gasp, how undignified...

Could we automatically subscribe all services that implement GameObserverInterface?

Why, yes! And what an excellent idea! We can do that in two steps.

First, open src/Kernel.php . This isn't a file we work with much, but we're about to do some

deeper things with the container and so this is exactly where we want to be. Go to Code

Generate or Command+O and select "Override Methods". We're going to override one called

build() :

src/Kernel.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 17

18

19

Perfect! The parent method is empty, so we don't need to call it at all. Instead, say

$container->registerForAutoconfiguration() , pass it

GameObserverInterface::class , and then say ->addTag() . I'm going to invent a new

tag here called game.observer :

use Symfony\Component\DependencyInjection\ContainerBuilder;

class Kernel extends BaseKernel

{

 protected function build(ContainerBuilder $container)

 {

 }

}

src/Kernel.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 13

14

15

16

17

18

19

This probably isn't something you see very often (or ever) in your code, but it's really common in

third-party bundles. This says that any service that implements GameObserverInterface

should automatically be given this game.observer tag... assuming that service has

autoconfigure enabled, which all of our services do.

That tag name could be any string... and it doesn't do anything at the moment: it's just a random

string that's now attached to our service.

But we should, at least, be able to see it. Spin over and run:

./bin/console debug:container xpearnedobserver

It found our service! And check it out: Tags - game.observer .

Ok, now that our service has a tag, we're going to write a little more code that automatically

calls the subscribe method on GameApplication for every service with that tag. This is

also going to go in Kernel , but in a different method. In this case, we're going to implement

something called a "compiler pass".

Add a new interface called CompilerPassInterface . Then, below, go back to "Code

Generate", "Implement Methods", and select process() :

class Kernel extends BaseKernel

{

 protected function build(ContainerBuilder $container)

 {

 $container-

>registerForAutoconfiguration(GameObserverInterface::class)

 ->addTag('game.observer');

 }

}

src/Kernel.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

 // ... lines 14 - 21

22

23

 // ... lines 24 - 28

29

30

Compiler passes are a bit more advanced, but super cool! It's a piece of code that runs at the

very end of the container and services being built... and you can do whatever you want inside.

Check it out! Say

$definition = $container->findDefinition(GameApplication::class) :

src/Kernel.php

 // ... lines 1 - 4

5

 // ... lines 6 - 11

12

13

 // ... lines 14 - 21

22

23

24

 // ... lines 25 - 28

29

30

No, this does not return the GameApplication object. It returns a Definition object that

knows everything about how to instantiate a GameApplication , like its class, constructor

arguments, and any calls it might have on it.

Next, say

$taggedObservers = $container->findTaggedServiceIds('game.observer') :

use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 }

}

use App\Observer\GameObserverInterface;

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 $definition = $container->findDefinition(GameApplication::class);

 }

}

src/Kernel.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

24

25

 // ... lines 26 - 28

29

30

This will return an array of all the services that have the game.observer tag. Then we can

loop over them with foreach ($taggedObservers as $id => $tags) . The $id is the

service id... and $tags is an array because you can technically put the same tag on a service

multiple times... but that's not something we care about:

src/Kernel.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

24

25

26

 // ... line 27

28

29

30

Now say $definition->addMethodCall() , which is the PHP version of calls in YAML.

Pass this the subscribe method and, for the arguments, a new Reference() (the one from

DependencyInjection), with id :

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 $definition = $container->findDefinition(GameApplication::class);

 $taggedObservers = $container-

>findTaggedServiceIds('game.observer');

 }

}

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 $definition = $container->findDefinition(GameApplication::class);

 $taggedObservers = $container-

>findTaggedServiceIds('game.observer');

 foreach ($taggedObservers as $id => $tags) {

 }

 }

}

src/Kernel.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

13

 // ... lines 14 - 21

22

23

24

25

26

27

28

29

30

This is a fancy way of saying that we want the subscribe() method to be called on

GameApplication ... and for it to pass the service that holds the game.observer tag.

The end result is the same as what we had before in services.yaml ... just more dynamic

and better for impressing your programmer friends. So, remove all of the YAML code we added:

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

27

28

If we try our game again...

./bin/console app:game:play

No errors! And... yes! It still works! If we need to add another observer later, we can just create

a class, make it implement GameObserverInterface and... done! It will automatically be

subscribed to GameApplication .

use Symfony\Component\DependencyInjection\Reference;

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 $definition = $container->findDefinition(GameApplication::class);

 $taggedObservers = $container-

>findTaggedServiceIds('game.observer');

 foreach ($taggedObservers as $id => $tags) {

 $definition->addMethodCall('subscribe', [new Reference($id)]);

 }

 }

}

services:

 App\GameApplication:

 calls:

 - subscribe: ['@App\Observer\XpEarnedObserver']

Observer Pattern in the Wild

So that is the observer pattern. How it looks can differ, with different method names for

subscribing. Heck, sometimes the observers are passed in through the constructor! But the idea

is always the same: a central object loops over and calls a method on a collection of other

objects when something happens.

Where do we see this in the wild? It shows up in a lot of places, but here's one example. Over

on Symfony's GitHub page, I'm going to hit "T" and search for a class called

LocaleSwitcher . If you need to do something in your application each time the locale

switches, you can register your code with the LocaleSwitcher and it will call you. In this

case, the observers are passed through the constructor. And then you can see down here, after

the locale is set, it loops over all of those and calls setLocale() . So LocaleSwitcher is

the subject, and these are the observers.

How do you register an observer? Not surprisingly, it's by creating a class that implements

LocaleAwareInterface . Thanks to autoconfiguration, Symfony will automatically tag your

service with kernel.locale_aware . Yup, it uses the same mechanism for hooking all of this

up that we just used!

Benefits of the Observer Pattern

The benefits of the observer pattern are actually best described by looking at the SOLID

principles. This pattern helps the Single Responsibility pattern because you can encapsulate (or

isolate) code into smaller classes. Instead of putting everything into GameApplication , like

all of our XP logic right here, we were able to isolate things in XpEarnedObserver and keep

both classes more focused. This pattern also helps with the Open-closed Principle, because we

can now extend the behavior of GameApplication without modifying its code.

The observer pattern also follows the Dependency Inversion Principle or DIP, which is one of

the trickier principles if you ask me. Anyways, DIP is happy because the high-level class -

GameApplication - accepts an interface - GameObserverInterface - and that interface

was designed for the purpose of how GameApplication will use it. From GameApplication's

perspective, this interface represents something that wants to "observe" what happens when

something occurs within the game. Namely, the fight finishing. And so,

GameObserverInterface is a good name.

But, if we had named it based on how the observers will use the interface, that would have

made DIP sad. For example, had we called it XpChangerInterface and the method

timeToChangeTheXp , that would be a violation of the Dependency Inversion Principle. If

that's fuzzy and you want to know more, check out our SOLID tutorial.

Next, let's quickly turn to the brother pattern of observer: Pub/sub.

Chapter 10: Publish-Subscriber (PubSub)

The next pattern I want to talk about maybe isn't its own pattern? In reality, it's more of a

variation of the observer pattern. It's called "pub/sub" or "publish-subscribe".

PubSub vs Observer

The key difference between observer and pub/sub is simply who handles notifying the

observers. With the observer pattern, it's the subject - the thing (like GameApplication) that

does the work. With pub/sub, there's a third object - usually called a "publisher" - whose only job

is to handle this kind of stuff. Except, instead of calling it a "publisher", I'm going to use a word

that's probably more familiar to you: event dispatcher.

With pub/sub, the observers (also called "listeners") tell the dispatcher which events they want

to listen to. Then, the subject (whatever is doing the work) tells the dispatcher to dispatch the

event. The dispatcher is then responsible for calling the listener methods.

You could argue that pub/sub better follows the Single Responsibility pattern. Battling

characters and also registering and calling the observers are two separate responsibilities that

we've jammed into GameApplication .

Creating the Event

So here's the new goal: add the ability to run code before a battle starts by using pub/sub.

Step one is to create an event class. This will be the object that is passed as an argument to all

of the listener methods. Its purpose is pretty much identical to the FightResult that we're

passing to our observers: it holds whatever data might be useful to a listener.

With the pub/sub pattern, it's customary to create an event class just for the event system. So

inside of src/ , I'm going to create a new Event/ directory. Then a new PHP class. You can

call it whatever you want, but for this tutorial, let's call it FightStartingEvent :

src/Event/FightStartingEvent.php

 // ... lines 1 - 2

3

4

5

6

7

This class doesn't need to look like or extend anything... and we'll talk more about it in a minute.

Dispatching the Event

Step two is to dispatch this event inside of GameApplication . Instead of writing our own

event dispatcher, we're going to use Symfony's. Let me break the constructor onto multiple

lines... and then add a new private EventDispatcherInterface $eventDispatcher :

src/GameApplication.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 17

18

19

20

21

22

23

 // ... lines 24 - 141

142

Down in play() , right at the top, say $this->eventDispatcher->dispatch() passing

new FightStartingEvent() :

namespace App\Event;

class FightStartingEvent

{

}

use Symfony\Contracts\EventDispatcher\EventDispatcherInterface;

class GameApplication

{

 public function __construct(

 private CharacterBuilderFactory $characterBuilderFactory,

 private EventDispatcherInterface $eventDispatcher,

)

 {

 }

}

src/GameApplication.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 24

25

26

27

 // ... lines 28 - 52

53

 // ... lines 54 - 141

142

That's it! That's enough for the dispatcher to notify all of the code that is listening to the

FightStartingEvent . Of course... at the moment, nothing is listening!

Registering Listeners... Manually

So finally, let's register a listener to this event. Open GameCommand : the place where we're

initializing our app. We'll see how to do all of this properly with Symfony's container in a minute,

but I want to keep it simple to start. In the constructor, add

private readonly EventDispatcherInterface $eventDispatcher :

src/Command/GameCommand.php

 // ... lines 1 - 13

14

 // ... lines 15 - 16

17

18

19

 // ... line 20

21

22

23

 // ... line 24

25

 // ... lines 26 - 104

105

I know, I am being a little inconsistent between when I use readonly and not. Technically, I

could use readonly on all of the constructor arguments... it's just not something I care about

use App\Event\FightStartingEvent;

class GameApplication

{

 public function play(Character $player, Character $ai): FightResult

 {

 $this->eventDispatcher->dispatch(new FightStartingEvent());

 }

}

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

class GameCommand extends Command

{

 public function __construct(

 private readonly EventDispatcherInterface $eventDispatcher,

)

 {

 }

}

all that much. It does look cool though.

Choosing the Correct EventDispatcherInterface

Down here, anywhere before our app actually starts, say $this->eventDispatcher-> .

Notice that the only method this has is dispatch() . I made a... tiny mistake. Let's back up. In

GameApplication , when I autowired EventDispatcherInterface , I chose the one from

Psr\EventDispatcher\EventDispatcherInterface , which contains the dispatch()

method we need. So that's great.

Inside of GameCommand , we autowired that same interface. But if you want the ability to attach

listeners at run time, you need to autowire EventDispatcherInterface from

Symfony\Component\EventDispatcher instead of Psr :

src/Command/GameCommand.php

 // ... lines 1 - 13

14

 // ... lines 15 - 106

The one from Symfony extends the one from Psr :

In reality, regardless of which interface you use, Symfony will always pass us the same object.

That object does have a method on it called addListener() . So even if I had used the Psr

interface, this method would have existed... it just would have looked funny inside of my editor.

Anyways, the first argument of this is the name of the event, which is going to match the class

name that we're dispatching. So we can say FightStartingEvent::class . And then, to

keep it simple, I'm going to be lazy and pass an inline function() . I'll also use ($io) ... so

that inside I can say $io->note('Fight is starting...') :

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

src/Command/GameCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 26

27

28

 // ... line 29

30

31

32

 // ... lines 33 - 46

47

 // ... lines 48 - 104

105

And... done! We're dispatching the event inside of GameApplication ... and since we've

registered the listener here, it should be called!

Let's try it! At your terminal, say:

php ./bin/console app:game:play

We'll choose our character and... got it - [NOTE] Fight is starting... . If we battle

again... we get the same message. Awesome!

Next, let's make this more powerful by passing information to our listener, like who is about to

battle. Plus, we'll see how the event listener system is used in a real Symfony app by leveraging

the container to wire everything up.

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $this->eventDispatcher->addListener(FightStartingEvent::class,

function() use ($io) {

 $io->note('Fight is starting...');

 });

 }

}

Chapter 11: Pub Sub Event Class & Subscribers in
Symfony

We are able to run code right before a battle starts by registering what's called a "listener" to

FightStartingEvent . As you can see, a listener can be any function... though what we see

here is a bit less common. Usually a listener will be a method inside a class. And we'll refactor

to that in a few minutes.

Passing Data to Listeners

But before we do, it might be useful to have a little bit more info in our listener function, like who

is about to battle. That's the job of this event class. It can carry whatever data we want. For

example, create a public function __construct() with two properties... which I'm going

to make public for simplicity: $player and $ai :

src/Event/FightStartingEvent.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

Cool! Over in GameApplication , we need to pass those in: $player and $ai :

use App\Character\Character;

class FightStartingEvent

{

 public function __construct(public Character $player, public Character

$ai)

 {

 }

}

src/GameApplication.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 24

25

26

27

 // ... lines 28 - 52

53

 // ... lines 54 - 141

142

Back over in our listener, this function will be passed a FightStartingEvent object. In fact,

it was always being passed... it just wasn't useful before. Now we can say

Fight is starting against , followed by $event->ai->getNickname() :

src/Command/GameCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 26

27

28

 // ... line 29

30

31

32

 // ... lines 33 - 46

47

 // ... lines 48 - 104

105

Super nice. Give it a try! I'll run the command again and... sweet! We see

“! [NOTE] Fight is starting against AI: Mage”

The only thing I missed is the space after "against" so it looks nicer. I'll fix that really quick:

class GameApplication

{

 public function play(Character $player, Character $ai): FightResult

 {

 $this->eventDispatcher->dispatch(new FightStartingEvent($player,

$ai));

 }

}

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $this->eventDispatcher->addListener(FightStartingEvent::class,

function(FightStartingEvent $event) use ($io) {

 $io->note('Fight is starting against ' . $event->ai-

>getNickname());

 });

 }

}

src/Command/GameCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 26

27

28

 // ... line 29

30

31

32

 // ... lines 33 - 46

47

 // ... lines 48 - 104

105

Allowing Listeners to Control Behavior

As I mentioned, you can really put whatever data you want inside FightStartingEvent .

Heck, you could create a public $shouldBattle = true property if you wanted. Then, in

a listener, you could say $event->shouldBattle = false ... maybe because the

characters have used communication and honesty to solve their problems. Brave move!

Anyways, in GameApplication , you could then set this event to a new $event object,

dispatch it, and if they shouldn't battle, just return . Or you could

return new FightResult() or throw an exception. Either way, you see the point. Your

listeners can, in a sense, communicate back to the central object to control its behavior.

I'll undo all of that inside of GameApplication , FightStartingEvent and also

GameCommand .

Creating an Event Subscriber

As easy as this inline listener is, it's more common to create a separate class for your listener.

You can either create a listener class, which is basically a class that has this code here as a

public function, or you can create a class called a subscriber. Both are completely valid ways to

use the pub/sub pattern. The only difference is how you register a listener versus a subscriber,

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $this->eventDispatcher->addListener(FightStartingEvent::class,

function(FightStartingEvent $event) use ($io) {

 $io->note('Fight is starting against ' . $event->ai-

>getNickname());

 });

 }

}

which is pretty minor, and you'll see that in a minute. Let's refactor to a subscriber because

they're easier to set up in Symfony.

In the Event/ directory, create a new PHP class called... how about...

OutputFightStartingSubscriber , since this subscriber is going to output that a battle is

beginning:

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 24

25

Event listeners don't need to extend any base class or implement any interface, but event

subscribers do. They need to implement EventSubscriberInterface :

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 24

25

Go to "Code" -> "Generate" or Command+N on a Mac and select "Implement methods" to

generate getSubscribedEvents() :

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 23

24

25

Nice! With an event subscriber, you'll list which events you subscribe to right inside this class.

So we'll say FightStartingEvent::class => 'onFightStart' :

namespace App\Event;

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

}

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

}

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents(): array

 {

 }

}

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

22

23

24

25

This says:

“When the FightStartingEvent happens, I want you to call the onFightStart()

method right inside this class!”

Create that: public function onFightStart() ... which will receive a

FightStartingEvent argument:

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 24

25

For the guts of this, go over to GameCommand and steal the $io line:

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents(): array

 {

 return [

 FightStartingEvent::class => 'onFightStart',

];

 }

}

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

 public function onFightStart(FightStartingEvent $event)

 {

 }

}

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 15

16

17

 // ... lines 18 - 24

25

By the way, the $io object is kind of hard to pass from console commands into other parts of

your code... so I'm going to ignore that complexity here and just create a new one with

$io = new SymfonyStyle(new ArrayInput([]), new ConsoleOutput() :

src/Event/OutputFightStartingSubscriber.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 9

10

11

12

13

14

15

16

17

 // ... lines 18 - 24

25

Now that we have a subscriber, back in GameCommand , let's hook that up! Instead of

addListener() , say addSubscriber() , and inside of that,

new OutputFightStartingSubscriber() :

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

 public function onFightStart(FightStartingEvent $event)

 {

 $io->note('Fight is starting against ' . $event->ai-

>getNickname());

 }

}

use Symfony\Component\Console\Input\ArrayInput;

use Symfony\Component\Console\Output\ConsoleOutput;

use Symfony\Component\Console\Style\SymfonyStyle;

class OutputFightStartingSubscriber implements EventSubscriberInterface

{

 public function onFightStart(FightStartingEvent $event)

 {

 $io = new SymfonyStyle(new ArrayInput([]), new ConsoleOutput());

 $io->note('Fight is starting against ' . $event->ai-

>getNickname());

 }

}

src/Command/GameCommand.php

 // ... lines 1 - 5

6

 // ... lines 7 - 16

17

18

 // ... lines 19 - 26

27

28

 // ... line 29

30

 // ... lines 31 - 44

45

 // ... lines 46 - 102

103

Easy! Testing time! I'll exit, choose my character and... wow! It's working so well, it's outputting

twice. We're amazing!

But... seriously, why is it printing twice? This is, once again, thanks to auto-configuration!

Whenever you create a class that implements EventSubscriberInterface , Symfony's

container is already taking that and registering it on the EventDispatcher . In other words,

Symfony, internally, is already calling this line right here. So, we can delete it!

src/Command/GameCommand.php

 // ... lines 1 - 29

30

 // ... lines 31 - 104

I guess that answers the question of:

“How do we use the pub/sub pattern in Symfony?”

Just create a class, make it implement EventSubscriberInterface and... done! Symfony

will automatically register it. To dispatch an event, create a new event class and dispatch that

event anywhere in your code.

If we try this again (I'll exit the battle first)... it only outputs once. Great!

use App\Event\OutputFightStartingSubscriber;

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $this->eventDispatcher->addSubscriber(new

OutputFightStartingSubscriber());

 }

}

 $this->eventDispatcher->addSubscriber(new

OutputFightStartingSubscriber());

And... what are the benefits of pub/sub? They're really the same as the observer, though, in

practice, pub/sub is a bit more common... probably because Symfony already has this great

event dispatcher. Half of the work is already done for us!

Next, let's dive into our final pattern! It's one of my favorites and, I think, the most powerful in

Symfony: The decorator pattern.

Chapter 12: The Decorator Pattern

One more design pattern to go! And honestly, I think we may have saved the best for last. It's

the decorator pattern. This pattern is a structural pattern, so it's all about how you organize and

connect related classes. That will make more sense as we uncover it.

Definition

Here's the technical definition:

“The decorator pattern allows you to attach new behaviors to objects by placing these objects

inside special wrapper objects that contain the behaviors.”

Yeah... Let's try this definition instead:

“The decorator pattern is like an intentional man-in-the-middle attack. You replace a class

with your custom implementation, run some code, then call the true method.”

Before we get any deeper and nerdier, let's see it in action.

The Goal

Here's the goal: I want to print something onto the screen whenever a player levels up. The

logic for leveling up lives inside of XpCalculator :

src/Service/XpCalculator.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

 // ... lines 20 - 57

58

But instead of changing the code in this class, we're going to apply the decorator pattern, which

will allow us to run code before or after this logic... without actually changing the code inside.

This is a particularly common pattern to leverage if the class you want to modify is a vendor

service that... you can't actually change. And especially if that class doesn't give us any other

way to hook into it, like by implementing the observer or strategy patterns.

Adding the Interface to Support Decoration

For the decorator pattern to work, there's just one rule: the class that we want to decorate

(meaning the class we want to extend or modify - XpCalculator in our case) needs to

implement an interface. You'll see why in a few minutes. If XpCalculator were a vendor

package, we... would just have to hope they did a good job and made it implement an interface.

But since this is our code, we can add one. In the Service/ directory, create a new class... but

change it to an interface. Let's call it XpCalculatorInterface . Then, I'll go steal the method

signature for addXp() , paste that here, add a use statement and a semicolon:

class XpCalculator

{

 public function addXp(Character $winner, int $enemyLevel): void

 {

 $xpEarned = $this->calculateXpEarned($winner->getLevel(),

$enemyLevel);

 $totalXp = $winner->addXp($xpEarned);

 $xpForNextLvl = $this->getXpForNextLvl($winner->getLevel());

 if ($totalXp >= $xpForNextLvl) {

 $winner->levelUp();

 }

 }

}

src/Service/XpCalculatorInterface.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

Easy enough!

Over in XpCalculator , implement XpCalculatorInterface :

src/Service/XpCalculator.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 57

58

And finally, open up XpEarnedObserver . This is the one place in our code that uses

XpCalculator . Change this to allow any XpCalculatorInterface :

src/Observer/XpEarnedObserver.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

 // ... lines 14 - 21

22

This shows us why a class must implement an interface to support decoration. Because the

classes that use our XpCalculator can now type-hint an interface instead of the concrete

class, we're going to be able to swap out the true XpCalculator for our own class, known as

the decorator. Let's create that class now!

namespace App\Service;

use App\Character\Character;

interface XpCalculatorInterface

{

 public function addXp(Character $winner, int $enemyLevel): void;

}

class XpCalculator implements XpCalculatorInterface

{

}

use App\Service\XpCalculatorInterface;

class XpEarnedObserver implements GameObserverInterface

{

 public function __construct(

 private readonly XpCalculatorInterface $xpCalculator

) {

 }

}

Creating the Decorator

In the src/Service/ directory, add a new PHP class and call it, how about,

OutputtingXpCalculator , since it's an XpCalculator that will output things to the

screen:

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 11

12

The most important thing about the decorator class is that it must call all of the real methods on

the real service. Yup, we're literally going to pass the real XpCalculator into this one so we

can call methods on it.

Create a public function __construct() and accept a

private readonly XpCalculatorInterface called, how about, $innerCalculator .

Our OutputtingXpCalculator also needs to implement XpCalculatorInterface so

that it can be passed into things like our observer:

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... line 11

12

Go to "Code"->"Generate" and select "Implement methods" to generate addXp() . I'll add the

missing use statement and:

namespace App\Service;

class OutputtingXpCalculator implements XpCalculatorInterface

{

}

class OutputtingXpCalculator implements XpCalculatorInterface

{

 public function __construct(

 private readonly XpCalculatorInterface $innerCalculator

)

 {

}

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 14

15

16

 // ... line 17

18

19

Perfect!

As I mentioned, the most important thing the decorator must always do is call that inner service

in all of the public interface methods. In other words, say

$this->addXp($winner, $enemyLevel) ... oh I mean

$this->innerCalculator->addXp() :

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 14

15

16

17

18

19

A Chain of Decorators

Much better! With decorators, you create a chain of objects. In this case, we have two: the

OutputtingXpCalculator will call into the true XpCalculator . One of the benefits of

decorators is that you could have as many as you want: we could decorate our decorator to

create three classes! We'll see this later!

Adding Custom Logic

use App\Character\Character;

class OutputtingXpCalculator implements XpCalculatorInterface

{

 public function addXp(Character $winner, int $enemyLevel): void

 {

 }

}

class OutputtingXpCalculator implements XpCalculatorInterface

{

 public function addXp(Character $winner, int $enemyLevel): void

 {

 $this->innerCalculator->addXp($winner, $enemyLevel);

 }

}

Anyways, down here, we now have the ability to run code before or after we call the inner

service. So before, say $beforeLevel = $winner->getLevel() to store the initial level.

Then, below, $afterLevel = $winner->getLevel() . Finally,

if ($afterLevel > $beforeLevel) , we know that we just leveled up!

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

22

23

 // ... lines 24 - 28

29

30

31

And that calls for a celebration... like printing some stuff! I'll say

$output = new ConsoleOutput() ... which is just a cheap way to write to the console, and

then I'll paste in a few lines to output a nice message:

class OutputtingXpCalculator implements XpCalculatorInterface

{

 public function addXp(Character $winner, int $enemyLevel): void

 {

 $beforeLevel = $winner->getLevel();

 $this->innerCalculator->addXp($winner, $enemyLevel);

 $afterLevel = $winner->getLevel();

 if ($afterLevel > $beforeLevel) {

 }

 }

}

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Swapping in the Decorated Class into your App

Ok, our decorator class is done! But... how do we hook this up? What we need to do is replace

all instances of XpCalculator in our system with our new OutputtingXpCalculator .

Let's do this manually first, without Symfony's fancy container stuff. There's only one place in

our code that uses XpCalculator : XpEarnedObserver . Open up src/Kernel.php and

temporarily comment-out the "subscribe" magic that we added earlier:

class OutputtingXpCalculator implements XpCalculatorInterface

{

 public function addXp(Character $winner, int $enemyLevel): void

 {

 $beforeLevel = $winner->getLevel();

 $this->innerCalculator->addXp($winner, $enemyLevel);

 $afterLevel = $winner->getLevel();

 if ($afterLevel > $beforeLevel) {

 $output = new ConsoleOutput();

 $output->writeln('--------------------------------');

 $output->writeln('<bg=green;fg=white>Congratulations! You\'ve

leveled up!</>');

 $output->writeln(sprintf('You are now level "%d"', $winner-

>getLevel()));

 $output->writeln('--------------------------------');

 }

 }

}

src/Kernel.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

 // ... lines 24 - 25

26

27

28

29

30

I'm doing this because, for the moment, I want to manually instantiate XpEarnedObserver

and manually subscribe it in GameApplication ... just so we can see how decoration works.

Over in src/Command/GameCommand.php , let's put back our manual observer pattern setup

logic from earlier: $xpCalculator = new XpCalculator() and then

$this->game->subscribe(new XpEarnedObserver() passing $xpCalculator :

src/Command/GameCommand.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 16

17

18

 // ... lines 19 - 25

26

27

28

29

 // ... lines 30 - 45

46

 // ... lines 47 - 103

104

We're not using the decorator yet... but this should be enough to keep our app working like

before. When we try the command:

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 foreach ($taggedObservers as $id => $tags) {

// $definition->addMethodCall('subscribe', [new

Reference($id)]);

 }

 }

}

use App\Observer\XpEarnedObserver;

use App\Service\XpCalculator;

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $xpCalculator = new XpCalculator();

 $this->game->subscribe(new XpEarnedObserver($xpCalculator));

 }

}

php ./bin/console app:game:play

We win! And we got some XP, which means XpEarnedObserver is doing its job.

So how do we use the decorator? By sneakily replacing the real XpCalculator with the fake

one. Say $xpCalculator = new OutputtingXpCalculator() , and pass it the original

$xpCalculator :

src/Command/GameCommand.php

 // ... lines 1 - 8

9

 // ... lines 10 - 17

18

19

 // ... lines 20 - 26

27

28

29

30

31

 // ... lines 32 - 47

48

 // ... lines 49 - 105

106

That's it! Suddenly, even though it has no idea, XpEarnedObserver is being passed our

decorator service! I told you it was sneaky!

So let's start over. Run the game again and battle a few times. The new decorator should print a

special message the moment that we level up. I'll fight one more time and... got it! We're now

level two. It works!

If you're wondering why the message printed before the battle actually started... that "might" be

because these brave battle icons are... really just fancy decoration: technically the battle

finishes before those show up.

Okay, we have successfully created a decorator class. Awesome! But how could we replace the

XpCalculator service with the decorator via Symfony's container? Let's find out one way

next. Then we'll do something even cooler with decoration after.

use App\Service\OutputtingXpCalculator;

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $xpCalculator = new XpCalculator();

 $xpCalculator = new OutputtingXpCalculator($xpCalculator);

 $this->game->subscribe(new XpEarnedObserver($xpCalculator));

 }

}

Chapter 13: Decoration with Symfony's Container

We just implemented the decorator pattern, where we basically wrapped the original

XpCalculator in a warm hug with our OutputtingXpCalculator . Then... we quietly

slipped that into the system in place of the original... without anyone else - like

XpEarnedObserver - knowing or caring that we did that:

src/Command/GameCommand.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 26

27

28

29

30

31

 // ... lines 32 - 47

48

 // ... lines 49 - 105

106

But to set up the decoration, I'm instantiating the objects manually, which is not very realistic in

a Symfony app. What we really want is for XpEarnedObserver to autowire

XpCalculatorInterface like normal, without us needing to do any of this manual

instantiation. But we need the container to pass it our OutputtingXpCalculator decorator

service, not the original XpCalculator . How can we accomplish that? How can we tell the

container that whenever someone type-hints XpCalculatorInterface , it should pass our

decorator service?

To answer that, let's start by undoing our manual code: In both GameCommand ... and then

Kernel ... put back the fancy code that attaches the observer to GameApplication :

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $xpCalculator = new XpCalculator();

 $xpCalculator = new OutputtingXpCalculator($xpCalculator);

 $this->game->subscribe(new XpEarnedObserver($xpCalculator));

 }

}

src/Command/GameCommand.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 23

24

25

26

27

28

 // ... lines 29 - 40

41

 // ... lines 42 - 98

99

src/Kernel.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 21

22

23

 // ... lines 24 - 25

26

27

28

29

30

If we try the command now:

php ./bin/console app:game:play

It fails:

“Cannot autowire service XpEarnedObserver : argument $xpCalculator references

interface XpCalculatorInterface but no such service exists. You should maybe alias

this interface to one of these existing services: OutputtingXpCalculator or

XpCalculator .”

class GameCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $io->text('Welcome to the game where warriors fight against each

other for honor and glory... and 🍕!');

 }

}

class Kernel extends BaseKernel implements CompilerPassInterface

{

 public function process(ContainerBuilder $container)

 {

 foreach ($taggedObservers as $id => $tags) {

 $definition->addMethodCall('subscribe', [new Reference($id)]);

 }

 }

}

Manually Wiring up the Service Decoration: Alias

That's a great error... and it makes sense. Inside of our observer, we're type-hinting the interface

instead of a concrete class. And, unless we do a little more work, Symfony doesn't know which

XpCalculatorInterface service to pass us. How do we tell it? By creating a service alias.

In config/services.yaml , say App\Service\XpCalculatorInterface set to

@App\Service\OutputtingXpCalculator :

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

This creates a service whose id is App\Service\XpCalculatorInterface ... but it's really

just a "pointer", or "alias" to the OutputtingXpCalculator service. And remember, during

autowiring, when Symfony sees an argument type-hinted with XpCalculatorInterface , to

figure out which service to pass, it simply looks in the container for a service whose id matches

that, so App\Service\XpCalculatorInterface . And now, it finds one!

So, let's try it again.

php ./bin/console app:game:play

And... it still doesn't work. We're on a roll!

“Circular reference detected for service OutputtingXpCalculator , path:

OutputtingXpCalculator -> OutputtingXpCalculator ”

Oh! Symfony is autowiring OutputtingXpCalculator into XpEarnedObserver ... but it's

also autowiring OutputtingXpCalculator into itself:

services:

 App\Service\XpCalculatorInterface:

'@App\Service\OutputtingXpCalculator'

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 30

31

Whoops! We want OutputtingXpCalculator to be used everywhere in the system that

autowires XpCalculatorInterface ... except for itself.

To accomplish that, back in services.yaml , we can manually configure the service. Down

here, add App\Service\OutputtingXpCalculator with arguments ,

$innerCalculator (that's the name of our argument) set to

@App\Service\XpCalculator :

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 27

28

29

30

This will override the argument for just this one case. And now...

php ./bin/console app:game:play

It work? I mean, of course it works! If we play a few rounds and fast forward... yes! There's the

"you've leveled up" message! It did go through our decorator!

This way of wiring the decorator is not our final solution. But before we get there, I have an even

bigger challenge: let's completely replace a core Symfony service with our own via decoration.

That's next!

class OutputtingXpCalculator implements XpCalculatorInterface

{

 public function __construct(

 private readonly XpCalculatorInterface $innerCalculator

)

 {

 }

}

services:

 App\Service\OutputtingXpCalculator:

 arguments:

 $innerCalculator: '@App\Service\XpCalculator'

Chapter 14: Decoration: Override Core Services &
AsDecorator

In Symfony, decoration has a secret super-power: it allows us to customize nearly any service

inside of Symfony. Woh.

For example, imagine that there's a core Symfony service and we need to extend its behavior

with our own. How could we do that? Well, we could subclass the core service... and

reconfigure things so that Symfony's container uses our class instead of the core one. That

might work... but this is where decoration shines.

So, as a challenge, let's extend the behavior of Symfony's core EventDispatcher service so

that whenever an event is dispatched, we dump a debugging message.

Investigating the Event Dispatcher

The ID of the service that we want to decorate is event_dispatcher

php ./bin/console debug:container event_dispatcher

And, fortunately, this class does implement an interface. Over on GitHub... on the

symfony/symfony repository, hit t and open EventDispatcher.php .

And... yup! This implements EventDispatcherInterface . Decoration will work!

Creating the Decorator Class

Let's go make our decorator class. I'll create a new Decorator/ directory... and inside, a new

PHP class called... how about DebugEventDispatcherDecorator .

Step one, is always to implement the interface: EventDispatcherInterface ... though this

is a little tricky because there are three of them! There's Psr , which is the smallest... one from

Contract , and this one from Component . The one from Component extends the one from

Contract ... which extends the one from Psr .

Which do we want? The "biggest" one: the one from Symfony\Component :

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 12

13

The reason is that, if our EventDispatcher decorator is going to be passed around the

system in place of the real one, it needs to implement the strongest interface: the interface that

has the most methods on it.

Go to "Code"->"Generate" - or Command+N on a Mac - and select "Implement methods" to add

the bunch we needed. Whew... there we go!

namespace App\Decorator;

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

}

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 14

15

16

 // ... line 17

18

19

20

21

 // ... line 22

23

24

25

26

 // ... line 27

28

29

30

31

 // ... line 32

33

34

35

36

 // ... line 37

38

39

40

41

 // ... line 42

43

44

45

46

 // ... line 47

48

49

50

51

 // ... line 52

53

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

 public function dispatch(object $event, string $eventName = null):

object

 {

 }

 public function addListener(string $eventName, $listener, int

$priority = 0)

 {

 }

 public function addSubscriber(EventSubscriberInterface $subscriber)

 {

 }

 public function removeListener(string $eventName, $listener)

 {

 }

 public function removeSubscriber(EventSubscriberInterface $subscriber)

 {

 }

 public function getListeners(string $eventName = null): array

 {

 }

 public function getListenerPriority(string $eventName, $listener): ?

int

 {

 }

 public function hasListeners(string $eventName = null): bool

 {

 }

54

The other thing we need to do is add a constructor where the inner

EventDispatcherInterface will be passed to us... and make that a property with

private readonly :

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 7

8

9

10

11

12

13

 // ... lines 14 - 53

54

Now that we have this, we need to call the inner dispatcher in all of these methods. This part is

simple.... but boring. Say

$this->eventDispatcher->addListener($eventName, $listener, $priority) :

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 19

20

21

22

23

 // ... lines 24 - 53

54

We also need to check whether or not the method should return a value. We don't need to

return in this method... but there are methods down here that do have return values, like

getListeners() .

To avoid spending the next 3 minutes repeating what I just did 8 more times and putting you to

sleep... bam! I'll just paste in the finished version:

}

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

 public function __construct(

 private readonly EventDispatcherInterface $eventDispatcher

) {

 }

}

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

 public function addListener(string $eventName, $listener, int

$priority = 0)

 {

 $this->eventDispatcher->addListener($eventName, $listener,

$priority);

 }

}

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

 public function dispatch(object $event, string $eventName = null):

object

 {

 return $this->eventDispatcher->dispatch($event, $eventName);

 }

 public function addListener(string $eventName, $listener, int

$priority = 0)

 {

 $this->eventDispatcher->addListener($eventName, $listener,

$priority);

 }

 public function addSubscriber(EventSubscriberInterface $subscriber)

 {

 $this->eventDispatcher->addSubscriber($subscriber);

 }

 public function removeListener(string $eventName, $listener)

 {

 $this->eventDispatcher->removeListener($eventName, $listener);

 }

 public function removeSubscriber(EventSubscriberInterface $subscriber)

 {

 $this->eventDispatcher->removeSubscriber($subscriber);

 }

 public function getListeners(string $eventName = null): array

 {

 return $this->eventDispatcher->getListeners($eventName);

 }

 public function getListenerPriority(string $eventName, $listener): ?

int

 {

 return $this->eventDispatcher->getListenerPriority($eventName,

$listener);

 }

 public function hasListeners(string $eventName = null): bool

 {

52

53

54

You can copy this from the code block on this page. We're simply calling the inner dispatcher in

every method.

Finally, now that our decorator is doing all the things it must do, we can add our custom stuff.

Right before the inner dispatch() method is called, I'll paste in two dump() lines and also

dump Dispatching event , $event::class :

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 14

15

16

17

18

19

20

21

22

 // ... lines 23 - 57

58

AsDecorator: Making Symfony use OUR Service

Ok! Our decorator class is done! But, there are many places in Symfony that rely on the service

whose ID is event_dispatcher . So here's the million dollar question: how can we replace

that service with our own service... but still get the original event dispatcher passed to us?

Whelp, Symfony has a feature built specifically for this and you're going to love it! Go to the top

of our decorator class, add a PHP 8 attribute called: #[AsDecorator()] and pass the ID of

the service that we want to decorate: event_dispatcher :

 return $this->eventDispatcher->hasListeners($eventName);

 }

}

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

 public function dispatch(object $event, string $eventName = null):

object

 {

 dump('--------------------');

 dump('Dispatching event: ' . $event::class);

 dump('--------------------');

 return $this->eventDispatcher->dispatch($event, $eventName);

 }

}

src/Decorator/DebugEventDispatcherDecorator.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

 // ... lines 12 - 59

60

That's it. Seriously! This says:

“Hey Symfony! Thanks for being so cool! Also, please make me the real

event_dispatcher service, but still autowire the original event_dispatcher service

into me.”

Let's try it! Run our app:

php ./bin/console app:game:play

And... it works! Look! You can see the event being dumped out! And there's our custom event

too. And when I exit... another event at the bottom! We just replaced the core

event_dispatcher service with our own by creating a single class. That's bananas!

Using AsDecorator with OutputtingXpCalculator

Could we have used this AsDecorator trick earlier for our own XpCalculator decoration

situation? Yep! Here's how: In config/services.yaml , remove the manual arguments:

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 27

28

29

30

And change the interface to point to the original, undecorated service: XpCalculator :

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator('event_dispatcher')]

class DebugEventDispatcherDecorator implements EventDispatcherInterface

{

}

services:

 App\Service\OutputtingXpCalculator:

 arguments:

 $innerCalculator: '@App\Service\XpCalculator'

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

Basically, in the service config, we want to set things up the "normal" way, as if there were no

decorators.

If we tried our app now, it would work, but it wouldn't be using our decorator. But now, go into

OutputtingXpCalculator add #[AsDecorator()] and pass it

XpCalculatorInterface::class , since that's the ID of the service we want to replace:

src/Service/OutputtingXpCalculator.php

 // ... lines 1 - 6

7

8

9

10

11

 // ... lines 12 - 32

33

Donezo! If we try this now:

php ./bin/console app:game:play

No errors. An even faster way to prove this is working is by running:

php ./bin/console debug:container XpCalculatorInterface --show-arguments

And... check it out! It says that this is an alias for the service OutputtingXpCalculator . So

anyone that's autowiring this interface will actually get the OutputtingXpCalculator

service. And if you look down here at the arguments, the first argument passed to

OutputtingXpCalculator is the real XpCalculator . That's amazing!

Multiple Decoration

services:

 App\Service\XpCalculatorInterface: '@App\Service\XpCalculator'

use Symfony\Component\DependencyInjection\Attribute\AsDecorator;

#[AsDecorator(XpCalculatorInterface::class)]

class OutputtingXpCalculator implements XpCalculatorInterface

{

}

All right, the decorator pattern is done. What a cool pattern! One feature of the decorator pattern

that we only mentioned is that you can decorate a service as many times as you want. Yep! If

we created another class that implemented XpCalculatorInterface and gave it this

#AsDecorator() attribute, there would now be two services decorating it. Which service

would be on the outside? If you care enough, you could set a priority option on one of the

attributes to control that.

Decoration in the Wild?

Where do we see decoration in the wild? The answer to that is... sort of all over! In API Platform,

it's common to use decoration to extend core services like the ContextBuilder . And

Symfony itself uses decoration pretty commonly to add debugging features while we're in the

dev environment. For example, we know that this EventDispatcher class would be used in

the prod environment. But in the dev environment - I'll hit t to search for a

"TraceableEventDispatcher" - assuming that you have some debugging tools installed, this is

the actual class that represents the event_dispatcher service. It decorates the real one!

I can prove it. Head back to your terminal and run:

php ./bin/console debug:container event_dispatcher --show-arguments

Scroll to the top and... check it out! The event_dispatcher service is an alias to

debug.event_dispatcher ... whose class is TraceableEventDispatcher ! And if you

scroll down to its arguments, ha! It's passed our DebugEventDispatcherDecorator as an

argument. Yup, there are 3 event dispatchers in this case: Symfony's core

TraceableEventDispatcher is on the outside, it calls into our

DebugEventDispatcherDecorator ... and then that ultimately calls the real event

dispatcher. Inception!

Problems Solved by Decorator

And what problems does the decorator pattern solve? Simple: it allows us to extend the

behavior of an existing class - like XpCalculator - even if that class does not contain any

other extension points. This means we can use it to override vendor services when all else fails.

The only downside to the decorator pattern is that we can only run code before or after the core

method. And the service we want to decorate must implement an interface.

Okay, team. We're done! There are many more patterns out there in the wild: this was a

collection of some of our favorites. If we skipped one or several that you really want to hear

about, let us know! Until then, see if you can spot these patterns in the wild and figure out where

you can apply them to clean up your own code... and impress your friends.

Thanks for coding with me, and I'll see you next time!

With <3 from SymfonyCasts

