
Doctrine, Symfony 6 & the
Database

Chapter 1: Installing Doctrine

Welcome back team to episode three of our Symfony 6 series! The first two courses were super

important: taking us from the basics up through the core of how everything works in Symfony: all

that good "services" & configuration stuff. You are now ready to use any other part of Symfony

and really start building out a site.

And... what better way to do that than to add a database? Because... so far, for all the cool things

we've done, the site we've been building is 100% static. Boring! Time to change that.

Hello Doctrine

So we know that Symfony is a collection of a lot of libraries for solving a ton of different problems.

So... does Symfony have some tools to help us talk to the database? The answer is... no!

Because... it doesn't have to!

Why? Enter Doctrine: the most powerful library in the PHP world for working with databases. And

Symfony and Doctrine work great together: they're the Frodo and Sam Gamgee of PHP middle

earth: the Han Solo and Chewbacca of the PHP Rebel Alliance. Symfony & Doctrine are like two

Disney characters that finish each other's sandwiches!

Project Setup

To see this dynamic duo in action, let's get our project set up. Playing with databases is fun, so

code along with me! Do that by downloading the course code from this page. After unzipping it,

you'll find a start/ directory with the same code that you see here. Pop open this README.MD

file for all the setup instructions.

The last step will be to open a terminal, move into your project and run:

symfony serve -d

This uses the Symfony binary to start a local web server which lives at https://127.0.0.1:8000. I'll

take the lazy way out and click that to see... Mixed Vinyl! Our latest startup idea - and I swear, this

one is going to be huge - combines the nostalgia for the "mix tapes" of the 80's and 90's with the

audio experience of vinyl records. You craft your sweet mix tapes, then we press them onto a

vinyl record for a full hipster audio experience.

So far, our site has a homepage and a page to browse mixes that other people created. Though,

that page isn't really dynamic: it pulls from a GitHub repository... and unless you've configured an

API key like we did in the last episode, this page is broken! That's the first thing we'll fix: by

querying a databasse for the mixes.

Installing Doctrine

So let's get Doctrine installed! Find your terminal and run:

composer require "doctrine:^2.2" "doctrine/annotations:^1.14"

This is, of course, a Flex alias for a library called symfony/orm-pack . And remember: a "pack"

is a, sort of, "fake library" that serves as a shortcut to install several packages at once. In this

case, we're installing Doctrine itself, but also a few other relataed libraries, like the excellent

Doctrine Migrations system.

Docker Configuration

Oh, and check this out! The command is asking:

“Do you want to include Docker configuration from recipes?”

So, occasionally when you install a package, that package's recipe will contain Docker

configuration that can, for example, start a database container. This is totally optional, but I'm

going to say p for yes permanently. We'll talk more about the Docker configuration in a few

minutes.

The Doctrine Recipes

https://127.0.0.1:8000/

But right now, let's check out what the recipe did. Run:

git status

Okay cool: this modified the normal files like composer.json , composer.lock and

symfony.lock ... and it also modified config/bundles.php . If you check that out... no

surprise: our app now has two new bundles: DoctrineBundle and DoctrineMigrationsBundle.

config/bundles.php

 // ... lines 1 - 2

3

 // ... lines 4 - 13

14

15

16

But probably the most important part of the recipe is the change it made to our .env file.

Remember: this is where we can configure environment variables... and the recipe gave us a new

one called DATABASE_URL . This, as you can see, holds all the connection details, like the

username and password.

.env

 // ... lines 1 - 27

28

 // ... lines 29 - 30

What uses this environment variable? Excellent question! Check out a new file the recipe gave

us: config/packages/doctrine.yaml . Most of this config you won't need to think about or

change. But notice this url key: it reads that DATABASE_URL environment variable!

config/packages/doctrine.yaml

1

2

3

 // ... lines 4 - 43

The point is: the DATABASE_URL env var is the key to setting up your app to talk to a database...

and we'll play with it in a few minutes.

return [

 Doctrine\Bundle\DoctrineBundle\DoctrineBundle::class => ['all' =>

true],

 Doctrine\Bundle\MigrationsBundle\DoctrineMigrationsBundle::class =>

['all' => true],

];

DATABASE_URL="postgresql://symfony:ChangeMe@127.0.0.1:5432/app?

serverVersion=13&charset=utf8"

doctrine:

 dbal:

 url: '%env(resolve:DATABASE_URL)%'

The recipe also added a few new directories: migrations/ src/Entity/ and

src/Repository/ . Right now, other than a meaningless .gitignore file, these are all

empty. We'll start filling them up real soon.

Ok: Doctrine is now installed. But to talk to a database... we need to make sure we have a

database running and that the DATABASE_URL environment variable is pointing to it. Let's do that

next, but with an optional & delightful twist: we're going to use Docker to start the database.

Chapter 2: docker-compose & Exposed Ports

We need to get a database running: MySQL, Postgresql, whatever. If you already have one

running, awesome! All you need to do is copy your DATABASE_URL environment variable, open

or create a .env.local file, paste, then change it to match whatever your local setup is using. If

you decide to do this, feel free to skip ahead to the end of chapter 4 where we configure the

server_version .

Docker Just for the Database

For me, I do not have a database running locally on my system... and I'm not going to install one.

Instead, I want to use Docker. And, we're going to use Docker in an interesting way. I do have

PHP installed locally:

php -v

So I won't use Docker to create a container specifically for PHP. Instead I'm going to use Docker

simply to help boot up any services my app needs locally. And right now, I need a database

service. Thanks to some magic between Docker and the Symfony binary, this is going to be super

easy.

To start, remember when the Doctrine recipe asked us if we wanted Docker configuration?

Because we said yes, the recipe gave us docker-compose.yml and

docker-compose.override.yml files. When Docker boots, it will read both of these... and

they're split into two pieces just in case you want to also use Docker to deploy to production. But

we're not going to worry about that: we just want to use Docker to make life easier for local

development.

docker-compose.yml

1

2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 22

docker-compose.override.yml

1

2

3

4

5

6

7

 // ... lines 8 - 9

These files say that they will boot a single Postgres database container with a user called

symfony and password ChangeMe :

 Tip

The username changed from symfony to app in the newest recipe version.

It will also expose port 5432 of the container - that's Postgres's normal port - to our host machine

on a random port. This means that we're going to be able to talk to the Postgresql Docker

container as if it were running on our local machine... as long as we know the random port that

Docker chose. We'll see how that works in a minute.

By the way, if you want to use MySQL instead of Postgres, you absolutely can. Feel free to

update these files... or delete both of them and run:

php bin/console make:docker:database

version: '3'

services:

###> doctrine/doctrine-bundle ###

 database:

 image: postgres:${POSTGRES_VERSION:-13}-alpine

 environment:

 POSTGRES_DB: ${POSTGRES_DB:-app}

 # You should definitely change the password in production

 POSTGRES_PASSWORD: ${POSTGRES_PASSWORD:-ChangeMe}

 POSTGRES_USER: ${POSTGRES_USER:-symfony}

 volumes:

 - db-data:/var/lib/postgresql/data:rw

version: '3'

services:

###> doctrine/doctrine-bundle ###

 database:

 ports:

 - "5432"

to generate a new compose file for MySQL or MariaDB. I'm going to stick with Postgres because

it's awesome.

At this point, we're going to start Docker and learn a bit about how to communicate with the

database that lives inside. If you're pretty comfortable with Docker, feel free to skip to the next

chapter.

Starting the Container

Anyways, let's get our container running. First, make sure you have Docker actually installed on

your machine: I won't show that because it varies by operating system. Then, find your terminal

and run:

docker-compose up -d

The -d means "run in the background as a daemon". The first time you run this, it'll probably

download a bunch of stuff. But eventually, our container should start!

Communicating with the Container

Cool! But now what? How can we talk to the container? Run a command called:

docker-compose ps

This shows info about all the containers currently running... just one for us. The really important

thing is that port 5432 in the container is connected to port 50700 on my host machine. This

means that if we talk to this port, we will actually be talking to that Postgres database. Oh, and

this port is random: it'll be different on your machine... and it'll even change each time we stop

and start our container. More on that soon.

But now that we know about port 50700, we can use that to connect to the database. For

example, because I'm using Postgres, I could run:

psql --user=symfony --port=50700 --host=127.0.0.1 --password app

That means: connect to Postgres at 127.0.0.1 port 50700 using user symfony and talking to the

app database. All of this is configured in the docker-compose.yml file. Copy the ChangeMe

password because that last flag tells Postgres to ask for that password. Paste and... we're in!

If you're using MySQL, we can do this same thing with a mysql command.

But, this only works if we have that psql command installed on our local machine. So let's try a

different command. Run:

docker-compose ps

again. The container is called database , which comes from our docker-compose.yml file.

So we can change the previous command to:

docker-compose exec database psql --username symfony --password app

This time, we're executing the psql command inside the container, so we don't need to install it

locally. Type ChangeMe for the password and... we're back in!

The point is: just by running docker-compose up , we have a Postgres database container that

we can talk to!

Stopping the Container

Btw, when you're ready to stop the container later, you can run:

docker-compose stop

That basically turns the container off. Or you can run the more common:

docker-compose down

which turns off the containers and removes them. To start back up, it's the same:

docker-compose up -d

But notice that when we run docker-compose ps again, the port on my host machine is a

different random port! So, in theory, we could configure the DATABASE_URL variable to point to

our Postgres database, including using the correct port. But that random port that keeps changing

is going to be annoying!

Fortunately, there's a trick for this! It turns our, our app is already configured, without us doing

anything! That's next.

Chapter 3: Docker & Environment Variables

We now have a Postgres database running inside of a Docker container. We can see it by

running:

docker-compose ps

This also tells us that if we want to talk to this database, we can connect to port 50739 on our

local machine. That will be a different port for you, because it's randomly chosen when we start

Docker.

We also learned that we can talk to the database directly via:

docker-compose exec database psql --user symfony --password app

To get our actual application to point to the database that's running on this port, we could go into

.env or .env.local and customize DATABASE_URL accordingly: with user symfony

password ChangeMe ... and with whatever your port currently is. Though... we would need to

update that port each time we start and stop Docker.

Symfony Binary & Docker Env Vars

Thankfully, we don't need to do any of that because, surprise, the DATABASE_URL environment

variable is already being correctly set! When we set up our project, we started a local dev server

using the Symfony binary.

Just as a reminder, I'm going to run:

symfony server:stop

to stop that server. And then restart it with:

symfony serve -d

I'm mentioning this because the symfony binary has a pretty awesome Docker superpower.

Watch: when you refresh now... and hover over the bottom right corner of the web debug toolbar,

it says "Env Vars: From Docker".

In short, the Symfony binary noticed that Docker was running and exposed some new

environment variables pointing to the database! I'll show you. Open up public/index.php .

public/index.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

We don't normally care about this file... but it's a great spot to dump some info right when our app

starts booting. Inside the callback, dd() the $_SERVER superglobal. That variable contains a lot

of information, including any environment variables.

 Tip

If you don't see the DATABASE_URL environment variable, you may be using a slightly older

version of Docker of the symfony binary. If so, you can upgrade those or rename

compose.yaml to docker-compose.yaml and compose.override.yaml to

docker-compose.override.yaml .

Ok, spin over and refresh. Big list! Search for DATABASE_URL and... there it is! But that is not the

value that we have in our .env file: the port is not what we have there. Nope, it's the correct port

needed to talk to the Docker container!

Yup, the Symfony binary detects that Docker is running and sets a real DATABASE_URL

environment variable that points to that container. And remember, since this is a real environment

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

return function (array $context) {

 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

};

variable, it will win over any value placed in the .env or .env.local files.

The point is: just by starting Docker, everything is already set up: we didn't need to touch any

config files. That's pretty cool.

By the way, if you want to see all the environment variables the Symfony binary is setting, you

can run:

symfony var:export --multiline

But the most important one by far is DATABASE_URL .

Ok: Doctrine is configured! Next, let's create the database itself via a bin/console command.

When we do that, we'll learn a trick for doing this with the environment variables from the

Symfony binary.

Chapter 4: The "symfony console" Command &
server_version

Doctrine is now configured to talk to our database, which lives inside a Docker container. That's

thanks to the fact that the Symfony dev server exposes this DATABASE_URL environment

variable, which points to the container. For me, the container is accessible on port 50739.

Now let's make sure the actual database has been created. But first, in index.php , remove the

dd() ... then close that file.

Spin over to your terminal and run:

php bin/console

This prints every bin/console command that's available including a bunch of new ones that

start with the word doctrine . Ooh. Most of these aren't very important and we'll walk through

the ones that are along the way.

bin/console doctrine:database:create

For example, one is called doctrine:database:create . Cool, let's try it:

php bin/console doctrine:database:create

And... error! Look closely: it's trying to connect to port 5432. But our environment variable is

pointing to port 50739! It's as if it's using the DATABASE_URL value from our .env file instead of

the real one that's set by the Symfony binary.

And, in fact, that's exactly what's happening. And, it makes sense! When we refresh the page in

our browser, that's processed through the symfony binary, which gives it the opportunity to add

the environment variable.

But when we run a bin/console command - where console is just a PHP file that lives in a

bin/ directory, the symfony binary is never used as part of that process. This means it never

has the opportunity to add the environment variable. And so, Symfony falls back to using the

value from .env .

To fix this, whenever we run a bin/console command that needs the Docker environment

variables, instead of running bin/console , run symfony console :

symfony console doctrine:database:create

That's literally a shortcut to running bin/console : it's no different. But the fact that we're

executing it through the symfony binary gives it the opportunity to add the environment

variables.

When we try this... yes! We do get an error because apparently the database already exists, but it

did successfully connect and talk to the database.

Configuring the server_version

Ok, there's one last bit of configuration that we need to set. Open

config/packages/doctrine.yaml . This file came from the recipe. Find server_version

and un-comment it.

config/packages/doctrine.yaml

1

2

 // ... lines 3 - 6

7

 // ... lines 8 - 43

This value "13" is referring to the version of my database engine. Since I'm using Postgres

version 13, I need 13 here. If you're using MySQL, you might need 8 or 5.7.

This helps Doctrine determine which features your database does or doesn't support... since a

newer version of a database might support features that an older version doesn't. It's not a

particularly interesting piece of configuration, we just need to make sure it's set.

doctrine:

 dbal:

 server_version: '13'

Ok team: all the boring setup is done. Next: let's create our first entity class! Entities are the most

foundational concept in Doctrine and the key to talking to our first database table.

Chapter 5: Entity Class

One of the coolest, but maybe most surprising things about Doctrine, is that it wants you to

pretend like the database doesn't exist! Yea, instead of thinking about tables and columns,

Doctrine wants us to think about objects and properties.

For example, let's say that we want to save some product data. The way we do that with Doctrine

is by creating a Product class with properties that hold the data. Then you instantiate a

Product object, set data onto it and politely ask Doctrine to save it for you. We don't have to

worry about how Doctrine does that.

But, of course, behind the scenes Doctrine is talking to a database. It will INSERT the data from

the Product object into a product table where each property is mapped to a column. This is

called an Object Relational Mapper, or ORM.

Later, when we want to get that data back, we don't think about "querying" that table and its

columns. Nope, we simply ask Doctrine to find the object that we had earlier. Of course, it will

query the table... then recreate the object with the data. But that's not a detail we think about: we

ask for the Product object, and it gives it to us. Doctrine handles all of the saving and querying

automatically.

Generating the Entity with make:entity

Anyways, when we use an ORM like Doctrine, if we want to save something to the database, we

need to create a class that models the thing we want to save, like a Product class. In Doctrine,

these classes are given a special name: entities. Though, they're really just normal PHP classes.

And while you can create these entity classes by hand, there's a MakerBundle command that

makes life much nicer.

Spin over to your terminal and run:

php bin/console make:entity

In this case, we don't have to run symfony console make:entity because this command

will not talk to the database: it just generates code. But, if you're ever not sure, using

symfony console is always safe.

Okay, we want to create a class to store all of the vinyl mixes in our system. So let's create a new

class called VinylMix . Then answer no for broadcasting entity updates: that's an extra feature

related to Symfony Turbo.

Ok, here's the important part: it asks which properties we want. We're going to add several. Start

with one called title . Next it asks which type this field is. Hit ? to see the full list.

These are Doctrine types... and each one will map to a different column type in your database,

depending on which database you're using, like MySQL or Postgres. The basic types are on top

like string , text - which can hold more than a string) - boolean , integer and float .

Then relationship fields - we'll talk about those in the next tutorial - some special fields, like

storing JSON and date fields.

For title , use string , which can hold up to 255 characters. I'll keep the default length... then

it asks us if the field can be null in the database. I'll answer no . This means that the column

cannot be null. In other words, the column will be required in the database.

And... one field done! Let's add a few more. We need a description , and make this a text

type. string maxes out at 255 characters, text can hold a ton more. This time, I'll say yes to

making it nullable. So this will be an optional column in the database. Another one down!

For the next property, call it trackCount . It will be an integer and will be not null. Then add

genre , as a string , length 255... and also not null so that it's required in the database.

Finally, add a createdAt field so we can know when each vinyl mix was originally created. This

time, because the field name ends in "At", the command suggests a datetime_immutable

type. Hit "enter" to use that, and also make this not null in the database.

We don't need to add any more properties right now so hit "enter" one more time to exit the

command.

Done! What did this do? Well first, I can tell you that this did not talk to or change our database at

all. Nope, it simply generated two classes. The first is src/Entity/VinylMix.php . The

second is src/Repository/VinylMixRepository.php . Ignore the Repository one for

now... we'll talk about its purpose in a few minutes.

src/Entity/VinylMix.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

 // ... lines 48 - 95

96

Checking out the Entity Class & Attributes

Go open up the VinylMix.php entity. Say hello to... a... wow, pretty normal, boring PHP class!

It generated a private property for each field we added, plus an extra id property. The

command also added a getter and setter method for each of these. So... this is basically just a

class that holds data... and we can access and set that data via the getter and setter methods

The only thing that makes this class special are the attributes. The ORM\Entity above the class

tells Doctrine:

#[ORM\Entity(repositoryClass: VinylMixRepository::class)]

class VinylMix

{

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column()]

 private ?int $id = null;

 #[ORM\Column(length: 255)]

 private ?string $title = null;

 #[ORM\Column(type: Types::TEXT, nullable: true)]

 private ?string $description = null;

 public function getId(): ?int

 {

 return $this->id;

 }

 public function getTitle(): ?string

 {

 return $this->title;

 }

 public function setTitle(string $title): self

 {

 $this->title = $title;

 return $this;

 }

}

“Hey! I want to be able to save objects of this class to the database. This is an entity.”

Then, above each property, we use ORM\Column to tell Doctrine that we want to save this

property as a column in the table. This also communicates other options like the length of the

column and whether or not it should be nullable. nullable: false is the default... so the

command only generated nullable: true on the one property that needs it.

The other thing ORM\Column controls is the field type. That's set via this type option. As I

mentioned, this doesn't refer directly to a MySQL or Postgres type... its a Doctrine type that will

then map to something specific based on our database.

Field Type Guessing

But, interesting: the type option only shows up on the $description field. The reason for that

is really cool... and new! Doctrine is smart. It looks at the type on your property and guesses the

field type from that. So when you have a string property type, Doctrine assumes that you want

that to be its string type. You could write Types::STRING inside ORM\Column ... but that

would be totally redundant.

We do need it for the description field, however... because we want to use the TEXT type,

not the STRING type. But in every other situation, it works. Doctrine guesses the correct type

from the ?int property type... and the same thing happens down here for the

?\DateTimeImmutable type.

Table and Column Naming

In addition to controlling things about each column, we can also control the name of the table by

adding an ORM\Table above the class with name set to, for example, vinyl_mix . But,

surprise! We don't need to do that! Why? Because Doctrine is really good at generating great

names. It generates the table name by transforming the class into snake case. So even without

ORM\Table , this will be the name of the table. The same applies to properties. $trackCount

will map to a track_count column. Doctrine handles all of this for us: we don't need to think

about our table or column names at all.

At this point, we've run make:entity and it generated an entity class for us. Yay! But... we don't

actually have a vinyl_mix table in our database yet. How do we create one? With the magic of

database migrations. That's next.

Chapter 6: Migrations

We created an entity class! But... that's it. The corresponding table does not yet exist in our

database.

Let's think. In theory, Doctrine knows about our entity, all of its properties and their ORM\Column

attributes. So... shouldn't Doctrine be able to make that table for us automatically? Yes! It can.

The make:migration Command

When we installed Doctrine earlier, it came with a migrations library that's amazing. Check it out!

Whenever you make a change to your database structure - like adding a new entity class, or even

adding a new property to an existing entity, you should spin over to your terminal and run:

symfony console make:migration

In this case, I'm running symfony console because this is going to talk to our database. Run

that and... perfect! It created one new file in a migrations/ directory with a timestamp for

today's date. Let's go check it out! Find migrations/ and open the new file.

migrations/Version20220718170654.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

This holds a class with up() and down() methods... though I never run migrations in the

"down" direction, so we'll focus only on up() . And... this is great! The migrations command saw

our VinylMix entity, realized that its table was missing in the database, and generated the SQL

needed in Postgres to create it, including all of the columns. That was so easy.

Executing the Migration

Ok... so how do we execute this migration? Back at your terminal, run:

final class Version20220718170654 extends AbstractMigration

{

 public function getDescription(): string

 {

 return '';

 }

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('CREATE SEQUENCE vinyl_mix_id_seq INCREMENT BY 1

MINVALUE 1 START 1');

 $this->addSql('CREATE TABLE vinyl_mix (id INT NOT NULL, title

VARCHAR(255) NOT NULL, description TEXT DEFAULT NULL, track_count INT NOT

NULL, genre VARCHAR(255) NOT NULL, created_at TIMESTAMP(0) WITHOUT TIME

ZONE NOT NULL, PRIMARY KEY(id))');

 $this->addSql('COMMENT ON COLUMN vinyl_mix.created_at IS

\'(DC2Type:datetime_immutable)\'');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('CREATE SCHEMA public');

 $this->addSql('DROP SEQUENCE vinyl_mix_id_seq CASCADE');

 $this->addSql('DROP TABLE vinyl_mix');

 }

}

symfony console doctrine:migrations:migrate

Say y to confirm and... beautiful! It tells us that it's Migrating up to that specific version. It

seems... like that worked! To make sure, you can try another bin/console command:

symfony console doctrine:query:sql with SELECT * FROM vinyl_mix .

symfony console doctrine:query:sql 'SELECT * FROM vinyl_mix'

When we try that... whoops! Pardon my typo... nothing to see here. Try that again and... perfect!

We didn't get an error! It just says that The query yielded an empty result set . If that

table did not exist, like vinyl_foo , Doctrine would have screamed at us.

So, the migration did run!

How Migrations Work

This beautiful system deserves some explanation. Run

symfony console doctrine:migrations:migrate

again. Check it out! It's smart enough to avoid executing that migration a second time! It knows

that it already did that. But... how? Try running a different command:

symfony console doctrine:migrations:status

This gives some general info about the migration system. The most important part is in Storage

where it says Table Name and doctrine_migration_versions .

Here's the deal: the first time we executed the migration, Doctrine created this special table,

which literally stores a list of all of the migration classes that have been executed. Then, each

time we run doctrine:migrations:migrate , it looks in our migrations/ directory, finds

all the classes, checks the database to see which have not already been executed, and only calls

those. Once the new migrations finish, it adds them as rows to the

doctrine_migration_versions table.

You can visualize this table by running:

symfony console doctrine:migrations:list

It sees our one migration and knows it already ran it. It even has the date!

This is cool... but let's push it further. Next, let's add a new property to our entity and generate a

second migration to add the column.

Chapter 7: Adding new Properties

In our VinylMix entity, I forgot to add a property earlier: votes . We're going to keep track of

the number of up votes or down votes that a particular mix has.

Modifying with make:entity

Ok... so how can we add a new property to an entity? Well, we can absolutely do it by hand: all

we need to do is create the property and the getter and setter methods. But, a much easier way is

to head back to our favorite make:entity command:

php bin/console make:entity

This is used to create entities, but we can also use it to update them. Type VinylMix as the

class name and... it sees that it exists! Add a new property: votes ... make it an integer , say

"no" to nullable.. then hit "enter" to finish.

The end result? Our class has a new property... and getter and setter methods below.

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 31

32

33

 // ... lines 34 - 99

100

101

102

103

104

105

106

107

108

109

110

111

Generating a Second Migration

Ok, let's think. We have a vinyl_mix table in the database... but it does not yet have the new

votes column. We need to alter the table to add it. How can we do that? The exact same way as

before: with a migration! At your terminal, run:

symfony console make:migration

Then go check out the new class.

class VinylMix

{

 #[ORM\Column]

 private ?int $votes = null;

 public function getVotes(): ?int

 {

 return $this->votes;

 }

 public function setVotes(int $votes): self

 {

 $this->votes = $votes;

 return $this;

 }

}

migrations/Version20220718170741.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

23

24

 // ... lines 25 - 31

32

This is amazing! Inside the up() method, it says

“ALTER TABLE vinyl_mix ADD votes INT NOT NULL”

So it saw our VinylMix entity, checked out the vinyl_mix table in the database, and

generated a diff between them. It realized that, in order to make the database look like our entity,

it needed to alter the table and add that votes column. That's simply amazing.

Back over at the terminal, if you run

symfony console doctrine:migrations:list

you'll see that it recognizes both migrations and it knows that it has not executed the second one.

To do that, run:

symfony console doctrine:migrations:migrate

Doctrine is smart enough to skip the first and execute the second. Nice!

When you deploy to production, all you need to do is run doctrine:migrations:migrate

each time. It will handle executing any and all migrations that the production database hasn't yet

executed.

final class Version20220718170741 extends AbstractMigration

{

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE vinyl_mix ADD votes INT NOT NULL');

 }

}

Giving Properties Default Values

Ok, one more quick thing while we're here. Inside of VinylMix , the new votes property

defaults to null . But when we create a new VinylMix , it would make a lot of sense to default

the votes to zero. So let's change this to = 0 .

Cool! And if we do that, the property in PHP no longer needs to allow null ... so remove the ? .

Because we're initializing to an integer, this property will always be an int : it will never be null.

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 32

33

 // ... lines 34 - 110

111

But... I wonder... because I made this change, do I need to alter anything in my database? The

answer is no. I can prove it by running a helpful command:

symfony console doctrine:schema:update --dump-sql

This is very similar to the make:migration command... but instead of generating a file with the

SQL, it just prints out the SQL needed to bring your database up to date. In this case, it shows

that our database is already in sync with our entity.

The point is: if we initialize the value of a property in PHP... that's just a PHP change. It doesn't

change the column in the database or give the column a default value, which is totally fine.

Auto-Setting createdAt

Let's initialize one other field: $createdAt . It would be amazing if something automatically set

this property whenever we created a new VinylMix object... instead of us needing to set it

manually.

Whelp, we can do that by creating a good, old-fashioned PHP __construct() method. Inside,

say $this->createdAt = new \DateTimeImmutable() , which will default to right now.

class VinylMix

{

 private int $votes = 0;

}

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 34

35

36

37

38

 // ... lines 39 - 115

116

That's it! And... we don't need the = null anymore since it will be initialized down here... and we

also don't need the ? , because it will always be a DateTimeImmutable object.

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 29

30

 // ... lines 31 - 115

116

Nice! Thanks to this, the $createdAt property will automatically be set every time we instantiate

our object. And that's just a PHP change: it doesn't change the column in the database.

All right, we have a VinylMix entity and the corresponding table. Next, let's instantiate a

VinylMix object and save it to the database.

class VinylMix

{

 public function __construct()

 {

 $this->createdAt = new \DateTimeImmutable();

 }

}

class VinylMix

{

 private \DateTimeImmutable $createdAt;

}

Chapter 8: Persisting to the Database

Now that we have an entity class and corresponding table, we're ready to save some stuff! So...

how do we insert rows into the table? Wrong question! We're only going to focus on creating

objects and saving them. Doctrine will handle the insert queries for us.

To help do this in the simplest way possible, let's make a fake "new Vinyl Mix" page.

In the src/Controller/ directory, create a new MixController class and make this extend

the normal AbstractController . Perfect! Inside, add a public function called new()

that will return a Response from HttpFoundation. To make this a page, above, use the

#[Route] attribute, hit "tab" to autocomplete that and let's call the URL /mix/new . Finally, to

see if this is working, dd('new mix') .

src/Controller/MixController.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

In the real world, this page might render a form. Then, when we submit that form, we would take

its data, create a VinylMix() object and save it. We'll work on stuff like that in a future tutorial.

For now, let's just see if this page works. Head over to /mix/new and... got it!

Ok, let's go create a VinylMix() object! Do that with $mix = new VinylMix() ... and then

we can start setting data on it! Let's create a mix of one of my absolute favorite artists as a kid. I'll

quickly set some other properties... we need to set, at the very least, all of the properties that

have required columns in the database. For trackCount , how about some randomness for fun.

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

class MixController extends AbstractController

{

 #[Route('/mix/new')]

 public function new(): Response

 {

 dd('new mix');

 }

}

And, for votes , the same thing... including negative votes... though the Internet would never be

so cruel as to downvote any of my mixes that much. Finally, dd($mix) .

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 25

So far, this has nothing to do with Doctrine. We're just creating an object and setting data onto it.

This data is hard-coded, but you can imagine replacing this with whatever the user just submitted

via a form. Regardless of where we get the data, when we refresh... we have an object with data

on it. Cool!

Services vs Entities

By the way, our entity class, VinylMix , is the first class we've created that is not a service.

There are generally two types of classes. First, there are service objects, like

TalkToMeCommand or the MixRepository we created in the last tutorial. These objects do

work... but they don't hold any data besides maybe some basic config. And we always fetch

services from the container, usually via autowiring. We never instantiate them directly.

The second type of classes are data classes like VinylMix . The primary job of these classes is

to hold data. They don't usually do any work except maybe some basic data manipulation. And

unlike services, we don't fetch these objects from the container. Instead, we create them manually

wherever and whenever we need them, like we just did!

Hello Entity Manager!

Anyway, now that we have an object, how can we save it? Well, saving something to the

database is work. And so, no surprise, that work is done by a service! Add an argument to the

 public function new(): Response

 {

 $mix = new VinylMix();

 $mix->setTitle('Do you Remember... Phil Collins?!');

 $mix->setDescription('A pure mix of drummers turned singers!');

 $mix->setGenre('pop');

 $mix->setTrackCount(rand(5, 20));

 $mix->setVotes(rand(-50, 50));

 dd($mix);

 }

method, type-hinted with EntityManagerInterface . Let's call it $entityManager .

EntityManagerInterface is, by far, the most important service for Doctrine. We're going to

use it to save, and indirectly when we query. To save, call $entityManager->persist() and

pass it the object that we want to save (in this case, $mix). Then we also need to call

$entityManager->flush() with no arguments.

src/Controller/MixController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 10

11

12

 // ... line 13

14

15

 // ... lines 16 - 22

23

24

 // ... lines 25 - 30

31

32

But... wait. Why do we have to call two methods?

Here's the deal. When we call persist() , that doesn't actually save the object or talk to the

database at all. It just tells Doctrine:

“Hey! I want you to be "aware" of this object, so that later when we call flush() , you'll know

to save it.”

Most of the time, you'll see these two lines together - persist() and then flush() . The

reason it's split into two methods is to help with batch data loading... where you could persist a

hundred $mix objects and then flush them to the database all at once, which is more efficient.

But most of the time, you'll call persist() and then flush() .

Okay, to make this a valid page, let's return new Response() from HttpFoundation and I'll

use sprintf to return a message: mix %d is %d tracks of pure 80\'s heaven ... and

for those two wildcards, pass $mix->getId() and $mix->getTrackCount() .

use Doctrine\ORM\EntityManagerInterface;

class MixController extends AbstractController

{

 public function new(EntityManagerInterface $entityManager): Response

 {

 $entityManager->persist($mix);

 $entityManager->flush();

 }

}

src/Controller/MixController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 25

26

27

28

29

30

31

 // ... lines 32 - 33

Let's try it! Move over, refresh and... yes! We see "Mix 1". That's so cool! We never actually set

the ID (which makes sense). But when we saved, Doctrine grabbed the new ID and put that onto

the id property.

If we refresh a few more times, we get mixes 2, 3, 4, 5, and 6. That's super fun. All we had to do

is persist and flush the object. Doctrine handles all of the querying stuff for us.

Another way we can prove this is working is by running:

symfony console doctrine:query:sql 'SELECT * FROM vinyl_mix'

This time, we do see the results. Awesome!

Okay, now that we have stuff in the database, how do we query for it? Let's tackle that next.

 public function new(EntityManagerInterface $entityManager): Response

 {

 return new Response(sprintf(

 'Mix %d is %d tracks of pure 80\'s heaven',

 $mix->getId(),

 $mix->getTrackCount()

));

 }

Chapter 9: Querying the Database

Now that we've saved some stuff to the database, how can we read or query for it? Once again,

at least for simple stuff, Doctrine doesn't want you to worry about querying. Instead, we just ask

Doctrine for the objects we want.

Head over to src/Controller/VinylController.php and find the browse() action.

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 37

38

39

40

41

42

43

44

45

46

47

48

49

Here, we're loading all of the $mixes in our project... and we're currently doing it via this

MixRepository service class that we created in the last episode. This class talks to a GitHub

repository and reads from a hard-coded text file.

We're going to stop using this MixRepository and instead load these $mixes from the

database.

Querying through the Entity Manager

Ok: to save objects, we leveraged the EntityManagerInterface service, which is the most

important service by far in Doctrine. Whelp, this service can also query for objects. Let's take

class VinylController extends AbstractController

{

 public function browse(string $slug = null): Response

 {

 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) :

null;

 $mixes = $this->mixRepository->findAll();

 return $this->render('vinyl/browse.html.twig', [

 'genre' => $genre,

 'mixes' => $mixes,

]);

 }

}

advantage of that. Add a new argument to browse() , type-hinted with

EntityManagerInterface ... and call it $entityManager .

src/Controller/VinylController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 12

13

14

 // ... lines 15 - 39

40

41

 // ... lines 42 - 51

52

53

Then, below, replace the $mixes line with two lines. Start with

$mixRepository = $entityManager->getRepository() passing this the name of the

class that we want to query from. Yes, we think about querying from an entity class, not a table. In

this case, we want to query from VinylMix::class .

We'll talk more about this repository concept in a minute. Then, to get the mixes themselves, say

$mixes = $mixRepository-> and call one of the methods on it: findAll() .

To see what this gives us, let's dd($mixes) .

src/Controller/VinylController.php

 // ... lines 1 - 39

40

41

 // ... lines 42 - 43

44

45

46

 // ... lines 47 - 51

52

 // ... lines 53 - 54

Ok, testing time! Spin over, head back to the homepage, click "Browse mixes" to hit that action,

and... voila! We get six results! And each of them, most importantly, is a VinylMix object.

use Doctrine\ORM\EntityManagerInterface;

class VinylController extends AbstractController

{

 public function browse(EntityManagerInterface $entityManager, string

$slug = null): Response

 {

 }

}

 public function browse(EntityManagerInterface $entityManager, string

$slug = null): Response

 {

 $mixRepository = $entityManager->getRepository(VinylMix::class);

 $mixes = $mixRepository->findAll();

 dd($mixes);

 }

Behind the scenes, Doctrine did query the table and the columns. But instead of giving us that

raw data, it put it onto objects and gave us those, which is so much nicer.

Working with Objects in Twig

If we remove the dd() ... this array of VinylMix object will be passed into the template, instead

of the array of array data that we had before. But... the page still works. Though, these images

are broken because apparently the service I'm using to load them is down right now. Ah... the joys

of video recording. But that won't stop us!

The fact that all the data still renders without any errors is... actually kind of by luck. When we

render the template - templates/vinyl/browse.html.twig - we loop over all of the

mixes . The template works because the old GitHub repository text file had the same keys (like

title , trackCount , and genre) as our VinylMix class.

templates/vinyl/browse.html.twig

 // ... lines 1 - 28

29

 // ... line 30

31

 // ... line 32

33

34

35

36

37

38

 // ... lines 39 - 40

41

 // ... lines 42 - 46

There is one cool thing happening here, though. When we say mix.genre , mix is now an

object... and this genre property is private. That means we cannot access it directly. But Twig is

smart. It realizes that this is private and looks for a getGenre() method. So in our template, we

say mix.genre , but in reality, it calls the getGenre() method. That's pretty awesome.

Visualizing the Queries for the Page

Know what else is awesome? We can see the queries any page made! Down in the web debug

toolbar, Doctrine gives us a fancy new icon. Oooo. And if we click into that... tah dah! There's one

 {% for mix in mixes %}

 <div class="mixed-vinyl-container p-3 text-center">

 <p class="mt-2">{{ mix.title }}</p>

 {{ mix.trackCount }} Tracks

 |

 {{ mix.genre }}

 |

 {{ mix.createdAt|ago }}

 {% endfor %}

database query... and we can even see what it is. You can also see a formatted version of it...

though I need to refresh the page for this to work... because the Turbo JavaScript library we

installed in the first tutorial doesn't always play nice with this profiler area. Anyways, we can also

see a runnable version of the query or run "Explain" on it.

The "Repository"

All right, back in the controller, even though we can query through the

EntityManagerInterface , we normally query through something called the repository. dd()

this $mixRepository object to get more info about it.

src/Controller/VinylController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 51

52

53

Then go back to the /browse page and... it's an App\Repository\VinylMixRepository

object. Hey! We know that class! It lives in our code, in the src/Repository/ directory. It was

generated by MakerBundle.

Inside the ORM\Entity attribute above our entity class, MakerBundle generated a

repositoryClass option that points to this. Thanks to this config, our entity, VinylMix , is tied

to VinylMixRepository . So when you ask Doctrine to give us the repository for the

VinylMix class, it knows to return the VinylMixRepository object.

The repository for an entity knows everything about how to query for its data. And, without us

doing anything, it already has a bunch of useful methods on it for basic queries, like findAll() ,

findOneBy() and several others. In a bit, we'll learn how to add new methods to the repository

to make custom queries.

Anyway, VinylMixRepository is actually a service in the container... so we can get it more

easily by autowiring it directly. Add a VinylMixRepository $mixRepository argument...

class VinylController extends AbstractController

{

 public function browse(EntityManagerInterface $entityManager, string

$slug = null): Response

 {

 dd($mixRepository);

 }

}

and then we don't need this line at all. That is simpler... and it still works!

src/Controller/VinylController.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 42

43

 // ... lines 44 - 48

49

 // ... lines 50 - 51

The takeaway is this: if you want to query from a table, you'll do that through the repository of the

entity whose data you need.

Next: The fact that we changed our code to load from the database and didn't need to update our

Twig template at all was kind of awesome! And courtesy of some Twig magic. Let's talk more

about that magic and create a virtual property that we can print in the template.

 public function browse(VinylMixRepository $mixRepository, string $slug

= null): Response

 {

 $mixes = $mixRepository->findAll();

 }

Chapter 10: Custom Entity Methods & Twig Magic

Our VinylMix entity has a $votes integer property... but we're not printing that on the page...

just yet. Let's do that. Over in templates/vinyl/browse.html.twig , after createdAt ,

add a line break and print mix.votes ... (which even autocompleted for us)! If we float over and

refresh... nice! We see the votes, which can be positive or negative because, alas, the Internet

can apparently be an unfriendly place!

The Built-in Repository Methods

Right now, we're querying the database and the results are coming back in whatever order the

database wants. Could we order these by the highest votes first? Sure! One option is to write a

custom query inside of VinylMixRepository , which we'll learn about soon. But these

repository classes have several methods that allow us to, at least, do some basic stuff!

For example, we can call findAll() ... or we could call find() and pass it an ID to find a

single VinylMix . And there are others, like findOneBy() or findBy() , where you pass it an

array of criteria to use in a WHERE clause. For example, we could find all mixes WHERE name

equals some value.

But for this situation, leave that criteria empty so it returns everything. Why? Because I want to

leverage the second argument: the "order". Pass an array with 'votes' => 'DESC' .

src/Controller/VinylController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 38

39

40

 // ... lines 41 - 42

43

 // ... lines 44 - 48

49

50

class VinylController extends AbstractController

{

 public function browse(VinylMixRepository $mixRepository, string $slug

= null): Response

 {

 $mixes = $mixRepository->findBy([], ['votes' => 'DESC']);

 }

}

And now... nice! The highest votes are first!

Adding a Custom Entity Method

Ok, so votes can be positive or negative. To make that super obvious, I want to print a plus sign in

front of the positive votes. We could do that by adding some logic in Twig. But remember, we

have this nice entity class! Sure, right now it only has getter and setter methods. But we are

allowed to add our own custom methods. And that's a great way to organize your code.

Check it out: create a new public function called, how about getVotesString() , which will

return a 🥝. I'm kidding, it'll return a string of course. Then calculate the "+" or "-" prefix with

some fancy logic that says:

“If the votes are equal to zero, we want no prefix. If the votes are greater than zero, we want a

plus symbol. Else we want a minus symbol.”

And... let me surround this entire second statement in parenthesis. This is probably the fanciest

line of code I've ever written... which also means it's the most confusing! Feel free to break this

onto multiple lines.

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 116

117

118

119

 // ... lines 120 - 121

122

123

At the bottom, return sprintf() with %s , which will be the prefix, and %d , which will be the

vote count. Pass these in: $prefix then the absolute value of $this->votes ... since we're

adding the negative sign in manually.

class VinylMix

{

 public function getVotesString(): string

 {

 $prefix = ($this->votes === 0) ? '' : (($this->votes >= 0) ? '+' :

'-');

 }

}

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 116

117

118

 // ... lines 119 - 120

121

122

123

We can now use this nice method anywhere in our app... like from inside a template with

mix.getVotesString() . Or shorten this to mix.votesString .

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 28

29

 // ... line 30

31

 // ... lines 32 - 39

40

41

 // ... line 42

43

 // ... lines 44 - 46

47

Twig is smart enough to realize that votesString is not a real property... but that there is a

getVotesString() method. And so, it will call that. Think of this as a virtual property inside of

Twig.

If we fly back over and refresh... awesome! We get the minus and plus signs.

A Second Custom Entity Method!

While we're here, the broken images - caused by the placeholder site I'm using being down -

are... kind of annoying! Time to fix those!

In a real app, we'll probably let our users upload real images... though for now, we'll stick with

dummy images. But either way, we'll probably need the ability to get the URL to a vinyl mix's

class VinylMix

{

 public function getVotesString(): string

 {

 return sprintf('%s %d', $prefix, abs($this->votes));

 }

}

{% block body %}

 {% for mix in mixes %}

 <div class="mixed-vinyl-container p-3 text-center">

 {{ mix.votesString }} votes

 </div>

 {% endfor %}

{% endblock %}

image from multiple places in our code. To make that easy and keep the code centralized, let's

add another entity method!

How about public function getImageUrl() . Give this a $width argument so we can ask

for different sizes. Inside I'll paste in some code that uses a different service for dummy images.

This looks a bit fancy - but I'm just trying to use the id to get a predictable, but random image...

skipping the first 50, which are all nearly identical on this site.

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 123

124

125

126

127

128

129

130

131

132

Anyways, now we have this nice reusable method!

Back in the template... up here is where I have the hardcoded image URL. Replace this with

mix.imageUrl() , but this time, we do need to pass an argument. Pass 300 ... and let's update

the alt attribute as well to Mix album cover .

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 28

29

 // ... lines 30 - 31

32

 // ... lines 33 - 42

43

 // ... lines 44 - 46

47

If we go over and refresh... lovely. Our mixes have images!

class VinylMix

{

 public function getImageUrl(int $width): string

 {

 return sprintf(

 'https://picsum.photos/id/%d/%d',

 ($this->getId() + 50) % 1000, // number between 0 and 1000,

based on the id

 $width

);

 }

}

{% block body %}

 {% for mix in mixes %}

 <img src="{{ mix.getImageUrl(300) }}" alt="Mix album

cover">

 {% endfor %}

{% endblock %}

Cleanup: Deleting the Old Repository

Ok one last tiny cleanup thing. We no longer need this MixRepository service, which loads

mixes from GitHub. Let's delete it so I don't get confused... since its name is so similar to the new

VinylMixRepository . Right click on MixRepository.php , go to "Refactor", and click on

"Safe Delete".

Easy! But... we might still be using that somewhere, right? If you go to your terminal and run:

git grep MixRepository

that'll show you where it's still being mentioned.

Though, Symfony's service container is so smart, it will often tell us if we've messed something

up, like if we're still using a service that doesn't exist. Watch. Try refreshing any page. Yup!

“Cannot autowire service App\Command\TalkToMeCommand : argument $mixRepository

of method __construct() has type App\Service\MixRepository .”

Even though this page doesn't even use the TalkToMeCommand class, it figured out that there's

a problem with it. Open it up: src/Command/TalkToMeCommand.php . Yep! We were using

MixRepository ... so that we could call its findAll() method. Change that to use

VinylMixRepository ... and then we can remove the use statement on top. The

VinylMixRepository still has a findAll() method, so this will still work. This isn't a very

efficient way to find a random mix, but it's good enough for now.

src/Command/TalkToMeCommand.php

 // ... lines 1 - 4

5

 // ... lines 6 - 17

18

19

20

21

22

 // ... lines 23 - 55

56

use App\Repository\VinylMixRepository;

class TalkToMeCommand extends Command

{

 public function __construct(

 private VinylMixRepository $mixRepository

)

}

Ok, close that class and go refresh again. The service container found another problem spot in

VinylController ! Head over there and... up in the constructor... yep! We're autowiring it here

too. But... we're not even using the property anymore, so remove it. Also delete its use statement

and a couple of other use statements that are not being... uh... used anymore more.

src/Controller/VinylController.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 47

48

And now... the site works again!

Next, let's learn how to build custom queries via the query builder!

use App\Repository\VinylMixRepository;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

use function Symfony\Component\String\u;

class VinylController extends AbstractController

{

 public function __construct(

 private bool $isDebug

)

}

Chapter 11: The Query Builder

The /browse page is working... but what if we click on one of these genres? Well... that kind of

works. It shows the name of the genre... but we get a list of all the mixes. What we really want is

to filter these to only show mixes for that specific genre.

Right now, every mix in the database is in the "Pop" genre. Head back to MixController and

find the fake method that creates new mixes so that we can make some more interesting dummy

data. Add a $genres variable with "Pop" and "Rock" included... Then select a random one with

$genres[array_rand($genres)] .

src/Controller/MixController.php

 // ... lines 1 - 10

11

12

 // ... line 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 31

32

33

Cool! Now go to /mix/new and refresh a few times... until we have about 15 mixes. Back on

/browse ... yup! We have a mix of "Rock" and "Pop" genres... they just don't filter yet.

So our mission is clear: customize the database query to only return the results for a specific

genre. Ok, we can actually do that super easily in VinylController via the findBy()

method. The genre is in the URL as the $slug wildcard.

So we could add an "if" statement where, if there is a genre, we return all the results where

genre matches $slug . But this is a great opportunity to learn how to create a custom query. So

let's undo that.

Custom Repository Method

class MixController extends AbstractController

{

 public function new(EntityManagerInterface $entityManager): Response

 {

 $genres = ['pop', 'rock'];

 $mix->setGenre($genres[array_rand($genres)]);

 }

}

The best way to make a custom query, is to create a new method in the repository for whatever

entity you're fetching data for. In this case, that means VinylMixRepository . This holds a few

example methods. Un-comment the first... and then start simple.

src/Repository/VinylMixRepository.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

 // ... lines 56 - 65

66

Call it findAllOrderedByVotes() . We won't worry about the genre quite yet: I just want to

make a query that returns all of the mixes ordered by votes. Remove the argument, this will return

an array and the PHPdoc above helps my editor know that this will be an array of VinylMix

objects

src/Repository/VinylMixRepository.php

 // ... lines 1 - 41

42

43

44

45

46

 // ... lines 47 - 51

52

 // ... lines 53 - 64

DQL and the QueryBuilder

class VinylMixRepository extends ServiceEntityRepository

{

 /**

 * @return VinylMix[] Returns an array of VinylMix objects

 */

 public function findByExampleField($value): array

 {

 return $this->createQueryBuilder('v')

 ->andWhere('v.exampleField = :val')

 ->setParameter('val', $value)

 ->orderBy('v.id', 'ASC')

 ->setMaxResults(10)

 ->getQuery()

 ->getResult()

 ;

 }

}

 /**

 * @return VinylMix[] Returns an array of VinylMix objects

 */

 public function findAllOrderedByVotes(): array

 {

 }

There are a few different ways to execute a custom query in Doctrine. Doctrine, of course,

eventually makes SQL queries. But Doctrine works with MySQL, Postgres and other database

engines... and the SQL needed for each of those looks slightly different.

To handle this, internally, Doctrine has its own query language called Doctrine Query Language or

"DQL", It looks something like:

“SELECT v FROM App\Entity\VinylMix v WHERE v.genre = 'pop';”

You can write these strings by hand, but I leverage Doctrine's "QueryBuilder": a nice object that

helps... ya know... build that query!

Creating the QueryBuilder

To use it, start with $this->createQueryBuilder() and pass an alias that will be used to

identify this class within the query. Make this short, but unique among your entities - something

like mix .

src/Repository/VinylMixRepository.php

 // ... lines 1 - 44

45

46

47

 // ... lines 48 - 51

52

 // ... lines 53 - 64

Because we're calling this from inside of VinylMixRepository , the QueryBuilder already

knows to query from the VinylMix entity... and will use mix as the alias. If we executed this

query builder right now, it would basically be:

“SELECT * FROM vinyl_mix AS mix”

The query builder is loaded with methods to control the query. For example, call ->orderBy()

and pass mix - since that's our alias - .votes then DESC .

 public function findAllOrderedByVotes(): array

 {

 return $this->createQueryBuilder('mix')

 }

src/Repository/VinylMixRepository.php

 // ... lines 1 - 44

45

46

47

48

 // ... lines 49 - 51

52

 // ... lines 53 - 64

Done! Now that our query is built, to execute call ->getQuery() (that turns it into a Query

object) and then ->getResult() .

src/Repository/VinylMixRepository.php

 // ... lines 1 - 44

45

46

47

 // ... line 48

49

50

51

52

 // ... lines 53 - 64

Well actually, there are a number of methods you can call to get the results. The main two are

getResult() - which returns an array of the matching objects - or getOneOrNullResult() ,

which is what you would use if you were querying for one specific VinylMix or null. Because we

want to return an array of matching mixes, use getResult() .

Now we can use this method. Over in VinylController (let me close MixController ...),

instead of findBy() , call findAllOrderedByVotes() .

 public function findAllOrderedByVotes(): array

 {

 return $this->createQueryBuilder('mix')

 ->orderBy('mix.votes', 'DESC')

 }

 public function findAllOrderedByVotes(): array

 {

 return $this->createQueryBuilder('mix')

 ->getQuery()

 ->getResult()

 ;

 }

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 36

37

38

 // ... lines 39 - 40

41

 // ... lines 42 - 46

47

48

I love how clear that method is: it makes it super obvious exactly what we're querying for. And

when we try it... it still works! It's not filtering yet, but the order is correct.

Adding the WHERE Statement

Okay, back to our new method. Add an optional string $genre = null argument. If a genre

is passed, we need to add a "where" statement. To make space for that, break this onto multiple

lines... and replace return with $queryBuilder = . Below, return $queryBuilder with

->getQuery() , and ->getResult() .

src/Repository/VinylMixRepository.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 64

65

Now we can say if ($genre) , and add the "where" statement. How? I bet you could guess:

$queryBuilder->andWhere() .

class VinylController extends AbstractController

{

 public function browse(VinylMixRepository $mixRepository, string $slug

= null): Response

 {

 $mixes = $mixRepository->findAllOrderedByVotes();

 }

}

class VinylMixRepository extends ServiceEntityRepository

{

 public function findAllOrderedByVotes(string $genre = null): array

 {

 $queryBuilder = $this->createQueryBuilder('mix')

 ->orderBy('mix.votes', 'DESC');

 return $queryBuilder

 ->getQuery()

 ->getResult()

 ;

 }

}

But a word of warning. There is also a where() method... but I never use it. When you call

where() , it will clear any existing "where" statements that the query builder might have... so you

might accidentally remove something you added earlier. So, always use andWhere() . Doctrine

is smart enough to figure out that, because this is the first WHERE, it doesn't actually need to add

the AND .

Inside of andWhere() , pass mix.genre = ... but don't put the dynamic genre right in the string.

That is a huge no-no: never do that. That opens you up for SQL injection attacks. Instead,

whenever you need to put a dynamic value into a query, use a "prepared statement"... which is a

fancy way of saying that you put a placeholder here, like :genre . The name of this could be

anything... like "dinosaur" if you want. But whatever you call it, you'll then fill in the placeholder by

saying ->setParameter() with the name of the parameter - so genre - and then the value:

$genre .

src/Repository/VinylMixRepository.php

 // ... lines 1 - 44

45

46

 // ... lines 47 - 49

50

51

52

53

 // ... lines 54 - 58

59

 // ... lines 60 - 71

Beautiful! Back over in VinylController , pass $slug as the genre.

Let's try this! Click back to the browse page first. Awesome! We get all the results. Now click

"Rock" and... nice! Less results and all genres show "Rock"! If I filter by "Pop"... got it! We can

even see the query for this... here it is. It has the "where" statement for genre equaling "Pop".

Woo!

Reusing Query Builder Logic

As your project gets bigger and bigger, you're going to create more and more methods in your

repository for custom queries. And you may start repeating the same query logic over and over

again. For example, we might order by the votes in a bunch of different methods in this class.

 public function findAllOrderedByVotes(string $genre = null): array

 {

 if ($genre) {

 $queryBuilder->andWhere('mix.genre = :genre')

 ->setParameter('genre', $genre);

 }

 }

To avoid duplication, we can isolate that logic into a private method. Check it out! Add

private function addOrderByVotesQueryBuilder() . This will accept a

QueryBuilder argument (we want the one from Doctrine\ORM), but let's make it optional.

And we will also return a QueryBuilder .

src/Repository/VinylMixRepository.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 60

61

62

 // ... lines 63 - 65

66

 // ... lines 67 - 76

77

The job of this method is to add this ->orderBy() line. And for convenience, if we don't pass in

a $queryBuilder , we'll create a new one.

To allow that, start with

$queryBuilder = $queryBuilder ?? $this->createQueryBuilder('mix') . I'm

purposely using mix again for the alias. To keep life simple, choose an alias for an entity and

consistently use it everywhere.

src/Repository/VinylMixRepository.php

 // ... lines 1 - 60

61

62

63

 // ... lines 64 - 65

66

 // ... lines 67 - 78

Anyways, this line itself may look weird, but it basically says:

“If there is a QueryBuilder, then use it. Else, create a new one.”

Below return $queryBuilder ... go steal the ->orderBy() logic from up here and... paste.

Awesome!

class VinylMixRepository extends ServiceEntityRepository

{

 private function addOrderByVotesQueryBuilder(QueryBuilder $queryBuilder

= null): QueryBuilder

 {

 }

}

 private function addOrderByVotesQueryBuilder(QueryBuilder $queryBuilder

= null): QueryBuilder

 {

 $queryBuilder = $queryBuilder ?? $this->createQueryBuilder('mix');

 }

src/Repository/VinylMixRepository.php

 // ... lines 1 - 60

61

62

 // ... lines 63 - 64

65

66

 // ... lines 67 - 78

PhpStorm is a little angry with me... but that's just because it's having a rough morning and needs

a restart: our code is, hopefully, just fine.

Back up in the original method, simplify to

$queryBuilder = $this->addOrderByVotesQueryBuilder() and pass it nothing.

src/Repository/VinylMixRepository.php

 // ... lines 1 - 45

46

47

48

 // ... lines 49 - 58

59

 // ... lines 60 - 78

Isn't that nice? When we refresh... it's not broken! Take that PhpStorm!

Next, let's add a "mix show" page where we can view a single vinyl mix. For the first time, we'll

query for a single object from the database and deal with what happens if no matching mix is

found.

 private function addOrderByVotesQueryBuilder(QueryBuilder $queryBuilder

= null): QueryBuilder

 {

 return $queryBuilder->orderBy('mix.votes', 'DESC');

 }

 public function findAllOrderedByVotes(string $genre = null): array

 {

 $queryBuilder = $this->addOrderByVotesQueryBuilder();

 }

Chapter 12: Querying for a Single Entity for a
"Show" Page

Our users really need to be able to click on a mix and navigate to a page with more information

about it... like eventually its track list! So let's make that possible! Let's create a page to display

just one mix's details.

Creating the new Route & Controller

Head over to src/Controller/MixController.php . After the new action, add

public function show() with the [#Route()] attribute above. The URL for this will be...

how about /mix/{id} , where id will be the ID of that mix in the database. Below, add the

corresponding $id argument. And... just to see if this is working, dd($id) .

src/Controller/MixController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 33

34

35

36

37

38

39

Coolio! Spin over and go to, how about, /mix/7 . Awesome! Our route and controller are hooked

up!

Querying for a Single Object

Ok, now that we have the ID, we need to query for the one VinylMix in the database matching

that. And we know how to query: via the repository. Add a second argument to the method type-

hinted with VinylMixRepository and call it $mixRepository . Now replace the dd() with

$mix = $mixRepository-> and, for the first time, we're going to use the find() method.

class MixController extends AbstractController

{

 #[Route('/mix/{id}')]

 public function show($id): Response

 {

 dd($id);

 }

}

It's dead simple: it finds a single object using the primary key. So pass it $id . To make sure this

is working, dd($mix) .

src/Controller/MixController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 11

12

13

 // ... lines 14 - 35

36

37

38

39

40

41

We don't know which IDs we actually have in our database right now, so as a workaround, go to

/mix/new to create a new mix. In my case, it has ID 16. Cool: go to /mix/16 and... hello

VinylMix id: 16 ! The important thing to notice is that this returns a VinylMix object.

Unless you do something custom, Doctrine always gives us back either a single object or an array

of objects, depending on which method you call.

Rendering the Template

Now that we have the VinylMix object, let's render a template and pass that in. Do that with

return $this->render() and call the template mix/show.html.twig . The template path

could be anything, but since we're inside MixController , the directory mix makes sense. And

since we're in the show action, show.html.twig also makes sense. Consistency is a great

way to make friends with your fellow teammates!

Pass in a variable called mix set to the VinylMix object $mix .

use App\Repository\VinylMixRepository;

class MixController extends AbstractController

{

 public function show($id, VinylMixRepository $mixRepository): Response

 {

 $mix = $mixRepository->find($id);

 dd($mix);

 }

}

src/Controller/MixController.php

 // ... lines 1 - 35

36

37

 // ... lines 38 - 39

40

41

42

43

 // ... lines 44 - 45

All right, let's go create that template. In templates/ , add a new directory called mix/ ... and

inside of that, a new file called show.html.twig . Pretty much every template is going to start

the same way. Begin by saying {% extends 'base.html.twig' %} .

templates/mix/show.html.twig

1

 // ... lines 2 - 8

As a reminder, base.html.twig has several blocks in it. The most important one down here is

block body . That's what we'll override with our content. At the top, there's also a

block title , which allows us to control the title of the page. Let's override both.

Say {% block title %}{% endblock %} and, in between, {{ mix.title }} Mix . Then

override {% block body %} with {% endblock %} below. Inside, just to get started, add an

<h1> with {{ mix.title }} .

templates/mix/show.html.twig

 // ... lines 1 - 2

3

4

5

6

7

When we try that... hello page! This is super simple - the <h1> isn't even in the right place - but

it's working. Now we can add some pizzazz.

Making the Page All Fancy Looking

I'm going to head back to my template and paste in a bunch of new content. You can copy this

from the code block on this page. The top of this is exactly the same: it extends

 public function show($id, VinylMixRepository $mixRepository): Response

 {

 return $this->render('mix/show.html.twig', [

 'mix' => $mix,

]);

 }

{% extends 'base.html.twig' %}

{% block title %}{{ mix.title }} Mix{% endblock %}

{% block body %}

 <h1>{{ mix.title }}</h1>

{% endblock %}

base.html.twig and the block title looks like it did before. But then, in the body, we have

a bunch of new markup, we print the mix title... and down here, I have a few TODOs for us where

we'll print out more details.

templates/mix/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

 // ... lines 12 - 32

33

34

35

36

37

38

39

40

If you refresh now... nice! We even have the cute little record SVG... which you probably

recognize from the homepage. That's awesome... except that duplicating this entire SVG in both

templates is... not so awesome. Let's fix that duplication.

Avoiding Duplication with a Template Partial

Select all of this <svg> content, copy it, and over in the mix/ directory, create a new file called

_recordSvg.html.twig . Paste that here!

{% block body %}

 <div class="container">

 <h1 class="d-inline me-3">{{ mix.title }}</h1>

 <div class="row mt-5">

 <div class="col-12 col-md-4">

 <svg width="100%" height="100%" viewBox="0 0 496 496"

xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink">

 </svg>

 </div>

 <div class="col-12 col-md-8 ps-5">

 TODO: print track count, genre and description

 </div>

 </div>

 </div>

{% endblock %}

templates/mix/_recordSvg.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<svg width="100%" height="100%" viewBox="0 0 496 496"

xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <defs>

 <linearGradient x1="50%" y1="0%" x2="50%" y2="100%"

id="linearGradient-1">

 <stop stop-color="#C380F3" offset="0%"></stop>

 <stop stop-color="#4A90E2" offset="100%"></stop>

 </linearGradient>

 </defs>

 <g id="Mixed-Vinyl" stroke="none" stroke-width="1" fill="none" fill-

rule="evenodd">

 <g id="Group">

 <g id="record-vinyl" fill="#000000" fill-rule="nonzero">

 <path d="M248,144 C190.562386,144 144,190.562386 144,248

C144,305.437614 190.562386,352 248,352 C305.437614,352 352,305.437614

352,248 C352,190.562386 305.437614,144 248,144 L248,144 Z M248,272

C234.745166,272 224,261.254834 224,248 C224,234.745166 234.745166,224

248,224 C261.254834,224 272,234.745166 272,248 C272,261.254834

261.254834,272 248,272 Z M248,0 C111,0 0,111 0,248 C0,385 111,496 248,496

C385,496 496,385 496,248 C496,111 385,0 248,0 Z M248,376 C177.307552,376

120,318.692448 120,248 C120,177.307552 177.307552,120 248,120

C318.692448,120 376,177.307552 376,248 C376,281.947711

362.514324,314.505012 338.509668,338.509668 C314.505012,362.514324

281.947711,376 248,376 Z" id="Shape"></path>

 </g>

 <g id="record-vinyl" transform="translate(144.000000,

144.000000)" fill="url(#linearGradient-1)" fill-rule="nonzero">

 <path d="M104,0 C46.562386,0 0,46.562386 0,104

C0,161.437614 46.562386,208 104,208 C161.437614,208 208,161.437614 208,104

C208,46.562386 161.437614,0 104,0 L104,0 Z M104,128 C90.745166,128

80,117.254834 80,104 C80,90.745166 90.745166,80 104,80 C117.254834,80

128,90.745166 128,104 C128,117.254834 117.254834,128 104,128 Z" id="Shape">

</path>

 </g>

 <circle id="Oval" stroke="#979797" cx="248" cy="248" r="235">

</circle>

 <circle id="Oval" stroke="#979797" cx="248" cy="248" r="215">

</circle>

 <circle id="Oval" stroke="#979797" cx="248" cy="248" r="195">

</circle>

 <circle id="Oval" stroke="#979797" cx="248" cy="248" r="175">

</circle>

 <circle id="Oval" stroke="#979797" cx="248" cy="248" r="155">

</circle>

 </g>

 </g>

</svg>

The reason I prefixed the name with _ is to indicate that this is a template partial. That means it's

a template that doesn't include a whole page - just part of a page. The _ is optional... and just

something that's done as a common convention: it doesn't change any behavior.

Thanks to this, we can go into show.html.twig and

{{ include('mix/_recordSvg.html.twig) }} .

templates/mix/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

10

11

 // ... lines 12 - 16

17

18

Let's go do the same thing in the homepage template:

templates/vinyl/homepage.html.twig . This is the same SVG here, so we'll include that

same template.

templates/vinyl/homepage.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

10

11

 // ... lines 12 - 34

35

36

Nice! If we go check the homepage... it still looks great! And if we head back to the mix page and

refresh... that looks great too!

To finish the template, let's fill in the missing details. Add an <h2> with class="mb-4" , and

inside, say {{ mix.trackCount }} songs , followed by a <small> tag with

(genre: {{ mix.genre }}) ... and below this, a <p> tag with {{ mix.description }} .

{% block body %}

 <div class="container">

 <div class="col-12 col-md-4">

 {{ include('mix/_recordSvg.html.twig') }}

 </div>

 </div>

{% endblock %}

{% block body %}

<div class="container">

 <div class="col-12 col-md-4">

 {{ include('mix/_recordSvg.html.twig') }}

 </div>

</div>

{% endblock %}

templates/mix/show.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

 // ... lines 9 - 11

12

13

14

15

16

 // ... line 17

18

And now... this is starting to come to life! We don't have a track list yet... because that's another

database table we'll create in a future tutorial. But it's a nice start.

Linking to the Show Page

To complete the new feature, when we're on the /browse page, we need to link each mix to its

show page. Open templates/vinyl/browse.html.twig and scroll down to where we loop.

Ok: change the <div> that surrounds everything to an <a> tag. Then... break this onto multiple

lines and add href="" . As you can see, PhpStorm was clever enough to update the closing tag

to an a automatically.

To link to a page in Twig, we use the path() function and pass the name of the route. What... is

the name of the route to our show page? The answer is... it doesn't have one! Ok, Symfony auto-

generates a name... but we don't want to rely on that. As soon as we want to link to a route, we

should give that route a proper name. How about app_mix_show .

src/Controller/MixController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 34

35

36

 // ... lines 37 - 47

48

Copy that, head back to browse.html.twig and paste.

{% block body %}

 <div class="row mt-5">

 <div class="col-12 col-md-8 ps-5">

 <h2 class="mb-4">{{ mix.trackCount }} songs <small>(genre:

{{ mix.genre }})</small></h2>

 <p>{{ mix.description }}</p>

 </div>

 </div>

{% endblock %}

class MixController extends AbstractController

{

 #[Route('/mix/{id}', name: 'app_mix_show')]

 public function show($id, VinylMixRepository $mixRepository): Response

}

But this time, just pasting the route name isn't going to be enough! Check out this sweet error:

“Some mandatory parameters are missing ("id") to generate a URL for route "app_mix_show".”

That makes sense! Symfony is trying to generate the URL to this route, but we need to tell it what

wildcard value to use for {id} . We do that by passing a second array argument with {} . Inside

set id to mix.id .

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 28

29

30

31

32

33

 // ... lines 34 - 42

43

 // ... line 44

45

 // ... lines 46 - 48

49

And now... the page works! And we can click any of these to hop in and see more details.

Okay, we've got the happy path working! But what if no mix can be found for a given ID? Next:

let's talk 404 pages and learn how we can be even lazier by getting Symfony to query for the

VinylMix object for us.

{% block body %}

 {% for mix in mixes %}

 <div class="col col-md-4">

 <a href="{{ path('app_mix_show', {

 id: mix.id

 }) }}" class="mixed-vinyl-container p-3 text-center">

 {% endfor %}

{% endblock %}

Chapter 13: Param Converter & 404's

We've programmed the happy path. When I go to /mix/13 , my database does find a mix with

that id and... life is good. But what if I change this to /99? Yikes. That's a 500 error: not

something we want our site to ever do. This really should be a 404 error. So, how do we trigger a

404?

Triggering a 404 Page

Over in the method, this $mix variable will either be a VinylMix object or null if one isn't found.

So we can say if (!$mix) , and then, to trigger a 404,

throw $this->createNotFoundException() . You can give this a message if you want,

but it'll only be seen by developers.

src/Controller/MixController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 35

36

37

 // ... lines 38 - 39

40

41

42

 // ... lines 43 - 46

47

48

This createNotFoundException() , as the name suggests, creates an exception object. So

we're actually throwing an exception here... which is nice, because it means that code after this

won't be executed.

Now, normally if you or something in your code throws an exception, it will trigger a 500 error. But

this method creates a special type of exception that maps to a 404. Watch! Over here, in the

upper right, when I refresh... 404!

class MixController extends AbstractController

{

 public function show($id, VinylMixRepository $mixRepository): Response

 {

 if (!$mix) {

 throw $this->createNotFoundException('Mix not found');

 }

 }

}

By the way, this is not what the 404 or 500 pages would look like on production. If we switched to

the prod environment, we'd see a pretty generic error page with no details. Then you customize

how those look, even making separate styles for 404 errors, 403 Access Denied errors, or even...

gasp ... 500 errors if something goes really wrong. Check out the Symfony docs for how to

customize error pages.

Param Converter: Automatic Query

Okay! We've queried for a single VinylMix object and even handled the 404 path. But we can

do this with way less work. Check it out! Replace the $id argument with a new argument, type-

hinted with our entity class VinylMix . Call it, how about, $mix to match the variable below.

Then... delete the query... and also the 404. And now, we don't even need the $mixRepository

argument at all.

src/Controller/MixController.php

 // ... lines 1 - 35

36

37

38

39

40

41

 // ... lines 42 - 43

This... deserves some explanation. So far, the "things" that we are "allowed" to have as

arguments to our controllers are (1) route wildcards like $id or (2) services. Now we have a third

thing. When you type-hint an entity class, Symfony will query for the object automatically.

Because we have have a wildcard called {id} , it will take this value (so "99" or "16") and query

for a VinylMix whose id is equal to that. The name of the wildcard - id in this case - needs to

match the property name it should use for the query.

But if I go back and refresh... it doesn't work!?

“Cannot autowire argument $mix of MixController::show() : it references VinylMix

but no such service exists.”

We know this isn't a service... so that make sense. But... why isn't it querying for the object like I

just said it would?

 public function show(VinylMix $mix): Response

 {

 return $this->render('mix/show.html.twig', [

 'mix' => $mix,

]);

 }

Because... to get this feature to work, we need to install another bundle! Well, if you're using

Symfony 6.2 and a new enough DoctrineBundle - probably version 2.8 - then this should work

without needing anything else. But since we're using Symfony 6.1, we need one extra library.

Find your terminal and say:

composer require sensio/framework-extra-bundle

This is a bundle full of nice little shortcuts that, by Symfony 6.2, will all have been moved into

Symfony itself. So eventually, you won't need this.

And now... without doing anything else... it works! It automatically queried for the VinylMix

object and the page renders! And if you go to a bad ID, like /99 ... yes! Check it out! We get a

404! This feature is called a "ParamConverter"... which is mentioned in the error:

“VinylMix object not found by the @ParamConverter annotation.”

Anyways, I love this feature. If I need to query for multiple objects, like in the browse() action,

I'll use the correct repository service. But if I need to query for a single object in a controller, I use

this trick.

Next, let's make it possible to up vote and down vote our mixes by leveraging a simple form. To

do this, for the first time, we will update an entity in the database.

Chapter 14: The Request Object

New goal team: to allow users to upvote and downvote a mix. To accomplish this, in the

VinylMix entity, when a user votes, we need to send an UPDATE query to change the $votes

integer property in the database.

Adding a Simple Form

Let's first focus on the user interface. Open templates/mix/show.html.twig . To start, print

{{ mix.votesString }} votes so we can see that here.

templates/mix/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 22

23

 // ... line 24

25

26

And... perfect! To add the upvote and downvote functionality, we could use some fancy

JavaScript. But we're going to keep it simple by adding a button that posts a form. Well this will

actually be fancier than it sounds. In the first tutorial, we installed the Turbo JavaScript library. So

even though we'll use a normal <form> tag and button, Turbo will automatically submit it via

AJAX for a smooth experience.

By the way, Symfony does have a form component and we'll talk about that in a future tutorial.

But this form is going to be so simple that we don't really need it anyway. Add a beautifully boring

<form> tag with action set to the path() function.

The form will submit to a new controller that... we still need to create!

{% block body %}

 <div class="container">

 <div class="col-12 col-md-8 ps-5">

 {{ mix.votesString }} votes

 </div>

 </div>

{% endblock %}

Head over to MixController and add a new public function called vote() . Give this

the #[Route()] attribute with the URL /mix/{id}/vote . And because we need to link to this,

add a name: app_mix_vote .

src/Controller/MixController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 42

43

44

 // ... lines 45 - 47

48

The {id} route wildcard will hold the id of the specific VinylMix that the user is voting on. To

query for that, use the trick we learned earlier: add an argument type-hinted with VinylMix and

call it $mix . Oh, and while we don't need to, I'll add the Response return type. Adding this is just

a good practice.

Inside, to make sure things are working, dd($mix) .

src/Controller/MixController.php

 // ... lines 1 - 43

44

45

46

47

 // ... lines 48 - 49

Cool! Copy the name of the route, go back to the template - show.html.twig - and inside

path() , paste. And because this route has an {id} wildcard, pass id set to mix.id . Also

give the form method="POST" ... because anytime that submitting a form will change data on

your server, it should submit with POST .

class MixController extends AbstractController

{

 #[Route('/mix/{id}/vote', name: 'app_mix_vote', methods: ['POST'])]

 public function vote(VinylMix $mix): Response

}

 public function vote(VinylMix $mix): Response

 {

 dd($mix);

 }

templates/mix/show.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 11

12

 // ... lines 13 - 16

17

 // ... lines 18 - 21

22

23

 // ... lines 24 - 25

26

Heck, we can even enforce this requirement on our route by adding methods: ['POST'] .

That's optional, but now, if someone, for some reason, goes directly to this URL, which is a GET

request, it won't match the route. Handy!

src/Controller/MixController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 42

43

44

 // ... lines 45 - 47

48

Head back over to the form. This form... will be kind of strange. Instead of having fields the user

can type into, all we need is a button. Add <button> with type="submit" ... and then some

classes for styling. For the text, use a Font Awesome icon: a with

class="fa fa-thumbs-up" .

templates/mix/show.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 16

17

18

19

20

21

22

 // ... lines 23 - 25

26

{% block body %}

 <div class="col-12 col-md-8 ps-5">

 <form action="{{ path('app_mix_vote', {id: mix.id }) }}"

method="POST">

 </form>

 </div>

{% endblock %}

class MixController extends AbstractController

{

 #[Route('/mix/{id}/vote', name: 'app_mix_vote', methods: ['POST'])]

 public function vote(VinylMix $mix): Response

}

{% block body %}

 <form action="{{ path('app_mix_vote', {id: mix.id }) }}"

method="POST">

 <button

 type="submit"

 class="btn btn-outline-primary"

 ></button>

 </form>

{% endblock %}

Perfecto! Let's go check it out. Refresh and... thumbs up! And when we click it... beautiful! It hits

the endpoint! Notice that the URL didn't change... that's just because Turbo submitted the form

via Ajax... and then our dd() stopped everything.

Ok, in a minute, we're going to add another button with a thumbs down. So, somehow, in our

controller, we're going to need to figure out which button - up or down - was just pushed.

To do that, on the button, add name="direction" and value="up" . Now, if we click this

button, it will send one piece of POST data called direction set to the value up ... almost as if

the user typed the word up into a text field.

templates/mix/show.html.twig

 // ... lines 1 - 16

17

18

 // ... lines 19 - 20

21

22

23

24

 // ... lines 25 - 29

Fetching the Request DAta

Ok... but how do we read POST data in Symfony? Whenever you need to read anything from the

request - like POST data, query parameters, uploaded files, or headers - you'll need Symfony's

Request object. And there are two ways to get it.

The first is by autowiring a service called RequestStack . Then you can get the current request

by saying $requestStack->getCurrentRequest() .

This works anywhere that you can autowire a service. But in a controller, there's an easier way.

Undo that... and instead, add an argument that is type-hinted with Request . Get the one from

Symfony's HttpFoundation. Let's call it $request .

 <form action="{{ path('app_mix_vote', {id: mix.id }) }}"

method="POST">

 <button

 name="direction"

 value="up"

 ></button>

 </form>

src/Controller/MixController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

14

 // ... lines 15 - 44

45

46

 // ... line 47

48

49

At first, this looks like autowiring, right? It looks like Request is a service and we're autowiring

that as an argument. But... surprise! Request is not a service. Nope, this is yet another "thing"

that you're allowed to have as an argument to your controller.

Let's review. We now know four different types of arguments that you can have on a controller

method. One: you can have route wildcards like $id . Two: You can autowire services. Three:

You can type-hint entities. And four: You can type-hint the Request class. Yup, the Request

object is so important that Symfony created a special case just for it.

And... it's kind of beautiful. Our whole job as developers is to "read the incoming request" and use

it to "create a response". So it's... almost poetic that we can have a method that takes the

Request as an argument and returns a Response . Input Request , output Response .

Fetching POST Data

But I digress. There are a lot of different methods and properties on the Request to fetch

whatever you need. To read POST data, say $request->request->get() and then the name

of the field. In this case, direction .

src/Controller/MixController.php

 // ... lines 1 - 44

45

46

47

48

 // ... lines 49 - 50

We're not going to talk a lot about the Request object... because it's... just a simple object that

holds data. If you need to read something from it, just look at the docs and it'll tell you how to do

use Symfony\Component\HttpFoundation\Request;

class MixController extends AbstractController

{

 public function vote(VinylMix $mix, Request $request): Response

 {

 }

}

 public function vote(VinylMix $mix, Request $request): Response

 {

 dd($request->request->get('direction'));

 }

it.

All right, back over here, refresh the page... upvote and... got it! Okay, remove the dd() and set

this to a direction variable with $direction = .

If, for some reason, the direction POST data is missing (this shouldn't happen unless

someone is messing with our site), default it to up .

src/Controller/MixController.php

 // ... lines 1 - 44

45

46

47

48

 // ... lines 49 - 50

Now let's add the downvote. Copy the entire button... paste... change the value to down and

update the icon class to fa fa-thumbs-down .

templates/mix/show.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 16

17

 // ... lines 18 - 23

24

25

26

27

28

29

30

 // ... lines 31 - 33

34

Okay, we know that the value will either be up or down . In our controller, let's use this.

if ($direction === 'up') , then $mix->setVotes($mix->getVotes() + 1) . Else,

do the same thing... except it will be - 1 . Below, dd($mix) .

 public function vote(VinylMix $mix, Request $request): Response

 {

 $direction = $request->request->get('direction', 'up');

 }

{% block body %}

 <form action="{{ path('app_mix_vote', {id: mix.id }) }}"

method="POST">

 <button

 type="submit"

 class="btn btn-outline-primary"

 name="direction"

 value="down"

 ></button>

 </form>

{% endblock %}

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 44

45

46

47

48

49

50

51

52

53

54

55

On a real site, we'll probably also store which user is voting so that they can't vote over and over

again. We'll learn how to do that in a future tutorial. But this will work just fine for now.

All right, head back and refresh. We have 49 votes. If we click the upvote button... 50! If we

refresh and click downvote... 48!

Yay! But, we still haven't saved this value to the database. When we refresh, it always goes back

to the original "49".

So... next, let's do that! We'll make an UPDATE query to the database and also finish the

endpoint by redirecting to another page.

class MixController extends AbstractController

{

 public function vote(VinylMix $mix, Request $request): Response

 {

 $direction = $request->request->get('direction', 'up');

 if ($direction === 'up') {

 $mix->setVotes($mix->getVotes() + 1);

 } else {

 $mix->setVotes($mix->getVotes() - 1);

 }

 dd($mix);

 }

}

Chapter 15: Updating an Entity

We are successfully changing the value of the votes property. Now we need to make an update

query to save that to the database.

To insert a VinylMix , we used the EntityManagerInterface service, and then called

persist() and flush() . To update, we'll use that exact same service.

Updating an Entity with the Entity Manager

Add a new argument to the vote() method type-hinted with EntityManagerInterface . I'll

call it $entityManager . Then, very simply, after we've set the votes property to the new

value, call $entityManager->flush() .

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 44

45

46

 // ... lines 47 - 53

54

 // ... line 55

56

57

That's it people! Before I explain this, let's make sure it works. Refresh. We have 49 votes right

now. I'll hit up. It says 50. But the real proof is that when we refresh... it still shows 50! It did save!

Persisting and Flushing: The Details

Ok, so when we created a new VinylMix earlier, we had to call persist() - passing the

VinylMix object - and then flush() . But now, all we need is flush() . Why?

class MixController extends AbstractController

{

 public function vote(VinylMix $mix, Request $request,

EntityManagerInterface $entityManager): Response

 {

 $entityManager->flush();

 }

}

Here's the full story. When you call flush() , Doctrine loops over all of the entity objects that it

"knows about" and "saves" them. And that "save" is smart. If Doctrine determines that an entity

has not been saved yet, it will execute an INSERT query. But if it's an object that does already

exist in the database, Doctrine will figure out what has changed on the object - if anything - and

execute an UPDATE query. Yep! We just call flush() and Doctrine figures out what to do. It's...

the best thing since Starburst Jellybeans.

But... why don't we need to call persist() when we're updating? Well, you can say

$entityManager->persist($mix) if you want to. It's just... totally redundant!

When you call persist() , it tells Doctrine:

“Hey! I want you to be aware of this object so that, next time I call flush() , you'll know to

save it.”

When you create a new entity object, Doctrine doesn't really know about that object until you call

persist() . But when you're updating an entity, it means that you've already asked Doctrine to

query for that object. So Doctrine is already aware of it... and when we call flush() , Doctrine

will - automatically - check that object to see if any changes have been made to it.

Redirecting to Another Page

So... we are successfully saving the new vote count to the database! Now what? Because... I

don't think this die statement is going to look good on production.

Well, anytime you submit a form successfully, you always do the same thing: redirect to another

page. How do we redirect in Symfony? With return $this->redirect() passing whatever

URL you want to redirect to. Though, usually we're redirecting to another page on our site... so we

use a similar shortcut called redirectToRoute() and then pass a route name.

Let's redirect back to the show page. Copy the app_mix_show route name, paste... and just like

with the Twig path() function, this accepts a second argument: an array of the route wildcards

that we need to fill in. In this case, we have an {id} wildcard... so pass id set to

$mix->getId() .

src/Controller/MixController.php

 // ... lines 1 - 44

45

46

 // ... lines 47 - 55

56

57

58

59

 // ... lines 60 - 61

Now, remember: controllers always return a Response object. And, whelp it turns out that a

redirect is a response. It's a response that, instead of containing HTML, basically says:

“Please send the user to this other URL”

The redirectToRoute() method is a shortcut that returns this special response object, called

a RedirectResponse .

Anyways, let's test the whole flow! Refresh, and... got it! After voting, we end up right back on this

page. And, thanks to Turbo, this is all happening via Ajax calls... which is a nice bonus.

The only problem is that... it's so smooth that it's not super obvious that my vote was actually

saved - other than seeing the vote number change. It might be better if we showed a success

message. Let's do that next by learning about flash messages. We're also going to make our

VinylMix entity trendier by exploring the concept of smart versus anemic models.

 public function vote(VinylMix $mix, Request $request,

EntityManagerInterface $entityManager): Response

 {

 return $this->redirectToRoute('app_mix_show', [

 'id' => $mix->getId(),

]);

 }

Chapter 16: Flash Message & Rich vs Anemic
Models

After we submit a form successfully, we always redirect. Often times, we'll also want to show the

user a success message so they know everything worked. Symfony has a special way to handle

this: flash messages.

To set a flash message, before redirecting, call $this->addFlash() and pass, in this situation,

success . For the second argument, put the message that you want to show to the user, like

Vote counted! .

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 44

45

46

 // ... lines 47 - 53

54

55

 // ... lines 56 - 59

60

61

The success key could be anything... it's kind of like a "category" for the flash message... and

you'll see how we use that in a minute.

Flash messages have a fancy name, but they're a simple idea; Symfony stores flash messages in

the user's session. What makes them special is that Symfony will remove the message

automatically as soon as we read it. They're like self-destructing messages. Pretty cool.

Reading Flash Messages

So... how do we read them? The way I like to do it is by opening up my base template -

base.html.twig - and reading and rendering them here. Let's put it right after the navigation

class MixController extends AbstractController

{

 public function vote(VinylMix $mix, Request $request,

EntityManagerInterface $entityManager): Response

 {

 $entityManager->flush();

 $this->addFlash('success', 'Vote counted!');

 }

}

but before the {% block body %} . Say {% for message in %} . Then, we want to read out

any success category flash messages we might have. To do this, we can leverage the one

global Twig variable in Symfony: app . This has several methods on it, like environment ,

request , session , the current user , or one called app.flashes . Pass this the category (in

our case,success). As I mentioned, this could be anything. If you put dinosaur as the key in a

controller, then you'd read the dinosaur messages out here. Finish with {% endfor %} .

templates/base.html.twig

 // ... lines 1 - 19

20

21

 // ... lines 22 - 57

58

 // ... lines 59 - 61

62

63

 // ... lines 64 - 84

85

 // ... lines 86 - 87

Typically, you'll only have one success message in your flash at a time, but technically you can

have multiple. That's why we're looping over them.

Inside of this, render a <div> with class="alert alert-success" so it looks like a happy

message. Then, print out message .

templates/base.html.twig

 // ... lines 1 - 57

58

59

60

61

62

 // ... lines 63 - 87

So if this works correctly, it will read all of our success flash messages and render them. And

once they've been read, Symfony will remove them so that they won't render again on the next

page load. By putting this in the base template, we can now set flash messages from anywhere in

our app and they'll be rendered on the page. Pretty cool.

Watch. Head back to our page, upvote and... beautiful! We'll probably want to remove this extra

margin in a real project, but we'll leave it for now.

 <body>

 <div class="mb-5">

 {% for message in app.flashes('success') %}

 {% endfor %}

 </div>

 </body>

 {% for message in app.flashes('success') %}

 <div class="alert alert-success">

 {{ message }}

 </div>

 {% endfor %}

Making our Entity Class Smarter

All right, look back at MixController . The logic for doing our "up" and "down" voting is pretty

simple... but I think it can be better. Try this! Open up VinylMix ... and scroll down to

setVotes() . Right after this, just to keep things organized, create a new public function

called upVote() and return void . Inside, say $this->votes++ . Copy that, and create a

second method which we'll call - you guessed it - downVote() ... with $this->votes-- .

src/Entity/VinylMix.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 116

117

118

119

120

121

122

123

124

125

 // ... lines 126 - 141

142

Thanks to these methods, in MixController , instead of having $mix->setVotes() set to

$mix->getVotes() + 1 , we can just say $mix->upVote() ... and $mix->downVote() .

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 44

45

46

 // ... line 47

48

49

50

51

 // ... lines 52 - 59

60

61

class VinylMix

{

 public function upVote(): void

 {

 $this->votes++;

 }

 public function downVote(): void

 {

 $this->votes--;

 }

}

class MixController extends AbstractController

{

 public function vote(VinylMix $mix, Request $request,

EntityManagerInterface $entityManager): Response

 {

 if ($direction === 'up') {

 $mix->upVote();

 } else {

 $mix->downVote();

 }

}

Now that's nice. Our controller reads much more clearly, and we've encapsulated the upVote()

and downVote() logic into our entity. If we head over and refresh, it still works.

Smart vs Anemic Models

This highlights an interesting topic. We've now added four custom methods to our entity: two that

help read the data in a special way, and two that help set data. When we run make:entity , it

creates getter and setter methods for every single property. That's nice, because it makes our

entity infinitely flexible. Anyone from anywhere can read or set any property. But sometimes, you

might not want or need that. For example, do we really want a setVotes() method? Is there

really a use case in our code for something to set the vote count to any number it wants?

Probably not. We'll likely only need upVote() and downVote() . I will keep the setVotes()

method... though, because we use it when we generate our dummy VinylMix object.

But, in general, by removing unnecessary getter and setter methods in your entity and replacing

them with more descriptive methods like upVote() , downVote() , getVoteString() , or

getImageUrl() - methods that fit your business logic - you can, little by little, give your entities

more clarity. Our upVote() and downVote() methods are super clear and descriptive.

Someone calling these doesn't even need to know or care how they work internally.

Entities that only have getter and setter methods are sometimes called "anemic models". Entities

that remove these and replace them with specific methods for your business logic are sometimes

called "rich models". Some people take this to an extreme and have almost no getter or setter

methods. Here at SymfonyCasts, we tend to be pragmatic. We usually do have getter and setter

methods, but we always look for ways to be more descriptive, like by adding upVote() and

downVote() .

Next, let's install an awesome library called DoctrineExtensions. This is a magic library full of

superpowers, like automatic timestampable, and slug creation behaviors.

Chapter 17: Doctrine Extensions: Timestampable

I really like adding timestampable behavior to my entities. That's where you have $createdAt

and $updatedAt properties that are set automatically. It just... helps keep track of when things

happened. We added $createdAt and cleverly set it by hand in the constructor. But what about

$updatedAt? Doctrine does have an awesome event system, and we could hook into that to

run code on "update" that sets that property. But there's a library that already does that. So let's

get it installed.

Installing stof/doctrine-extensions-bundle

At your terminal, run:

composer require stof/doctrine-extensions-bundle

This installs a small bundle, which is a wrapper around a library called DoctrineExtensions. Like a

lot of packages, this includes a recipe. But this is the first recipe that comes from the "contrib"

repository. Remember: Symfony actually has two repositories for recipes. There's the main one,

which is closely guarded by the Symfony core team. Then another called recipes-contrib .

There are some quality checks on that repository, but it's maintained by the community. The first

time that Symfony installs a recipe from the "contrib" repository, it asks you if that's okay. I'm

going to say p for "yes permanently". Then run:

git status

Awesome! It enabled a bundle and added a new configuration file that we'll look at in a second.

Enabling Timestampable

So this bundle obviously has its own documentation. You can search for

stof/doctrine-extensions-bundle and find it on Symfony.com. But the majority of the

docs live on the underlying DoctrineExtensions library... which contains a bunch of really cool

behaviors, including "sluggable" and "timestampable". Let's add "timestampable" first.

Step one: go into config/packages/ and open the configuration file it just added. Here, add

orm because we're using Doctrine ORM, then default , and lastly timestampable: true .

config/packages/stof_doctrine_extensions.yaml

 // ... lines 1 - 2

3

4

5

6

7

This won't really do anything yet. It just activates a Doctrine listener that will be looking for entities

that support timestampable each time an entity is inserted or updated. How do we make our

VinylMix support timestampable? The easiest way (and the way I like to do it) is via a trait.

At the top of the class, say use TimestampableEntity .

src/Entity/VinylMix.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

13

 // ... lines 14 - 124

125

That's it. We're done! Lunch break!

To understand this black magic, hold "cmd" or "ctrl" and click into TimestampableEntity . This

adds two properties: createdAt and updatedAt . And these are just normal fields, like the

createdAt that we had before. It also has getter and setter methods down here, just like we

have in our entity.

The magic is this #[Gedmo\Timestampable()] attribute. This says that:

“this property should be set on: 'update' ”

stof_doctrine_extensions:

 default_locale: en_US

 orm:

 default:

 timestampable: true

use Gedmo\Timestampable\Traits\TimestampableEntity;

class VinylMix

{

 use TimestampableEntity;

}

and

“this property should be set on: 'create' .”

Thanks to this trait, we get all of this for free! And... we no longer need our createdAt

property... because it already lives in the trait. So delete the property... and the constructor... and

down here, remove the getter and setter methods. Cleansing!

Adding the Migration

The trait has a createdAt property like we had before, but it also adds an updatedAt field.

And so, we need to create a new migration for that. You know the drill. At your terminal, run:

symfony console make:migration

Then... let's go check that file... just to make sure it looks like we expect. Let's see here... yup!

We've got ALTER TABLE vinyl_mix ADD updated_at . And apparently the created_at

column will be a little bit different than we had before.

migrations/Version20220718170826.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 37

38

final class Version20220718170826 extends AbstractMigration

{

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE vinyl_mix ADD updated_at TIMESTAMP(0)

WITHOUT TIME ZONE NOT NULL');

 $this->addSql('ALTER TABLE vinyl_mix ALTER created_at TYPE

TIMESTAMP(0) WITHOUT TIME ZONE');

 $this->addSql('ALTER TABLE vinyl_mix ALTER created_at DROP

DEFAULT');

 $this->addSql('COMMENT ON COLUMN vinyl_mix.created_at IS NULL');

 }

}

When Migrations Fail

Okay, let's go run that:

symfony console doctrine:migrations:migrate

And... it fails!

“[...] column "updated_at" of relation "vinyl_mix" contains null values .”

This is a Not null violation ... which makes sense. Our database already has a bunch of

records in it... so when we try to add a new updated_at column that doesn't allow null values...

it freaks out.

If the current state of our database were already on production, we would need to tweak this

migration to give the new column a default value for those existing records. Then we could

change it back to not allowing null. To learn more about handling failed migrations, check out a

chapter on our Symfony 5 Doctrine tutorial.

But since we do not have a production database yet that contains viny_mix rows, we can take

a shortcut: drop the database and start over with zero rows. To do that, run

symfony console doctrine:database:drop --force

to completely drop our database. And recreate it with

symfony console doctrine:database:create

At this point, we have an empty database with no tables - even the migrations table is gone. So

we can re-run all of our migrations from the very beginning. Do it:

symfony console doctrine:migrations:migrate

https://symfonycasts.com/screencast/symfony5-doctrine/bad-migrations

Sweet! Three migrations were executed: all successfully.

Back over on our site, if we go to "Browse Mixes", it's empty... because we cleared our database.

So let's go to /mix/new to create mix ID 1... then refresh a few more times. Now head to

/mix/7 ... and upvote that, which will update that VinylMix .

Ok! Let's see if timestampable worked! Check the database by running:

symfony console doctrine:query:sql 'SELECT * FROM vinyl_mix WHERE id = 7'

And... awesome! The created_at is set and then the updated_at is set to just a few seconds

later when we upvoted the mix. It works. We can now easily add timestampable to any new

entity in the future, just by adding that trait.

Next: let's leverage another behavior: sluggable. This will let us create fancier URLs by

automatically saving a URL-safe version of the title to a new property.

Chapter 18: Clean URLs with Sluggable

Using a database ID in your URL is... kind of lame. It's more common to use slugs. A slug is a

URL-safe version of the name or title of an item. In this case, the title of our mix.

To make this possible, we only need to do one thing: give our VinylMix class a slug property

that holds this URL-safe string. Then, it'll be super easy to query for it. The only trick is that...

something needs to look at the mix's title and set that slug property whenever a mix is saved.

And, ideally that could happen automatically... cause I'm feeling kinda lazy... and I don't really

want to do that work manually everywhere. Whelp, that is the job of the sluggable behavior from

Doctrine Extensions.

Activating the Sluggable Listener

Head back to config/packages/stof_doctrine_extensions.yaml and add

sluggable: true .

config/packages/stof_doctrine_extensions.yaml

 // ... lines 1 - 2

3

 // ... line 4

5

6

 // ... line 7

8

Once again, this enables a listener that will be looking at each entity, whenever one is saved, to

see if the sluggable behavior is activated on it. How do we do that?

Adding the Slug Property

First, we need a slug property on our entity. To add it, at your terminal, run:

stof_doctrine_extensions:

 orm:

 default:

 sluggable: true

php bin/console make:entity

Update VinylMix to add a new slug field. This will be a string, and let's limit it to a 100

characters. Also make this not nullable: it should be required in the database. And that's it! Hit

"enter" one more time to finish.

That, not surprisingly, added a slug property.. plus getSlug() and setSlug() methods at

the bottom.

src/Entity/VinylMix.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 34

35

36

 // ... lines 37 - 128

129

130

131

132

133

134

135

136

137

138

139

140

One thing the make:entity command doesn't ask you is whether or not you want a property to

be unique in the database. In slug 's case, we do want it to be unique, so add unique: true .

That will add a unique constraint in the database to make sure that we never get duplicates.

src/Entity/VinylMix.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 34

35

36

 // ... lines 37 - 139

140

class VinylMix

{

 #[ORM\Column(length: 100)]

 private ?string $slug = null;

 public function getSlug(): ?string

 {

 return $this->slug;

 }

 public function setSlug(string $slug): self

 {

 $this->slug = $slug;

 return $this;

 }

}

class VinylMix

{

 #[ORM\Column(length: 100, unique: true)]

 private ?string $slug = null;

}

Before we think about any sluggable magic, generate a migration for the new property:

symfony console make:migration

As usual, I'll open up that new file to make sure it looks okay. And... it does! It adds slug

including a UNIQUE INDEX for slug . And when we run it with

symfony console doctrine:migrations:migrate

it explodes... for the same reason as last time: Not null violation . We're adding a new

slug column to our table that is not null... which means that any existing records won't work. As I

said in the previous chapter, if your database is already on production, you would need to fix this.

But since ours is not, we can cheat and reset the database like we did before:

symfony console doctrine:database:drop --force

Then:

symfony console doctrine:database:create

Finally re-run all of the migrations from the very beginning:

symfony console doctrine:migrations:migrate

And... yes! 4 migrations executed.

Adding the Sluggable Attribute

At this point, we've activated the sluggable listener and added a slug column. But we're still

missing a step. I'll prove it by going to /mix/new and... error:

“[...] column "slug" of relation "vinyl_mix" violates not-null constraint.”

Yup! Nothing is setting the slug property yet. To tell the extensions library that this is a slug

property that it should set automatically, we need to add - surprise - an attribute! It's called

#[Slug] . Hit "tab" to autocomplete that, which will add the use statement that you need on top.

Then, say fields , which is set to an array, and inside, just title .

src/Entity/VinylMix.php

 // ... lines 1 - 7

8

 // ... lines 9 - 11

12

13

 // ... lines 14 - 36

37

38

 // ... lines 39 - 141

142

This says:

“use the "title" field to generate this slug.”

And now... it looks like it's working! If we check the database...

symfony console doctrine:query:sql 'SELECT * FROM vinyl_mix'

Woohoo! The slug is down here... and you can see the library is also smart enough to add a

little -1 , -2 , -3 to keep it unique.

Updating our Route to use {slug}

Now that we have this slug column, over in MixController , let's make our route trendier by

using {slug} .

use Gedmo\Mapping\Annotation\Slug;

class VinylMix

{

 #[Slug(fields: ['title'])]

 private ?string $slug = null;

}

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 35

36

37

 // ... lines 38 - 60

61

What else do we need to change here? Nothing! Because the route wildcard is now called

{slug} , Doctrine will use this value to query from the slug property. Genius!

Updating Links to the Route

Though, we do need to update any links that we generate to this route. Watch: copy the route

name - app_mix_show - and search inside this file. Yup! We use it down here to redirect after

we vote. Now, instead of passing the id wildcard, pass slug set to $mix->getSlug() .

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 44

45

46

 // ... lines 47 - 56

57

58

59

60

61

And if you searched, there's one other place we generate a URL to this route:

templates/vinyl/browse.html.twig . Right here, we need to change the link on the

"Browse" page to slug: mix.slug .

class MixController extends AbstractController

{

 #[Route('/mix/{slug}', name: 'app_mix_show')]

 public function show(VinylMix $mix): Response

}

class MixController extends AbstractController

{

 public function vote(VinylMix $mix, Request $request,

EntityManagerInterface $entityManager): Response

 {

 return $this->redirectToRoute('app_mix_show', [

 'slug' => $mix->getSlug(),

]);

 }

}

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 28

29

30

31

32

33

 // ... lines 34 - 42

43

44

45

 // ... lines 46 - 48

49

Testing time! Let me refresh a few times... then head back to the homepage... click "Browse

Mixes", and... there's our list! If we click one of these mixes... beautiful! It used the slug and it

queried via the slug. Life is good.

Ok, right now, to add dummy data so we can use the site, we've created this new action. But

that's a pretty poor way to handle dummy data: it's manual, requires refreshing the page and,

though we have some randomness, it creates boring data!

So next, let's add a proper data fixture system to remedy this.

{% block body %}

 {% for mix in mixes %}

 <div class="col col-md-4">

 <a href="{{ path('app_mix_show', {

 slug: mix.slug

 }) }}" class="mixed-vinyl-container p-3 text-center">

 </div>

 {% endfor %}

{% endblock %}

Chapter 19: Simple Doctrine Data Fixtures

"Data fixtures" is the name given to dummy data that you add to your app while developing or

running tests to make life easier. It's a lot nicer to work on a new feature when you actually have

decent data in your database. We created some data fixtures, in a sense, via this new action. But

Doctrine has a system specifically designed for this.

Installing DoctrineFixturesBundle

Search for "doctrinefixturesbundle" to find its GitHub repository. And you can actually read its

documentation over on Symfony.com. Copy the install line and, at your terminal, run it:

composer require --dev orm-fixtures

orm-fixtures is, of course, a Flex alias, in this case, to

doctrine/doctrine-fixtures-bundle . And... done! Run

git status

to see that this added a bundle, as well as a new src/DataFixtures/ directory. Go open that

up. Inside, we have a single new file called AppFixtures.php .

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

DoctrineFixturesBundle is a delightfully simple bundle. It gives us a new console command called

doctrine:fixtures:load . When we run this, it will empty our database and then execute the

load() method inside of AppFixtures . Well, it will actually execute the load() method on

any service we have that extends this Fixture class. So we could have multiple classes in this

directory if we want.

If we run it right now... with an empty load() method, it clears our database, calls that blank

method, and... the result over on the "Browse" page is that we have nothing!

php bin/console doctrine:fixtures:load

Filling in the load() Method

That's not very interesting, so let's go fill in that load() method! Start in MixController : steal

all of the VinylMix code... and paste it here. Hit "Ok" to add the use statement.

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 // $product = new Product();

 // $manager->persist($product);

 $manager->flush();

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 24

Notice the load() method accepts some ObjectManager argument. That's actually the

EntityManager , since we're using the ORM. If you look down here, it already has the

flush() call. The only thing we're missing is the persist() call:

$manager->persist($mix) .

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 19

20

 // ... lines 21 - 22

23

 // ... lines 24 - 25

So the variable is called $manager here... but these two lines are exactly what we have our

controller: persist() and flush() .

Try the command again:

php bin/console doctrine:fixtures:load

It empties the database, executes our fixtures, and we have... one new mix!

Okay, this is kind of cool. We have a new bin/console command to load stuff. But for

developing, I want a really rich set of data fixtures, like... maybe 25 mixes. We could add those by

 public function load(ObjectManager $manager): void

 {

 $mix = new VinylMix();

 $mix->setTitle('Do you Remember... Phil Collins?!');

 $mix->setDescription('A pure mix of drummers turned singers!');

 $genres = ['pop', 'rock'];

 $mix->setGenre($genres[array_rand($genres)]);

 $mix->setTrackCount(rand(5, 20));

 $mix->setVotes(rand(-50, 50));

 $manager->flush();

 }

 public function load(ObjectManager $manager): void

 {

 $manager->persist($mix);

 }

hand here... or even create a loop. But there's a better way, via a library called "Foundry". Let's

explore it next!

Chapter 20: Foundry: Fixtures You'll Love

Building fixtures is pretty simple, but kind of boring. And it would be super boring to manually

create 25 mixes inside the load() method. That's why we're going to install an awesome library

called "Foundry". To do that, run:

composer require zenstruck/foundry --dev

We're using --dev because we only need this tool when we're developing or running tests.

When this finishes, run

git status

to see that the recipe enabled a bundle and also created one config file... which we won't need to

look at.

Factories: make:factory

In short, Foundry helps us create entity objects. It's... almost easier just to see it in action. First,

for each entity in your project (right now, we only have one), you'll need a corresponding factory

class. Create that by running

php bin/console make:factory

which is a Maker command that comes from Foundry. Then, you can select which entity you want

to create a factory for... or generate a factory for all your entities. We'll generate one for

VinylMix . And... that created a single file: VinylMixFactory.php . Let's go check it out:

src/Factory/VinylMixFactory.php .

src/Factory/VinylMixFactory.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 27

28

29

30

 // ... lines 31 - 37

38

39

40

41

42

43

44

45

46

47

48

49

50

 // ... lines 51 - 63

64

Cool! Above the class, you can see a bunch of methods being described... which will help our

editor know what super-powers this has. This factory is really good at creating and saving

VinylMix objects... or creating many of them, or finding a random one, or a random set, or a

random range. Phew!

getDefaults()

The only important code that we see inside this class is getDefaults() , which returns default

data that should be used for each property when a VinylMix is created. We'll talk more about

that in a minute.

But first... let's run blindly forward and use this class! In AppFixtures , delete everything and

replace it with VinylMixFactory::createOne() .

/**

 * @extends ModelFactory<VinylMix>

 *

 * @method static VinylMix|Proxy createOne(array $attributes = [])

 * @method static VinylMix[]|Proxy[] createMany(int $number, array|callable

$attributes = [])

 */

final class VinylMixFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 // TODO add your default values here

(https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#model-

factories)

 'title' => self::faker()->text(),

 'trackCount' => self::faker()->randomNumber(),

 'genre' => self::faker()->text(),

 'votes' => self::faker()->randomNumber(),

 'slug' => self::faker()->text(),

 'createdAt' => null, // TODO add DATETIME ORM type manually

 'updatedAt' => null, // TODO add DATETIME ORM type manually

];

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

18

That's it! Spin over and reload the fixtures with:

symfony console doctrine:fixtures:load

And... it fails! Boo

“Expected argument type "DateTime", "null" given at property path "createdAt"”

It's telling us that something tried to call setCreatedAt() on VinylMix ... but instead of

passing a DateTime object, it passed null . Hmm. Inside of VinylMix , if you scroll up and

open TimestampableEntity , yup! We have a setCreatedAt() method that expects a

DateTime object. Something called this... but passed null .

This actually helps show off how Foundry works. When we call

VinylMixFactory::createOne() , it creates a new VinylMix and then sets all of this data

onto it. But remember, all of these properties are private. So it doesn't set the title property

directly. Instead, it calls setTitle() and setTrackCount() Down here, for createdAt and

updatedAt , it called setCreatedAt() and passed it null .

In reality, we don't need to set these two properties because they will be set automatically by the

timestampable behavior.

If we try this now...

use App\Factory\VinylMixFactory;

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager): void

 {

 VinylMixFactory::createOne();

 $manager->flush();

 }

}

symfony console doctrine:fixtures:load

It works! And if we go check out our site... awesome. This mix has 928,000 tracks, a random title,

and 301 votes. All of this is coming from the getDefaults() method.

Fake Data with Faker

To generate interesting data, Foundry leverages another library called "Faker", whose only job is

to... create fake data. So if you want some fake text, you can say self::faker()-> , followed

by whatever you want to generate. There are many different methods you can call on faker()

to get all kinds of fun fake data. Super handy!

Creating Many Objects

Our factory did a pretty good job... but let's customize things to make it a bit more realistic.

Actually, first, having one VinylMix still isn't very useful. So instead, inside AppFixtures ,

change this to createMany(25) .

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 11

12

13

14

 // ... lines 15 - 16

17

 // ... lines 18 - 19

This is where Foundry shines. If we reload our fixtures now:

symfony console doctrine:fixtures:load

With a single line of code, we have 25 random fixtures to work with! Though, the random data

could be a bit better... so let's improve that.

 public function load(ObjectManager $manager): void

 {

 VinylMixFactory::createMany(25);

 }

Customizing getDefaults()

Inside VinylMixFactory , change the title. Instead of text() - which can sometimes be a

wall of text, change to words() ... and let's use 5 words, and pass true so it returns this as a

string. Otherwise, the words() method returns an array. For trackCount , we do want a

random number, but... probably a number between 5 and 20. For genre , let's go for a

randomElement() to randomly choose either pop or rock . Those are the two genres that

we've been working with so far. And, whoops... make sure you call this like a function. There we

go. Finally, for votes , choose a random number between -50 and 50.

src/Factory/VinylMixFactory.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 37

38

39

40

41

42

43

44

45

46

47

 // ... lines 48 - 60

61

Much better! Oh, and you can see that make:factory added a bunch of our properties here by

default, but it didn't add all of them. One that's missing is description . Add it:

'description' => self::faker()-> and then use paragraph() . Finally, for slug , we

don't need that at all because it will be set automatically.

src/Factory/VinylMixFactory.php

 // ... lines 1 - 37

38

39

40

 // ... line 41

42

 // ... lines 43 - 45

46

47

 // ... lines 48 - 62

final class VinylMixFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'title' => self::faker()->words(5, true),

 'trackCount' => self::faker()->numberBetween(5, 20),

 'genre' => self::faker()->randomElement(['pop', 'rock']),

 'votes' => self::faker()->numberBetween(-50, 50),

 'slug' => self::faker()->text(),

];

 }

}

 protected function getDefaults(): array

 {

 return [

 'description' => self::faker()->paragraph(),

];

 }

Phew! Let's try this! Reload the fixtures:

symfony console doctrine:fixtures:load

Then head over and refresh. That looks so much better. We do have one broken image... but

that's just because the API I'm using has some "gaps" in it... nothing to worry about.

Foundry can do a ton of other cool things, so definitely check out its docs. It's especially useful

when writing tests, and it works great with database relations. So we'll see it again in a more

complex way in the next tutorial.

Next, let's add pagination! Because eventually, we won't be able to list every mix in our database

all at once.

Chapter 21: Pagination

Eventually, this page is going to get super long. By the time we have a thousand mixes, it

probably won't even load! We can fix this by adding pagination. Does Doctrine have the ability to

paginate results? It does! Though, I usually install another library that adds more features on top

of those from Doctrine.

Find your terminal and run:

composer require babdev/pagerfanta-bundle pagerfanta/doctrine-orm-adapter

This installs a Pagerfanta bundle, which is a wrapper around a really nice library called

Pagerfanta. Pagerfanta can paginate lots of things, like Doctrine results, results from

Elasticsearch, and much more. We also installed its Doctrine ORM adapter, which will give us

everything we need to paginate our Doctrine results. In this case, when we run

git status

it added a bundle, but the recipe didn't need to do anything else. Cool! So how does this library

work?

Open up src/Controller/VinylController and find the browse() action. Instead of

querying for all of the mixes, like we're doing now, we're going to tell the Pagerfanta library which

page the user is currently on, how many results to show per page, and then it will query for the

correct results for us.

Returning a QueryBuilder

To get this working, instead of calling findAllOrderedByVotes() and getting back all of the

results, we need to call a method on our repository that returns a QueryBuilder. Open

src/Repository/VinylMixRepository and scroll down to findAllOrderedByVotes() .

We're only using this method right here at the moment, so rename it to

createOrderedByVotesQueryBuilder() ... and this will now return a QueryBuilder - the

one from Doctrine ORM. I'll remove the PHP documentation on top... and the only thing we need

to do down here is remove getQuery() and getResult() so that we're just returning

$queryBuilder .

src/Repository/VinylMixRepository.php

 // ... lines 1 - 6

7

 // ... lines 8 - 17

18

19

 // ... lines 20 - 42

43

44

 // ... lines 45 - 51

52

53

 // ... lines 54 - 70

71

Over in VinylController , change this to

$queryBuilder = $mixRepository->createOrderedByVotesQueryBuilder($slug)

src/Controller/VinylController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 38

39

40

 // ... lines 41 - 42

43

 // ... lines 44 - 54

55

56

Initializing Pagerfanta is two lines. First, create the adapter -

$adapter = new QueryAdapter() and pass it $queryBuilder . Then create the

Pagerfanta object with

$pagerfanta = Pagerfanta::createForCurrentPageWithMaxPerPage()

That's a mouthful. Pass this the $adapter , the current page - right now, I'm going to hardcode 1

- and finally the max results per page that we want. Let's use 9 since our mixes show up in three

use Doctrine\ORM\QueryBuilder;

class VinylMixRepository extends ServiceEntityRepository

{

 public function createOrderedByVotesQueryBuilder(string $genre = null):

QueryBuilder

 {

 return $queryBuilder;

 }

}

class VinylController extends AbstractController

{

 public function browse(VinylMixRepository $mixRepository, string $slug

= null): Response

 {

 $queryBuilder = $mixRepository-

>createOrderedByVotesQueryBuilder($slug);

 }

}

columns.

src/Controller/VinylController.php

 // ... lines 1 - 5

6

7

 // ... lines 8 - 12

13

14

 // ... lines 15 - 38

39

40

 // ... lines 41 - 43

44

45

46

47

48

49

 // ... lines 50 - 54

55

56

Now that we have this Pagerfanta object, we're going to pass that into the template instead of

mixes . Replace this with a new variable called pager set to $pagerfanta .

src/Controller/VinylController.php

 // ... lines 1 - 38

39

40

 // ... lines 41 - 50

51

 // ... line 52

53

54

55

 // ... lines 56 - 57

The cool thing about this $pagerfanta object is that you can loop over it. And as soon as you

do, it will execute the correct query to get just this pages results. In

templates/vinyl/browse.html.twig , instead of {% for mix in mixes %} , say

{% for mix in pager %} .

use Pagerfanta\Doctrine\ORM\QueryAdapter;

use Pagerfanta\Pagerfanta;

class VinylController extends AbstractController

{

 public function browse(VinylMixRepository $mixRepository, string $slug

= null): Response

 {

 $adapter = new QueryAdapter($queryBuilder);

 $pagerfanta = Pagerfanta::createForCurrentPageWithMaxPerPage(

 $adapter,

 1,

 9

);

 }

}

 public function browse(VinylMixRepository $mixRepository, string $slug

= null): Response

 {

 return $this->render('vinyl/browse.html.twig', [

 'pager' => $pagerfanta,

]);

 }

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 27

28

29

 // ... lines 30 - 44

45

46

 // ... lines 47 - 48

49

That's it. Each result in the loop will still be a VinylMix object.

If we go over and reload... got it! It shows nine results: the results for Page 1!

Linking to the Next Page

What we need now are links to the next and previous pages... and this library can help with that

too. Back at your terminal, run:

composer require pagerfanta/twig

One of the trickiest things about the Pagerfanta library is, instead of it being one giant library that

has everything you need, it's broken down into a bunch of smaller libraries. So if you want the

ORM adapter support, you need to install it like we did earlier. If you want Twig support for adding

links, you need to install that too. Once you do though, it's pretty simple.

Back in our template, find the {% endfor %} , and right after, say {{ pagerfanta() }} ,

passing it the pager object.

{% block body %}

 <div class="row">

 {% for mix in pager %}

 {% endfor %}

 </div>

{% endblock %}

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 26

27

28

 // ... lines 29 - 46

47

48

 // ... lines 49 - 50

51

Check it out! When we refresh... we have links at the bottom! They're... ugly, but we'll fix that in a

minute.

Reading the Current Page

If you click the "Next" link, up in our URL, we see ?page=2 . Though... the results don't actually

change. We're still seeing the same results from Page 1. And... that makes sense. Remember,

back in VinylController , I hardcoded the current page to 1 . So even though we have

?page=2 up here, Pagerfanta still thinks we're on Page 1.

What we need to do is read this query parameter and pass it as this second argument. No

problem! How do we read query parameters? Well, that's information from the request, so we

need the Request object.

Right before our optional argument, add a new $request argument type-hinted with Request :

the one from HttpFoundation. Now, down here, instead of 1 , say $request->query (that's how

you get query parameters), with ->get('page') ... and default this to 1 if there is no ?page=

on the URL.

{% block body %}

 <h2 class="mt-5">Mixes</h2>

 <div class="row">

 {{ pagerfanta(pager) }}

 </div>

{% endblock %}

src/Controller/VinylController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 13

14

15

 // ... lines 16 - 39

40

41

 // ... lines 42 - 45

46

 // ... line 47

48

 // ... line 49

50

 // ... lines 51 - 55

56

57

By the way, if you want, you can also add {page} up here. This way, Pagerfanta will

automatically put the page number inside the URL instead of setting it as a query parameter.

If we head over and refresh... right now, we have ?page=2 . Down here... it knows we're on Page

2! If we go to the next page... yes! We see a different set of results!

Styling the Pagination Links

Though, this is still super ugly. Fortunately, the bundle does give us a way to control the markup

that's used for the pagination links. And it even comes with automatic support for Bootstrap CSS-

friendly markup. We just need to tell the bundle to use that.

So... we need to configure the bundle. But... the bundle didn't give us any new config files when it

was installed. That's okay! Not all new bundles give us config files. But as soon as you need one,

create one! Since this bundle's called BabdevPagerfantaBundle , I'm going to create a new

file called babdev_pagerfanta.yaml . As we learned in the last tutorial, the name of these files

aren't important. What's important is the root key, which should be babdev_pagerfanta . To

change how the pagination renders, add default_view: twig and then

default_twig_template set to

@BabDevPagerfanta/twitter_bootstrap5.html.twig .

use Symfony\Component\HttpFoundation\Request;

class VinylController extends AbstractController

{

 public function browse(VinylMixRepository $mixRepository, Request

$request, string $slug = null): Response

 {

 $pagerfanta = Pagerfanta::createForCurrentPageWithMaxPerPage(

 $request->query->get('page', 1),

);

 }

}

config/packages/babdev_pagerfanta.yaml

1

2

3

Like any other config, there's no way you would know that this is the correct configuration just by

guessing. You need to check out the docs.

If we go back and refresh... huh, nothing changed. This is a little bug that you sometimes run into

in Symfony when you create a new configuration file. Symfony didn't notice it... and so it didn't

know it needed to rebuild its cache. This is a super rare situation, but if you ever think it might be

happening, it's easy enough to manually clear the cache by running:

php bin/console cache:clear

And... oh... it explodes. You probably noticed why. I love this error!

“There is no extension able to load the configuration for "baberdev_pagerfanta"”

It's supposed to be babdev_pagerfanta . Whoops! And now... perfect! It's happy. And when we

refresh... it sees it! In a real project, we'll probably want to add some extra CSS to make this "dark

mode"... but we've got it.

Okay team, we're basically done! As a bonus, we're going to refactor this pagination into a

JavaScript-powered forever scroll... except plot twist! We're going to do that without writing a

single line of JavaScript. That's next.

babdev_pagerfanta:

 default_view: twig

 default_twig_template: '@BabDevPagerfanta/twitter_bootstrap5.html.twig'

Chapter 22: Forever Scroll with Turbo Frames

You've made it to the final chapter of the Doctrine tutorial! This chapter is... a total bonus. Instead

of talking about Doctrine, we're going to leverage some JavaScript to turn this page into a "forever

scroll". But don't worry! We'll talk more about Doctrine in the next tutorial when we cover Doctrine

Relations.

Here's the goal: instead of pagination links, I want this page to load nine results like we see on

Page 1. Then, when we scroll to the bottom, I want to make an AJAX request to show the next

nine results, and so on. The result is a "forever scroll".

In the first tutorial in this series, we installed a library called Symfony UX Turbo, which enabled a

JavaScript package called Turbo. Turbo turns all of our link clicks and form submits into AJAX

calls, giving us a really nice single page app-like experience without doing anything special.

Whelp, as cool as that is, Turbo has two other, optional superpowers: Turbo Frames and Turbo

Streams. You can learn all about these in our Turbo tutorial. But let's get a quick sample of how

we could leverage Turbo Frames to add forever scroll without writing a single line of JavaScript.

turbo-frame Basics!

Frames work by dividing parts of your page into separate turbo-frame elements, which acts a

lot like an iframe ... if you're old enough to remember those. When you surround something in a

<turbo-frame> , any clicks inside of that frame will only navigate that one frame.

For example, open the template for this page - templates/vinyl/browse.html.twig - and

scroll up to where we have our for loop. Add a new turbo-frame element right here. The only

rule of a Turbo Frame is that it needs to have a unique ID. So say id="mix-browse-list" ,

and then go all the way to the end of that row and paste the closing tag. And, just for my own

sanity, I'm going to indent that row.

https://symfonycasts.com/screencast/turbo

templates/vinyl/browse.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 27

28

29

30

 // ... lines 31 - 45

46

 // ... lines 47 - 48

49

50

 // ... lines 51 - 52

53

Okay, so... what does that do? If you refresh the page now, any navigation inside of this frame

stays inside the frame. Watch! If I click "2"... that worked. It made an AJAX request for Page 2,

our app returned that full HTML page - including the header, footer and all - but then Turbo Frame

found the matching mix-browse-list <turbo-frame> inside of that, grabbed its contents,

and put it here.

And though it's not easy to see in this example, the only part of the page that's changing is this

<turbo-frame> element. If I... say... messed with the title up here on my page, and then click

down here and back to Page 2... that did not update that part of the page. Again, it works a lot like

iframes, but without the weirdness. You could imagine using this, for example, to power an "Edit"

button that adds inline editing.

But in our situation, this isn't very useful yet... because it works pretty much the same as before:

we click the link, we see new results. The only difference is that clicking inside a

<turbo-frame> didn't change the URL. So no matter what page I'm on, if I refresh, I'm

transported right back to Page 1. So this was kind of a step backwards!

But stick with me. I have a solution, but it involves a few pieces. To start, I'm going to make the ID

unique to the current page. Add a - , and then we can say pager.currentPage .

 Tip

While you're here, also add target="_top" to the turbo-frame . That will make link

clicks (lke to the mix show page) navigate the entire page, like normal.

{% block body %}

 <turbo-frame id="mix-browse-list">

 <div class="row">

 {% for mix in pager %}

 {% endfor %}

 </div>

 </turbo-frame>

{% endblock %}

templates/vinyl/browse.html.twig

 // ... lines 1 - 27

28

 // ... lines 29 - 49

50

 // ... lines 51 - 54

Next, down at the bottom, remove the Pagerfanta links and replace them with another Turbo

Frame. Say {% if pager.hasNextPage %} , and inside of it, add a turbo-frame , just like

above, with that same id="mix-browse-list-{{ }}" . But this time, say pager.nextPage .

Let me break this onto multiple lines here... and then we're also going to tell it what src to use

for that. Oh, let me fix my typo... and then use another Pagerfanta helper called

pagerfanta_page_url and pass that pager and then pager.nextPage . Finally, add

loading="lazy" .

templates/vinyl/browse.html.twig

 // ... lines 1 - 27

28

29

 // ... lines 30 - 47

48

49

50

51

52

 // ... lines 53 - 56

Woh! Lemme explain, because this is kind of wild. First, one of the super-powers of a

<turbo-frame> is that you can give it a src attribute and then leave it empty. This tells Turbo:

“Hey! I'm going to be lazy and start this element empty... maybe because it's a little heavy to

load. But as soon as this element becomes visible to the user, make an Ajax request to this

URL to get its contents.”

So, this <turbo-frame> will start empty... but as soon as we scroll down to it, Turbo will make

an AJAX request for the next page of results.

For example, if this frame is loading for page 2, the Ajax response will contain a

<turbo-frame> with id="mix-browse-list-2" . The Turbo Frame system will grab that

 <turbo-frame id="mix-browse-list-{{ pager.currentPage }}">

 </turbo-frame>

 <turbo-frame id="mix-browse-list-{{ pager.currentPage }}">

 <div class="row">

 {% if pager.hasNextPage %}

 <turbo-frame id="mix-browse-list-{{ pager.nextPage }}"

src="{{ pagerfanta_page_url(pager, pager.nextPage) }}" loading="lazy">

</turbo-frame>

 {% endif %}

 </div>

 </turbo-frame>

from the Ajax response and put it here at the bottom of our list. And if there's a page 3, that will

include yet another Turbo Frame down here that will point to Page 3.

This all might seem a bit crazy, so let's try this out. I'm going to scroll up to the top of the page,

refresh and... perfect! Now scroll down here and watch. You should see an AJAX request show up

in the web debug toolbar. As we scroll... down here... ah! There's the AJAX request! Scroll down

again and... there's a second AJAX request: one for Page 2 and one for Page 3. If we keep

scrolling, we run out of results and reach the bottom of the page.

If you're new to Turbo Frames, that concept may have been a little confusing, but you can learn

more on our Turbo tutorial. And a shout-out to an AppSignal blog post that introduced this cool

idea.

All right, team! Congrats on finishing the Doctrine course! I hope you're feeling powerful. You

should be! The only major missing part of Doctrine now is Doctrine Relations: being able to

associate one entity to another through relationships, like many-to-one and many-to-many. We'll

cover all of that in the next tutorial. Until then, if you have any questions or have a great riddle you

want to ask us, we're here for you in the comments section. Thanks a lot, friends! And see you

next time!

https://blog.appsignal.com/2022/07/06/get-started-with-hotwire-in-your-ruby-on-rails-app

With <3 from SymfonyCasts

