
Messenger! Queue work for
Later

Chapter 1: Installing Messenger

Yo Friends! It's Symfony Messenger time!!! So, what is Symfony Messenger? It's a tool that

allows you to... um... send messages... Wait... that made no sense.

Um, What is Messenger?

Let's try again. Messenger is a tool that enables a really cool design pattern where you write

"messages" and then other code that does something when that message is sent. If you've

heard of CQRS - Command Query Responsibility Segregation - Messenger is a tool that

enables that design pattern.

That's all great... and we're going to learn plenty about it. But there's a good chance you're

watching this because you want to learn about something else that Messenger does: it allows

you to run code asynchronously with queues & workers! OooooOOoo. That's the real fanciness

of Messenger.

Oh, and I have two more sales pitches. First, Symfony 4.3 has a ton of new features that really

make Messenger shine. And second, using Messenger is an absolute delight. So... let's do this!

Project Setup

If you want to become a command-bus-queue-processing-worker-middleware-envelope... and

other buzzwords... Messenger master, warm up your coffee and code along with me. Download

the course code from this page. When you unzip it, you'll find a start/ directory inside with

the same code that you see here. Open up the README.md file for all the details about how to

get the project running and a totally-unrelated, yet, lovely poem called "The Messenger".

The last setup step will be to find a terminal and use the Symfony binary to start a web-server at

https://localhost:8000 :

symfony serve

Ok, let's go check that out in our browser. Say hello to our newest SymfonyCasts creation:

Ponka-fy Me. If you didn't already know, Ponka, by day, is one of the lead developers here at

SymfonyCasts. By night... she is Victor's cat. Actually... due to her frequent nap schedule... she

doesn't really do any coding... now that I think about it.

Ponka-fy Me

Anyways, we've been noticing a problem where we go on vacation, but Ponka can't come... so

when we return, none of our photos have Ponka in them! Ponka-fy Me solves that: let's select a

vacation photo... it uploads... and... yea! Check it out! Ponka seamlessly joined us in our

vacation photo!

Behind the scenes, this app uses a Vue.js frontend... which isn't important for what we'll be

learning. What is important to know is that this uploads to an API endpoint which stores the

photo and then combines two images together. That's a pretty heavy thing to do on a web

request... which is why, if you watch closely, it's kinda slow: it will finish uploading... wait... and,

yep, then load the new image on the right.

Let's look at the API endpoint so you can get an idea of how this works: it lives at

src/Controller/ImagePostController.php . Look for create() this is the upload API

endpoint: it grabs the file, validates it, uses another service to store that file - that's the

uploadImage() method, creates a new ImagePost entity, saves it to the database with

Doctrine and then, down here, we have some code to add Ponka to our photo. That

ponkafy() method does the really heavy-lifting: it takes the two images, splices them together

and... to make it extra dramatic and slow-looking for the purposes of this tutorial, it takes a 2

second break for tea.

Mostly... all of this code is meant to be pretty boring. Sure, I've organized things into a few

services... that's nice - but it's all very traditional. It's a perfect test case for Messenger!

Installing Messenger

So... let's get it installed! Find your terminal, open a new tab and run:

composer require messenger

When that finishes... we get a "message"... from Messenger! Well, from its recipe. This is great -

but we'll talk about all this stuff along the way.

In addition to installing the Messenger component, its Flex recipe made two changes to our app.

First, it modified .env . Let's see... it added this "transport" config. This relates to queuing

messages - a lot more on that later.

.env

 // ... lines 1 - 29

30

31

32

33

34

35

It also added a new messenger.yaml file, which... if you open that up... is perfectly... boring!

It has transports and routing keys - again, things that relate to queuing - but it's all empty

and doesn't do anything yet.

config/packages/messenger.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

So... what did installing the Messenger component give us... other than some new PHP classes

inside the vendor/ directory? It gave us one new important service. Back at your terminal run:

###> symfony/messenger ###

Choose one of the transports below

MESSENGER_TRANSPORT_DSN=amqp://guest:guest@localhost:5672/%2f/messages

MESSENGER_TRANSPORT_DSN=doctrine://default

MESSENGER_TRANSPORT_DSN=redis://localhost:6379/messages

###

framework:

 messenger:

 # Uncomment this (and the failed transport below) to send failed

messages to this transport for later handling.

 # failure_transport: failed

 transports:

 # https://symfony.com/doc/current/messenger.html#transports

 # async: '%env(MESSENGER_TRANSPORT_DSN)%'

 # failed: 'doctrine://default?queue_name=failed'

 # sync: 'sync://'

 routing:

 # Route your messages to the transports

 # 'App\Message\YourMessage': async

php bin/console debug:autowiring mess

There it is! We have a new service that we can use with this MessageBusInterface type-

hint. Um... what does it do? I don't know! But let's find out next! Along with learning about

message classes and message handlers.

Chapter 2: Message, Handler & the Bus

Messenger is what's known as a "Message Bus"... which is kind of a generic tool that can be

used to do a couple of different, but similar design patterns. For example... Messenger can be

used as a "Command bus", a "Query bus", an "Event bus" or... a "School bus". Oh... wait... that

last one was never implemented... ok, it can be used for the first three. Anyways, if these terms

mean absolutely nothing to you... great! We'll talk about what all of this means along the way.

Command Bus Pattern

Most people will use Messenger as a "command bus"... which is sort of a design pattern. Here's

the idea. Right now, we're doing all of our work in the controller. Well, ok, we've organized things

into services, but our controller calls those methods directly. It's nicely-organized, but it's still

basically procedural: you can read the code from top to bottom.

With a command bus, you separate what you want to happen - called a "command" - from the

code that does that work. Imagine you're working as a waiter or waitress at a restaurant and

someone wants a pizza margherita... with extra fresh basil! Mmm. Do you... run back to the

kitchen and cook it yourself? Probably not... Instead, you write down the order. But... let's say

instead, you write down a "command": cook a pizza, margherita style with extra fresh basil.

Next, you "send" that command to the kitchen. And finally, some chef does all the magic to get

that pizza ready. Meanwhile, you're able to take more orders and send more "commands" back

to the kitchen.

This is a command bus: you create a simple, informational command "cook a pizza", give it to

some central "system"... which is given that fancy word "bus", and it makes sure that something

sees that command and "handles" it... in this case, a "chef" cooks the pizza. And that central

"bus" is probably smart enough to have different people "handle" different commands: the chef

cooks the pizza, but the bar tender prepares the drink orders.

Creating the Command Class

Let's recreate that same idea... in code! The "command" we want to issue is: add Ponka to this

image. In Messenger, each command is a simple PHP class. In the src/ directory, create a

new Message/ directory. We can put our command, or "message", classes anywhere... but

this is a nice way to organize things. Create a new PHP class called AddPonkaToImage ...

because that describes the intent of what we want to happen: we want someone to add ponka

to the image. Inside... for now... do nothing.

src/Message/AddPonkaToImage.php

 // ... lines 1 - 2

3

4

5

6

7

A message class is your code: it can look however you want. More on that later.

Creating the Handler Class

Command, done! Step 2 is to create the "handler" class - the code that will actually add Ponka

to an image. Once again, this class can live anywhere, but let's create a new

MessageHandler/ directory to keep things organized. The handler class can also be called

anything... but unless you love being confused... call it AddPonkaToImageHandler .

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

7

8

9

 // ... lines 10 - 13

14

Unlike the message, the handler class does have a few rules. First, a handler class must

implement MessageHandlerInterface ... which is actually empty. It's a "marker" interface.

We'll talk about why this is needed in a bit. And second, the class must have a public function

called __invoke() with a single argument that is type-hinted with the message class. So,

namespace App\Message;

class AddPonkaToImage

{

}

namespace App\MessageHandler;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class AddPonkaToImageHandler implements MessageHandlerInterface

{

}

AddPonkaToImage , then any argument name: $addPonkaToImage . Inside, hmm, just to see

how this all works, let's dump($addPonkaToImage) .

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

13

14

Connecting the Message and Handler

Ok, let's back up. On a high level, here's how this is going to work. In our code, we'll create an

AddPonkaToImage object and tell messenger - the message bus - to "handle" it. Messenger

will see our AddPonkaToImage object, go get the AddPonkaToImageHandler service, call

its __invoke() method and pass it the AddPonkaToImage object. That's... all there is to it!

But wait... how does messenger know that the AddPonkaToImage object should be "handled"

by AddPonkaToImageHandler? Like, if we had multiple command and handler classes, how

would it know which handler handles which message?

Find your terminal and run:

php bin/console debug:messenger

This is an awesome command: it shows us a map of which handler will be called for each

message. We only have 1 right now, but... yea, somehow it already knows that

AddPonkaToImage should be handled by AddPonkaToImageHandler . How?

It knows thanks to two things. First, that empty MessageHandlerInterface is a "flag" that

tells Symfony that this is a messenger "handler". And second, Messenger looks for a method

called __invoke() and reads the type-hint on its argument to know which message class this

should handle. So, AddPonkaToImage .

use App\Message\AddPonkaToImage;

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 dump($addPonkaToImage);

 }

}

And yes, you can totally configure all of this in a different way, and even skip adding the

interface by using a tag. We'll talk about some of this later... but it's usually not something you

need to worry about.

Oh, and if you're not familiar with the __invoke() method, ignoring Messenger for a minute,

that's a magic method you can put on any PHP class to make it "executable": you can take an

object and call it like a function... if it has this method:

$handler = new AddPonkaToImageHandler();

$handler($addPonkaToImage);

That detail is not important at all to understand Messenger, but it explains why this, otherwise

"strange" method name was chosen.

Dispatching the Message

Phew! Status check: we have a message class, we have a handler class, and thanks to some

smartness from Symfony, Messenger knows these are linked together. The last thing we need

to do is... actually send the command, or "message", to the bus!

Head over to ImagePostController . This is the endpoint that uploads our image and adds

Ponka to it. Fetch the message bus by adding a new argument with the

MessageBusInterface type-hint.

src/Controller/ImagePostController.php

 // ... lines 1 - 15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 38

39

40

 // ... lines 41 - 77

78

 // ... lines 79 - 109

110

use Symfony\Component\Messenger\MessageBusInterface;

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, PhotoPonkaficator $ponkaficator, MessageBusInterface

$messageBus)

 {

 }

}

Then... right above all the Ponka image code - we'll leave all of that there for the moment - say

$message = new AddPonkaToImage() . And then

$messageBus->dispatch($message) .

src/Controller/ImagePostController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 21

22

23

 // ... lines 24 - 38

39

40

 // ... lines 41 - 60

61

62

63

64

65

66

 // ... lines 67 - 77

78

 // ... lines 79 - 109

110

That's it! dispatch() is the only method on that object... it doesn't get any more complicated

than this.

So... let's try it! If everything works, this AddPonkaToImage object should be passed to

__invoke() and then we'll dump it. Since this will all happen on an AJAX request, we'll use a

trick in the profiler to see if it worked.

Head back and refresh the page... just to be safe. Upload a new photo and... when it finishes,

down on the web debug toolbar, hover over the arrow icon to find... nice! Here is that AJAX

request. I'll hold Command and click the link to open it in a new tab. This is the profiler for that

AJAX request. Click the "Debug" link on the left.

Ha! There it is! This shows us that our dump() code was executed during the AJAX request! It

worked! We pass the message to the message bus and then it calls the handler.

use App\Message\AddPonkaToImage;

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, PhotoPonkaficator $ponkaficator, MessageBusInterface

$messageBus)

 {

 $message = new AddPonkaToImage();

 $messageBus->dispatch($message);

 /*

 * Start Ponkafication!

 */

 }

}

Of course... our handler doesn't do anything yet. Next, let's move all of the Ponkafication logic

from our controller into the handler.

Chapter 3: Doing Work in the Handler

Inside our controller, after we save the new file to the filesystem, we're creating a new

AddPonkaToImage object and dispatching it to the message bus... or technically the

"command" bus... because we're currently using it as a command bus. The end result is that the

bus calls the __invoke() method on our handler and passes it that object. Messenger

understands the connection between the message object and handler thanks to the argument

type-hint and this interface.

Command Bus: Beautifully Disappointing

By the way, you might be thinking:

“Wait... the whole point of a "command" bus is to... just "call" this __invoke() method for

me? Couldn't I just... ya know... call it myself and skip a layer?”

And... yes! It's that simple! It should feel completely underwhelming at first!

But having that "layer", the "bus", in the middle gives us two nice things. First, out code is more

decoupled: the code that creates the "command" - our controller in this case - doesn't know or

care about our handler. It dispatches the message and moves on. And second, this simple

change is going to allow us to execute handlers asynchronously. More on that soon.

Moving code into the Handler

Back to work: all the code to add Ponka to the image is still done inside our controller: this gets

an updated version of the image with Ponka inside, another service actually saves the new

image onto the filesystem, and this last bit - $imagePost->markAsPonkaAdded() - updates

a date field on the entity. It's only a few lines of code... but that's a lot of work!

Copy all of this, remove it, and I'll take my comments out too. Paste all of that into the handler.

Ok, no surprise, we have some undefined variables. $ponkaficator , $photoManager and

$entityManager are all services.

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

19

In the controller... on top, we were autowiring those services into the controller method. We

don't need $ponkaficator anymore.

src/Controller/ImagePostController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 37

38

39

 // ... lines 40 - 63

64

 // ... lines 65 - 95

96

Anyways, how can we get those services in our handler? Here's the really cool thing: the

"message" class - AddPonkaToImage is a simple, "model" class. It's kind of like an entity: it

doesn't live in the container and we don't autowire it into our classes. If we need an

AddPonkaToImage object, we say: new AddPonkaToImage() . If we decide to give that

class any constructor arguments - more on that soon - we pass them right here.

But the handler classes are services. And that means we can use, good, old-fashioned

dependency injection to get any services we need.

Add public function __construct() with, let's see here,

PhotoPonkaficator $ponkaficator , PhotoFileManager $photoManager and... we

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 $updatedContents = $ponkaficator->ponkafy(

 $photoManager->read($imagePost->getFilename())

);

 $photoManager->update($imagePost->getFilename(),

$updatedContents);

 $imagePost->markAsPonkaAdded();

 $entityManager->flush();

 }

}

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 }

}

need the entity manager: EntityManagerInterface $entityManager .

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 5

6

7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 21

22

 // ... lines 23 - 32

33

I'll hit Alt + Enter and select Initialize Fields to create those properties and set them.

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 32

33

Now... let's use them: $this->ponkaficator , $this->photoManager ,

$this->photoManager again... and $this->entityManager .

use App\Photo\PhotoFileManager;

use App\Photo\PhotoPonkaficator;

use Doctrine\ORM\EntityManagerInterface;

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __construct(PhotoPonkaficator $ponkaficator,

PhotoFileManager $photoManager, EntityManagerInterface $entityManager)

 {

 }

}

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 private $ponkaficator;

 private $photoManager;

 private $entityManager;

 public function __construct(PhotoPonkaficator $ponkaficator,

PhotoFileManager $photoManager, EntityManagerInterface $entityManager)

 {

 $this->ponkaficator = $ponkaficator;

 $this->photoManager = $photoManager;

 $this->entityManager = $entityManager;

 }

}

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 23

24

25

26

27

28

29

 // ... line 30

31

32

33

Message Class Data

Nice! This leaves us with just one undefined variable: the actual $imagePost that we need to

add Ponka to. Let's see... in the controller, we create this ImagePost entity object... which is

pretty simple: it holds the filename on the filesystem... and a few other minor pieces of info. This

is what we store in the database.

Back in AddPonkaToImageHandler , at a high level, this class needs to know which

ImagePost it's supposed to be working on. How can we pass that information from the

controller to the handler? By putting it on the message class! Remember, this is our class, and it

can hold whatever data we want.

So now that we've discovered that our handler needs the ImagePost object, add a

public function __construct() with one argument: ImagePost $imagePost . I'll do

my usual Alt+Enter and select "Initialize fields" to create and set that property.

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 $updatedContents = $this->ponkaficator->ponkafy(

 $this->photoManager->read($imagePost->getFilename())

);

 $this->photoManager->update($imagePost->getFilename(),

$updatedContents);

 $this->entityManager->flush();

 }

}

src/Message/AddPonkaToImage.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 19

20

Down below, we'll need a way to read that property. Add a getter:

public function getImagePost() with an ImagePost return type. Inside,

return $this->imagePost .

src/Message/AddPonkaToImage.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 15

16

17

18

19

20

And really... you can make this class look however you want: we could have made this a

public property with no need for a constructor or getter. Or you could replace the constructor

with a setImagePost() . This is the way I like to do it... but it doesn't matter: as long as it

holds the data you want to pass to the handler... you're good!

Anyways, now we're dangerous! Back in ImagePostController , down here,

AddPonkaToImage now needs an argument. Pass it $imagePost .

use App\Entity\ImagePost;

class AddPonkaToImage

{

 private $imagePost;

 public function __construct(ImagePost $imagePost)

 {

 $this->imagePost = $imagePost;

 }

}

class AddPonkaToImage

{

 public function getImagePost(): ImagePost

 {

 return $this->imagePost;

 }

}

src/Controller/ImagePostController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 37

38

39

 // ... lines 40 - 59

60

 // ... lines 61 - 63

64

 // ... lines 65 - 95

96

Then, over in the handler, finish this with

$imagePost = $addPonkaToImage->getImagePost() .

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 23

24

25

26

 // ... lines 27 - 32

33

34

I love it! So that's the power of the message class: it really is like you're writing a message to

someone that says:

“I want you to do a task and here's all the information that you need to know to do that task.”

Then, you hand that off to the message bus, it calls the handler, and the handler has all the info

it needs to do that work. It's a simple... but really neat idea.

Let's make sure it all works: move over and refresh just to be safe. Upload a new image and... it

still works!

Next: there's already one other job we can move to a command-handler system: deleting an

image.

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $message = new AddPonkaToImage($imagePost);

 }

}

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 $imagePost = $addPonkaToImage->getImagePost();

 }

}

Chapter 4: Message, Handler & debug:messenger

Our app has one other small superpower. If for some reason you're not happy with your Ponka

image... I'm not even sure how that would be possible... you can delete it. When you click that

button, it sends an AJAX request that hits this delete() action.

And... that really does two things. First, $photoManager->deleteImage() takes care of

physically deleting the image from the filesystem. I added a sleep() for dramatic effect, but

deleting something from the filesystem could be a bit heavy if the files were stored in the cloud,

like on S3.

And second, the controller deletes the ImagePost from the database. But... thinking about

these two steps... the only thing we need to do immediately is delete the image from the

database. If we only did that and the user refreshed the page, it would be gone. And then... if we

deleted the actual file a few seconds... or minutes or even days later... that would be totally fine!

But... more on doing fancy asynchronous stuff in a few minutes.

Creating DeleteImagePost

Right now, let's refactor all this deleting logic into the command bus pattern we just learned.

First, we need the message, or "command" class. Let's copy AddPonkaToImage , paste and

call it DeleteImagePost.php . Update the class name and then... um... do nothing!

Coincidentally, this message class will look exactly the same: the handler will need to know

which ImagePost to delete.

src/Message/DeleteImagePost.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Creating DeleteImagePostHandler

Time for step 2 - the handler! Create a new PHP class and call it DeleteImagePostHandler .

Like before, give this a public function __invoke() with a DeleteImagePost type-

hint as the only argument.

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

Now, it's the same process as before: copy the first three lines of the controller, delete them,

and paste them into the handler. This time, we need two services.

namespace App\Message;

use App\Entity\ImagePost;

class DeleteImagePost

{

 private $imagePost;

 public function __construct(ImagePost $imagePost)

 {

 $this->imagePost = $imagePost;

 }

 public function getImagePost(): ImagePost

 {

 return $this->imagePost;

 }

}

namespace App\MessageHandler;

use App\Message\DeleteImagePost;

class DeleteImagePostHandler

{

 public function __invoke(DeleteImagePost $deleteImagePost)

 {

 }

}

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

Add public function __construct() with PhotoFileManager $photoManager and

EntityManagerInterface $entityManager . I'll hit Alt + Enter and click initialize fields to

create both of those properties and set them.

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 27

28

Down here, use $this->photoManager , $this->entityManager and one more

$this->entityManager . And, like before, we need to know which ImagePost we're

deleting. Prep that with $imagePost = $deleteImagePost->getImagePost() .

class DeleteImagePostHandler

{

 public function __invoke(DeleteImagePost $deleteImagePost)

 {

 $photoManager->deleteImage($imagePost->getFilename());

 $entityManager->remove($imagePost);

 $entityManager->flush();

 }

}

use App\Photo\PhotoFileManager;

use Doctrine\ORM\EntityManagerInterface;

class DeleteImagePostHandler

{

 private $photoManager;

 private $entityManager;

 public function __construct(PhotoFileManager $photoManager,

EntityManagerInterface $entityManager)

 {

 $this->photoManager = $photoManager;

 $this->entityManager = $entityManager;

 }

}

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 19

20

21

22

23

24

25

26

27

28

Dispatching the Message

Ding! That's my... it's done sound! Because, we have a message, a handler and Symfony

should know that they're linked together. The last step is to send the message. In the

controller... we don't need these last two arguments anymore... we only need

MessageBusInterface $messageBus . And then, this is wonderful, our entire controller is:

$messageBus->dispatch(new DeleteImagePost($imagePost)) .

src/Controller/ImagePostController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 21

22

23

 // ... lines 24 - 69

70

71

72

73

74

75

 // ... lines 76 - 93

94

Pretty cool, right? Let's see if it all works. Move over, click the "x" and... hmm... it didn't

disappear. And... it looks like it was a 500 error! Through the power of the profiler, we can click

the little link to jump straight to a big, beautiful, HTML version of that exception. Interesting:

class DeleteImagePostHandler

{

 public function __invoke(DeleteImagePost $deleteImagePost)

 {

 $imagePost = $deleteImagePost->getImagePost();

 $this->photoManager->deleteImage($imagePost->getFilename());

 $this->entityManager->remove($imagePost);

 $this->entityManager->flush();

 }

}

use App\Message\DeleteImagePost;

class ImagePostController extends AbstractController

{

 public function delete(ImagePost $imagePost, MessageBusInterface

$messageBus)

 {

 $messageBus->dispatch(new DeleteImagePost($imagePost));

 return new Response(null, 204);

 }

}

Command Bus: Each Message should have One Handler

“No handler for message App\Message\DeleteImagePost ”

That's interesting. Before we figure out what went wrong, I want to mention one thing: in a

command bus, each message normally has exactly one handler: not two and not zero. And

that's why Messenger gives us a helpful error if it can't find that handler. We'll talk more about

this later and bend these rules when we talk about event buses.

Debugging the Missing Handler

Anyways... why does Messenger think that DeleteImagePost doesn't have a handler? Can't

it see the DeleteImagePostHandler class? Find your terminal and run:

php bin/console debug:messenger

Woh! It only sees our one handler class! What this command really does is this: it finds all the

"handler" classes in the system, then prints the "message" that it handles next to it. So... this

confirms that, for some reason, Messenger doesn't see our handler!

And... you may have spotted my mistake! To find all the handlers, Symfony looks in the src/

directory for classes that implement MessageHandlerInterface . And... I forgot that part!

Add implements MessageHandlerInterface .

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 28

29

Run debug:messenger again:

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class DeleteImagePostHandler implements MessageHandlerInterface

{

}

php bin/console debug:messenger

Now it sees it! Let's try it again: close up the profiler, try hitting "x" and... this time it works!

Status report: we have two messages and each has a handler that's potentially doing some

pretty heavy work, like image manipulation or talking across a network if files are stored in the

cloud. It's time to talk about transports: the key concept behind taking this work and doing it

asynchronously so that our users don't have to wait for all that heavy work to finish before

getting a response.

Chapter 5: Transport: Do Work Later (Async)

So far, we've separated the instructions of what we want to do - we want to add Ponka to this

ImagePost - from the logic that actually does that work. And... it's a nice coding pattern: it's

easy to test and if we need to add Ponka to an image from anywhere else in our system, it will

be super pleasant.

But this pattern unlocks some serious possibilities. Think about it: now that we've isolate the

instructions on what we want to do, instead of handling the command object immediately,

couldn't we, in theory, "save" that object somewhere... then read and process it later? That's...

basically how a queuing system works. The advantage is that, depending on your setup, you

could put less load on your web server and give users a faster experience. Like, right now,

when a user clicks to upload a file, it takes a few seconds before it finally pops over here. It's not

the biggest deal, but it's not ideal. If we can fix that easily, why not?

Hello Transports

In Messenger, the key to "saving work for later" is a system called transports. Open up

config/packages/messenger.yaml . See that transports key? The details are actually

configured in .env .

Here's the idea: we're going to say to Messenger:

“Yo! When I create an AddPonkaToImage object, instead of handling it immediately, I want

you to send it somewhere else.”

That "somewhere else" is a transport. And a transport is usually a "queue". If you're new to

queueing, the idea is refreshingly simple. A queue is an external system that "holds" onto

information in a big list. In our case, it will hold onto serialized message objects. When we send

it another message, it adds it to the list. Later, you can read those messages from the queue

one-by-one, handle them and, when you're done, the queue will remove it from the list.

Sure... robust queuing systems have a lot of other bells and whistles... but that really is the main

concept.

Transport Types

There are a bunch of queueing systems available, like RabbitMQ, Amazon SQS, Kafka, and

queueing at the supermarket. Out-of-the box, Messenger supports three: amqp - which

basically means RabbitMQ, but technically means any system that implements the "AMQP"

spec - doctrine and redis . AMQP is the most powerful... but unless you're already a

queueing pro and want to do something crazy, these all work exactly the same.

Oh, and if you need to talk to some unsupported transport, Messenger integrates with another

library called Enqueue, which supports a bunch more.

Activating the doctrine Transport

Because I'm already using Doctrine in this project, let's use the doctrine transport.

Uncomment the environment variable for that.

.env

 // ... lines 1 - 29

30

 // ... lines 31 - 32

33

 // ... line 34

35

See this ://default part? That tells the Doctrine transport that we want to use the default

Doctrine connection. Yep, it'll re-use the connection you've already set up in your app to store

the message inside a new table. More on that soon.

 Tip

Starting in symfony 5.1, the code behind the Doctrine transport was moved to its own

package. The only difference is that you should now also run this command:

composer require symfony/doctrine-messenger

Now, back in messenger.yaml , uncomment this async transport, which uses that

MESSENGER_TRANSPORT_DSN environment variable we just created. The name - async - isn't

important - that could be anything. But, in a second, we'll start referencing that name.

###> symfony/messenger ###

MESSENGER_TRANSPORT_DSN=doctrine://default

###

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

7

8

 // ... lines 9 - 16

Routing to Transports

At this point... yay! We've told Messenger that we have an async transport. And if we want

back and uploaded a file now, it would... make absolutely no difference: it would still be

processed immediately. Why?

Because we need to tell Messenger that this message should be sent to that transport, instead

of being handled right now.

Back in messenger.yaml , see this routing key? When we dispatch a message, Messenger

looks at all of the classes in this list... which is zero right now if you don't count the comment...

and looks for our class - AddPonkaToImage . If it doesn't find the class, it handles the message

immediately.

Let's tell Messenger to instead send that to the async transport. Set

App\Message\AddPonkaToImage to async .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 12

13

14

15

As soon as we do that... it makes a huge difference. Watch how fast the image loads on the

right after uploading. Boom! That was faster than before and... Ponka isn't there! Gasp!

Actually, let's try one more - that first image was a little bit slow because Symfony was

rebuilding its cache. This one should be nearly instant. It is! Instead of calling our handler

immediately, Messenger is sending our message to the Doctrine transport.

framework:

 messenger:

 transports:

 # https://symfony.com/doc/current/messenger.html#transports

 async: '%env(MESSENGER_TRANSPORT_DSN)%'

framework:

 messenger:

 routing:

 # Route your messages to the transports

 'App\Message\AddPonkaToImage': async

Seeing the Queued Message

And... um... what does that actually mean? Find your terminal... or whatever tool you like to use

to play with databases. I'll use the mysql client to connect to the messenger_tutorial

database. Inside, let's:

SHOW TABLES;

Woh! We expected migration_versions and image_post ... but suddenly we have a third

table called messenger_messages . Let's see what's in there:

SELECT * FROM messenger_messages;

Nice! It has two rows for our two messages! Let's use the magic \G to format this nicer:

SELECT * FROM messenger_messages \G

Cool! The body holds our object: it's been serialized using PHP's serialize() function...

though that can be configured. The object is wrapped inside something called an Envelope ...

but inside... we can see our AddPonkaToImage object and the ImagePost inside of that...

complete with the filename, createdAt date, etc.

Wait... but where did this table come from? By default, if it's not there, Messenger creates it for

you. If you don't want that, there's a config option called auto_setup to disable this - I'll show

you how later. If you did disable auto setup, you could then use the handy

setup-transports command on deploy to create that table for you.

php bin/console messenger:setup-transports

This doesn't do anything now... because the table is already there.

Hey! This was a huge step! Whenever we upload images... they are not being handled

immediately: when we upload two more... they're being sent to Doctrine and it is keeping track

of them. Thanks Doctrine!

Next, it's time to read those messages one-by-one and start handling them. We do that with a

console command called a "worker".

Chapter 6: Worker Command

Even if I refresh the page, now that our messages aren't being handled immediately... the four

most recent photos don't have Ponka in them. That's tragic! Instead, those messages were sent

to the doctrine transport and are waiting patiently inside of a messenger_messages table.

So... how can we read these back out and process them? We need something that can fetch

each row one-by-one, deserialize each message back into PHP, then pass it to the message

bus to be actually handled. That "thing" is a special console command. Run:

php bin/console messenger:consume

You won't see any output... yet... but, unless we messed something up, this is doing exactly

what we need: reading each message, deserializing it, and sending it back to the bus for

handling.

So... let's go refresh. Woh! It did work! All 4 messages now have Ponka on them! We're saved!

messenger:consume -vv

To make this more interesting, as you can see, it says to run this command with -vv if you

want to see what it's doing behind-the-scenes. But... interesting, once the command finished

reading and handling all 4 messages... it didn't quit: it's still running. And if we restart it with -vv

on the end:

php bin/console messenger:consume -vv

... it does the same. A command that "handles" messages from a queue is called a "worker".

And the job of a worker is to watch and wait for new messages to be added to the queue and

handle them the instant one is added. It waits and runs... forever! Well, that's not totally true -

but more on that later when we talk about deployment.

Let's peek back over in our "queue" - the messenger_messages table:

SELECT * FROM messenger_messages \G

Yep! This holds zero rows because all those messages were processed and removed from the

queue. Back at the browser, let's upload... how about... 5 new photos. Woh... that was awesome

fast!

Ok, ok, move back to the terminal that's running the worker! We can see it doing its job! It says:

"Received message", "Message handled by AddPonkaToImageHandler " then

"AddPonkaToImage was handled successfully (acknowledging)". That last part,

"acknowledging" means that Messenger notified the Doctrine transport that the message was

handled and can be removed from the queue.

Then... it keeps going to the next message... and the next... and the next... until it's done. So if

we refresh... Ponka was added to all of these! Let's do it again - upload 5 more photos. And...

let's refresh and watch... there's Ponka! We can see them being handled little-by-little. So much

wonderful Ponka!

Ok, this would be cooler if our JavaScript automatically refreshed the image when Ponka was

added... instead of me needing to refresh the page... but that's a totally different topic, and one

that's covered by the Mercure component in Symfony.

And... that's it! This messenger:consume command is something that you'll have running on

production all the time. Heck, you might decide to run multiple worker processes. Or, you could

even deploy your app to a totally different server - one that's not handling web requests - and

run the worker processes there! Then, handling these messages wouldn't use any resources

from your web server. We'll talk more about deployment later.

Problem: Database Didn't Update?

Because right now... we have a problem... a kinda weird problem. Refresh the page. Hmm, the

original photos all say something like:

“Ponka visited 13 minutes ago. Ponka visited 11 minutes ago.”

But, since we made things asynchronous, these all say:

“Ponka is napping. Check back soon.”

Open up the ImagePost entity and find the $ponkaAddedAt property. This is a datetime

field, which records when Ponka was added to the photo. The message on the front-end comes

from this value.

For the original ones... back when the whole process was synchronous, this field was set

successfully. But now... it looks like it isn't. Let's check the database to be sure. Over in MySQL,

run:

SELECT * FROM image_post \G

All the way back in the beginning... ponka_added_at was being set. But now they're all

null . So... our images are being processed correctly, but, for some reason, this field in the

database is not. If we look inside AddPonkaToImageHandler ... yea... right here:

$imagePost->markPonkaAsAdded() . That sets the property. So... why isn't it saving?

Let's figure out what's going on next and learn a bit more about some "best practices" when it

comes to building your message class.

Chapter 7: Problems with Entities in Messages

We've got a strange issue: we know that AddPonkaToImageHandler is being called

successfully by the worker process.... because it's actually adding Ponka to the images! But, for

some reason... even though we call $imagePost->markAsPonkaAdded() ... which sets the

$ponkaAddedAt property... and then $this->entityManager->flush() ... it doesn't

seem to be saving!

Maybe we're Missing persist()?

So.. you might wonder:

“Do I need to call persist() on $imagePost?”

Let's try it: $this->entityManager->persist($imagePost) . In theory, we should not

need this: you only need to call persist() on new objects that you want to save. It's not

needed... and normally does nothing... when you call it on an object that will be updated.

But... what the heck... let's see what happens.

Restarting the Worker

Oh! But before we try this... we need to do something very important! Find your terminal, press

Ctrl+C to stop the worker, then restart it:

php bin/console messenger:consume

Why? As you know, workers sit there and run... forever. The problem is that, if you update some

of your code, the worker won't see it! Until you restart it, it still has the old code stored in

memory! So anytime you make a change to code that a worker uses, be sure to restart it. Later,

we'll talk about how to do this safely when you deploy.

The Weirdness of Serialized Entities

Let's see what happens now that we've added that new persist() call. Upload one new file,

find your worker and... yep! It was handled successfully. Did that fix the entity saving problem?

Refresh the page.

Yikes! What just happened! The image shows up twice! One with the date set... and one

without. To the database!

SELECT * FROM image_post \G

Yea... this one image is on two rows: I know because they're pointing to the exact same file on

the filesystem. The worker... somehow... duplicated that row in the database.

Doctrine's Identity Map

This... is a confusing bug... but it has an easy fix. First, let's look at things from Doctrine's

perspective. Internally, Doctrine keeps track of a list of all the entity objects that it's currently

dealing with. When you query for an entity, it adds it to this list. When you call persist() , if

it's not already in the list, it's added. Then, when we call flush() , Doctrine loops over all of

these objects, looks for any that changed, and creates the appropriate UPDATE or INSERT

queries. It knows whether or not an object should be inserted or updated because it knows

whether or not it was responsible for querying for that object. By the way, if you want to nerd out

on this topic more, this "list" is called the identity map... and it's just a big array that starts empty

at the beginning of each request and gets bigger as you query or persist things.

So now let's think about what happens in our worker. When it deserializes the

AddPonkaToImage object, it also deserializes the ImagePost object that lives inside. At that

moment, Doctrine's identity map does not contain this object... because it did not query for it

inside this PHP process - from inside the worker. That's why originally, before we added

persist() , when we called flush() , Doctrine looked at the list of objects in its identity map

- which was empty - and... did absolutely nothing: it doesn't know it's supposed to save the

ImagePost !

When we added persist() , we created a different issue. Doctrine is now aware that it needs

to save this... but because it didn't original query for it, it mistakenly thinks that this should be

inserted into the database as a new row, instead of updating.

Phew! I wanted you to see this because... it is kinda hard to debug. Fortunately, the fix is easy.

And it touches on an important best-practice for your messages: include only the information

you need. That's next.

Chapter 8: Passing Entity Ids inside of Messages

Suppose you need your friend to come over and watch your dog for the weekend - let's call her

Molly. So you write them a message explaining all the details they need to know: how often to

feed Molly, when to walk her, exactly where she likes to be scratched behind the ears, your

favorite superhero movie and the name of your childhood best friend. Wait... those last two

things... while fascinating... have nothing to do with watching your dog Molly!

And this touches on a best-practice for designing your message classes: make them contain all

the details the handler needs... and nothing extra. This isn't an absolute rule... it just makes

them leaner, smaller and more directed.

Passing the Entity Id

If you think about our message, we don't really need the entire ImagePost object. The

smallest thing that we could pass is actually the id... which we could then use to query for the

ImagePost object and get the filename.

Change the constructor argument to int $imagePostId . I'll change that below and go to

Code -> Refactor to rename the property. Oh, and brilliant! It also renamed my getter to

getImagePostId() . Update the return type to be an int . We can remove the old use

statement as extra credit.

src/Message/AddPonkaToImage.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Next, in ImagePostController , search for AddPonkaToImage and... change this to

$imagePost->getId() .

src/Controller/ImagePostController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 38

39

40

 // ... lines 41 - 60

61

 // ... lines 62 - 64

65

 // ... lines 66 - 93

94

Our message class is now as small as it can get. Of course, this means that we have a little bit

extra work to do in our handler. First, the $imagePost variable is not... well.. an ImagePost

anymore! Rename it to $imagePostId .

namespace App\Message;

use App\Entity\ImagePost;

class AddPonkaToImage

{

 private $imagePostId;

 public function __construct(int $imagePostId)

 {

 $this->imagePostId = $imagePostId;

 }

 public function getImagePostId(): int

 {

 return $this->imagePostId;

 }

}

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $message = new AddPonkaToImage($imagePost->getId());

 }

}

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 26

27

28

29

 // ... lines 30 - 37

38

39

To query for the actual object, add a new constructor argument:

ImagePostRepository $imagePostRepository . I'll hit Alt + Enter -> Initialize Fields to

create that property and set it.

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 7

8

 // ... lines 9 - 11

12

13

 // ... lines 14 - 16

17

 // ... line 18

19

20

 // ... lines 21 - 23

24

25

 // ... lines 26 - 38

39

Back in the method, we can say

$imagePost = $this->imagePostRepository->find($imagePostId) .

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 $imagePostId = $addPonkaToImage->getImagePostId();

 }

}

use App\Repository\ImagePostRepository;

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 private $imagePostRepository;

 public function __construct(PhotoPonkaficator $ponkaficator,

PhotoFileManager $photoManager, EntityManagerInterface $entityManager,

ImagePostRepository $imagePostRepository)

 {

 $this->imagePostRepository = $imagePostRepository;

 }

}

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 26

27

28

 // ... line 29

30

 // ... lines 31 - 37

38

39

That's it! And this fixes our Doctrine problem! Now that we're querying for the entity, when we

call flush() , it will correctly save it with an UPDATE . We can remove the persist() call

because it's not needed for updates.

Let's try it! Because we just changed code in our handler, hit Ctrl+C to stop our worker and then

restart it:

php bin/console messenger:consume -vv

Here we go! Upload a new file... check the worker - yep, it processed just fine - and... refresh!

Yes! No duplication, Ponka is visiting my workshop and the date is set!

Failing Gracefully

But... sorry to bring up bad news... what if the ImagePost can't be found for this

$imagePostId? That shouldn't happen... but depending on your app, it might be possible! For

us... it is! If a user uploads a photo, then deletes it before the worker can handle it, the

ImagePost will be gone!

Is that really a problem? If the ImagePost was already deleted, do we care if this handler

blows up? Probably not... as long as you've thought about how it will explode and are

intentional.

Check this out: let's start by saying: if (!$imagePost) so we can do some special

handling... instead of trying to call getFilename() on null down here. If this happens, we

class AddPonkaToImageHandler implements MessageHandlerInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 $imagePost = $this->imagePostRepository->find($imagePostId);

 }

}

know that it's probably just because the image was already deleted. But... because I hate

surprises on production, let's log a message so that we know this happened... just in case it's

caused by a bug in our code.

Logger Injection with LoggerAwareInterface

Starting in Symfony 4.2, there's a little shortcut to getting the main logger service. First, make

your service implement LoggerAwareInterface . Then, use a trait called

LoggerAwareTrait .

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 13

14

15

16

 // ... lines 17 - 30

31

32

 // ... lines 33 - 35

36

 // ... lines 37 - 44

45

 // ... lines 46 - 52

53

54

That's it! Let's peek inside LoggerAwareTrait . Ok cool. In the core of Symfony, there's a little

bit of code that says:

“whenever you see a user's service that implements LoggerAwareInterface ,

automatically call setLogger() on it and pass the logger.”

By combining the interface with this trait... we don't have to do anything! We instantly have a

$logger property we can use.

How to Fail in your Handler

use Psr\Log\LoggerAwareInterface;

use Psr\Log\LoggerAwareTrait;

class AddPonkaToImageHandler implements MessageHandlerInterface,

LoggerAwareInterface

{

 use LoggerAwareTrait;

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 if (!$imagePost) {

 }

 }

}

Ok, so back inside our if statement... what should we do if the ImagePost isn't found? We

have two options... and the correct choice depends on the situation. First, we could throw an

exception - any exception - and that would cause this message to be retried. More retries soon.

Or, you could simply "return" and this message will "appear" to have been handled

successfully... and will be removed from the queue.

Let's return: there's no point in retrying this message later... that ImagePost is gone!

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 30

31

32

 // ... lines 33 - 35

36

37

38

 // ... lines 39 - 43

44

45

 // ... lines 46 - 52

53

54

But let's also log a message: if $this->logger , then $this->logger->alert() with, how

about,

“Image post %d was missing!”

passing $imagePostId for the wildcard.

class AddPonkaToImageHandler implements MessageHandlerInterface,

LoggerAwareInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 if (!$imagePost) {

 // could throw an exception... it would be retried

 // or return and this message will be discarded

 return;

 }

 }

}

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 30

31

32

 // ... lines 33 - 35

36

37

38

39

40

41

42

43

44

45

 // ... lines 46 - 52

53

54

Oh, and the only reason I'm checking to see if $this->logger is set is... basically... to help

with unit testing. Inside Symfony, the logger property will always be set. But on an object-

oriented level, there's nothing that guarantees that someone will have called setLogger() ...

so this is just a bit more responsible.

Witnessing Errors in your Handler

Let's try this thang! Let's see what happens if we delete an ImagePost before it's processed!

First, move over, stop the handler, and restart it:

php bin/console messenger:consume -vv

And because each message takes a few seconds to process, if we upload a bunch of photos...

and delete them super quick... with any luck, we'll delete one before its message is handled.

class AddPonkaToImageHandler implements MessageHandlerInterface,

LoggerAwareInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 if (!$imagePost) {

 // could throw an exception... it would be retried

 // or return and this message will be discarded

 if ($this->logger) {

 $this->logger->alert(sprintf('Image post %d was missing!',

$imagePostId));

 }

 return;

 }

 }

}

Let's see if it worked! So... some did process successfully. But... yea! This one has an alert! And

thanks to the "return" we added, it was "acknowledged"... meaning it was removed from the

queue.

Oh... and interesting... there's another error I didn't plan for below:

“An exception occurred while handling message AddPonkaToImage: File not found at path...”

That's awesome! This is what it looks like if, for any reason, an exception is thrown in your

handler. Apparently the ImagePost was found in the database... but by the time it tried to read

the file on the filesystem, it had been deleted!

The really amazing part is that Messenger saw this failure and automatically retried the

message a second... then a third time. We'll talk more about failures and retries a bit later.

But first, our DeleteImagePost message is still being handled synchronously. Could we

make it async? Well... no! We need the ImagePost to be deleted from the database

immediately so that the user doesn't see it if they refresh. Unless... we could split the delete task

into two pieces... Let's try that next!

Chapter 9: Dispatching a Message inside a
Handler?

Deleting an image is still done synchronously. You can see it: because I made it extra slow for

dramatic effect, it takes a couple of seconds to process before it disappears. Of course, we

could hack around this by making our JavaScript remove the image visually before the AJAX

call finishes. But making heavy stuff async is a good practice and could allow us to put less load

on the web server.

Let's look at the current state of things: we did update all of this to be handled by our command

bus: we have a DeleteImagePost command and DeleteImagePostHandler . But inside

config/packages/messenger.yaml , we're not routing this class anywhere, which means

it's being handled immediately.

Oh, and notice: we're still passing the entire entity object into the message. In the last two

chapters, we talked about avoiding this as a best practice and because it can cause weird

things to happen if you handle this async.

But... if you're planning to keep DeleteImagePost synchronous... it's up to you: passing the

entire entity object won't hurt anything. And... really... we do need this message to be handled

synchronously! We need the ImagePost to be deleted from the database immediately so that,

if the user refreshes, the image is gone.

But, look closer: deleting involves two steps: deleting a row in the database and removing the

underlying image file. And... only that first step needs to happen right now. If we delete the file

on the filesystem later... that's no big deal!

Splitting into a new Command+Handler

To do part of the work sync and the other part async, my preferred approach is to split this into

two commands.

Create a new command class called DeletePhotoFile . Inside, add a constructor so we can

pass in whatever info we need. This command class will be used to physically remove the file

from the filesystem. And if you look in the handler, to do this, we only need the

PhotoFileManager service and the string filename.

So this time, the smallest amount of info we can put in the command class is

string $filename .

src/Message/DeletePhotoFile.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 8

9

10

 // ... line 11

12

 // ... lines 13 - 17

18

I'll hit Alt + enter and go to "Initialize Fields" to create that property and set it.

src/Message/DeletePhotoFile.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

 // ... lines 13 - 17

18

Now I'll go to Code -> Generate - or Cmd+N on a Mac - to generate the getter.

namespace App\Message;

class DeletePhotoFile

{

 public function __construct(string $filename)

 {

 }

}

namespace App\Message;

class DeletePhotoFile

{

 private $filename;

 public function __construct(string $filename)

 {

 $this->filename = $filename;

 }

}

src/Message/DeletePhotoFile.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Cool! Step 2: add the handler DeletePhotoFileHandler . Make this follow the two rules for

handlers: implement MessageHandlerInterface and create an __invoke() method with

one argument that's type-hinted with the message class:

DeletePhotoFile $deletePhotoFile .

src/MessageHandler/DeletePhotoFileHandler.php

 // ... lines 1 - 2

3

4

5

 // ... line 6

7

8

9

10

 // ... lines 11 - 17

18

19

 // ... line 20

21

22

Perfect! The only thing we need to do in here is... this one line:

$this->photoManager->deleteImage() . Copy that and paste it into our handler. For the

argument, we can use our message class: $deletePhotoFile->getFilename() .

namespace App\Message;

class DeletePhotoFile

{

 private $filename;

 public function __construct(string $filename)

 {

 $this->filename = $filename;

 }

 public function getFilename(): string

 {

 return $this->filename;

 }

}

namespace App\MessageHandler;

use App\Message\DeletePhotoFile;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class DeletePhotoFileHandler implements MessageHandlerInterface

{

 public function __invoke(DeletePhotoFile $deletePhotoFile)

 {

 }

}

src/MessageHandler/DeletePhotoFileHandler.php

 // ... lines 1 - 2

3

4

5

 // ... line 6

7

8

9

10

 // ... lines 11 - 17

18

19

20

21

22

And finally, we need the PhotoFileManager service: add a constructor with one argument:

PhotoFileManager $photoManager . I'll use my Alt+Enter -> Initialize fields trick to create

that property as usual.

src/MessageHandler/DeletePhotoFileHandler.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Done! We now have a functional command class which requires the string filename, and a

handler that reads that filename and... does the work!

namespace App\MessageHandler;

use App\Message\DeletePhotoFile;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class DeletePhotoFileHandler implements MessageHandlerInterface

{

 public function __invoke(DeletePhotoFile $deletePhotoFile)

 {

 $this->photoManager->deleteImage($deletePhotoFile->getFilename());

 }

}

namespace App\MessageHandler;

use App\Message\DeletePhotoFile;

use App\Photo\PhotoFileManager;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class DeletePhotoFileHandler implements MessageHandlerInterface

{

 private $photoManager;

 public function __construct(PhotoFileManager $photoManager)

 {

 $this->photoManager = $photoManager;

 }

 public function __invoke(DeletePhotoFile $deletePhotoFile)

 {

 $this->photoManager->deleteImage($deletePhotoFile->getFilename());

 }

}

Dispatching Embedded

All we need to do now is dispatch the new command. And... technically we could do this in two

different places. First, you might be thinking that, in ImagePostController , we could

dispatch two different commands right here.

But... I don't love that. The controller is already saying DeleteImagePost . It shouldn't need to

issue any other commands. If we choose to break that logic down into smaller pieces, that's up

to the handler. In other words, we're going to dispatch this new command from within the

command handler. Inception!

Instead of calling $this->photoManager->deleteImage() directly, change the type-hint

on that argument to autowire MessageBusInterface $messageBus . Update the code in the

constructor... and the property name.

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 9

10

 // ... line 11

12

13

14

 // ... lines 15 - 16

17

18

19

20

21

 // ... lines 22 - 32

33

Now, easy: remove the old code and start with:

$filename = $imagePost->getFilename() . Then, let's delete it from the database and,

at the bottom, $this->messageBus->dispatch(new DeletePhotoFile($filename)) .

use Symfony\Component\Messenger\MessageBusInterface;

class DeleteImagePostHandler implements MessageHandlerInterface

{

 private $messageBus;

 public function __construct(MessageBusInterface $messageBus,

EntityManagerInterface $entityManager)

 {

 $this->messageBus = $messageBus;

 $this->entityManager = $entityManager;

 }

}

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 11

12

13

 // ... lines 14 - 22

23

24

25

26

27

28

29

30

31

32

33

And... this should... just work: everything is still being handled synchronously.

Let's try it next, think a bit about what happens if part of a handler fails, and make half of the

delete process async.

use App\Message\DeletePhotoFile;

class DeleteImagePostHandler implements MessageHandlerInterface

{

 public function __invoke(DeleteImagePost $deleteImagePost)

 {

 $imagePost = $deleteImagePost->getImagePost();

 $filename = $imagePost->getFilename();

 $this->entityManager->remove($imagePost);

 $this->entityManager->flush();

 $this->messageBus->dispatch(new DeletePhotoFile($filename));

 }

}

Chapter 10: Partial Handler Failures & Advanced
Routing

We just broke our image deleting process into smaller pieces by creating a new command

class, a new handler and dispatching that new command from within the handler! This...

technically isn't anything special, but it is cool to see how you can break each task down into as

small pieces as you need.

But let's... make sure this actually works. Everything should still process synchronously. Delete

the first image and... refresh to be sure. It's gone!

Thinking about Failures and if Messages are Dispatched

Before we handle the new command class asynchronously, we need to think about something.

If, for some reason, there's a problem removing this ImagePost from the database, Doctrine

will throw an exception right here and the file will never be deleted. That's perfect: the row in the

database and file on the filesystem will both remain.

But if deleting the row from the database is successful... but there's a problem deleting the file

from the filesystem - like a temporary connection problem talking to S3 if our file were stored

there... that file would... actually.. never be deleted! And... maybe you don't care. But if you do,

you could wrap this entire block in a Doctrine transaction to make sure it's all successful before

finally removing the row. Of course... once we change this message to be handled

asynchronously, deleting the actual file will be done later... and we will be, kinda "trusting" that it

will be handled successfully. We're going to talk about failures and retries really soon.

Routing the Message Async

Anyways, now that we've broken this into two pieces, head over to

config/packages/messenger.yaml . Copy the existing line, paste and route the new

DeletePhotoFile to async .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 12

13

 // ... lines 14 - 15

16

Cool! With any luck, the row in the database will be deleted immediately... then the file a few

seconds later.

And because we just made a change to some handler code, go over, stop our worker and

restart it:

php bin/console messenger:consume -vv

Testing time! Refresh to be safe... and let's try deleting. Check out how much faster that is! If

you scoot over to the worker terminal... yea, it's doing all kinds of good stuff here. Oh, and fun!

An exception occurred while handling one of the messages - a file wasn't found. I think that's

from the duplicate row caused by the Doctrine bug a few minutes ago: the file was already gone

when the second image was deleted. The cool thing is that it's already retrying that message in

case it was a temporary failure. Eventually, it gives up and "rejects" the message.

Let's try this whole crazy system together! Upload a bunch of photos... then... quick! Delete a

couple! If you look at the worker... it's all beautifully mixed up: a few AddPonkaToImage

objects are handled here... then DeletePhotoFile .

Routing with Interfaces & Base Classes

Oh, and by the way: if you look at the routing section in messenger.yaml , you'll usually

route thing by their exact class name: App\Message\AddPonkaToImage goes to async . But

you can also route via interfaces or base classes. For example, if you have a bunch of classes

that should go to the async transport, you could create your very own interface - maybe

AsyncMessageInterface - make your messages implement that, then only need to route

that interface to async here. But be careful because, if a class matches multiple routing lines, it

will be sent to all those transports. Oh, and last thing - in case you have a use-case, each

routing entry can send to multiple transports.

framework:

 messenger:

 routing:

 'App\Message\DeletePhotoFile': async

Next: remember how the serialized message in the database was wrapped in something called

an Envelope? Let's learn what that is and how its stamp system gives us some cool

superpowers.

Chapter 11: Envelopes & Stamps

We just got a request from Ponka herself... and when it comes to this site, Ponka is the boss.

She thinks that, when a user uploads a photo, her image is actually being added a little bit too

quickly. She wants it to take longer: she wants it to feel like she's doing some really epic work

behind the scenes to get into your photo.

I know, it's kind of a silly example - Ponka is so weird when you talk to her before her shrimp

breakfast and morning nap . But... it is an interesting challenge: could we somehow not only

say: "handle this later"... but also "wait at least 5 seconds before handling it?".

Envelope: A Great Place to put a Message

Yep! And it touches on some super cool parts of the system called stamps and envelopes. First,

open up ImagePostController and go up to where we create the AddPonkaToImage

object. AddPonkaToImage is called the "message" - we know that. What we don't know is

that, when you pass your message to the bus, internally, it gets wrapped inside something

called an Envelope .

Now, this isn't an especially important detail except that, if you have an Envelope , you can

attach extra config to it via stamps. So yes, you literally put a message in an envelope and then

attach stamps. Is this your favorite component or what?

Anyways, those stamps can carry all sorts of info. For example, if you're using RabbitMQ, you

can configure a few things about how the message is delivered, like something called a "routing

key". Or, you can configure a delay.

Put the Message into the Envelope, then add Stamps

Check this out: say $envelope = new Envelope() and pass it our $message . Then, pass

this an optional second argument: an array of stamps.

src/Controller/ImagePostController.php

 // ... lines 1 - 15

16

 // ... lines 17 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

 // ... line 65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 98

99

Include just one: new DelayStamp(5000) . This indicates to the transport... which is kind of

like the mail carrier... that you'd like this message to be delayed 5 seconds before it's delivered.

Finally, pass the $envelope - not the message - into $messageBus->dispatch() .

src/Controller/ImagePostController.php

 // ... lines 1 - 17

18

 // ... lines 19 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

65

66

67

 // ... lines 68 - 69

70

 // ... lines 71 - 98

99

use Symfony\Component\Messenger\Envelope;

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

]);

 }

}

use Symfony\Component\Messenger\Stamp\DelayStamp;

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 new DelayStamp(5000)

]);

 $messageBus->dispatch($envelope);

 }

}

Yep, the dispatch() method accepts raw message objects or Envelope objects. If you

pass a raw message, it wraps it in an Envelope . If you do pass an Envelope , it uses it! The

end result is the same as before... except that we're now applying a DelayStamp .

Let's try it! This time we don't need to restart our worker because we haven't changed any code

it will use: we only changed code that controls how the message will be delivered. But... if you're

ever not sure - just restart it.

I will clear the console so we can watch what happens. Then... let's upload three photos and...

one, two, three, four there it is! It delayed 5 seconds and then started processing each like

normal. There's not a 5 second delay between handling each message: it just makes sure that

each message is handled no sooner than 5 seconds after sending it.

 Tip

Support for delays in Redis WAS added in Symfony 4.4.

Side note: In Symfony 4.3, the Redis transport doesn't support delays - but it may be added in

the future.

What other Stamps are There?

Anyways, you may not use stamps a ton, but you will need them from time-to-time. You'll

probably Google "How do I configure validation groups in Messenger" and learn which stamp

controls this. Don't worry, I'll talk about validation later - it's not something that's happening right

now.

One other cool thing is that, internally, Messenger itself uses stamps to track and help deliver

messages correctly. Check this out: wrap $messageBus->dispatch() in a dump() call.

src/Controller/ImagePostController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 66

67

 // ... lines 68 - 69

70

 // ... lines 71 - 98

99

Let's go over and upload one new image. Then, on the web debug toolbar, find the AJAX

request that just finished - it'll be the bottom one - click to open its profiler and then click

"Debug" on the left. There it is! The dispatch() method returns an Envelope ... which holds

the message of course... and now has four stamps! It has the DelayStamp like we expected,

but also a BusNameStamp , which records the name of the bus that it was sent to. This is cool:

we only have one bus now, but you're allowed to have multiple, and we'll talk about why you

might do that later. The BusNameStamp helps the worker command know which bus to send

the Envelope to after it's read from the transport.

That SentStamp is basically a marker that says "this message was sent to a transport instead

of being handled immediately" and this TransportMessageIdStamp , literally contains the id

of the new row in the messenger_messages table... in case that's useful.

You don't really need to care about any of this - but watching what stamps are being added to

your Envelope may help you debug an issue or do some more advanced stuff. In fact, some

of these will come in handy soon when we talk about middleware.

For now, remove the dump() and then, so I don't drive myself crazy with how slow this is,

change the DelayStamp to 500 milliseconds. Shh, don't tell Ponka. After this change... yep!

The message is handled almost immediately.

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 dump($messageBus->dispatch($envelope));

 }

}

src/Controller/ImagePostController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

65

66

67

 // ... lines 68 - 69

70

 // ... lines 71 - 98

99

Next, let's talk about retries and what happens when things go wrong! No joke: this stuff is super

cool.

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 new DelayStamp(500)

]);

 $messageBus->dispatch($envelope);

 }

}

Chapter 12: Retrying on Failure

When you start handling things asynchronously, thinking about what happens when code fails is

even more important! Why? Well, when you handle things synchronously, if something fails,

typically, the whole process fails, not just half of it. Or, at least, you can make the whole process

fail if you need to.

For example: pretend all our code is still synchronous: we save the ImagePost to the

database, but then, down here, adding Ponka to the image fails... because she's napping. Right

now, that would result in half of the work being done... which, depending on how sensitive your

app is, may or may not be a huge deal. If it is, you can solve it by wrapping all of this in a

database transaction.

Thinking about how things will fail - and coding defensively when you need to - is just a healthy

programming practice.

The Difficulty of Async Failures

But this all changes when some code is async! Think about it: we save the ImagePost to the

database, AddPonkaToImage is sent to the transport and the response is successfully

returned. Then, a few seconds later, our worker processes that message and, due to a

temporary network problem, the handler throws an exception!

That's... not a great situation. The user thinks everything was ok because they didn't see an

error. And now we have an ImagePost in the database... but Ponka will never be added to it.

Ponka is furious.

The point is: when you send a message to a transport, we really need to make sure that the

message is eventually processed. If it's not, it could lead to some weird conditions in our

system.

Watching Failures

So let's start making our code fail to see what happens! Inside AddPonkaToImageHandler ,

right before the real code runs, say if rand(0, 10) < 7 , then throw a new \Exception()

with:

“I failed randomly!!!!”

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 30

31

32

 // ... lines 33 - 46

47

48

49

 // ... lines 50 - 56

57

58

Let's see what happens! First, go restart the worker:

php bin/console messenger:consume -vv

Then I'll clear the screen and... let's upload! How about five photos? Go back over to see what's

happening! Whoa! A lot is happening. Let's pull this apart.

The first message was received and handled. The second message was received and also

handled successfully. The third message was received but an exception occurred while handling

it: "I failed randomly!". Then it says: "Retrying - retry #1" followed by "Sending message". Yea,

because it failed, Messenger automatically "retries" it... which literally means that it sends that

message back to the queue to be processed later! One of these "Received message" logs down

here is actually that message being received for a second time, thanks to the retry. The cool

thing is... eventually... all the messages were handled successfully! That's why retries rock. We

can see this when we refresh: everyone has a Ponka photo... even though some of these failed

at first.

class AddPonkaToImageHandler implements MessageHandlerInterface,

LoggerAwareInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 if (rand(0, 10) < 7) {

 throw new \Exception('I failed randomly!!!!');

 }

 }

}

Hitting the 3 Retry Max

But... let's try this again... because that example didn't show the most interesting case. I'll select

all the photos this time... oh, but first, let's clear the screen on our worker terminal. Ok, upload,

then... move over.

Here we go: this time... thanks to randomness, we're seeing a lot more failures. We see that a

couple of messages failed and were sent for retry #1. Then, some of those messages failed

again and were sent for retry #2! And... yea! They failed yet again and were sent for retry #3.

Finally... oh yes, perfect: after being attempted once and retried again 3 more times, one of the

messages still failed. This time, instead of sending for retry #4, it says:

“Rejecting AddPonkaToImage (removing from transport)”

Here's what's going on: by default, Messenger will retry a message three times. If it still fails, it's

finally removed from the transport and the message is lost permanently. Well... that's not totally

true... and there's a bit more going on here than it seems at first.

Next, if you look closely... these retries are delayed at an increasing level. Let's learn why and

how to take complete control over how your messages are retried.

Chapter 13: Retry Delay & Retry Strategy

By default, a message will be retried three times then lost forever. Well... in a few minutes... I'll

show you how you can avoid even those messages from being lost.

Anyways... the process... just works! And it's even cooler than it looks at first. It's a bit hard to

see - especially because there's a sleep in our handler - but this message was sent for retry #3

at the 13 second timestamp and it was finally handled again down at the 17 second timestamp -

a 4 second delay. That delay was not caused by our worker just being busy until then: it was

100% intentional.

Check it out: I'll hit Ctrl+C to stop the worker and then run:

php bin/console config:dump framework messenger

This should give us a big tree of "example" configuration that you can put under the

framework messenger config key. I love this command: it's a great way to find options that

you maybe didn't know existed.

Cool! Look closely at the transports key - it lists an "example" transport below with all the

possible config options. One of them is retry_strategy where we can control the maximum

number of retries and the delay that should happen between those retries.

This delay number is smarter than it looks: it works together with the "multiplier" to create an

exponentially growing delay. With these settings, the first retry will delay one second, the

second 2 seconds and the third 4 seconds.

This is important because, if a message fails due to some temporary issue - like connecting to a

third-party server - you might not want to try again immediately. In fact, you might choose to set

these to way higher values so that it retries maybe 1 minute or even a day later.

Let's also try a similar command:

php bin/console debug:config framework messenger

Instead of showing example config, this tells us what our current configuration is, including any

default values: our async transport has a retry_strategy , which is defaulting to 3 max

retries with a 1000 millisecond delay and a multiplier of 2.

Configuring the Delay

Let's make this a bit more interesting. In the handler, let's make it always fail by adding

|| true .

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 30

31

32

 // ... lines 33 - 46

47

48

49

 // ... lines 50 - 56

57

58

Now, under messenger , let's play with the retry config. Wait... but the async transport is set

to a string... are we allowed to include config options under that? No! Well, yes, sort of. As soon

as you need to configure a transport beyond just the connection details, you'll need to drop this

string onto the next line and assign it to a dsn key. Now we can add retry_strategy , and

let's set the delay to 2 seconds instead of 1.

class AddPonkaToImageHandler implements MessageHandlerInterface,

LoggerAwareInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 if (rand(0, 10) < 7 || true) {

 throw new \Exception('I failed randomly!!!!');

 }

 }

}

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

7

8

9

10

11

 // ... lines 12 - 20

Oh, and I also want to mention this service key. If you want to completely control the retry

config - maybe even having different retry logic per message - you can create a service that

implements RetryStrategyInterface and put its service id - usually its class name - right

here.

Anyways, let's see what happens with the longer delay: restart the worker process:

php bin/console messenger:consume -vv

This time, upload just one photo so we can watch it fail over and over again. And... yep! It fails

and sends for retry #1... then fails again and sends for retry #2. But check out that delay! 09 to

11 - 2 seconds - then 11 to 15 - a 4 second delay. And... if... we... are... super... patient... yea!

Retry #3 starts a full 8 seconds later. Then it's "rejected" - removed from the queue - and lost

forever. Tragic!

Retries are great... but I don't like that last part: when the message is eventually lost forever.

Change the delay to 500 - it'll make this easier to test.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

7

8

9

10

11

 // ... lines 12 - 20

framework:

 messenger:

 transports:

 # https://symfony.com/doc/current/messenger.html#transports

 async:

 dsn: '%env(MESSENGER_TRANSPORT_DSN)%'

 retry_strategy:

 delay: 2000

framework:

 messenger:

 transports:

 # https://symfony.com/doc/current/messenger.html#transports

 async:

 dsn: '%env(MESSENGER_TRANSPORT_DSN)%'

 retry_strategy:

 delay: 500

Next, let's talk about a special concept called the "failure transport": a better alternative than

allowing failed messages to simply... disappear.

Chapter 14: The Failure Transport

We now know that each message will be retried 3 times - which is configurable - and then, if

handling it still fails, it will be "rejected"... which is a "queue" word for: it will be removed from the

transport and lost forever.

That's... a bummer! Our last retry happened 14 seconds after our first... but if the handler is

failing because a third-party server is temporarily down... then if that server is down for even just

30 seconds... the message will be lost forever! It would be better if we could retry it once the

server was back up!

The answer to this is... the failure transport!

Hello Failure Transport

First, I'm going to uncomment a second transport. In general, you can have as many transports

as you want. This one starts with doctrine://default . If you look at our .env file... hey!

That's exactly what our MESSENGER_TRANSPORT_DSN environment variable is set to! Yep,

both our async and new failed transports are using the doctrine transport and the

default doctrine connection. But the second one also has this little ?queue_name=failed

option. OooooOOOOooo.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

 // ... lines 7 - 12

13

 // ... lines 14 - 20

Go back to whatever you're using to inspect the database and check out the queue table:

DESCRIBE messenger_messages;

framework:

 messenger:

 transports:

 failed: 'doctrine://default?queue_name=failed'

Ah. One of the columns in this table is called queue_name . This column allows us to create

multiple transports that all store messages in the same table. Messenger knows which

messages belong to which transport thanks to this value. All the messages sent to the failed

transport will have a failed value... that could be anything - and messages sent to the async

transport will use the default value... which is default .

Configuring Transports

By the way, each transport has a number of different connection options and there are two ways

to pass them: either as query parameters like this or via an expanded format where you put the

dsn on its own line and then add an options key with whatever you need below that.

What options can you put here? Each transport type - like doctrine or amqp - has its own set

of options. Right now, they're not well-documented, but they are easy to find... if you know

where to look. By convention, every transport type has a class called Connection . I'll press

Shift+Shift in PhpStorm, search for Connection.php ... and look for files. There they are! A

Connection class for Amqp, Doctrine and Redis.

Open the one for Doctrine. All of these classes have documentation near the top that describe

their options, in this case: queue_name , table_name and a few others, including

auto_setup . Earlier, we saw that Doctrine will create the messenger_messages table

automatically if it doesn't exist. If you don't want that to happen, you would set auto_setup to

false .

The transport with the most options can be seen in the Amqp Connection class. We'll talk about

Amqp later in the tutorial.

The failure_transport

Anyways, back to it! We now have a new transport called failed ... which, despite its name, is

the same as any other transport. If we wanted to, we could route message classes there and

consume them, just like we're doing for async .

But... the purpose of this transport is different. Near the top, there's another key called

failure_transport . Uncomment that and notice that this points to our new failed

transport.

config/packages/messenger.yaml

1

2

3

4

 // ... lines 5 - 20

What does it do? Let's see it in action! First, go restart our worker:

php bin/console messenger:consume -vv

Woh! This time, it asks us which "receiver" - which basically means which "transport" - we want

to consume. A worker can read from one or many transports - something we'll talk about later

with "prioritized" transports. Let's consume just the async transport - we'll handle messages

from the failed transport in a different way. And actually, to make life easier, we can pass

async as an argument so that it won't ask us which transport to use each time:

php bin/console messenger:consume -vv async

Now... let's upload some images! Then... over here... pretty quickly, all 4 of those exhaust their

retries and are eventually rejected from the transport. Until now, that meant that they were gone

forever. But this time... that did not happen. Before removing the message from the queue, it

says:

“Rejected message AddPonkaToImage will be sent to the failure transport "failed"”

And then... "Sending message". So, it was removed from the async transport, but it still exists

because it was sent to the "failed" transport.

How can we see what messages have failed and try them again if we think those failure were

temporary? With a couple of shiny, new console commands. Let's talk about those next.

framework:

 messenger:

 # Uncomment this (and the failed transport below) to send failed

messages to this transport for later handling.

 failure_transport: failed

Chapter 15: Investigating & Retrying Failed
Messages

Apparently now that we've configured a failure_transport , if handling a message still isn't

working after 3 retries, instead of being sent to /dev/null , they're sent to another transport -

in our case called "failed". That transport is... really... the same as any other transport... and we

could use the messenger:consume command to try to process those messages again.

But, there's a better way. Run:

php bin/console messenger

Seeing Messages on the Failed Queue

Hey! Shiny new commands are hiding here! Three under messenger:failed . Try out that

messenger:failed:show one:

php bin/console messenger:failed:show

Nice! There are our 4 failed messages... just sitting there wait for us to look at them. Let's

pretend that we're not sure what went wrong with these messages and want to check them out.

Start by passing the 115 id:

php bin/console messenger:failed:show 115

I love this: it shows us the error message, error class and a history of the message's

misadventures through our system! It failed, was redelivered to the async transport at 05, at 06

and then at 07, it finally failed and was redelivered to the failed transport.

If we add a -vv on the command...

php bin/console messenger:failed:show 115 -vv

Now we can see a full stack trace of what happened on that exception.

This is a really powerful way to figure out what went wrong and what to do next: do we have a

bug in our app that we need to fix before retrying this? Or maybe it was a temporary failure and

we can try again now? Or maybe, for some reason, we just want to remove this message

entirely.

If you did want to remove this without retrying, that's the messenger:failed:remove

command.

Retrying Failed Messages

But... let's retry this! Back in the handler, change this back to fail randomly.

src/MessageHandler/AddPonkaToImageHandler.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 30

31

32

 // ... lines 33 - 46

47

48

49

 // ... lines 50 - 56

57

58

There are two ways to work with the retry command: you can retry a specific id like you see

here or you can retry the messages one-by-one. Let's do that. Run:

class AddPonkaToImageHandler implements MessageHandlerInterface,

LoggerAwareInterface

{

 public function __invoke(AddPonkaToImage $addPonkaToImage)

 {

 if (rand(0, 10) < 7) {

 throw new \Exception('I failed randomly!!!!');

 }

 }

}

php bin/console messenger:failed:retry

This is kind of similar to how messenger:consume works, except that it asks you before trying

each message and, instead of running this command all the time on production, you'll run it

manually whenever you have some failed messages that you need to process.

Cool! We see the details and it asks if we want to retry this. Like with show, you can pass -vv

to see the full message details. Say "yes". It processes... and then continues to the next.

Actually, let me try that again with -vv so we can see what's going on:

php bin/console messenger:failed:retry -vv

When Failed Messages... Fail Again

This time we see all the details. Say "yes" again and... nice: "Received message", "Message

handled" and onto the next message. We're on a roll! Notice that this message's id is 117 -

that'll be important in a second. Hit yes to retry this message too.

Woh! This time it failed again! What does that mean? Well remember, the failure transport is

really just a normal transport that we're using in a special way. And so, when a message fails

here, Messenger... retries it! Yea it was sent back to the failure transport!

I'll hit Control+C and re-run the show command:

php bin/console messenger:failed:show

That id 119 was not there when we started. Nope, when message 117 was processed, it failed,

was redelivered to the failure transport as id 119, and then was removed. And so, unless you

change your configuration, messages will be retried 3 times on the failure transport before

finally being completely discarded.

Oh, but if you look at the retried message closer:

php bin/console messenger:failed:show 119 -vv

There's a bit of a bug: the error and error class are missing. The data is still in the database...

it's just not displayed correctly here. But you can see the message's history: including that it was

sent to the failed transport and then sent again to the failed transport.

By the way, you can pass a --force option to the retry command if you want it to retry

messages one-by-one without asking you each time whether or not it should do it. Also, not all

the transport types - like AMQP or Redis - support all of the features we just saw if you use it as

your failure transport. That may change in the future, but at this moment - Doctrine is the most

robust transport to use for failures.

Anyways, as cool as failing is, let's go back and remove the code that's breaking our handler.

Because... it's time to take a step deeper into how Messenger works: it's time to talk about

middleware.

Chapter 16: Middleware

Internally, when you dispatch a message onto the bus... what happens? What does the code

look like inside the bus? The answer is... there basically is no code inside the bus! Everything is

done via middleware.

Middleware Basics

The bus is nothing more than a collection of "middleware". And each middleware is just a

function that receives the message and can do something with it.

The process looks like this. We pass a message to the dispatch() method, then the bus

passes that to the first middleware. The middleware then runs some code and eventually calls

the second middleware. It runs some code and eventually calls the third middleware... until

finally the last middleware - let's say it's the fourth middleware - has no one else to call. At that

moment, the fourth middleware function finishes, then the third middleware function finishes,

then the second, then the first. Thanks to this design, each middleware can run code before

calling the next middleware or after.

This "middleware" concept isn't unique to Messenger or even PHP - it's a pattern. It can be both

super useful... and a bit confusing... as it's a big circle. The point is this: with Messenger, if you

want to hook into the dispatch process - like to log what's happening - you'll do that with a

middleware. Heck, even the core functionality of messenger - executing handlers and sending

messages to transports - is done with middleware! Those are called

HandleMessageMiddleware and SendMessageMiddleware if you want to geek out and

see how they work.

So here's our goal: each time we dispatch a message... from anywhere, I want to attach a

unique id to that message and then use that to log what's happening over time to the message:

when it's initially dispatched, when it's sent to the transport, and when it's received from the

transport and handled. Heck, you could even use this to track how long an individual message

took before it was processed or how many times it was retried.

Creating a Middleware

Creating a middleware is actually fairly simple. Create a new directory inside src/ called

Messenger/ ... though... like with pretty much everything in Symfony, this directory could be

called anything. Inside, add a class called, how about, AuditMiddleware .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 14

15

The only rule for middleware is that they must implement - surprise! -

MiddlewareInterface . I'll go to "Code -> Generate" - or Command+N on a Mac - and select

"Implement Methods". This interface requires just one: handle() . We'll talk about the "stack"

thing in a second... but mostly... the signature of this method makes sense: we receive the

Envelope and return an Envelope .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

The one line that your middleware will almost definitely need is this:

return $stack->next()->handle($envelope, $stack) .

namespace App\Messenger;

use Symfony\Component\Messenger\Middleware\MiddlewareInterface;

class AuditMiddleware implements MiddlewareInterface

{

}

namespace App\Messenger;

use Symfony\Component\Messenger\Envelope;

use Symfony\Component\Messenger\Middleware\MiddlewareInterface;

use Symfony\Component\Messenger\Middleware\StackInterface;

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 // TODO

 }

}

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 7

8

9

10

11

12

 // ... line 13

14

15

16

This is the line that basically says:

“I want to execute the next middleware and then return its value.”

Without this line, any middleware after us would never be called... which isn't usually what you

want.

Registering the Middleware

And... to start... that's enough: this class is already a functional middleware! But, unlike a lot of

stuff in Symfony, Messenger won't find and start using this middleware automatically. Find your

open terminal and, once again, run:

php bin/console debug:config framework messenger

Let's see... somewhere in here is a key called buses . This defines all of the message bus

services you have in your system. Right now, we have one: the default bus called

messenger.bus.default . That name could be anything and becomes the service id. Below

this, we can use the middleware key to define whatever new middleware we want to add, in

addition to the core ones that are added by default.

Let's copy that config. Then, open config/packages/messenger.yaml and, under

framework: , messenger: , paste this right on top... and make sure it's indented correctly.

Below, add middleware: a new line, then our new middleware service:

App\Messenger\AuditMiddleware .

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 return $stack->next()->handle($envelope, $stack);

 }

}

config/packages/messenger.yaml

1

2

3

4

5

6

 // ... lines 7 - 25

Order of Middleware

And just like that, our middleware should be called... along with all the core middleware. What...

um... are the core middleware? And what order is everything called in? Well, there's not a great

way to see that yet, but you can find this information by running:

php bin/console debug:container --show-arguments messenger.bus.default.inner

... which is a super low-level way to get information about the message bus. Anyways, there are

a few core middleware at the start that get some basic things set up, then our middleware, and

finally, SendMessageMiddleware and HandleMessageMiddleware are called at the end.

Knowing the exact order of this stuff isn't that important - but hopefully it'll help demystify things

as we keep going.

Next, let's get to work by using our middleware to attach a unique id to each message. How?

Via our very own stamp!

framework:

 messenger:

 buses:

 messenger.bus.default:

 middleware:

 - App\Messenger\AuditMiddleware

Chapter 17: Tracking Messages with Middleware &
a Stamp

We somehow want to attach a unique id - just some string - that stays with the message

forever: whether it's handled immediately, sent to a transport, or even retried multiple times.

Creating a Stamp

How can we attach extra... "stuff" to a message? By giving it our very-own stamp! In the

Messenger/ directory, create a new PHP class called UniqueIdStamp . Stamps also have

just one rule: they implement

MessengerEnvelopeMetadataAwareContainerReaderInterface . Nah I'm kidding -

that would be a silly name. They just need to implement StampInterface .

src/Messenger/UniqueIdStamp.php

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 19

20

And... that's it! This is an empty interface that just serves to "mark" objects as stamps. Inside...

we get to do whatever we want... as long as PHP can serialize this message... which basically

means: as long as it holds simple data. Let's add a private $uniqueId property, then a

constructor with no arguments. Inside, say $this->uniqueId = uniqid() . At the bottom,

go to Code -> Generate - or Command+N on a Mac - and generate the getter... which will return

a string .

namespace App\Messenger;

use Symfony\Component\Messenger\Stamp\StampInterface;

class UniqueIdStamp implements StampInterface

{

}

src/Messenger/UniqueIdStamp.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Stamp, done!

Stamping... um... Attaching the Stamp

Next, inside AuditMiddleware , before we call the next middleware - which will call the rest of

the middleware and ultimately handle or send the message - let's add the stamp.

But, be careful: we need to make sure that we only attach the stamp once. As we'll see in a

minute, a message may be passed to the bus - and so, to the middleware - many times! Once

when it's initially dispatched and again when it's received from the transport and handled. If

handling that message fails and is retried, it would go through the bus even more times.

So, start by checking if null === $envelope->last(UniqueIdStamp::class) , then

$envelope = $envelope->with(new UniqueIdStamp()) .

namespace App\Messenger;

use Symfony\Component\Messenger\Stamp\StampInterface;

class UniqueIdStamp implements StampInterface

{

 private $uniqueId;

 public function __construct()

 {

 $this->uniqueId = uniqid();

 }

 public function getUniqueId(): string

 {

 return $this->uniqueId;

 }

}

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 21

22

23

Envelopes are Immutable

There are a few interesting things here. First, each Envelope is "immutable", which means

that, just due to the way that class was written, you can't change any data on it. When you call

$envelope->with() to add a new stamp, it doesn't actually modify the Envelope . Nope,

internally, it makes a clone of itself plus the new stamp.

That's... not very important except that you need to remember to say

$envelope = $envelope->with() so that $envelope becomes the newly stamped

object.

Fetching Stamps

Also, when it comes to stamps, an Envelope could, in theory, hold multiple stamps of the

same class. The $envelope->last() method says:

“Give me the most recently added UniqueIdStamp or null if there are none.”

Dumping the Unique Id

Thanks to our work, below the if statement - regardless of whether this message was just

dispatched... or just received from a transport... or is being retried - our Envelope should have

exactly one UniqueIdStamp . Fetch it off with

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if (null === $envelope->last(UniqueIdStamp::class)) {

 $envelope = $envelope->with(new UniqueIdStamp());

 }

 }

}

$stamp = $envelope->last(UniqueIdStamp::class) . I'm also going to add a little hint

to my editor so that it knows that this is specifically a UniqueIdStamp .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 21

22

23

To see if this is working, let's dump($stamp->getUniqueId()) .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Let's try it! If we've done our job well, for an asynchronous message, that dump() will be

executed once when the message is dispatched and again inside of the worker when it's

received from the transport and handled.

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if (null === $envelope->last(UniqueIdStamp::class)) {

 $envelope = $envelope->with(new UniqueIdStamp());

 }

 /** @var UniqueIdStamp $stamp */

 $stamp = $envelope->last(UniqueIdStamp::class);

 }

}

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if (null === $envelope->last(UniqueIdStamp::class)) {

 $envelope = $envelope->with(new UniqueIdStamp());

 }

 /** @var UniqueIdStamp $stamp */

 $stamp = $envelope->last(UniqueIdStamp::class);

 dump($stamp->getUniqueId());

 return $stack->next()->handle($envelope, $stack);

 }

}

Refresh the page just to be safe, then upload an image. To see if our dump() was hit, I'll use

the link on the web debug toolbar to open up the profiler for that request. Click "Debug" on the

left and... there it is! Our unique id! In a few minutes, we'll make sure that this code is also

executed in the worker.

And because middleware are executed for every message, we should also be able to see this

when deleting a message. Click that, then open up the profiler for the DELETE request and click

"Debug". Ha! This time there are two distinct unique ids because deleting dispatches two

different messages.

Next, let's actually do something useful with this! Inside of our middleware, we're going to log

the entire lifecycle of a single message: when it's originally dispatched, when it's sent to a

transport and when it's received from a transport and handled. To figure out which part of the

process the message is currently in, we're going to once again use stamps. But instead of

creating new stamps, we'll read the core stamps.

Chapter 18: Logger Channel Setup and Autowiring

Here's our goal... and the end result is going to be pretty cool: leverage our middleware - and

the fact that we're adding this unique id to every message - to log the entire lifecycle of a

message to a file. I want to see when a message was originally dispatched, when it was sent to

the transport, when it was received from the transport and when it was handled.

Adding a Log Handler

Before we get into the middleware stuff, let's configure a new logger channel that logs to a new

file. Open up config/packages/dev/monolog.yaml and add a new channels key.

Wait... that's not right. A logging channel is, sort of a "category", and you can control how log

messages for each category are handled. We don't want to add it here because then that new

channel would only exist in the dev environment. Nope, we want the channel to exist in all

environments... even if we decide to only give those messages special treatment in dev .

To do that, directly inside config/packages , create a new file called monolog.yaml ...

though... remember - the names of these config files aren't important. What is important is to

add a monolog key, then channels set to an array with one new one - how about

messenger_audit .

config/packages/monolog.yaml

1

2

Thanks to this, we now have a new logger service in the container for this channel. Let's find it:

at your terminal, run:

php bin/console debug:container messenger_audit

There it is: monolog.logger.messenger_audit - we'll use that in a minute. But first, I want

to make any logs to this channel save to a new file in the dev environment. Back up in

config/packages/dev/monolog.yaml , copy the main handler, paste and change the key

monolog:

 channels: [messenger_audit]

to messenger ... though that could be anything. Update the file to be called messenger.log

and - here's the magic - instead of saying: log all messages except those in the event

channel, change this to only log messages that are in that messenger_audit channel.

config/packages/dev/monolog.yaml

1

2

 // ... lines 3 - 7

8

9

10

11

12

 // ... lines 13 - 25

Autowiring the Channel Logger

Cool! To use this service, we can't just autowire it by type-hinting the normal

LoggerInterface ... because that will give us the main logger. This is one of those cases

where we have multiple services in the container that all use the same class or interface.

To make it wirable, back in services.yaml , add a new global bind:

$messengerAuditLogger that points to the service id: copy that from the terminal, then

paste as @monolog.logger.messenger_audit .

config/services.yaml

 // ... lines 1 - 7

8

 // ... line 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 15

16

 // ... lines 17 - 34

Thank to this, if we use an argument named $messengerAuditLogger in the constructor of a

service or in a controller, Symfony will pass us that service. By the way, starting in Symfony 4.2,

instead of binding only to the name of the argument, you can also bind to the name and type by

saying Psr\Log\LoggerInterface $messengerAuditLogger . That just makes things

monolog:

 handlers:

 messenger:

 type: stream

 path: "%kernel.logs_dir%/messenger.log"

 level: debug

 channels: ["messenger_audit"]

services:

 _defaults:

 bind:

 $messengerAuditLogger: '@monolog.logger.messenger_audit'

more specific: Symfony would pass us this service for any arguments that have this name and

the LoggerInterface type-hint.

Anyways, we have a new logger channel, that channel will log to a special file, and the logger

service for that channel is wirable. Time to get to work!

Close up the monolog config files and go to AuditMiddleware . Add a

public function __construct() with one argument

LoggerInterface $messengerAuditLogger - the same name we used in the config. I'll

call the property itself $logger , and finish this with

$this->logger = $messengerAuditLogger .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

13

14

15

16

17

18

 // ... lines 19 - 40

41

Setting up the Context

Down in handle() , remove the dump() and create a new variable called $context . In

addition to the actual log message, it's a little-known fact that you can pass extra information to

the logger... which is super handy! Let's create a key called id set to the unique id, and another

called class that's set to the class of the original message class. We can get that with

get_class($envelope->getMessage()) .

use Psr\Log\LoggerInterface;

class AuditMiddleware implements MiddlewareInterface

{

 private $logger;

 public function __construct(LoggerInterface $messengerAuditLogger)

 {

 $this->logger = $messengerAuditLogger;

 }

}

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 28

29

30

31

32

 // ... lines 33 - 39

40

41

Let's do the logging next! It's a bit more interesting than you might expect. How can we figure

out if the current message was just dispatched or was just received asynchronously from a

transport? And if it was just dispatched, how can we find out whether or not the message will be

handled right now or sent to a transport for later? The answer... lies in the stamps!

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 $context = [

 'id' => $stamp->getUniqueId(),

 'class' => get_class($envelope->getMessage())

];

 }

}

Chapter 19: Middleware Message Lifecycle
Logging

Our middleware is called in two different situations. First, it's called when you initially dispatch

the message. For example, in ImagePostController , the moment we call

$messageBus->dispatch() , all the middleware are called - regardless of whether or not the

message will be handled async. And second, when the worker -

bin/console messenger:consume - receives a message from the transport, it passes that

message back into the bus and the middleware are called again.

This is the trickiest thing about middleware: trying to figure out which situation you're currently

in. Fortunately, Messenger adds "stamps" to the Envelope along the way, and these tell us

exactly what's going on.

Was the Message Received from the Transport?
ReceivedStamp

For example, when a message is received from a transport, messenger adds a

ReceivedStamp . So, if $envelope->last(ReceivedStamp::class) , then this message

is currently being processed by the worker and was just received from a transport.

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 32

33

 // ... line 34

35

 // ... line 36

37

 // ... lines 38 - 39

40

41

Let's log that: $this->logger->info() with a special syntax:

“[{id}] Received and handling {class}”

Then pass $context as the second argument. The $context array is cool for two reasons.

First, each log handler receives this and can do whatever it wants with it - usually the

$context is printed at the end of the log message. And second, if you use these little {}

wildcards, the context values will get filled in automatically!

use Symfony\Component\Messenger\Stamp\ReceivedStamp;

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if ($envelope->last(ReceivedStamp::class)) {

 } else {

 }

 }

}

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 32

33

34

35

 // ... line 36

37

 // ... lines 38 - 39

40

41

If the message was not just received, say $this->logger->info() and start the same way:

“[{id}] Handling or sending {class}”

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 32

33

34

35

36

37

 // ... lines 38 - 39

40

41

use Symfony\Component\Messenger\Stamp\ReceivedStamp;

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if ($envelope->last(ReceivedStamp::class)) {

 $this->logger->info('[{id}] Received & handling {class}',

$context);

 } else {

 }

 }

}

use Symfony\Component\Messenger\Stamp\ReceivedStamp;

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if ($envelope->last(ReceivedStamp::class)) {

 $this->logger->info('[{id}] Received & handling {class}',

$context);

 } else {

 $this->logger->info('[{id}] Handling or sending {class}',

$context);

 }

 }

}

At this point, we know that the message was just dispatched... but we don't know whether or not

it will be handled right now or sent to a transport. We'll improve that in a few minutes.

But first, let's try it! Start the worker and tell it to read from the async transport:

php bin/console messenger:consume -vv async

Ah, I think we had a few messages from earlier still in the queue! When that finishes, let's clear

the screen. Let's also open up another tab and create the new log file - messenger.log - if it's

not already there:

touch var/log/messenger.log

Then, tail it so we can watch the messages:

tail -f var/log/messenger.log

Oh, cool! This already has a few lines from those old messages it just processed. Let's clear

that so we have fresh screens to look at.

Testing time! Move over and upload one new photo. Spin back to your terminal and... yea! Both

log messages are already there: "Handling or sending" and then "Received and handling" when

the message was received from the transport... which was almost instant. We know these log

entries are for the same message thanks to the unique id at the beginning.

Determining if Message is Handled or Sent

But... we can do better than just saying "handling or sending". How? This

$stack->next()->handle() line is responsible for calling the next middleware... which will

then call the next middleware and so on. Because our logging code is above this, it means that

our code is potentially being called before some other middleware do their work. In fact, our

code is being executed before the core middleware that are responsible for handling or sending

the message.

So... how can we determine whether the message will be sent versus handled immediately...

before the message is actually sent or handled immediately? We can't!

Check it out: remove the return and instead say

$envelope = $stack->next()->handle() . Then, move that line above our code and, at

the bottom, return $envelope .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 20

21

22

 // ... lines 23 - 35

36

37

38

39

40

41

42

43

44

45

46

If we did nothing else... the result would be pretty much the same: we would log the exact same

messages... but technically, the log entries would happen after the message was sent or

handled instead of before.

But! Notice that when we call $stack->next()->handle() to execute the rest of the

middleware, we get back an $envelope ... which may contain new stamps! In fact, if the

message was sent to a transport instead of being handled immediately, it will be marked with a

SentStamp .

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 $envelope = $stack->next()->handle($envelope, $stack);

 if ($envelope->last(ReceivedStamp::class)) {

 $this->logger->info('[{id}] Received & handling {class}',

$context);

 } else {

 $this->logger->info('[{id}] Handling or sending {class}',

$context);

 }

 return $envelope;

 }

}

Add elseif $envelope->last(SentStamp::class) then we know that this message

was sent, not handled. Use $this->logger->info() with our {id} trick and

sent {class} .

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 20

21

22

 // ... lines 23 - 37

38

 // ... line 39

40

41

42

 // ... line 43

44

 // ... lines 45 - 46

47

48

Below, now we know that we're definitely "Handling sync". The top message - "Received and

handling" is still true, but I'll change this to just say "Received": a message is always handled

when it's received, so that was redundant.

use Symfony\Component\Messenger\Stamp\SentStamp;

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if ($envelope->last(ReceivedStamp::class)) {

 } elseif ($envelope->last(SentStamp::class)) {

 $this->logger->info('[{id}] Sent {class}', $context);

 } else {

 }

 }

}

src/Messenger/AuditMiddleware.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 20

21

22

 // ... lines 23 - 37

38

39

40

41

42

43

44

 // ... lines 45 - 46

47

48

Ok! Let's clear our log screen and restart the worker:

php bin/console messenger:consume -vv async

Upload one photo... then move over... and go to the log file. Yep! Sent, then Received! If we had

uploaded 5 photos, we could use the unique id to identify each message individually.

Hit enter a few times: I want to see an even cooler example. Delete a photo and move back

over! Remember, this dispatches two messages! The unique id part makes it even more

obvious what's going on: DeletePhotoFile was sent to the transport, then

DeleteImagePost was handled synchronously... then DeletePhotoFile was received and

processed.

Actually, what really happened was this: DeleteImagePost was handled synchronously and,

internally, it dispatched DeletePhotoFile which was sent to the transport. The first two

messages are a bit out of order because our logging code is always running after we execute

the rest of the chain, so after DeleteImagePost was handled. We could improve that by

moving the Handling Sync logging logic above the code that calls the rest of the middleware.

use Symfony\Component\Messenger\Stamp\SentStamp;

class AuditMiddleware implements MiddlewareInterface

{

 public function handle(Envelope $envelope, StackInterface $stack):

Envelope

 {

 if ($envelope->last(ReceivedStamp::class)) {

 $this->logger->info('[{id}] Received {class}', $context);

 } elseif ($envelope->last(SentStamp::class)) {

 $this->logger->info('[{id}] Sent {class}', $context);

 } else {

 $this->logger->info('[{id}] Handling sync {class}', $context);

 }

 }

}

Yea, this stuff is super powerful... but can be a bit complex to navigate. This logging stuff is

probably as confusing as it gets.

Next: the worker handles each message in the order it was received. But... that's not ideal: it's

way more important for all AddPonkaToImage messages to be handled before any

DeletePhotoFile messages. Let's do that with priority transports.

Chapter 20: High Priority Transports

The two messages that we we're sending to the async transport are AddPonkaToImage and

DeletePhotoFile , which handles deleting the physical file from the filesystem. And... that

second one isn't something the user actually notices or cares about - it's just housekeeping. If it

happened 5 minutes from now or 10 days from now, the user wouldn't care.

This creates an interesting situation. Our worker handles things in a first-in-first-out basis: if we

send 5 messages to the transport, the worker will handle them in the order in which they were

received. This means that if a bunch of images are deleted and then someone uploads a new

photo... the worker will process all of those delete messages before finally adding Ponka to the

photo. And that... isn't ideal.

The truth is that AddPonkaToImage messages should have a higher priority in our system

than DeletePhotoFile : we always want AddPonkaToImage to be handled before any

DeletePhotoFile messages... even if they were added first.

Creating the "high" Priority Transport

So... can we set a priority on messages? Not exactly. It turns out that in the queueing world, this

is solved by creating multiple queues and giving each of those a priority. In Symfony

Messenger, that translates to multiple transports.

Below the async transport, create a new transport called, how about,

async_priority_high . Let's use the same DSN as before, which in our case is using

doctrine . Below, add options , then queue_name set to high . The name high isn't

important - we could use anything. The queue_name option is specific to the Doctrine transport

and ultimately controls the value of a column in the table, which operates like a category and

allows us to have multiple "queues" of messages inside the same table. And also, for any

transport, you can configure these options as query parameters on the DSN or under this

options key.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 10

11

 // ... lines 12 - 17

18

19

20

21

 // ... lines 22 - 30

At this point we have three queues - which are all stored in the same table in the database, but

with different queue_name values. And now that we have this new transport, we can route

AddPonkaToImage to async_priority_high .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 25

26

 // ... line 27

28

 // ... lines 29 - 30

Consuming Prioritized Transports

If we stopped now... all we've really done is make it possible to send these two different

message classes to two different queues. But there's nothing special about

async_priority_high . Sure, I put the word "high" in its name, but it's no different than

async .

The real magic comes from the worker. Find your terminal where the worker is running and hit

Control+C to stop it. If you just run messenger:consume without any arguments and you have

more than one transport, it asks you which transport you want to consume:

php bin/console messenger:consume

framework:

 messenger:

 transports:

 async_priority_high:

 dsn: '%env(MESSENGER_TRANSPORT_DSN)%'

 options:

 queue_name: high

framework:

 messenger:

 routing:

 'App\Message\AddPonkaToImage': async_priority_high

Meaning, which transport do you want to receive messages from. But actually, you can read

messages from multiple transports at once and tell the worker which should be read first. Check

this out: I'll say async_priority_high, async .

This tells the worker: first ask async_priority_high if it has any messages. If it doesn't,

then go check the async transport.

We should be able to see this in action. I'll refresh the page, delete a bunch of images here as

fast as I can and then upload a couple of photos. Check the terminal output:

It's handles DeletePhotoFile then... AddPonkaToImage , another AddPonkaToImage ,

another AddPonkaToImage and... yea! It goes back to handling the lower-priority

DeletePhotoFile .

So, in the beginning - before we uploaded - it did consume a few DeletePhotoFile

messages. But as soon as it saw a message on that async_priority_high transport, it

consumed all of those until it was empty. When it was, it then returned to consuming messages

from async .

Basically, each time the worker looks for the next message, it checks the highest priority

transport first and only asks the next transport - or transports - if it's empty.

And... that's it! Create a new transport for however many different priority "levels" you need,

then tell the worker command which order to process them. Oh, and instead of using this

interactive way of doing things, you can run:

php bin/console messenger:consume async_priority_high async

Perfect. Next, let's talk about one option we can use to make it easier to develop while using

queues... because always needing to remember to run the worker command while coding can

be a pain.

Chapter 21: Handling Messages Sync while
Developing

I love the ability to defer work for later by sending messages to a transport. But, there is at least

one practical bummer: it makes it a bit harder to actually develop and code your app. In addition

to setting up your web server, database and anything else, you now need to remember to run:

php bin/console messenger:consume

Otherwse... things won't fully work. If you have a robust setup for local development - maybe

something using Docker - you could build this right into that setup so that it runs automatically.

Except... you'd still need to remember to restart the worker any time you make a change to

some code that it uses.

It's not the worst thing ever. But, if this drives you crazy, there is a really nice solution: tell

Messenger to handle all of your messages synchronously when you're in the dev environment.

Hello "sync" Transport

Check out config/packages/messenger.yaml . One of the commented-out parts of this file

is a, kind of, "suggested" transport called sync . The really important part isn't the name sync

but the DSN: sync:// . We learned earlier that Messenger supports several different types of

transport like Doctrine, redis and AMQP. And the way you choose which one you want is the

beginning of the connection string, like doctrine:// . The sync transport is really neat:

instead of truly sending each message to an external queue... it just handles them immediately.

They're handled synchronously.

Making the Transports sync

We can take advantage of this and use a configuration trick to change our async and

async_priority_high transports to use the sync:// transport only when we're in the dev

environment.

Go into the config/packages/dev directory. Any files here are only loaded in the dev

environment and override all values from the main config/packages directory. Create a new

file called messenger.yaml ... though the name of this file isn't important. Inside, we'll put the

same configuration we have in our main file: framework , messenger , transports . Then

override async and set it to sync:// . Do the same for async_priority_high : set it to

sync:// .

config/packages/dev/messenger.yaml

1

2

3

4

5

That's it! In the dev environment, these values will override the dsn values from the main file.

And, we can see this: in an open terminal tab, run:

php bin/console debug:config framework messenger

This command shows you the real, final config under framework and messenger . And... yea!

Because we're currently in the dev environment, both transports have a dsn set to sync:// .

I do want to mention that the queue_name option is something that's specific to Doctrine. The

sync transport doesn't use that, and so, it ignores it. It's possible that in a future version of

Symfony, this would throw an error because we're using an undefined option for this transport. If

that happens, we would just need to change the YAML format to set the dsn key - like we do in

the main messenger.yaml file - and then override the options key and set it to an empty

array. I'm mentioning that just in case.

Ok, let's try this! Refresh the page to be safe. Oh, and before we upload something, go back to

the terminal where our worker is running, hit Control+C to stop it, and restart it. Woh! It's busted!

“You cannot receive messages from the sync transport.”

framework:

 messenger:

 transports:

 async: 'sync://'

 async_priority_high: 'sync://'

Messenger is saying:

“Yo! Um... the SyncTransport isn't a real queue you can read from... so stop trying to do it!”

It's right... and this is exactly what we wanted: we wanted to be able to have our handlers called

in the dev environment without needing to worry about running this command.

Ok, now let's try it: upload a couple of photos and... yea... it's super slow again. But Ponka is

added when it finishes. The messages are being handled synchronously.

To make sure this is only happening for the dev environment, open up the .env file and

change APP_ENV to be prod temporarily. Make sure to clear your cache so this works:

php bin/console cache:clear

Now, we should be able to run messenger:consume like before:

php bin/console messenger:consume -vv async_priority_high async

And... we can! Sync messages in dev, async in prod.

Now that we've accomplished this, change APP_ENV back to dev and, just to keep things more

interesting for the tutorial, comment out the new sync config we just added: I want to continue

using our real transports while we're coding. Stop and restart the worker:

config/packages/dev/messenger.yaml

1

2

3

4

5

Now that we're back in the dev environment, stop and restart the worker:

php bin/console messenger:consume -vv async_priority_high async

framework:

 messenger:

transports:

async: 'sync://'

async_priority_high: 'sync://'

Next: let's talk about a similar problem: how do you handle transports when writing automated

tests?

Chapter 22: Functional Test for the Upload
Endpoint

How can we write automated tests for all of this? Well... I have so many answers for that. First,

you could unit test your message classes. I don't normally do this... because those classes tend

to be so simple... but if your class is a bit more complex or you want to play it safe, you can

totally unit test this.

More important are the message handlers: it's definitely a good idea to test these. You could

write unit tests and mock the dependencies or write an integration test... depending on what's

most useful for what each handler does.

The point is: for message and message handler classes... testing them has absolutely nothing

to do with messenger or transports or async or workers: they're just well-written PHP classes

that we can test like anything else. That's really one of the beautiful things about messenger:

above all else, you're just writing nice code.

But functional tests are more interesting. For example, open

src/Controller/ImagePostController.php . The create() method is the upload

endpoint and it does a couple of things: like saving the ImagePost to the database and, most

important for us, dispatching the AddPonkaToImage object.

Writing a functional test for this endpoint is actually fairly straightforward. But what if we wanted

to be able to test not only that this endpoint "appears" to have worked, but also that the

AddPonkaToImage object was, in fact, sent to the transport? After all, we can't test that Ponka

was actually added to the image because, by the time the response is returned, it hasn't

happened yet!

Test Setup

Let's get the functional test working first, before we get all fancy. Start by finding an open

terminal and running:

composer require phpunit --dev

That installs Symfony's test-pack , which includes the PHPUnit bridge - a sort of "wrapper"

around PHPUnit that makes life easier. When it finishes, it tells us to write our tests inside the

tests/ directory - brilliant idea - and execute them by running php bin/phpunit . That little

file was just added by the recipe and it handles all the details of getting PHPUnit running.

Ok, step one: create the test class. Inside tests , create a new Controller/ directory and

then a new PHP Class: ImagePostControllerTest . Instead of making this extend the

normal TestCase from PHPUnit, extend WebTestCase , which will give us the functional

testing superpowers we deserve... and need. The class lives in FrameworkBundle but... be

careful because there are (gasp) two classes with this name! The one you want lives in the

Test namespace. The one you don't want lives in the Tests namespace... so it's super

confusing. It should look like this. If you choose the wrong one, delete the use statement and

try again.

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 12

13

But.... while writing this tutorial and getting mad about this confusing part, I created an issue on

the Symfony repository. And I'm thrilled that by the time I recorded the audio, the other class has

already been renamed! Thanks to janvt who jumped on that. Go open source!

Anyways, because we're going to test the create() endpoint, add

public function testCreate() . Inside, to make sure things are working, I'll try my

favorite $this->assertEquals(42, 42) .

namespace App\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class ImagePostControllerTest extends WebTestCase

{

}

https://github.com/janvt

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

Running the Test

Notice that I didn't get any auto-completion on this. That's because PHPUnit itself hasn't been

downloaded yet. Check it out: find your terminal and run the tests with:

php bin/phpunit

This little script uses Composer to download PHPUnit into a separate directory in the

background, which is nice because it means you can get any version of PHPUnit, even if some

of its dependencies clash with those in your project.

Once it's done... ding! Our one test is green. And the next time we run:

php bin/phpunit

it jumps straight to the tests. And now that PHPUnit is downloaded, once PhpStorm builds its

cache, that yellow background on assertEquals() will go away.

Testing the Upload Endpoint

namespace App\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $this->assertEquals(42, 42);

 }

}

To test the endpoint itself, we first need an image that we can upload. Inside the tests/

directory, let's create a fixtures/ directory to hold that image. Now I'll copy one of the

images I've been uploading into this directory and name it ryan-fabien.jpg .

There it is. The test itself is pretty simple: create a client with

$client = static::createClient() and an UploadedFile object that will represent

the file being uploaded: $uploadedFile = new UploadedFile() passing the path to the

file as the first argument - __DIR__.'/../fixtures/ryan-fabien.jpg - and the filename

as the second - ryan-fabien.jpg .

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 22

23

24

Why the, sorta, "redundant" second argument? When you upload a file in a browser, your

browser sends two pieces of information: the physical contents of the file and the name of the

file on your filesystem.

Finally, we can make the request: $client->request() . The first argument is the method...

which is POST , then the URL - /api/images - we don't need any GET or POST parameters,

but we do need to pass an array of files.

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $client = static::createClient();

 $uploadedFile = new UploadedFile(

 __DIR__.'/../fixtures/ryan-fabien.jpg',

 'ryan-fabien.jpg'

);

 }

}

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

 // ... line 19

20

 // ... lines 21 - 22

23

24

If you look in ImagePostController , we're expecting the name of the uploaded file - that's

normally the name attribute on the <input field - to literally be file . Not the most creative

name ever... but sensible. Use that key in our test and set it to the $uploadedFile object.

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $client = static::createClient();

 $uploadedFile = new UploadedFile(

 __DIR__.'/../fixtures/ryan-fabien.jpg',

 'ryan-fabien.jpg'

);

 $client->request('POST', '/api/images', [], [

]);

 }

}

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $client = static::createClient();

 $uploadedFile = new UploadedFile(

 __DIR__.'/../fixtures/ryan-fabien.jpg',

 'ryan-fabien.jpg'

);

 $client->request('POST', '/api/images', [], [

 'file' => $uploadedFile

]);

 dd($client->getResponse()->getContent());

 }

}

And... that's it! To see if it worked, let's just

dd($client->getResponse()->getContent()) .

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Testing time! Find your terminal, clear the screen, deep breath and...

php bin/phpunit

Got it! And we get a new id each time we run it. The ImagePost records are saving to our

normal database because I haven't gone to the trouble of creating a separate database for my

test environment. That is something I normally like to do.

Asserting Success

Remove the dd() : let's use a real assertion: $this->assertResponseIsSuccessful() .

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $client = static::createClient();

 $uploadedFile = new UploadedFile(

 __DIR__.'/../fixtures/ryan-fabien.jpg',

 'ryan-fabien.jpg'

);

 $client->request('POST', '/api/images', [], [

 'file' => $uploadedFile

]);

 dd($client->getResponse()->getContent());

 }

}

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 7

8

9

10

 // ... lines 11 - 21

22

23

24

This nice method was added in Symfony 4.3... and it's not the only one: this new

WebTestAssertionsTrait has a ton of nice new methods for testing a whole bunch of stuff!

If we stopped now... this is a nice test and you might be perfectly happy with it. But... there's one

part that's not ideal. Right now, when we run our test, the AddPonkaToImage message is

actually being sent to our transport... or at least we think it is... we're not actually verifying that

this happened... though we can check manually right now.

To make this test more useful, we can do one of two different things. First, we could override the

transports to be synchronous in the test environment - just like we did with dev . Then, if

handling the message failed, our test would fail.

Or, second, we could at least write some code here that proves that the message was at least

sent to the transport. Right now, it's possible that the endpoint could return 200... but some bug

in our code caused the message never to be dispatched.

Let's add that check next, by leveraging a special "in memory" transport.

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 $this->assertResponseIsSuccessful();

 }

}

Chapter 23: Testing with the "in-memory" Transport

A few minutes ago, in the dev environment only, we overrode all our transports so that all

messages were handled synchronously. We commented it out for now, but this is also

something that you could choose to do in your test environment, so that when you run the

tests, the messages are handled within the test.

This may or may not be what you want. On one hand, it means your functional test is testing

more. On the other hand, a functional test should probably test that the endpoint works and the

message is sent to the transport, but testing the handler itself should be done in a test

specifically for that class.

That's what we're going to do now: figure out a way to not run the handlers synchronously but

test that the message was sent to the transport. Sure, if we killed the worker, we could query the

messenger_messages table, but that's a bit hacky - and only works if you're using the

Doctrine transport. Fortunately, there's a more interesting option.

Start by copying config/packages/dev/messenger.yaml and pasting that into

config/packages/test/ . This gives us messenger configuration that will only be used in

the test environment. Uncomment the code, and replace sync with in-memory . Do that for

both of the transports.

config/packages/test/messenger.yaml

1

2

3

4

5

The in-memory transport is really cool. In fact, let's look at it! I'll hit Shift+Shift in

PhpStorm and search for InMemoryTransport to find it.

This... is basically a fake transport. When a message is sent to it, it doesn't handle it or send it

anywhere, it stores it in a property. If you were to use this in a real project, the messages would

then disappear at the end of the request.

framework:

 messenger:

 transports:

 async: 'in-memory://'

 async_priority_high: 'in-memory://'

But, this is super useful for testing. Let's try it. A second ago, each time we ran our test, our

worker actually started processing those messages... which makes sense: we really were

delivering them to the transport. Now, I'll clear the screen and then run:

php bin/phpunit

It still works... but now the worker does nothing: the message isn't really being sent to the

transport anymore and it's lost at the end of our tests. But! From within the test, we can now

fetch that transport and ask it how many messages were sent to it!

Fetching the Transport Service

Behind the scenes, every transport is actually a service in the container. Find your open

terminal and run:

php bin/console debug:container async

There they are: messenger.transport.async and

messenger.transport.async_priority_high . Copy the second service id.

We want to verify that the AddPonkaToImage message is sent to the transport, and we know

that it's being routed to async_priority_high .

Back in the test, this is super cool: we can fetch the exact transport object that was just used

from within the test by saying: $transport = self::$container->get() and then

pasting the service id: messenger.transport.async_priority_high

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 25

26

 // ... line 27

28

29

This self::$container property holds the container that was actually used during the test

request and is designed so that we can fetch anything we want out of it.

Let's see what this looks like: dd($transport) .

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 25

26

27

28

29

Now jump back over to your terminal and run:

php bin/phpunit

Nice! This dumps the InMemoryTransport object and... the sent property indeed holds our

one message object! All we need to do now is add an assertion for this.

Back in the test, I'm going to help out my editor by adding some inline docs to advertise that this

is an InMemoryTransport . Below add $this->assertCount() to assert that we expect

one message to be returned when we say $transport-> ... let's see... the method that you

can call on a transport to get the sent, or "queued" messages is get() .

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $transport = self::$container-

>get('messenger.transport.async_priority_high');

 }

}

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 $transport = self::$container-

>get('messenger.transport.async_priority_high');

 dd($transport);

 }

}

tests/Controller/ImagePostControllerTest.php

 // ... lines 1 - 6

7

8

9

10

11

12

 // ... lines 13 - 24

25

26

27

28

29

Let's try it! Run:

php bin/phpunit

Got it! We're now guaranteeing that the message was sent but we've kept our tests faster and

more directed by not trying to handle them synchronously. If we were using something like

RabbitMQ, we also don't need to have that running whenever we execute our tests.

Next, let's talk deployment! How do we run our workers on production... and make sure they

stay running?

use Symfony\Component\Messenger\Transport\InMemoryTransport;

class ImagePostControllerTest extends WebTestCase

{

 public function testCreate()

 {

 /** @var InMemoryTransport $transport */

 $transport = self::$container-

>get('messenger.transport.async_priority_high');

 $this->assertCount(1, $transport->get());

 }

}

Chapter 24: Deployment & Supervisor

So... how does all of this work on production? It's a simple problem really: on production, we

somehow need to make sure that this command - messenger:consume - is always running.

Like, always.

Some hosting platforms - like SymfonyCloud - allow you to do this with some simple

configuration. You basically say:

“Yo Cloud provider thingy! Please make sure that bin/console messenger:consume is

always running. If it quits for some reason, start a new one.”

If you're not using a hosting platform like that, it's ok - but you will need to do a little bit of work

to get that same result. And actually, it's not just that we need a way to make sure that someone

starts this command and then it runs forever. We actually don't want the command to run

forever. No matter how well you write your PHP code, PHP just isn't meant to be ran forever -

eventually your memory footprint will increase too much and the process will die. And... that's

perfect! We don't want our process to run forever. Nope: what we really want is for

messenger:consume to run, handle... a few messages... then close itself. Then, we'll use a

different tool to make sure that each time the process disappears, it gets restarted.

Hello Supervisor

The tool that does that is called supervisor. After you install it, you give it a command that you

always want running and it stays up all night constantly eating pizza and watching to make sure

that command is running. The moment it stops running, for any reason, it puts down the pizza

and it restarts the command.

So let's see how Supervisor works and how we can use it to make sure our worker is always

running. Because I'm using a Mac, I already installed Supervisor via Brew. If you're using

Ubuntu, you can install it via apt. By the way, you don't actually need to install & configure

Supervisor on your local machine: you only need it on production. We're installing it so we can

test and make sure everything works.

Supervisor Configuration

To get it going, we need a supervisor configuration file. Google for "Messenger Symfony" and

open the main documentation. In the middle... there's a spot that talks about supervisor. Copy

the configuration file. We could put this anywhere: it doesn't need to live in our project. But, I like

to keep it in my repo so I can store it in git. In... how about config/ , create a new file called

messenger-worker.ini and paste the code inside.

config/messenger-worker.ini

1

2

3

4

5

6

7

The file tells Supervisor which command to run and other important info like which user it should

run the process as and the number of processes to run. This will create two worker processes.

The more workers you run, the more messages can be handled at once. But also, the more

memory & CPU you'll need.

Now, locally, I don't need to run supervisor... because we can just manually run

messenger:consume . But to make sure this all works, we're going to pretend like my

computer is production and change the path to point to use my local path:

/Users/weaverryan/messenger ... which if I double-check in my terminal... oop - I forgot

the Sites/ part. Then, down here, I'll change the user to be weaverryan . Again, you would

normally set this to your production values.

Oh, and if you look closely at the command, it's running messenger:consume async . Make

sure to also consume async_priority_high . The command also has a

--time-limit=3600 option. We'll talk more about this and some other options in a bit, but

this is great: it tells the worker to run for 60 minutes and then exit, to make sure it doesn't get

too old and take up too much memory. As soon as it exits, Supervisor will restart it.

Running Supervisor

[program:messenger-consume]

command=php /path/to/your/app/bin/console messenger:consume async --time-

limit=3600

user=ubuntu

numprocs=2

autostart=true

autorestart=true

process_name=%(program_name)s_%(process_num)02d

Now that we have our config file, we need to make sure Supervisor can see it. Each Supervisor

install has a main configuration file. On a Mac where it's installed via Brew, that file is located at

/usr/local/etc/supervisord.ini . On Ubuntu, it should be

/etc/supervisor/supervisord.conf .

Then, somewhere in your config file, you'll find an include section with a files line. This

means that Supervisor is looking in this directory to find configuration files - like ours - that will

tell it what to do.

To get our configuration file into that directory, we can create a symlink:

ln -s ~/Sites/messenger/config/messenger-worker.ini then paste the directory.

ln -s ~/Sites/messenger/config/messenger-worker.ini /usr/local/etc/supervisor.d

Ok! Supervisor should now be able to see our config file. To run supervisor, we'll use something

called supervisorctl . Because I'm on a Mac, I also need to pass a -c option and point to

the configuration file we were just looking at. If you're on Ubuntu, you shouldn't need to do this -

it'll know where to look already. Then say reread : that tells Supervisor to reread the config

files:

supervisorctl -c /usr/local/etc/supervisord.ini reread

By the way, you may need to run this command with sudo . If you do, no big deal: it will execute

the processes themselves as the user in your config file.

Cool! It sees the new messager-consume group. That names comes from the key at the top

of our file. Next, run the update command... which would restart any processes with the new

config... if they were already running... but our's aren't yet:

supervisorctl -c /usr/local/etc/supervisord.ini update

To start them, run start messenger-consume:* :

supervisorctl -c /usr/local/etc/supervisord.ini start messenger-consume:*

That last argument - messenger-consume:* isn't very obvious. When you create a "program"

called messenger-consume , this creates what's called a "homogeneous process group".

Because we have processes=2 , this group will run two processes. By saying

messenger-consume:* it tells Supervisor to start all processes inside that group.

When we run it... it doesn't say anything... but... our worker commands should now be running!

Let's go stop our manual worker so that only the ones from Supervisor are running. Now,

tail -f var/log/messenger.log

This will make it really obvious whether or not our messages are being handled by those

workers. Now, upload a few photos, delete a couple of items, move over and... yea! It's working!

It's actually working almost twice as fast as normal because we have twice the workers.

And, now we can have some fun. First, we can see the process id's created by Supervisor by

running:

ps -A | grep messenger:consume

 Tip

You can also use ps aux , which will work on more operating systems.

There they are: 19915 and 19916. Let's kill one of those:

kill 19915

And run that again:

ps -A | grep messenger:consume

Yes! 19916 is still there but because we killed the other one, supervisor started a new process

for it: 19995. Supervisor rocks.

Next, let's talk more about the options we can use to purposely make workers exit before they

take up too much memory. We'll also talk about how to restart workers on deploy so that they

see the new code and a little detail about how things can break if you update your message

class.

Chapter 25: Killing Workers Early & on Deploy

Run:

php bin/console messenger:consume --help

We saw earlier that this has an option called --time-limit , which you can use to tell the

command to run for 60 minutes and then exit. The command also has two other options -

--memory-limit - to tell the command to exit once its memory usage is above a certain level

- or --limit - to tell it to run a specific number of messages and then exit. All of these are

great options to use because we really don't want our messenger:consume command to run

too long: we really just want it to handle a few messages, then exit. Restarting the worker is

handled by Supervisor and doesn't take a huge amount of resources. All of these options cause

the worker to exit gracefully, meaning, it only exits after a message has been fully handled,

never in the middle of it. But, if you let your worker run too long and it runs out of memory... that

would cause it to exit in the middle of handling a message and... well... that's not great. Use

these options. You can even use all of them at once.

Restarting Workers on Deploy

There's also a completely different situation when you want all of your workers to restart:

whenever you deploy. We've seen why many times already: whenever we make a change to

our code, we've been manually restarting the messenger:consume command so that the

worker sees the new code. The same thing will happen on production: when you deploy, your

workers won't see the new code until they exit and are restarted. Right now, that could take up

to six minutes to happen! That is not okay. Nope, at the moment we deploy, we need all of or

worker processes to exit, and we need that to happen gracefully.

Fortunately, Symfony has our back. Once again, run ps -A to see the worker processes.

ps -A | grep messenger:consume

Now, pretend we've just deployed. To stop all the workers, run:

php bin/console messenger:stop-workers

Check the processes again:

ps -A | grep messenger:consume

Ha! Perfect! The two new process ids prove that the workers were restarted! How does this

work? Magic! I mean, caching. Seriously.

Behind the scenes, this command sends a signal to each worker that it should exit. But the

workers are smart: they don't exit immediately, they finish whatever message they're handling

and then exit: a graceful exit. To send this signal, Symfony actually sets a flag in the cache

system - and each worker checks this flag. If you have a multi-server setup, you'll need to make

sure that your Symfony "app cache" is stored in something like Redis or Memcache instead of

the filesystem so that everyone can read those keys.

What Happens when you Deploy Message Class Changes

There's one more detail you need to think about and it's due to the asynchronous nature of

handling messages. Open up AddPonkaToImage . Imagine that our site is currently deployed

and the AddPonkaToImage class looks like this. When someone uploads an image, we

serialize this class and send it to the transport.

Imagine now that we have a bunch of these messages sitting in the queue at the moment we

deploy a new version of our site. In this new version, we've refactored the AddPonkaToImage

class: we've renamed $imagePostId to $imagePost . What will happen when those old

versions of AddPonkaToImage are loaded from the queue?

The answer... the new $imagePost property will be null... and some non-existent

$imagePostId property would be set instead. And that would probably cause your handler

some serious trouble. So, if you need to tweak some properties on an existing message class,

you have two options. First, don't: create a new message class instead. Then, after you deploy,

remove the old message class. Or second, update the message class but, temporarily, keep

both the old and new properties and make your handler smart enough to look for both. Again,

after one deploy, or really, once you're sure all the old messages have been processed, you can

remove the old stuff.

And... that's it! Use Supervisor to keep your processes running and the

messenger:stop-workers command to restart on deploy. You are ready to put this stuff into

production.

Before we keep going, I'm going to find my terminal and run:

supervisorctl -c /usr/local/etc/supervisord.ini stop messenger-consume:*

That stops the two processes. Now I'll run my worker manually:

php bin/console messenger:consume -vv async_priority_high async

This just makes life easier and more obvious locally: I can see the output from my worker.

Next: we've talked about commands & command handlers. Now it's time to talk about events

and event handlers, how we can use Messenger as an event bus and... what the heck that

means.

Chapter 26: Events & Event Bus

Messenger is a "message bus". And it turns out that a "message" is a pretty generic term in

computer science. In fact, there are three types of messages you'll commonly hear about.

Messages: Commands, Events & Queries

The first type of message is a "command". And that is the type we've been creating so far: we

create message classes that sound like a command: AddPonkaToImage or

DeleteImagePost and whose handlers do some action. When you create message classes

& handlers that look like this, you're using Messenger as a "command bus". And one of the, sort

of, "rules" of commands is that each command should have exactly one handler. That's the

"command" design pattern.

The second type of message is an "event". If you create an "event" class and pass it to

Messenger, then you're using Messenger as an "event" bus. The difference between what a

"command" class looks like and what an "event" class looks like is subtle: it comes down to

naming conventions and what you're ultimately trying to accomplish. An event is dispatched

after something happens and can have zero to many handlers. Don't worry, we'll see what this

looks like soon.

The third type of message is a "query" and we'll talk about those later. For now, let's focus on

understanding events and how they're different from commands... because... it can be super

confusing. And Messenger, being a generic "message bus" works perfectly with either.

Creating a Second Bus

Before we create our first event, I'll close a few things and then open

config/packages/messenger.yaml . If our app leverages both commands and events, it's

totally ok to use just one bus to handle all of that. But, in the interest of making our life a bit

more difficult and learning more, let's continue to use our existing bus only as a command bus

and create a new bus to only use with events.

To do that, under the buses: key, add a new one called, how about, event.bus . Set this to

~ which is null... just because we don't have any other configuration that we need to put here

yet. This will cause a new MessageBus service to be added to the container.

config/packages/messenger.yaml

1

2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 32

So far, whenever we needed the message bus - like in ImagePostController - we

autowired it by using the MessageBusInterface type-hint. The question now is: how can we

get access to the new message bus service?

Find your terminal and run:

php bin/console debug:autowiring

... which... explodes! My bad:

“Invalid configuration for path framework.messenger : you must specify default_bus ”

Copy the name of the default bus. Once you define more than one bus, you need a

default_bus key set to your "main" bus. This tells Symfony which MessageBus service to

pass us when we use the MessageBusInterface type-hint.

config/packages/messenger.yaml

1

2

3

4

5

 // ... lines 6 - 9

10

 // ... lines 11 - 34

Try the debug:autowiring command again... and search for "mess".

framework:

 messenger:

 buses:

 event.bus: ~

framework:

 messenger:

 default_bus: messenger.bus.default

 buses:

 event.bus: ~

php bin/console debug:autowiring

Ah, now we have two entries! This tells me that if we use the MessageBusInterface type-

hint, we'll get the messenger.bus.default service. Ignore the debug.traced part - that's

just Symfony adding some debug tools. But now, if you use the MessageBusInterface type-

hint and you name the argument $eventBus , it will pass you the new event bus service!

This is a new feature in Symfony 4.2 where you can autowire things by a combination of the

type-hint and argument name. Symfony took the name of our bus - event.bus - and made it

possible to use the $eventBus argument name.

Differences Between Buses

Great! We now know how to get the event bus! But.. what's the difference between these two

buses? Do they behave differently? The answer is... no!

A bus is nothing more than a set of middleware. If you have two bus objects that have the same

middleware... well then... those message buses effectively are identical! So, other than the fact

that, so far, we've only added our AuditMiddleware to the first bus, these buses will work

and act identically. That's why, even though I've created one service to handle commands and

another service to handle events... ah... we really could send all our commands and events to

just one service.

Next, let's create an event, learn what it looks like, why we might use them, and how they're

different than commands.

Chapter 27: Creating & Handling Events

So... what the heck is an event? Let me give you an example. Suppose a user registers on your

site. When that happens, you do three things: save the user to the database, send them an

email and add them to a CRM system. The code to do this might all live in a controller, a service

or a SaveRegisteredUserHandler if you had a SaveRegisteredUser command.

This means that your service - or maybe your command handler - is doing three separate

things. That's... not a huge deal. But if you need to suddenly do a fourth thing, you'll need to add

even more code. Your service - or handler - violates the single responsibility principle that says

that each function should only have to accomplish a single task.

This is not the end of the world - I often write code like this... and it doesn't usually bother me.

But this code organization problem is exactly why events exist.

Here's the idea: if you have a command handler like SaveRegisteredUser , it's supposed to

only perform its principle task: it should save the registered user to the database. If you follow

this practice, it should not do "secondary" tasks, like emailing the user or setting them up in a

CRM system. Instead, it should perform the main task and then dispatch an event, like

UserWasRegistered . Then, we would have two handlers for that event: one that sends the

email and one that sets up the user in the CRM. The command handler performs the main

"action" and the event helps other parts of the system "react" to that action.

As far as Messenger is concerned, commands and events all look identical. The difference

comes down to each supporting a different design pattern.

The Secondary Task of DeleteImagePostHandler

And... we already have a situation like this! Look at DeleteImagePost and then

DeleteImagePostHandler . The "main" job for this handler is to remove this ImagePost

from the database. But it also has a second task: deleting the underlying file from the filesystem.

To do that, well, we're dispatching a second command - DeletePhotoFile - and its handler

deletes the file. Guess what... this is the event pattern! Well, it's almost the event pattern. The

only difference is the naming: DeletePhotoFile sounds like a "command". Instead of

"commanding" the system to do something, an event is more of an "announcement" that

something did happen.

To fully understand this, let's back up and re-implement all of this fresh. Comment out the

$messageBus->dispatch() call and then remove the DeletePhotoFile use statement

on top.

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 21

22

23

 // ... lines 24 - 29

30

31

32

Next, to get a clean start: remove the DeletePhotoFile command class itself and

DeletePhotoFileHandler . Finally, in config/packages/messenger.yaml , we're

routing the command we just deleted. Comment that out.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 29

30

 // ... lines 31 - 32

33

Let's look at this with fresh eyes. We've successfully made DeleteImagePostHandler

perform is primary job only: deleting the ImagePost . And now we're wondering: where should I

put the code to do the secondary task of deleting the physical file? We could put that logic right

here, or leverage an event.

Creating the Event

Commands, events & their handlers look identical. In the src/Message directory, to start

organizing things a bit better, let's create an Event/ subdirectory. Inside, add a new class:

class DeleteImagePostHandler implements MessageHandlerInterface

{

 public function __invoke(DeleteImagePost $deleteImagePost)

 {

 //$this->messageBus->dispatch(new DeletePhotoFile($filename));

 }

}

framework:

 messenger:

 routing:

 #'App\Message\DeletePhotoFile': async

ImagePostDeletedEvent .

src/Message/Event/ImagePostDeletedEvent.php

1

2

3

4

5

6

 // ... lines 7 - 17

18

Notice the name of this class: that's critical. Everything so far has sounded like a command:

we're running around our code base shouting: AddPonkaToImage ! And DeleteImagePost !

We sound bossy.

But with events, you're not using a strict command, you're notifying the system of something

that just happened: we're going to fully delete the image post and then say:

“Hey! I just deleted an image post! If you care... uh... now is your chance to... uh... do

something! But I don't care if you do or not.”

The event itself could be handled by... nobody... or it could have multiple handlers. Inside the

class, we'll store any data we think might be handy. Add a constructor with a

string $filename - knowing the filename of the deleted ImagePost might be useful. I'll hit

Alt + Enter and go to "Initialize Fields" to create that property and set it. Then, at the bottom, I'll

go to "Code -> Generate" - or Command + N on a Mac - and select "Getters" to generate this

one getter.

<?php

namespace App\Message\Event;

class ImagePostDeletedEvent

{

}

src/Message/Event/ImagePostDeletedEvent.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

You may have noticed that, other than its name, this "event" class looks exactly like the

command we just deleted!

Creating the Event Handler

Creating an event "handler" also looks identical to command handlers. In the

MessageHandler directory, let's create another subdirectory called Event/ for organization.

Then add a new PHP class. Let's call this RemoveFileWhenImagePostDeleted . Oh... but

make sure you spell that all correctly.

src/MessageHandler/Event/RemoveFileWhenImagePostDeleted.php

1

2

3

4

 // ... lines 5 - 6

7

8

9

10

 // ... lines 11 - 21

22

<?php

namespace App\Message\Event;

class ImagePostDeletedEvent

{

 private $filename;

 public function __construct(string $filename)

 {

 $this->filename = $filename;

 }

 public function getFilename(): string

 {

 return $this->filename;

 }

}

<?php

namespace App\MessageHandler\Event;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class RemoveFileWhenImagePostDeleted implements MessageHandlerInterface

{

}

This also follows a different naming convention. For commands, if a command was named

AddPonkaToImage , we called the handler AddPonkaToImageHandler . The big difference

between commands and events is that, while each command has exactly one handler - so using

the "command name Handler" convention makes sense - each event could have multiple

handlers.

But the inside of a handler looks the same: implement MessageHandlerInterface and then

create our beloved public function __invoke() with the type-hint for the event class:

ImagePostDeletedEvent $event .

src/MessageHandler/Event/RemoveFileWhenImagePostDeleted.php

 // ... lines 1 - 2

3

4

5

 // ... line 6

7

8

9

10

 // ... lines 11 - 17

18

19

 // ... line 20

21

22

Now... we'll do the work... and this will be identical to the handler we just deleted. Add a

constructor with the one service we need to delete files: PhotoFileManager . I'll initialize

fields to create that property then, down below, finish things with

$this->photoFileManager->deleteImage() passing that $event->getFilename() .

namespace App\MessageHandler\Event;

use App\Message\Event\ImagePostDeletedEvent;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class RemoveFileWhenImagePostDeleted implements MessageHandlerInterface

{

 public function __invoke(ImagePostDeletedEvent $event)

 {

 }

}

src/MessageHandler/Event/RemoveFileWhenImagePostDeleted.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

I hope this was delightfully boring for you. We deleted a command and command handler... and

replaced them with an event and an event handler that are... other than the name... identical!

Next, let's dispatch this new event... but to our event bus. Then, we'll tweak that bus a little bit to

make sure it works perfectly.

namespace App\MessageHandler\Event;

use App\Message\Event\ImagePostDeletedEvent;

use App\Photo\PhotoFileManager;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class RemoveFileWhenImagePostDeleted implements MessageHandlerInterface

{

 private $photoFileManager;

 public function __construct(PhotoFileManager $photoFileManager)

 {

 $this->photoFileManager = $photoFileManager;

 }

 public function __invoke(ImagePostDeletedEvent $event)

 {

 $this->photoFileManager->deleteImage($event->getFilename());

 }

}

Chapter 28: Dispatching the Event & No Handlers

Back in DeleteImagePostHandler , we need to dispatch our new

ImagePostDeletedEvent message. Earlier, we created a second message bus service. We

now have a bus that we're using as a command bus called messenger.bus.default and

another one called event.bus . Thanks to this, when we run:

php bin/console debug:autowiring mess

we can now autowire either of these services. Just using the MessageBusInterface type-

hint will give us the main command bus. But using that type-hint plus naming the argument

$eventBus will give us the other.

Inside DeleteImagePostHandler , change the argument to $eventBus . I don't have to, but

I'm also going to rename the property to $eventBus for clarity. Oh, and variables need a $ in

PHP. Perfect!

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 11

12

13

14

 // ... lines 15 - 16

17

18

19

 // ... line 20

21

 // ... lines 22 - 32

33

Inside __invoke() , it's really the same as before: $this->eventBus->dispatch() with

new ImagePostDeletedEvent() passing that $filename .

class DeleteImagePostHandler implements MessageHandlerInterface

{

 private $eventBus;

 public function __construct(MessageBusInterface $eventBus,

EntityManagerInterface $entityManager)

 {

 $this->eventBus = $eventBus;

 }

}

src/MessageHandler/DeleteImagePostHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 11

12

13

 // ... lines 14 - 22

23

24

 // ... lines 25 - 30

31

32

33

That's it! The end result of all of this work... was to do the same thing as before, but with some

renaming to match the "event bus" pattern. The handler performs its primary task - deleting the

record from the database - then dispatches an event that says:

“An image post was just deleted! If anyone cares... do something!”

Routing Events

In fact, unlike with commands, when we dispatch an event... we don't actually care if there are

any handlers for it. There could be zero, 5, 10 - we don't care! We're not going to use any return

values from the handlers and, unlike with commands, we're not going to expect that anything

specific happened. You're just screaming out into space:

“Hey! An ImagePost was deleted!”

Anyways, the last piece we need to fix to make this truly identical to before is, in

config/packages/messenger.yaml , down under routing , route

App\Message\Event\ImagePostDeletedEvent to the async transport.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 29

30

 // ... lines 31 - 32

33

use App\Message\Event\ImagePostDeletedEvent;

class DeleteImagePostHandler implements MessageHandlerInterface

{

 public function __invoke(DeleteImagePost $deleteImagePost)

 {

 $this->eventBus->dispatch(new ImagePostDeletedEvent($filename));

 }

}

framework:

 messenger:

 routing:

 'App\Message\Event\ImagePostDeletedEvent': async

Let's try this! Find your worker and restart it. All of this refactoring was around deleting images

so... let's delete a couple of things, move back over and... yea! It's working great!

ImagePostDeletedEvent is being dispatched and handled.

Handle Some Handlers Async?

Oh, and side note about routing. When you route a command class, you know exactly which

one handler it has. And so, it's super easy to think about what that handler does and determine

whether or not it can be handled async.

With events, it's a bit more complicated: this one event class could have multiple handlers. And,

in theory, you might want some to be handled immediately and others later. Because

Messenger is built around routing the messages to transports - not the handlers - making some

handlers sync and others async isn't natural. However, if you need to do this, it is possible: you

can route a message to multiple transports, then configure Messenger to only call one handler

when it's received from transport A and only the other handler when it's received from transport

B. It's a bit more complex, so I don't recommend doing this unless you need to. We won't talk

about how in this tutorial, but it's in the docs.

Events can have No Handlers

Anyways, I mentioned before that, for events, it's legal on a philosophical level to have no

handlers... though you probably won't do that in your application because... what's the point of

dispatching an event with no handlers? But... for the sake of trying it, open

RemoveFileWhenImagePostDeleted and take off the

implements MessageHandleInterface part.

src/MessageHandler/Event/RemoveFileWhenImagePostDeleted.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

I'm doing this temporarily to see what happens if Symfony sees zero handlers for an event.

Let's... find out! Back in the browser, try to delete an image. It works! Wait... oh, I forgot to stop

class RemoveFileWhenImagePostDeleted

{

}

the worker... let's do that... then try again. This time... it works... but in the worker log...

CRITICAL error!

“Exception occurred while handling ImagePostDeletedEvent : no handler for message.”

By default, Messenger requires each message to have at least one handler. That's to help us

avoid silly mistakes. But... for an event bus... we do want to allow zero handlers. Again... this is

more of a philosophical problem than a real one: it's unlikely you'll decide to dispatch events

that have no handlers. But, let's see how to fix it!

In messenger.yaml , take the ~ off of event.bus and add a new option below:

default_middleware: allow_no_handlers . The default_middleware option

defaults to true and its main purpose is to allow you to set it to false if, for some reason,

you wanted to completely remove the default middleware - the middleware that handle & send

the messages, among other things. But you can also set it to allow_no_handlers if you

want to keep the normal middleware, but hint to the HandleMessageMiddleware that it

should not panic if there are zero handlers.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 9

10

11

 // ... lines 12 - 35

Go back and restart the worker. Then, delete another image... come back here and... cool! It

says "No handler for message" but it doesn't freak out and cause a failure.

So now our command bus and event bus do have a small difference... though they're still almost

identical... and we could really still get away with sending both commands and events through

the same bus. Put the MessageHandlerInterface back on the class... and restart our

worker one more time.

framework:

 messenger:

 buses:

 event.bus:

 default_middleware: allow_no_handlers

src/MessageHandler/Event/RemoveFileWhenImagePostDeleted.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

Now that we're feeling good about events... I have a question: what's the difference between

dispatching an event into Messenger versus dispatching an event into Symfony's

EventDispatcher?

Let's talk about that next.

class RemoveFileWhenImagePostDeleted implements MessageHandlerInterface

{

}

Chapter 29: Messenger vs EventDispatcher

If you've ever create an event listener or event subscriber in Symfony, you're creating a

"listener" for an event that's dispatched through a service called the "event dispatcher". The

purpose of the event dispatcher is to allow one piece of code to "notify" the app that something

happened and for anyone else to "listen" to that event and run some code.

Which... huh... is the exact same purpose of dispatching an event into Messenger. What the

heck? If I want to dispatch an event in my code, should I use the EventDispatcher or

Messenger? Are animated image files pronounced "jif" or "gif"? Should toilet paper hang "over"

the roll or "under"? Ahh!

Messenger can be Async

First, there is a practical difference between dispatching an event to the EventDispatcher versus

Messenger: Messenger allows your handlers to be called asynchronously, whereas listeners to

events from the EventDispatcher are always synchronous.

EventDispatcher communicates back

And this leads to a nice rule of thumb. Whenever you dispatch an event, if you want listeners to

that event to be able to communicate back to you, so you can then do something based on their

feedback, use the EventDispatcher. But if you simply want to say "this thing happened" and you

don't need any feedback from possible listeners or handlers, use Messenger.

For example, in AddPonkaToImageHandler , suppose we wanted to dispatch an event here

so that other parts of the system could tell us exactly which Ponka image should be added to

this photo. In that case, we need those listeners to be able to communicate back to us. To do

that we would create an Event class that holds the ImagePost object and has a setter on it

that listeners can call - maybe setPonkaImageToUse() . We would then use the

EventDispatcher and dispatch the message before actually adding Ponka to the image.

Once all the listeners were called, we could see if any of them called that

setPonkaImageToUse() method.

But what if we simply wanted to say:

“Hey! We just added Ponka to an image!”

... and didn't need any information back from possible handlers? In that case we would create a

similar event class, leave off the setPonkaImageToUse() method and dispatch it with

Messenger. Messenger is perfect if you don't need any info back from your handlers because...

those handlers might end up being called asynchronously!

If it's still not clear to you, just use whichever you want. Why? Because if you end up wanting

your code to run asynchronously, you'll end up choosing Messenger. And if you want your

listeners to be able to communicate back to the code that dispatches the messages, you'll use

EventDispatcher. Otherwise, either will work.

Next, let's use some service configuration tricks to tighten up how we've organized our

commands, command handlers, events and event handlers.

Chapter 30: Doctrine Transaction & Validation
Middleware

We're now using both a command bus pattern, where we create commands and command

handlers, and the event bus pattern: we have our first event and event handler. The difference

between a command and event... is a little subtle. Each command should have exactly one

handler: we're commanding that something perform a specific action: AddPonkaToImage . But

an event is something that's usually dispatched after that action is taken, and the purpose is to

allow anyone else to take any secondary action - to react to the action.

Two Buses... Why?

Obviously, Messenger itself is a generic enough tool that it can be used for both of these use

cases. Open up config/packages/messenger.yaml . We decided to register one bus

service that we're using as our command bus and a separate bus service that we're using as

our event bus. But... there's really almost no difference between these two buses! A bus is

nothing more than a collection of middleware... so the only differences are that the first has

AuditMiddleware ... which we could also add to the second... and we told the

HandleMessageMiddleware on the event bus to allow "no handlers" for a message: if an

event has zero handlers, it won't throw an exception.

But really... this is so minor that if you wanted to use just one bus for everything, that would

work great.

Validation, Doctrine Transaction, etc Middleware

However, there are some people that make their command and event buses a bit more

different. Google for "Symfony Messenger multiple buses" to find an article that talks about how

to manage multiple buses. In this example, the docs show three different buses: the command

bus, a query bus - which we'll talk about in a minute - and an event bus. But each bus has

slightly different middleware.

These two middleware - validation and doctrine_transaction - come automatically

with Symfony but aren't enabled by default. If you add the validation middleware, when you

dispatch a message, that middleware will validate the message object itself through Symfony's

validator. If validation fails, it will throw a ValidationFailedException that you can catch

in your code to read off the errors.

This is cool... but we're not using this because I prefer to validate my data before sending it into

the bus. It just makes more sense to me and looks a bit simpler than a, somewhat, "invisible"

layer doing validation for us. But, it's a totally valid thing to use.

The doctrine_transaction middleware is similar. If you activate this middleware, it will

wrap your handler inside a Doctrine transaction. If the handler throws an exception, it will

rollback the transaction. And if no exception is thrown, it will commit it. This means that your

handler won't need to call flush() on the EntityManager: the middleware does that for you.

This is cool... but I'm ok with creating and managing Doctrine transactions myself if I need them.

So, this is another nice middleware that I like, but don't use.

Anyways, if you do use more middleware than we're using, then your different buses might start

to... actually be more different... and using multiple bus services would make more sense. Like

with everything, if the simpler approach - using one bus for everything - is working for you,

great! Do that. If you need flexibility to have different middleware on different buses, awesome.

Configure multiple buses.

Since multiple buses is the more complex use-case... and we're deep-diving into Messenger,

let's keep our multiple bus setup and get our code organized even better around this concept.

Messages Sent to Wrong Bus

Find your terminal and run:

php bin/console debug:messenger

Ah... Now that we have multiple buses, it breaks down the information on a bus-by-bus basis. It

says that the following messages can be dispatched to our command bus and... huh... these

same messages are allowed to be dispatched to the event bus.

That's... ok... but it's not really want we want. We know that certain messages are commands

and will be sent to the command bus and others are events. But when we set up our handlers,

we never told Messenger that this handler should only be used by this bus. So, Messenger

makes sure that all buses are aware of all handlers. That's not a huge deal, but it means that if

we accidentally took this command and dispatched it to the event bus, it would work! And if we

took this event and sent it to the command bus, it would work. If we're relying on each bus to

have quite different middleware, we probably don't want to make that mistake.

So... we're going to do something totally optional... but nice, when you're using events and

commands. Look inside the Message and MessageHandler directories: we have a mixture of

events and commands. Sure, I put the event into an Event/ subdirectory, but we haven't done

the same for commands.

Let's do that next: let's organize our message & message handlers better. Once we do this, we

can use a service configuration trick to make sure that the command bus only knows about the

command handlers and the event bus only knows about the event handlers.

Chapter 31: Event & Command Bus Organization

We already organized our new event class into an Event subdirectory. Cool! Let's do the same

thing for our commands. Create a new Command/ sub-directory, move the two command

classes inside... then add \Command to the end of the namespace on both classes.

Let's see... now that we've changed those namespaces... we need to update a few things. Start

in messenger.yaml : we're referencing AddPonkaToImage . Add Command to that class

name. Next, in ImagePostController , all the way on top, we're referencing both

commands. Update the namespace on each one.

And finally, in the handlers, we have the same thing: each handler has a use statements for the

command class it handles. Add the Command\ namespace on both.

Cool! Let's do the same thing for the handlers: create a new subdirectory called Command/ ,

move those inside... then add the \Command namespace to each one. That's... all we need to

change.

I like it! There was nothing technical about this change... it's just a nice way to organize things if

you're planning to use more than just commands - meaning events or query messages. And

everything will work exactly the same way it did before. To prove it, at your terminal, run

debug:messenger :

php bin/console debug:messenger

Yep! We see the same info as earlier.

Binding Handlers to One Bus

But... now that we've separated our event handlers from our command handlers... we can do

something special: we can tie each handler to the specific bus that it's intended for. Again, it's

not super important to do this, but it'll tighten things up.

Let me show you: open up config/services.yaml . This App\ line is responsible for auto-

registering every class in the src/ directory as a service in the container.

The line below repeats that for classes in the Controller/ directory. Why? This will override

the controller services registered above and add a special tag that controllers need to work.

We can use a similar trick with Messenger. Say App\MessageHandler\Command\ , then use

the resource key to re-auto-register all the classes in the

../src/MessageHandler/Command directory. Whoops - I typo'ed that directory name - I'll

see a huge error in a few minutes... and will fix that.

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 29

30

31

 // ... lines 32 - 44

If we only did this... absolutely nothing would change. This would register everything in this

directory as a service... but that's already done by the first App\ entry anyways.

But now we can add a tag to this with name: messenger.message_handler and bus: set

to... the name of my bus from messenger.yaml . Copy messenger.bus.default and say

bus: messenger.bus.default .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 29

30

31

 // ... line 32

33

 // ... lines 34 - 44

There are a few things going on here. First, when Symfony sees a class in our code that

implements MessageHandlerInterface , it automatically adds this

messenger.message_handler tag. This is how Messenger knows which classes are

message handlers.

services:

 App\MessageHandler\Command\:

 resource: '../src/MessageHandler/Command'

services:

 App\MessageHandler\Command\:

 resource: '../src/MessageHandler/Command'

 tags: [{ name: messenger.message_handler, bus:

messenger.bus.default }]

We're now adding that tag manually so that we can also say exactly which one bus this handler

should be used on. Without the bus option, it's added to all buses.

We also need to add one more key: autoconfigure: false .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 29

30

31

32

33

 // ... lines 34 - 44

Thanks to the _defaults section on top, all services in our src/ directory will, by default,

have autoconfigure enabled... which is the feature that's responsible for automatically

adding the messenger.message_handler tag to all services that implement

MessageHandlerInterface . We're turning it off for services in this directory so that the tag

isn't added twice.

Phew! You can see the end result by running debug:messenger again.

php bin/console debug:messenger

Oh, the end result is a huge error thanks to my typo! Make sure you're referencing the

MessageHandler directory. Try debug:messenger again:

php bin/console debug:messenger

Nice! The event bus no longer says that we can dispatch the two commands two it. What this

really means is that the command handlers were added to the command bus, but not to the

event bus.

Let's repeat this for the events: copy this section, paste, change the namespace to Event\ , the

directory to Event and update the bus option to event.bus - the name of our other bus

services:

 App\MessageHandler\Command\:

 resource: '../src/MessageHandler/Command'

 autoconfigure: false

 tags: [{ name: messenger.message_handler, bus:

messenger.bus.default }]

inside messenger.yaml .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 34

35

36

37

38

 // ... lines 39 - 44

Cool! Try debug:messenger again:

php bin/console debug:messenger

Perfect! Our two command handlers are bound to the command bus and our one event handler

is tied to the event bus.

Again, doing this last step wasn't that important... but I do really like these sub-directories... and

tightening things up is nice.

Renaming the Command Bus

Oh, but while we're cleaning things up, back in config/packages/messenger.yaml , our

main bus is called messenger.bus.default , which becomes the bus's service id in the

container. We used this name... just because that's the default value Symfony uses when you

have only one bus. But because this is a command bus, let's... call it that! Rename it to

command.bus . And above, use that as our default_bus .

config/packages/messenger.yaml

1

2

3

4

5

6

 // ... lines 7 - 35

services:

 App\MessageHandler\Event\:

 resource: '../src/MessageHandler/Event'

 autoconfigure: false

 tags: [{ name: messenger.message_handler, bus: event.bus }]

framework:

 messenger:

 default_bus: command.bus

 buses:

 command.bus:

Where was the old key referenced in our code? Thanks to the fact that we autowire that service

via its type-hint... almost nowhere - just in services.yaml . Change the bus option to

command.bus as well.

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 29

30

 // ... lines 31 - 32

33

 // ... lines 34 - 44

Check everything out by running debug:messenger one more time:

php bin/console debug:messenger

That's nice: two buses, each with a great name and only aware of the correct handlers.

Oh, and this AuditMiddleware is something that we really should also use on event.bus :

it logs the journey of messages... which is equally valid here.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 9

10

 // ... line 11

12

13

 // ... lines 14 - 37

If you love this organization, great! If it seems like too much, keep it simple. Messenger is here

to do what you want. Next, let's talk about the last type of message bus: the query bus.

services:

 App\MessageHandler\Command\:

 tags: [{ name: messenger.message_handler, bus: command.bus }]

framework:

 messenger:

 buses:

 event.bus:

 middleware:

 - App\Messenger\AuditMiddleware

Chapter 32: Query Bus

The last type of bus that you'll hear about is... the double-decker tourist bus! I mean... the query

bus! Full disclosure... while I am a fan of waving like an idiot on the top-level of a tourist bus, I'm

not a huge fan of query buses: I think they make your code a bit more complex... for not much

benefit. That being said, I want you to at least understand what it is and how it fits into the

message bus methodology.

Creating the Query Bus

In config/packages/messenger.yaml we have command.bus and event.bus . Let's

add query.bus . I'll keep things simple and just set this to ~ to get the default settings.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 14

15

 // ... lines 16 - 39

What is a Query?

Ok: so what is the point of a "query bus"? We understand the purpose of commands: we

dispatch messages that sound like commands: AddPonkaToImage or DeleteImagePost .

Each command then has exactly one handler that performs that work... but doesn't return

anything. I haven't really mentioned that yet: commands just do work, but they don't

communicate anything back. Because of this, it's ok to process commands synchronously or

asynchronously - our code isn't waiting to get information back from the handler.

A query bus is the opposite. Instead of commanding the bus to do work, the point of a query is

to get information back from the handler. For example, let's pretend that, on our homepage, we

framework:

 messenger:

 buses:

 query.bus: ~

want to print the number of photos that have been uploaded. This is a question or query that we

want to ask our system:

“How many photos are in the database?”

If you're using the query bus pattern, instead of getting that info directly, you'll dispatch a query.

Creating the Query & Handler

Inside the Message/ directory, create a new Query/ subdirectory. And inside of that, create a

new PHP class called GetTotalImageCount .

Even that name sounds like a query instead of a command: I want to get the total image count.

And... in this case, we can leave the query class blank: we won't need to pass any extra data to

the handler.

src/Message/Query/GetTotalImageCount.php

1

2

3

4

5

6

7

8

Next, inside of MessageHandler/ , do the same thing: add a Query/ subdirectory and then a

new class called GetTotalImageCountHandler . And like with everything else, make this

implement MessageHandlerInterface and create public function __invoke() with

an argument type-hinted with the message class:

GetTotalImageCount $getTotalImageCount .

<?php

namespace App\Message\Query;

class GetTotalImageCount

{

}

src/MessageHandler/Query/GetTotalImageCountHandler.php

1

2

3

4

5

6

7

8

9

10

11

 // ... line 12

13

14

What do we do inside of here? Find the image count! Probably by injecting the

ImagePostRepository , executing a query and then returning that value. I'll leave the

querying part to you and just return 50 .

src/MessageHandler/Query/GetTotalImageCountHandler.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

But hold on a second... cause we just did something totally new! We're returning a value from

our handler! This is not something that we've done anywhere else. Commands do work but

don't return any value. A query doesn't really do any work, its only point is to return a value.

Before we dispatch the query, open up config/services.yaml so we can do our same trick

of binding each handler to the correct bus. Copy the Event\ section, paste, change Event to

Query in both places... then set the bus to query.bus .

<?php

namespace App\MessageHandler\Query;

use App\Message\Query\GetTotalImageCount;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class GetTotalImageCountHandler implements MessageHandlerInterface

{

 public function __invoke(GetTotalImageCount $getTotalImageCount)

 {

 }

}

<?php

namespace App\MessageHandler\Query;

use App\Message\Query\GetTotalImageCount;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class GetTotalImageCountHandler implements MessageHandlerInterface

{

 public function __invoke(GetTotalImageCount $getTotalImageCount)

 {

 return 50;

 }

}

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 39

40

41

42

43

 // ... lines 44 - 49

Love it! Let's check our work by running:

php bin/console debug:messenger

Yep! query.bus has one handler, event.bus has one handler and command.bus has two.

Dispatching the Message

Let's do this! Open up src/Controller/MainController.php . This renders the

homepage and so this is where we need to know how many photos have been uploaded. To get

the query bus, we need to know which type-hint & argument name combination to use. We get

that info from running:

php bin/console debug:autowiring mess

We can get the main command.bus by using the MessageBusInterface type-hint with any

argument name. To get the query bus, we need to use that type-hint and name the argument:

$queryBus .

Do that: MessageBusInterface $queryBus . Inside the function, say

$envelope = $queryBus->dispatch(new GetTotalImageCount()) .

services:

 App\MessageHandler\Query\:

 resource: '../src/MessageHandler/Query'

 autoconfigure: false

 tags: [{ name: messenger.message_handler, bus: query.bus }]

src/Controller/MainController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 14

15

16

17

 // ... lines 18 - 19

20

21

Fetching the Returned Value

We haven't used it too much, but the dispatch() method returns the final Envelope object,

which will have a number of different stamps on it. One of the properties of a query bus is that

every query will always be handled synchronously. Why? Simple: we need the answer to our

query... right now! And so, our handler must be run immediately. In Messenger, there's nothing

that enforces this on a query bus... it's just that we won't ever route our queries to a transport,

so they'll always be handled right now.

Anyways, once a message is handled, Messenger automatically adds a stamp called

HandledStamp . Let's get that: $handled = $envelope->last() with

HandledStamp::class . I'll add some inline documentation above that to tell my editor that

this will be a HandledStamp instance.

use Symfony\Component\Messenger\MessageBusInterface;

class MainController extends AbstractController

{

 public function homepage(MessageBusInterface $queryBus)

 {

 $envelope = $queryBus->dispatch(new GetTotalImageCount());

 }

}

src/Controller/MainController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

21

 // ... lines 22 - 26

27

28

So... why did we get this stamp? Well, we need to know what the return value of our handler

was. And, conveniently, Messenger stores that on this stamp! Get it with

$imageCount = $handled->getResult() .

src/Controller/MainController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

21

22

 // ... lines 23 - 26

27

28

Let's pass that into the template as an imageCount variable....

use Symfony\Component\Messenger\Stamp\HandledStamp;

class MainController extends AbstractController

{

 public function homepage(MessageBusInterface $queryBus)

 {

 /** @var HandledStamp $handled */

 $handled = $envelope->last(HandledStamp::class);

 }

}

use Symfony\Component\Messenger\Stamp\HandledStamp;

class MainController extends AbstractController

{

 public function homepage(MessageBusInterface $queryBus)

 {

 /** @var HandledStamp $handled */

 $handled = $envelope->last(HandledStamp::class);

 $imageCount = $handled->getResult();

 }

}

src/Controller/MainController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 19

20

21

22

23

24

25

26

27

28

and then in the template - templates/main/homepage.html.twig - because our entire

frontend is built in Vue.js, let's override the title block on the page and use it there:

Ponka'd {{ imageCount }} Photos .

templates/main/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 10

Let's check it out! Move over, refresh and... it works! We've Ponka's 50 photos... at least

according to our hardcoded logic.

So... that's a query bus! It's not my favorite because we're not guaranteed what type it returns -

the imageCount could really be a string... or an object of any class. Because we're not calling

a direct method, the data we get back feels a little fuzzy. Plus, because queries need to be

handled synchronously, you're not saving any performance by leveraging a query bus: it's purely

a programming pattern.

But, my opinion is totally subjective, and a lot of people love query buses. In fact, we've been

talking mostly about the tools themselves: command, event & query buses. But there are some

deeper patterns like CQRS or event sourcing that these tools can unlock. This is not something

we currently use here on SymfonyCasts... but if you're interested, you can read more about this

topic - Matthias Noback's blog is my favorite source.

use Symfony\Component\Messenger\Stamp\HandledStamp;

class MainController extends AbstractController

{

 public function homepage(MessageBusInterface $queryBus)

 {

 /** @var HandledStamp $handled */

 $handled = $envelope->last(HandledStamp::class);

 $imageCount = $handled->getResult();

 return $this->render('main/homepage.html.twig', [

 'imageCount' => $imageCount

]);

 }

}

{% block title %}Ponka'd {{ imageCount }} Photos{% endblock %}

https://matthiasnoback.nl/

Oh, and before I forget, if you look back on the Symfony docs... back on the main messenger

page... all the way at the bottom... there's a spot here about getting results from your handler. It

shows some shortcuts that you can use to more easily get the value from the bus.

Next, let's talk about message handler subscribers: an alternate way to configure a message

handler that has a few extra options.

Chapter 33: Advanced Handler Config: Handler
Subscribers

Open up DeleteImagePostHandler . The main thing that a message bus needs to know is

the link between the DeleteImagePost message class and its handler. It needs to know that

when we dispatch a DeleteImagePost object, it should call DeleteImagePostHandler .

How does Messenger know these two classes are connected? It knows because our handler

implements MessageHandlerInterface - this "marks" it as a message handler - and

because its __invoke() method is type-hinted with DeleteImagePost . If you follow these

two rules - implement that interface & create an __invoke() method with an argument type-

hinted with the message class - then... you're done!

Find your terminal and run:

php bin/console debug:messenger

Yep! This proves it: DeleteImagePost is handled by DeleteImagePostHandler .

Then... in config/services.yaml , we got a little bit fancier. By organizing each type of

message - commands, events and queries - into different directories, we were able to add a tag

to each service. This gives a bit more info to Messenger. It says:

“Hey! I want you to make that normal connection between the DeleteImagePost message

class and DeleteImagePostHandler ... but I only want you to tell the "command bus"

about that connection... because that's the only bus I'm going to dispatch that message into.”

We also see this on debug:messenger : the command bus is aware of the

DeleteImagePost and DeleteImagePostHandler connection and the other two buses

know about other message and message handler links. Oh, and as a reminder, if this whole

"tags" thing confuses you... skip it. It organizes things a bit more, but you can just as effectively

have one bus that handles everything.

Anyways, this system is quick to use but there are a few things that you can't change. For

example, the method in your handler must be called __invoke() ... that's just what Symfony

looks for. And because a class can only have one method named __invoke() , this means

that you can't have a single handler that handles multiple different message classes. I don't

usually like to do this anyways, I prefer one message class per handler... but it is a technical

limitation.

MessageHandlerInterface

Now that we've reviewed all of that... it turns out that this is only part of the story. If we want to,

we can take more control of how a message class is linked to its handler... including some extra

config.

How? Instead of implementing MessageHandlerInterface , implement

MessageSubscriberInterface .

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 38

39

This is less of a huge change than it may seem. If you open up

MessageSubscriberInterface , it extends MessageHandlerInterface . So, we're still

effectively implementing the same interface... but now we're forced to have one new method:

getHandledMessages() .

At the bottom of my class, I'll go to Code -> Generate - or Command + N on a Mac - and select

"Implement Methods".

As soon as we implement this interface, instead of magically looking for the __invoke()

method and checking the type-hint on the argument for which message class this should

handle, Symfony will call this method. Our job here? Tell it exactly which classes we handle,

which method to call and... some other fun stuff!

use Symfony\Component\Messenger\Handler\MessageSubscriberInterface;

class DeleteImagePostHandler implements MessageSubscriberInterface

{

}

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

38

39

Message Handling Config

The easiest thing you can put here is yield DeleteImagePost::class . Don't over-think

that yield... it's just syntax sugar. You could also return an array with a

DeleteImagePost::class string inside.

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

38

39

What difference did that make? Go back and run debug:messenger .

php bin/console debug:messenger

And... it made absolutely no difference. With this super simple config, we've told Messenger that

this class handles DeleteImagePost objects... and then Messenger still assumes that it

should execute a method called __invoke() .

But technically, this type-hint isn't needed anymore. Delete that, then re-run:

class DeleteImagePostHandler implements MessageSubscriberInterface

{

 public static function getHandledMessages(): iterable

 {

 // TODO: Implement getHandledMessages() method.

 }

}

class DeleteImagePostHandler implements MessageSubscriberInterface

{

 public static function getHandledMessages(): iterable

 {

 yield DeleteImagePost::class;

 }

}

php bin/console debug:messenger

It still sees the connection between the message class and handler.

Controlling the Method & Handling Multiple Classes

Ok... but since we probably should use type-hints... this isn't that interesting yet. What else can

we do?

Well, by assigning this to an array, we can add some config. For example, we can say

'method' => '__invoke' . Yep, we can now control which method Messenger will call.

That's especially useful if you decide that you want to add another yield to handle a second

message... and want Messenger to call a different method.

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

38

39

40

41

Handler Priority

What else can we put here? One option is priority - let's set it to... 10.

class DeleteImagePostHandler implements MessageSubscriberInterface

{

 public static function getHandledMessages(): iterable

 {

 yield DeleteImagePost::class => [

 'method' => '__invoke'

];

 }

}

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

38

 // ... lines 39 - 41

42

43

44

45

This option is... much less interesting than it might look like at first. We talked earlier about

priority transports: in config/packages/messenger.yaml we created two transport -

async & async_priority_high - and we route different messages to each. We did this so

that, when we run our worker, we can tell it to always read messages from

async_priority_high first before reading messages from async . That makes

async_priority_high a place for us to send "higher" priority messages.

The priority option here is... less powerful. If you send a message to a transport with a

priority 0 and then you send another message to that same transport with priority 10, what do

you think will happen? Which message will be handled first?

The answer: the first message that was sent - the one with the lower priority. Basically,

Messenger will always read messages in a first-in-first-out basis: it will always read the oldest

messages first. The priority does not influence this.

So... what does it do? Well, if DeleteImagePost had two handlers... and one had the default

priority of zero and another had 10, the handler with priority 10 would be called first. That's not

usually important, but could be if you had two event handlers and really needed them to happen

in a certain order.

Next, let's talk about one more option you can pass here - the most powerful option. It's called

from_transport and allows you to, sort of, send different "handlers" of a message to

different transports so that each can be consumed independently.

class DeleteImagePostHandler implements MessageSubscriberInterface

{

 public static function getHandledMessages(): iterable

 {

 yield DeleteImagePost::class => [

 'method' => '__invoke',

 'priority' => 10,

];

 }

}

Chapter 34: Sending Handlers to Different
Transports: from_transport

The last option I want to mention is interesting... but can also be confusing. It's called

from_transport .

If you look at messenger.yaml , this DeleteImagePost isn't being routed anywhere, which

means it's handled synchronously. Let's pretend that we want to handle it asynchronously... and

that we're routing it to the async transport. Set from_transport to async ...

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

 // ... lines 38 - 44

45

46

47

48

then temporarily route this class to that transport in messenger.yaml .

Now, pretend that the DeleteImagePost message actually has two handlers... something

that's very possible for events. Assuming that we did not add this from_transport config yet,

if you sent DeleteImagePost to the async transport, then when that message is read from

that transport by a worker, both handlers will be executed one after another.

But what if you wanted to, sort of, send one handler of that message to one transport, maybe

async_priority_high , and another handler to another transport. Well, in Messenger, you

don't send "handlers"... you send messages... and when Messenger consumes a message, it

calls all the handlers for that message. Does that mean it's impossible to make one handler of a

message "high" priority and another one low? Nope! This workflow is possible.

class DeleteImagePostHandler implements MessageSubscriberInterface

{

 public static function getHandledMessages(): iterable

 {

 yield DeleteImagePost::class => [

 'from_transport' => 'async'

];

 }

}

Route to Two Transports

First, route DeleteImagePost to both the async and async_priority_high transports.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 34

35

 // ... lines 36 - 38

39

If we only did this, the message would be sent to both transports, it would be consumed two

times, and every handler would be called twice... which is totally not what we want... unless

each handler is baking cookies... or something.

But when we add this from_transport option set to async , it means that this handler

should only be called when a DeleteImagePost object is consumed from the async

transport. If we configured a second handler with from_transport set to

async_priority_high , that handler would only be called when the message is being

consumed from that transport.

In other words, you're sending the message to two transports, but each transport knows that it

should only execute one handler. This allows your two handlers to be queued and executed by

workers independently of each other. It's a really powerful feature... but because Messenger is

centered around sending messages to transports, over-using this can be confusing.

Let's comment that out and remove the routing config.

src/MessageHandler/Command/DeleteImagePostHandler.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

 // ... lines 38 - 44

45

46

47

48

framework:

 messenger:

 routing:

 'App\Message\Command\DeleteImagePost': [async,

async_priority_high]

class DeleteImagePostHandler implements MessageSubscriberInterface

{

 public static function getHandledMessages(): iterable

 {

 yield DeleteImagePost::class => [

 //'from_transport' => 'async'

];

 }

}

That's basically it for the options you can pass here... though you can always check

MessageSubscriberInterface : it talks about what's available.

Next, let's up our queueing game by changing from the Doctrine transport to RabbitMQ - also

commonly referred to as AMQP. It's buckets of fun!

Chapter 35: AMQP with RabbitMQ

Open up your .env file and check out the MESSENGER_TRANSPORT_DSN setting. We've been

using the doctrine transport type. The doctrine://default string says that messages

should be stored using Doctrine's default connection. In

config/packages/messenger.yaml , we're referencing this environment variable for both

the async and async_priority_high transports.

So... yep! We've been storing messages in a database table. It was quick to set up, easy to use

- because we already understand databases - and robust enough for most use-cases.

Hello AMQP... RabbitMQ

But the industry standard "queueing system" or "message broker" is not a database table, it's

something called AMQP, or "Advanced Message Queuing Protocol". AMQP is... not itself a

technology... it's a "standard" for how a, so-called, "message broker system" should work. Then,

different queuing systems can "implement" this standard. Honestly, usually when someone talks

about AMQP, they're talking about one specific tool: RabbitMQ.

Here's the idea: in the same way that you launch a "database server" and make queries to it,

you can launch a "Rabbit MQ instance" then send messages to it and receive messages from it.

On a high level... it doesn't work much differently than our simple database table: you put

messages in... then ask for them later.

So... what are the advantages of using RabbitMQ instead of Doctrine? Maybe... nothing! What I

mean is, if you just use the standard Messenger features and never dig deeper, both will work

just fine. But if you have a highly-scaled system or want to use some advanced, RabbitMQ-

specific features, well... then... RabbitMQ is the answer!

What are those more advanced features? Well, stick with me over the next few chapters and

you'll start to uncover them.

Launching an Instance via CloudAMQP.com

The easiest way to spin up a RabbitMQ instance is via cloudamqp.com : an awesome service

for cloud-based RabbitMQ... with a free tier so we can play around! After logging in, create a

new instance, give it a name, select any region... yep we do want the free tier and... "Create

instance".

AMQP Transport Configuration

Cool! Click into the new instance to find... a beautiful AMQP connection string! Copy that, go

find our .env file... and paste over doctrine://default . You can also put this into a

.env.local file... which is what I would normally do so I can avoid committing these

credentials.

 Tip

The URL that you copied will now start with amqps:// (with an "s"!). That is "secure"

AMQP. Change it to amqp:// to get things working. Support for SSL was introduced in

Symfony 5.2, but requires extra configuration.

Anyways, the amqp:// part activates the AMQP transport in Symfony... and the rest of this

contains a username, password and other connection details. As soon as we make this change,

both our async and async_priority_high transports... are now using RabbitMQ! That

was easy!

Oh, but notice that I am still using doctrine for my failure transport... and I'm going to keep

that. The failure transport is a special type of transport... and it turns out that the doctrine

transport type actually has the most features for reviewing failed messages. You can use AMQP

for this, but I recommend Doctrine.

Before we try this, I want to make one other change. Open up

src/Controller/ImagePostController.php and find the create() method. This is

the controller that's executed whenever we upload a photo... and it's responsible for dispatching

the AddPonkaToImage command. It also adds a 500 millisecond delay via this stamp.

Comment that out for now... I'll show you why we're doing this a bit later.

src/Controller/ImagePostController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 98

99

The AMQP PHP Extension

Ok! Other than removing that delay, all we've done is swap our transport config from Doctrine to

AMQP. Let's... see if things still work! First, make sure your worker is not running... to begin

with. Then, find your browser, select a photo and... it worked! Well, hold on... because you may

have gotten a big AJAX error. If you did, open the profiler for that request. I'm pretty sure I know

what error you'll see:

“Attempted to load class "AMQPConnection" from the global namespace. Did you forget a

"use" statement?”

Why... no we did not! Under the hood, Symfony's AMQP transport type uses a PHP extension

called... well... amqp! It's an add-on to PHP - like xdebug or pdo_mysql - that you'll probably

need to install.

The pain with PHP extensions is that installing them can vary based on your system. For

Ubuntu, you may be able to run

sudo apt-get install php-amqp

Or you might use pecl, like I did with my Homebrew Mac install:

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 //new DelayStamp(500)

]);

 }

}

pecl install amqp

Once you do manage to get it installed, make sure to restart the Symfony web server so that it

sees the change. If you're having issues getting this configured, let us know in the comments

and we'll do our best to help!

When it is all configured, you should be able upload a photo with no errors. And... because this

had no errors... it... probably just got sent to RabbitMQ? When I refresh, it says "Ponka is

napping"... because nothing has consumed our message yet. Well, let's see what happens. Find

your terminal and consume messages from both of our transports:

php bin/console messenger:consume -vv async_priority_high async

And... there it is! It received the message, handled it... and it's done! When we refresh the

page... there's Ponka! It worked! Switching from Doctrine to RabbitMQ was as simple as

changing our connection string.

Next, let's dig deeper into what just happened behind the scenes: what does it mean to "send" a

message to RabbitMQ or "get" a message from it? Oh, and you're going to love the RabbitMQ

debugging tools.

Chapter 36: AMQP Internals: Exchanges &
Queues

We've just changed our messenger configuration to send messages to a cloud-based RabbitMQ

instance instead of sending them to Doctrine to be stored in the database. And after we made

that change... everything... just kept working! We can send messages like normal and consume

them with the messenger:consume command. That's awesome!

But I want to look a bit more at how this works... what's actually happening inside of RabbitMQ.

Stop the worker... and then lets go delete a few images: one, two, three. This should have

caused three new messages to be sent to Rabbit.

When we were using the Doctrine transport, we could query a database table to see these. Can

we do something similar with RabbitMQ? Yea... we can! RabbitMQ comes with a lovely tool

called the RabbitMQ Manager. Click to jump into it.

Aw yea, we've got data! And if we learn what some of these terms mean... this data will even

start to make sense!

Exchanges

The first big concept in RabbitMQ is an exchange... and, for me, this was the most confusing

part of learning how Rabbit works. When you send a message to RabbitMQ, you send it to a

specific exchange. Most of these exchanges were automatically created for us... and you can

ignore them. But see that messages exchange? That was created by our application and, right

now, all messages that Messenger transports to RabbitMQ are being sent to this exchange.

You won't see the name of this exchange in our messenger config yet, but each transport that

uses AMQP has an exchange option and it defaults to messages . See this "Type" column?

Our exchange is a type called fanout . Click into this exchange to get more info... and open up

"bindings". This exchange has a "binding" to a "queue" that's... by coincidence... also called

"messages".

Exchanges Send to Queues

And this is where things can get a little confusing... but it's really a simple idea. The two main

concepts in RabbitMQ are exchanges and queues. We're a lot more familiar with the idea of a

queue. When we used the Doctrine transport type, our database table was basically a queue: it

was a big list of queued messages... and when we ran the worker, it read messages from that

list.

In RabbitMQ, queues have the same role: queues hold messages and we read messages from

queues. So then... what the heck do these exchange things do?

The key difference between the Doctrine transport type and AMQP is that with AMQP you do

not send a message directly to a queue. You can't say:

“Hey RabbitMQ! I would like to send this message to the important_stuff queue.”

Nope, in RabbitMQ, you send messages to an exchange. Then, that exchange will have some

config that routes that message to a specific queue... or possibly multiple queues. The

"Bindings" represents that config.

The simplest type of exchange is this fanout type. It says that each message that's sent to

this exchange should be sent to all the queues that have been bound to it... which in our case is

just one. The "binding" rules can get a lot smarter - sending different messages to different

queues - but let's worry about that later. For now, this whole fancy setup means that every

message will ultimately end up in a queue called messages .

Let's click on the Queues link on top. Yep, we have exactly one queue: messages . And... hey!

It has 3 messages "Ready" inside of it, waiting for us to consume them!

auto_setup Exchange & Queues

By the way... who created the messages exchange and messages queue? Are they... just

standard to RabbitMQ? Rabbit does come with some exchanges out-of-the-box, but these were

created by our app. Yep, like with the Doctrine transport-type, Messenger's AMQP transport has

an auto_setup option that defaults to true. This means that it will detect if the exchange and

queue it needs exist, and if they're don't, it will automatically create them. Yep, Messenger took

care of creating the exchange, creating the queue and tying them together with the exchange

binding. Both the exchange name and queue name are options that you can configure on your

transport... and both default to the word messages . We'll see that config a bit later.

Send to an Exchange, Read from a Queue

To summarize all of this: we send a message to an exchange and it forwards it to one or more

queues based on some internal rules. Whoever is "sending" - or "producing" - the message just

says:

“Go to the exchange called "messages"”

... and in theory... the "sender" doesn't really know or care what queue that message will end up

in. Once the message is in a queue... it just sits there.. and waits!

The second part of the equation is your "worker" - the thing that consumes messages. The

worker is the opposite of the sender: it doesn't know anything about exchanges. It just says:

“Hey! Give me the next message in the "messages" queue.”

We send messages to exchanges, RabbitMQ routes those to queues, and we consume from

those queues. The exchange is a new, extra layer... but the end-result is still pretty simple.

Phew! Before we try to run our worker, let's upload 4 photos. Then.... if you look at the

messages queue... and refresh.... there it is! It has 7 messages!

Consuming from the Queue

As a reminder, we're sending AddPonkaToImage messages to async_priority_high and

ImagePostDeletedEvent to async . The idea is that we can put different messages into

different queues and then consume messages in the async_priority_high queue before

consuming messages in the async queue. The problem is that... right now... everything is

ending up in the same, one queue!

Check this out - find your terminal and only consume from the async transport. This should

cause only the ImagePostDeletedEvent messages to be consumed:

php bin/console messenger:consume -vv async

And... yup, it does handle a few ImagePostDeletedEvent objects. But if you keep

watching... once it finishes those, it does start processing the AddPonkaToImage messages.

We have such a simple AMQP setup right now that we've introduced a bug: our two transports

are actually sending to the exact same queue... which kills our ability to consume them in a

prioritized way. We'll fix that next by using two exchanges.

Oh, but if you flip back over to the RabbitMQ manager - you can see all the messages being

consumed. Cool stuff.

Chapter 37: AMQP Priority Exchange

The idea behind our async and async_priority_high transports was that we can send

some messages to async_priority_high and others to async , with the goal that those

messages would end up in different "buckets"... or, more technically, in different "queues". Then

we can instruct our worker to first read all messages from whatever queue

async_priority_high is bound to before reading messages from whatever queue the

async transport is bound to.

The queue_name Option in Doctrine

This did work before with Doctrine, thanks to this queue_name: high option. The default

value for this option is... default . As a reminder, I'll quickly log into my database:

mysql -u root messenger_tutorial

And see what that table looked like:

DESCRIBE messenger_messages;

Yep, the queue_name column was the key to making this work. Messages that were sent to

async_priority_high had a queue_name set to high , and those sent to the async

transport had a value of default . So even though we only had one database table, it

functioned like two queues: when we consumed the async_priority_high transport, it

queried for all messages WHERE queue_name="high" .

The problem is that this queue_name option is specific to the doctrine transport, and it has

absolutely no effect when using AMQP.

Routing Messages to... a Queue?

But... on a high-level... our goal is the same: we need two queues. We need the

async_priority_high transport to send messages to one queue and the async transport

to send messages to a different queue.

But with AMQP... you don't send a message directly to a queue... you send it to an exchange...

and then it's the exchange's responsibility to look at its internal rules and figure out which

queue, or queues, that message should actually go to.

This means that to get a message to a queue, we need to tweak things on the exchange level.

And there are two different ways to do this. First, we could continue to have a single exchange

and then add some internal rules - called bindings - to teach the exchange that some messages

should go to one queue and other messages should go to another queue. I'm going to show you

how to do this a bit later.

The second option isn't quite as cool, but it's a bit simpler. By default, when Messenger creates

an exchange, it creates it as a fanout type. That means that when a message is sent to this

exchange, it's routed to every queue that's bound to it. So if we added a second binding to a

second queue - maybe messages_high_priority - then every message that's sent to this

exchange would be routed to both queues. It would be duplicated! That's... not what we want.

Instead, we're going to create two fanout exchanges, and each exchange will route all of its

messages to a separate queue. We'll have two exchanges and two queues.

Configuring a Second Exchange

Let's configure this inside of messenger.yaml . Under options add exchange then name

set to, how about, messages_high_priority . Below this, add queues with just one key

below: messages_high set to null .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... lines 21 - 26

27

 // ... line 28

29

30

31

32

33

 // ... lines 34 - 42

This config has three effects. First, because we have the auto_setup feature enabled, the

first time we talk to RabbitMQ, Messenger will create the messages_high_priority

exchange, the messages_high queue and bind them together. The second effect is that when

we send messages to this transport they will be sent to the messages_high_priority

exchange. The third and final effect is that when we consume from this transport, Messenger

will read messages from the messages_high queue.

If that still doesn't make complete sense... don't worry: let's see this in action. First, make sure

that your worker is not running: our's is stopped. Now let's go over and delete three photos -

one, two, three - and upload four photos.

Cool! Let's see what happened in RabbitMQ! Inside the manager, click "Exchanges". Nice! We

do have a new messages_high_priority exchange! The original messages exchange still

sends all of its messages to a messages queue... but the new exchange sends all of its

messages to a queue called messages_high . That's thanks to our queues config.

And... what's inside each queue? Go check it out! It's exactly what we want: the 3 deleted

messages are waiting in the messages queue and the 4 newly-uploaded photos are in

messages_high . Each transport is successfully getting their messages into a separate queue!

And that means that we can consume them independently.

At the command line, we would normally tell Messenger to consume from

async_priority_high and then async to get our prioritized delivery. But to clearly show

what's happening, let's consume them independently for now. Start by consuming messages

from the async transport:

framework:

 messenger:

 transports:

 async_priority_high:

 options:

 exchange:

 name: messages_high_priority

 queues:

 messages_high: ~

php bin/console messenger:consume -vv async

It starts processing the ImagePostDeletedEvent objects... and stops after those three. It's

done! That queue is empty. The command did not read the messages from messages_high .

To do that, consume the async_priority_high transport:

php bin/console messenger:consume -vv async_priority_high

There we go! The simplest... but not fanciest... way to have prioritized transports with AMQP is

to send each transport to a different exchange and configure it to route to a different queue.

Later... we'll see the fancier way.

Before we get there, remember when I had you comment-out the DelayStamp before we

started using RabbitMQ? Next, I'll show you why: we'll re-add that DelayStamp and see the

crazy way that messages are "delayed" in RabbitMQ.

Chapter 38: Delaying in AMQP: Dead Letter
Exchange

When we started working with AMQP, I told you to go into ImagePostController and

remove the DelayStamp . This stamp is a way to tell the transport system to wait at least 500

milliseconds before allowing a worker to receive the message. Let's change this to 10 seconds -

so 10000 milliseconds.

src/Controller/ImagePostController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 98

99

Now, move over to your terminal and make sure that your worker is not running.

Ok, let's see what happens! Right now both queues are empty. I'll upload 3 photos... then...

quick, quick, quick! Go look at the queues. Suddenly, poof! A new queue appeared... with a

strange name: delay_messages_high_priority__10000 . And it has - dun, dun, dun! -

three messages in it.

Let's look inside. Interesting, the messages were delivered here, instead of the normal queue.

But then... they disappeared? The graph shows how the messages sitting in this queue went

from 3 to 0. But... how? Our worker isn't even running!

Woh! This page just 404'ed! The queue is gone! Something is attacking our queues!

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 new DelayStamp(10000)

]);

 }

}

Head back to the queue list. Yea, that weird "delay" queue is gone... oh, but now the three

messages are somehow in messages_high . What the heck just happened?

Well first, to prove that the whole system still works... regardless of what craziness just

occurred... let's run our worker and consume from both the async_priority_high and

async transports:

php bin/console messenger:consume -vv async_priority_high async

It consumes them and... when we move over, go to the homepage and refresh, yep! Ponka was

added to those images.

The Delay Exchange

Ok, let's figure out how this worked. I mean, on the one hand, it's not important: if we had been

running our worker the entire time, you would have seen that those messages were in fact

delayed by 10 seconds. How you delay messages in RabbitMQ is kinda crazy... but if you don't

care about the details, Messenger just takes care of it for you.

But I do want to see how this works... in part because it'll be a great chance to see how some of

the more advanced features of AMQP work.

Click on "Exchanges". Surprise! There's a new exchange called delays . And instead of being

a fanout type like our other two exchanges, this is a direct exchange. We'll talk about what

that that means soon.

But the first thing to know is that when Messenger sees that a message should be delayed, it

sends it to this exchange instead of sending it to the normal, "correct" exchange. At this

moment, the delays exchange has no bindings... but that will change when we send a

delayed message.

To be able to really see what's happening, let's increase the delay to 60 seconds.

src/Controller/ImagePostController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 98

99

Ok, upload 3 more photos: we now know that these were just sent to the delays exchange.

And... if you refresh that exchange... it has a new binding! This says:

“If a message sent here has a "routing key" set to

delay_messages_high_priority__60000 , then I will send that message to a queue

called delay_messages_high_priority__60000”

A "routing key" is an extra property that you can set on a message that's sent to AMQP.

Normally Messenger doesn't set any routing key, but when a message has a delay, it does. And

thanks to this binding - those three messages are sent to the

delay_messages_high_priority__60000 queue. This is how a direct exchange

works: instead of sending each message to all queues bound to it, it uses the "binding key"

rules to figure out which queue - or queues - a message should go to.

Delay Queues: x-message-ttl and x-deal-letter-exchange

Click into the queue because it's super interesting. It has a few important properties. The first is

an x-message-ttl set to 60 seconds. What does that means? When you set this on a queue,

it means that, after a message has been sitting in this queue for 60 seconds, RabbitMQ should

remove it... which seems crazy, right? Why would we want messages to only live for 60

seconds... and then be deleted? Well... it's by design... and works together with this second

important property: x-dead-letter-exchange .

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 new DelayStamp(60000)

]);

 }

}

If a queue has this property, it tells Rabbit that when a message hits its 60 second TTL and

needs to be removed, it should not be deleted. Instead, it should be sent to the

messages_high_priority exchange.

So, Messenger delivers messages to the delays exchange with a routing key that makes it get

sent here. Then, after sitting around for 60 seconds, the message is removed from this queue

and sent to the messages_high_priority exchange. Yep, it's delivered to the correct place

after 60 seconds!

And then... 404! Even the queue itself is marked as "temporary": once it doesn't have any

messages left, it deletes itself.

When you click back to see the Queues, the messages were delivered to the messages_high

queue... but that's already empty because our worker consumed them.

So... yea... wow! Whenever we publish a message with a delay, Messenger sets all of this up: it

creates the temporary delay queue with the TTL and dead letter exchange settings, adds a

binding to the delays exchange to route to this queue, and adds the correct routing key to the

message to make sure it ends up in that queue.

You can really start to see how rich the features are in AMQP... even if you won't need them.

The most important feature we just saw was the direct exchange type: an exchange that

relies on routing keys to figure out where each message should go.

Next, could we use direct exchanges for our non-delayed messages? Instead of two exchanges

that each "fan out" to a separate queue, could we create just one exchange that, by using

routing keys, delivers the correct messages to the correct queues? Totally.

Chapter 39: Exchange Routing and Binding Keys

Let's change this delay back to one second... so we're not waiting all day for our photos to be

processed.

src/Controller/ImagePostController.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 40

41

42

 // ... lines 43 - 63

64

65

66

 // ... lines 67 - 69

70

 // ... lines 71 - 98

99

Simple Setup: 1 Fanout Exchange per Queue

In messenger.yaml , the messages sent to each transport - async and

async_priority_high - need to ultimately be delivered into two different queues so that we

can consume them independently. And... we've accomplished that!

But there are two different ways that we could have done this. First, remember that in AMQP,

messages are sent to an exchange, not a queue. Right now, when a message is routed to the

async transport, Messenger sends that to an exchange called messages . You don't see that

config here only because messages is the default exchange name in Messenger.

When a message is routed to the async_priority_high transport, Messenger sends that to

an exchange called messages_high_priority . Each transport always sends to exactly one

exchange.

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 new DelayStamp(1000)

]);

 }

}

Then, each exchange routes every message to a single queue, like the messages exchange

sends to a messages queue... and messages_high_priority sends to a

messages_high queue. There is not a routing key on the binding: Messenger binds each

exchange to one queue... but with no routing key. That's how a "fanout" exchange works: it

doesn't care about routing keys... it just sends each message to every queue bound to it.

1 Direct Exchange to 2 Queues

So that's one way to to solve this problem. The other way involves having only a single

exchange... but making it smart enough to send some messages to the messages queue and

other messages to messages_high . We do that with smarter binding and routing keys... which

we already saw with the delays exchange.

Configuring a Direct Exchange

Let's refactor our transports to use this "smarter" system. Under the async transport, add

options , then exchange , and set name to messages . If we stopped here, this would

change nothing: this is the default exchange name in Messenger.

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... line 21

22

 // ... lines 23 - 25

26

 // ... line 27

28

29

 // ... lines 30 - 53

But now, add a type key set to direct . This does change things: the default value is

fanout . Add one more key below this: default_publish_routing_key set to normal .

framework:

 messenger:

 transports:

 async:

 options:

 exchange:

 name: messages

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... line 21

22

 // ... lines 23 - 25

26

 // ... line 27

28

29

30

31

 // ... lines 32 - 53

I'll talk about that in a second. Next, add a queues section. Let's "bind" this exchange to a

queue called messages_normal . But we won't stop there! Under this, add binding_keys

set to [normal] .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... line 21

22

 // ... lines 23 - 25

26

 // ... line 27

28

29

30

31

 // ... lines 32 - 33

34

35

36

 // ... lines 37 - 53

That word normal could be any string. But it's no accident that this matches what we set for

default_publish_routing_key .

Deleting all the Exchanges and Queues

framework:

 messenger:

 transports:

 async:

 options:

 exchange:

 name: messages

 type: direct

 default_publish_routing_key: normal

framework:

 messenger:

 transports:

 async:

 options:

 exchange:

 name: messages

 type: direct

 default_publish_routing_key: normal

 queues:

 messages_normal:

 binding_keys: [normal]

Instead of talking a ton about what this will do... let's... see it in action! Click to delete a photo:

that should send a message to the async transport. Oh, but the AJAX call explodes! Open up

the profiler to see the error. Ah:

“Server channel error: 406, message: PRECONDITION_FAILED - inequivalent arg 'type' for

exchange 'messages': received 'direct' but current is 'fanout'”

The problem is that we already have an exchange called messages , which is a fanout

type... but now we're trying to use it as a direct exchange. AMQP is warning us that we're

trying to do something crazy!

So let's start over. Now that we're doing things a new way, let's hit the reset button and allow

Messenger to create everything new.

Find your terminal - I'll log out of MySQL - and stop your worker... otherwise it will keep trying to

create your exchanges and queues with the old config.

Then move back to the RabbitMQ admin, delete the messages exchange... then the

messages_high_priority exchange. And even though the queues won't look different, to

be extra safe, let's delete both of them too.

So we're back to no queues and only the original exchanges that AMQP created - which we're

not using anyways - and the delays exchange. We're starting from scratch!

Go back to our site, delete the second image and... it looks like it worked! Cool! Let's see what

happened inside RabbitMQ! Yea! We have a new exchange called messages and it's a direct

type. Inside, it has a single binding that says:

“When a message is sent to this exchange with a routing key called normal , it will be

delivered to the queue called messages_normal .”

This was all set up thanks to the queues and binding_keys config. This tells Messenger:

“I want you to create a queue called messages_normal . Also, make sure that there is a

binding on the exchange that will route any messages with a routing key set to normal to

this queue.”

But... did Messenger send the message with that routing key? Until now, other than the delay

stuff, Messenger has been delivering our messages to AMQP with no routing key. The

default_publish_routing_key config changes that. It says:

“Hey! Whenever a message is routed to the async transport, I want you to send it to the

messages exchange with a routing key set to normal .”

This all means that if we look at the queues... yep! We have a message_normal queue with

one message waiting inside! We did it!

Next, let's repeat this for the other transport. Then, we'll learn how this gives us the flexibility to

dynamically control where a message will be delivered at the moment we dispatch it.

Chapter 40: Dynamic AMQP Routing Key
(AmqpStamp)

Let's repeat the new exchange setup for the async_priority_high transport: we want this

to deliver to the same direct exchange, but then use a different routing key to route messages to

a different queue.

Change the exchange to messages , set the type to direct , then use

default_publish_routing_key to automatically attach a routing key called high to each

message.

Below, for the messages_high queue, this tells Messenger that we want this queue to be

created and bound to the exchange. That's cool, but we now need that binding to have a routing

key. Set binding_keys to [high] .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... lines 21 - 37

38

 // ... line 39

40

41

42

43

44

45

46

47

 // ... lines 48 - 56

How can we trigger Messenger to create that new queue and add the new binding? Just

perform any operation that uses this transport... like uploading a photo! Ok, go check out the

RabbitMQ manager - start with Exchanges.

framework:

 messenger:

 transports:

 async_priority_high:

 options:

 exchange:

 name: messages

 type: direct

 default_publish_routing_key: high

 queues:

 messages_high:

 binding_keys: [high]

Yep, we still have just one messages exchange... but now it has two bindings! If you send a

message to this exchange with a high routing key, it will be sent to message_high .

Click "Queues" to see... nice - a new messages_high queue with one message waiting inside.

And... we're done! This new setup has the same end-result: each transport ultimately delivers

messages to a different queue. Let's go consume the waiting messages: consume

async_priority_high then async .

php bin/console messenger:consume -vv async_priority_high async

And it consumes them in the correct order: handling AddPonkaToImage first because that's in

the high priority queue and then moving to messages in the other queue.

By the way, when we consume from the async transport, for example, behind-the-scenes, it

means that Messenger is reading messages from any queue that's configured for that transport.

In our app, each transport has config for only one queue, but you could configure multiple

queues under a transport and even set different binding keys for each one. But when you

consume that transport, you'll be consuming messages from every queue you've configured.

Dynamic Routing Keys

So, let's back up and look at the whole flow. When we dispatch an AddPonkaToImage object,

our Messenger routing config always routes this to the async_priority_high transport.

This causes the message to be sent to the messages exchange with a routing key set to

high ... and the binding logic means that it will ultimately be delivered to the messages_high

queue.

Due to the way that Messenger's routing works - the fact that you route a class to a transport -

every message class will always be delivered to the same queue. But what if you did want to

control this dynamically? What if, at the moment you dispatch a message, you needed to send

that message to a different transport than normal? Maybe you decide that this particular

AddPonkaToImage message is not important and should be routed to async .

Well... that's just not possible with Messenger: each class is always routed to a specific

transport. But this end-result is possible... if you know how to leverage routing keys.

Here's the trick: what if we could publish an AddPonkaToImage object... but tell Messenger

that when it sends it to the exchange, it should use the normal routing key instead of high?

Yea, the message would technically still be routed to the async_priority_high transport...

but it would ultimately end up in the messages_normal queue. That would do it!

Is that possible? Totally! Open up ImagePostController and find where we dispatch the

message. After the DelayStamp , add a new AmqpStamp - but be careful not to choose

AmqpReceivedStamp - that's something different... and isn't useful for us. This stamp accepts

a few arguments and the first one - gasp! - is the routing key to use! Pass this normal .

src/Controller/ImagePostController.php

 // ... lines 1 - 18

19

 // ... lines 20 - 24

25

26

 // ... lines 27 - 41

42

43

 // ... lines 44 - 64

65

66

 // ... lines 67 - 68

69

70

 // ... lines 71 - 73

74

 // ... lines 75 - 102

103

Let's try it! Stop the worker so we can see what happens internally. Then, upload a photo, go to

the RabbitMQ manager, click on queues... refresh until you see the message in the right

queue... we have to wait for the delay... and there it is! It ended up in messages_normal .

What else can you Customize on an Amqp Message?

By the way, if you look inside this AmqpStamp class, the second and third arguments are for

something called $flags and $attributes . These are a bit more advanced, but might just

use Symfony\Component\Messenger\Transport\AmqpExt\AmqpStamp;

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $envelope = new Envelope($message, [

 new DelayStamp(1000),

 new AmqpStamp('normal')

]);

 }

}

come in handy. I'll hit Shift+Shift to open a file called Connection.php - make sure to open

the one in the AmqpExt directory. Now search for a method called publishOnExchange() .

When a message is sent to RabbitMQ, this is the low-level method that actually does that

sending. Those $flags and $attributes from the stamp are used here! Passed as the

third and fourth arguments to some $exchange->publish() method. Hold Cmd or Ctrl and

click to jump into that method.

Oh! This jumps us to a "stub" - a "fake" method & declaration... because this class - called

AMQPExchange is not something you'll find in your vendor/ directory. Nope, this class comes

from the AMQP PHP extension that we installed earlier.

So, if you find that you really need to control something about how a message is published

through this extension, you can do that with the $flags and $attributes . The docs above

this do a nice job of showing you the options.

And... that's it for AMQP and RabbitMQ! Sure, there's more to learn about RabbitMQ - it's a

huge topic on its own - but you now have a firm grasp of its most important concepts and how

they work. And unless you need to do some pretty advanced stuff, you understand plenty to

work with Messenger.

Next, up until now we've been sending messages from our Symfony app and consuming them

from that same app. But, that's not always the case. One of the powers of a "message broker"

like RabbitMQ is the ability to send messages from one system and handle them in a totally

different system... maybe on a totally different server or written in a totally different language.

Craziness!

But if we're going to use Messenger to send messages to a queue that will then be handled by a

totally different app... we probably need to encode those messages as JSON... instead of the

PHP serialized format we're using now.

Chapter 41: Serializing Messages as JSON

Once you start using RabbitMQ, a totally different workflow becomes possible... a workflow

that's especially common with bigger systems. The idea is that the code that sends a message

might not be the same code that consumes and handles that message. Our app is responsible

for both sending the messages to RabbitMQ and, over here in the terminal, for consuming

messages from the queue and handling them.

But what if we wanted to send one or more messages to RabbitMQ with the expectation that

some other system - maybe some code written in a different language and deployed to a

different server - will consume and handle it? How can we do that?

Well... on a high level... it's easy! If we wanted to send things to this async transport... but

didn't plan to consume those messages, we wouldn't need to change anything in our code!

Nope, we just... wouldn't consume messages from that transport when using the

messenger:consume command. We could still consume messages from other transports - we

just wouldn't read these ones... because we know someone else will. Done! Victory! Coffee!

How are our Messages Formatted?

But... if you were going to send data to another system, how would you normally format that

data? Well, to use a more familiar example, when you send data to an API endpoint, you

typically format that data as JSON... or maybe XML. The same is true in the queueing world.

You can send a message to RabbitMQ in any format... as long as whoever is consuming that

message understands the format. So... what format are we using now? Let's find out!

I'll go into the messages_normal queue... and just to be safe, let's empty this. Messages sent

to the async transport will eventually end up in this queue... and the

ImagePostDeleteEvent classes route there. Ok, back on our app, delete a photo then,

looking at our queue, in a moment... there it is! Our queue contains the one new message.

Let's see exactly what this message looks like. Down below, there's a spot to fetch a message

out. But... for some reason... this hasn't been working for me. To hack around this, I'll bring up

my network tools, click "Get Message(s)" again... and look at the AJAX request this just made.

Open up the returned data and hover over that payload property.

Yep, this is what our message looks like in the queue - this is the body of the message. What is

that ugly format? It's a serialized PHP object! When Messenger consume this, it knows to use

the unserialize function to get it back into an object... and so, this format works awesome!

But if we expect a different PHP application to consume this... unserializing it won't work

because these classes probably won't exist. And if the code that will handle this is written in a

different language, pfff, they won't even have a chance at reading and understanding this PHP-

specific format.

The point is: using PHP serialization works great when the app that sends the message also

handles it. But it works horribly when that's not the case. Instead, you'll probably want to use

JSON or XML.

Using the Symfony Serializer

Fortunately, using a different format is easy. I'll purge that message out of the queue one more

time. Move over and open config/packages/messenger.yaml . One of the keys that

you're allowed to have below each transport is called serializer . Set this to a special string:

messenger.transport.symfony_serializer .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... line 21

22

 // ... line 23

24

 // ... lines 25 - 57

When a message is sent to a transport - whether that's Doctrine, AMQP or something else - it

uses a "serializer" to encode that message into a string format that can be sent. Later, when it

reads a message from a transport, it uses that same serializer to decode the data back into the

message object.

framework:

 messenger:

 transports:

 async:

 serializer: messenger.transport.symfony_serializer

Messenger comes with two "serializers" out-of-the-box. The first one is the PHP serializer...

which is the default. The second is the "Symfony Serializer", which uses Symfony's Serializer

component. That is the serializer service that we just switched to. If you don't already have the

serializer component installed, make sure you install it with:

composer require "serializer:^1.0"

The Symfony serializer is great because it's really good at turning objects into JSON or XML,

and it uses JSON by default. So... let's see what happens! Move back and delete another photo.

Back in the Rabbit manager, I'll use the same trick as before to see what that message looks

like.

Woh. This is fascinating! The payload is now... super simple: just a filename key set to the

filename. This is the JSON representation of the message class, which is

ImagePostDeletedEvent . Open that up:

src/Message/Event/ImagePostDeletedEvent.php . Yep! The Symfony serializer turned

this object's one property into JSON.

We're not going to go too deep into Symfony's serializer component, but if you want to know

more, we go much deeper in our API Platform Tutorial.

Anyways, this simple JSON structure is something any other system could understand. So... we

rock!

But... just as a challenge... if we did try to consume this message from our Symfony app...

would it work? I'm not sure. If this message is consumed, how would the serializer know that

this simple JSON string needs to decoded into an ImagePostDeletedEvent object? The

answer... lies somewhere else in the message: the headers. That's next.

https://symfonycasts.com/screencast/api-platform

Chapter 42: JSON, Message Headers & Serializer
Options

In addition to the payload, a message in RabbitMQ can also have "headers". Check that key out

on our message. Woh! This contains a big JSON structure of the original class name and the

data and class names of the stamps attached to the message!

Why did Messenger do this? Well, find your terminal and consume the async transport:

php bin/console messenger:consume -vv async

This still works. Internally, the Symfony serializer uses the info on the headers to figure out

how to take this simple JSON string and turn it into the correct object. It used the type header

to know that the JSON should become an ImagePostDeletedEvent object and then looped

over the stamps and turned each of those back into a stamp object for the envelope.

The really nice thing about using the Symfony serializer in Messenger is that the payload is

this simple, pure JSON structure that can be consumed by any application in any language. It

does contain some PHP class info on the headers, but another app can just ignore that. But

thanks to those headers, if the same app does both send and consume a message, the

Symfony serializer can still be used.

Shouldn't we Always use the Symfony Serializer?

But wait... if that's true - if the Symfony serializer creates messages that can be consumed by

external systems or by our same app - then why isn't it the default serializer in Messenger? An

excellent question! The reason is that the Symfony serializer requires your classes to follow a

few rules in order to be serialized and unserialized correctly - like each property needs a setter

method or a constructor argument where the name matches the property name. If your class

doesn't follow those rules, you can end up with a property that is set on the original object, but

suddenly becomes null when it's read from the transport. No fun.

In other words, the PHP serializer is easier and more dependable when everything is done by

the same app.

Configuring the Symfony Serializer

Anyways, if you are using the Symfony serializer, there are also a few things that can be

configured. Find your terminal and run:

php bin/console config:dump framework messenger

Check out that symfony_serializer key. This is where you configure the behavior of the

serializer: the format - json , xml or something else, and the context , which is an array of

options for the serializer.

Of course, you can also create a totally custom serializer service. And if you have the opposite

workflow to what we just described - one where your app consumes messages that were sent to

Rabbit from some other system - a custom serializer is exactly what you need. Let's talk about

that next.

Chapter 43: Setup for Messages from an Outside
System

What if a queue on RabbitMQ was filled with messages that originated from an external

system... but we wanted to consume and handle those from our Symfony App? For example,

maybe a user can request that a photo be deleted from some totally different system... and that

system needs to communicate back to our app so that it can actually do the deleting? How

would that work?

Each transport in Messenger really has two jobs: one, to send messages to a message broker

or queue system and two, to receive messages from that same system and handle them.

And, like we talked about in the last video, you don't need to use both features of a transport:

you could choose to send to a transport, but never read and consume those messages...

because some other system will. Or, you can do the opposite: create a transport that you will

never send to, but that you will use to consume messages... that were probably put there by

some outside system. The trick to doing this is creating a serializer that can understand the

format of those outside messages.

Creating a new Message & Handler

Instead of over-explaining this, let's see it in action. First, pretend that this imaginary external

system needs to be able to tell our app to do something... very... important: to log an Emoji. Ok,

this may not be the most impressive type of a message... but the details of what this outside

message is telling our app to do aren't important: it could be telling us to upload an image with

details about where the file is located, delete an image, send an email to a registered user or,

log an emoji!

Let's get this set up. Normally, if we wanted to dispatch a command to log an Emoji, we would

start by creating a message class and message handler. In this case... we'll do the exact same

thing. In the Command/ directory, create a new PHP class called LogEmoji .

src/Message/Command/LogEmoji.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 17

18

Add a public function __construct() . In order to tell us which emoji to log, the outside

system will send us an integer index of the emoji they want - our app will have a list of emojis.

So, add an $emojiIndex argument and then press Alt+Enter and select "Initialize Fields" to

create that property and set it.

src/Message/Command/LogEmoji.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

 // ... lines 13 - 17

18

To make this property readable by the handler, go to the Code -> Generate menu - or Command

+ N on a Mac - select getters and generate getEmojiIndex() .

namespace App\Message\Command;

class LogEmoji

{

}

namespace App\Message\Command;

class LogEmoji

{

 private $emojiIndex;

 public function __construct(int $emojiIndex)

 {

 $this->emojiIndex = $emojiIndex;

 }

}

src/Message/Command/LogEmoji.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Brilliant! A perfectly boring, um, normal, message class. Step two: in the

MessageHandler/Command/ directory, create a new LogEmojiHandler class. Make this

implement our normal MessageHandlerInterface and add

public function __invoke() with the type-hint for the message:

LogEmoji $logEmoji .

src/MessageHandler/Command/LogEmojiHandler.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

Now... we get to work! I'll paste an emoji list on top: here are the five that the outside system

can choose from: cookie, dinosaur, cheese, robot, and of course, poop.

namespace App\Message\Command;

class LogEmoji

{

 private $emojiIndex;

 public function __construct(int $emojiIndex)

 {

 $this->emojiIndex = $emojiIndex;

 }

 public function getEmojiIndex(): int

 {

 return $this->emojiIndex;

 }

}

namespace App\MessageHandler\Command;

use App\Message\Command\LogEmoji;

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

class LogEmojiHandler implements MessageHandlerInterface

{

 public function __invoke(LogEmoji $logEmoji)

 {

 }

}

src/MessageHandler/Command/LogEmojiHandler.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 33

34

And then, because we're going to be logging something, add an __construct() method with

the LoggerInterface type hint. Hit Alt + Enter and select "Initialize Fields" one more time to

create that property and set it.

src/MessageHandler/Command/LogEmojiHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 33

34

Inside __invoke() , our job is pretty simple. To get the emoji, set an $index variable to

$logEmoji->getEmojiIndex() .

class LogEmojiHandler implements MessageHandlerInterface

{

 private static $emojis = [

 '?',

 '?',

 '?',

 '?',

 '?'

];

}

use Psr\Log\LoggerInterface;

class LogEmojiHandler implements MessageHandlerInterface

{

 private static $emojis = [

 '?',

 '?',

 '?',

 '?',

 '?'

];

 private $logger;

 public function __construct(LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

}

src/MessageHandler/Command/LogEmojiHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 32

33

34

Then $emoji = self::$emojis - to reference that static property -

self::$emojis[$index] ?? self::emojis[0] .

use Psr\Log\LoggerInterface;

class LogEmojiHandler implements MessageHandlerInterface

{

 private static $emojis = [

 '?',

 '?',

 '?',

 '?',

 '?'

];

 private $logger;

 public function __construct(LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

 public function __invoke(LogEmoji $logEmoji)

 {

 $index = $logEmoji->getEmojiIndex();

 }

}

src/MessageHandler/Command/LogEmojiHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 32

33

34

In other words, if the index exists, use it. Otherwise, fallback to logging a cookie... cause...

everyone loves cookies. Log with $this->logger->info('Important message! ')and

then $emoji .

use Psr\Log\LoggerInterface;

class LogEmojiHandler implements MessageHandlerInterface

{

 private static $emojis = [

 '?',

 '?',

 '?',

 '?',

 '?'

];

 private $logger;

 public function __construct(LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

 public function __invoke(LogEmoji $logEmoji)

 {

 $index = $logEmoji->getEmojiIndex();

 $emoji = self::$emojis[$index] ?? self::$emojis[0];

 }

}

src/MessageHandler/Command/LogEmojiHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

The big takeaway from this new message and message handler is that it is, well, absolutely no

different from any other message and message handler! Messenger does not care whether the

LogEmoji object will be dispatched manually from our own app or if a worker will receive a

message from an outside system that will get mapped to this class.

To prove it, go up to ImagePostController , find the create() method and, just to see

make sure this is working, add: $messageBus->dispatch(new LogEmoji(2)) .

use Psr\Log\LoggerInterface;

class LogEmojiHandler implements MessageHandlerInterface

{

 private static $emojis = [

 '?',

 '?',

 '?',

 '?',

 '?'

];

 private $logger;

 public function __construct(LoggerInterface $logger)

 {

 $this->logger = $logger;

 }

 public function __invoke(LogEmoji $logEmoji)

 {

 $index = $logEmoji->getEmojiIndex();

 $emoji = self::$emojis[$index] ?? self::$emojis[0];

 $this->logger->info('Important message! '.$emoji);

 }

}

src/Controller/ImagePostController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

27

 // ... lines 28 - 42

43

44

 // ... lines 45 - 73

74

 // ... lines 75 - 76

77

 // ... lines 78 - 105

106

If this is working, we should see a message in our logs each time we upload a photo. Find your

terminal: let's watch the logs with:

tail -f var/log/dev.log

That's the log file for the dev environment. I'll clear my screen, then move over, select a photo

and... move back. There it is:

“Important message! 🧀”

I agree! That is important! This is cool... but not what we really want. What we really want to do

is use a worker to consume a message from a queue - probably a JSON message - and

transform that intelligently into a LogEmoji object so Messenger can handle it. How do we do

that? With a dedicated transport and a customer serializer. Let's do that next!

use App\Message\Command\LogEmoji;

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 $messageBus->dispatch(new LogEmoji(2));

 }

}

Chapter 44: Transport for Consuming External
Messages

We've just created a new message class & handler... then instantiated it and dispatched it

directly into the message bus. Yep, we just did something totally... boring! But... it's actually

pretty similar to our real goal! Our real goal is to pretend that an outside system is putting

messages into a RabbitMQ queue... probably formatted as JSON... and we will read those

messages, transform that JSON into a LogEmoji object and... basically dispatch that through

the message bus. It's really the same basic flow: in both cases, we create a LogEmoji object

and pass it to Messenger.

src/Controller/ImagePostController.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 42

43

44

 // ... lines 45 - 73

74

 // ... lines 75 - 76

77

 // ... lines 78 - 105

106

Creating a Dedicated Transport

The first step is to create a transport that will read these messages from whatever queue the

outside system is placing them into. We'll keep the async and async_priority_high

transports: we'll continue to send and receive from those. But now create a new one called, how

about: external_messages . I'll use the same DSN because we're still consuming things from

RabbitMQ. But for the options, instead of consuming messages from message_high or

messages_normal , we'll consume them from whatever queue that outside system is using -

let's pretend it's called messages_from_external . Set that to just ~ .

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 //$messageBus->dispatch(new LogEmoji(2));

 }

}

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... lines 21 - 50

51

52

53

54

55

56

57

58

59

60

 // ... lines 61 - 69

By the way, it is important that we use a different transport that reads from a different queue for

these external messages. Why? Because, as you'll see in a few minutes, these external

messages will need special logic to decode them back into the correct object. We'll attach that

special logic to the transport.

Anyways, above this add auto_setup: false .

 Tip

To support retry, you should use auto_setup and configure a few more things. See the tip

below for more details.

Ok, there are a few important things happening here. The first is that this queue config means

that when we consume from the external_messages transport, Messenger will read

messages from a queue called messages_from_external . The second important thing is

auto_setup: false . This tells Messenger not to try to create this queue. Why? Well... I

guess our app could create that queue... that would probably be fine... but since we're expecting

an external system to send messages to this queue, I'm guessing that that system will want to

be responsible for making sure it exists.

Oh, and you probably also noticed that I didn't add any exchange config. That was on

purpose. An exchange is only used when sending a message. And because we're not planning

framework:

 messenger:

 transports:

 external_messages:

 dsn: '%env(MESSENGER_TRANSPORT_DSN)%'

 options:

 exchange:

 name: messages

 type: direct

 default_publish_routing_key: from_external

 queues:

 messages_from_external:

 binding_keys: [from_external]

on ever sending a message through this transport, that part of the transport just won't ever be

used.

 Tip

Correction: if you're using AMQP and want "retries" to work, you will need to configure a

routing & binding key so that if a message needs to be sent to this transport (for redelivery),

Messenger can attach the correct binding key so that the message will end up in the

messages_from_external queue. See the code block on this page for an updated

example.

So with just this, we should be able to consume from the new transport. Spin over to your

terminal and run:

php bin/console messenger:consume -vv external_messages

And... it explodes! This is awesome.

“Server channel error: 404, message: NOT_FOUND - no queue 'messages_from_external'”

We're seeing our auto_setup: false in action! Instead of creating that queue when it didn't

exist, it exploded. Love it!

Creating the Queue By Hand

So now, let's pretend that we are that "external" system and we want to create that queue. Copy

the queue name - messages_from_external - and, inside the Rabbit Manager, create a

new queue with that name. Don't worry about the options - they won't matter for us.

And... hello queue! Let's go see if we can consume messages from it:

php bin/console messenger:consume -vv external_messages

It works! Well... there aren't any messages in the queue yet, but it's happily checking for them.

https://symfonycasts.com/screencast/messenger/external-transport#codeblock-5b68cfa12a

Putting an "External" Message into the queue

Now, let's continue to pretend like we are the "external" system that will be sending messages

to this queue. On the queue management screen, we can publish a message into the queue.

Convenient!

So... what will these messages look like? Well... they can look like anything: JSON, XML, a

binary image, ASCII art - whatever we want. We'll just need to make sure that our Symfony app

can understand the message - that's something we'll work on in a few minutes.

Let's think: if an outside system wants to send our app a command to log an emoji... and it can

choose which emoji via a number... then... maybe the message is JSON that looks like this? An

emoji key set to 2:

{

 "emoji": 2

}

Publish! Ok, go check the worker! Woh... it exploded! Cool!

“Could not decode message using PHP serialization”

And then it shows our JSON. Of course! If you're consuming a message that was placed in the

queue by an external system... that message probably won't be in the PHP serialized format...

and it really shouldn't be. Nope, the message will probably be JSON or XML. The problem is

that our transport is trying to transform that JSON into an object by using the default PHP

serializer. Literally, it's calling unserialize() on that JSON.

We need to be smarter: when a transport consumes messages from an external system, it

needs to have a custom serializer so we can take control. Let's do that next.

Chapter 45: Custom Transport Serializer

If an external system sends messages to a queue that we're going to read, those messages will

probably be sent as JSON or XML. We added a message formatted as JSON. To read those,

we set up a transport called external_messages . But when we consumed that JSON

message... it exploded! Why? Because the default serializer for every transport is the

PhpSerializer . Basically, it's trying to call unserialize() on our JSON. That's...uh... not

gonna work.

Nope, if you're consuming messages that came from an external system, you're going to need a

custom serializer for your transport. Creating a custom serializer is... actually a very pleasant

experience.

Creating the Custom Serializer Class

Inside of our src/Messenger/ directory... though this class could live anywhere.. let's create

a new PHP class called ExternalJsonMessengerSerializer . The only rule is that this

needs to implement SerializerInterface . But, careful! There are two

SerializerInterface : one is from the Serializer component. We want the other one: the

one from the Messenger component. I'll go to the "Code Generate" menu - or Command + N on

a Mac - and select "Implement Methods" to add the two that this interface requires: decode()

and encode() .

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

The encode() Method

The idea is beautifully simple: when we send a message through a transport that uses this

serializer, the transport will call the encode() method and pass us the Envelope object that

contains the message. Our job is to turn that into a string format that can be sent to the

transport. Oh, well, notice that this returns an array. But if you look at the

SerializerInterface , this method should return an array with two keys: body - the body

of the message - and headers - any headers that should be sent.

Nice, right? But... we're actually never going to send any messages through our external

transport... so we don't need this method. To prove that it will never be called, throw a new

Exception with:

“Transport & serializer not meant for sending messages”

namespace App\Messenger;

use Symfony\Component\Messenger\Envelope;

use Symfony\Component\Messenger\Exception\MessageDecodingFailedException;

use

Symfony\Component\Messenger\Transport\Serialization\SerializerInterface;

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 // TODO: Implement decode() method.

 }

 public function encode(Envelope $envelope): array

 {

 // TODO: Implement encode() method.

 }

}

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 22

23

24

25

26

27

That'll give me a gentle reminder in case I do something silly and route a message to a

transport that uses this serializer by accident.

 Tip

Actually, if you want your messages to be redelivered, you do need to implement the

encode() method. See the code-block on this page for an example, which includes a

small update to decode() .

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function encode(Envelope $envelope): array

 {

 throw new \Exception('Transport & serializer not meant for sending

messages');

 }

}

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 // in case of redelivery, unserialize any stamps

 $stamps = [];

 if (isset($headers['stamps'])) {

 $stamps = unserialize($headers['stamps']);

 }

 return new Envelope($message, $stamps);

 }

 public function encode(Envelope $envelope): array

 {

 // this is called if a message is redelivered for "retry"

 $message = $envelope->getMessage();

 // expand this logic later if you handle more than

 // just one message class

 if ($message instanceof LogEmoji) {

 // recreate what the data originally looked like

 $data = ['emoji' => $message->getEmojiIndex()];

 } else {

 throw new \Exception('Unsupported message class');

 }

 $allStamps = [];

 foreach ($envelope->all() as $stamps) {

 $allStamps = array_merge($allStamps, $stamps);

 }

 return [

 'body' => json_encode($data),

 'headers' => [

 // store stamps as a header - to be read in decode()

 'stamps' => serialize($allStamps)

],

];

 }

}

The decode() Method

The method that we need to focus on is decode() . When a worker consumes a message from

a transport, the transport calls decode() on its serializer. Our job is to read the message from

the queue and turn that into an Envelope object with the message object inside. If you check

out the SerializerInterface one more time, you'll see that the argument we're passed -

$encodedEnvelope - is really just an array with the same two keys we saw a moment ago:

body and headers .

Let's separate the pieces first: $body = $encodedEnvelope['body'] and

$headers = $encodedEnvelope['headers'] . The $body will be the raw JSON in the

message. We'll talk about the headers later: it's empty right now.

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 9

10

11

12

13

14

15

 // ... lines 16 - 20

21

 // ... lines 22 - 26

27

Turning JSON into the Envelope

Ok, remember our goal here: to turn this JSON into a LogEmoji object and then put that into

an Envelope object. How? Let's keep it simple! Start with

$data = json_decode($body, true) to turn the JSON into an associative array.

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 $body = $encodedEnvelope['body'];

 $headers = $encodedEnvelope['headers'];

 }

}

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 26

27

I'm not doing any error-checking yet... like to check that this is valid JSON - we'll do that a bit

later. Now say: $message = new LogEmoji($data['emoji']) because emoji is the

key in the JSON that we've decided will hold the $emojiIndex .

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 20

21

 // ... lines 22 - 26

27

Finally, we need to return an Envelope object. Remember: an Envelope is just a small

wrapper around the message itself... and it might also hold some stamps. At the bottom, return

new Envelope() and put $message inside.

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 $body = $encodedEnvelope['body'];

 $headers = $encodedEnvelope['headers'];

 $data = json_decode($body, true);

 }

}

use App\Message\Command\LogEmoji;

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 $body = $encodedEnvelope['body'];

 $headers = $encodedEnvelope['headers'];

 $data = json_decode($body, true);

 $message = new LogEmoji($data['emoji']);

 }

}

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 55

56

Configuring the Serializer on the Transport

Done! We rock! This is already a fully functional serializer that can read messages from a

queue. But our transport won't just start "magically" using it: we need to configure that. And.. we

already know how! We learned earlier that each transport can have a serializer option.

Below the external transport, add serializer and set this to the id of our service, which is the

same as the class name: App\Messenger\ ... and then I'll go copy the class name:

ExternalJsonMessengerSerializer .

use App\Message\Command\LogEmoji;

use Symfony\Component\Messenger\Envelope;

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 $body = $encodedEnvelope['body'];

 $headers = $encodedEnvelope['headers'];

 $data = json_decode($body, true);

 $message = new LogEmoji($data['emoji']);

 // in case of redelivery, unserialize any stamps

 $stamps = [];

 if (isset($headers['stamps'])) {

 $stamps = unserialize($headers['stamps']);

 }

 return new Envelope($message, $stamps);

 }

}

config/packages/messenger.yaml

1

2

 // ... lines 3 - 19

20

 // ... lines 21 - 50

51

 // ... line 52

53

 // ... lines 54 - 69

This is why we created a separate transport with a separate queue: we only want the external

messages to use our ExternalJsonMessengerSerializer . The other two transports -

async and async_priority_high - will still use the simpler PhpSerializer... which is

perfect.

Ok, let's try this! First, find an open terminal and tail the logs:

tail -f var/log/dev.log

And I'll clear the screen. Then, in my other terminal, I'll consume messages from the

external_messages transport:

php bin/console messenger:consume -vv external_messages

Perfect! There are no messages yet... so it's just waiting. But we're hoping that when we publish

this message to the queue, it will be consumed by our worker, decoded correctly, and that an

emoji will be logged! Ah, ok - let's try it. Publish! Oh, then move back over to the terminal....

there it is! We got an important message: cheese: it received the message and handled it down

here.

So... we did it! We rock!

But... when we created the Envelope , we didn't put any stamps into it. Should we have? Does

a message that goes through the "normal" flow have some stamps on it that we should

manually add here? Let's dive into the workflow of a message and its stamps, next.

framework:

 messenger:

 transports:

 external_messages:

 serializer: App\Messenger\ExternalJsonMessageSerializer

Chapter 46: The Lifecycle of a Message & its
Stamps

Forget about asynchronous messages and external transports and all that stuff. Open up

ImagePostController . As a reminder, when you dispatch a message, you actually dispatch

an Envelope object, which is a simple "wrapper" that contains the message itself and may

also contain some stamps... which add extra info.

If you dispatch the message object directly, the message bus creates an Envelope for you and

puts your message inside. The point is, internally, Messenger is always working with an

Envelope . And when you call $messageBus->dispatch() , it also returns an Envelope :

the final Envelope after Messenger has done all its work.

Let's see what that looks like: dump() that whole $messageBus->dispatch() line. Now,

move over and upload a photo. Once that's done, find that request on the web debug toolbar...

and open the profiler.

src/Controller/ImagePostController.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 42

43

44

 // ... lines 45 - 71

72

 // ... lines 73 - 76

77

 // ... lines 78 - 105

106

The Envelope & Stamps after Dispatching

class ImagePostController extends AbstractController

{

 public function create(Request $request, ValidatorInterface

$validator, PhotoFileManager $photoManager, EntityManagerInterface

$entityManager, MessageBusInterface $messageBus)

 {

 dump($messageBus->dispatch($envelope));

 }

}

Perfect! You can see that the final Envelope has the original message object inside:

AddPonkaToImage . But this Envelope now has more stamps on it.

Quick review time! When we dispatch a message into the message bus, it goes through a

collection of middleware... and each middleware can add extra stamps to the envelope. If you

expand stamps in the dump, wow! There are now 5 stamps! The first two - DelayStamp and

AmqpStamp - are no mystery. We added those manually when we originally dispatched the

message. The last one - SentStamp - is a stamp that's added by the

SendMessageMiddleware . Because we've configured this message to be routed to the

async_priority_high transport, the SendMessageMiddleware sends the message to

RabbitMQ and then adds this SentStamp . This is a signal - to anyone who cares - us, or other

middleware - that this message was in fact "sent" to a transport. Actually, it's thanks to this

stamp that the next middleware that executes - HandleMessageMiddleware - knows that it

should not handle this message right now. It sees that SentStamp , realizes the message was

sent to a transport and so, does nothing. It will be handled later.

BusNameStamp: How the Worker Dispatches to the Correct
Bus

But what about this BusNameStamp? Let's open up that class. Huh, BusNameStamp literally

contains... the name of the bus that the message was dispatched into. If you look in

messenger.yaml , at the top, we have three buses: command.bus , event.bus and

query.bus . Ok, but what's the point of BusNameStamp? I mean, we dispatched the message

through the command bus... so why is it important that the message has a stamp on it that says

this?

The answer is all about what happens when a worker consumes this message. The process

looks like this. First, the messenger:consume command - that's the "worker" - reads a

message off of a queue. Second, that transport's serializer turns that into an Envelope object

with a message object inside - like our LogEmoji object. Finally, the worker dispatches that

Envelope back into the message bus! Yea, internally, something calls

$messageBus->dispatch($envelope) !

Wait... but if we have multiple message buses... how does the worker know which message bus

it should dispatch the Envelope into? Whelp! That is the purpose of this BusNameStamp .

Messenger adds this stamp so that when the worker receives this message, it can use the

stamp to dispatch the message into the correct bus.

Right now, in our serializer, we're not adding any stamps to the Envelope . Because the stamp

doesn't exist, the worker uses the default_bus , which is the command.bus . So, in this

case... it guessed correctly! This message is a command.

The UniqueIdStamp

The last stamp that was added was this UniqueIdStamp . This is something that we created...

and it's added via a custom middleware: AuditMiddleware . Whenever a message is

dispatched, this middleware makes sure that every Envelope has exactly one

UniqueIdStamp . Then, anyone can use the unique id string on that stamp to track this exact

message through the whole process.

Wait... so if this is normally added when we originally dispatch a message... should we manually

add the stamp inside of our serializer so that the Envelope has one?

Look at it this way: a normal message that's sent from our app would already have this stamp

by the time it's published to RabbitMQ. When a worker receives it, it'll be there.

But... in this case, as you can clearly see, after receiving the external message, we are not

adding that stamp. So, is that something we should add here so this "acts" like other

messages?

Great question! The answer is... no! Check out the log messages: you can already see some

messages with this 5d7bc string. That is the unique id. Our message does have a

UniqueIdStamp !

How? Remember, after our serializer returns the Envelope , the worker dispatches it back

through the bus. And so, our AuditMiddleware is called, it adds that stamp and then logs

some messages about it.

The Big Takeaways

To back up a bit, there are two big points I'm trying to make. First, when a message is read and

handled via a worker, it is dispatched through the message bus and all the normal middleware

are executed. For a message that is both sent from our app and handled by our app, it will go

through the middleware two times.

The second important point is that when you consume a message that was put there from an

external system, that message might be missing some stamps that a normal message would

have. And, for the most part, that's probably fine! The DelayStamp and AmqpStamp are

irrelevant because those both tell the transport how to send the message.

Adding the BusNameStamp

But... the BusNameStamp is one that you might want to add. Sure, Messenger used the correct

bus in this case by accident, but we can be more explicit!

Head into ExternalJsonMessengerSerializer . Change this to

$envelope = new Envelope() and, at the bottom, return $envelope . Add the stamp with

$envelope = $envelope->with() - this is how you add a stamp -

new BusNameStamp() .

Then... hmm... because our transport & serializer only handle this one message... and because

this one message is a command, we'll want to put the command bus here. Copy the

command.bus bus name and paste. I'll add a comment that says that this is technically only

needed if you need the message to be sent through a non-default bus.

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

13

14

 // ... lines 15 - 26

27

28

29

30

31

32

 // ... lines 33 - 61

62

use Symfony\Component\Messenger\Stamp\BusNameStamp;

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 $envelope = new Envelope($message, $stamps);

 // needed only if you need this to be sent through the non-default

bus

 $envelope = $envelope->with(new BusNameStamp('command.bus'));

 return $envelope;

}

Next, our serializer is great, but we didn't code very defensively. What would happen if the

message contained invalid JSON... or was missing the emoji field? Would our app fail

gracefully... or explode?

Chapter 47: Graceful Failure in the Transport
Serializer

Our shiny new external_messages transport reads messages from this

messages_from_external queue, which we're pretending is being populated by an external

application. We're taking this JSON and, in ExternalJsonMessengerSerializer ,

decoding it, creating the LogEmoji object, putting it into an Envelope , even adding a stamp

to it, and ultimately returning it, so that it can then be dispatched back through the message bus

system.

Failing on Invalid JSON

This is looking great! But there are two improvements I want to make. First, we haven't been

coding very defensively. For example, what if, for some reason, the message contains invalid

JSON? Let's check for that: if null === $data , then throw a

new MessageDecodingFailedException('Invalid JSON')

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 6

7

 // ... lines 8 - 10

11

12

13

14

 // ... lines 15 - 19

20

21

22

 // ... lines 23 - 34

35

 // ... lines 36 - 40

41

I'll show you why we're using this exact exception class in a minute. But let's try this with some

invalid JSON and... see what happens. Go restart the worker so it sees our new code:

use Symfony\Component\Messenger\Exception\MessageDecodingFailedException;

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 if (null === $data) {

 throw new MessageDecodingFailedException('Invalid JSON');

 }

 }

}

php bin/console messenger:consume -vv external_messages

Then, in the RabbitMQ manager, let's make a very annoying JSON mistake: add a comma after

the last property. Publish that message! Ok, move over and... explosion!

“MessageDecodingFailedException: Invalid JSON”

Oh, and interesting: this killed our worker process! Yep, if an error happens during the decoding

process, the exception does kill your worker. That's not ideal... but in reality... it's not a problem.

On production, you'll already be using something like supervisor that will restart the process

when it dies.

Failing on Missing JSON Field

Let's add code to check for a different possible problem: let's check to see if this emoji key is

missing: if not isset($data['emoji']) , this time throw a normal exception:

throw new \Exception('Missing the emoji key!') .

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 23

24

25

26

 // ... lines 27 - 34

35

 // ... lines 36 - 40

41

Ok, move over and restart the worker:

php bin/console messenger:consume -vv external_messages

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 if (!isset($data['emoji'])) {

 throw new \Exception('Missing the emoji key!');

 }

 }

}

Back in Rabbit, remove the extra comma and change emoji to emojis . Publish! Over in the

terminal... great! It exploded! And other than the exception class... it looks identical to the failure

we saw before:

“Exception: Missing the emoji key!”

But... something different did just happen. Try running the worker again:

php bin/console messenger:consume -vv external_messages

Woh! It exploded! Missing the emoji key. Run it again:

php bin/console messenger:consume -vv external_messages

The Magic of MessageDecodingFailedException

The same error! This is the difference between throwing a normal Exception in the serializer

versus the special MessageDecodingFailedException . When you throw a

MessageDecodingFailedException , your serializer is basically saying:

“Hey! Something went wrong... and I do want to throw an exception. But, I think we should

discard this message from the queue: there is no point to trying it over and over again.

kthxbai!”

And that's super important. If we don't discard this message, each time our worker restarts, it

will fail on that same message... over-and-over again... forever. Any new messages will start

piling up behind it in the queue.

So let's change the Exception to MessageDecodingFailedException . Try it now:

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 23

24

25

26

 // ... lines 27 - 34

35

 // ... lines 36 - 40

41

php bin/console messenger:consume -vv external_messages

It will explode the first time... but the MessageDecodingFailedException should have

removed it from the queue. When we run the worker now:

php bin/console messenger:consume -vv external_messages

Yep! The message is gone and the queue is empty.

Next, let's add one more superpower to this serializer. What if that outside system actually

sends our app many different types of message - not only a message to log emojis, but maybe

also messages to delete photos or cook some pizza! How can our serializer figure out which

messages are which... and which message object to create?

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 if (!isset($data['emoji'])) {

 throw new MessageDecodingFailedException('Missing the emoji

key!');

 }

 }

}

Chapter 48: Mapping Messages to Classes in a
Transport Serializer

We've written our transport serializer to always expect only one type of message to be put into

the queue: a message that tells our app to "log an emoji". Your app might be that simple, but it's

more likely that this "external" system might send 5 or 10 different types of messages. In that

case, our serializer needs to detect which type of message this is and then turn it into the

correct message object.

How can we do that? How can we figure out which one type of message this is? Do we... just

look at what fields the JSON has? We could... but we can also do something smarter.

Refactoring to a switch

Let's start by reorganizing this class a bit. Select the code at the bottom of this method - the

stuff related to the LogEmoji object - and then go to the Refactor -> "Refactor This" menu,

which is Ctrl+T on a Mac. Refactor this code to a method called createLogEmojiEnvelope .

 Tip

To make sure "retries" work correctly, some of the code in this section has been tweaked.

See the code blocks on this page for the updated examples!

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 23

24

25

26

27

28

29

30

31

32

33

34

 // ... lines 35 - 63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Cool! That created a private function down here with that code. I'll add an array type-hint.

Back in decode() , we're already calling this method. So, no big change.

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 $envelope = $this->createLogEmojiEnvelope($data);

 // in case of redelivery, unserialize any stamps

 $stamps = [];

 if (isset($headers['stamps'])) {

 $stamps = unserialize($headers['stamps']);

 }

 $envelope = $envelope->with(... $stamps);

 return $envelope;

 }

 private function createLogEmojiEnvelope($data): Envelope

 {

 if (!isset($data['emoji'])) {

 throw new MessageDecodingFailedException('Missing the emoji

key!');

 }

 $message = new LogEmoji($data['emoji']);

 $envelope = new Envelope($message);

 // needed only if you need this to be sent through the non-default

bus

 $envelope = $envelope->with(new BusNameStamp('command.bus'));

 return $envelope;

 }

}

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 44

45

46

Using Headers for the Type

The key question is: if multiple types of messages are being added to the queue, how can the

serializer determine which type of message this is? Well, we could add maybe a type key to

the JSON itself. That might be fine. But, there's another spot on the message that can hold

data: the headers. These work a lot like HTTP headers: they're just "extra" information you can

store about the message. Whatever header we put here will make it back to our serializer when

it's consumed.

Ok, so let's add a new header called type set to emoji . I just made that up. I'm not making

this a class name... because that external system won't know or care about what PHP classes

we use internally to handle this. It's just saying:

“This is an "emoji" type of message”

Back in our serializer, let's first check to make sure that header is set: if not

isset($headers['type']) , then throw a new MessageDecodingFailedException

with:

“Missing "type" header”

class ExternalJsonMessageSerializer implements SerializerInterface

{

 private function createLogEmojiEnvelope(array $data): Envelope

 {

 }

}

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 23

24

25

26

 // ... lines 27 - 33

34

 // ... lines 35 - 54

55

Then, down here, we'll use a good, old-fashioned switch case statement on

$headers['type'] . If this is set to emoji , return

$this->createLogEmojiEnvelope() .

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 23

24

25

26

27

28

29

30

31

 // ... lines 32 - 33

34

 // ... lines 35 - 43

44

45

 // ... lines 46 - 90

91

After this, you would add any other "types" that the external system publishes, like

delete_photo . In those cases you would instantiate a different message object and return

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 if (!isset($headers['type'])) {

 throw new MessageDecodingFailedException('Missing "type"

header');

 }

 }

}

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 if (!isset($headers['type'])) {

 throw new MessageDecodingFailedException('Missing "type"

header');

 }

 switch ($headers['type']) {

 case 'emoji':

 $envelope = $this->createLogEmojiEnvelope($data);

 break;

 }

 return $envelope;

 }

}

that. And, if some unexpected "type" is passed, let's throw a new

MessageDecodingFailedException with

“Invalid type "%s"”

passing $headers['type'] as the wildcard.

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 90

91

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function decode(array $encodedEnvelope): Envelope

 {

 switch ($headers['type']) {

 case 'emoji':

 $envelope = $this->createLogEmojiEnvelope($data);

 break;

 default:

 throw new MessageDecodingFailedException(sprintf('Invalid

type "%s"', $headers['type']));

 }

}

 Tip

To support retries on failure, you also need to re-add the "type" header inside encode() :

src/Messenger/ExternalJsonMessageSerializer.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 46

47

48

 // ... lines 49 - 53

54

 // ... lines 55 - 56

57

 // ... lines 58 - 59

60

 // ... lines 61 - 66

67

 // ... line 68

69

70

71

72

73

74

75

 // ... lines 76 - 90

91

Kinda cool, right? Let's go stop our worker, then restart it so it sees our new code:

php bin/console messenger:consume -vv external_messages

Back in the Rabbit manager, I'll change the emojis key back to emoji and... publish! In the

terminal... sweet! It worked! Now change the type header to something we don't support, like

photo . Publish and... yea! An exception killed our worker:

“Invalid type "photo".”

class ExternalJsonMessageSerializer implements SerializerInterface

{

 public function encode(Envelope $envelope): array

 {

 if ($message instanceof LogEmoji) {

 $type = 'emoji';

 }

 return [

 'headers' => [

 // store stamps as a header - to be read in decode()

 'stamps' => serialize($allStamps),

 'type' => $type,

],

];

 }

}

Ok friends... yea... that's it! Congrats on making it to the end! I hope you enjoyed the ride as

much as I did! I mean, handling messages asynchronously... that's pretty fun stuff. The great

thing about Messenger is that it works brilliantly out of the box with a single message bus and

the Doctrine transport. Or, you can go crazy: create multiple transports, send things to

RabbitMQ, create custom exchanges with binding keys or use your own serializer to... well...

basically do whatever you want. The power... it's... intoxicating!

So, start writing some crazy handler code and then... handle that work later! And let us know

what you're building. As always, if you have some questions, we're there for you in the

comments.

Alright friends, seeya next time!

With <3 from SymfonyCasts

