
OOP (Course 2): Services,
Dependency Injection and

Containers

Chapter 1: Service Classes

Well hey! Welcome back! It's time to put our new object-oriented skills into practice. We're

working on the same out of this world project: it has ships, you choose them, then they engage

in epic battle!

In an editor, far far away, you'll see a simple application that runs this: index.php is the

homepage and battle.php does the magic and shows the results. Last time, we created a

single class called Ship , which describes all its properties - it's like a container for one ship's

details:

lib/Ship.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 115

116

We used this to replace these big associative arrays. Now we deal with cute Ship objects:

class Ship

{

 private $name;

 private $weaponPower = 0;

 private $jediFactor = 0;

 private $strength = 0;

 private $underRepair;

}

functions.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 33

34

 // ... lines 35 - 126

Remove all the Flat Functions!

Having a huge list of flat functions in functions.php is not a good recipe for staying

organized. But in just a few minutes, we'll use some new classes to give our app a whole new

level of sophistication. We'll get rid of battle() first.

Look at Ship : this is a class that basically just holds data - some people call that "state", but I'll

say "data" - and I'm talking about the values on a Ship object's properties. So a Ship object

holds data, but it doesn't really do any work. Sure, it has some methods on it, but these just

return that data, after doing some small logic at best.

Reason #1 for creating a class is this: we need some organized unit to hold data.

But there's a second big reason to create a class: because you need to do some work. For

example, in functions.php , the battle() function does work: we give it 2 Ships, it does

some calculations, executes logic to see how different strengths affect each other and ultimately

returns the result of that work.

And we're all familiar with creating functions like this. And here's the secret for OO: whenever

you get the urge to create a flat function like battle() , don't. Instead, create a class and with

a method inside of it.

Create the BattleManager Service Class

function get_ships()

{

 $ships = array();

 $ship = new Ship('Jedi Starfighter');

 //$ship->setName('Jedi Starfighter');

 $ship->setWeaponPower(5);

 $ship->setJediFactor(15);

 $ship->setStrength(30);

 $ships['starfighter'] = $ship;

 return $ships;

Let's do this! Since this function is all about battling, let's create a new class called

BattleManager :

lib/BattleManager.php

1

2

3

4

 // ... lines 5 - 57

58

Be as creative as you want with naming: I want to describe that methods in this class will do

things related to battling.

Go copy and remove the flat battle() function: paste it into BattleManager . Put public

in front of function . Remember, public means that code outside of this class will be able to

call this:

lib/BattleManager.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 51

52

53

54

55

56

57

58

And yes, you don't have to add public : functions default to public if you say nothing, but

let's keep things clear!

<?php

class BattleManager

{

}

class BattleManager

{

 /**

 * Our complex fighting algorithm!

 *

 * @return array With keys winning_ship, losing_ship &

used_jedi_powers

 */

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 return array(

 'winning_ship' => $winningShip,

 'losing_ship' => $losingShip,

 'used_jedi_powers' => $usedJediPowers,

);

 }

}

That's all you need to change: functions work the same inside or outside of a class: they have

arguments, they return stuff.

But we do need to change code where we call this function - in battle.php . So how can we

call this? Well, when we want to call a method on Ship , we need to have a Ship object first.

The same is true here: we need a BattleManager object first. Start with a new variable called

$battleManager and create a new BattleManager object:

battle.php

 // ... lines 1 - 28

29

 // ... lines 30 - 98

And now say $battleManager , the arrow, then battle() :

battle.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 98

Let's give this a shot! Refresh battle.php . Oh no! Class BattleManager not found! Epic

fail!

Not really - at the top of functions.php , we have access to the Ship class because we're

requiring it. Do the same for BattleManager :

functions.php

1

2

3

4

 // ... lines 5 - 73

There is a way where you can reference classes like BattleManager without needing to

worry about the require statements. It's called autoloading, it's really common, and you'll learn

how to master it in a future episode. But until then: if you have a class, require it.

Go back and refresh!

Cool - totally working.

$battleManager = new BattleManager();

$battleManager = new BattleManager();

$outcome = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity);

<?php

require_once __DIR__.'/lib/Ship.php';

require_once __DIR__.'/lib/BattleManager.php';

Now we have 2 reasons to create a class. First, if you have some data - like properties that

describe a ship, creating a class for that is nice. You'll create a Ship object whenever you have

a set of that data. In get_ships() , we create 4 Ship objects. These types of classes are

sometimes called models, because they model something, like a ship.

Second, if you need to make a function that does some work: create a class and put a method

in it, like BattleManager . Or, you may put multiple methods inside one class - as long as they

are all thematically similar.

You'll create one of these objects - like BattleManager - just one time, before you need to

call a method on it. These are sometimes called service classes, because they perform work or

service. Organizing your code to use service classes can be tricky, but we'll learn all about that.

Chapter 2: An Army of Service Classes

Yay! We got rid of a flat function. Woh - not so fast: inside battle() , we're calling a flat

function: didJediDestroyShipUsingTheForce() :

lib/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 18

19

 // ... lines 20 - 23

24

 // ... lines 25 - 56

57

58

No bueno!

Refactoring to private Functions

This lives at the bottom of functions.php . In our app, this is only called from inside

battle() , and since it obviously relates to battles, let's move it into BattleManager . Make

it a private function :

class BattleManager

{

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 if (didJediDestroyShipUsingTheForce($ship1)) {

 }

 }

}

lib/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 58

59

60

61

62

63

64

65

Why did I make it private? Well, do we need use this function from outside of this class? No -

the only code using it is up in battle() , so this is a perfect candidate to be private .

Above in battle() , update the calls to be

$this->didJediDestroyShipUsingTheForce() . The "force" of our app is happy again:

lib/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 18

19

 // ... lines 20 - 23

24

25

 // ... lines 26 - 29

30

 // ... lines 31 - 56

57

 // ... lines 58 - 64

65

Now, if someday we did want to use this function from outside of BattleManager , then we

could change it to public . Ok, so why not just make everything public - isn't that more

flexible? Yes, but making this private is nice: it means that if I want to change this function - add

arguments or even change what it returns - I know that the only code that will be affected will be

right inside this class. If it's public, who knows what code I might break in my app?

class BattleManager

{

 private function didJediDestroyShipUsingTheForce(Ship $ship)

 {

 $jediHeroProbability = $ship->getJediFactor() / 100;

 return mt_rand(1, 100) <= ($jediHeroProbability*100);

 }

}

class BattleManager

{

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 if ($this->didJediDestroyShipUsingTheForce($ship1)) {

 }

 if ($this->didJediDestroyShipUsingTheForce($ship2)) {

 }

 }

}

Start with private , make it public only if you need. The same rule goes for protected -

something we'll talk about later with inheritance.

Let's make sure we didn't bust things. Refresh!

Yes!

Service 2: ShipLoader

In functions.php , only the flat get_ships() function remains. You guys know what do to:

move it into a class!

Should we move it into BattleManager? No - it doesn't relate to battles. Instead, create a

new class for this - how about ShipLoader :

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 36

37

Let's work our magic: go grab get_ships() and move it into ShipLoader . Remove the old

commented code and make the function public . Also, rename it from get_ships() to

getShips() - that's a more common naming standard for methods in a class:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 33

34

35

36

37

class ShipLoader

{

}

class ShipLoader

{

 public function getShips()

 {

 $ships = array();

 $ship = new Ship('Jedi Starfighter');

 return $ships;

 }

}

Yep, that's great! Now we need to update the code that calls this function. But first, open

functions.php and require the new ShipLoader.php :

functions.php

 // ... lines 1 - 4

5

getShips() is used in battle.php and index.php - start there. To call the method,

create a $shipLoader variable and create a new ShipLoader() object. Now, just

$shipLoader->getShips() :

index.php

1

2

3

4

5

 // ... lines 6 - 119

Do the same thing in battle.php :

battle.php

1

2

3

4

5

 // ... lines 6 - 99

I think it's time to try it. Click to create a new battle. Looks pretty good. Setup a new battle and,

Engage. Ok! battle.php works too!

No More functions.php

AND, all the flat functions are gone! Object-orient all the things! So if you look in

functions.php , well, there aren't any functions here: just require statements, and even

those we'll get rid of eventually. To celebrate, give this a more appropriate name:

bootstrap.php . Update this in battle.php :

require_once __DIR__.'/lib/ShipLoader.php';

<?php

require __DIR__.'/functions.php';

$shipLoader = new ShipLoader();

$ships = $shipLoader->getShips();

<?php

require __DIR__.'/functions.php';

$shipLoader = new ShipLoader();

$ships = $shipLoader->getShips();

battle.php

1

2

 // ... lines 3 - 99

and index.php :

index.php

1

2

 // ... lines 3 - 119

Refresh once more! Let's keep going.

<?php

require __DIR__.'/bootstrap.php';

<?php

require __DIR__.'/bootstrap.php';

Chapter 3: Sharpening the Battle Result with a
Class

The most obvious time you should create a class is when you are passing around an

associative array of data. Check out the battle() function: it returns an associatve array -

with winning_ship , losing_ship and used_jedi_powers keys:

lib/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 51

52

53

54

55

56

57

 // ... lines 58 - 64

65

We use this in battle.php , set it to an $outcome variable, then reference all those keys to

print stuff further down:s

class BattleManager

{

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 return array(

 'winning_ship' => $winningShip,

 'losing_ship' => $losingShip,

 'used_jedi_powers' => $usedJediPowers,

);

 }

}

battle.php

 // ... lines 1 - 30

31

 // ... lines 32 - 77

78

79

80

81

82

83

84

85

86

87

 // ... lines 88 - 99

Ah man, I hate this kind of stuff. It's not obvious at all what's inside this $outcome variable or

whether the keys it has now might be missing or different in the future. When you see

questionable code like this, you need to be thinking: this is perfect for a class.

Creating the BattleResult Model Class

Let's create one! Now, what to call this new class. Well, this information summarizes a battle

result - let's use that - a new class called BattleResult :

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 14

15

Ok, let's think about this: it'll need to hold data for the winning ship, the losing ship and whether

jedi powers were used. So, let's create 3 private properties called $usedJediPowers ,

$winningShip and $losingShip :

$outcome = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity);

 <?php if ($outcome['winning_ship'] == null): ?>

 Both ships destroyed each other in an epic battle

to the end.

 <?php else: ?>

 The <?php echo $outcome['winning_ship']-

>getName(); ?>

 <?php if ($outcome['used_jedi_powers']): ?>

 used its Jedi Powers for a stunning victory!

 <?php else: ?>

 overpowered and destroyed the <?php echo

$outcome['losing_ship']->getName() ?>s

 <?php endif; ?>

 <?php endif; ?>

class BattleResult

{

}

lib/BattleResult.php

 // ... lines 1 - 2

3

4

5

6

7

 // ... lines 8 - 14

15

Look at Ship : our other model-type class that holds data. There are two ways we can set the

data. One way is by making a __construct() function. Here, we're saying: "Hey, when you

create a new Ship object, you need to pass in the name as an argument":

lib/Ship.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 14

15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 115

116

For the other properties, we created public functions - like setStrength() ,

setWeaponPower() and getJediFactor() :

class BattleResult

{

 private $usedJediPowers;

 private $winningShip;

 private $losingShip;

}

class Ship

{

 private $name;

 public function __construct($name)

 {

 $this->name = $name;

 }

}

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 36

37

38

39

40

41

42

43

44

 // ... lines 45 - 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

 // ... lines 116 - 117

Both ways are fine - but I like to use the `__construct() ` strategy for any properties that are

required. You must give your ship a name - it doesn't make sense to have a nameless Ship

fighting battles. How will they know who to write songs about?

A BattleResult only makes sense with all of this information - that's perfect for setting via

the constructor! Create a new public function __construct() with

$usedJediPowers , $winningShip and $losingShip . These argument names don't need

to match the properties, it's just nice. Now, assign each property to that variable:

$this->usedJediPowers = $usedJediPowers ,

$this->winningShip = $winningShip and $this->losingShip = $losingShip :

class Ship

{

 public function setStrength($number)

 {

 if (!is_numeric($number)) {

 throw new \Exception('Strength must be a number, duh!');

 }

 $this->strength = $number;

 }

 /**

 * @param int $weaponPower

 */

 public function setWeaponPower($weaponPower)

 {

 $this->weaponPower = $weaponPower;

 }

 /**

 * @param int $jediFactor

 */

 public function setJediFactor($jediFactor)

 {

 $this->jediFactor = $jediFactor;

 }

lib/BattleResult.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ok, this little data wrapper is done.

Passing BattleResult around

So let's use it inside battle() : instead of returning that array, return a new BattleResult

and pass it $usedJediPowers , $winningShip and $losingShip :

lib/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 51

52

53

 // ... lines 54 - 60

61

But hey, we're referencing a class, so make sure you require it in bootstrap.php :

bootstrap.php

 // ... lines 1 - 5

6

class BattleResult

{

 private $usedJediPowers;

 private $winningShip;

 private $losingShip;

 public function __construct($usedJediPowers, $winningShip,

$losingShip)

 {

 $this->usedJediPowers = $usedJediPowers;

 $this->winningShip = $winningShip;

 $this->losingShip = $losingShip;

 }

}

class BattleManager

{

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 return new BattleResult($usedJediPowers, $winningShip,

$losingShip);

 }

}

require_once __DIR__.'/lib/BattleResult.php';

So where is battle() being called? It's at the top of battle.php - and this $outcome

variable used to be that associative array - now it's a fancy BattleResult object:

battle.php

 // ... lines 1 - 30

31

 // ... lines 32 - 99

This means that our code below - the stuff that treats $outcome like an array - should blow up.:

battle.php

 // ... lines 1 - 70

71

72

73

74

75

 // ... lines 76 - 99

Let's see some fireworks! Boom error!

Cannot use object of type BattleResult as array on line 71.

But we do need to get the winning ship from the BattleResult object. Is that possible right

now? No - the $winningShip property is private. If we want to access it from outside the

class, we need a public function that returns it for us. We did this same thing in Ship with

methods like getName() .

Type-Hinting Arguments

But before we add some methods - think about the 3 arguments. What are they? Well,

$usedJediPowers is a boolean and the other two are Ship objects. And whenever you have

an argument that is an object, you can choose to type-hint it by putting the name of the class in

front of it:

$outcome = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity);

 <?php if ($outcome['winning_ship']): ?>

 <?php echo $outcome['winning_ship']->getName(); ?>

 <?php else: ?>

 Nobody

 <?php endif; ?>

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 13

14

15

16

17

18

19

 // ... lines 20 - 43

44

But this doesn't change any behavior - it just means that if you pass something that's not a

Ship object on accident, you'll get a really nice error. And there's one other benefit - auto-

completion in your editor! PhpStorm now knows what these variables are.

Adding Getter Methods

Ok, back to what we were doing. We need to access the private properties from outside this

class. To do that, we'll create some public functions. Start with

public function getWinningShip() . This will just return $this->winningship :

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 31

32

33

34

35

 // ... lines 36 - 43

44

We'll do this for each property. But actually, I can make PhpStorm write these methods for me!

Suckers! Delete getWinningShip() , then right-click, go to "Generate" and select "Getters".

Select all 3 properties, say abracadabra, and let it work its magic.

class BattleResult

{

 public function __construct($usedJediPowers, Ship $winningShip, Ship

$losingShip)

 {

 $this->usedJediPowers = $usedJediPowers;

 $this->winningShip = $winningShip;

 $this->losingShip = $losingShip;

 }

}

class BattleResult

{

 public function getWinningShip()

 {

 return $this->winningShip;

 }

}

It even added some PHPDoc above each with an @return mixed - which basically is

PhpStorms' way of saying "I don't know what this method returns". So let's help it - the first

returns a boolean and the other two return a Ship object:

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

This comment stuff is optional - but it helps other developers read our code and gives us auto-

completion when we call these methods.

Name the Methods Awesomely

Check out the first method - getUsedJediPowers() . Is it clear what the method returns? It's

kind of bad English, and that's a shame. This method will return whether or not Jedi powers

were used to win this battle. Let's give it a name that says that - how about

wereJediPowersUsed()?

class BattleResult

{

 /**

 * @return boolean

 */

 public function isUsedJediPowers()

 {

 return $this->usedJediPowers;

 }

 /**

 * @return Ship

 */

 public function getWinningShip()

 {

 return $this->winningShip;

 }

 /**

 * @return Ship

 */

 public function getLosingShip()

 {

 return $this->losingShip;

 }

}

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 20

21

22

23

24

25

26

27

 // ... lines 28 - 43

44

Using get and then the method name is a good standard, but you can name these methods

however you want.

Using BattleResult for Battle #Wins

Now we can finally go back to battle.php and start using these public methods. Start by

renaming $outcome to $battleResult - it's more clear this is a BattleResult object:

battle.php

 // ... lines 1 - 30

31

 // ... lines 32 - 99

Below, use $battleResult->getWinningShip() :

battle.php

 // ... lines 1 - 30

31

 // ... lines 32 - 70

71

 // ... lines 72 - 99

Except, where's my auto-completion on that method? This will work, but PhpStorm is

highlighting the method like it's wrong. It doesn't know that $battleResult is a

BattleResult object.

class BattleResult

{

 /**

 * @return boolean

 */

 public function wereJediPowersUsed()

 {

 return $this->usedJediPowers;

 }

}

$battleResult = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity);

$battleResult = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity);

 <?php if ($battleResult->getWinningShip()): ?>

Why? Look at battle() . We are returning a BattleResult , but oh no, the @return above

this method still advertises that this method returns an array. Fix that with

@return BattleResult :

lib/BattleManager.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 52

53

 // ... lines 54 - 60

61

Ok, now PhpStorm is acting friendly - the angry highightling on the method is gone. Now update

the other spots: $battleResult->getWinningShip()->getName() : thank you auto-

complete. Use that same method once more, and in the if statement, use that nice

wereJediPowersUsed() method. Finish with $battleResult->getLosingShip() :

class BattleManager

{

 /**

 * Our complex fighting algorithm!

 *

 * @return BattleResult

 */

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 }

}

battle.php

 // ... lines 1 - 70

71

72

73

74

75

 // ... lines 76 - 77

78

79

80

81

82

83

84

85

86

87

 // ... lines 88 - 99

I think we're done. Refresh to try it! Ship it!

And gone are the days of needing to use weird associative arrays:

BattleManager::battle() returns a nice BattleResult object. And we're in full control

of what public methods we put on that.

 <?php if ($battleResult->getWinningShip()): ?>

 <?php echo $battleResult->getWinningShip()-

>getName(); ?>

 <?php else: ?>

 Nobody

 <?php endif; ?>

 <?php if ($battleResult->getWinningShip() == null): ?>

 Both ships destroyed each other in an epic battle

to the end.

 <?php else: ?>

 The <?php echo $battleResult->getWinningShip()-

>getName(); ?>

 <?php if ($battleResult->wereJediPowersUsed()): ?>

 used its Jedi Powers for a stunning victory!

 <?php else: ?>

 overpowered and destroyed the <?php echo

$battleResult->getLosingShip()->getName() ?>s

 <?php endif; ?>

 <?php endif; ?>

Chapter 4: Optional type-hinting & Semantic
Methods

I need to show you something - so start another battle between some Jedi Star Fighters. It

works... but if I refresh enough times... come on... yes! It blows up!

Argument 2 passed to BattleResult::__construct() must be an instance

of Ship, null given.

In BattleResult - because we're good programmers - we type-hinted the two Ship

arguments. Buuuuut, if you look at the battle() function, there's a case where the ships can

destroy each other. And when that happens, there is no winning or losing ship - they're both null.

Since - news flash null is not a Ship object, PHP gets angry and casts down this big error.

When you type-hint an argument, the value must be that class - not even null is ok. But

sometimes you do have a spot where an argument might be a specific object, or it might be null.

To support this, make the argument optional - add an = null after it:

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 13

14

15

16

17

18

19

 // ... lines 20 - 53

54

I don't have to, but I'll update @return on the methods to be Ship|null :

class BattleResult

{

 public function __construct($usedJediPowers, Ship $winningShip = null,

Ship $losingShip = null)

 {

 $this->usedJediPowers = $usedJediPowers;

 $this->winningShip = $winningShip;

 $this->losingShip = $losingShip;

 }

}

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

PhpStorm will still give me auto-completion - but this is a signal to other developers not to

blindly call this method and always assume it will return a Ship object. We're already coding

safely in battle.php : we check to make sure getWinningShip() returns something

before calling a method on it. Cool.

Adding a Semantic isThereAWinner Method

To check if a BattleResult has a winner, you can see if getWinningShip() returns null.

But we can do even better. Go to BattleResult and make a new public method called

isThereAWinner() . Here, return $this->getWinningShip != null :

class BattleResult

{

 /**

 * @return Ship|null

 */

 public function getLosingShip()

 {

 return $this->losingShip;

 }

 /**

 * Was there a winner? Or did everybody die :(

 *

 * @return bool

 */

 public function isThereAWinner()

 {

 return $this->getWinningShip() !== null;

 }

}

lib/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 43

44

45

46

47

48

49

50

51

52

53

54

There's at least two great things about this. First, code outside of this class doesn't need to

know how to figure out whether or not there was a winner: that code can be dumb and just call

this method. Second, if something happens in the future and the logic used to figure out if there

is a winner changes, we only need to update the code in this one spot: no need to run around

the code base trying to figure out where we have the old logic for seeing if there was a winner.

Update battle.php to use this. The first if statement is really trying to figure out whether or

not there was a winner. Update this to $battleResult->isThereAWinner() . Use that

again right below:

battle.php

 // ... lines 1 - 70

71

 // ... line 72

73

 // ... line 74

75

 // ... lines 76 - 77

78

 // ... line 79

80

 // ... lines 81 - 86

87

 // ... lines 88 - 99

Go back and refresh! You'll have to trust me that if we refresh this 1000 times, it'll always work -

our bug is gone - and we have a nifty new helper method in BattleResult .

class BattleResult

{

 /**

 * Was there a winner? Or did everybody die :(

 *

 * @return bool

 */

 public function isThereAWinner()

 {

 return $this->getWinningShip() !== null;

 }

}

 <?php if ($battleResult->isThereAWinner()): ?>

 <?php else: ?>

 <?php endif; ?>

 <?php if (!$battleResult->isThereAWinner()): ?>

 <?php else: ?>

 <?php endif; ?>

Chapter 5: Objects are Passed by Reference

Start another battle - how about 3 CloakShape fighters against 4 RZ-1 A-wing interceptors.

Behind the scenes: each ship has a strength . The battle() function uses this as the

ship's health, and as they battle each other, that health gets lower and lower until one hits zero.

We need to add a new feature: after the battle: display the final health of the battling ships. One

will be zero or negative, but how much health did the other have left?

In battle() , those "ship health" variables are not returned in BattleResult . So we don't

have access to this information. We could add it to BattleResult , but I want to do something

more interesting.

After fighting a battle, let's update the strength of each ship with their new health: like

$ship1->setStrength($ship1Health) and the same for $ship2 :

lib/BattleManager.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 16

17

 // ... lines 18 - 31

32

33

34

35

36

37

38

39

 // ... lines 40 - 56

57

 // ... lines 58 - 66

After all, in real life - if a $ship is almost defeated, it's probably pretty broken - so it's

$strength should reflect that.

 public function battle(Ship $ship1, $ship1Quantity, Ship $ship2,

$ship2Quantity)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 // now battle them normally

 $ship1Health = $ship1Health - ($ship2->getWeaponPower() *

$ship2Quantity);

 $ship2Health = $ship2Health - ($ship1->getWeaponPower() *

$ship1Quantity);

 }

 // update the strengths on the ships, so we can show this

 $ship1->setStrength($ship1Health);

 $ship2->setStrength($ship2Health);

 }

Check this out by dumping $ship1->getStrength() and $ship2->getStrength() and

die. Refresh! We have -14 and 116, 130 and 0 and so on.

Ok, working nicely, and that's simple. Actually, we just did something really important. Until now,

this function has only read data from our ships. But now, we've changed those objects. In other

words, in battle.php , we start with two Ship objects and pass them into battle() :

battle.php

 // ... lines 1 - 25

26

27

28

29

30

31

 // ... lines 32 - 106

Once that finishes running, those same two objects are different now: their data has changed.

This is totally different than how arrays work: if $ship1 were an array, and the battle()

function changed one of its keys internally, that would have no effect here: $ship1 would still

be the same array with the same original values.

Objects are passed by reference: it means that there is only one $ship1 object in existence

and when we pass it to a function, we're passing that one object. But when you pass an array or

a string to a function, you're actually passing a copy of the original value. If that value changes

inside the function, it has no affect on the original variable.

Some of you may be familiar with adding an & symbol before an argument: this does the same

thing: it makes that argument pass by reference. For objects, that's not needed, because this is

always true.

The takeaway is that if you change an object, you're changing that object everywhere. To prove

this, take our $ship1 and $ship2 - which are not returned by the battle() function - and

add a new section that prints the finished strength. Add a dl element to make them a little

pretty:

$ship1 = $ships[$ship1Name];

$ship2 = $ships[$ship2Name];

$battleManager = new BattleManager();

$battleResult = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity);

battle.php

 // ... lines 1 - 33

34

 // ... lines 35 - 53

54

55

 // ... lines 56 - 67

68

 // ... lines 69 - 88

89

90

 // ... lines 91 - 94

95

96

 // ... lines 97 - 102

103

104

105

First, echo $ship1->getName() and then $ship1->getStrength() :

battle.php

 // ... lines 1 - 33

34

 // ... lines 35 - 53

54

55

 // ... lines 56 - 67

68

 // ... lines 69 - 88

89

90

91

92

 // ... lines 93 - 94

95

96

 // ... lines 97 - 102

103

104

105

Do the same thing for $ship2 :

<html>

 <body>

 <div class="container">

 <div class="result-box center-block">

 <h3>Remaining Strength</h3>

 <dl class="dl-horizontal">

 </dl>

 </div>

 </div>

 </body>

</html>

<html>

 <body>

 <div class="container">

 <div class="result-box center-block">

 <h3>Remaining Strength</h3>

 <dl class="dl-horizontal">

 <dt><?php echo $ship1->getName(); ?></dt>

 <dd><?php echo $ship1->getStrength(); ?></dd>

 </dl>

 </div>

 </div>

 </body>

</html>

battle.php

 // ... lines 1 - 33

34

 // ... lines 35 - 53

54

55

 // ... lines 56 - 67

68

 // ... lines 69 - 88

89

90

91

92

93

94

95

96

 // ... lines 97 - 102

103

104

105

We're missing auto-complete because we have some bad PHPDoc somewhere. We'll fix that in

a bit.

Time to try it! Since objects are passed by reference, we should see the new, modified strength

values - not the originals. Absolutely perfect.

Now let's get really wild and start fetching our ships from a database.

<html>

 <body>

 <div class="container">

 <div class="result-box center-block">

 <h3>Remaining Strength</h3>

 <dl class="dl-horizontal">

 <dt><?php echo $ship1->getName(); ?></dt>

 <dd><?php echo $ship1->getStrength(); ?></dd>

 <dt><?php echo $ship2->getName(); ?></dt>

 <dd><?php echo $ship2->getStrength(); ?></dd>

 </dl>

 </div>

 </div>

 </body>

</html>

Chapter 6: Fetching Objects from the Database

Getting our Ship objects is easy: create a ShipLoader and call getShips() on it. We don't

care how ShipLoader is getting these - that's its problem.

Hardcoding is so 1990, let's load objects from the database! We need to get these ships to their

battlestations!

Database Setup

At the root of your project, open up a resources directory. Copy init_db.php out of there

to the root of your project and open it up:

init_db.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 57

 Tip

In order for this to work, make sure that you have MySQL installed and running on your

machine. There are various ways to install MySQL in different environments - if you have

any questions, let us know in the comments!

<?php

/*

 * SETTINGS!

 */

$databaseName = 'oo_battle';

$databaseUser = 'root';

$databasePassword = '';

/*

 * CREATE THE DATABASE

 */

$pdoDatabase = new PDO('mysql:host=localhost', $databaseUser,

$databasePassword);

$pdoDatabase->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$pdoDatabase->exec('CREATE DATABASE IF NOT EXISTS oo_battle');

This script will create a database and add a ship table with columns for id , name ,

weapon_power , jedi_factor , strength and is_under_repair :

init_db.php

 // ... lines 1 - 25

26

27

28

29

30

31

32

33

34

 // ... lines 35 - 57

At the bottom, it inserts 4 rows into that table for the 4 ships we have hardcoded right now:

init_db.php

 // ... lines 1 - 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 57

If we run this file, it should get everything powered up. Head to your browser and run it there:

http://localhost:8000/init_db.php

If you see - Ding! - you know it worked. If you see a terrible error, check the database

credentials at the top - make sure the user can create a new database.

$pdo->exec('CREATE TABLE `ship` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `name` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `weapon_power` int(4) NOT NULL,

 `jedi_factor` int(4) NOT NULL,

 `strength` int(4) NOT NULL,

 `is_under_repair` tinyint(1) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci');

$pdo->exec('INSERT INTO ship

 (name, weapon_power, jedi_factor, strength, is_under_repair) VALUES

 ("Jedi Starfighter", 5, 15, 30, 0)'

);

$pdo->exec('INSERT INTO ship

 (name, weapon_power, jedi_factor, strength, is_under_repair) VALUES

 ("CloakShape Fighter", 2, 2, 70, 0)'

);

$pdo->exec('INSERT INTO ship

 (name, weapon_power, jedi_factor, strength, is_under_repair) VALUES

 ("Super Star Destroyer", 70, 0, 500, 0)'

);

$pdo->exec('INSERT INTO ship

 (name, weapon_power, jedi_factor, strength, is_under_repair) VALUES

 ("RZ-1 A-wing interceptor", 4, 4, 50, 0)'

);

If you want to check the database with something like phpMyAdmin, you'll see one ship table

with 4 rows.

Querying for Ships

You look ready to query, copy the two lines that create the PDO object in init_db and head

into ShipLoader . Keep things simple: getShips() needs to make a query. So for now,

paste the PDO lines right here. Update the database name to be oo_battle and I'll fill in

root as the user with no password:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 41

42

43

44

Ok, query time! Create a $statement variable and set it to $pdo->prepare() with the

query inside - SELECT * FROM ship :

lib/ShipLoader.php

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 41

42

 // ... lines 43 - 44

If PDO or prepared statements are new to you, don't worry - they're pretty easy. And besides,

using PDO is another chance to play with objects!

Run $statement->execute() to send the query into hyperdrive and create a new

$shipsArray that's set to $statement->fetchAll() with an argument:

class ShipLoader

{

 public function getShips()

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 }

}

 public function getShips()

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship');

 }

PDO::FETCH_ASSOC . var_dump this variable:

lib/ShipLoader.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 41

42

 // ... lines 43 - 44

This queries for every row and returns an associative array. The PDO::FETCH_ASSOC part is a

class constant - a nice little feature of classes we'll talk about later.

Let's see what this looks like! Head back to the homepage and refresh! AND... I was not

expecting an error: "Unknown database oo_battles". The database should be called

oo_battle - silly me! Refresh again!

Ok! 4 rows of data.

Private Functions are Awesome

Of course, what we need are objects, not arrays. But first, a quick piece of organization. Copy

all this good PDO stuff and at the bottom, create a new

private function queryForShips() . Paste here and return that $shipsArray :

 public function getShips()

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship');

 $statement->execute();

 $shipsArray = $statement->fetchAll(PDO::FETCH_ASSOC);

 var_dump($shipsArray);die;

 }

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 39

40

41

42

43

44

45

46

47

48

49

50

Head back up, call this method, then remove the original code:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 37

38

 // ... lines 39 - 49

50

Make sure things still work - cool! Now, why did we do this? Well, we had a chunk of code that

did something - it made a query. Moving it into its own function has two advantages. First, we

can re-use it later if we need to. But more importantly, it gives the code a name:

queryForShips() . Now it's easy to see what it does - a lot easier than when this was stuck

in the middle of other code.

So, creating private functions to help split code into small chunks is awesome.

Give me Objects!

class ShipLoader

{

 private function queryForShips()

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship');

 $statement->execute();

 $shipsArray = $statement->fetchAll(PDO::FETCH_ASSOC);

 return $shipsArray;

 }

}

class ShipLoader

{

 public function getShips()

 {

 $ships = array();

 $shipsData = $this->queryForShips();

 var_dump($shipsData);die;

 }

}

Back to the ship factory to create ship objects from the array we have now.

In getShips() , I'll rename the variable to $shipsData - it sounds cool to me. Now, loop

over $shipsData as $shipData . Each time we loop, we'll create a Ship object:

$ship = new Ship() and pass $shipData['name'] as the only argument:

lib/ShipLoader.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 17

18

 // ... lines 19 - 20

21

 // ... lines 22 - 33

Next, we can use the public functions to set the other data: $ship->setWeaponPower() and

pass it $shipData['weapon_power'] . Do the same for the jedi_factor and strength

columns: $ship->setJediFactor() from the jedi_factor key and

$ship->setStrength() from the strength key. The last column - is_under_repair

we'll save that one for later. Can't have all the fun stuff at once! Finish the loop by putting

$ship into the $ships array:

 public function getShips()

 {

 $ships = array();

 $shipsData = $this->queryForShips();

 foreach ($shipsData as $shipData) {

 $ship = new Ship($shipData['name']);

 }

 }

lib/ShipLoader.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 33

Wasn't that easy? Now get rid of all of the hardcoded Ship objects. We have less code than

we started. That's always my preference.

We've only changed this one file, but we're ready! Refresh! Welcome to our dynamic application

in under 10 minutes. Ship it!

 public function getShips()

 {

 $ships = array();

 $shipsData = $this->queryForShips();

 foreach ($shipsData as $shipData) {

 $ship = new Ship($shipData['name']);

 $ship->setWeaponPower($shipData['weapon_power']);

 $ship->setJediFactor($shipData['jedi_factor']);

 $ship->setStrength($shipData['strength']);

 $ships[] = $ship;

 }

 return $ships;

 }

Chapter 7: Handling the Object Id

Ships are loading dynamically, buuuuuut, I've got some bad news: we broke our app. Start a

battle - select the Jedi Starfighter as one of the ships and engage.

Huh, so instead of the results, we see:

Don't forget to select some ships to battle!

Pretty sure we selected a ship... But the URL has a ?error=missing_data part,

index.php is reading this. It all comes from battle.php and it happens if we POST here,

but we are missing ship1_name or ship2_name . In other words, if we forget to select a ship.

But we did select a ship! Somehow, these select menus are broken. Check out the code: we're

looping over $ships and using $key as the option value:

index.php

 // ... lines 1 - 90

91

 // ... line 92

93

94

95

96

97

98

 // ... lines 99 - 119

In getShips() , the key was a nice, unique string. But now it's just the auto-increment index.

The page fails because the 0 index looks like an empty string in battle.php .

Adding a Ship id Property

We still need something unique so that we can tell battle.php exactly which ships are

fighting. Fortunately, the ship table has exactly that: an auto-incrementing primary key id

 <select class="center-block form-control btn drp-

dwn-width btn-default btn-lg dropdown-toggle" name="ship1_name">

 <?php foreach ($ships as $key => $ship): ?>

 <?php if ($ship->isFunctional()): ?>

 <option value="<?php echo $key; ?>"><?

php echo $ship->getNameAndSpecs(); ?></option>

 <?php endif; ?>

 <?php endforeach; ?>

 </select>

column. If we use this as the option value, we can query for the ships using that in

battle.php . Blast off! I mean, we should totally do that.

In ShipLoader , we could put the id as the key of the array. But instead, since id is a

column on the ship table, why not also make it a property on the Ship class? Open up Ship

and add a new private $id :

lib/Ship.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 133

134

And at the bottom, right click, then make the getter and setter for the id property. Update the

PHPDoc to show that $id is an integer. Optional, but nice:

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Now when we get our Ship objects, we need to call setId() to populate that property:

$ship->setId() and $shipData['id']

class Ship

{

 private $id;

}

class Ship

{

 /**

 * @return int

 */

 public function getId()

 {

 return $this->id;

 }

 /**

 * @param int $id

 */

 public function setId($id)

 {

 $this->id = $id;

 }

}

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 10

11

12

13

 // ... lines 14 - 17

18

 // ... lines 19 - 21

22

 // ... lines 23 - 33

34

Head over to index.php to use the fancy new property. Remove the $key in the foreach -

no need for that. And instead of the key, print $ship->getId() . Also change the select

name to be ship1_id so we don't get confused about what this value is:

index.php

 // ... lines 1 - 90

91

 // ... line 92

93

94

 // ... lines 95 - 96

97

98

 // ... lines 99 - 119

Make the same changes below: update the select name, remove $key from the loop, and

finish with $ship->getId() :

class ShipLoader

{

 public function getShips()

 {

 foreach ($shipsData as $shipData) {

 $ship = new Ship($shipData['name']);

 $ship->setId($shipData['id']);

 $ships[] = $ship;

 }

}

 <select class="center-block form-control btn drp-

dwn-width btn-default btn-lg dropdown-toggle" name="ship1_id">

 <?php foreach ($ships as $ship): ?>

 <?php if ($ship->isFunctional()): ?>

 <?php endforeach; ?>

 </select>

index.php

 // ... lines 1 - 102

103

 // ... line 104

105

 // ... line 106

107

 // ... line 108

109

 // ... lines 110 - 119

Ok, before we touch battle, try this out. No errors! And the select items have values 1, 2, 3 and

4 - the auto-increment ids in the database. Success!

Querying for One Ship

We've renamed the select fields and we're sending a database id. Let's update

battle.php for this. First, we need to change the $_POST keys: look for ship1_id and

ship2_id . Update the variables names too - $ship1Id and $ship2Id . That'll help us not

get confused. Update the variables in the first if statement

battle.php

 // ... lines 1 - 6

7

 // ... line 8

9

 // ... lines 10 - 11

12

13

14

15

 // ... lines 16 - 106

Before, we got all the $ships then used the array key to find the right ones. That won't work

anymore - the key is just an index, but we have the id from the database.

Instead, we can use that id to query for a single ship's data. Where should that logic live? In

ShipLoader ! It's only job is to query for ship information, so it's perfect.

 <select class="center-block form-control btn drp-

dwn-width btn-default btn-lg dropdown-toggle" name="ship2_id">

 <?php foreach ($ships as $ship): ?>

 <option value="<?php echo $ship-

>getId(); ?>"><?php echo $ship->getNameAndSpecs(); ?></option>

 <?php endforeach; ?>

$ship1Id = isset($_POST['ship1_id']) ? $_POST['ship1_id'] : null;

$ship2Id = isset($_POST['ship2_id']) ? $_POST['ship2_id'] : null;

if (!$ship1Id || !$ship2Id) {

 header('Location: /index.php?error=missing_data');

 die;

}

Create a new public function findOneById() with an $id argument. Copy all the query logic

from queryForShips() and put it here. For now don't worry about all this ugly code

duplication. Update the query to be SELECT * FROM ship WHERE id = :id and pass that

value to execute() with an array of id to $id :

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 23

24

25

26

27

28

29

 // ... lines 30 - 32

33

 // ... lines 34 - 45

If this looks weird to you - it's a prepared statement. It runs a normal query, but prevents SQL

injection attacks. Change the variable below to be $shipArray and change fetchAll() to

just fetch() to return the one row. Dump this at the bottom:

lib/ShipLoader.php

 // ... lines 1 - 23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 45

Ok, back to battle.php ! Let's use this. Now,

$ship1 = $shipLoader->findOneById($ship1Id) . And

$ship2 = $shipLoader->findOneById($ship2Id) . And I need to move this code

further up above the bad_ships error message. We'll use it in a second:

class ShipLoader

{

 public function findOneById($id)

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship WHERE id = :id');

 $statement->execute(array('id' => $id));

 }

 public function findOneById($id)

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship WHERE id = :id');

 $statement->execute(array('id' => $id));

 $shipArray = $statement->fetch(PDO::FETCH_ASSOC);

 var_dump($shipArray);die;

 }

battle.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 106

Try it! Fight some Starfighters against a Cloakshape Fighter. There's the dump for just one row!

Sweet, let's finish this!

Going from Array to Ship Object

The last step is to take this array and turn it into a Ship object. And good news! We've already

done this in getShips() ! And instead of repeating ourselves, this is another perfect spot for a

private function . Create one called createShipFromData with an array $shipData

argument:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 32

33

34

 // ... lines 35 - 41

42

 // ... lines 43 - 54

55

 // ... lines 56 - 57

Copy all the new Ship() code and paste it here. Return the $ship variable:

$ship1 = $shipLoader->findOneById($ship1Id);

$ship2 = $shipLoader->findOneById($ship2Id);

class ShipLoader

{

 private function createShipFromData(array $shipData)

 {

 }

}

lib/ShipLoader.php

 // ... lines 1 - 32

33

34

35

36

37

38

39

40

41

42

 // ... lines 43 - 57

Now, anyone inside ShipLoader can call this, pass an array from the database, and get back

a fancy new Ship object.

Back in getShips() , remove all that code and just use $this->createShipFromData() .

Do the same thing in findOneById() :

lib/ShipLoader.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 10

11

12

13

 // ... lines 14 - 15

16

 // ... line 17

18

19

20

21

22

23

24

 // ... lines 25 - 29

30

31

 // ... lines 32 - 57

In battle.php , $ship1 and $ship2 should now be Ship objects. The next if statement is

a way to make sure that valid ship ids were passed: maybe someone is messing with our form!

 private function createShipFromData(array $shipData)

 {

 $ship = new Ship($shipData['name']);

 $ship->setId($shipData['id']);

 $ship->setWeaponPower($shipData['weapon_power']);

 $ship->setJediFactor($shipData['jedi_factor']);

 $ship->setStrength($shipData['strength']);

 return $ship;

 }

 public function getShips()

 {

 foreach ($shipsData as $shipData) {

 $ships[] = $this->createShipFromData($shipData);

 }

 }

 public function findOneById($id)

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship WHERE id = :id');

 $statement->execute(array('id' => $id));

 $shipArray = $statement->fetch(PDO::FETCH_ASSOC);

 return $this->createShipFromData($shipArray);

 }

With these tough ships in my database I should hope not.

I still want this check, so back in ShipLoader , add one more thing. If the id is invalid - like 10

or the word "pirate ship" - then $shipArray will be null . So, if (!$shipArray) then just

return null :

lib/ShipLoader.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 23

24

25

26

27

28

29

30

31

 // ... lines 32 - 57

The method now returns a Ship object or null. Back in battle.php , update the if to say if

!$ship1 || !$ship2 :

battle.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

 // ... lines 24 - 106

And that should do it!

Go back and load the homepage fresh. And start a battle. When we submit, we'll be POST'ing

these 2 ids to battle.php . And it works!

Thanks to ShipLoader , everyone is talking to the database, but nobody has to really worry

about this.

 public function findOneById($id)

 {

 $shipArray = $statement->fetch(PDO::FETCH_ASSOC);

 if (!$shipArray) {

 return null;

 }

 return $this->createShipFromData($shipArray);

 }

$ship1 = $shipLoader->findOneById($ship1Id);

$ship2 = $shipLoader->findOneById($ship2Id);

if (!$ship1 || !$ship2) {

 header('Location: /index.php?error=bad_ships');

 die;

}

PHPDoc for Autocomplete!

Let's fix one little thing that's bothering me. In index.php , we call getShips() . But when we

loop over $ships , PhpStorm acts like all of the methods on the Ship object don't exist:

getName not found in class.

If you look above getShips() , there's no PHP documentation. And so PhpStorm has no idea

what this function returns. To fix that, add the /** above it and hit enter to generate some basic

docs. Now it says @return array . That's true, but it doesn't tell it what's inside the array.

Change it to @return Ship[] :

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 18

19

 // ... lines 20 - 61

62

 // ... lines 63 - 64

This says: "I return an array of Ship objects". And when we loop over something returned by

getShips() , we get happy code completion. Do the same thing above findOneById() - it

returns just one Ship or null:

class ShipLoader

{

 /**

 * @return Ship[]

 */

 public function getShips()

 {

 }

}

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

 // ... lines 39 - 61

62

 // ... lines 63 - 64

class ShipLoader

{

 /**

 * @param $id

 * @return Ship

 */

 public function findOneById($id)

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $statement = $pdo->prepare('SELECT * FROM ship WHERE id = :id');

 $statement->execute(array('id' => $id));

 $shipArray = $statement->fetch(PDO::FETCH_ASSOC);

 if (!$shipArray) {

 return null;

 }

 return $this->createShipFromData($shipArray);

 }

}

Chapter 8: Making only one DB Connection with a
Property

I can't stand it any longer. The app is small, but our database credentials are already duplicated

and hidden inside this one class. What if we added a second table - like battle - and a

BattleLoader class? At this rate, we'd be copying and pasting the database password there

too. Gross.

Isolate the PDO Creation in ShipLoader

Enough is enough. Let's fix this little by little. First, I don't want to duplicate the new PDO code

twice in this class. To fix that, create a private function getPDO() - private because - at

least so far - we only want to call this from inside ShipLoader . Copy the new PDO line and

the one below it and put them here. Return $pdo and let's even add some nice PHPDoc:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 48

49

50

51

52

53

54

55

56

57

58

 // ... lines 59 - 67

68

 // ... lines 69 - 70

You know what's next: use this above with: $pdo = $this->getPDO() . Repeat this in the

other spot:

class ShipLoader

{

 /**

 * @return PDO

 */

 private function getPDO()

 {

 $pdo = new PDO('mysql:host=localhost;dbname=oo_battle', 'root');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 return $pdo;

 }

}

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 23

24

25

26

27

 // ... lines 28 - 35

36

 // ... lines 37 - 59

60

61

62

 // ... lines 63 - 66

67

68

 // ... lines 69 - 70

Head back to the homepage! Ha! Nothing broken yet.

Prevent Multiple PDO Objects

Ok, a little bit better. Here's the next problem: what if a single page calls findOneById()

multiple times? Well, getPDO() would be called twice, two PDO objects would be created and

this would mean that two database connections would be made. Such waste! We only need one

connection and we only need one PDO object.

How can we guarantee that only one PDO object is created?

By using a property! But in a way that we haven't seen yet. Up until now, we've only put

properties on our model classes - like Ship - and that has been to hold data about the object,

like name , weaponPower , etc.

In service classes - any class whose main job is to do work instead of hold data - you use

properties for two reasons: to hold options about how the class should behave. And to hold

other tools - like a PDO object.

Create a private $pdo property:

class ShipLoader

{

 */

 public function findOneById($id)

 {

 $statement = $this->getPDO()->prepare('SELECT * FROM ship WHERE id

= :id');

 }

 private function queryForShips()

 {

 $statement = $this->getPDO()->prepare('SELECT * FROM ship');

 }

}

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 71

72

 // ... lines 73 - 74

Now, we can use a little trick thanks to OO! Down in getPDO() , add an if statement to check

if the pdo property is equal to null . Why of course it is! So far, nothing is setting it, so it's

always null. But now, if it is null, move the new PDO() code into this and then assign this to the

pdo property. Finish by returning $this->pdo :

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 53

54

55

56

57

58

59

60

61

62

 // ... lines 63 - 71

72

 // ... lines 73 - 74

The first time you call this, $this->pdo is null so we create a new PDO object and set the

property. Then, if someone calls this during the same request, the pdo property will already be

an object, so it'll skip creating a second one and just return it. Boom!

This is the first time we've seen a service class - something that does work for us - have a

property. And in service classes, properties aren't about holding data that describe something -

like a Ship - they're used to store options about how the class should work or other useful

objects that class needs.

class ShipLoader

{

 private $pdo;

}

class ShipLoader

{

 private $pdo;

 private function getPDO()

 {

 if ($this->pdo === null) {

 $this->pdo = new PDO('mysql:host=localhost;dbname=oo_battle',

'root');

 $this->pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 }

 return $this->pdo;

 }

}

We shouldn't notice any difference - so refresh to try it. Yes! Think about it: thanks to objects, we

were able to reduce the number of database connections being created by touching one file and

not breaking anything.

Chapter 9: OO Best Practice: Centralizing
Configuration

Ok, next problem: at the bottom of ShipLoader , our database connection information is

hardcoded. That's a problem for two reasons. First, if this works on my computer, it probably

won't work on production, unless everything matches up. And second, what if we need a

database connection inside some other class? Right now, we'd just have to copy and paste

those credentials into yet another spot. Eww.

Here's the goal: move the database configuration out of this class to somewhere more central

so it can be re-used. And good news: the way you do this is fundamentally important to using

object-oriented code correctly.

How to Make the OO Kittens Sad

But first, let me tell you what you shouldn't do. You shouldn't just move this configuration to

another file and then use some global keywords to get that information here. You will see this

kind of stuff - heck you might see it all the time depending on your project. The problem is that

your code gets harder to read and maintain: "Hey, where the heck is this $dbPassword "

variable created? And what if you wanted to re-use this class in another project? It better have

global variables with the exact same names.

Learning the better way is the difference between an "ok" object-oriented developer and a great

one: and even though this is only episode 2, you're about to learn it.

The Secret: Pass Objects the Config they Need

The secret is this: if a service class - like ShipLoader - needs information - like a database

password - we need to pass that information to ShipLoader instead of expecting it to use a

global keyword or some other method to "find" it on its own. The most common way to do this is

by creating a constructor.

Create a Constructor for Options

Create a public function __construct() and make an argument for each piece of

configuration this class needs. ShipLoader needs three pieces of configuration. First, the

database DSN - which is the connection parameter, thing mysql:host=localhost . It also

needs the $dbUser and the $dbPassword :

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 10

11

12

 // ... lines 13 - 15

16

 // ... lines 17 - 82

83

 // ... lines 84 - 85

And just like any class, you'll set each of these on a private property. Create a

private $dbDsn , $dbUser and $dbPass . In __construct() , assign each argument to

the property. I made my arguments - like $dbUser the same as my property name - but that's

not needed, it's just nice for my own sanity:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 82

83

 // ... lines 84 - 85

class ShipLoader

{

 public function __construct($dbDsn, $dbUser, $dbPass)

 {

 }

}

class ShipLoader

{

 private $dbDsn;

 private $dbUser;

 private $dbPass;

 public function __construct($dbDsn, $dbUser, $dbPass)

 {

 $this->dbDsn = $dbDsn;

 $this->dbUser = $dbUser;

 $this->dbPass = $dbPass;

 }

}

If this feels silly, pointless or you don't get it yet. That's GREAT. Keep watching. Thanks to this

change, whoever creates a new ShipLoader() is forced to pass in these 3 configuration

arguments. We don't care who creates ShipLoader , but when they do, we store the

configuration on three properties and can use that stuff in our methods below.

At the bottom - let's do that. Copy the long database DSN string from new PDO() and replace

it with $this->dbDsn . Make the second argument $this->dbUser and the third

$this->dbPass :

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 64

65

66

67

68

69

70

71

72

73

 // ... lines 74 - 82

83

 // ... lines 84 - 85

And this class is done!

Passing Configuration to the Class

But now, when we create ShipLoader , we need to pass arguments. In index.php ,

PhpStorm is angry - required parameter $dbDsn - we're missing the first argument. We

could just paste our database credentials right here. But we'll probably want them somewhere

central.

Open bootstrap.php and create a new $configuration array. We'll use this now as sort

of a "global configuration" variable. Put the 3 database credential things here - db_dsn - then

paste the string - db_user is root and db_pass is an empty string:

class ShipLoader

{

 private function getPDO()

 {

 if ($this->pdo === null) {

 $this->pdo = new PDO($this->dbDsn, $this->dbUser, $this-

>dbPass);

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 }

 return $this->pdo;

 }

}

bootstrap.php

 // ... lines 1 - 2

3

4

5

6

7

 // ... lines 8 - 13

Since we're requiring this from index.php , we can just use it there:

$configuration['db_dsn] is the first argument then use db_user as the second

argument and db_pass to finish things off:

index.php

 // ... line 1

2

3

4

5

6

7

8

 // ... lines 9 - 123

Yes! Now the app's configuration is all in one file. In index.php , we pass this stuff to

ShipLoader via its __construct() method. Then ShipLoader doesn't have any

hardcoded configuration. Anything that was hardcoded before was replaced by a

__construct() argument and a private property.

Make sure our ships are still battling. Refresh! Still not broken!

The Big Important Rule

Here's the rule to remember: don't put configuration inside of a service class. Replace that

hardcoded configuration with an argument. This allows anyone using your class to pass in

whatever they want. The hardcoding is gone, and your class is more flexible.

Oh, and by the way - this little strategy is called dependency injection. Scary! It's a tough

concept for a lot of people to understand. If it's not sinking in yet, don't worry. Practice makes

perfect.

$configuration = array(

 'db_dsn' => 'mysql:host=localhost;dbname=oo_battle',

 'db_user' => 'root',

 'db_pass' => null,

);

require __DIR__.'/bootstrap.php';

$shipLoader = new ShipLoader(

 $configuration['db_dsn'],

 $configuration['db_user'],

 $configuration['db_pass']

);

Chapter 10: OO Best Practice: Centralizing the
Connection

Ready for the next problem? Our PDO object is configurable, but we're still creating it inside of

ShipLoader . What's going to happen if we add a battle table and a BattleLoader? Will

it also need to create its own PDO object? Right now - yea. So if we have 50 tables, that means

50 separate connections. The horror!

I want one connection that every class uses.

Here's the goal: move the new PDO() call out of ShipLoader so that it can be created in a

central location and used by everyone. How? By using the same strategy we just learned with

configuration. If you want to move something out of a service class, add it as a

__construct() argument and pass it in.

Adding a $pdo __construct Argument

Let's do it! Instead of passing in the 3 database options, we need to pass in the whole PDO

object. Replace the 3 arguments with just one: $pdo . Give it a type-hint to be great

programmers. Next, remove the three configuration properties. And back in __construct() ,

we already have a $pdo property, so set that with $this->pdo = $pdo .

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 71

72

 // ... lines 73 - 74

class ShipLoader

{

 private $pdo;

 public function __construct(PDO $pdo)

 {

 $this->pdo = $pdo;

 }

}

Time to simplify the getPDO() function. We don't need to worry about creating the object

anymore. Instead, just return the property:

lib/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 58

59

60

61

62

 // ... lines 63 - 71

72

 // ... lines 73 - 74

Again: big picture: if you need to remove something from a service class - whether it's

configuration or an object - remove it, and add it as an argument to the __construct()

function.

Creating PDO

But now, we need go to index.php and change the arguments we're passing to the

new ShipLoader() . We're not passing these three configuration pieces anymore. Copy

those. Above this, create the PDO object. $pdo = new PDO() and paste in the arguments:

index.php

 // ... lines 1 - 3

4

5

6

7

8

 // ... lines 9 - 126

Below, pass $pdo as the only argument to new ShipLoader() :

class ShipLoader

{

 private function getPDO()

 {

 return $this->pdo;

 }

}

$pdo = new PDO(

 $configuration['db_dsn'],

 $configuration['db_user'],

 $configuration['db_pass']

);

index.php

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

 // ... lines 12 - 126

Ok, let's try it! Still works. Geez - we're unstoppable today.

Unfortunately, this isn't the only place we need this. Copy the $pdo and $shipLoader code

and paste it into battle.php :

battle.php

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

 // ... lines 12 - 114

Choose some ships to battle and.... Engage. And that still works too!

The Big Important Takeaway

Ready for the big important takeaway? Don't include configuration or create new service objects

from within a service. Even though the PDO class comes from PHP, it is a service class: it does

work. If we create that service object from within a class, we can't easily share it or control it.

Instead, create all of your service objects in one place and then pass them into each other. This

stuff is hard - a lot of systems violate the heck out of these rules! And that's ok - I want you to

learn to become a great object-oriented developer, so we're looking at the best way to do things.

$pdo = new PDO(

 $configuration['db_dsn'],

 $configuration['db_user'],

 $configuration['db_pass']

);

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$shipLoader = new ShipLoader($pdo);

$pdo = new PDO(

 $configuration['db_dsn'],

 $configuration['db_user'],

 $configuration['db_pass']

);

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$shipLoader = new ShipLoader($pdo);

The downside is that the code to create the service objects is getting a bit complicated. And it's

duplicated! Dang it - it's not right yet. Let's fix that next by learning another awesome strategy.

Chapter 11: Service Container

Good news: we've got great flexibility! Bad news: we have to create the service objects by hand

and this stuff is duplicated. We need to centralize what we've got here.

Creating a Service Container

To do that, we'll create one special class whose only job is to create these service objects. This

class is called a service container, ya know, because it's basically a container for all the service

objects. You'll see.

In lib/ create a new file called Container.php . Inside create a class called Container :

lib/Container.php

1

2

3

4

 // ... lines 5 - 24

25

In battle.php and index.php , we create a new PDO object. Let's have Container do

that instead. Create a new public function getPDO() inside Container . Copy the code

to make this and paste it here. Hmm, we need the $configuration variable, so copy that

from bootstrap.php and put it here temporarily. Return $pdo at the bottom and perfect the

method by adding some PHPDoc:

<?php

class Container

{

}

lib/Container.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Using the Container

Ok, nobody needs to do this work by hand anymore. Go to index.php . At the top, create a

$container variable and set it to new Container() . Below that, replace the new PDO()

stuff with just $container->getPDO() :

index.php

 // ... lines 1 - 3

4

5

 // ... lines 6 - 122

Copy those lines and repeat this in battle.php :

class Container

{

 /**

 * @return PDO

 */

 public function getPDO()

 {

 $configuration = array(

 'db_dsn' => 'mysql:host=localhost;dbname=oo_battle',

 'db_user' => 'root',

 'db_pass' => null,

);

 $pdo = new PDO(

 $configuration['db_dsn'],

 $configuration['db_user'],

 $configuration['db_pass']

);

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 return $pdo;

 }

}

$container = new Container();

$pdo = $container->getPDO();

battle.php

 // ... lines 1 - 3

4

5

 // ... lines 6 - 110

Before trying this, don't forget to go to bootstrap.php : we need to require the file so we can

access the new class:

bootstrap.php

 // ... lines 1 - 8

9

 // ... lines 10 - 14

Hey, let's give it a shot! Refresh! No problems.

Centralizing Configuration

Ok, we've started removing duplication. But I made us go one step backwards: once again, our

configuration is buried inside a class - I'd rather have that somewhere central. Fix this like we

always do when we want to remove some details from a class: create a

public function __construct() with a $configuration argument. Add the

$configuration property and assign it in the construct function:

lib/Container.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 25

26

Down in getPDO() , let's celebrate! Remove the $configuration variable and reference the

property instead:

$container = new Container();

$pdo = $container->getPDO();

require_once __DIR__.'/lib/Container.php';

class Container

{

 private $configuration;

 public function __construct(array $configuration)

 {

 $this->configuration = $configuration;

 }

}

lib/Container.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 24

25

26

This is an easy change - bootstrap.php already holds the central $configuration array.

In battle.php pass $configuration to the Container:

battle.php

 // ... lines 1 - 3

4

 // ... lines 5 - 110

And do the same thing for index.php :

index.php

 // ... lines 1 - 3

4

5

 // ... lines 6 - 122

Time for a sanity check! Refresh! Oh no!

PDOException on Container.php line 21

Put on your debugging cap! That's the line that creates the new PDO object. Hmm, we didn't

change anything - this is fishy. Dump $this->configuration and refresh. Ah, it's null .

Well, clearly that's not right. I see it. Silly mistake: in __construct() , I wasn't assigning the

property. Make sure you have $this->configuration = $configuration :

class Container

{

 private $configuration;

 public function getPDO()

 {

 $pdo = new PDO(

 $this->configuration['db_dsn'],

 $this->configuration['db_user'],

 $this->configuration['db_pass']

);

 }

}

$container = new Container($configuration);

$container = new Container($configuration);

$pdo = $container->getPDO();

lib/Container.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 25

26

We were passing in the configuration, but I had forgot to set it on my property. Try it again.

Excellent!

This keeps my requirement of a centralized configuration array and centralizing where we

create service objects. But we still need to move a few more service objects in here and fix one

more issue. Almost there!

class Container

{

 private $configuration;

 public function __construct(array $configuration)

 {

 $this->configuration = $configuration;

 }

}

Chapter 12: Container: Force Single Objects,
Celebrate

Home stretch! Our goal is to make Container responsible for creating every service object:

like PDO , but also ShipLoader and BattleManager .

Guaranteeing only One PDO Object

Here's our issue: if we called $container->getPDO() twice on the same request, we'd still

end up with multiple PDO objects, and so, multiple database connections. Ok, if we're careful,

we can avoid this. We can do better: let's guarantee that only one PDO object is ever created.

We did this before in ShipLoader . Create a private $pdo property at the top of

Container . In getPDO() , add an if statement to see if the property is null. If it is, create

the new PDO() object and set it on the property. Return $this->pdo at the bottom:

lib/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 16

17

18

19

20

21

22

23

24

 // ... lines 25 - 26

27

 // ... line 28

29

30

 // ... lines 31 - 32

class Container

{

 private $pdo;

 public function getPDO()

 {

 if ($this->pdo === null) {

 $this->pdo = new PDO(

 $this->configuration['db_dsn'],

 $this->configuration['db_user'],

 $this->configuration['db_pass']

);

 }

 return $this->pdo;

 }

Again, the first time we call this: the pdo property is null, so we create the object and set the

property. The second, third and fourth time we call this, the object is already there, so we just

return it.

Oh, and while I'm here, I'll paste back one line I lost on accident earlier:

lib/Container.php

 // ... lines 1 - 18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 32

This just sets up PDO to throw nice exceptions if something goes wrong so I can see them.

Move ShipLoader to the Container

Keep going! We don't want to instantiate a ShipLoader object manually in battle.php and

index.php . Let's just do it inside Container .

Follow the same pattern: create a private property called $shipLoader , and a

public function getShipLoader() :

lib/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 36

37

38

 // ... lines 39 - 43

44

45

 if ($this->pdo === null) {

 $this->pdo = new PDO(

 $this->configuration['db_dsn'],

 $this->configuration['db_user'],

 $this->configuration['db_pass']

);

 $this->pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 }

class Container

{

 private $shipLoader;

 public function getShipLoader()

 {

 }

}

In here, add the same if statement: if ($this->shipLoader === null) , then

$this->shipLoader = new ShipLoader() . Remember, it has a required argument for

the PDO object. That's easy, just say $this->getPDO() . At the bottom return

$this->shipLoader and add the PHPDoc above it:

lib/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 33

34

35

36

37

38

39

40

41

42

43

44

45

Use it! In index.php , say $shipLoader = $container->getShipLoader() . And I have

a bonus for you! We don't need the $pdo variable anymore - we only did that to pass it to

ShipLoader . Simplify!

index.php

 // ... lines 1 - 3

4

5

6

 // ... lines 7 - 121

Copy the new $shipLoader line and repeat this in battle.php :

battle.php

 // ... lines 1 - 3

4

5

6

 // ... lines 7 - 108

class Container

{

 private $shipLoader;

 /**

 * @return ShipLoader

 */

 public function getShipLoader()

 {

 if ($this->shipLoader === null) {

 $this->shipLoader = new ShipLoader($this->getPDO());

 }

 return $this->shipLoader;

 }

}

$container = new Container($configuration);

$shipLoader = $container->getShipLoader();

$container = new Container($configuration);

$shipLoader = $container->getShipLoader();

Ok, make sure this is all working. Refresh! Somebody make a sad trombone noise:

Call to a member function getShips() on a non-object index.php line 6.

Ok, trusty debugging cap back on. On line 6, we're calling getShips() on the $shipLoader ,

which is apparently null. So $container->getShipLoader() must not be returning the

object for some reason. How rude.

Oh, and the problem is me! I added an extra ! in my if statement so that it never got inside.

Lame. Make sure your's looks like mine does now:

lib/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 33

34

35

36

37

38

39

40

41

42

43

44

45

Ok, now it works.

Move BattleManager to the Container

Only one more service to go! In battle.php , we create the BattleManager . Let's move it!

Add the private $battleManager property and then the

public function getBattleManager() . Copy the ship loader code to save time... and

so I don't mess up again. Update it for battleManager :

$this->battleManager = new BattleManager() . And return

$this->battleManager :

class Container

{

 private $shipLoader;

 /**

 * @return ShipLoader

 */

 public function getShipLoader()

 {

 if ($this->shipLoader === null) {

 $this->shipLoader = new ShipLoader($this->getPDO());

 }

 return $this->shipLoader;

 }

}

lib/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 10

11

 // ... lines 12 - 47

48

49

50

51

52

53

54

55

56

57

58

59

Go use it in battle.php : $battleManager = $container->getBattleManager() :

battle.php

 // ... lines 1 - 26

27

 // ... lines 28 - 109

Ok, let's try the whole thing! Start a battle... and Engage. Ok, the bad guys won, but our app still

works. And the code behind it is so much more awesome.

class Container

{

 private $battleManager;

 /**

 * @return BattleManager

 */

 public function getBattleManager()

 {

 if ($this->battleManager === null) {

 $this->battleManager = new BattleManager();

 }

 return $this->battleManager;

 }

}

$battleManager = $container->getBattleManager();

Chapter 13: Container to the Rescue

Congratulations! What we just did is incredible. Every service object we have - meaning every

object that does work like BattleManager , PDO and ShipLoader - is created by the

Container class. This is its only job.

Adding Arguments? Simple

The benefits are huge. Here's one. Imagine we need to give BattleManager a few

constructor arguments. Once we've done that, the only code we need to touch outside of

BattleManager is right here inside Container. We don't need to go anywhere else - like

battle.php - and change anything. We just say $container->getBattleManager()

and the Container class will take care of all of the work to create that object.

Objects aren't Created Until/Unless Needed

But wait, there's more! Before, at the top of our files - like index.php - we created all of our

objects. So if we had 50 different useful service objects, we'd create them all right here. How

wasteful.

But with the Container idea, none of these objects are created until and unless you ask for

them. For example, index.php never calls $container->getBattleManager() . So the

BattleManager object is never created. We save precious CPUs and memory.

Containers: A Pattern

I didn't invent this Container idea - it's a well-known strategy called a dependency injection

container. It's a special class and you always have just one.

Its only job is to create service objects. And in fact, if you do a good job, all service objects will

be created here - you won't instantiate them anywhere else.

Model Classes versus Service Classes

Remember - model objects - like Ship and BattleResult - are classes that just hold data

and don't really do much work. And you can create these whenever you need them - they're not

created by the Container. So in BattleManager at the bottom of battle() , we needed a

new BattleResult to be a container for our data. And in ShipLoader , whenever you query

for a ship, we create a new Ship model object.

Model objects can be created anywhere in your code, whenever you need them. But these

service objects - the ones that do work for you and don't really hold data - these should be

created in a central spot. And the Container is a nice way to do that.

Reorganizing Models and Services

To make this more clear in our app, let's redecorate. Create a lib/Service directory and a

lib/Model directory. Move BattleManager , ShipLoader and Container - it's a little

different, but it's still technically a service - into lib/Service . And move BattleResult and

Ship - our simple "model" objects into lib/Model :

mv lib/BattleManager.php lib/Service

mv lib/ShipLoader.php lib/Service

mv lib/Container.php lib/Service

mv lib/Ship.php lib/Model

mv lib/BattleResult.php lib/Model

To make this work, we just need to update the require paths in bootstrap.php :

bootstrap.php

 // ... lines 1 - 8

9

10

11

12

13

And yes, in a future episode, we're going to fully get rid of these. And it will be great.

Refresh! Still working!

Best Practices vs the Real World

require_once __DIR__.'/lib/Service/Container.php';

require_once __DIR__.'/lib/Model/Ship.php';

require_once __DIR__.'/lib/Service/BattleManager.php';

require_once __DIR__.'/lib/Service/ShipLoader.php';

require_once __DIR__.'/lib/Model/BattleResult.php';

In this episode, instead of learning more OO concepts, we went straight to the hard stuff and

learned how to organize our code into model classes that hold data and service classes that do

work. We also learned that when you're in a service class - like ShipLoader - instead of

hardcoding configuration or creating other service objects inside, we can move those outside of

the class and add anything we need as an argument to the __construct() function. Then,

we'll pass that information to the class. That's dependency injection, and it's one of the harder

things to grasp about OO. So if it doesn't totally make sense yet - stick with us - we'll keep

practicing.

Now a quick warning. When you look at other projects, this idea of model objects -- that hold

data but don't do anything - and service objects - that do work but don't really hold any data - is

not always followed. Sometimes you'll see these mixed together you might have a class like

Ship that has methods in it that do work - like battle() or even save() that would save

the Ship's data to the database.

What I'm showing you are "best practices". When you get out into the wild, it's not always this

clean. And that's ok - over time, you'll learn to bend the rules when it makes sense. But in your

mind, keep these two types of classes separate and recognize if a class is a model, a service or

both.

Ok guys - in the next episodes, we're going to dive into more great concepts of OO - like

interfaces, abstract classes, and static calls. These will really take your mad-skills to the next

level.

So join us, and I'll seeya guys next time!

With <3 from SymfonyCasts

