OOP (course 3): Inheritance,
Abstract Classes, Interfaces and
other amazing things

=L

Chapter 1: Extends

Welcome back for Episode 3 of our Object Oriented Series! We're ready to get serious about
Inheritance. And not just from that rich uncle of yours. I'm talking about extending classes, abstract
classes, interfaces, stuff that really makes object oriented code nice but doesn't always look easy at

first.
Don't worry this will all start to feel really familiar in a suprisingly small amount of time!

I'm already in the project that we've been working on through this series. If you don't have this yet

download the code and use what's in the 'start’ directory.

In my terminal I've also started the built in web server with php -S localhost:8000. Be careful

to do that in the start directory of the project.

Creating_a new RebelShip class

So far in our project we have just this one lonely ship object. We query things from the database
and we load this ship. But exciting things are happening and we have a new problem! We want to
model two different types of ships. We have normal ships from the empire and since those are kinda

evil we also now want rebel ships to set them straight!
In the browser you can see we have two rebel ships in here coming from the database.

| would really like rebel ships to fundamentally work differently. For example, they break down less

often and have higher jedi powers. Let me show you what | mean.

Create a new PHP class called RebelShip:

lib/Model/RebelShip.php

$ /... lines 1 - 2
3 class Rebelship
Al

5

6 }

Easy! Since rebel ships aren't exactly like boring old Empire ships let's create a new class or

blueprint that models how these work.

Head on into bootstrap.php and require the RebelShip file there:

bootstrap.php

T /7 ... lines 1 - 10
11 require_once __DIR__.'/lib/Model/RebelShip.php';
$ /7 ... lines 12 - 15

We don't have an autoloader yet so we still have to worry about these require statements.

Rebel ships are different than Empire ones but they do share about 99% of their attributes. For

example, they both have wings, fire power, defense power, etc.

Class Inheritance with extends

My first instinct should be to go into Ship.php and copy all of the contents and paste that into
RebelShip.php since most of it will probably apply. But | shouldn't need to remind you that this
would be a silly amount of duplication in our code which would make everyone sad. This is our

chance to let classes help us not be sad by using the extends keyword.

By saying class RebelShip extends Ship everything that's in the Ship class is

automatically inside of RebelShip:

1lib/Model/RebelShip. php

T /7 ... lines 1 - 2

3 class RebelShip extends Ship
Al

5

6 }

It's as if all the properties and methods of Ship are now a part of the RebelShip blueprint.

In index.php we can say $rebelShip = new RebelShip('My new rebel ship'); and

we can just add this to the $ships array:

index.php

$ /7 ... lines 1 - 6
7 $ships = $shiplLoader->getShips();
8

9 $rebelShip = new RebelShip('My new rebel ship');
10 $ships[] = $rebelShip;
T /7 ... lines 11 - 124

Remember, down here we iterate over the ships and call things like getName (),

getWeaponPower () and getJediFactor () which don't actually live inside of RebelShip:

index.php

T /7 ... lines 1 - 72

73 <?php foreach ($ships as $ship): ?>

74 <tr>

75 <td><?php echo $ship->getName(); ?></td>

76 <td><?php echo $ship->getWeaponPower(); ?></td>
$ // ... lines 77 - 85

86 </tr>

87 <?php endforeach; ?>

$ // ... lines 88 - 124

But when we refresh, it works perfectly!

Lesson number 1: when you have one class that extends another, it inherits (you'll hear that word a
lot) all of the stuff inside that parent class. So we can call methods like getName() or

getNameAndSpecs() on RebelShip because it inherits that from Ship.

Adding_new Methods?

Really, RebelShip works just like a normal class. If you want to, you can add completely new
functions. Let's do that with public function getFavoriteJdedi() that has an array of some

cool Jedis. Then use array_rand to select one of those:

lib/Model/RebelShip.php

? /7 ... lines 1 - 2

3 class RebelShip extends Ship

4 {

5 public function getFavoriteJedi()
6 {

7 $coolledis = array('Yoda', 'Ben Kenobi');
8 $key = array_rand($coolledis);
9

10 return $coolJedis[$key];

11 }

12 }

Since this was all done on RebelShip, head over to index.php and call that method.
var_dump($rebelShip->getFavoriteJedi() and you can see with my autocomplete it's

showing me all of my public functions on both Ship and RebelShip:

index.php

$ /7 ... lines 1 - 8

9 $rebelship = new RebelShip('My new rebel ship');
? /7 ... lines 10 - 11
12 var_dump($rebelShip->getFavoritededi());die;

T 7/ ... lines 13 - 126

You can even see that the RebelShip methods are displayed bolder and methods from the parent

class are lighter.

When we refresh, we see our favorite random Jedi, it works perfectly! Extending classes is great for
reusing code without the sad duplication.

Chapter 2: Override

Let's take out this dummy code and get to the real stuff. Our database is created via this init_db
script which you can execute from the command line whenever the mood strikes to make sure that

your database is setup correctly. DING!

This creates a table with a team column. In here we can see that the first two team columns are
team rebel and the second two are team empire. Since these two ships work differently, inside
of our ShipLoader where we take that data and turn it into ship objects, | want to create ship

objects for the empire and the rebels.

Solet's do that, if ($shipData['team'] == 'rebel') which is the key inside the database.
Then we'll have $ship = new RebelShip($shipDatal['name']); . Else, we'll throw in our

normal ship line, which represents the Empire ship:

lib/Service/ShipLoader.php

? /7 ... lines 1 - 2

3 class ShiplLoader

4 {

$ // ... lines 5 - 44
45 private function createShipFromData(array $shipData)
46 {
47 if ($shipData['team'] == 'rebel') {
48 $ship = new RebelShip($shipDatal'name']);
49 } else {

50 $ship = new Ship($shipDatal['name']);

51 3

$ /7 ... lines 52 - 57

58 return $ship;

59 }

$ /7 ... lines 60 - 76

77 }

$ /7 ... lines 78 - 79

Ok, this doesn't have anything to do with Object Oriented coding, it's just a nice example of a use
case for multiple classes. We have a database table, and you can create different objects from that

table. This is nice because we'll be able to have these two objects behave differently.

Overriding_Class Methods

So far RebelShip and Ship have all the same stuff except for the one extra method | have on

RebelShip that I'm not using.

If we go back and refresh, everything still works perfectly! Now, technically I'm fairly certain that two
of these are RebelShip objects and two are Ship objects but we can't really tell right now. Clearly

we need to add identifiers so we know who to cheer on.

To do this, start by adding public function getType() to our Ship and return a description,

like 'Empire":
$ /7 ... lines 1 - 2
3 class Ship
af
T 7/ ... lines 5 - 134
135 public function getType()
136 {
137 return 'Empire';
138 }
139 }

Since we added that to Ship, we can call getType on both Ship and RebelShip.

Back in index.php towards the bottom add a new column for this called Type and

echo $ship->getType();:

index.php

? /7 ... lines 1 - 57

58 <table class="table table-hover'">
T /7 ... line 59

60 <thead>

61 <tr>

$ /7 ... lines 62 - 65

66 <th>Type</th>

$ /7 ... line 67

68 </tr>

69 </thead>

70 <tbody>

71 <?php foreach ($ships as $ship): ?>
72 <tr>

$ /7 ... lines 73 - 76

77 <td><?php echo $ship->getType(); ?></td>
$ /7 ... lines 78 - 84

85 </tr>

86 <?php endforeach; ?>

87 </tbody>

88 </table>

T /7 ... lines 89 - 123

Back to the browser and refresh. Everything has joined to fight for the Empire! Which makes sense.

Both ship classes use this same method.

Time for the next really powerful thing with inheritance. In addition to adding methods to a sub class
like RebelShip you can override methods. Copy the getType from Ship and paste it into

RebelShip and change what it returns to 'Rebel':

1lib/Model/RebelShip.php

t /7 ... lines 1 - 2

3 class RebelShip extends Ship
4 {

T /7 ... lines 5 - 12

13 public function getType()
14 {

15 return 'Rebel';

16 3

T /7 ... lines 17 - 21

22 }

RebelShip copies the entire blue print of Ship but it can replace any of those pieces. When we

refresh now, we have two 'Rebel' ships in addition to our two 'Empire' ships. Excellent!

Overridden Methods are not Called

A key part of this is that the parent getType class is never called for all rebel ship objects it is

completely replaced. If | echo 'Parent Function' inside of getType in the Ship class and refresh,

we see our ugly text echoing for the Empire ships and not the Rebel ships. This is thanks to our

parent function not being called in RebelShip.

On to more methods, another one on Ship is isFunctional which we setup to have a 30%

chance of a ship being broken, which is what our cute cloud here indicates:

lib/Model/Ship.php

0
3

4

I
17
18

)
21
22
23
24
25
26
27

0
139

// ... lines 1 - 2
class Ship
{
// ... lines 5 - 16
public function __construct($name)
{
// ... lines 19 - 20
$this->underRepair = mt_rand(1, 100) < 30;
}
public function isFunctional()
{
return !$this->underRepair;
}
// ... lines 28 - 138

}

But, we all know that the Rebels are really scrappy and they don't have the luxury of letting their

ships get broken. Even if they are kinda broken they still fly and make it work. Which is just one

more reason why the rebels are awesome.

So | need to set this up so the Rebel ships are never showing as broken which we can do really

easily by overriding isFunctional inside of RebelShip. Let's update thisto return true;

which will never show a rebel ship as broken:

1lib/Model/RebelShip.php

$ /... lines 1 - 2

3 class RebelShip extends Ship

4 {

T /7 ... lines 5 - 17
18 public function isFunctional()
$ /7 ... line 19
20 return true;
21 3
22 }

When we refresh now the Rebel ships always have sunshine, and the Empire ships sometimes
have adorable clouds.

By having two classes we are starting to shape the different behaviors and properties of each, while

still keeping most things in common and not duplicated.

Chapter 3: Protected Visibility

Let's keep making our Rebel ships work a bit differently than the Empire's. In this dropdown you can
see a short summary of each ship that is currently functional. It shows their name, weapon power,
jedi power and strength which all comes from the getNameAndSpecs function. But | would like a
way to tell which ships in this list align with the rebels, so let's add that word in parenthesis at the

end.

As usual to do that, we'll override this in RebelShip. Copy the getNameAndSpecs function and

paste it over here. And then just add '(rebel)' at the end:

lib/Model/RebelShip.php

T /7 ... lines 1 - 2

3 class RebelShip extends Ship

AL

$ /7 ... lines 5 - 22

23 public function getNameAndSpecs($useShortFormat = false)
24 {

25 if ($useShortFormat) {

26 return sprintfy(

27 '%s: %S/%s/%s (Rebel)',
28 $this->name,

29 $this->weaponPower,
30 $this->jediFactor,

31 $this->strength

32)i

33 } else {

34 return sprintfy(

35 '%s: w:%s, j:%s, s:%s (Rebel)',
36 $this->name,

37 $this->weaponPower,
38 $this->jediFactor,

39 $this->strength
40);
41 }
42 }
43 3}

Now you may be thinking "guys, that's some serious code duplication...". Well you're absolutely

right, and we'll get to fixing that!

For now what we've got is pretty straightforward, so let's refresh and... oh, check out our dropdown.

We've got an Undefinded property RebelShip::$name error.

You can't access private things in sub-classes

Back in PhpStorm, you can see $this->name is highlighted with an error message of ‘Member
has private access'. Interesting. So far, I've told you that since RebelShip extends Ship it has
access to everything inside of it like the properties and methods as if they also exist inside of

RebelShip. However, this error really does seem to be saying something different than that.

We can see that in Ship there is a name property so why isn't this working? The answer has to do

with this word private in front of $name:

1lib/Model/Ship.php

T /7 ... lines 1 - 2

3 class Ship

4 {

$ /7 ... lines 5 - 6

7 private $name;

$ /7 ... lines 8 - 138
139 }

All functions and properties so far are either private or public. If a function or a property is

private it means you can only access it from within the ship class:

1lib/Model/Ship.php

t /7 ... lines 1 - 2
3 class Ship
4 {
T /7 ... lines 5 - 16
17 public function __construct($name)
18 {
19 $this->name = $name;
$ // ... lines 20 - 21
22 }
$ /7 ... lines 23 - 138
139 }

Like here where we say $this->name. As we can see here, private functions and properties
can't be accessed inside of subclasses. So only things inside of the Ship class can access this

private $name; property.

| always recommend that you make things private until you need to access them from outside of

the class you're working in.

Introducing: protected

Now, there is another designation between private and public which is called protected.
Protected works exactly like private except that subclasses can access it, so when we change

it here the error goes away:

1lib/Model/Ship.php

$ /7 ... lines 1 - 2

3 class Ship

A

$ /7 ... lines 5 - 6

7 protected $name;

$ // ... lines 8 - 138
139 }

Cool! Let's do a temporary fix for the error we're getting by making all of these things protected:

1lib/Model/Ship.php

$ /... lines 1 - 2

3 class Ship

4 {

T /7 ... lines 5 - 6

7 protected $name;

8

9 protected $weaponPower = 0;
10

11 protected $jediFactor = 0;
12

13 protected $strength = 0;

T /7 ... lines 14 - 138
139 }

Everything in our RebelShip file looks happy again so let's refresh. Ah ha! Our dropdown is back

in business and showing the rebel designation.

| just mentioned that our fix was 'temporary' because | don't actually want to make these
protected I really prefer to keep things private whenever possible. So even though these
properties are private we have public functions that access them like getName,

getStrength, getWeaponPower :

1lib/Model/Ship.php

$ /7 ... lines 1 - 2

3 class Ship

4 {

T /7 ... lines 5 - 6

7 private $name;

8

9 private $weaponPower = 0;

10

11 private $jediFactor = 0;

12

13 private $strength = 0;

14

$ /7 ... lines 15 - 33

34 public function getName()

35 {

36 return $this->name;

37 3

38

$ /7 ... lines 39 - 47

48 public function getStrength()
49 {

50 return $this->strength;
51 }

52

T /7 ... lines 53 - 81

82 public function getWeaponPower ()
83 {

84 return $this->weaponPower ;
85 }

86

$ /7 ... lines 87 - 89

90 public function getJediFactor ()
91 {

92 return $this->jediFactor;
93 }

94

$ /7 ... lines 95 - 138
139 }

Which means that in the subclass we can just use these instead of the properties. Let's go ahead
and just change those in RebelShip. And to save me some effort I'll copy and paste these from

the if to the else:

lib/Model/RebelShip.php

$ /... lines 1 - 2

3 class RebelShip extends Ship

A

T /7 ... lines 5 - 22

23 public function getNameAndSpecs($useShortFormat = false)
24 {

25 if ($useShortFormat) {

26 return sprintf(

27 '%s: %s/%s/%s (Rebel)',
28 $this->getName(),

29 $this->getWeaponPower (),
30 $this->getJediFactor(),
31 $this->getStrength()

32)i

33 } else {

34 return sprintf(

35 '%s: w:%s, j:%s, s:%s (Rebel)',
36 $this->getName(),

37 $this->getWeaponPower (),
38 $this->getJediFactor(),
39 $this->getStrength()
40);
41 }
42 3
43 }

| like this, I mean | already have these public functions so why not use them? It allows me to
keep these properties private which is looking ahead a little bit, but the more things you have

marked as private the easier it's going to be to maintain and update your code later.

Back to the browser and refresh, and things still work!

private and protected Methods

Let's temporarily add a new private function to Ship called
getSecretDoorCodeToTheDeathstar (). Since only Empire ships should have access to this

you can see why setting it as private makes sense. And let's return the secret code 'RalnbOws"

1lib/Model/Ship.php

$ /... lines 1 - 2

3 class Ship

4 {

T /7 ... lines 5 - 6

7 private $name;

8

9 private $weaponPower = 0;
10

11 private $jediFactor = 0;
12

T // ... lines 13 - 139
140 private function getSecretDoorCodeToTheDeathstar ()
141 {
142 return 'RalnbOws';
143 }
144}

Over in RebelShip I should not be able to access this new function since we setitto private:

1lib/Model/RebelShip.php

$ /7 ... lines 1 - 2

3 class RebelShip extends Ship

A

$ /7 ... lines 5 - 22

23 public function getNameAndSpecs($useShortFormat = false)
24 {

25 return $this->getSecretDoorCodeToTheDeathstar();

T /7 ... lines 26 - 43
44 }
45 }

We see the 'Member has private access' error so when we refresh we can check the dropdown to
confirm that things aren't working.
Fatal error: Call to private method Ship::getSecretDoorCodeToTheDeathstar ()

and we need to view the source to see the full error message.

But, if we go back and change that function to protected, our error is gone, the rebels have

access to the secret door code and life is good:

1lib/Model/Ship.php

$ /7 ... lines 1 - 2
3 class Ship
4 {
T 7/ ... lines 5 - 139
140 protected function getSecretDoorCodeToTheDeathstar ()
141 {
142 return 'RalnbOws';
143 }
144}

Remove all that nonsense. The moral of the story is this, make things private at first,
proctected once you need to access them in a subclass. And finally public when you need to

use it outside of its class and subclass.

Chapter 4: Calling Parent Class Methods

We covered that when you override a function, you override it entirely. In RebelShip we're

overriding getNameAndSpecs:

lib/Model/RebelShip.php

$ /7 ... lines 1 - 2

3 class RebelShip extends Ship

4 {

$ /7 ... lines 5 - 22

23 public function getNameAndSpecs($useShortFormat = false)
24 {

25 if ($useShortFormat) {

26 return sprintfy(

27 '%s: %s/%s/%s (Rebel)',
28 $this->getName(),

29 $this->getWeaponPower (),
30 $this->getJediFactor(),
31 $this->getStrength()

32)i

33 } else {

34 return sprintfy(

35 '%s: wi%s, j:%s, s:%s (Rebel)',
36 $this->getName(),

37 $this->getWeaponPower (),
38 $this->getJediFactor(),
39 $this->getStrength()
40)i
41 }
42 }
43 }

which means that when this method is called on a RebelShip object the getNameAndSpecs
inside of the original Ship class, i.e. the parent class, is never called. In this case that's sort of a
problem because it leaves us with all this code duplication. It would be way better if we could
somehow call the parent method, getNameAndSpecs inside of Ship, and then just add this

‘(rebel)’ part to the end.

We saw in the last chapter, that from within RebelShip you can call methods that exist in the

parent class as long as they are public or protected. Let's try that here. Add

$val = $this->getNameAndSpecs(). Pass inthe $useShortFormatand then
$val .= ('Rebel'); andfinally return $val;:

1lib/Model/RebelShip. php

T /7 ... lines 1 - 2

3 class RebelShip extends Ship

A

$ /7 ... lines 5 - 22

23 public function getNameAndSpecs($useShortFormat = false)
24 {

25 $val = $this->getNameAndSpecs($useShortFormat);
26 $val .= ' (Jedi)';

27

28 return $val;

29 }

30 }

Doesn't that look a whole lot nicer? Yes, yes it does.

Let's give our experiment here a try. Refresh! Hmmm something is wrong...

(!) Fatal error: Maximum, let's view the source code since this error is stuck in our select

box. Ah there we go:

(') Fatal error: Maximum function nesting level of '200' reached, aborting!.
This means that we have a loop in our code, on index line 98 we call getNameAndSpecs and then

on line 25 of RebelShip we call getNameAndSpecs again. This isn't working because when we

call $this->getNameAndSpecs, it's literally calling this same method again inside of RebelShip

not the parent function in Ship.

The parent Keyword

The way you get this to call the parent function is with a special key word called parent: ::

lib/Model/RebelShip.php

$ /... lines 1 - 22

23 public function getNameAndSpecs($useShortFormat = false)
24 {

25 $val = parent::getNameAndSpecs($useShortFormat);

26 $val .= ' (Jedi)';

27

28 return $val;

29 }

? // ... lines 30 - 31

Let's try this again in our browser, refresh, and checking our dropdown everything is working again.

Except, maybe | could use a space here to make things look nicer. There we go.

Don't worry about this parent keyword too much it's used in exactly one situation calling: a parent

function that you overrode.

We'll see this :: syntax again later when we talk about static things.

Chapter 5: Creating an Abstract Ship

There is one more thing that is special about the Rebel Ships. Since, they're the good guys we're

going to give them some extra Jedi power.

Inside of Ship we have a jediFactor which is a value that is set from the database and a

getJediFactor () function:

lib/Model/Ship.php

? /7 ... lines 1 - 2

3 class Ship

A

$ /7 ... lines 5 - 10

11 private $jediFactor = 0;

12

$ /7 ... lines 13 - 89

920 public function getJediFactor()
91 {

92 return $this->jediFactor;
93 }

$ // ... lines 94 - 138
139 }

In the BattleManager this is used to figure out if some super awesome Jedi powers are used

during the battle.

For Rebel Ships, the Jedi Powers work differently than Empire ships. They always have at least
some Jedi Power, sometimes there's a lot and sometimes it's lower, depending on what side of the
galaxy they woke up on that day. So, instead of making this a dynamic value that we set in the
datbase let's create a public function getJediFactor () thatreturns the rand() function

with levels between 10 and 30:

1lib/Model/RebelShip.php

$ /... lines 1 - 2

3 class RebelShip extends Ship

4 {

T /7 ... lines 5 - 30
31 public function getJediFactor ()
32 {
33 return rand(10, 30);
34 3}
g5 | B

Setting it up like this overrides the function in the Ship parent class.

Back in the browser, when we refresh we can see the Jedi Factor keeps changing on the first two

Rebel ships only.

Fat Classes

Over in PhpStorm, when we look at this function now, Ship has a Jedi Factor property but
RebelShip doesn't need that at all. Since RebelShip is extending Ship it is still inheriting that
property. While this doesn't hurt anything it is a bit weird to have this extra property on our class that

we aren't using at all. And this is also true for the 1sFunctional() method. In RebelShip it's

always true:
$ /7 ... lines 1 - 2
3 class RebelShip extends Ship
A
$ /... lines 5 - 17
18 public function isFunctional()
19 {
20 return true,
21 }
T /7 ... lines 22 - 34
35| T

Butin Ship it reads from an underRepair property, and again that's just not needed in
RebelShip:

1lib/Model/Ship.php

$ /... lines 1 - 2

3 class Ship

4 {

T // ... lines 5 - 14

15 private $underRepair;

$ /7 ... lines 16 - 23

24 public function isFunctional()
25 {

26 return !$this->underRepair;
27 }

$ /7 ... lines 28 - 138
139 }

The point being, Ship comes with extra stuff that we are inheriting but not using in RebelShip.

These classes are like blueprints, so maybe, instead of having RebelShip extend Ship and
inherit all these things it won't use, we should have a third class that would hold the properties and
methods that actually overlap between the two called AbstractShip. From here, Ship and

RebelShip would both extend AbstractShip to get access to those common things.

This is a way of changing the class heirachy so that each class has only what it actually needs.

Creating_an AbstractShip

Let's start this! Create a new PHP Class called AbstractShip:

lib/Model/AbstractShip.php

$ /... lines 1 - 2

3 class AbstractShip

af

T /7 ... lines 5 - 138
139 }

Since it is the most abstract idea of a ship in our project. To start, I'm going to copy everything out of

the Ship class and paste itinto AbstractShip:

1lib/Model/AbstractShip.php

$ /... lines 1 - 2
3 class AbstractShip
4 {
5 private $id;
6
7 private $name;
8
9 private $weaponPower = 0;
T /7 ... lines 10 - 16
17 public function __construct($name)
18 {
19 $this->name = $name;
20 // randomly put this ship under repair
21 $this->underRepair = mt_rand(1, 100) < 30;
22 }
23
24 public function isFunctional()
25 {
26 return !'$this->underRepair;
27 }
T // ... lines 28 - 138
139 }

I know this looks like where we just were, but trust me we're going somewhere with this.

Now, let's write Ship extends AbstractShip:

1lib/Model/Ship.php

$ /7 ... lines 1 - 2

3 class Ship extends AbstractShip
A

5 1}

And do the same thing in RebelShip changing it from Ship to AbstractShip:

1lib/Model/RebelShip. php

t /7 ... lines 1 - 2
3 class RebelShip extends AbstractShip
$ /7 ... lines 4 - 36

Then in bootstrap add our require line for our new class:

bootstrap.php

$ /7 ... lines 1 - 9

10 require_once _ DIR__ .'/lib/Model/AbstractShip.php';
11 require_once _ DIR__ .'/lib/Model/Ship.php';

12 require_once _ DIR .'/lib/Model/RebelShip.php';

T /7 ... lines 13 - 16

Perfecto!

After just that change, refresh the browser and see what's happening. Hey nothing is broken, which

makes sense since nothing has really changed in our code's functionality -- yet.
Let's trim down AbstractShip to only the items that are truly shared between our two ships.

First, jediFactor is specific to Ship so let's move it over there:

1ib/Model/Ship.php

$ /7 ... lines 1 - 2

3 class Ship extends AbstractShip
Al

5 private $jediFactor = 0;

$ /7 ... lines 6 - 21
22 }

And then we'll update the references to it in AbstractShip to what the two classes share, which

isa getJediFactor () function:

1lib/Model/AbstractShip.php

T ...

lines 1 - 2

3 class AbstractShip

4

T /...

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
)
121

{

V/ANTE

}

lines 5 - 50
public function getNameAndSpecs($useShortFormat = false)
{
if ($useShortFormat) {
return sprintf(
'%s: %S/%S/%S',
$this->name,
$this->weaponPower,
$this->getJediFactor(),
$this->strength
)
} else {
return sprintf(
'%S: wW:i%S, j:%S, S:%S',
$this->name,
$this->weaponPower,
$this->getJediFactor(),
$this->strength
)

lines 71 - 120

So let's copy and paste that function into Ship:

1lib/Model/Ship.php

0

77 oo

lines 1 - 2

3 class Ship extends AbstractShip

4

T /...

10
11
12
iLE)

)
22

{

27 oo

lines 5 - 9
public function getJediFactor()

{

return $this->jediFactor;

lines 14 - 21

RebelShip already has one so that class is good to go already. Now in AbstractShip the

getJediFactor () function will either call the version of the function in Ship or RebelShip

depending on what is being loaded. There are a few other things | want to share with you about this,

but we'll get to those later.

Now let's move setJediFactor () from AsbtractShip into Ship:

1lib/Model/Ship.php

$ /7 ... lines 1 - 2

3 class Ship extends AbstractShip

4 {

$ /7 ... lines 5 - 17

18 public function setJediFactor($jediFactor)
19 {
20 $this->jediFactor = $jediFactor;
21 }
22 }

and that should do it! Now, Ship still has all the functionality that it had before, it extends
AbstractShip, and only contains its unique code. And RebelShip no longer inherits the
jediFactor property and anything that works with it. Now each file is simpler, and only has the

code that it actually needs. Back to the browser to test that everything still works. Oh look an error!

“Call to undefined method RebelShip::setJediFactor() on ShipLoader line 55.”

Let's check that out.

Ah, it's because down here when we create a ship object from the database, we always call
setJediFactor () onit, and that doesn't make sense anymore. So we'll move this up and only

call it for the Ship class:

lib/Service/ShipLoader.php

$ /... lines 1 - 2

3 class ShiplLoader

4 {

T /7 ... lines 5 - 44
45 private function createShipFromData(array $shipData)
46 {
47 if ($shipData['team'] == 'rebel') {
48 $ship = new RebelShip($shipData['name']);
49 } else {

50 $ship = new Ship($shipData['name']);

51 $ship->setJediFactor ($shipData['jedi_factor']);
52 3
53
54 $ship->setId($shipbDatal['id']);
55 $ship->setWeaponPower ($shipDatal 'weapon_power']);
56 $ship->setStrength($shipData['strength']);
57
58 return $ship;
59 }

T /7 ... lines 60 - 76
77 1}

$ /7 ... lines 78 - 79

Refresh again, no error, perfect!

Back to AbstractShip, we have the underRepair property which is only used by Ship, so

let's move that over:

1lib/Model/Ship.php

? /7 ... lines 1 - 2

3 class Ship extends AbstractShip

4 {

$ /7 ... lines 5 - 6

7 private $underRepair;

T /7 ... lines 8 - 32
33 public function isFunctional()
34 {

35 return !$this->underRepair;
36 3

37 }

And, let's also move over the isFunctional() method from AbstractShip as well, since
RebelShip hasits own isFunctional() method already. Finally, the last place that this is used
is in the construct function. The random number for under repair is set here, so just remove that one
piece but leave the $this->name = $name; where it is since it is shared by both types of ships.

In the Ship class we'll override the construct function, I'll keep the same argument. Using our trick

from earlier I'll call the parent::__construct($name); and then paste in the under repair

calculation line:

1lib/Model/Ship.php

T /7 ... lines 1 - 2

3 class Ship extends AbstractShip

A

? /7 ... lines 5 - 8

9 public function __construct($name)
10 {

11 parent::__construct($name);

T /7 ... lines 12 - 13

14 $this->underRepair = mt_rand(1, 100) < 30;
15 }

$ /7 ... lines 16 - 36

37 }

The last thing that's extra right now in the AbstractShip class is the getType() method. Both
ships need a getType() function, but this one here is specific to the Ship class so we'll cut and

paste that over:

1lib/Model/Ship.php

? /7 ... lines 1 - 2

3 class Ship extends AbstractShip
4 {

T /7 ... lines 5 - 37

38 public function getType()
39 {
40 return 'Empire';
41 }
42 3}

Back to the browser and refresh, everything looks great. The Rebel Ships aren't breaking and Jedi

Factors are random, awesome!

This is the same functionality we had a second ago but the RebelShip class is a lot simpler. It only
inherits what it actually uses from AbstractShip. Which means that our new class truly is the
blueprint for the things that are shared by all the ship classes. Ship extends AbstractShip as

does RebelShip and then each add their own specific code.

While this isn't a new concept, it is a new way of thinking of how to organize your "class hierarchy".

Chapter 6: Abstract Classes

Since everything seems to be working on our site, let's start a battle! Four Jedi Starfighters against

three Super Star Destroyers. Engage.

Ahh an error!

“Argument 1 passed to BattleManager::battle() must be an instance of Ship, instance of

RebelShip given”

And this is apparently happening on battle line 32:

battle.php

$ /7 ... lines 1 - 33

34 $battleResult = $battleManager->battle($shipl, $shiplQuantity, $ship2,
$ship2Quantity);

$ /7 ... lines 35 - 109

And BattleManager line 10:

lib/Service/BattleManager.php

T /7 ... lines 1 - 2

3 class BattleManager

4 {

$ 7/ ... lines 5 - 9

10 public function battle(Ship $shipl, $shipiQuantity, Ship $ship2,
$ship2Quantity)

11 {

T /7 ... lines 12 - 56

57 1

$ // ... lines 58 - 64

65 1}

Back to our IDE and open up battle.php.

Trouble With Type Hints

Down on line 32, what we see is that $ship1 is actually a RebelShip object, which makes sense

since one of the ships | selected was a Rebel. But it expected that to be a normal Ship class. Over

in BattleManager look at the battle function to see the problem! We type hinted our arguments

with the Ship class:

lib/Service/BattleManager.php

$ /7 ... lines 1 - 2

3 class BattleManager

A

$ // ... lines 5 - 9

10 public function battle(Ship $shipl, $shipiQuantity, Ship $ship2,
$ship2Quantity)

11 {

T /7 ... lines 12 - 56

57 }

T // ... lines 58 - 64

65 }

Which tells PHP to only allow Ship classes or subclasses to be passed here.

The issue is that RebelShip is no longer a subclass of Ship and so now we have this error. The
good news, the fix is simple! We don't care if we get a ship object in battle anymore. What we
actually care about is that we get an AbstractShip object or any of its subclasses which we know

includes Ship and RebelShip:

lib/Service/BattleManager.php

? /7 ... lines 1 - 2

3 class BattleManager

4 {

$ /7 ... lines 5 - 9

10 public function battle(AbstractShip $shipl, $shiplQuantity, AbstractShip
$ship2, $ship2Quantity)

11 {

T 7/ ... lines 12 - 56

57 3

T /7 ... lines 58 - 64

65 1}

Refresh and give this another try, we get the exact same error. Let's see we're being notified about

something in BattleManager on line 58. Scroll down and look there:

lib/Service/BattleManager.php

$ /... lines 1 - 2

3 class BattleManager

4 {

T /7 ... lines 5 - 58

59 private function didJediDestroyShipUsingTheForce(Ship $ship)
60 {

$ /7 ... lines 61 - 63
64 3
65 }

Ah yes, it's this type hinting right here. This function is called up here, and we pass it the ship object,
so let's update this one to be expecting an AbstractShip:

lib/Service/BattleManager.php

$ /... lines 1 - 2

3 class BattleManager

4 {

$ /7 ... lines 5 - 58

59 private function didJediDestroyShipUsingTheForce(AbstractShip $ship)
60 {

$ s/ ... lines 61 - 63
64 3
65 }

Let's try this again! Cool, one more error! This one is having issues with
BattleResult::__construct(). In our IDE we can see that when we instantiate the

BattleResult object we pass it the $winningShip and the $losingShip:

lib/Service/BattleManager.php

$ /7 ... lines 1 - 9

10 public function battle(AbstractShip $shipl, $shiplQuantity, AbstractShip
$ship2, $ship2Quantity)

11 {

T /7 ... lines 12 - 55

56 return new BattleResult($usedJediPowers, $winningShip, $losingShip);

57 }

$ 7/ ... lines 58 - 66

Over in BattleResult we see that these are also typehinted with Ship. Update those two:

lib/Model/BattleResult.php

? /... lines 1 - 2

3 class BattleResult

A A

$ /7 ... lines 5 - 13

14 public function __construct($usedJediPowers, AbstractShip $winningShip =

null, AbstractShip $losingShip = null)

15 {

$ /7 ... lines 16 - 18
19 }

T /7 ... lines 20 - 53
54 }

This is nice, our code is a lot more flexible now. Before, it had to be a Ship instance. Now we don't

care what class you have as long as it extends AbstractShip.

Refresh again! Awesome, battling is back on.

What Methods are really on AbstractShip?

Now we have a few minor, but interesting, problems. First, in AbstractShip head down to
getNameAndSpecs() and we see that getJediFactor () is highlighted with an error that says
"Method getJediFactor () not found in class AbstractShip". Now, this is working because we do
have a getJediFactor () method in Ship and RebelShip. When we call
getNameAndSpecs() it's able to call getJediFactor (). But this should look a little fishy to you.
There is no getJediFactor () function inside of AbstractShip, so just looking at this class

you should feel suspicious and question whether or not this works.

Here's what's going on, we have an implied rule that says, "Yo, every class that extends
AbstractShip must have a getJediFactor () function.” If it doesn't everything is going to
break when we call this function with a 'method not found' error. We aren't enforcing this rule. So we
could easily create a new ship class, extend AbstractShip, and forget to add a
getJediFactor () function. Our application would break and no battles would be happening. Sad

times.

Abstract Functions to the Rescue

You're in luck, there's a feature called Abstract Classes that can handle this issue for us. I'll scroll
up, but really the position of this doesn't matter. Add a new

abstract public function getJediFactor();:

lib/Model/AbstractShip.php

t /7 ... lines 1 - 2
3 abstract class AbstractShip
4 {
T /7 ... lines 5 - 15
16 abstract public function getJediFactor();
$ /7 ... lines 17 - 111
112 }

You may notice there are two different things about this. One is the word abstract before
public function and the other is that | just have a semicolon on the end, | didn't actually make
a function. The best part, this line doesn't add any functionality to our app, but it does force any

class that extends this to have this method.

For example, if RebelShip didn't have this getJediFactor () method, then when we refresh
the browser we'll get a huge error that says: "Hey! RebelShip must have a getJediFactor function!".

This is because it has been defined as an abstract function inside of the parent class.

Up until now we could have instantiated an abstract ship directly with new AbstractShip() we
didn't actually want to but it was possible. But, once you have an abstract function in here, that is no

longer an option, it's only purpose then becomes to be a blueprint for other classes to extend.

Marking_a Class as Abstract

Up here at the top of the file you can see that there is an error highlight with a message that says
"Class must be declared abstract or implement method getJediFactor () ". Once your class has
an abstract function you need to add the abstract keyword in front of it, which enforces the rule

that you can't say new AbstractShip():

lib/Model/AbstractShip.php

T /7 ... lines 1 - 2
3 abstract class AbstractShip
$ /7 ... lines 4 - 113

Now when we scroll down, we can see that getJediFactor () isn't highlighted anymore since we
know that inside AbstractShip any subclasses will be forced to have that. Back to the browser

and refresh! Everything still works just fine.

Related to this, there is one more little thing we need to fix up. Start in ShipLoader, notice that our

getShips() and findOneById() functions still have PHPDoc above them that say they return a

ship object. That's not the biggest deal, but it would be more accurate if it said AbstractShip -

because this actually returns a mixture of RebelShip and Ship objects:

lib/Service/ShipLoader.php

$ /7 ... lines 1 - 2

3 class ShiplLoader

A

$ /7 ... lines 5 - 11

12 /**

13 * @return AbstractShip[]
14 */

15 public function getShips()
16 {

$ s/ ... lines 17 - 25

26 }

27

28 /**

29 * @param $id

30 * @return AbstractShip
31 */
32 public function findOneById($id)
33 {

$ /7 ... lines 34 - 42
43 3

$ 7/ ... lines 44 - 76

77 }

T /7 ... lines 78 - 79

Now check this out, inside of index.php, remember this $ships variable we get by calling that

getShips() function?

index.php

T /7 ... lines 1 - 6
7 $ships = $shipLoader->getShips();
T /7 ... lines 8 - 123

So that returns an array of AbstractShip objects. When we loop over it, the isFunctional()

and the getType() functions aren't found:

index.php

? /7 ... lines 1 - 70

71 <?php foreach ($ships as $ship): ?>

T /7 ... lines 72 - 74

75 <td><?php echo $ship->getlJediFactor(); ?></td>
T /7 ... line 76

77 <td><?php echo $ship->getType(); ?></td>

$ /7 ... lines 78 - 85

86 <?php endforeach; ?>

T 7/ ... lines 87 - 123

The message here says "Method getType() not found in class AbstractShip". This is just like
the getJediFactor () problem we just fixed. We don't have a getType() function inside of
here. Both of our subclasses do, which is why our app still works, but technically we're not enforcing
that. Any new subclasses to AbstractShip could easily end up missing these functions which

would again stop all the battles.

What we need is another abstract public function for getType() and isFunctional():

lib/Model/AbstractShip.php

$ /7 ... lines 1 - 2
3 abstract class AbstractShip
af L
$ /7 ... lines 5 - 20
21 abstract public function getType();
22
T /7 ... lines 23 - 25
26 abstract public function isFunctional();
$ /7 ... lines 27 - 121
122 }

This doesn't change anything in our application, it just forces our subclasses to have those

methods. And now index.php is really happy again!

That's the power of abstract classes, you can have a whole bunch of shared logic in there, but if
there are a couple of pieces that you can't fill in in your abstract class because they are specific to
your subclasses, no problem! Just put them in there as abstract functions and your subclasses will

be forced to have those.

In my example these are abstract public functions but you could also have abstract protected
functions as well. Which one you use just depends on your use case. It's a very powerful feature of
object oriented code.

Chapter 7: Broken Ship

Here's the really beautiful thing about abstract classes. You may create some of these because you
have a situation similar to the one we've been working on in this project. Or, you may be using
someone else's code like a third party library that you downloaded via the Composer package
manager. You might even read in that library's documentation that if you want to create a new ship

class you just need to extend AbstractShip.

What's really great is that AbstractShip now tells you exactly what you need to do to create a

new ship class with its three abstract functions that you must fill in:

1ib/Model/AbstractShip.php

T /7 ... lines 1 - 2
3 abstract class AbstractShip
o
I /7 ... lines 5 - 15
16 abstract public function getJediFactor();
$ /7 ... lines 17 - 20
21 abstract public function getType();
$ // ... lines 22 - 25
26 abstract public function isFunctional();
T /7 ... lines 27 - 121
122 }

A third group has joined the battle and we have a new type of ship. They're not very good

mechanics, so we'll call this a broken ship. This is simple, the ship is always broken.

Create a new php class called BrokenShip. Of course now make it extend AbstractShip:

1lib/Model/BrokenShip.php

$ /7 ... lines 1 - 2

3 class BrokenShip extends AbstractShip
A

5

6 }

Let's pretend like we don't know that there are any abstract methods in the parent class. So we
won't do anything here except putting in the extends code. Head over to bootstrap.php and

require our useless new BrokenShip:

bootstrap.php

$ /... lines 1 - 12
13 require_once _ DIR__ .'/lib/Model/BrokenShip.php';
T 7/ ... lines 14 - 17

Back in index.php for now, let's just add $brokenShip = new BrokenShip(); and add it to

our ships array:

index.php

$ /7 ... lines 1 - 8

9 $brokenShip = new BrokenShip('Just a hunk of metal');
10 $ships[] = $brokenShip;

T /7 ... lines 11 - 126

We can do this because we know that BrokenShip extends AbstractShip. And down here,

when we use those ship objects we're just calling methods on the AbstractShip.

Back to the browser, refresh! Yes, what a huge beautiful error. It says:

“Class BrokenShip contains 3 abstract methods and must therefore be declared abstract or

implement the remaining methods.”

And then it goes on and lists the methods.

In other words, it's saying "Hey buddy! You need to add those three methods into this class!" It's
always giving you an out to declare the class abstract if you want to, and you might do this if you
wanted an abstract class inside an abstract class with some additional public functions. But we've

all seen where that goes in the move inception.

In our case we want this to be a concrete class, meaning one that we can instantiate. When we go
over to AbstractShip we say "Oh yea, | see there's a getJediFactor function that | need to
add." Take off the abstract to turn it into a real function, and since this ship is always broken we don't

care about the Jedi factor so let's just return O:

1lib/Model/BrokenShip.php

$ /7 ... lines 1 - 2
class BrokenShip extends AbstractShip

{

3

4

5 public function getJediFactor ()
6 {

7 return O;

8

I

// ... lines 9 - 18
19 }

When we refresh after that we get the same error, but we're down to just 2 missing abstract

methods, getType and isFunctional.

Head back into AbstractShip and grab those, pop off the abstract word at the beginning after we
paste them into BrokenShip. And we'll fill in the details of getType by returning 'Broken'. And

we'll fillin isFunctional by returning false:

1lib/Model/BrokenShip.php

$ /7 ... lines 1 - 2

3 class BrokenShip extends AbstractShip
Al A

T /7 ... lines 5 - 9

10 public function getType()

11 {

12 return 'Broken';
13 }
14
15 public function isFunctional()
16 {
17 return false;
18 3
19 }

Without really knowing anything | extended AbstractShip and that class told me exactly what |

needed to have in my subclasses.

And when we refresh, we have one more error! We're missing argument 1 to
AbstractShip::__construct. That's my bad. In index.php here BrokenShip still has a

constructor argument which is the name so let's not forget to fill that in with "I am so broken":

index.php

$ /7 ... lines 1 - 8
9 $brokenShip = new BrokenShip('Just a hunk of metal');
T /7 ... lines 10 - 126

Refresh again, and things look great! We've got our four original ships and our new broken one.

Which is always broken with its little cute cloud.

We didn't have to update any of our other code because BrokenShip extends AbstractShip
and has all the same methods as everything else which leaves everything working just as beautifully
as before. Blueprint classes for the win!

Chapter 8: Abstracting a Class into 2 Smaller Pieces

To get our ships we use ShipLoader which queries the database and creates ship objects. This

gueryForShips() goes out, selects all the ships, and then later it is passed to this nice

createShipFromData() function down here:

lib/Service/ShipLoader.php

T ...

lines 1 - 2

3 class ShipLoader

4 {

T /...

15
16
17
18
19
20
21
22
23
24
25
26

T ...

59 }

T /...

lines 5 - 14

public function getShips()

{

$ships = array();

$shipsbData = $this->queryForShips();

foreach ($shipsData as $shipData) {

$ships[] = $this->createShipFromData($shipData);

return $ships;

lines 27 - 58

lines 60 - 61

This is the one we've been working in that creates the objects.

Step 1: Query the database

Step 2: Turn that data into objects

Suppose that we have a new requirement, sometimes we're going to get the ship data from the

database but other times it will come from a different source, like a JSON file.

In the resources directory there's a new ship. json file, as you can see this holds the same info

as we have in the database:

resources/ships.json

$ /... line 1

2 [

3 {

4 "id": "1i",

5 "name": "Jedi Starfighter",
6 "weapon_power": "5",

7 "jedi_factor": "15",

8 "strength": "30",

9 "team": "rebel"

10 }

T /7 ... lines 11 - 26

27 {

28 "id": "4",

29 "name": "RZ-1 A-wing interceptor",
30 "weapon_power": "4",

31 "jedi_factor": "4",

32 "strength": "50",

33 "team": "empire"

34 3}

35]

Now why would we want our application to sometimes load from the database and other times from
a JSON file? Say that when we're developing locally we don't have access to our database, so we
use a JSON file. But when we push to production we'll switch back to the real database. Or,
suppose that our ship library is so awesome that someone else wants to reuse it. However, this fan

doesn't use a database, they only load them from JSON.
This leaves us needing to make our ShipLoader more generic.

Right now, all of the logic of querying things from the database is hardcoded in here. So let's create

a new class whose only job is to load ship data through the database, or PDO.

Create a new class called PdoShipStorage:

lib/Service/PdoShipStorage.php

$ /7 ... lines 1 - 2

3 class PdoShipStorage
A

$ /7 ... lines 5 - 31
32 }

Looking back inside ShipLoader there are two types of queries that we make:

lib/Service/ShipLoader.php

$ /... lines 1 - 2

3 class ShiplLoader

4 {

T /7 ... lines 5 - 31

32 public function findOneById($id)

33 {

34 $statement = $this->getPDO()->prepare('SELECT * FROM ship WHERE id =
:id');

$ 7/ ... lines 35 - 42

43 3

44

T /7 ... lines 45 - 68

69 private function queryForShips()

70 {

71 $statement = $this->getPDO()->prepare('SELECT * FROM ship');

$ 7/ ... lines 72 - 75

76 }

77 }

T /7 ... lines 78 - 79

Sometimes we query for all of the ships and sometimes we query for just one ship by ID.

Back to our PdoShipStorage I'll create two methods, to cover both of those actions. First, create
a public function fetchAllShipsData() which we'll fill out in just one second. Now, add

public function fetchSingleShipData() and pass it the id that we want to query for:

lib/Service/PdoShipStorage.php

$ /7 ... lines 1 - 2

3 class PdoShipStorage

A

$ /7 ... lines 5 - 11

12 public function fetchAllShipsData()
13 {

$ /7 ... lines 14 - 17
18 }
19
20 public function fetchSingleShipData($id)
21 {

T /7 ... lines 22 - 30
31 3
32 }

Before we go any further head back to our bootstrap.php file and make sure that we require
this:

bootstrap.php

T 7/ ... lines 1 - 14
15 require_once _ DIR_ .'/lib/Service/PdoShipStorage.php';
T /7 ... lines 16 - 19

Perfect!

What | want to do is move all the querying logic from ShipLoader into this PdoShipStorage

class. Let's start with the logic that queries for one ship and pasting that over here:

lib/Service/PdoShipStorage.php

T /... lines 1 - 2
3 class PdoShipStorage
4 {
$ /7 ... lines 5 - 19
20 public function fetchSingleShipData($id)
21 {
22 $statement = $this->pdo->prepare('SELECT * FROM ship WHERE id =
:id');
23 $statement->execute(array('id' => $id));
24 $shipArray = $statement->fetch(PDO: :FETCH_ASSOC);
25
26 if (!$shipArray) {
27 return null;
28 }
29
30 return $shipArray;
31 3}
32 }

Notice, that we're not returning an object here this is just a really dumb class that returns data, an

array in our case.

There is one problem, we have a getPdo() function inside of ShipLoader that references a pdo
property. Point being, our PDO storage needs access to the PDO object, so we're going to use
dependency injection, a topic we covered a lot in episode 2 . Add

public function ___construct(PDO $pdo) and store it as a property with

$this->pdo = $pdo;:

https://knpuniversity.com/screencast/oo-ep2

lib/Service/PdoShipStorage.php

$ /... lines 1 - 2
class PdoShipStorage

{
private $pdo;

public function __construct(PDO $pdo)

3
4
5
6
7
8 {
9

$this->pdo = $pdo;
10 3}

$ /... lines 11 - 31

32 }

If this pattern is new to you just head back and watch the dependency injection video in episode 2 of
the OO series.

Here we're saying, whomever creates our PDO ship storage class must pass in the pdo object. This

is cool because we need it. Now | can just reference the property there directly.

Back in ShipLoader copy the entire queryForShips() and paste that into
fetchAllShipsData() and once again reference the pdo property:

lib/Service/PdoShipStorage.php

$ /... lines 1 - 2

3 class PdoShipStorage

4 {

$ /7 ... lines 5 - 11

12 public function fetchAllShipsData()

13 {

14 $statement = $this->pdo->prepare('SELECT * FROM ship');
15 $statement->execute();

16

17 return $statement->fetchAll(PDO: :FETCH_ASSOC);
18 }

T /7 ... lines 19 - 31
32 }

Now we have a class whose only job is to query for ship stuff, we're not using it anywhere yet, but
it's fully ready to go. So let's use this inside of ShipLoader instead of the PDO object. Since we
don't need PDO to be passed anymore swap that out for a PdoShipStorage object. Let's update

that in a few other places and change the property to be called shipStorage:

https://knpuniversity.com/screencast/oo-ep2

lib/Service/ShipLoader.php

$ /7 ... lines 1 - 2
class ShipLoader

{

private $shipStorage;

public function __construct(PdoShipStorage $shipStorage)

3
4
5
6
7
8 {
9

$this->shipStorage = $shipStorage;
10 }

$ // ... lines 11 - 58

59 }

T /7 ... lines 66 - 61

Cool!

Down in getShips() we used to call $this->queryForShips(); butwe don't need to do that

anymore! Instead, say $this->shipStorage->fetchAllShipsData();:

lib/Service/ShipLoader.php

$ /7 ... lines 1 - 2

3 class ShiplLoader

A

$ // ... lines 5 - 54

55 private function queryForShips()

56 {

57 return $this->shipStorage->fetchAllShipsData();
58 }

59 }

$ /7 ... lines 60 - 61

Perfect, now scroll down and get rid of the queryForShips() function all together: we're not
using that anymore. And while we're cleaning things out also delete this getPDO() function. We
can delete this because up here where we reference itin findOneById() we'll do the same thing.
Remove all the pdo querying logic, and instead say

shipArray = $this->shipStorage->fetchSingleShipData(); and pass it the ID:

lib/Service/ShipLoader.php

$ /... lines 1 - 2

3 class ShiplLoader

4 {

T /7 ... lines 5 - 31
32 public function findOneById($id)
33 {

34 $shipArray = $this->shipStorage->fetchSingleShipData($id);
$ /7 ... lines 35 - 36

37 3

$ // ... lines 38 - 58

59 1}

T /7 ... lines 660 - 61

This class now has no query logic anywhere.

All we know is that we're passed in some PdoShipStorage object and we're able to call methods
on it. It can make the queries and talk to whatever database it wants to, that's it's responsibility. In

here we're just calling methods instead of actually querying for things.

ShipLoader and PdoShipStorage are now fully setup and functional. The last step is going into
our container which is responsible for creating all of our objects to make a couple of changes. For
example, when we have new ShipLoader we don't want to pass a pdo object anymore we want

to pass in PdoShipStorage.

Just like before, create a new function called getShipStorage() and make sure we have our
property up above. The getShipStorage() method is going to do exactly what you expect it to
do. Instantiate a new PdoShipStorage and return it. The ship's storage class does need PDO as

its first constructor argument which we do with new PdoShipStorage($this->getPDO());:

lib/Service/Container.php

I
3
4
)
13
14
X
50
51
52
53
54
55
56
57
I
70

// ... lines 1 - 2
class Container

{

// ... lines 5 - 12

private $shipStorage;

// ... lines 15 - 49
public function getShipStorage()
{
if ($this->shipStorage === null) {
$this->shipStorage = new PdoShipStorage($this->getPDO());
}
return $this->shipStorage;
}
// ... lines 58 - 69

Upin getShipLoader (), now pass $this->getShipStorage():

lib/Service/Container.php

0
3

4

)
41
42
43
44
45

)
48

0
70

// ... lines 1 - 2
class Container
{
// ... lines 5 - 40
public function getShipLoader ()
{
if ($this->shipLoader === null) {
$this->shipLoader = new ShipLoader ($this->getShipStorage());
}
// ... lines 46 - 47
}
// ... lines 49 - 69

Everything used to be in ShipLoader, including the query logic. We've now split things up so that

the query logic is in PdoShipStorage and in ShipLoader you're just calling methods on the

shipStorage. Its real job is to create the objects from the data, wherever that data came from. In

Container.php we've wired all this stuff up.

Phew, that was a lot of coding we just did, but when we go to the browser and refresh, everything

still works exactly the same as before. That was a lot of internal refactoring. In index.php as

always we still have $shipLoader->getShips():

index.php

T /7 ... lines 1 - 6
7 $ships = $shipLoader->getShips();
T /7 ... lines 8 - 126

And that function still works as it did before, but the logic is now separated into two pieces.

The cool thing about this is that our classes are now more focused and broken into smaller pieces.
Initially we didn't need to do this, but once we had the new requirement of needing to load ships

from a JSON file this refactoring became necessary. Now let's see how to actually load things from
JSON instead of PDO.

Chapter 9: AbstractShipStorage

Our goal is to make ShipLoader load things from the database or from a JSON file. In the

resources directory I've already created a JsonFileShipStorage class.

Copy that into the service directory and let's take a look inside of here:

lib/Service/JsonFileShipStorage.php

T /...

lines 1 - 2

3 class JsonFileShipStorage

4 {

© 00 N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

}

private $filename;

public function __construct($jsonFilePath)

{
$this->filename = $jsonFilePath;
}
public function fetchAllShipsData()
{
$jsonContents = file_get_contents($this->filename);
return json_decode($jsonContents, true);
}
public function fetchSingleShipData($id)
{
$ships = $this->fetchAllShipsbata();
foreach ($ships as $ship) {
if ($ship['id'] == $id) {
return $ship;
}
}
return null;
}

It has all of the same methods as PdoShipStorage. Except that this loads from a JSON file

instead of querying from a database. Let's try and use this in our project.

First, head over to bootstrap of course and require JsonFileShipStorage.php:

bootstrap.php

$ 7/ ... lines 1 - 15
16 require_once _ DIR__.'/lib/Service/JsonFileShipStorage.php';
T /7 ... lines 17 - 19

In theory since this class has all the same methods as PdoShipStorage we should be able to
pass a JsonFileShipStorage object into ShipLoader and everything should just work. Really,
the only thing ShipLoader should care about is that it's passed an object that has the two
methods it's calling: fetchAllShipsData() and fetchSingleShipData():

lib/Service/ShipLoader.php

T /... lines 1 - 2

3 class ShiplLoader

4 {

$ /7 ... lines 5 - 31

32 public function findOneById($id)

33 {

34 $shipArray = $this->shipStorage->fetchSingleShipData($id);
T /7 ... lines 35 - 36
37 }

T // ... lines 38 - 54

55 private function queryForShips()

56 {

57 return $this->shipStorage->fetchAllShipsData();
58 }

59 }

T /7 ... lines 60 - 61

In Container let's give this a try. Down in getShipStorage() let's say,
$this->shipStorage = new JsonFileShipStorage().And we'll give it a path to our JSON

of _DIR__.'"/../../resources/ships.json':

lib/Service/Container.php

I
3
4
)
50
51
52
53
54

55

0
58

)
71

// ... lines 1 - 2
class Container
{
// ... lines 5 - 49
public function getShipStorage()
{
if ($this->shipStorage === null) {

//$this->shipStorage = new PdoShipStorage($this->getPDO());
$this->shipStorage = new
JsonFileShipStorage(__DIR__.'/../../resources/ships.json');

¥
// ... lines 56 - 57
}
// ... lines 59 - 70

}

From this directory I'm going up a couple of levels, into resources and pointing at this

ships. json file which holds all of our ship info:

resources/ships.json

0
2

© 00 N O 0o~ W

10

0
27
28
29
30
31
32
33
34
35

// ... line 1
[
{
"id": "iv,
"name": "Jedi Starfighter",
"weapon_power": "5",

"jedi_factor": "15",
"strength": "30",

"team": "rebel"

+

// ... lines 11 - 26

{
"id": "4",
"name": "RZ-1 A-wing interceptor",
"weapon_power": "4",
"jedi_factor": "4",
"strength": "50",
"team": "empire"

}

]

Back to the browser and refresh. Ok no success yet, but as they say, try try again. Before we do

that, let's check out this error:

“Argument 1 passed to ShipLoader::__construct() must be an instance of

PdoShipStorage, instance of JsonFileShipStorage given.”

What's happening here is that in ShipLoader we have this type-hint which says that we only

accept PdoShipStorage and our Json file is not an instance of that:

lib/Service/ShipLoader.php

T /7 ... lines 1 - 2

class ShipLoader

{

// ... lines 5 - 6
public function _ construct(PdoShipStorage $shipStorage)
{

// ... line 9

10 3}

$ /7 ... lines 11 - 58

59 }

$ /7 ... lines 60 - 61

© 0 N & bW

The easiest way to fix this is to say extends PdoShipStorage in JsonFileShipStorage:

lib/Service/JsonFileShipStorage.php

T /7 ... lines 1 - 2
3 class JsonFileShipStorage extends PdoShipStorage
T /7 ... lines 4 - 32

This makes the json file an instance of PdoShipStorage. Try refreshing that again. Perfect, our

site is working.

But having to put that extends in our JSON file kinda sucks, when we do this we're overriding every

single method and getting some extra stuff that we aren't going to use.

Creating_a "Ship storage" contract

Instead, you should be thinking, "This is a good spot for Abstract Ship Storage!" And well, | agree so
let's create that. Inside the Service directory add a new PHP Class called
AbstractShipStorage. The two methods that this is going to need to have are:
fetchSingleShipData() and fetchAllShipsData() so I'll copy both of those and paste

them over to our new class.

Of course we don't have any body in these methods, so remove that. Now, set this as an

abstract class. Make both of the functions abstract as well;

lib/Service/AbstractShipStorage.php

T /7 ... lines 1 - 2
abstract class AbstractShipStorage

3
4 {

5 abstract public function fetchAllShipsData();
6

7

8

abstract public function fetchSingleShipData(%$id);

Now, JsonFileShipStorage can extend AbstractShipStorage:

lib/Service/JsonFileShipStorage.php

$ /7 ... lines 1 - 2
3 class JsonFileShipStorage extends AbstractShipStorage
$ /7 ... lines 4 - 32

And the same thing for PdoShipStorage:

lib/Service/PdoShipStorage.php

? /7 ... lines 1 - 2
3 class PdoShipStorage extends AbstractShipStorage
$ /7 ... lines 4 - 33

With this setup we know that if we have a AbstractShipStorage it will definitely have both of
those methods so we can go into the ShipLoader and change this type hint to
AbstractShipStorage because we don't care which of the two storage classes are actually

passed:

lib/Service/ShipLoader.php

T /7 ... lines 1 - 2

3 class ShiplLoader

Al A

T /7 ... lines 5 - 6

7 public function __construct(AbstractShipStorage $shipStorage)
$ /7 ... lines 8 - 58

59 }

T 7/ ... lines 60 - 61

To be very well behaved developers, we'll go into our Container and above
getShipStorage() change the type hintto AbstractShipStorage. Not a requirement, but it

is a good idea.

Go back to the browser and refresh... oh, class AbstractShipStorage not found because we

forgot to require it in our bootstrap file. We will eventually fix the need to have all of these require

statements:
bootstrap.php
$ /7 ... lines 1 - 14
15 require_once _ DIR__.'/lib/Service/AbstractShipStorage.php';
T /7 ... lines 16 - 20

Refresh again and now it works perfectly.

We created an AbstractShipStorage because it allows us to make our ShipLoader more

generic. It now doesn't care which one is passed, as long as it extends AbstractShipStorage.

But there's an even better way to handle this... interfaces!

Chapter 10: Interfaces

Notice, AbstractShipStorage unlike AbstractShip, doesn't actually have any logic in it:

lib/Service/AbstractShipStorage.php

T /7 ... lines 1 - 2
abstract class AbstractShipStorage

3
A

5 abstract public function fetchAllShipsData();
6

7

8

abstract public function fetchSingleShipData($id);

All it does is have a contract that guarantees anything that extends this has these two functions. It
turns out that when you have an abstract class like this that only contains abstract functions and no

real code, well it's the perfect opportunity to use an Interface.

An interface works just like an abstract class and here's how it looks. To start, we need to rename
our class to ShipStorageInterface since this more closely matches what it is. And instead of

abstract class it's now labeled as an interface:

lib/Service/ShipStorageInterface.php

$ /7 ... lines 1 - 2
3 interface ShipStorageInterface
T /7 ... lines 4 - 9

Get it?

As soon as you do that you no longer need abstract in front of all the functions, but these work

the same:

lib/Service/ShipStorageInterface.php

$ /7 ... lines 1 - 2
interface ShipStorageInterface

3
af

5 public function fetchAllShipsData();
6

7

8

public function fetchSingleShipData($id);

On the AbstractShipStorage file in the tree, go to "Refactor” and click to "Rename" our file to
ShipStorageInterface. | really like the consistency. And of course update our require line for

this file in bootstrap.php:

bootstrap.php
$ /7 ... lines 1 - 14

15 require_once _ DIR_.'/lib/Service/ShipStorageInterface.php';
$ /7 ... lines 16 - 20

Implement an Interface

Stepping back and looking at ShipStorageInterface. | want you to think of this as acting just
like an abstract class with two functions that need to be filled in. An important difference is that you
don't extend interfaces. Instead, we'll use a new keyword called implements and our updated

class name ShipStorageInterface:

lib/Service/JsonFileShipStorage.php

T /7 ... lines 1 - 2
3 class JsonFileShipStorage implements ShipStorageInterface
$ /7 ... lines 4 - 32

This new line says that the JsonFileShipStorage must include the functions inside of

ShipStoragelnterface.

If | deleted fetchAllShipsData() you can see that immediately PhpStorm is telling me:

“Hey buddy, you need to implement fetchAllShipsData().”

So I'll comply and undelete that.

Update PdoShipStorage to implement ShipStoragelnterface:

lib/Service/PdoShipStorage.php

$ /7 ... lines 1 - 2
3 class PdoShipStorageInterface implements ShipStoragelInterface
$ /7 ... lines 4 - 33

Time to head over to ShipLoader and change the AbstractShipStorage type hint to
ShipStorageInterface which is our way of saying that we don't care what class is passed here

as long as it has the two methods that are in ShipStorageInterface:

lib/Service/ShipLoader.php

T /7 ... lines 1 - 2

3 class ShiplLoader

4 {

T /7 ... lines 5 - 6

7 public function __construct(ShipStorageInterface $shipStorage)
$ /7 ... lines 8 - 58

59 }

$ /7 ... lines 60 - 61

That's the only thing we care about. Well, that and getting to dinner on time.

Over in the Container we can also update the @return statement. It doesn't affect anything
really, but it's a good practice to keep it updated. Back to the browser and refresh! Everything still

works perfectly.

Interfaces are just like abstract classes that don't have any functionality, they only contain abstract
functions. If you try to add a real function inside of an interface you can see that PhpStorm

highlights it with the message:
“Interface method can't have body.”

And it will freak out when we refresh.

What's so Great about an Interface?

The purpose of an interface is to allow you to make your code very generic since you're not
requiring a concrete class just an interface. Why do interfaces exist? Sheesh you ask a lot of
guestions! Well, the answer is that in PHP you can only extend one base class but you can
implement many interfaces. I'm not going to go into detail on ArrayAccess interface which comes
from the core of PHP but this is what it looks like to implement multiple interfaces. Allowing multiple

interfaces makes them a bit more flexible than abstract classes.

Another cool thing about interfaces and abstract classes is that they become directions on what all
ship storage objects must look like. So if someone in the future needed to create a new ship storage
object that loaded things from say XML, all they would need to do is created a class that implements
this interface and boom you're being told exactly what methods that XML ship storage class has to
have.

Interfaces Document what you need to do

This is also our opportunity to add really good documentation on these. We can label this one as an
integer that should return an array of data. You could even go further and say "Returns an array of

ship arrays, with keys id, name, weaponPower, defense.":

lib/Service/ShipStorageInterface.php

$ /7 ... lines 1 - 2

3 interface ShipStorageInterface

A

5 /**

6 * Returns an array of ship arrays, each with the following keys:
T /7 ... lines 7 - 11

12 *

13 * @return array

14 */

15 public function fetchAllShipsbData();

16

17 /**

18 * Returns the single ship array for this id (see fetchAllShipsData)
19 *

20 * @param integer $id

21 * @return array

22 */

23 public function fetchSingleShipData($id);

24 }

Adding as many details as possible here is good, that way if someone implements this interface
later they'll know exactly what to put in their classes.

Interfaces in third-party Libraries

One last note about interfaces, they are a bit more advanced. It's not that they are difficult, but in
your code you may not find many reasons to create these. How often is it that you need to make a
class like ShipLoader and make it so flexible to work with a PDO ship storage or a Json file ship
storage? In most apps you know which one way you are loading data. So it's actually ok to

hardcode the implementation here with a concrete class like PdoShipStorage.

If you're creating a reusable library that you are going to share with the world then you will need a

lot of flexibility and interfaces would be a good thing to use.

You may not create very many interfaces, but there is a very good chance that you will use a lot of
them. For example, you might want to use a third party library in your project and their

documentation will say:

“If you want to create a custom ship storage object, then you will need to implement this

interface that comes with the library."”

So you will create your own custom class, implement the library's interface which then tells you

which methods to fill in.

Understanding interfaces is really important because you will probably be implementing a lot of

them.

Alright, that's it and | hope you find abstract classes, interfaces and inheritance as cool as | do!

See ya next time!

With <3 from SymfonyCasts

