
OOP (course 3): Inheritance,
Abstract Classes, Interfaces and

other amazing things



Chapter 1: Extends

Welcome back for Episode 3 of our Object Oriented Series! We're ready to get serious about

Inheritance. And not just from that rich uncle of yours. I'm talking about extending classes, abstract

classes, interfaces, stuff that really makes object oriented code nice but doesn't always look easy at

first.

Don't worry this will all start to feel really familiar in a suprisingly small amount of time!

I'm already in the project that we've been working on through this series. If you don't have this yet

download the code and use what's in the 'start' directory.

In my terminal I've also started the built in web server with php -S localhost:8000 . Be careful

to do that in the start directory of the project.

Creating a new RebelShip class

So far in our project we have just this one lonely ship object. We query things from the database

and we load this ship. But exciting things are happening and we have a new problem! We want to

model two different types of ships. We have normal ships from the empire and since those are kinda

evil we also now want rebel ships to set them straight!

In the browser you can see we have two rebel ships in here coming from the database.

I would really like rebel ships to fundamentally work differently. For example, they break down less

often and have higher jedi powers. Let me show you what I mean.

Create a new PHP class called RebelShip :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

5

6

Easy! Since rebel ships aren't exactly like boring old Empire ships let's create a new class or

blueprint that models how these work.

class RebelShip

{

}



Head on into bootstrap.php  and require the RebelShip  file there:

bootstrap.php

 // ... lines 1 - 10

11

 // ... lines 12 - 15

We don't have an autoloader  yet so we still have to worry about these require statements.

Rebel ships are different than Empire ones but they do share about 99% of their attributes. For

example, they both have wings, fire power, defense power, etc.

Class Inheritance with extends

My first instinct should be to go into Ship.php  and copy all of the contents and paste that into

RebelShip.php  since most of it will probably apply. But I shouldn't need to remind you that this

would be a silly amount of duplication in our code which would make everyone sad. This is our

chance to let classes help us not be sad by using the extends keyword.

By saying class RebelShip extends Ship  everything that's in the Ship  class is

automatically inside of RebelShip :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

5

6

It's as if all the properties and methods of Ship  are now a part of the RebelShip  blueprint.

In index.php  we can say $rebelShip = new RebelShip('My new rebel ship');  and

we can just add this to the $ships  array:

index.php

 // ... lines 1 - 6

7

8

9

10

 // ... lines 11 - 124

require_once __DIR__.'/lib/Model/RebelShip.php';

class RebelShip extends Ship

{

}

$ships = $shipLoader->getShips();

$rebelShip = new RebelShip('My new rebel ship');

$ships[] = $rebelShip;



Remember, down here we iterate over the ships and call things like getName() ,

getWeaponPower()  and getJediFactor()  which don't actually live inside of RebelShip :

index.php

 // ... lines 1 - 72

73

74

75

76

 // ... lines 77 - 85

86

87

 // ... lines 88 - 124

But when we refresh, it works perfectly!

Lesson number 1: when you have one class that extends another, it inherits (you'll hear that word a

lot) all of the stuff inside that parent class. So we can call methods like getName()  or

getNameAndSpecs()  on RebelShip  because it inherits that from Ship .

Adding new Methods?

Really, RebelShip  works just like a normal class. If you want to, you can add completely new

functions. Let's do that with public function getFavoriteJedi()  that has an array of some

cool Jedis. Then use array_rand  to select one of those:

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

Since this was all done on RebelShip , head over to index.php  and call that method.

var_dump($rebelShip->getFavoriteJedi()  and you can see with my autocomplete it's

showing me all of my public functions on both Ship  and RebelShip :

                    <?php foreach ($ships as $ship): ?>

                        <tr>

                            <td><?php echo $ship->getName(); ?></td>

                            <td><?php echo $ship->getWeaponPower(); ?></td>

                        </tr>

                    <?php endforeach; ?>

class RebelShip extends Ship

{

    public function getFavoriteJedi()

    {

        $coolJedis = array('Yoda', 'Ben Kenobi');

        $key = array_rand($coolJedis);

        return $coolJedis[$key];

    }

}



index.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

 // ... lines 13 - 126

You can even see that the RebelShip  methods are displayed bolder and methods from the parent

class are lighter.

When we refresh, we see our favorite random Jedi, it works perfectly! Extending classes is great for

reusing code without the sad duplication.

$rebelShip = new RebelShip('My new rebel ship');

var_dump($rebelShip->getFavoriteJedi());die;



Chapter 2: Override

Let's take out this dummy code and get to the real stuff. Our database is created via this init_db

script which you can execute from the command line whenever the mood strikes to make sure that

your database is setup correctly. DING!

This creates a table with a team  column. In here we can see that the first two team columns are

team rebel  and the second two are team empire . Since these two ships work differently, inside

of our ShipLoader  where we take that data and turn it into ship objects, I want to create ship

objects for the empire and the rebels.

So let's do that, if ($shipData['team'] == 'rebel')  which is the key inside the database.

Then we'll have $ship = new RebelShip($shipData['name']); . Else, we'll throw in our

normal ship line, which represents the Empire ship:

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 44

45

46

47

48

49

50

51

 // ... lines 52 - 57

58

59

 // ... lines 60 - 76

77

 // ... lines 78 - 79

Ok, this doesn't have anything to do with Object Oriented coding, it's just a nice example of a use

case for multiple classes. We have a database table, and you can create different objects from that

table. This is nice because we'll be able to have these two objects behave differently.

Overriding Class Methods

class ShipLoader

{

    private function createShipFromData(array $shipData)

    {

        if ($shipData['team'] == 'rebel') {

            $ship = new RebelShip($shipData['name']);

        } else {

            $ship = new Ship($shipData['name']);

        }

        return $ship;

    }

}



So far RebelShip  and Ship  have all the same stuff except for the one extra method I have on

RebelShip  that I'm not using.

If we go back and refresh, everything still works perfectly! Now, technically I'm fairly certain that two

of these are RebelShip  objects and two are Ship  objects but we can't really tell right now. Clearly

we need to add identifiers so we know who to cheer on.

To do this, start by adding public function getType()  to our Ship  and return a description,

like 'Empire':

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 134

135

136

137

138

139

Since we added that to Ship , we can call getType  on both Ship  and RebelShip .

Back in index.php  towards the bottom add a new column for this called Type  and

echo $ship->getType(); :

class Ship

{

    public function getType()

    {

        return 'Empire';

    }

}



index.php

 // ... lines 1 - 57

58

 // ... line 59

60

61

 // ... lines 62 - 65

66

 // ... line 67

68

69

70

71

72

 // ... lines 73 - 76

77

 // ... lines 78 - 84

85

86

87

88

 // ... lines 89 - 123

Back to the browser and refresh. Everything has joined to fight for the Empire! Which makes sense.

Both ship classes use this same method.

Time for the next really powerful thing with inheritance. In addition to adding methods to a sub class

like RebelShip  you can override methods. Copy the getType  from Ship  and paste it into

RebelShip  and change what it returns to 'Rebel':

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 12

13

14

15

16

 // ... lines 17 - 21

22

RebelShip  copies the entire blue print of Ship  but it can replace any of those pieces. When we

refresh now, we have two 'Rebel' ships in addition to our two 'Empire' ships. Excellent!

            <table class="table table-hover">

                <thead>

                    <tr>

                        <th>Type</th>

                    </tr>

                </thead>

                <tbody>

                    <?php foreach ($ships as $ship): ?>

                        <tr>

                            <td><?php echo $ship->getType(); ?></td>

                        </tr>

                    <?php endforeach; ?>

                </tbody>

            </table>

class RebelShip extends Ship

{

    public function getType()

    {

        return 'Rebel';

    }

}



Overridden Methods are not Called

A key part of this is that the parent getType  class is never called for all rebel ship objects it is

completely replaced. If I echo 'Parent Function' inside of getType  in the Ship  class and refresh,

we see our ugly text echoing for the Empire ships and not the Rebel ships. This is thanks to our

parent function not being called in RebelShip .

On to more methods, another one on Ship  is isFunctional  which we setup to have a 30%

chance of a ship being broken, which is what our cute cloud here indicates:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 16

17

18

 // ... lines 19 - 20

21

22

23

24

25

26

27

 // ... lines 28 - 138

139

But, we all know that the Rebels are really scrappy and they don't have the luxury of letting their

ships get broken. Even if they are kinda broken they still fly and make it work. Which is just one

more reason why the rebels are awesome.

So I need to set this up so the Rebel ships are never showing as broken which we can do really

easily by overriding isFunctional  inside of RebelShip . Let's update this to return true;

which will never show a rebel ship as broken:

class Ship

{

    public function __construct($name)

    {

        $this->underRepair = mt_rand(1, 100) < 30;

    }

    public function isFunctional()

    {

        return !$this->underRepair;

    }

}



lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 17

18

 // ... line 19

20

21

22

When we refresh now the Rebel ships always have sunshine, and the Empire ships sometimes

have adorable clouds.

By having two classes we are starting to shape the different behaviors and properties of each, while

still keeping most things in common and not duplicated.

class RebelShip extends Ship

{

    public function isFunctional()

        return true;

    }

}



Chapter 3: Protected Visibility

Let's keep making our Rebel ships work a bit differently than the Empire's. In this dropdown you can

see a short summary of each ship that is currently functional. It shows their name, weapon power,

jedi power and strength which all comes from the getNameAndSpecs  function. But I would like a

way to tell which ships in this list align with the rebels, so let's add that word in parenthesis at the

end.

As usual to do that, we'll override this in RebelShip . Copy the getNameAndSpecs  function and

paste it over here. And then just add '(rebel)' at the end:

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Now you may be thinking "guys, that's some serious code duplication...". Well you're absolutely

right, and we'll get to fixing that!

class RebelShip extends Ship

{

    public function getNameAndSpecs($useShortFormat = false)

    {

        if ($useShortFormat) {

            return sprintf(

                '%s: %s/%s/%s (Rebel)',

                $this->name,

                $this->weaponPower,

                $this->jediFactor,

                $this->strength

            );

        } else {

            return sprintf(

                '%s: w:%s, j:%s, s:%s (Rebel)',

                $this->name,

                $this->weaponPower,

                $this->jediFactor,

                $this->strength

            );

        }

    }

}



For now what we've got is pretty straightforward, so let's refresh and... oh, check out our dropdown.

We've got an Undefinded property RebelShip::$name  error.

You can't access private things in sub-classes

Back in PhpStorm, you can see $this->name  is highlighted with an error message of 'Member

has private access'. Interesting. So far, I've told you that since RebelShip  extends Ship  it has

access to everything inside of it like the properties and methods as if they also exist inside of

RebelShip . However, this error really does seem to be saying something different than that.

We can see that in Ship  there is a name property so why isn't this working? The answer has to do

with this word private  in front of $name :

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 138

139

All functions and properties so far are either private  or public . If a function or a property is

private  it means you can only access it from within the ship class:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 16

17

18

19

 // ... lines 20 - 21

22

 // ... lines 23 - 138

139

Like here where we say $this->name . As we can see here, private  functions and properties

can't be accessed inside of subclasses. So only things inside of the Ship  class can access this

private $name;  property.

class Ship

{

    private $name;

}

class Ship

{

    public function __construct($name)

    {

        $this->name = $name;

    }

}



I always recommend that you make things private  until you need to access them from outside of

the class you're working in.

Introducing: protected

Now, there is another designation between private  and public  which is called protected .

Protected  works exactly like private  except that subclasses can access it, so when we change

it here the error goes away:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 138

139

Cool! Let's do a temporary fix for the error we're getting by making all of these things protected :

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

13

 // ... lines 14 - 138

139

Everything in our RebelShip  file looks happy again so let's refresh. Ah ha! Our dropdown is back

in business and showing the rebel designation.

I just mentioned that our fix was 'temporary' because I don't actually want to make these

protected  I really prefer to keep things private  whenever possible. So even though these

properties are private  we have public  functions that access them like getName ,

getStrength , getWeaponPower :

class Ship

{

    protected $name;

}

class Ship

{

    protected $name;

    protected $weaponPower = 0;

    protected $jediFactor = 0;

    protected $strength = 0;

}



lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

13

14

 // ... lines 15 - 33

34

35

36

37

38

 // ... lines 39 - 47

48

49

50

51

52

 // ... lines 53 - 81

82

83

84

85

86

 // ... lines 87 - 89

90

91

92

93

94

 // ... lines 95 - 138

139

Which means that in the subclass we can just use these instead of the properties. Let's go ahead

and just change those in RebelShip . And to save me some effort I'll copy and paste these from

the if to the else:

class Ship

{

    private $name;

    private $weaponPower = 0;

    private $jediFactor = 0;

    private $strength = 0;

    public function getName()

    {

        return $this->name;

    }

    

    public function getStrength()

    {

        return $this->strength;

    }

    public function getWeaponPower()

    {

        return $this->weaponPower;

    }

    public function getJediFactor()

    {

        return $this->jediFactor;

    }

}



lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

I like this, I mean I already have these public  functions so why not use them? It allows me to

keep these properties private  which is looking ahead a little bit, but the more things you have

marked as private  the easier it's going to be to maintain and update your code later.

Back to the browser and refresh, and things still work!

private and protected Methods

Let's temporarily add a new private  function to Ship  called

getSecretDoorCodeToTheDeathstar() . Since only Empire ships should have access to this

you can see why setting it as private  makes sense. And let's return the secret code 'Ra1nb0ws':

class RebelShip extends Ship

{

    public function getNameAndSpecs($useShortFormat = false)

    {

        if ($useShortFormat) {

            return sprintf(

                '%s: %s/%s/%s (Rebel)',

                $this->getName(),

                $this->getWeaponPower(),

                $this->getJediFactor(),

                $this->getStrength()

            );

        } else {

            return sprintf(

                '%s: w:%s, j:%s, s:%s (Rebel)',

                $this->getName(),

                $this->getWeaponPower(),

                $this->getJediFactor(),

                $this->getStrength()

            );

        }

    }

}



lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

8

9

10

11

12

 // ... lines 13 - 139

140

141

142

143

144

Over in RebelShip  I should not be able to access this new function since we set it to private :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

 // ... lines 26 - 43

44

45

We see the 'Member has private access' error so when we refresh we can check the dropdown to

confirm that things aren't working.

Fatal error: Call to private method Ship::getSecretDoorCodeToTheDeathstar()

and we need to view the source to see the full error message.

But, if we go back and change that function to protected , our error is gone, the rebels have

access to the secret door code and life is good:

class Ship

{

    private $name;

    private $weaponPower = 0;

    private $jediFactor = 0;

    private function getSecretDoorCodeToTheDeathstar()

    {

        return 'Ra1nb0ws';

    }

}

class RebelShip extends Ship

{

    public function getNameAndSpecs($useShortFormat = false)

    {

        return $this->getSecretDoorCodeToTheDeathstar();

    }

}



lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 139

140

141

142

143

144

Remove all that nonsense. The moral of the story is this, make things private  at first,

proctected  once you need to access them in a subclass. And finally public  when you need to

use it outside of its class and subclass.

class Ship

{

    protected function getSecretDoorCodeToTheDeathstar()

    {

        return 'Ra1nb0ws';

    }

}



Chapter 4: Calling Parent Class Methods

We covered that when you override a function, you override it entirely. In RebelShip  we're

overriding getNameAndSpecs :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

which means that when this method is called on a RebelShip  object the getNameAndSpecs

inside of the original Ship  class, i.e. the parent class, is never called. In this case that's sort of a

problem because it leaves us with all this code duplication. It would be way better if we could

somehow call the parent method, getNameAndSpecs  inside of Ship , and then just add this

'(rebel)' part to the end.

We saw in the last chapter, that from within RebelShip  you can call methods that exist in the

parent class as long as they are public  or protected . Let's try that here. Add

class RebelShip extends Ship

{

    public function getNameAndSpecs($useShortFormat = false)

    {

        if ($useShortFormat) {

            return sprintf(

                '%s: %s/%s/%s (Rebel)',

                $this->getName(),

                $this->getWeaponPower(),

                $this->getJediFactor(),

                $this->getStrength()

            );

        } else {

            return sprintf(

                '%s: w:%s, j:%s, s:%s (Rebel)',

                $this->getName(),

                $this->getWeaponPower(),

                $this->getJediFactor(),

                $this->getStrength()

            );

        }

    }

}



$val = $this->getNameAndSpecs() . Pass in the $useShortFormatand then

$val .= ('Rebel');  and finally return $val; :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

26

27

28

29

30

Doesn't that look a whole lot nicer? Yes, yes it does.

Let's give our experiment here a try. Refresh! Hmmm something is wrong...

(!) Fatal error: Maximum , let's view the source code since this error is stuck in our select

box. Ah there we go:

(!) Fatal error: Maximum function nesting level of '200' reached, aborting! .

This means that we have a loop in our code, on index line 98 we call getNameAndSpecs  and then

on line 25 of RebelShip  we call getNameAndSpecs  again. This isn't working because when we

call $this->getNameAndSpecs , it's literally calling this same method again inside of RebelShip

not the parent function in Ship .

The parent Keyword

The way you get this to call the parent function is with a special key word called parent:: :

lib/Model/RebelShip.php

 // ... lines 1 - 22

23

24

25

26

27

28

29

 // ... lines 30 - 31

class RebelShip extends Ship

{

    public function getNameAndSpecs($useShortFormat = false)

    {

        $val = $this->getNameAndSpecs($useShortFormat);

        $val .= ' (Jedi)';

        return $val;

    }

}

    public function getNameAndSpecs($useShortFormat = false)

    {

        $val = parent::getNameAndSpecs($useShortFormat);

        $val .= ' (Jedi)';

        return $val;

    }



Let's try this again in our browser, refresh, and checking our dropdown everything is working again.

Except, maybe I could use a space here to make things look nicer. There we go.

Don't worry about this parent  keyword too much it's used in exactly one situation calling: a parent

function that you overrode.

We'll see this ::  syntax again later when we talk about static things.



Chapter 5: Creating an Abstract Ship

There is one more thing that is special about the Rebel Ships. Since, they're the good guys we're

going to give them some extra Jedi power.

Inside of Ship  we have a jediFactor  which is a value that is set from the database and a

getJediFactor()  function:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 10

11

12

 // ... lines 13 - 89

90

91

92

93

 // ... lines 94 - 138

139

In the BattleManager  this is used to figure out if some super awesome Jedi powers are used

during the battle.

For Rebel Ships, the Jedi Powers work differently than Empire ships. They always have at least

some Jedi Power, sometimes there's a lot and sometimes it's lower, depending on what side of the

galaxy they woke up on that day. So, instead of making this a dynamic value that we set in the

datbase let's create a public function getJediFactor()  that returns the rand()  function

with levels between 10 and 30:

class Ship

{

    private $jediFactor = 0;

    public function getJediFactor()

    {

        return $this->jediFactor;

    }

}



lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 30

31

32

33

34

35

Setting it up like this overrides the function in the Ship  parent class.

Back in the browser, when we refresh we can see the Jedi Factor keeps changing on the first two

Rebel ships only.

Fat Classes

Over in PhpStorm, when we look at this function now, Ship  has a Jedi Factor property but

RebelShip  doesn't need that at all. Since RebelShip  is extending Ship  it is still inheriting that

property. While this doesn't hurt anything it is a bit weird to have this extra property on our class that

we aren't using at all. And this is also true for the isFunctional()  method. In RebelShip  it's

always true:

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 17

18

19

20

21

 // ... lines 22 - 34

35

But in Ship  it reads from an underRepair  property, and again that's just not needed in

RebelShip :

class RebelShip extends Ship

{

    public function getJediFactor()

    {

        return rand(10, 30);

    }

}

class RebelShip extends Ship

{

    public function isFunctional()

    {

        return true;

    }

}



lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 14

15

 // ... lines 16 - 23

24

25

26

27

 // ... lines 28 - 138

139

The point being, Ship  comes with extra stuff that we are inheriting but not using in RebelShip .

These classes are like blueprints, so maybe, instead of having RebelShip  extend Ship  and

inherit all these things it won't use, we should have a third class that would hold the properties and

methods that actually overlap between the two called AbstractShip . From here, Ship  and

RebelShip  would both extend AbstractShip  to get access to those common things.

This is a way of changing the class heirachy so that each class has only what it actually needs.

Creating an AbstractShip

Let's start this! Create a new PHP Class called AbstractShip :

lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 138

139

Since it is the most abstract idea of a ship in our project. To start, I'm going to copy everything out of

the Ship  class and paste it into AbstractShip :

class Ship

{

    private $underRepair;

    public function isFunctional()

    {

        return !$this->underRepair;

    }

}

class AbstractShip

{

}



lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 138

139

I know this looks like where we just were, but trust me we're going somewhere with this.

Now, let's write Ship extends AbstractShip :

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

5

And do the same thing in RebelShip  changing it from Ship  to AbstractShip :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

 // ... lines 4 - 36

Then in bootstrap  add our require line for our new class:

class AbstractShip

{

    private $id;

    private $name;

    private $weaponPower = 0;

    public function __construct($name)

    {

        $this->name = $name;

        // randomly put this ship under repair

        $this->underRepair = mt_rand(1, 100) < 30;

    }

    public function isFunctional()

    {

        return !$this->underRepair;

    }

}

class Ship extends AbstractShip

{

}

class RebelShip extends AbstractShip



bootstrap.php

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 16

Perfecto!

After just that change, refresh the browser and see what's happening. Hey nothing is broken, which

makes sense since nothing has really changed in our code's functionality -- yet.

Let's trim down AbstractShip  to only the items that are truly shared between our two ships.

First, jediFactor  is specific to Ship  so let's move it over there:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 21

22

And then we'll update the references to it in AbstractShip  to what the two classes share, which

is a getJediFactor()  function:

require_once __DIR__.'/lib/Model/AbstractShip.php';

require_once __DIR__.'/lib/Model/Ship.php';

require_once __DIR__.'/lib/Model/RebelShip.php';

class Ship extends AbstractShip

{

    private $jediFactor = 0;

}



lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

 // ... lines 71 - 120

121

So let's copy and paste that function into Ship :

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

12

13

 // ... lines 14 - 21

22

RebelShip  already has one so that class is good to go already. Now in AbstractShip  the

getJediFactor()  function will either call the version of the function in Ship  or RebelShip

depending on what is being loaded. There are a few other things I want to share with you about this,

but we'll get to those later.

class AbstractShip

{

    public function getNameAndSpecs($useShortFormat = false)

    {

        if ($useShortFormat) {

            return sprintf(

                '%s: %s/%s/%s',

                $this->name,

                $this->weaponPower,

                $this->getJediFactor(),

                $this->strength

            );

        } else {

            return sprintf(

                '%s: w:%s, j:%s, s:%s',

                $this->name,

                $this->weaponPower,

                $this->getJediFactor(),

                $this->strength

            );

        }

    }

}

class Ship extends AbstractShip

{

    public function getJediFactor()

    {

        return $this->jediFactor;

    }

}



Now let's move setJediFactor()  from AsbtractShip  into Ship :

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 17

18

19

20

21

22

and that should do it! Now, Ship  still has all the functionality that it had before, it extends

AbstractShip , and only contains its unique code. And RebelShip  no longer inherits the

jediFactor  property and anything that works with it. Now each file is simpler, and only has the

code that it actually needs. Back to the browser to test that everything still works. Oh look an error!

“Call to undefined method RebelShip::setJediFactor() on ShipLoader line 55.”

Let's check that out.

Ah, it's because down here when we create a ship object from the database, we always call

setJediFactor()  on it, and that doesn't make sense anymore. So we'll move this up and only

call it for the Ship  class:

class Ship extends AbstractShip

{

    public function setJediFactor($jediFactor)

    {

        $this->jediFactor = $jediFactor;

    }

}



lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

 // ... lines 60 - 76

77

 // ... lines 78 - 79

Refresh again, no error, perfect!

Back to AbstractShip , we have the underRepair  property which is only used by Ship , so

let's move that over:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 32

33

34

35

36

37

And, let's also move over the isFunctional()  method from AbstractShip  as well, since

RebelShip  has its own isFunctional()  method already. Finally, the last place that this is used

is in the construct function. The random number for under repair is set here, so just remove that one

piece but leave the $this->name = $name;  where it is since it is shared by both types of ships.

In the Ship  class we'll override the construct function, I'll keep the same argument. Using our trick

class ShipLoader

{

    private function createShipFromData(array $shipData)

    {

        if ($shipData['team'] == 'rebel') {

            $ship = new RebelShip($shipData['name']);

        } else {

            $ship = new Ship($shipData['name']);

            $ship->setJediFactor($shipData['jedi_factor']);

        }

        $ship->setId($shipData['id']);

        $ship->setWeaponPower($shipData['weapon_power']);

        $ship->setStrength($shipData['strength']);

        return $ship;

    }

}

class Ship extends AbstractShip

{

    private $underRepair;

    public function isFunctional()

    {

        return !$this->underRepair;

    }

}



from earlier I'll call the parent::__construct($name);  and then paste in the under repair

calculation line:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 8

9

10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 36

37

The last thing that's extra right now in the AbstractShip  class is the getType()  method. Both

ships need a getType()  function, but this one here is specific to the Ship  class so we'll cut and

paste that over:

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 37

38

39

40

41

42

Back to the browser and refresh, everything looks great. The Rebel Ships aren't breaking and Jedi

Factors are random, awesome!

This is the same functionality we had a second ago but the RebelShip  class is a lot simpler. It only

inherits what it actually uses from AbstractShip . Which means that our new class truly is the

blueprint for the things that are shared by all the ship classes. Ship  extends AbstractShip  as

does RebelShip  and then each add their own specific code.

While this isn't a new concept, it is a new way of thinking of how to organize your "class hierarchy".

class Ship extends AbstractShip

{

    public function __construct($name)

    {

        parent::__construct($name);

        $this->underRepair = mt_rand(1, 100) < 30;

    }

}

class Ship extends AbstractShip

{

    public function getType()

    {

        return 'Empire';

    }

}



Chapter 6: Abstract Classes

Since everything seems to be working on our site, let's start a battle! Four Jedi Starfighters against

three Super Star Destroyers. Engage.

Ahh an error!

“Argument 1 passed to BattleManager::battle() must be an instance of Ship, instance of

RebelShip given”

And this is apparently happening on battle  line 32:

battle.php

 // ... lines 1 - 33

34

 // ... lines 35 - 109

And BattleManager  line 10:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 56

57

 // ... lines 58 - 64

65

Back to our IDE and open up battle.php .

Trouble With Type Hints

Down on line 32, what we see is that $ship1  is actually a RebelShip  object, which makes sense

since one of the ships I selected was a Rebel. But it expected that to be a normal Ship  class. Over

$battleResult = $battleManager->battle($ship1, $ship1Quantity, $ship2, 

$ship2Quantity);

class BattleManager

{

    public function battle(Ship $ship1, $ship1Quantity, Ship $ship2, 

$ship2Quantity)

    {

    }

}



in BattleManager  look at the battle function to see the problem! We type hinted our arguments

with the Ship  class:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 56

57

 // ... lines 58 - 64

65

Which tells PHP to only allow Ship  classes or subclasses to be passed here.

The issue is that RebelShip  is no longer a subclass of Ship  and so now we have this error. The

good news, the fix is simple! We don't care if we get a ship object in battle anymore. What we

actually care about is that we get an AbstractShip  object or any of its subclasses which we know

includes Ship  and RebelShip :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 56

57

 // ... lines 58 - 64

65

Refresh and give this another try, we get the exact same error. Let's see we're being notified about

something in BattleManager  on line 58. Scroll down and look there:

class BattleManager

{

    public function battle(Ship $ship1, $ship1Quantity, Ship $ship2, 

$ship2Quantity)

    {

    }

}

class BattleManager

{

    public function battle(AbstractShip $ship1, $ship1Quantity, AbstractShip 

$ship2, $ship2Quantity)

    {

    }

}



lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 58

59

60

 // ... lines 61 - 63

64

65

Ah yes, it's this type hinting right here. This function is called up here, and we pass it the ship object,

so let's update this one to be expecting an AbstractShip :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 58

59

60

 // ... lines 61 - 63

64

65

Let's try this again! Cool, one more error! This one is having issues with

BattleResult::__construct() . In our IDE we can see that when we instantiate the

BattleResult  object we pass it the $winningShip  and the $losingShip :

lib/Service/BattleManager.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 55

56

57

 // ... lines 58 - 66

Over in BattleResult  we see that these are also typehinted with Ship . Update those two:

class BattleManager

{

    private function didJediDestroyShipUsingTheForce(Ship $ship)

    {

    }

}

class BattleManager

{

    private function didJediDestroyShipUsingTheForce(AbstractShip $ship)

    {

    }

}

    public function battle(AbstractShip $ship1, $ship1Quantity, AbstractShip 

$ship2, $ship2Quantity)

    {

        return new BattleResult($usedJediPowers, $winningShip, $losingShip);

    }



lib/Model/BattleResult.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 13

14

15

 // ... lines 16 - 18

19

 // ... lines 20 - 53

54

This is nice, our code is a lot more flexible now. Before, it had to be a Ship  instance. Now we don't

care what class you have as long as it extends AbstractShip .

Refresh again! Awesome, battling is back on.

What Methods are really on AbstractShip?

Now we have a few minor, but interesting, problems. First, in AbstractShip  head down to

getNameAndSpecs()  and we see that getJediFactor()  is highlighted with an error that says

"Method getJediFactor()  not found in class AbstractShip". Now, this is working because we do

have a getJediFactor()  method in Ship  and RebelShip . When we call

getNameAndSpecs()  it's able to call getJediFactor() . But this should look a little fishy to you.

There is no getJediFactor()  function inside of AbstractShip , so just looking at this class

you should feel suspicious and question whether or not this works.

Here's what's going on, we have an implied rule that says, "Yo, every class that extends

AbstractShip  must have a getJediFactor()  function." If it doesn't everything is going to

break when we call this function with a 'method not found' error. We aren't enforcing this rule. So we

could easily create a new ship class, extend AbstractShip , and forget to add a

getJediFactor()  function. Our application would break and no battles would be happening. Sad

times.

Abstract Functions to the Rescue

You're in luck, there's a feature called Abstract Classes that can handle this issue for us. I'll scroll

up, but really the position of this doesn't matter. Add a new

abstract public function getJediFactor(); :

class BattleResult

{

    public function __construct($usedJediPowers, AbstractShip $winningShip = 

null, AbstractShip $losingShip = null)

    {

    }

}



lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 15

16

 // ... lines 17 - 111

112

You may notice there are two different things about this. One is the word abstract  before

public function  and the other is that I just have a semicolon on the end, I didn't actually make

a function. The best part, this line doesn't add any functionality to our app, but it does force any

class that extends this to have this method.

For example, if RebelShip  didn't have this getJediFactor()  method, then when we refresh

the browser we'll get a huge error that says: "Hey! RebelShip must have a getJediFactor function!".

This is because it has been defined as an abstract function inside of the parent class.

Up until now we could have instantiated an abstract ship directly with new AbstractShip()  we

didn't actually want to but it was possible. But, once you have an abstract function in here, that is no

longer an option, it's only purpose then becomes to be a blueprint for other classes to extend.

Marking a Class as Abstract

Up here at the top of the file you can see that there is an error highlight with a message that says

"Class must be declared abstract or implement method getJediFactor() ". Once your class has

an abstract function you need to add the abstract  keyword in front of it, which enforces the rule

that you can't say new AbstractShip() :

lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

 // ... lines 4 - 113

Now when we scroll down, we can see that getJediFactor()  isn't highlighted anymore since we

know that inside AbstractShip  any subclasses will be forced to have that. Back to the browser

and refresh! Everything still works just fine.

Related to this, there is one more little thing we need to fix up. Start in ShipLoader , notice that our

getShips()  and findOneById()  functions still have PHPDoc above them that say they return a

abstract class AbstractShip

{

    abstract public function getJediFactor();

}

abstract class AbstractShip



ship object. That's not the biggest deal, but it would be more accurate if it said AbstractShip  -

because this actually returns a mixture of RebelShip  and Ship  objects:

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 11

12

13

14

15

16

 // ... lines 17 - 25

26

27

28

29

30

31

32

33

 // ... lines 34 - 42

43

 // ... lines 44 - 76

77

 // ... lines 78 - 79

Now check this out, inside of index.php , remember this $ships  variable we get by calling that

getShips()  function?

index.php

 // ... lines 1 - 6

7

 // ... lines 8 - 123

So that returns an array of AbstractShip  objects. When we loop over it, the isFunctional()

and the getType()  functions aren't found:

class ShipLoader

{

    /**

     * @return AbstractShip[]

     */

    public function getShips()

    {

    }

    /**

     * @param $id

     * @return AbstractShip

     */

    public function findOneById($id)

    {

    }

}

$ships = $shipLoader->getShips();



index.php

 // ... lines 1 - 70

71

 // ... lines 72 - 74

75

 // ... line 76

77

 // ... lines 78 - 85

86

 // ... lines 87 - 123

The message here says "Method getType()  not found in class AbstractShip ". This is just like

the getJediFactor()  problem we just fixed. We don't have a getType()  function inside of

here. Both of our subclasses do, which is why our app still works, but technically we're not enforcing

that. Any new subclasses to AbstractShip  could easily end up missing these functions which

would again stop all the battles.

What we need is another abstract public function for getType()  and isFunctional() :

lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 20

21

22

 // ... lines 23 - 25

26

 // ... lines 27 - 121

122

This doesn't change anything in our application, it just forces our subclasses to have those

methods. And now index.php  is really happy again!

That's the power of abstract classes, you can have a whole bunch of shared logic in there, but if

there are a couple of pieces that you can't fill in in your abstract class because they are specific to

your subclasses, no problem! Just put them in there as abstract functions and your subclasses will

be forced to have those.

In my example these are abstract public functions but you could also have abstract protected

functions as well. Which one you use just depends on your use case. It's a very powerful feature of

object oriented code.

                    <?php foreach ($ships as $ship): ?>

                            <td><?php echo $ship->getJediFactor(); ?></td>

                            <td><?php echo $ship->getType(); ?></td>

                    <?php endforeach; ?>

abstract class AbstractShip

{

    abstract public function getType();

    abstract public function isFunctional();

}



Chapter 7: Broken Ship

Here's the really beautiful thing about abstract classes. You may create some of these because you

have a situation similar to the one we've been working on in this project. Or, you may be using

someone else's code like a third party library that you downloaded via the Composer package

manager. You might even read in that library's documentation that if you want to create a new ship

class you just need to extend AbstractShip .

What's really great is that AbstractShip  now tells you exactly what you need to do to create a

new ship class with its three abstract functions that you must fill in:

lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 15

16

 // ... lines 17 - 20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 121

122

A third group has joined the battle and we have a new type of ship. They're not very good

mechanics, so we'll call this a broken ship. This is simple, the ship is always broken.

Create a new php class called BrokenShip . Of course now make it extend AbstractShip :

lib/Model/BrokenShip.php

 // ... lines 1 - 2

3

4

5

6

Let's pretend like we don't know that there are any abstract methods in the parent class. So we

won't do anything here except putting in the extends code. Head over to bootstrap.php  and

require our useless new BrokenShip :

abstract class AbstractShip

{

    abstract public function getJediFactor();

    abstract public function getType();

    abstract public function isFunctional();

}

class BrokenShip extends AbstractShip

{

}



bootstrap.php

 // ... lines 1 - 12

13

 // ... lines 14 - 17

Back in index.php  for now, let's just add $brokenShip = new BrokenShip();  and add it to

our ships array:

index.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 126

We can do this because we know that BrokenShip  extends AbstractShip . And down here,

when we use those ship objects we're just calling methods on the AbstractShip .

Back to the browser, refresh! Yes, what a huge beautiful error. It says:

“Class BrokenShip contains 3 abstract methods and must therefore be declared abstract or

implement the remaining methods.”

And then it goes on and lists the methods.

In other words, it's saying "Hey buddy! You need to add those three methods into this class!" It's

always giving you an out to declare the class abstract if you want to, and you might do this if you

wanted an abstract class inside an abstract class with some additional public functions. But we've

all seen where that goes in the move inception.

In our case we want this to be a concrete class, meaning one that we can instantiate. When we go

over to AbstractShip  we say "Oh yea, I see there's a getJediFactor  function that I need to

add." Take off the abstract to turn it into a real function, and since this ship is always broken we don't

care about the Jedi factor so let's just return 0:

lib/Model/BrokenShip.php

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 18

19

require_once __DIR__.'/lib/Model/BrokenShip.php';

$brokenShip = new BrokenShip('Just a hunk of metal');

$ships[] = $brokenShip;

class BrokenShip extends AbstractShip

{

    public function getJediFactor()

    {

        return 0;

    }

}



When we refresh after that we get the same error, but we're down to just 2 missing abstract

methods, getType  and isFunctional .

Head back into AbstractShip  and grab those, pop off the abstract word at the beginning after we

paste them into BrokenShip . And we'll fill in the details of getType  by returning 'Broken'. And

we'll fill in isFunctional  by returning false:

lib/Model/BrokenShip.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

12

13

14

15

16

17

18

19

Without really knowing anything I extended AbstractShip  and that class told me exactly what I

needed to have in my subclasses.

And when we refresh, we have one more error! We're missing argument 1 to

AbstractShip::__construct . That's my bad. In index.php  here BrokenShip  still has a

constructor argument which is the name so let's not forget to fill that in with "I am so broken":

index.php

 // ... lines 1 - 8

9

 // ... lines 10 - 126

Refresh again, and things look great! We've got our four original ships and our new broken one.

Which is always broken with its little cute cloud.

We didn't have to update any of our other code because BrokenShip  extends AbstractShip

and has all the same methods as everything else which leaves everything working just as beautifully

as before. Blueprint classes for the win!

class BrokenShip extends AbstractShip

{

    public function getType()

    {

        return 'Broken';

    }

    public function isFunctional()

    {

        return false;

    }

}

$brokenShip = new BrokenShip('Just a hunk of metal');



Chapter 8: Abstracting a Class into 2 Smaller Pieces

To get our ships we use ShipLoader  which queries the database and creates ship objects. This

queryForShips()  goes out, selects all the ships, and then later it is passed to this nice

createShipFromData()  function down here:

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 14

15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 58

59

 // ... lines 60 - 61

This is the one we've been working in that creates the objects.

Step 1: Query the database

Step 2: Turn that data into objects

Suppose that we have a new requirement, sometimes we're going to get the ship data from the

database but other times it will come from a different source, like a JSON file.

In the resources directory there's a new ship.json  file, as you can see this holds the same info

as we have in the database:

class ShipLoader

{

    public function getShips()

    {

        $ships = array();

        $shipsData = $this->queryForShips();

        foreach ($shipsData as $shipData) {

            $ships[] = $this->createShipFromData($shipData);

        }

        return $ships;

    }

}



resources/ships.json

 // ... line 1

2

3

4

5

6

7

8

9

10

 // ... lines 11 - 26

27

28

29

30

31

32

33

34

35

Now why would we want our application to sometimes load from the database and other times from

a JSON file? Say that when we're developing locally we don't have access to our database, so we

use a JSON file. But when we push to production we'll switch back to the real database. Or,

suppose that our ship library is so awesome that someone else wants to reuse it. However, this fan

doesn't use a database, they only load them from JSON.

This leaves us needing to make our ShipLoader  more generic.

Right now, all of the logic of querying things from the database is hardcoded in here. So let's create

a new class whose only job is to load ship data through the database, or PDO.

Create a new class called PdoShipStorage :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 31

32

Looking back inside ShipLoader  there are two types of queries that we make:

[

    {

        "id": "1",

        "name": "Jedi Starfighter",

        "weapon_power": "5",

        "jedi_factor": "15",

        "strength": "30",

        "team": "rebel"

    },

    {

        "id": "4",

        "name": "RZ-1 A-wing interceptor",

        "weapon_power": "4",

        "jedi_factor": "4",

        "strength": "50",

        "team": "empire"

    }

]

class PdoShipStorage

{

}



lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 31

32

33

34

 // ... lines 35 - 42

43

44

 // ... lines 45 - 68

69

70

71

 // ... lines 72 - 75

76

77

 // ... lines 78 - 79

Sometimes we query for all of the ships and sometimes we query for just one ship by ID.

Back to our PdoShipStorage  I'll create two methods, to cover both of those actions. First, create

a public function fetchAllShipsData()  which we'll fill out in just one second. Now, add

public function fetchSingleShipData()  and pass it the id that we want to query for:

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 11

12

13

 // ... lines 14 - 17

18

19

20

21

 // ... lines 22 - 30

31

32

Before we go any further head back to our bootstrap.php  file and make sure that we require

this:

class ShipLoader

{

    public function findOneById($id)

    {

        $statement = $this->getPDO()->prepare('SELECT * FROM ship WHERE id = 

:id');

    }

    private function queryForShips()

    {

        $statement = $this->getPDO()->prepare('SELECT * FROM ship');

    }

}

class PdoShipStorage

{

    public function fetchAllShipsData()

    {

    }

    public function fetchSingleShipData($id)

    {

    }

}



bootstrap.php

 // ... lines 1 - 14

15

 // ... lines 16 - 19

Perfect!

What I want to do is move all the querying logic from ShipLoader  into this PdoShipStorage

class. Let's start with the logic that queries for one ship and pasting that over here:

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

Notice, that we're not returning an object here this is just a really dumb class that returns data, an

array in our case.

There is one problem, we have a getPdo()  function inside of ShipLoader  that references a pdo

property. Point being, our PDO storage needs access to the PDO object, so we're going to use

dependency injection, a topic we covered a lot in episode 2 . Add

public function __construct(PDO $pdo)  and store it as a property with

$this->pdo = $pdo; :

require_once __DIR__.'/lib/Service/PdoShipStorage.php';

class PdoShipStorage

{

    public function fetchSingleShipData($id)

    {

        $statement = $this->pdo->prepare('SELECT * FROM ship WHERE id = 

:id');

        $statement->execute(array('id' => $id));

        $shipArray = $statement->fetch(PDO::FETCH_ASSOC);

        if (!$shipArray) {

            return null;

        }

        return $shipArray;

    }

}

https://knpuniversity.com/screencast/oo-ep2


lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 31

32

If this pattern is new to you just head back and watch the dependency injection video in episode 2 of

the OO series.

Here we're saying, whomever creates our PDO ship storage class must pass in the pdo object. This

is cool because we need it. Now I can just reference the property there directly.

Back in ShipLoader  copy the entire queryForShips()  and paste that into

fetchAllShipsData()  and once again reference the pdo property:

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 11

12

13

14

15

16

17

18

 // ... lines 19 - 31

32

Now we have a class whose only job is to query for ship stuff, we're not using it anywhere yet, but

it's fully ready to go. So let's use this inside of ShipLoader  instead of the PDO object. Since we

don't need PDO to be passed anymore swap that out for a PdoShipStorage  object. Let's update

that in a few other places and change the property to be called shipStorage :

class PdoShipStorage

{

    private $pdo;

    public function __construct(PDO $pdo)

    {

        $this->pdo = $pdo;

    }

}

class PdoShipStorage

{

    public function fetchAllShipsData()

    {

        $statement = $this->pdo->prepare('SELECT * FROM ship');

        $statement->execute();

        return $statement->fetchAll(PDO::FETCH_ASSOC);

    }

}

https://knpuniversity.com/screencast/oo-ep2


lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 58

59

 // ... lines 60 - 61

Cool!

Down in getShips()  we used to call $this->queryForShips();  but we don't need to do that

anymore! Instead, say $this->shipStorage->fetchAllShipsData(); :

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 54

55

56

57

58

59

 // ... lines 60 - 61

Perfect, now scroll down and get rid of the queryForShips()  function all together: we're not

using that anymore. And while we're cleaning things out also delete this getPDO()  function. We

can delete this because up here where we reference it in findOneById()  we'll do the same thing.

Remove all the pdo querying logic, and instead say

shipArray = $this->shipStorage->fetchSingleShipData();  and pass it the ID:

class ShipLoader

{

    private $shipStorage;

    public function __construct(PdoShipStorage $shipStorage)

    {

        $this->shipStorage = $shipStorage;

    }

}

class ShipLoader

{

    private function queryForShips()

    {

        return $this->shipStorage->fetchAllShipsData();

    }

}



lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 31

32

33

34

 // ... lines 35 - 36

37

 // ... lines 38 - 58

59

 // ... lines 60 - 61

This class now has no query logic anywhere.

All we know is that we're passed in some PdoShipStorage  object and we're able to call methods

on it. It can make the queries and talk to whatever database it wants to, that's it's responsibility. In

here we're just calling methods instead of actually querying for things.

ShipLoader  and PdoShipStorage  are now fully setup and functional. The last step is going into

our container which is responsible for creating all of our objects to make a couple of changes. For

example, when we have new ShipLoader  we don't want to pass a pdo object anymore we want

to pass in PdoShipStorage .

Just like before, create a new function called getShipStorage()  and make sure we have our

property up above. The getShipStorage()  method is going to do exactly what you expect it to

do. Instantiate a new PdoShipStorage  and return it. The ship's storage class does need PDO as

its first constructor argument which we do with new PdoShipStorage($this->getPDO()); :

class ShipLoader

{

    public function findOneById($id)

    {

        $shipArray = $this->shipStorage->fetchSingleShipData($id);

    }

}



lib/Service/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 12

13

14

 // ... lines 15 - 49

50

51

52

53

54

55

56

57

 // ... lines 58 - 69

70

Up in getShipLoader() , now pass $this->getShipStorage() :

lib/Service/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 40

41

42

43

44

45

 // ... lines 46 - 47

48

 // ... lines 49 - 69

70

Everything used to be in ShipLoader , including the query logic. We've now split things up so that

the query logic is in PdoShipStorage  and in ShipLoader  you're just calling methods on the

shipStorage . Its real job is to create the objects from the data, wherever that data came from. In

Container.php  we've wired all this stuff up.

Phew, that was a lot of coding we just did, but when we go to the browser and refresh, everything

still works exactly the same as before. That was a lot of internal refactoring. In index.php  as

always we still have $shipLoader->getShips() :

class Container

{

    private $shipStorage;

    public function getShipStorage()

    {

        if ($this->shipStorage === null) {

            $this->shipStorage = new PdoShipStorage($this->getPDO());

        }

        return $this->shipStorage;

    }

}

class Container

{

    public function getShipLoader()

    {

        if ($this->shipLoader === null) {

            $this->shipLoader = new ShipLoader($this->getShipStorage());

        }

    }

}



index.php

 // ... lines 1 - 6

7

 // ... lines 8 - 126

And that function still works as it did before, but the logic is now separated into two pieces.

The cool thing about this is that our classes are now more focused and broken into smaller pieces.

Initially we didn't need to do this, but once we had the new requirement of needing to load ships

from a JSON file this refactoring became necessary. Now let's see how to actually load things from

JSON instead of PDO.

$ships = $shipLoader->getShips();



Chapter 9: AbstractShipStorage

Our goal is to make ShipLoader  load things from the database or from a JSON file. In the

resources directory I've already created a JsonFileShipStorage  class.

Copy that into the service directory and let's take a look inside of here:

lib/Service/JsonFileShipStorage.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

It has all of the same methods as PdoShipStorage . Except that this loads from a JSON file

instead of querying from a database. Let's try and use this in our project.

First, head over to bootstrap  of course and require JsonFileShipStorage.php :

class JsonFileShipStorage

{

    private $filename;

    public function __construct($jsonFilePath)

    {

        $this->filename = $jsonFilePath;

    }

    public function fetchAllShipsData()

    {

        $jsonContents = file_get_contents($this->filename);

        return json_decode($jsonContents, true);

    }

    public function fetchSingleShipData($id)

    {

        $ships = $this->fetchAllShipsData();

        foreach ($ships as $ship) {

            if ($ship['id'] == $id) {

                return $ship;

            }

        }

        return null;

    }

}



bootstrap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 19

In theory since this class has all the same methods as PdoShipStorage  we should be able to

pass a JsonFileShipStorage  object into ShipLoader  and everything should just work. Really,

the only thing ShipLoader  should care about is that it's passed an object that has the two

methods it's calling: fetchAllShipsData()  and fetchSingleShipData() :

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 31

32

33

34

 // ... lines 35 - 36

37

 // ... lines 38 - 54

55

56

57

58

59

 // ... lines 60 - 61

In Container  let's give this a try. Down in getShipStorage()  let's say,

$this->shipStorage = new JsonFileShipStorage() . And we'll give it a path to our JSON

of __DIR__.'/../../resources/ships.json' :

require_once __DIR__.'/lib/Service/JsonFileShipStorage.php';

class ShipLoader

{

    public function findOneById($id)

    {

        $shipArray = $this->shipStorage->fetchSingleShipData($id);

    }

    private function queryForShips()

    {

        return $this->shipStorage->fetchAllShipsData();

    }

}



lib/Service/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 49

50

51

52

53

54

55

 // ... lines 56 - 57

58

 // ... lines 59 - 70

71

From this directory I'm going up a couple of levels, into resources  and pointing at this

ships.json  file which holds all of our ship info:

resources/ships.json

 // ... line 1

2

3

4

5

6

7

8

9

10

 // ... lines 11 - 26

27

28

29

30

31

32

33

34

35

Back to the browser and refresh. Ok no success yet, but as they say, try try again. Before we do

that, let's check out this error:

“Argument 1 passed to ShipLoader::__construct()  must be an instance of

PdoShipStorage , instance of JsonFileShipStorage  given.”

class Container

{

    public function getShipStorage()

    {

        if ($this->shipStorage === null) {

            //$this->shipStorage = new PdoShipStorage($this->getPDO());

            $this->shipStorage = new 

JsonFileShipStorage(__DIR__.'/../../resources/ships.json');

        }

    }

}

[

    {

        "id": "1",

        "name": "Jedi Starfighter",

        "weapon_power": "5",

        "jedi_factor": "15",

        "strength": "30",

        "team": "rebel"

    },

    {

        "id": "4",

        "name": "RZ-1 A-wing interceptor",

        "weapon_power": "4",

        "jedi_factor": "4",

        "strength": "50",

        "team": "empire"

    }

]



What's happening here is that in ShipLoader  we have this type-hint which says that we only

accept PdoShipStorage  and our Json file is not an instance of that:

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

8

 // ... line 9

10

 // ... lines 11 - 58

59

 // ... lines 60 - 61

The easiest way to fix this is to say extends PdoShipStorage  in JsonFileShipStorage :

lib/Service/JsonFileShipStorage.php

 // ... lines 1 - 2

3

 // ... lines 4 - 32

This makes the json file an instance of PdoShipStorage . Try refreshing that again. Perfect, our

site is working.

But having to put that extends in our JSON file kinda sucks, when we do this we're overriding every

single method and getting some extra stuff that we aren't going to use.

Creating a "Ship storage" contract

Instead, you should be thinking, "This is a good spot for Abstract Ship Storage!" And well, I agree so

let's create that. Inside the Service  directory add a new PHP Class called

AbstractShipStorage . The two methods that this is going to need to have are:

fetchSingleShipData()  and fetchAllShipsData()  so I'll copy both of those and paste

them over to our new class.

Of course we don't have any body in these methods, so remove that. Now, set this as an

abstract  class. Make both of the functions abstract  as well:

class ShipLoader

{

    public function __construct(PdoShipStorage $shipStorage)

    {

    }

}

class JsonFileShipStorage extends PdoShipStorage



lib/Service/AbstractShipStorage.php

 // ... lines 1 - 2

3

4

5

6

7

8

Cool!

Now, JsonFileShipStorage  can extend AbstractShipStorage :

lib/Service/JsonFileShipStorage.php

 // ... lines 1 - 2

3

 // ... lines 4 - 32

And the same thing for PdoShipStorage :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

 // ... lines 4 - 33

With this setup we know that if we have a AbstractShipStorage  it will definitely have both of

those methods so we can go into the ShipLoader  and change this type hint to

AbstractShipStorage  because we don't care which of the two storage classes are actually

passed:

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 58

59

 // ... lines 60 - 61

To be very well behaved developers, we'll go into our Container  and above

getShipStorage()  change the type hint to AbstractShipStorage . Not a requirement, but it

is a good idea.

abstract class AbstractShipStorage

{

    abstract public function fetchAllShipsData();

    abstract public function fetchSingleShipData($id);

}

class JsonFileShipStorage extends AbstractShipStorage

class PdoShipStorage extends AbstractShipStorage

class ShipLoader

{

    public function __construct(AbstractShipStorage $shipStorage)

}



Go back to the browser and refresh... oh, class AbstractShipStorage  not found because we

forgot to require it in our bootstrap  file. We will eventually fix the need to have all of these require

statements:

bootstrap.php

 // ... lines 1 - 14

15

 // ... lines 16 - 20

Refresh again and now it works perfectly.

We created an AbstractShipStorage  because it allows us to make our ShipLoader  more

generic. It now doesn't care which one is passed, as long as it extends AbstractShipStorage .

But there's an even better way to handle this... interfaces!

require_once __DIR__.'/lib/Service/AbstractShipStorage.php';



Chapter 10: Interfaces

Notice, AbstractShipStorage  unlike AbstractShip , doesn't actually have any logic in it:

lib/Service/AbstractShipStorage.php

 // ... lines 1 - 2

3

4

5

6

7

8

All it does is have a contract that guarantees anything that extends this has these two functions. It

turns out that when you have an abstract class like this that only contains abstract functions and no

real code, well it's the perfect opportunity to use an Interface.

An interface works just like an abstract class and here's how it looks. To start, we need to rename

our class to ShipStorageInterface  since this more closely matches what it is. And instead of

abstract class  it's now labeled as an interface :

lib/Service/ShipStorageInterface.php

 // ... lines 1 - 2

3

 // ... lines 4 - 9

Get it?

As soon as you do that you no longer need abstract  in front of all the functions, but these work

the same:

lib/Service/ShipStorageInterface.php

 // ... lines 1 - 2

3

4

5

6

7

8

abstract class AbstractShipStorage

{

    abstract public function fetchAllShipsData();

    abstract public function fetchSingleShipData($id);

}

interface ShipStorageInterface

interface ShipStorageInterface

{

    public function fetchAllShipsData();

    public function fetchSingleShipData($id);

}



On the AbstractShipStorage  file in the tree, go to "Refactor" and click to "Rename" our file to

ShipStorageInterface . I really like the consistency. And of course update our require line for

this file in bootstrap.php :

bootstrap.php

 // ... lines 1 - 14

15

 // ... lines 16 - 20

Implement an Interface

Stepping back and looking at ShipStorageInterface . I want you to think of this as acting just

like an abstract class with two functions that need to be filled in. An important difference is that you

don't extend interfaces. Instead, we'll use a new keyword called implements  and our updated

class name ShipStorageInterface :

lib/Service/JsonFileShipStorage.php

 // ... lines 1 - 2

3

 // ... lines 4 - 32

This new line says that the JsonFileShipStorage  must include the functions inside of

ShipStorageInterface .

If I deleted fetchAllShipsData()  you can see that immediately PhpStorm is telling me:

“Hey buddy, you need to implement fetchAllShipsData() .”

So I'll comply and undelete that.

Update PdoShipStorage  to implement ShipStorageInterface :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

 // ... lines 4 - 33

Time to head over to ShipLoader  and change the AbstractShipStorage  type hint to

ShipStorageInterface  which is our way of saying that we don't care what class is passed here

as long as it has the two methods that are in ShipStorageInterface :

require_once __DIR__.'/lib/Service/ShipStorageInterface.php';

class JsonFileShipStorage implements ShipStorageInterface

class PdoShipStorageInterface implements ShipStorageInterface



lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 6

7

 // ... lines 8 - 58

59

 // ... lines 60 - 61

That's the only thing we care about. Well, that and getting to dinner on time.

Over in the Container  we can also update the @return  statement. It doesn't affect anything

really, but it's a good practice to keep it updated. Back to the browser and refresh! Everything still

works perfectly.

Interfaces are just like abstract classes that don't have any functionality, they only contain abstract

functions. If you try to add a real function inside of an interface you can see that PhpStorm

highlights it with the message:

“Interface method can't have body.”

And it will freak out when we refresh.

What's so Great about an Interface?

The purpose of an interface is to allow you to make your code very generic since you're not

requiring a concrete class just an interface. Why do interfaces exist? Sheesh you ask a lot of

questions! Well, the answer is that in PHP you can only extend one base class but you can

implement many interfaces. I'm not going to go into detail on ArrayAccess  interface which comes

from the core of PHP but this is what it looks like to implement multiple interfaces. Allowing multiple

interfaces makes them a bit more flexible than abstract classes.

Another cool thing about interfaces and abstract classes is that they become directions on what all

ship storage objects must look like. So if someone in the future needed to create a new ship storage

object that loaded things from say XML, all they would need to do is created a class that implements

this interface and boom you're being told exactly what methods that XML ship storage class has to

have.

Interfaces Document what you need to do

class ShipLoader

{

    public function __construct(ShipStorageInterface $shipStorage)

}



This is also our opportunity to add really good documentation on these. We can label this one as an

integer that should return an array of data. You could even go further and say "Returns an array of

ship arrays, with keys id, name, weaponPower, defense.":

lib/Service/ShipStorageInterface.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

Adding as many details as possible here is good, that way if someone implements this interface

later they'll know exactly what to put in their classes.

Interfaces in third-party Libraries

One last note about interfaces, they are a bit more advanced. It's not that they are difficult, but in

your code you may not find many reasons to create these. How often is it that you need to make a

class like ShipLoader  and make it so flexible to work with a PDO ship storage or a Json file ship

storage? In most apps you know which one way you are loading data. So it's actually ok to

hardcode the implementation here with a concrete class like PdoShipStorage .

If you're creating a reusable library that you are going to share with the world then you will need a

lot of flexibility and interfaces would be a good thing to use.

You may not create very many interfaces, but there is a very good chance that you will use a lot of

them. For example, you might want to use a third party library in your project and their

documentation will say:

interface ShipStorageInterface

{

    /**

     * Returns an array of ship arrays, each with the following keys:

     *

     * @return array

     */

    public function fetchAllShipsData();

    /**

     * Returns the single ship array for this id (see fetchAllShipsData)

     *

     * @param integer $id

     * @return array

     */

    public function fetchSingleShipData($id);

}



“"If you want to create a custom ship storage object, then you will need to implement this

interface that comes with the library."”

So you will create your own custom class, implement the library's interface which then tells you

which methods to fill in.

Understanding interfaces is really important because you will probably be implementing a lot of

them.

Alright, that's it and I hope you find abstract classes, interfaces and inheritance as cool as I do!

See ya next time!



With <3 from SymfonyCasts


