
OOP (course 4): Static
methods, Namespaces,

Exceptions & Traits! Woh!

Chapter 1: The Wonder of Class Constants

Hey friends! I'm so glad you're here for part 4 of "Baking Delicious Chocolate Chip Cookies".

Wait, they're telling me that's not right. Oh, ok, I'm so glad you're here for part 4 of our Object

Oriented Programming series!

After the first 3 parts, you guys are already dangerous, so I'm impressed you're still showing up

and aren't off coding something cool. You made the right choice: in this course we're going to

really have fun with some of the coolest parts of OO, showing off features that we haven't

mentioned yet. This is packed with the final pieces that will let you recognize all the different OO

things that you see in other people's code. There's lots to get through, so let's go!

Get the Starting Code!

If you're serious about getting really good at this stuff, code along with me. To do that, download

the source code from this page, unzip it, and move into the start directory. When you do that,

you'll have the same code that I have here. Open up the README file and follow the

instructions inside to get things setup.

When that's done, open your favorite terminal application, move into the directory, and - like

we've done in the previous courses - start the built in php web server by running:

php -S localhost:8000

This is a great server to use for development. Then, in our browser, we can go to

http://localhost:8000 . Here is our beautiful Battles app!

New Feature! Battle Types

People have been clamoring for a new feature: a way to battle that forces Jedi powers to be

used or completely avoided. Let's add this - it'll show off a new cool thing: class constants.

Open index.php and scroll down. Right after the ship select boxes, but before the submit

button, I'll paste some HTML for a new select box:

index.php

 // ... lines 1 - 29

30

 // ... lines 31 - 55

56

57

 // ... lines 58 - 92

93

94

95

 // ... lines 96 - 119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Let's refresh and see what it looks like. Ok, it's a new drop-down called "Battle Type" with option

for "Normal", "No Jedi Powers" and "Only Jedi Powers". If you look at the code, this is a single

select field that has a name of battle_type .

Here's the idea: each type will cause the BattleManager to battle these two ships in slightly

different ways. Let's hook this up as simply as possible.

<html>

 <body>

 <div class="container">

 <div class="battle-box center-block border">

 <div>

 <form method="POST" action="/battle.php">

 <div class="text-center">

 <label for="battle_type">Battle Type</label>

 <select name="battle_type" id="battle_type"

class="form-control drp-dwn-width center-block">

 <option value="normal">Normal</option>

 <option value="no_jedi">No Jedi

Powers</option>

 <option value="only_jedi">Only Jedi

Powers</option>

 </select>

 </div>

 <button class="btn btn-md btn-danger center-block"

type="submit">Engage</button>

 </form>

 </div>

 </div>

 </div>

 </body>

</html>

Since the field is named battle_type , open battle.php - the file that handles the submit.

Right before calling the battle() method, create a new variable called $battleType set to

$_POST['battle_type'] . Then, pass $battleType as a new fifth argument to the

battle() method:

battle.php

 // ... lines 1 - 33

34

35

 // ... lines 36 - 110

Hooking up the Logic: No Magic Yet

Let's add that! Open BattleManager and find battle() . Give this a new fifth argument:

$battleType :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 66

67

 // ... lines 68 - 74

75

Great! We know that this will be one of three special strings, either normal , no_jedi or

only_jedi . We can use those to change the behavior.

First, the two blocks near the top should only be run if Jedi powers are being used. Add to the if

statement: if $battleType != 'no_jedi' , then we can run this. Copy that and add it to the

second block:

$battleType = $_POST['battle_type'];

$battleResult = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity, $battleType);

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 }

}

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 17

18

19

20

 // ... lines 21 - 24

25

26

 // ... lines 27 - 30

31

 // ... lines 32 - 44

45

 // ... lines 46 - 66

67

 // ... lines 68 - 74

75

Perfect! If the battle type is normal or only_jedi , these blocks will execute.

Next, the last two lines are when the two ships battle each other normally. If we're on

only_jedi mode, this shouldn't happen. Surround them with an if statement:

if ($battleType != 'only_jedi') then run these lines:

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 // first, see if we have a rare Jedi hero event!

 if ($battleType != 'no_jedi' && $this-

>didJediDestroyShipUsingTheForce($ship1)) {

 }

 if ($battleType != 'no_jedi' && $this-

>didJediDestroyShipUsingTheForce($ship2)) {

 }

 }

 }

}

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 17

18

 // ... lines 19 - 32

33

34

35

36

37

 // ... lines 38 - 44

45

 // ... lines 46 - 66

67

 // ... lines 68 - 74

75

Awesome! Now, there's just one little last detail: if two ships are fighting in only_jedi mode,

and both have zero Jedi powers, they'll get caught in this loop and fight forever! To prevent that,

above the while , add a new $i = 0 variable:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 16

17

18

 // ... lines 19 - 44

45

 // ... lines 46 - 66

67

 // ... lines 68 - 74

75

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 // now battle them normally

 if ($battleType != 'only_jedi') {

 $ship1Health = $ship1Health - ($ship2->getWeaponPower() *

$ship2Quantity);

 $ship2Health = $ship2Health - ($ship1->getWeaponPower() *

$ship1Quantity);

 }

 }

 }

}

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 $i = 0;

 while ($ship1Health > 0 && $ship2Health > 0) {

 }

 }

}

Then, at the bottom, if $i = 100 , we're probably stuck in a loop. Just set

$ship1Health = 0; and $ship2Health = 0 and increment $i below that:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

10

11

 // ... lines 12 - 16

17

18

 // ... lines 19 - 38

39

40

41

42

43

44

45

 // ... lines 46 - 66

67

 // ... lines 68 - 74

75

Done!

Give it a try!. Select one Jedi Starfighter, one CloakShape fighter, and choose "Only Jedi

Powers". Hit engage and ... the Jedi Starfighter used its Jedi powers for a stunning victory! If we

refresh, one of the ships will use its Jedi powers every single time.

Magic Strings Make Kittens Cry

Feature complete! And it was easy. So... what's the problem? Look at these strings: normal ,

no_jedi and only_jedi :

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 $i = 0;

 while ($ship1Health > 0 && $ship2Health > 0) {

 // prevent 2 non-jedi ships from fighting forever in only_jedi

mode

 if ($i == 100) {

 $ship1Health = 0;

 $ship2Health = 0;

 }

 $i++;

 }

 }

}

index.php

 // ... lines 1 - 29

30

 // ... lines 31 - 55

56

57

 // ... lines 58 - 92

93

94

95

 // ... lines 96 - 119

120

 // ... line 121

122

123

124

125

126

127

 // ... lines 128 - 131

132

133

134

135

136

137

They're kind of magic. I mean, we chose them randomly and if you misspell one somewhere,

you won't get an error, but things won't work right.

To make things worse, in BattleManager , when you see these strings, it's not clear what

other strings might be possible. Are there other battle types we're forgetting to handle? And if we

wanted to add or remove a battle type, what other files would we need to change? It's really

common to have "magic strings" like these, but they can become hard to keep track of: you end

up referencing these exact little strings in many places.

Class Constants to the Rescue

Of course, object-oriented code has an answer! It's called "class constants", and it works like

this. Inside any class, you can use a special keyword called const followed by a word - which

<html>

 <body>

 <div class="container">

 <div class="battle-box center-block border">

 <div>

 <form method="POST" action="/battle.php">

 <div class="text-center">

 <select name="battle_type" id="battle_type"

class="form-control drp-dwn-width center-block">

 <option value="normal">Normal</option>

 <option value="no_jedi">No Jedi

Powers</option>

 <option value="only_jedi">Only Jedi

Powers</option>

 </select>

 </div>

 </form>

 </div>

 </div>

 </div>

 </body>

</html>

is usually in all uppercase - like TYPE_NORMAL and equals a value - normal . Repeat this for

const TYPE_NO_JEDI = 'no_jedi' and const TYPE_ONLY_JEDI = 'only_jedi' :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

5

6

7

 // ... lines 8 - 78

79

Constants are like variables, except they can never be changed. You can call the constants

anything - by adding TYPE_ before each one, it helps me remember what these are used for -

battle types. You can also add these to any class. I choice BattleManager because these

types are used here.

Using Class Constants

As soon as you do this, you can replace the random string with

BattleManager::TYPE_NO_JEDI . Below that, use BattleManager::TYPE_ONLY_JEDI :

class BattleManager

{

 const TYPE_NORMAL = 'normal';

 const TYPE_NO_JEDI = 'no_jedi';

 const TYPE_ONLY_JEDI = 'only_jedi';

}

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 13

14

15

 // ... lines 16 - 21

22

 // ... line 23

24

 // ... lines 25 - 28

29

30

 // ... lines 31 - 34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 40

41

 // ... lines 42 - 48

49

 // ... lines 50 - 70

71

 // ... lines 72 - 78

79

That will work the exact same way as before. In index.php , do the same thing:

<?php echo BattleManager::TYPE_NORMAL . Copy that and replace it with

TYPE_NO_JEDI and TYPE_ONLY_JEDI :

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 if ($battleType != BattleManager::TYPE_NO_JEDI && $this-

>didJediDestroyShipUsingTheForce($ship1)) {

 }

 if ($battleType != BattleManager::TYPE_NO_JEDI && $this-

>didJediDestroyShipUsingTheForce($ship2)) {

 }

 if ($battleType != BattleManager::TYPE_ONLY_JEDI) {

 }

 }

 }

}

index.php

 // ... lines 1 - 29

30

 // ... lines 31 - 55

56

57

 // ... lines 58 - 92

93

94

95

 // ... lines 96 - 119

120

 // ... line 121

122

123

124

125

126

127

 // ... lines 128 - 131

132

133

134

135

136

137

To prove it still works, refresh this page. Everything's still happy!

In a sense, nothing changed! But now, these magic strings have a single home: at the top of

BattleManager . If we ever needed to change these strings, we can do it in just once place.

This also gives these strings some context - these are obviously related to BattleManager ,

and we can probably look here to see how they're used. We can also document what they mean

by adding some details above each type:

<html>

 <body>

 <div class="container">

 <div class="battle-box center-block border">

 <div>

 <form method="POST" action="/battle.php">

 <div class="text-center">

 <select name="battle_type" id="battle_type"

class="form-control drp-dwn-width center-block">

 <option value="<?php echo

BattleManager::TYPE_NORMAL ?>">Normal</option>

 <option value="<?php echo

BattleManager::TYPE_NO_JEDI ?>">No Jedi Powers</option>

 <option value="<?php echo

BattleManager::TYPE_ONLY_JEDI ?>">Only Jedi Powers</option>

 </select>

 </div>

 </form>

 </div>

 </div>

 </div>

 </body>

</html>

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 81

82

Now, check this out. When some other developer looks inside index.php , instead of seeing

some magic, meaningless strings like before, they'll see these constants and think:

“Oh, BattleManager::TYPE_NORMAL . Let me go look in that class to see what this

means. Oh hey, there's even some documentation!”

So anytime you have a special string or other value that has some special meaning but will

never change, make it a constant and stay happy.

class BattleManager

{

 // normal battle mode

 const TYPE_NORMAL = 'normal';

 // don't allow jedi powers

 const TYPE_NO_JEDI = 'no_jedi';

 // you can *only* win with jedi powers

 const TYPE_ONLY_JEDI = 'only_jedi';

}

Chapter 2: Static Methods

A really important thing just happened: for the first time ever, we referred to something on our

class by using its class name. To use the constant, we said

BattleManager::TYPE_NO_JEDI :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 13

14

15

 // ... lines 16 - 21

22

23

24

 // ... lines 25 - 28

29

 // ... lines 30 - 48

49

 // ... lines 50 - 70

71

 // ... lines 72 - 78

79

That makes sense, but notice: it's completely different than how we've referred to class

properties and methods so far. Normally, we create a new object by saying

new BattleManager() :

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 // first, see if we have a rare Jedi hero event!

 if ($battleType != BattleManager::TYPE_NO_JEDI && $this-

>didJediDestroyShipUsingTheForce($ship1)) {

 }

 }

 }

}

lib/Service/Container.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 62

63

64

65

66

67

68

69

70

71

For us, this lives inside the Container . But here's the important part: to reference a method or

property, we use the object by saying $battleManager-> followed by the method name:

battle.php

 // ... lines 1 - 34

35

 // ... lines 36 - 110

For constants, it's totally different. We don't ever need to instantiate an object. Instead, at any

point, you can just say the class name ::TYPE_NO_JEDI :

class Container

{

 public function getBattleManager()

 {

 if ($this->battleManager === null) {

 $this->battleManager = new BattleManager();

 }

 return $this->battleManager;

 }

}

$battleResult = $battleManager->battle($ship1, $ship1Quantity, $ship2,

$ship2Quantity, $battleType);

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 13

14

15

 // ... lines 16 - 21

22

23

24

 // ... lines 25 - 28

29

 // ... lines 30 - 48

49

 // ... lines 50 - 70

71

 // ... lines 72 - 78

79

So sometimes, we need to create an object and reference that object. But other times, we don't

need an object: we just use the class name. What's going on?

Static versus Non Static

Here's the deal: constants are static, and so far, all of our properties and methods are non-

static.

You see, whenever you add something to a class - like a property or a method - you can choose

to attach it to an individual instance of the object or to the class itself. When you choose to

attach something to a class, it's said to be "static".

Let's look at a real example. In AbstractShip , the properties id , name , weaponPower and

strength are not static:

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 // first, see if we have a rare Jedi hero event!

 if ($battleType != BattleManager::TYPE_NO_JEDI && $this-

>didJediDestroyShipUsingTheForce($ship1)) {

 }

 }

 }

}

lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 121

122

That means that if you have two Ship objects, each has a different id , name , weaponPower

and strength . If you change the name in one Ship it does not affect any other ship objects.

But, if we were to change these properties to static - which is something you can do - then

suddenly the name property would be global to all ships, meaning two ship objects could not

have different names. This would be the one name for all AbstractShip .

Remember - a class is like a blueprint for a ship, and an object is like a real, physical ship.

Since each real ship has a different name, it makes sense to make the $name property non-

static. This attaches the name to each individual object.

But other times, it may make sense to attach a property to the blueprint itself, meaning to the

class. For example, suppose that the very design of the ships guarantees that each should have

a minimum strength of 100. Since that is a property of ships in general, we might add a new

private static property called $minimumStrength and use that to prevent individual

ships from setting their specific $strength lower than this.

Class Constants are Static

So, with properties or methods, you can choose static or non-static. But constants, well, they're

static by their very nature. And that makes sense: the TYPE constants in BattleManager are

global to the BattleMangaer class in general - it wouldn't make sense for them to be different

for different objects.

When you reference something statically, you always reference it by saying the class name,

:: , and then whatever you're referencing.

abstract class AbstractShip

{

 private $id;

 private $name;

 private $weaponPower = 0;

 private $strength = 0;

}

The Special Self Keyword

Before we try an example, there's another special property of static things. Notice that we're

inside BattleManager and we're referencing the BattleManager class. If you want to, you

can change this to, self::TYPE_NO_JEDI :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 16

17

18

 // ... lines 19 - 24

25

26

27

 // ... lines 28 - 31

32

33

 // ... lines 34 - 37

38

39

40

41

 // ... lines 42 - 43

44

 // ... lines 45 - 51

52

 // ... lines 53 - 73

74

 // ... lines 75 - 81

82

In the same way that $this refers to the current object, self refers to the class that we're

inside of. So this didn't change our behavior: it's just a nice shortcut.

Now, let's see a real-life static method in action.

class BattleManager

{

 public function battle(AbstractShip $ship1, $ship1Quantity,

AbstractShip $ship2, $ship2Quantity, $battleType)

 {

 while ($ship1Health > 0 && $ship2Health > 0) {

 // first, see if we have a rare Jedi hero event!

 if ($battleType != self::TYPE_NO_JEDI && $this-

>didJediDestroyShipUsingTheForce($ship1)) {

 }

 if ($battleType != self::TYPE_NO_JEDI && $this-

>didJediDestroyShipUsingTheForce($ship2)) {

 }

 // now battle them normally

 if ($battleType != self::TYPE_ONLY_JEDI) {

 }

 }

 }

}

Chapter 3: Static or Non-Static Methods?

In index.php , the three battle types are hard coded right in the HTML:

index.php

 // ... lines 1 - 29

30

 // ... lines 31 - 55

56

57

 // ... lines 58 - 92

93

94

95

 // ... lines 96 - 119

120

121

122

123

124

125

126

127

 // ... lines 128 - 131

132

133

134

135

136

137

So what happens if we decide to add a fourth battle type to BattleManager . No problem: add

a new constant, then update the battle() method logic for whatever cool thing this new type

does.

But surprise! If we forget to also add the new type to index.php , then nobody's going to be

able to use it. Really, I'd prefer BattleManager to be completely in charge of the battle types

<html>

 <body>

 <div class="container">

 <div class="battle-box center-block border">

 <div>

 <form method="POST" action="/battle.php">

 <div class="text-center">

 <label for="battle_type">Battle Type</label>

 <select name="battle_type" id="battle_type"

class="form-control drp-dwn-width center-block">

 <option value="<?php echo

BattleManager::TYPE_NORMAL ?>">Normal</option>

 <option value="<?php echo

BattleManager::TYPE_NO_JEDI ?>">No Jedi Powers</option>

 <option value="<?php echo

BattleManager::TYPE_ONLY_JEDI ?>">Only Jedi Powers</option>

 </select>

 </div>

 </form>

 </div>

 </div>

 </div>

 </body>

</html>

so that it's the only file I need to touch when something changes.

Using a Normal, Non-Static Method

To do that, create a new function in BattleManager that will return all of the types and their

descriptions: call it public function getAllBattleTypesWithDescription() :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 75

76

77

 // ... lines 78 - 82

83

 // ... lines 84 - 90

91

Here, return an array with the type as the key and the description that should be used in the

drop-down as the value:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 75

76

77

78

79

80

81

82

83

 // ... lines 84 - 90

91

Awesome! Next, if we call this method in index.php , we can remove the hardcoded values

there. Of course, this method is non-static. That means that we need to call this method on a

BattleManager object. Create a new one by saying

$battleManager = $container->getBattleManager() :

class BattleManager

{

 public function getAllBattleTypesWithDescriptions()

 {

 }

}

class BattleManager

{

 public function getAllBattleTypesWithDescriptions()

 {

 return array(

 self::TYPE_NORMAL => 'Normal',

 self::TYPE_NO_JEDI => 'No Jedi Powers',

 self::TYPE_ONLY_JEDI => 'Only Jedi Powers'

);

 }

}

index.php

 // ... lines 1 - 11

12

 // ... lines 13 - 141

Now add

$battleTypes = $battleManager->getAllBattleTypesWithDescription() :

index.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 141

Finally, scroll down. In place of the hardcoded values, foreach over $battleTypes as

$battleType => $typeText . End the foreach and make the option dynamic by printing

$battleType and <?php echo $typeText; ?> :

$battleManager = $container->getBattleManager();

$battleManager = $container->getBattleManager();

$battleTypes = $battleManager->getAllBattleTypesWithDescriptions();

index.php

 // ... lines 1 - 32

33

 // ... lines 34 - 58

59

60

 // ... lines 61 - 95

96

97

98

 // ... lines 99 - 122

123

124

125

126

127

128

129

130

 // ... lines 131 - 134

135

136

137

138

139

140

Ok! Give it a try! Click the "Battle Again" link. And yes! The drop-down has the same three

values as before.

Why not make the Method Static?

Here's where things get interesting! We made getAllBattleTypesWithDescription()

non-static. Could we make it static instead?

To know, ask yourself these two questions:

1. Does it make sense - philosphically - for the getAllBattleTypesWithDescription()

method to be attached to the class instead an object? I would say yes: the battle types and

<html>

 <body>

 <div class="container">

 <div class="battle-box center-block border">

 <div>

 <form method="POST" action="/battle.php">

 <div class="text-center">

 <label for="battle_type">Battle Type</label>

 <select name="battle_type" id="battle_type"

class="form-control drp-dwn-width center-block">

 <?php foreach ($battleTypes as $battleType

=> $typeText): ?>

 <option value="<?php echo $battleType ?>">

<?php echo $typeText; ?></option>

 <?php endforeach; ?>

 </select>

 </div>

 </form>

 </div>

 </div>

 </div>

 </body>

</html>

descriptions will not be different for different BattleManager objects; these are global to

the class.

2. Does the method need the $this variable? If you need to reference non-static properties

using $this , then the method must be non-static. But we're not using $this .

So let's make this method static by saying public static function :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 75

76

77

 // ... lines 78 - 82

83

 // ... lines 84 - 90

91

The only thing that changes now is how we call our method. First, we don't need a

BattleManager object at all. Instead, just say

BattleManager::getAllBattleTypesWithDescription() :

index.php

 // ... lines 1 - 11

12

 // ... lines 13 - 140

Ok, try it out! It works!

When to use Static versus Non-Static

So look, this static versus non-static stuff can be tough. And in a lot of other tutorials, you'll see

this taught in reverse: they'll show you static stuff first, because it's a little easier. Then they'll

teach non-static properties and methods.

But guess what: that's not how good programmers code in the real world: they make most

things non-static. And to start, I want you guys to also make everything not static. Then, as you

get more comfortable, you will start to see different situations where it's okay to make some

things static. It's actually much easier to change things from non-static to static than the

class BattleManager

{

 public static function getAllBattleTypesWithDescriptions()

 {

 }

}

$battleTypes = BattleManager::getAllBattleTypesWithDescriptions();

other way around. And when you make things non-static, it forces you to build better code. And

isn't that why we're here?

Chapter 4: Namespaces make Class Names
Longer

We all know that the name of this class is BattleManager . When we want to use it, we

reference BattleManager . No matter what we do - static or non-static - if we want to work

with this class we call it by its name, BattleManager . Simple.

Why am I pointing out the painfully obvious? Because we're about to make this class name

longer, but maybe not how you'd expect. We're going to use a namespace.

Let's see some Namespaces

At first, why namespaces exist might not be obvious, so hold onto that question. Let's see how

they work first.

Above any class, you can - if you want to - add a namespace keyword followed by some string.

Like, Battle or something more complicated like Battle\HiGuys\NiceNameSpace . A

namespace is a string, and you can give it different parts by separating each with a backslash \

- that's the slash that feels a little wrong when you type it - it's usually an escape character.

To keep things simple, just set the namespace to Battle for now:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 94

As soon as we did that, we actually changed the name of this class: it is no longer called

BattleManager . In fact, you can see that PhpStorm now highlights our code with an

"Undefined class BattleManager" error. Thanks to the namespace, the class is now called

Battle\BattleManager :

namespace Battle;

class BattleManager

index.php

 // ... lines 1 - 11

12

 // ... lines 13 - 140

Refresh to prove it. Great!

So... that's really it! When you add a namespace above a class, the full class name becomes

that namespace, a \ , and then class name. Every place we reference this class name will now

need to change - like inside of Container . We'll do that in a few minutes - we've got a few

other things to do first.

So Why do Namespaces Exist?

Now that you know how namespaces work, you're probably wondering, why do these even

exist? How does this help me in my coding? Well, the short answer is... it doesn't help you. In

fact, namespaces weren't meant to help you - they were meant to help external library

developers. So I guess, if you're one of those it does help.

In a nut shell, as you go further into development, you'll start to use a lot of 3rd-party, libraries

written by other people. That's cool because those libraries will give us new classes to help

solve problems.

The reason that namespaces exist is to avoid collisions in those external libraries. Imagine

we're using library A and library B, but that they both have a class called Battle . Without

namespaces, we'd be lost in space: we wouldn't be able to use both libraries. But if each library

has a unique namespace, we won't collide: they'll simply be called something like

LibraryA\Battle and LibraryB\Battle .

This means that namespaces do help us, but only indirectly. When we're working with

namespaces it just makes our class names longer.

The use Statement

There is one other thing that you need to know with namespace: it's the mystical use

statement.

$battleTypes = Battle\BattleManager::getAllBattleTypesWithDescriptions();

When you want to reference a class, it's perfectly valid to type out the entire long class name

right where you need to use it. But in practice, you won't see this very often. Instead, people

typically add a use statement at the top of the file that references the full class name:

Battle\BattleManager :

index.php

 // ... lines 1 - 2

3

 // ... lines 4 - 143

As soon as you do, when you need to work with the class, you can once again write out only the

short class name:

index.php

 // ... lines 1 - 2

3

 // ... lines 4 - 14

15

 // ... lines 16 - 143

And while you'll only have one namespace per file, you'll have as many use statements as

you need.

To be clear, the use statement does not change how namespaces work: it's just a shortcut.

When PHP executes this file, it sees class BattleManager and says:

“Huh, BattleManager? Let me check all of the use statements at the top of this file.”

PHP then looks to see if any of the use statements end in the word BattleManager . If it

finds one, it basically copies the long class name and pastes it below right before executing the

file. What I just did manually is what PHP basically does at run-time.

So use statements are just this nice, extra feature. And technically, you could avoid using them

and instead write-out full class names right where you need them.

Ok! We're going to do a lot more with namespaces. But first, we need to turn to a very related

topic called autoloading.

 Go Deeper!

use Battle\BattleManager;

use Battle\BattleManager;

$battleTypes = BattleManager::getAllBattleTypesWithDescriptions();

If you still have questions about namespaces - check out our short course PHP

Namespaces in 120 Seconds or just leave a comment.

https://knpuniversity.com/screencast/php-namespaces-in-120-seconds
https://knpuniversity.com/screencast/php-namespaces-in-120-seconds

Chapter 5: Autoloading Awesomeness

Have you ever heard of an autoloader? Even if you have, you might not know what they do or

how they work.

What does an Autoloader Do?

Autoloaders change everything. In PHP, you can't reference a class or a function unless you - or

someone - requires or includes that file first. That's why - in bootstrap.php - we have a

require statement for every file:

bootstrap.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

Without these, we can't access the classes inside of them.

This is no bueno: it means that I have to remember to add another line here, whenever I create

a new class. You know why else it's not good? Suppose I don't use all of these classes during

some requests? Well, right now, I'm loading every class into memory, even if we never need to

use them. This is actually slowing down my app!

Well, guess what: in modern PHP, you never see require or include statements. They're

gone. How is that possible? The Answer is: autoloaders.

First, kill the BattleManager.php require statement:

require_once __DIR__.'/lib/Service/Container.php';

require_once __DIR__.'/lib/Model/AbstractShip.php';

require_once __DIR__.'/lib/Model/Ship.php';

require_once __DIR__.'/lib/Model/RebelShip.php';

require_once __DIR__.'/lib/Model/BrokenShip.php';

require_once __DIR__.'/lib/Service/BattleManager.php';

require_once __DIR__.'/lib/Service/ShipStorageInterface.php';

require_once __DIR__.'/lib/Service/PdoShipStorage.php';

require_once __DIR__.'/lib/Service/JsonFileShipStorage.php';

require_once __DIR__.'/lib/Service/ShipLoader.php';

require_once __DIR__.'/lib/Model/BattleResult.php';

bootstrap.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

Not surprisingly, we get an error:

“Class Battle\BattleManager not found.”

Adding your Autoloader

How do we fix this? The answer is by calling a very special function from the core of PHP called

spl_autoload_register() . Pass this a single argument: a function with a $className

argument. We'll use an anonymous function:

bootstrap.php

 // ... lines 1 - 2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 29

Here's the deal: as soon as you call spl_autoload_register , right before PHP throws the

dreaded "class not found" error like this, it will call our function and pass it the class name.

Then, if we - somehow - can locate the file that contains this class and require it, PHP will

continue on like normal with no error.

In fact, in modern PHP development, this is how every single class is loaded. In some cases,

this little function is called hundreds of times on every request.

Making your Autoloader Work (a little)

Let's start coding our autoloader with some simple logic:

if ($className == 'Battle\BattleManager') , then we know where that file lives.

require __DIR__.'/lib/Service/BattleManager.php . Then, add a return :

require_once __DIR__.'/lib/Model/BrokenShip.php';

require_once __DIR__.'/lib/Service/ShipStorageInterface.php';

spl_autoload_register(function($className) {

});

bootstrap.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 29

We're done!

For now, if the autoloader function is called for any other class, we'll do nothing. PHP will throw

its normal "class not found" error.

With just that, refresh. Mind blown. We just got our app to work without manually requiring the

BattleManager.php file. Of course, right now, this isn't much better than having a require

statement. Actually, it's more work.

Creating a Smarter Autoloader

How could we make this function smarter? How could we make it automatically find new

classes and files as we add them to the system?

Well I have an idea. BattleManager lives in the Service directory. What if we changed its

namespace to match that? Or to get crazier, what if we gave every class a namespace that

matches its directory?

If we did that, the autoload function could use the namespace to locate any file. The class -

Service\BattleManager would live at Service/BattleManager.php . It's brilliant!

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 94

spl_autoload_register(function($className) {

 if ($className == 'Battle\BattleManager') {

 require __DIR__.'/lib/Service/BattleManager.php';

 return;

 }

 // we don't support this class!

});

namespace Service;

class BattleManager

Now that we've changed the namespace to Service, we need to update any references to

BattleManager - like in index.php . Change the use statement to Service .

index.php

 // ... lines 1 - 2

3

 // ... lines 4 - 143

Yes!

Finally, in bootstrap.php , instead of manually checking for just this one class, say that the

path is always equal to __DIR__/lib/ then str_replace() - we'll replace the back slash

with a forward slash:

bootstrap.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 10

11

 // ... lines 12 - 29

Notice I put two back-slashes. Since this is the escape character, if you only have one, it looks

like you're escaping the next quote character. So, to get one slash, we need to use two - it's an

ugly detail. Anyways, replace backslashes with a forward slash and pass that the class name.

Finally, add the .php at the end.

Just in case, check to see if that file exists. If it does, require $path :

bootstrap.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 29

That's it. Go back, refresh, and... everything still works.

use Service\BattleManager;

spl_autoload_register(function($className) {

 $path = __DIR__.'/lib/'.str_replace('\\', '/', $className).'.php';

});

spl_autoload_register(function($className) {

 $path = __DIR__.'/lib/'.str_replace('\\', '/', $className).'.php';

 if (file_exists($path)) {

 require $path;

 }

 // we don't support this class!

});

And now, we are incredibly dangerous. We can now get rid of every single require statement

really easily. Let's do it!

Chapter 6: More Fun with use Statements

I hate needing all these require statements. But thanks to our autoloader, the only thing we

need to do is give every class the namespace that matches its directory. This will be a little bit of

work because we didn't do it up front - life is much easier when you use namespaces like this

from the very beginning. But, we'll learn some other stuff along the way.

The AbstractShip class lives in the Model directory, so give it the namespace Model :

lib/Model/AbstractShip.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 125

Copy that and do the same thing in BattleResult , BrokenShip , RebelShip , Ship and

FriendShip -- just kidding there's none of that in epic code battles:

lib/Model/BattleResult.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 57

lib/Model/BrokenShip.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 22

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 38

namespace Model;

abstract class AbstractShip

namespace Model;

class BattleResult

namespace Model;

class BrokenShip extends AbstractShip

namespace Model;

class RebelShip extends AbstractShip

lib/Model/Ship.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 45

Perfect. BattleManager already has the correct Service namespace:

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 94

In Container , paste that same one:

lib/Service/Container.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 74

Repeat that in JsonFileShipStorage , PdoShipStorage , ShipLoader and

ShipStorageInterface :

lib/Service/JsonFileShipStorage.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 34

lib/Service/PdoShipStorage.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 35

namespace Model;

class Ship extends AbstractShip

namespace Service;

class BattleManager

namespace Service;

class Container

namespace Service;

class JsonFileShipStorage implements ShipStorageInterface

namespace Service;

class PdoShipStorage implements ShipStorageInterface

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 63

lib/Service/ShipStorageInterface.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 27

These all live in the Service directory.

Missing use Statements = Common Error

Ok! Let's see what breaks! Go back and refresh. The first error we get is:

“Class Container not found in index.php ”

Ok, you're going to see a lot of class not found errors in your future. When you see them, read

the error very closely: it always contains a hint. This says class Container is not found. Well,

we don't have a class called Container : our class is called Service\Container . This tells

me that in index.php on line 6, we're referencing the class name without the namespace.

Sure enough, we have new Container :

index.php

 // ... lines 1 - 6

7

 // ... lines 8 - 143

To fix this, we could say Service\Container here or we can add a use statement for

Service\Container . Let's do that:

index.php

 // ... lines 1 - 3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 145

namespace Service;

class ShipLoader

namespace Service;

interface ShipStorageInterface

$container = new Container($configuration);

use Service\Container;

$container = new Container($configuration);

And I can already see that we'll have the same problem down below with BrokenShip :

PhpStorm is trying to warn me! Add a use Model\BrokenShip to take care of that:

index.php

 // ... lines 1 - 4

5

 // ... lines 6 - 13

14

 // ... lines 15 - 145

We'll probably have the same problem in battle.php - so open that up. Yep, add

use Service\Container :

battle.php

 // ... line 1

2

 // ... lines 3 - 5

6

 // ... lines 7 - 112

Looking good!

Reading the Error Messages... Closely

Try it again! Ok:

“Class Service\RebelShip not found in ShipLoader .”

Remember what I just said about reading the error messages closely? This one has a clue: it's

looking for Service\RebelShip . But we don't have a class called Service\RebelShip -

our class is called Model\RebelShip :

lib/Model/RebelShip.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 38

The problem exists where we're referencing this class - so in ShipLoader at line 43.

use Model\BrokenShip;

$brokenShip = new BrokenShip('I am so broken');

use Service\Container;

$container = new Container($configuration);

namespace Model;

class RebelShip extends AbstractShip

This is the most common mistake with namespaces: we have new RebelShip , but we don't

have a use statement on top for this:

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 40

41

42

43

44

45

46

 // ... line 47

48

 // ... lines 49 - 54

55

 // ... lines 56 - 60

61

62

This is the same problem we just solved in index.php , but with a small difference. Unlike

index.php and battle.php , this file lives in a namespace called Service . That causes

PHP to assume that RebelShip also lives in that namespace -- you know like roommates.

Here's how it works: when PHP parses this file, it sees the RebelShip class on line 43. Next, it

looks up at the top of the file to see if there are any use statements that end in RebelShip .

Since there aren't, it assumes that RebelShip also lives in the Service namespace, so

Service\RebelShip .

Think about it: this is just like directories on your filesystem. If you are inside of a directory

called Service and you say ls RebelShip , it's going to look for RebelShip inside of the

Service directory.

But in index.php - since this doesn't hold a class - we didn't give this file a namespace. If you

forget a use statement for BrokenShip here, this is equivalent to saying ls BrokenShip

from the root of your file system, instead of from inside some directory.

namespace Service;

class ShipLoader

{

 private function createShipFromData(array $shipData)

 {

 if ($shipData['team'] == 'rebel') {

 $ship = new RebelShip($shipData['name']);

 } else {

 $ship = new Ship($shipData['name']);

 }

 }

}

In both cases the solution is the same: add the missing use statement:

use Model\RebelShip :

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 8

9

 // ... lines 10 - 67

Now PhpStorm stops highlighting this as an error. Much better.

We have the same problem below for Ship : add use Model\Ship :

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 67

Finally, there's one more spot in the PHP documentation itself. Because we don't have a use

statement in this file yet for AbstractShip , PhpStorm assumes that this class is

Service\AbstractShip . To fix that, add use Model\AbstractShip :

namespace Service;

use Model\RebelShip;

class ShipLoader

namespace Service;

use Model\RebelShip;

use Model\Ship;

class ShipLoader

lib/Service/ShipLoader.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 17

18

19

20

21

22

 // ... lines 23 - 31

32

33

34

35

36

37

38

39

 // ... lines 40 - 42

43

 // ... lines 44 - 64

65

66

Now, everything looks happy!

The moral of the story is this: whenever you reference a class, don't forget to put a use

statement for it. Now, there is one exception to this rule. If you reference a class that happens to

be in the same namespace as the file you're in - like ShipStorageInterface - then you

don't need a use statement:

namespace Service;

use Model\RebelShip;

use Model\Ship;

use Model\AbstractShip;

class ShipLoader

{

 /**

 * @return AbstractShip[]

 */

 public function getShips()

 {

 }

 /**

 * @param $id

 * @return AbstractShip

 */

 public function findOneById($id)

 {

 }

}

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... line 15

16

 // ... lines 17 - 64

65

66

PHP correctly assumes that ShipStorageInterface lives in the Service namespace. But

you don't get lucky like this too often.

I already know we need to fix one more spot in BattleManager . Add a use statement for

Model\BattleResults and another for Model\AbstractShip :

lib/Service/BattleManager.php

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 97

Phew! I promise, this is all a lot easier if you just use namespaces from the beginning! Let's

refresh the page. Our app is back to life, and the require statements are gone!

class ShipLoader

{

 public function __construct(ShipStorageInterface $shipStorage)

 {

 }

}

namespace Service;

use Model\BattleResult;

use Model\AbstractShip;

class BattleManager

Chapter 7: Namespaces and Core PHP Classes

Let's close all our tabs and open up Container . In the last course, we created two different

ways to load Ship objects: one that reads a JSON file - JsonFileShipStorage and another

that reads from a database - PdoShipStorage :

lib/Service/Container.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 51

52

53

54

55

56

57

 // ... lines 58 - 59

60

 // ... lines 61 - 72

73

And you could switch back and forth between these without breaking anything, thanks to our

cool ShipStorageInterface . Change it to use the PDO version and refresh.

Woh, new error:

“Class Service\PDO not found in Container.php on line 28.”

Let's check that out:

class Container

{

 public function getShipStorage()

 {

 if ($this->shipStorage === null) {

 //$this->shipStorage = new PdoShipStorage($this->getPDO());

 $this->shipStorage = new

JsonFileShipStorage(__DIR__.'/../../resources/ships.json');

 }

 }

}

lib/Service/Container.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 24

25

26

27

28

 // ... lines 29 - 31

32

33

34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 72

73

use Statements for core PHP Classes?

Here, we see the exact same error as before: "Undefined Class PDO ". So far, the answer to this

has always been:

“Oh, I must have forgotten a use statement. I referenced a class, so I probably need to add

a use statement for it.”

But here's the kicker: PDO is a core PHP class that happens to not live in a namespace. In other

words, it's like a file that lives at the root of you file system: not in any directory.

So when PHP sees PDO mentioned, it looks at the top of the class for a use statement that

ends in PDO, it doesn't find one, and it assumes that PDO lives in the Service namespace.

But in fact, PDO lives at the root namespace.

The fix is easy: add a \ at the front of PDO :

class Container

{

 public function getPDO()

 {

 if ($this->pdo === null) {

 $this->pdo = new PDO(

);

 $this->pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 }

 }

}

lib/Service/Container.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 24

25

26

27

28

 // ... lines 29 - 31

32

33

34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 72

73

This makes sense: if you think of namespaces like a directory structure, This is like saying

ls /PDO . It doesn't matter what directory, or namespace, we're in, adding the \ tells PHP that

this class lives at the root namespace. Update the other places where we reference this class.

The Opening Slash is Portable

This is true for all core PHP classes: none of them live in namespaces. So, always include that

beginning \ . Now, technically, if you were inside of a file that did not have a namespace - like

index.php - then you don't need the opening \ . But it's always safe to say new \PDO : it'll

work in all files, regardless of whether or not they have a namespace.

When Type-Hints Fail

If you refresh now, you'll see another error that's caused by this same problem. But this one is

less clear:

“Argument 1 passed to PDOShipStorage::__construct() must be an instance of

Service\PDO , instance of PDO given.”

class Container

{

 public function getPDO()

 {

 if ($this->pdo === null) {

 $this->pdo = new \PDO(

);

 $this->pdo->setAttribute(\PDO::ATTR_ERRMODE,

\PDO::ERRMODE_EXCEPTION);

 }

 }

}

This should jump out at you: "Instance of Service\PDO ". PHP thinks that argument 1 to

PDOShipStorage should be this, nonsense class. There is no class Service\PDO !

Check out PDOShipStorage : the __construct() argument is type-hinted with PDO :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

10

 // ... line 11

12

13

14

15

 // ... lines 16 - 18

19

20

21

22

23

 // ... lines 24 - 25

26

 // ... lines 27 - 32

33

34

But of course, this looks like Service\PDO to PHP, and that causes problems. Add the \ there

as well:

lib/Service/PdoShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

10

 // ... line 11

12

 // ... lines 13 - 33

34

class PdoShipStorage implements ShipStorageInterface

{

 public function __construct(PDO $pdo)

 {

 }

 public function fetchAllShipsData()

 {

 return $statement->fetchAll(PDO::FETCH_ASSOC);

 }

 public function fetchSingleShipData($id)

 {

 $shipArray = $statement->fetch(PDO::FETCH_ASSOC);

 }

}

class PdoShipStorage implements ShipStorageInterface

{

 public function __construct(\PDO $pdo)

 {

 }

}

Phew! We spent time on these because these are the mistakes and errors that we all make

when starting with namespaces. They're annoying, unless you can debug them quickly. If you're

ever not sure about a "Class Not Found" error, the problem is almost always a missing use

statement.

Update the other spots that reference PDO :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 18

19

20

21

22

23

 // ... lines 24 - 25

26

 // ... lines 27 - 32

33

34

Finally, refresh! Life is good. You just saw the ugliest parts of namespaces.

class PdoShipStorage implements ShipStorageInterface

{

 public function fetchAllShipsData()

 {

 return $statement->fetchAll(\PDO::FETCH_ASSOC);

 }

 public function fetchSingleShipData($id)

 {

 $shipArray = $statement->fetch(\PDO::FETCH_ASSOC);

 }

}

Chapter 8: Composer Autoloading

Ok, guys: confession time. This cool little autoloader idea where we make our class name

match our file name and our namespace match our directory structure ... well, that was not my

idea. In fact, this idea has been around in PHP for years, and every modern project follows it.

That's nice for consistency and organization, but it's also nice for a much more important

reason: we can write a single autoloader function that can find anyone's code: our code or third-

party code that we include in our project.

The Famous PSR-0

The idea of naming your classes and files in this way is called PSR-0 . You see, there's a

lovable group called the PHP FIG. It's basically the United Nations of PHP: they come together

to agree on standards that everyone should follow. PSR-0 was the first standard... called 0

because we geeks start counting, well, at 0.

It simply says that Thou shalt call your class names the same as your filenames plus .php and

you shall have your directory structures match up with your namespaces.

Hello Composer

Why do we care? Because instead of having to write this autoloader by hand, you can actually

include an outside library that takes care of all of it for us. The library is called Jordi, I mean,

Composer: you may have heard of it.

Let's get it: Go to getcomposer.org and hit download. Copy the lines up here: if you're on

Windows, you may see slightly different instructions. Then move into your terminal, open a new

tab, and paste those in:

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"

php -r "if (hash_file('SHA384', 'composer-setup.php') === 'e115a8dc7871f15d8531

php composer-setup.php

php -r "unlink('composer-setup.php');"

http://www.php-fig.org/
https://getcomposer.org/
https://getcomposer.org/

This is downloading Composer, which is just a single, executable file. Usually people use

Composer to download external libraries they want to use in their project. It's PHP's package

manager.

But it has a second superpower: autoloading. When this command finishes, you'll end up with a

composer.phar file. This is a PHP executable. We'll come back to it in a second.

Configuring Autoloading

To tell Composer to do the autoloading for us, all you need is a small configuration file called

composer.json . Inside, add an autoload key, then a psr-4 key, and empty quotes set to

lib :

composer.json

1

2

3

4

5

6

7

That's it.

Remember how I said this rule is called PSR-0? Well PSR-4 is a slight amendment to PSR-0 ,

but they both refer to the same thing. This tells Composer that we want to autoload using the

PSR-0 convention, and that it should look for all classes inside the lib directory. That's it.

Back in your terminal, run:

php composer.phar install

This command normally downloads any external packages that we need - but we haven't

defined any. But it also generates some autoload files inside a new vendor/ directory.

To use those, open bootstrap.php , delete all the manual autoload stuff, and replace it with

just require __DIR__vendor/autoload.php , which is one of the files that composer just

generated:

{

 "autoload": {

 "psr-4": {

 "": "lib/"

 }

 }

}

bootstrap.php

 // ... lines 1 - 2

3

 // ... lines 4 - 10

That's it.

You also usually don't commit the vendor/ directory to your Git repository: team members just

run this same command when they download the project.

Let's see if it works! Go back and refresh! It does! And as we add more classes and more

directories to lib/ , everything will keep working. AND, if you guys want to start downloading

external libraries into your project via Composer, you can do that too and immediately reference

those classes without needing to worry about require statements or autoloaders. Composer

takes care of everything. Thanks Jordi!

require __DIR__.'/vendor/autoload.php';

Chapter 9: Throwing an Exception (and a Party)

Let's talk about something totally different: a powerful part of object-oriented code called

exceptions.

In index.php , we create a BrokenShip object. I'm going to do something crazy, guys. I'm

going to say, $brokenShip->setStrength() and pass it... banana :

index.php

 // ... lines 1 - 4

5

 // ... lines 6 - 13

14

15

 // ... lines 16 - 146

That strength makes no sense. And if we try to battle using this ship, we should get some sort of

error. But when we refresh... well, it is an error: but not exactly what I expected.

This error is coming from AbstractShip line 65. Open that up. I want you to look at 2

exceptional things here:

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 44

45

46

47

48

49

50

51

52

 // ... lines 53 - 123

124

First, we planned ahead. When we created the setStrength() method, we said:

use Model\BrokenShip;

$brokenShip = new BrokenShip('I am so broken');

$brokenShip->setStrength('banana');

abstract class AbstractShip

{

 public function setStrength($number)

 {

 if (!is_numeric($number)) {

 throw new Exception('Invalid strength passed '.$number);

 }

 $this->strength = $number;

 }

}

“You know what? This needs to be a number, so if somebody passes something dumb like

"banana," then let's check for that and trigger an error.”

And second, in order to trigger an error, we threw an exception:

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 44

45

46

47

48

49

 // ... lines 50 - 51

52

 // ... lines 53 - 123

124

And that's actually what I want to talk about: Exceptions are classes, but they're completely

special.

But first, Exception is a core PHP class, and when we added a namespace to this file, we

forgot to change it to \Exception :

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 44

45

46

47

48

49

 // ... lines 50 - 51

52

 // ... lines 53 - 123

124

That's better. Now refresh again. This is a much better error:

“Uncaught Exception : Invalid strength passed "banana"”

abstract class AbstractShip

{

 public function setStrength($number)

 {

 if (!is_numeric($number)) {

 throw new Exception('Invalid strength passed '.$number);

 }

 }

}

abstract class AbstractShip

{

 public function setStrength($number)

 {

 if (!is_numeric($number)) {

 throw new \Exception('Invalid strength passed '.$number);

 }

 }

}

When things go Wrong: Throw an Exception

When things go wrong, we throw exceptions. Why? Well, first: it stops execution of the page

and immediately shows us a nice error.

 Tip

If you install the XDebug extension, exception messages are more helpful, prettier and will

fix your code for you (ok, that last part is a lie).

Catching Exceptions: Much Better than Catching a Cold

Second, exceptions are catchable. Here's what that means.

Suppose that I wanted to kill the page right here with an error. I actually have two options: I can

throw an exception, or I could print some error message and use a die statement to stop

execution.

But when you use a die statement, your script is truly done: none of your other code executes.

But with an exception, you can actually try to recover and keep going!

Let's look at how. Open up PdoShipStorage . Inside fetchAllShipsData() , change the

table name to fooooo :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

16

 // ... lines 17 - 19

20

 // ... lines 21 - 33

34

That clearly will not work. This method is called by ShipLoader , inside getShips() :

class PdoShipStorage implements ShipStorageInterface

{

 public function fetchAllShipsData()

 {

 $statement = $this->pdo->prepare('SELECT * FROM FOOOOO');

 }

}

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 20

21

22

 // ... lines 23 - 24

25

 // ... lines 26 - 31

32

 // ... lines 33 - 60

61

62

63

64

65

66

When we try to run this, we get an exception:

“Base table or view not found”

The error is coming from PdoShipStorage on line 18, but we can also see the line that called

this: ShipLoader line 23.

Now, what if we knew that sometimes, for some reason, an exception like this might be thrown

when we call fetchAllShipsData() . And when that happens, we don't want to kill the page

or show an error. Instead, we want to - temporarily - render the page with zero ships.

How can we do this? First, surround the line - or lines - that might fail with a try-catch block. In

the catch , add \Exception $e :

class ShipLoader

{

 public function getShips()

 {

 $shipsData = $this->queryForShips();

 }

 private function queryForShips()

 {

 return $this->shipStorage->fetchAllShipsData();

 }

}

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 60

61

62

63

64

65

 // ... lines 66 - 67

68

69

70

71

Now, if the fetchAllShipsData() method throws an exception, the page will not die.

Instead, the code inside catch will be called and then execution will keep going like normal:

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 60

61

62

63

64

65

66

67

68

69

70

71

That means, we can say $shipData = array() .

Using the Exception Object

And just like that, the page works. That's the power of exceptions. When you throw an

exception, any code that calls your code has the opportunity to catch the exception and say:

class ShipLoader

{

 private function queryForShips()

 {

 try {

 return $this->shipStorage->fetchAllShipsData();

 } catch (\Exception $e) {

 }

 }

}

class ShipLoader

{

 private function queryForShips()

 {

 try {

 return $this->shipStorage->fetchAllShipsData();

 } catch (\Exception $e) {

 // if all else fails, just return an empty array

 return [];

 }

 }

}

“No no no, I don't want the page to die. Instead, let's do something else.”

Of course, we probably also don't want this to fail silently without us knowing, so you might

trigger an error and print the message for our logs. Notice, in catch, we have access to the

Exception object, and every exception has a getMessage() method on it. Use that to

trigger an error to our logs:

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 60

61

62

63

64

65

66

67

68

69

70

71

72

Ok, refresh! Right now, we see the error on top of the page. But that's just because of our

error_reporting settings in php.ini . On production, this wouldn't display, but would write a line

to our logs.

class ShipLoader

{

 private function queryForShips()

 {

 try {

 return $this->shipStorage->fetchAllShipsData();

 } catch (\Exception $e) {

 trigger_error('Exception! '.$e->getMessage());

 // if all else fails, just return an empty array

 return [];

 }

 }

}

Chapter 10: Different Exception Classes

Catching an exception is really powerful. But you can get even fancier.

For right now, var_dump() the Exception object:

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 60

61

62

63

 // ... line 64

65

66

 // ... lines 67 - 69

70

71

72

73

Ok, this object is actually a PDOException . Two Important things: all exceptions are objects,

and all exception classes ultimately extend PHP's base Exception class. So if you could look

at the source code for PDOException , you'd see that it extends Exception :

And this ends up giving us a lot more flexibility when working with exceptions. Why?

Remember, we're pretending that - for some reason - we occasionally have some database

problems that cause a PDOException to be thrown. When that happens, we want to recover

and just show zero ships. And we've got that.

But what if something else goes wrong inside fetchAllShipsData() that has nothing to do

with talking to the database. Well, that would be truly unexpected, and in those cases, I want to

let the exception be thrown like normal so we can see it while we're developing.

So here's the question: how can we catch PDOException objects, but not any others? By

changing the catch to \PDOException :

class ShipLoader

{

 private function queryForShips()

 {

 try {

 } catch (\Exception $e) {

 var_dump($e);

 }

 }

}

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 60

61

62

63

 // ... line 64

65

66

 // ... lines 67 - 68

69

70

71

72

I'll also change the message to "Database Exception".

Refresh! Cool: it still catches that exception. But check this out: go back into PdoShipStorage

and - before the query - throw a different exception: there's one called

InvalidArgumentException :

lib/Service/PdoShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

16

 // ... lines 17 - 20

21

 // ... lines 22 - 34

35

There's nothing special about this class: PHP has several built-in exceptions, and you can use

whatever one feels right for your scenario.

But, it should not be caught by our try-catch. Try it out.

Yes! It totally kills the page.

Exceptions are something that you'll get used to leveraging as you develop more. But here's the

key takeaway: when things go wrong, throw an exception.

class ShipLoader

{

 private function queryForShips()

 {

 try {

 } catch (\PDOException $e) {

 trigger_error('Database Exception! '.$e->getMessage());

 }

 }

}

class PdoShipStorage implements ShipStorageInterface

{

 public function fetchAllShipsData()

 {

 throw new \InvalidArgumentException('something else went wrong!');

 }

}

Don't Get Too Clever

Oftentimes, I see people try to not throw exceptions. Instead, they try to recover in some way.

Don't do that. I would rather throw an exception, see the error in my error log and fix it than try

to render a broken page and never realize that there's a bug in my code.

In fact, most frameworks have a pretty easy way to automatically notify you - like via Slack or by

email - whenever an exception is thrown on your site.

Let's fix our code: take out the throw new exception and change the table back to ship . All

better.

Chapter 11: Magic Methods: __toString() __get,
__set()

If I give you an object, could you print it? What I mean is, in battle.php , after we determine

the winners, we echo $ship1->getName() , which is of course a string:

battle.php

 // ... lines 1 - 39

40

 // ... lines 41 - 59

60

61

 // ... lines 62 - 64

65

66

67

68

69

70

71

72

73

 // ... lines 74 - 108

109

110

111

But could we just print $ship1 and $ship2?

<html>

 <body>

 <div class="container">

 <div>

 <h2 class="text-center">The Matchup:</h2>

 <p class="text-center">

 <?php echo $ship1Quantity; ?> <?php echo $ship1-

>getName(); ?><?php echo $ship1Quantity > 1 ? 's': ''; ?>

 VS.

 <?php echo $ship2Quantity; ?> <?php echo $ship2-

>getName(); ?><?php echo $ship2Quantity > 1 ? 's': ''; ?>

 </p>

 </div>

 </div>

 </body>

</html>

battle.php

 // ... lines 1 - 39

40

 // ... lines 41 - 59

60

61

 // ... lines 62 - 64

65

66

67

68

69

70

71

72

73

 // ... lines 74 - 108

109

110

111

Does it make sense to print an object? The answer is... no. Try to battle, you get a very clear

error that says:

“Object of class Model\RebelShip could not be converted to string in battle.php .”

Remember this error: you'll eventually try to print an object on accident and see this!

But you CAN Print an Object

Why am I telling you this seemingly small and obvious fact? Because I'm lying! You can print

objects! You just have to do a little bit more work.

Here's the big picture: there are ways to give a class super-powers - like the ability to be printed

or - as we'll see next - the ability to pretend like it's an array.

Open up AbstractShip . To make objects of this class printable, go to the bottom and create

a new public function __toString() . Inside, return $this->getName() :

<html>

 <body>

 <div class="container">

 <div>

 <h2 class="text-center">The Matchup:</h2>

 <p class="text-center">

 <?php echo $ship1Quantity; ?> <?php echo $ship1; ?><?

php echo $ship1Quantity > 1 ? 's': ''; ?>

 VS.

 <?php echo $ship2Quantity; ?> <?php echo $ship2; ?><?

php echo $ship2Quantity > 1 ? 's': ''; ?>

 </p>

 </div>

 </div>

 </body>

</html>

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 124

125

126

127

128

129

Go back, refresh, and now it works just fine.

By adding the __toString() method - we gave PHP the ability to convert our object into a

string. The __toString() must be called exactly like this, and there are other methods that

take on special meaning. They all start with __ , and we've already seen one:

__construct() :

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 29

30

31

32

33

 // ... lines 34 - 128

129

These are collectively called Magic Methods.

The Magic __get()

There are actually just a few magic methods: let's look at another common one. In

battle.php , scroll down a little bit to where it shows the ship health. Change this: instead of

$ship1->getStrength() , say $ship1->strength :

abstract class AbstractShip

{

 public function __toString()

 {

 return $this->getName();

 }

}

abstract class AbstractShip

{

 public function __construct($name)

 {

 $this->name = $name;

 }

}

battle.php

 // ... lines 1 - 39

40

 // ... lines 41 - 59

60

61

 // ... lines 62 - 73

74

 // ... lines 75 - 95

96

 // ... line 97

98

 // ... lines 99 - 100

101

102

 // ... lines 103 - 108

109

110

111

This should not work, and PHPStorm tells us why: the member - meaning property - has private

access. We can't access a private property from outside the class.

But once again - via a magic method - you can bend the rules. This time, add a

public function __get() with a single argument: $propertyName . For now, just dump

that:

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 129

130

131

132

133

134

Refresh to see what happens. Interesting! It dumps the string strength . Here's the magic: if

you reference a property on your object that is not accessible - either because it doesn't exist or

is private or protected - and you have an __get() method, then PHP will call that and pass

you the property name.

Then - if you want - you can return its value. Add return $this->$propertyName :

<html>

 <body>

 <div class="container">

 <div class="result-box center-block">

 <dl class="dl-horizontal">

 <dd><?php echo $ship1->strength; ?></dd>

 </dl>

 </div>

 </div>

 </body>

</html>

abstract class AbstractShip

{

 public function __get($propertyName)

 {

 var_dump($propertyName);die;

 }

}

lib/Model/AbstractShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 129

130

131

132

133

134

This looks weird: PHP will see $propertyName , evaluate that to strength , and then return

$this->strength .

Refresh again. It works!

Not surprisingly, there's also a method called __set() , which allows you to assign a value to a

non-existent property, like $ship->strength = 100 .

Don't be Too Clever

Now, just because you have all this new power doesn't mean you should use it. As soon as you

add things like __get() , it starts to break your object oriented rules. All of a sudden, even

though it looks like strength is private, I actually can get it... so it's not really private.

You also won't get reliable auto completions from your editor - it has a hard time figuring out

what you're doing in these magic methods.

So my recommendation is: avoid using magic methods, except for __toString() and

__construct() .

But, you do need to know these exist: even if you don't use them, other libraries will, which

might be confusing if you're not watching for it.

But beyond magic methods, there are other super powers you can give your objects that I do

love. Let's look at those.

abstract class AbstractShip

{

 public function __get($propertyName)

 {

 return $this->$propertyName;

 }

}

Chapter 12: ArrayAccess: Treat your Object like an
Array

Let's do something else that's not possible. BattleResult is an object:

battle.php

 // ... lines 1 - 39

40

 // ... lines 41 - 59

60

61

 // ... lines 62 - 73

74

75

76

77

78

79

80

81

82

 // ... lines 83 - 101

102

 // ... lines 103 - 108

109

110

111

But, use your imagination: its only real job is to hold these three properties, plus it does have

one extra method: isThereAWinner() :

<html>

 <body>

 <div class="container">

 <div class="result-box center-block">

 <h3 class="text-center audiowide">

 Winner:

 <?php if ($battleResult->isThereAWinner()): ?>

 <?php echo $battleResult->getWinningShip()-

>getName(); ?>

 <?php else: ?>

 Nobody

 <?php endif; ?>

 </h3>

 </div>

 </div>

 </body>

</html>

lib/Model/BattleResult.php

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 51

52

53

54

55

56

But for the most part, it's kind of a glorified associative array.

Let's get crazy and treat the object like an array: say

$battleResults['winningShip']->getName() :

battle.php

 // ... lines 1 - 39

40

 // ... lines 41 - 59

60

61

 // ... lines 62 - 73

74

75

76

77

78

 // ... lines 79 - 80

81

82

 // ... lines 83 - 101

102

 // ... lines 103 - 108

109

110

111

That shouldn't work, but let's refresh and try it. Ah yes:

“Cannot use object of type Model\BattleResult as array in battle.php .”

class BattleResult

{

 private $usedJediPowers;

 private $winningShip;

 private $losingShip;

 public function isThereAWinner()

 {

 return $this->getWinningShip() !== null;

 }

}

<html>

 <body>

 <div class="container">

 <div class="result-box center-block">

 <h3 class="text-center audiowide">

 Winner:

 <?php if ($battleResult->isThereAWinner()): ?>

 <?php echo $battleResult['winningShip']-

>getName(); ?>

 <?php endif; ?>

 </h3>

 </div>

 </div>

 </body>

</html>

It's right - we're breaking the rules.

The ArrayAccess Interface

After the last chapter, you might expect me to go into BattleResults and add some new

magic method down at the bottom that would make this legal. But nope!

There is actually a second way to add special behavior to a class, and this method involves

interfaces. Basically, PHP has a group of built-in interfaces and each gives your class a different

super-power if you implement it.

The most famous is probably \ArrayAccess .

Of course as soon as you implement any interface, it will require you to add some methods. In

this case, PhpStorm is telling me that I needed offsetGet() , offsetUnset() ,

offsetExist() and offsetSet() :

lib/Model/BattleResult.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 75

76

Ok, let's do that, but with a little help from my editor. In PhpStorm, I can go to the "Code"-

>"Generate" menu and select "Implement Methods". Select these 4:

class BattleResult implements \ArrayAccess

{

}

lib/Model/BattleResult.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 56

57

58

 // ... line 59

60

61

62

63

 // ... line 64

65

66

67

68

 // ... line 69

70

71

72

73

 // ... line 74

75

76

Cool!

And just by doing this, it's legal to treat our object like an array. And when someone tries to

access some array key - like winningShip - we'll just return that property instead.

So, for offsetExists() , use a function called property_exists() and pass it $this

and $offset : that will be whatever key the user is trying to access:

lib/Model/BattleResult.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 56

57

58

59

60

 // ... lines 61 - 75

76

class BattleResult implements \ArrayAccess

{

 public function offsetExists($offset)

 {

 }

 public function offsetGet($offset)

 {

 }

 public function offsetSet($offset, $value)

 {

 }

 public function offsetUnset($offset)

 {

 }

}

class BattleResult implements \ArrayAccess

{

 public function offsetExists($offset)

 {

 return property_exists($this, $offset);

 }

}

For offsetGet() , return $this->$offset and in offsetSet() , say

$this->$offset = $value :

lib/Model/BattleResult.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 61

62

63

64

65

66

67

68

69

70

 // ... lines 71 - 75

76

And finally - even though it would be weird from someone to unset one of our keys, let's make

that legal by removing the property: unset($this->$offset) :

lib/Model/BattleResult.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 71

72

73

74

75

76

Ok, this is a little weird, but it works. Now, just like with magic methods, don't run and use this

everywhere for no reason. But occasionally, it might come in handy. And more importantly, you

will see this sometimes in outside libraries. This means that even though something looks like

an array, it might actually be an object.

class BattleResult implements \ArrayAccess

{

 public function offsetGet($offset)

 {

 return $this->$offset;

 }

 public function offsetSet($offset, $value)

 {

 $this->$offset = $value;

 }

}

class BattleResult implements \ArrayAccess

{

 public function offsetUnset($offset)

 {

 unset($this->$offset);

 }

}

Chapter 13: IteratorAggregate: Loop over an
Object!?

Let me show you just one other really cool, magic thing - this is my favorite. Right now, in

ShipLoader , the getShips() method return an array:

lib/Service/ShipLoader.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 20

21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 70

71

72

Instead of doing that, I'm going to return an object - a ShipCollection object. Don't ask why

yet. I'll show you some reasons in a minute.

Creating ShipCollection

First create a new PHP class called ShipCollection :

class ShipLoader

{

 public function getShips()

 {

 $ships = array();

 $shipsData = $this->queryForShips();

 foreach ($shipsData as $shipData) {

 $ships[] = $this->createShipFromData($shipData);

 }

 return $ships;

 }

}

lib/Model/ShipCollection.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 15

16

Hey, check it out: PhpStorm already correctly-guessed that this should have the Model

namespace: it understands our PSR-0 naming convention.

Inside, add a private $ships property: this will be an array of Ship objects. Then add a

public function __construct() method, give it a $ships argument, and set that

property inside:

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

Above the $ships just to help our editor with autocompletion later, add some PHP Doc that

says that this is an array of AbstractShip :

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 15

16

namespace Model;

class ShipCollection

{

}

class ShipCollection

{

 private $ships;

 public function __construct(array $ships)

 {

 $this->ships = $ships;

 }

}

class ShipCollection

{

 /**

 * @var AbstractShip[]

 */

 private $ships;

}

Obviously, ShipCollection is a class... but its only purpose is to be a small wrapper around

an array. In ShipLoader , instead of returning the array, return a new ShipCollection()

object and pass it $ships :

lib/Service/ShipLoader.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 21

22

23

 // ... lines 24 - 31

32

33

 // ... lines 34 - 71

72

73

Now, stop: we're referencing ShipCollection inside of ShipLoader , so we need a use

statement for it. Go to the top to add it. But wait! It's already there! Thank you PhpStorm: it

added it automatically for me when I auto-completed the class name. Whether your editor does

this or not, just make sure to not forget those use statements!

Finally, above the method, we're not returning an array of AbstractShip objects anymore:

we're now returning a ShipCollection :

use Model\ShipCollection;

class ShipLoader

{

 public function getShips()

 {

 return new ShipCollection($ships);

 }

}

lib/Service/ShipLoader.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 18

19

20

21

22

23

 // ... lines 24 - 31

32

33

 // ... lines 34 - 71

72

73

Cool Now again, don't worry about why we're doing this yet. For now, let's try to fix our app.

Implementing ArrayAccess First

First, go to index.php . Boom!

“Cannot use object of type ShipCollection as array in index.php on line 13.”

No surprise. After creating the $brokenShip , we're trying to add it to the ShipCollection

as if it were an array!

index.php

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 145

That's not allowed... oh wait it is! Open ShipCollection and make it implement

\ArrayAccess :

use Model\ShipCollection;

class ShipLoader

{

 /**

 * @return ShipCollection

 */

 public function getShips()

 {

 return new ShipCollection($ships);

 }

}

$ships = $shipLoader->getShips();

$brokenShip = new BrokenShip('Just a hunk of metal');

$ships[] = $brokenShip;

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 35

36

Now, at the bottom, I'll open the "Code"->"Generate" menu and implement the same 4 methods

as before. This is even easier now: in offsetExists() , use

array_key_exists($offset, $this->ships) . The other methods are even easier: I'll fill

each in by acting on the $ships array property:

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Perfect! The ShipCollection object can now act like an array.

So refresh again! It works!

You can't Loop Over an Object :(

class ShipCollection implements \ArrayAccess

{

}

class ShipCollection implements \ArrayAccess

{

 public function offsetExists($offset)

 {

 return array_key_exists($offset, $this->ships);

 }

 public function offsetGet($offset)

 {

 return $this->ships[$offset];

 }

 public function offsetSet($offset, $value)

 {

 $this->ships[$offset] = $value;

 }

 public function offsetUnset($offset)

 {

 unset($this->ships[$offset]);

 }

}

Ok, let's start a battle. Woh: check this out - there are no ships. What's going on here?

Look back at index.php :

index.php

 // ... lines 1 - 36

37

 // ... lines 38 - 62

63

64

65

66

67

68

 // ... lines 69 - 79

80

81

 // ... lines 82 - 95

96

97

98

 // ... lines 99 - 141

142

143

144

Eventually we try to loop over the $ships variable but this is a ShipCollection object! It

turns out that after implementing ArrayAccess , we can use the array syntax with an object,

but we still cannot loop over it like an array.

The IteratorAggregate Interface

Can we teach PHP how to loop over our object? Absolutely: and the answer is another

interface. To implement a second interface, add a comma and then use

\IteratorAggregate :

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

 // ... lines 6 - 42

<html>

 <body>

 <div class="container">

 <div class="page-header">

 <h1>OO Battleships of Space</h1>

 </div>

 <table class="table table-hover">

 <tbody>

 <?php foreach ($ships as $ship): ?>

 <?php endforeach; ?>

 </tbody>

 </table>

 </div>

 </body>

</html>

class ShipCollection implements \ArrayAccess, \IteratorAggregate

Repeat our trick from before: "Code"->"Generate" and then "Implement Methods". This time we

only need to add one method: getIterator() . The easiest way to make this work is to return

another core helper class: return new \ArrayIterator() and pass that

$this->ships :

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 36

37

38

39

40

41

This tells PHP that when we try to loop over this object, it should actually loop over the $ships

array property.

Ok, give it a try. Hey guys, we have ships! By adding 2 interfaces, we've made our

ShipCollection object look and act almost exactly like an array.

Why did we Do this?

Ok, let's finally answer the question: why did we do this? Because sometimes, it might be useful

to add some helpful methods to an array. Well, of course you can't do that, but you can add

methods to a class.

For example, add a new method called public function removeAllBrokenShips() ,

because maybe we want a collection of only working ships. By adding this method, that would

be really easy:

class ShipCollection implements \ArrayAccess, \IteratorAggregate

{

 public function getIterator()

 {

 return new \ArrayIterator($this->ships);

 }

}

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 41

42

43

 // ... lines 44 - 48

49

50

Inside, loop over $this->ships as $key => $ship . Then, if

!$ship->isFunctional() , unset($this->ships[$key]) :

lib/Model/ShipCollection.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 41

42

43

44

45

46

47

48

49

50

Let's test this fancy new method out. In index.php , call

$ships->removeAllBrokenShips() :

index.php

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 18

19

 // ... lines 20 - 147

This looks and acts like an array, but with the super-power to have methods on it. ooOOOooo.

Refresh and check this out: no more broken ships, ever.

class ShipCollection implements \ArrayAccess, \IteratorAggregate

{

 public function removeAllBrokenShips()

 {

 }

}

class ShipCollection implements \ArrayAccess, \IteratorAggregate

{

 public function removeAllBrokenShips()

 {

 foreach ($this->ships as $key => $ship) {

 if (!$ship->isFunctional()) {

 unset($this->ships[$key]);

 }

 }

 }

}

$ships = $shipLoader->getShips();

$brokenShip = new BrokenShip('Just a hunk of metal');

$ships[] = $brokenShip;

$ships->removeAllBrokenShips();

There are more of these interfaces that have special powers, but these are the most common

ones. And the most important thing is just to understand that they exist and how they work.

Chapter 14: Traits: "Horizontal" Reuse

Ok team: we need a new ship class - a BountyHunterShip . Start simple: in the model

directory, add a new class: BountyHunterShip . Once again, PhpStorm already added the

correct namespace for us:

lib/Model/BountyHunterShip.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 20

21

Like every other ship, extend AbstractShip . Ah, but we do not need a use statement for

this: that class lives in the same namespace as us.

Just like with an interface, when you extend an abstract class, you usually need to implement

some methods. Go back to "Code"->"Generate"->"Implement Methods". Select the 3 that this

class needs:

namespace Model;

class BountyHunterShip extends AbstractShip

{

}

lib/Model/BountyHunterShip.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Great!

Now, bounty hunter ships are interesting for a few reasons. First, they're never broken: those

scrappy bounty hunters can always get the ship started. For isFunctional() , return true :

lib/Model/BountyHunterShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 18

19

20

21

22

 // ... lines 23 - 27

28

For getType() , return Bounty Hunter :

class BountyHunterShip extends AbstractShip

{

 public function getJediFactor()

 {

 // TODO: Implement getJediFactor() method.

 }

 public function getType()

 {

 // TODO: Implement getType() method.

 }

 public function isFunctional()

 {

 // TODO: Implement isFunctional() method.

 }

}

class BountyHunterShip extends AbstractShip

{

 public function isFunctional()

 {

 return true;

 }

}

lib/Model/BountyHunterShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

16

17

 // ... lines 18 - 27

28

Simple. But the jediFactor will vary ship-by-ship. Add a JediFactor property and return

that from inside getJediFactor() :

lib/Model/BountyHunterShip.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 27

28

At the bottom of the class add a public function setJediFactor() so that we can

change this property: $this->jediFactor = $jediFactor :

lib/Model/BountyHunterShip.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 23

24

25

26

27

28

Cool!

class BountyHunterShip extends AbstractShip

{

 public function getType()

 {

 return 'Bounty Hunter';

 }

}

class BountyHunterShip extends AbstractShip

{

 private $jediFactor;

 public function getJediFactor()

 {

 return $this->jediFactor;

 }

}

class BountyHunterShip extends AbstractShip

{

 public function setJediFactor($jediFactor)

 {

 $this->jediFactor = $jediFactor;

 }

}

To get one of these into our system, let's do something simple. Open ShipLoader . At the

bottom of getShips() , add a new ship to the collection:

$ships[] = new BountyHunterShip() called 'Slave I' - Boba Fett's famous ship:

lib/Service/ShipLoader.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 22

23

24

 // ... lines 25 - 28

29

30

31

32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 74

75

76

Ok, head back and refresh! Yes! Slave I - Bounty Hunter, and it's not broken. That was easy.

Code Duplication

So, what's the problem? Look at BountyHunterShip and also look at Ship : there's some

duplication. Both classes have a jediFactor property, a getJediFactor() method that

returns this, and a setJediFactor that changes it.

Duplication is a bummer. How can we fix this? Well, we could use inheritance. But in this case,

it's weird.

For example, we could make BountyHunterShip extend Ship , but then it would inherit this

extra stuff that we don't really want or need. We could make it work, but I just don't like it.

Ok, what about making Ship extend BountyHunterShip? That just completely feels wrong:

philosophically, not all Ships are BountyHunterShips - it's just not the right way to model

these classes.

class ShipLoader

{

 public function getShips()

 {

 foreach ($shipsData as $shipData) {

 $ships[] = $this->createShipFromData($shipData);

 }

 // Boba Fett's ship

 $ships[] = new BountyHunterShip('Slave I');

 }

}

Are we stuck? What we want is a way to just share these 3 things: the jediFactor property,

getJediFactor() and setJediFactor() . When you only need to share a few things, the

right answer might be a trait.

Hello Mr Trait

Let's see what this trait thing is. In the Model directory, create a new PHP class called

SettableJediFactorTrait . Now, change the class keyword to trait . Traits look and

feel exactly like a normal class:

lib/Model/SettableJediFactorTrait.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 17

18

In fact, open up BountyHunterShip and move the property and first method into the trait.

Also grab setJediFactor() and put that in the trait too:

lib/Model/SettableJediFactorTrait.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

The only difference between classes and traits is that traits can't be instantiated directly. Their

purpose is for sharing code.

namespace Model;

trait SettableJediFactorTrait

{

}

trait SettableJediFactorTrait

{

 private $jediFactor;

 public function getJediFactor()

 {

 return $this->jediFactor;

 }

 public function setJediFactor($jediFactor)

 {

 $this->jediFactor = $jediFactor;

 }

}

In BountyHunterShip , we can effectively copy and paste the contents of that trait into this

class by going inside the class and adding use SettableJediFactorTrait :

lib/Model/BountyHunterShip.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 17

18

That use statement has nothing to do with the namespace use statements: it's just a

coincidence. As soon as we do this, when PHP runs, it will copy the contents of the trait and

pastes them into this class right before it executes our code. It's as if all the code from the trait

actually lives inside this class.

And now, we can do the same thing inside of Ship : remove the jediFactor property and the

two methods. At the top, use SettableJediFactorTrait :

lib/Model/Ship.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 27

28

Give it a try! Refresh. No errors! In fact, nothing changes at all. This is called horizontal reuse:

because you're not extending a parent class, you're just using methods and properties from

other classes.

This is perfect for when you have a couple of classes that really don't have that much in

common, but do have some shared functionality. Traits are also cool because you cannot

extend multiple classes, but you can use multiple traits.

class BountyHunterShip extends AbstractShip

{

 use SettableJediFactorTrait;

}

class Ship extends AbstractShip

{

 use SettableJediFactorTrait;

}

Chapter 15: Object Composition FTW!

In modern PHP, you're going to spend a lot of time working with other people's classes: via

external libraries that you bring into your project to get things done faster. Of course, when you

do that: you can't actually edit their code if you need to change or add some behavior.

Fortunately, OO code gives us some really neat ways to deal with this limitation.

Modifying a Class without Modifying it?

For the next few minutes, I want you to pretend like our PDOShipStorage is actually from a

third-party library. In other words, we can't modify it.

Now, let's say whenever we call fetchAllShipsData() , it's really important for us to log to a

file, how many ships were found. But if we can't edit this file, how can we do that?

Using Inheritance

There's actually two ways to do this, and both are pretty awesome. The first way is to create a

new class that extends PDOShipStorage , like LoggablePDOShipStorage , and override

some methods to add logging.

Nah, Use Composition

But forget that, let's skip to a better method called composition. First, create a new class in the

Service directory called LoggableShipStorage , but do not extend PDOShipStorage :

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 32

33

Now, the only rule for any ship storage object is that it needs to implement the

ShipStorageInterface . Add that, and then go to our handy "Code"->"Generate" method to

implement the 2 methods we need:

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

 // ... lines 16 - 20

21

22

23

24

 // ... line 25

26

 // ... lines 27 - 32

33

So far, this is how every ship storage starts.

But LoggableShipStorage will not actually do any of the ship-loading work - it'll offload all

that hard work to some other ship storage object, like PDOShipStorage . To do that, add a new

private $shipStorage property and a public function __construct() method that

accepts one ShipStorageInterface argument. Then, set that value onto the

$shipStorage property:

namespace Service;

class LoggableShipStorage implements ShipStorageInterface

{

}

class LoggableShipStorage implements ShipStorageInterface

{

 public function fetchAllShipsData()

 {

 }

 public function fetchSingleShipData($id)

 {

 }

}

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 32

33

For fetchAllShipData() , just

return $this->shipStorage->fetchAllShipsData() . Repeat for the other method:

return $this->shipStorage->fetchSingleShipData() :

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 22

23

24

25

26

 // ... lines 27 - 32

33

We've now created a wrapper object that offloads all of the work to an internal ship storage

object. This is composition: you put one object inside of another.

To use the new class, open up Container . Inside getShipStorage() , add

$this->shipStorage = new LoggableShipStorage() and pass it

$this->shipStorage , which is the PDOShipStorage object:

class LoggableShipStorage implements ShipStorageInterface

{

 private $shipStorage;

 public function __construct(ShipStorageInterface $shipStorage)

 {

 $this->shipStorage = $shipStorage;

 }

}

class LoggableShipStorage implements ShipStorageInterface

{

 public function fetchSingleShipData($id)

 {

 return $this->shipStorage->fetchSingleShipData($id);

 }

}

lib/Service/Container.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 51

52

53

54

55

56

57

58

59

60

 // ... lines 61 - 62

63

 // ... lines 64 - 75

76

We've just pulled a "fast one" on our application: our entire app thinks we're using

PDOShipStorage , but we just changed that! If you refresh now, nothing is different: everything

still eventually goes through the PDOShipStorage object.

But now, we have the opportunity to add more functionality - or to change functionality - in either

of these methods.

Add some Logging!

To give a really simple example, replace the return statement with $ships = and add

return $ships below that:

class Container

{

 public function getShipStorage()

 {

 if ($this->shipStorage === null) {

 $this->shipStorage = new PdoShipStorage($this->getPDO());

 //$this->shipStorage = new

JsonFileShipStorage(__DIR__.'/../../resources/ships.json');

 // use "composition": put the PdoShipStorage inside the

LoggableShipStorage

 $this->shipStorage = new LoggableShipStorage($this-

>shipStorage);

 }

 }

}

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 32

33

Between, we could call some new log() method, passing it a string like:

just fetched %s ships - passing that a count() of $ships :

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

16

17

18

19

20

21

 // ... lines 22 - 32

33

Below, add a new private function log() with a $message argument:

lib/Service/LoggableShipStorage.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 27

28

29

30

31

32

33

class LoggableShipStorage implements ShipStorageInterface

{

 public function fetchAllShipsData()

 {

 $ships = $this->shipStorage->fetchAllShipsData();

 return $ships;

 }

}

class LoggableShipStorage implements ShipStorageInterface

{

 public function fetchAllShipsData()

 {

 $ships = $this->shipStorage->fetchAllShipsData();

 $this->log(sprintf('Just fetched %s ships', count($ships)));

 return $ships;

 }

}

class LoggableShipStorage implements ShipStorageInterface

{

 private function log($message)

 {

 // todo - actually log this somewhere, instead of printing!

 echo $message;

 }

}

You should do something more intelligent in a real app, but to prove it's working, echo that

message.

Let's refresh! There's our message!

Why is Composition Cool?

Wrapping one object inside of another like this is called composition. You see, when you want to

change the behavior of an existing class, the first thing we always think of is

“Oh, just extend that class and override some methods”

But composition is another option, and it does have some subtle advantages. If we had

extended PDOShipStorage and then later wanted to change back to our

JsonFileShipStorage , then all of a sudden we would need to change our

LoggableShipStorage to extend JsonFileShipStorage . But with composition, our

wrapper class can work with any ShipStorageInterface . We could change just one line to

go back to loading files from JSON and not lose our logging.

This isn't always a ground-breaking difference, but this is what people mean when they talk

about "composition over inheritance".

Alright guys! I have tried to think of all the weird stuff that we haven't talked about with object

oriented coding, and I've run out! You are now super qualified with this stuff - so get out there,

find some classes, find some interfaces, make some traits, do some good, and just keep

practicing. It's going to sink in more and more over time, and serve you for years to come, in

many different languages.

See you next time!

With <3 from SymfonyCasts

