
Object Oriented Programming
(Course 1)

Chapter 1: The Project

Welcome KnpU Peeps! I am so glad you're here today - I am not kidding - because we're

intro'ing into one of my absolute favorite topics: object-oriented programming. This is what gets

me up in the morning, excited to go to work, this is why I love to code. And I hope, you'll be as

geeked about these new tools as I am.

Like always, we're going to learn this stuff by building a real app! Don't be lazy - code along with

me to really get the feel for this stuff. Go to the screencast page and click to download the code.

Unzip that file - you'll see a "start" directory. I'll rename this to oo and move it into a Sites/

directory in my Home folder.

There's not much going on yet guys - just 3 PHP files and some CSS and JS files. That's it.

Let's take the app for a test drive!

You can of course use a web server like Apache and setup a Virtual Host, but I perfer the built-in

PHP web server. Open up a terminal. Move into the oo directory. From here, to start the built-in

web server you can call php with the -S option and pass it an address:

cd ~/Sites/oo

php -S localhost:8000

It'll hang there, and that means it's working: we instantly have a web server at the address that's

serving from our directory. Let's go to the browser and try it out:

http://localhost:8000

Voilà! Welcome to OO Battleships of Space! This awesome app does one important thing: it lets

you fight one ship against another. We have 4 ships, each has a "weapon power", which is your

offense, "strength", which is your defense and "Jedi Factor". This last one randomly causes one

ship to go all "Luke-Skywalker" on another and and destroy it instantly.

Ok, let's put 4 "Jedi Starfighters" against 1 giant "Super Star Destroyer". A Super Star Destroyer

is a lot more powerful, so it'll probably win.

Stunning upset! The Jedi Starfighters won! Probably they used their Jedi ways to find some

crazy weakness. Of course, we can go back and do a re-match: 4 Jedi Starfighters against

another Super Star Destroyer, and now the Destroyer wins.

How the App Works

Behind this, we have exactly 3 PHP files. First is index.php , which is the homepage. It

requires functions.php and calls get_ships() from it:

index.php

1

2

3

4

 // ... lines 5 - 106

All that does is create this nice associative array of 4 ships. Each has name , weapon_power ,

jedi_factor and strength keys:

<?php

require __DIR__.'/functions.php';

$ships = get_ships();

functions.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 92

Back in index.php , we use those below in a foreach to create a table:

function get_ships()

{

 return array(

 'starfighter' => array(

 'name' => 'Jedi Starfighter',

 'weapon_power' => 5,

 'jedi_factor' => 15,

 'strength' => 30,

),

 'cloakshape_fighter' => array(

 'name' => 'CloakShape Fighter',

 'weapon_power' => 2,

 'jedi_factor' => 2,

 'strength' => 70,

),

 'super_star_destroyer' => array(

 'name' => 'Super Star Destroyer',

 'weapon_power' => 70,

 'jedi_factor' => 0,

 'strength' => 500,

),

 'rz1_a_wing_interceptor' => array(

 'name' => 'RZ-1 A-wing interceptor',

 'weapon_power' => 4,

 'jedi_factor' => 4,

 'strength' => 50,

),

);

}

index.php

 // ... lines 1 - 3

4

 // ... lines 5 - 65

66

67

68

69

70

71

72

73

 // ... lines 74 - 106

And we use it again to create the options in the select drop-downs:

index.php

 // ... lines 1 - 78

79

 // ... lines 80 - 81

82

83

84

85

86

87

 // ... lines 88 - 99

100

 // ... lines 101 - 106

When we submit, it POST's to battle.php . That also calls get_ships() , reads some

$_POST data to figure out which ships are fighting and how many, and eventually calls a

battle() function that finds the winnner. I'll show you that later:

$ships = get_ships();

 <?php foreach ($ships as $ship): ?>

 <tr>

 <td><?php echo $ship['name']; ?></td>

 <td><?php echo $ship['weapon_power']; ?></td>

 <td><?php echo $ship['jedi_factor']; ?></td>

 <td><?php echo $ship['strength']; ?></td>

 </tr>

 <?php endforeach; ?>

 <form method="POST" action="/battle.php">

 <select class="center-block form-control btn drp-

dwn-width btn-default btn-lg dropdown-toggle" name="ship1_name">

 <option value="">Choose a Ship</option>

 <?php foreach ($ships as $key => $ship): ?>

 <option value="<?php echo $key; ?>"><?php

echo $ship['name']; ?></option>

 <?php endforeach; ?>

 </select>

 </form>

battle.php

 // ... lines 1 - 3

4

 // ... line 5

6

7

8

9

 // ... lines 10 - 25

26

27

28

29

 // ... lines 30 - 97

Then we use that $outcome to show a status report below:

battle.php

 // ... lines 1 - 28

29

 // ... lines 30 - 66

67

68

69

70

71

72

73

74

 // ... lines 75 - 97

There's our app! It's got no object-oriented code yet. And you know what? That makes me sad.

Time to fix it!

$ships = get_ships();

$ship1Name = isset($_POST['ship1_name']) ? $_POST['ship1_name'] : null;

$ship1Quantity = isset($_POST['ship1_quantity']) ?

$_POST['ship1_quantity'] : 1;

$ship2Name = isset($_POST['ship2_name']) ? $_POST['ship2_name'] : null;

$ship2Quantity = isset($_POST['ship2_quantity']) ?

$_POST['ship2_quantity'] : 1;

$ship1 = $ships[$ship1Name];

$ship2 = $ships[$ship2Name];

$outcome = battle($ship1, $ship1Quantity, $ship2, $ship2Quantity);

$outcome = battle($ship1, $ship1Quantity, $ship2, $ship2Quantity);

 <h3 class="text-center audiowide">

 Winner:

 <?php if ($outcome['winning_ship']): ?>

 <?php echo $outcome['winning_ship']['name']; ?>

 <?php else: ?>

 Nobody

 <?php endif; ?>

 </h3>

Chapter 2: A Class and an Object

Let's create a fresh file that we can play around with - call it play.php . Now we can warn the

rebels that It's a TRAAAP!

play.php

1

2

3

Put play.php in the URL... and there it is! We've conquered the echo statement!

Creating a Class

Now to the cool stuff! The first super-important big awesome-crazy thing in object-oriented

programming is.... a class! To create one, write the keyword class then the name of it - this

name can be almost anything alphanumeric. Finish things off with an open curly brace and a

close curly brace. Nice work.

play.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 9

Don't worry about what this "class" thing is yet. But if you refresh, you can see that creating a

class doesn't actually do anything.

Creating an Object

Creating a class, check! And with that, we can see the second super-important big awesome-

crazy thing in object-oriented programming: an object! Once you have a class, you can

instantiate a new object from that class, and it looks like this.

<?php

echo 'IT\'S A TRAAAAAAPPPP!';

class Ship

{

}

Create a variable called $myShip and then use the new keyword, followed by the name of the

class, then open parenthesis, close parenthesis:

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 12

It kind of looks like we're calling a function called Ship() , except for the new keyword in front

that tells PHP that Ship is a class, and we're instantiating a new object from it.

Before we explain any of this - refresh again. Still no changes. We have this new thing called an

object that's set to $myShip , but it doesn't cause anything to happen.

The Skinny on Classes and Objects

Ok, let me explain this class and object stuff. When this stuff finally "clicks", you'll know that you

really get object-oriented programming. So listen carefully, and I'll come back to this later as we

add more stuff.

Class: A Worksheet with Labels and Blank Lines

Pretend with me: you're the manager of a shipping-dock on the Deathstar. To avoid any force-

choking, when each ship lands, you need to take an inventory of it: what's its name, size, does it

have a warp drive, what's the fuel level, weapon power, defense strength and other stuff. And

also imagine, that even though you're in a flying space death machine, you don't have

computers: you track everything by making copies of a template worksheet you designed in

Excel.

A class is like that empty template, with blank lines for the ship's name and size, a yes/no option

for warp drive and blanks for fuel-level, weapon power and defense strength. It's not actually a

ship of course, but it defines all the properties that a ship might have.

class Ship

{

}

// but it doesn't do anything yet...

$myShip = new Ship();

Object: A Completed Worksheet

Ok, I think you've got the gist on classes, now let's go over objects. This is where I'm supposed

to tell you to think of an object like a real ship that's landed in our dock. That's correct, but I think

it's closer to think of an object like a completed worksheet that we've filled out for a ship:

complete with its name, weapon details, strength and fuel-levels.

If 10 ships land, then we'll print out 10 blank worksheets and fill each in with different details. If

we re-fuel one of those ships, we'll update the fuel level on its worksheet.

But each ship is using the same template, or class. If we wanted to also track a ship's weight,

we'd need to go back to the template and add a field for it there.

Right now, our class is empty. That's like a template with no blank fields to fill in. Not helpful -

time to fix that!

Objects are like Uptight (Structured) Arrays

Ok, clear your mind quickly and think about arrays. An array holds data on keys: we choose a

key - like hasWarpDrive - then put something there. Simple.

An object works exactly like an array, except instead of calling these storage spaces keys, we

call them properties. But basically, they work the same way.

There is one big difference between an array and an object. With an array, you can just invent a

new key and set data on it. But with an object, you need to pre-register the possible properties it

might have in its class.

Back at our loading dock, this means an array is like a template where each line has two blanks:

one for the value and one for what that value is. We might fill in a line with the ship's name, but

not the fuel level. And maybe we'll write down the color of the ship on another line, and because

I don't really like my job, I'll put my current favorite song on the last line. If I give 10 sheets to my

manager, they'll have no guarantee what data I may or may not have recorded. Simple, but

unstructured.

But an object is like the sheets we were talking about earlier: it has a list of exactly what we

want to track with a blank next to each for that value. So if we want to be able to store the name

of each ship, we'll need to add a spot for it on the template. In object-oriented land, we need to

add a name property to our Ship class.

Adding a Property to a Class

Let's do it! Say public then $, then the name of your property. In this case, our name is

actually name :

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 12

This doesn't do anything, but now Ship objects are allowed to hold data on a name property.

And how do we set that? We do it with this syntax here:

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 13

Setting the property

Now we can read the data from that property using the same syntax:

play.php

 // ... lines 1 - 8

9

10

11

12

Try it out! It's working great.

class Ship

{

 public $name;

}

// but it doesn't do anything yet...

$myShip = new Ship();

class Ship

{

 public $name;

}

// but it doesn't do anything yet...

$myShip = new Ship();

$myShip->name = 'TIE Fighter';

$myShip = new Ship();

$myShip->name = 'TIE Fighter';

echo 'Ship Name: '.$myShip->name;

Does this feel familiar? It works exactly like an array, except instead of the square-bracket

syntax, we use this dash, greater-than syntax, let's call that an "arrow".

The real difference between an object and an array is that an object has a class that defines all

possible properties that it can hold, instead of being able to store any random keys you dream

up, like an array.

TIP Technically, you can set a property (e.g. $myShip->weight = 100) on an object without

creating a property for it in the class. But this is frowned upon, and not seen commonly in

higher-quality code. So don't do it!

Classes: Data Structure Docs

And with this simple difference, you get a huge benefit. A class is like programmer

documentation. If I give you an array, you have no idea what data is on it. You can var_dump it

to see, then just hope that it'll always have the same keys in the future.

But if I hand you a Ship object, you know something about it. You know that it will always have

a name property, and it'll never have email or phone properties: because they're not in the

class. The class gives us a skeleton and some rules we know it'll follow.

Now let's talk about something even better than this: methods.

Chapter 3: Class Methods

Arrays and objects have a lot in common: arrays have keys while objects have properties, but

both store data.

Objects have one other big, incredible, mind-blowing advantage: methods. A method is a fancy

word for a function, and we're all comfortable with those. The difference is that a method lives

inside of a class.

To create a method, start with public function . After this, it looks like a normal function -

let's call ours sayHello , and add the normal parenthesis and curly braces stuff. Inside, we can

do anything - so let's echo Hello :

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 20

To call the method, let's use our object "arrow" syntax. Let's add an <hr/> so I don't confuse

myself, then $myShip , then arrow, then sayHello() :

play.php

 // ... lines 1 - 13

14

 // ... lines 15 - 18

19

The only difference between accessing a property and a method is the open parenthesis and

close parenthesis, so don't forget that. And a method is just like a traditional function, except it

lives inside of the class, so you have to call it on the object. And when we refresh, success!

class Ship

{

 public $name;

 public function sayHello()

 {

 echo 'Hello!';

 }

}

$myShip = new Ship();

$myShip->sayHello();

This is kind of amazing because we have little packages of data that can now perform actions

and do things through methods. Arrays can't do anything like that.

Referencing Properties from Inside a Class

So let's add another - a getName() method. Remember how functions can return a value?

Sure, methods can do that too. Let's not actually return the name of this ship yet, let's fake it:

play.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 11

12

13

14

15

16

 // ... lines 17 - 25

Down below, we call it the exact same way, except we can echo what it returns:

play.php

 // ... lines 1 - 18

19

20

21

22

 // ... lines 23 - 25

Now refresh! There's our fake name. Of course, what I really want to do is return the name of

the ship that I'm calling this method on. I know, not the most interesting function, but it gives us

a new problem. When we have the $myShip variable, we know how to access a property - just

use the arrow syntax on it. But when we're inside of the class, how can we get the value of the

name property?

The answer is with a very special variable called $this :

class Ship

{

 public function getName()

 {

 return 'FAKE NAME';

 }

}

$myShip = new Ship();

$myShip->name = 'TIE Fighter';

echo 'Ship Name: '.$myShip->getName();

play.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 11

12

13

14

15

16

 // ... lines 17 - 25

Here's the rule: when you're inside of a method, you magically have access to a variable called

$this . And $this is whatever Ship object that we're calling the method on, in our case our

favorite $myShip object whose name is "Jedi Starship". In all cases, the variable is called

$this , that's just what the PHP Jedi elders decided this magic name should be.

When we refresh, hey - there's our ship's real name!

Adding more Properties

Our Ship class has just one property. Let's go back and look at the get_ships() function I

wrote before we started. Here, each ship has a key for name , weapon_power , jedi_factor

and strength . Let's add three more properties to our class: weaponPower , jediPower and

strength . I camel-cased weaponPower and jediPower - that's kind of a standard, but you

can do whatever you want:

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 21

22

 // ... lines 23 - 31

class Ship

{

 public function getName()

 {

 return $this->name;

 }

}

class Ship

{

 public $name;

 public $weaponPower;

 public $jediFactor;

 public $strength;

}

Default Property Values

You can also give a property a default value. So if you create a new Ship object and we never

set the weaponPower , let's default its value to zero. Let's do that for jediFactor and

strength too.

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 21

22

 // ... lines 23 - 31

These new properties aren't special, so we can use them like before. Let's var_dump the

weaponPower property:

play.php

 // ... lines 1 - 24

25

 // ... lines 26 - 30

31

32

When we refresh, it dumps zero. Cool! That's using our default value because we never actually

set the weaponPower . Let's set it now - $myShip->weaponPower = 10; :

play.php

 // ... lines 1 - 24

25

26

27

 // ... lines 28 - 31

32

33

Now we see 10. Awesome!

class Ship

{

 public $name;

 public $weaponPower = 0;

 public $jediFactor = 0;

 public $strength = 0;

}

$myShip = new Ship();

echo '<hr/>';

var_dump($myShip->weaponPower);

$myShip = new Ship();

$myShip->name = 'TIE Fighter';

$myShip->weaponPower = 10;

echo '<hr/>';

var_dump($myShip->weaponPower);

Chapter 4: Methods that Do work

Our two methods are simple. So now let's add something useful. We'll be printing out the details

of our ships all over the place, so I need a way to see the weaponPower , the strength and

the jediFactor all at once - like a little summary. One handy way to do this is with a new

method that creates that summary string and returns it to us.

Make a new function getNameAndSpecs() . Let's use the nice sprintf function with %s

wildcards for the ship's name, followed by the weaponPower , jediFactor and strength .

Now, we need to pass it what to fill in for those %s placeholders. To reference the name, use

the magic $this variable: $this->name . Do the same thing for weaponPower ,

jediFactor and strength :

play.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 22

23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 46

class Ship

{

 public $name;

 public $weaponPower = 0;

 public $jediFactor = 0;

 public $strength = 0;

 public function getNameAndSpecs()

 {

 return sprintf(

 '%s (w:%s, j:%s, s:%s)',

 $this->name,

 $this->weaponPower,

 $this->jediFactor,

 $this->strength

);

 }

}

And of course, make sure you have a return statement in front of all of this! Let's enjoy our

hard work by echo'ing the method below: $myShip , arrow, getNameAndSpecs then the open

and close parenthesis so PHP knows this is a method, not a property by that name.

play.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

 // ... lines 25 - 31

32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 42

43

44

 // ... lines 45 - 46

Ready to try it? Refresh! There's our weird-little summary. We can use this across our app, and

if we ever want to change how it looks, we only need to update one spot.

Method Arguments

Being PHP pro's, we of course know that functions can have arguments. Once again, a method

in a class is no different. Isn't that nice? Let's say that sometimes we need an even shorter

summary. Add an argument to the method called $useShortFormat . Now, use an if

statement to choose between two different formats:

class Ship

{

 public function getNameAndSpecs()

 {

 }

}

$myShip = new Ship();

echo '<hr/>';

echo 'Ship Description: '.$myShip->getNameAndSpecs();

play.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 // ... lines 44 - 58

We'll just take out the w, j and s and put slashes instead. Cool! Now my editor is angry because

getNameAndSpecs() requires an argument. So pass false when we call it, then call it again

and use true .

play.php

 // ... lines 1 - 45

46

 // ... lines 47 - 53

54

55

56

 // ... lines 57 - 58

Refresh, Perfect!

class Ship

{

 public function getNameAndSpecs($useShortFormat)

 {

 if ($useShortFormat) {

 return sprintf(

 '%s: %s/%s/%s',

 $this->name,

 $this->weaponPower,

 $this->jediFactor,

 $this->strength

);

 } else {

 return sprintf(

 '%s: w:%s, j:%s, s:%s',

 $this->name,

 $this->weaponPower,

 $this->jediFactor,

 $this->strength

);

 }

 }

}

$myShip = new Ship();

echo $myShip->getNameAndSpecs(false);

echo '<hr/>';

echo $myShip->getNameAndSpecs(true);

Chapter 5: Multiple Objects

This object-oriented, or OO, stuff gets really fun once we have multiple objects. Afterall, it takes

at least 2 ships to start a battle.

But first, let's summarize all of this printing stuff into a normal, traditional, flat function called

printShipSummary() . It'll take in a Ship object as an argument, which I'll call $someShip .

Now, copy all the echo stuff into the function.

The argument to the function could be called anything. Since I chose to call it $someShip , all

of the $myShip variables below need to be updated to $someShip also. This is just classic

behavior of functions - nothing special. I'll use a trick in my editor:

play.php

 // ... lines 1 - 44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 62

Ok, saving time!

Back at the bottom of the file, call this like any traditional function, and pass it the $myShip

variable, which we know is a Ship object:

function printShipSummary($someShip)

{

 echo 'Ship Name: '.$someShip->getName();

 echo '<hr/>';

 $someShip->sayHello();

 echo '<hr/>';

 echo $someShip->getNameAndSpecs(false);

 echo '<hr/>';

 echo $someShip->getNameAndSpecs(true);

}

play.php

 // ... lines 1 - 44

45

 // ... lines 46 - 53

54

 // ... lines 55 - 56

57

58

59

60

61

So we're throwing around some objects, but this is just normal, flat, procedural programming.

When we refresh it's exactly the same.

Create Another Ship

Now, to the good stuff! Let's create a second Ship object. The first is called Jedi Starship

and has 10 weaponPower . Let's create $otherShip . And just like if 2 ships landed in your

dock, one will have one name, and another will be named something different. Let's call this

one: Imperial Shuttle. Set its weaponPower to 5 and a strength of 50:

play.php

 // ... lines 1 - 59

60

 // ... lines 61 - 63

64

 // ... line 65

66

67

68

69

 // ... lines 70 - 73

These two separate objects both have data inside of them, but they function indepedently. The

only thing they share is that they're both Ship objects, which means that they both share the

same rules: that they have these 4 properties and these 3 methods. But the property values will

be totally different between the two.

This means that we can print the second Ship's summary and see its specs:

function printShipSummary($someShip)

}

$myShip = new Ship();

$myShip->name = 'TIE Fighter';

$myShip->weaponPower = 10;

printShipSummary($myShip);

$myShip = new Ship();

printShipSummary($myShip);

$otherShip = new Ship();

$otherShip->name = 'Imperial Shuttle';

$otherShip->weaponPower = 5;

$otherShip->strength = 50;

play.php

 // ... lines 1 - 65

66

67

68

69

70

71

72

Now we get a print-out of two independent Ships where each has different data.

$otherShip = new Ship();

$otherShip->name = 'Imperial Shuttle';

$otherShip->weaponPower = 5;

$otherShip->strength = 50;

echo '<hr/>';

printShipSummary($otherShip);

Chapter 6: Objects Interact

Since the goal of our app is to let two ships fight each other, things are getting interesting. For

example, we could fight $myShip against $otherShip and see who comes out as the winner.

But first, let's imagine we want to know whose strength is higher. Of course, we could just write

an if statement down here and manually check $myShip 's strength against $otherShip .

But we could also add a new method inside of the Ship class itself. Let's create a new method

that'll tell us if one Ship's strength is greater than another's. We'll call it:

doesGivenShipHaveMoreStrength() . And of course, it needs a Ship object as an

argument:

play.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 43

44

45

 // ... line 46

47

48

49

 // ... lines 50 - 86

So just like with our printShipSummary() function, when we call this function, we'll pass it a

Ship object. What I want to do is compare the Ship object being passed to whatever Ship

object we're calling this method on. Before I fill in the guts, I'll show you how we'll use it: if

$myShip->doesGivenShipHaveMoreStrength() and pass it $otherShip . This will tell

us if $otherShip has more strength than $myShip or not. If it does, we'll echo

$otherShip->name has more strength. Else, we'll print the same thing, but say $myShip

has more strength.

class Ship

{

 public function doesGivenShipHaveMoreStrength($givenShip)

 {

 }

}

play.php

 // ... lines 1 - 78

79

80

81

82

83

84

85

Inside of the doesGivenShipHaveMoreStrength() , the magic $this will refer to the

$myShip object, the one whose name is Jedi Starship . So all we need to do is return

$givenShip->strength greater than my strength:

play.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 43

44

45

46

47

48

49

 // ... lines 50 - 86

Ok, let's try it! When we refresh, we see that the Imperial Shuttle has more strength. And that

makes sense: the Imperial Shuttle has 50 compared with 0 for $myShip , because it's using the

default value.

Let me add another separator and let's double-check to see if this is working by setting the

strength of $myShip to 100.

Ok, refresh now! Now the Jedi Starship is stronger. Undo that last change.

So how cool is this? Not only can we have multiple objects, but they can interact with each other

through methods like this one. I'll show you more of this later.

echo '<hr/>';

if ($myShip->doesGivenShipHaveMoreStrength($otherShip)) {

 echo $otherShip->name.' has more strength';

} else {

 echo $myShip->name.' has more strength';

}

class Ship

{

 public function doesGivenShipHaveMoreStrength($givenShip)

 {

 return $givenShip->strength > $this->strength;

 }

}

Chapter 7: My Editor is Confused

But before we go on, we need to help my editor. It's confused. Inside printShipSummary() ,

my editor doesn't seem to recognize the sayHello() method on Ship , it thinks it doesn't

exist. But down at the bottom of the file, when I call doesGivenShipHaveMoreStrength() ,

it's not highlighted in yellow - that means my editor does see that this method exists. So what

gives? Why doesn't it recognize the sayHello() function?

If you just look at the printShipSummary() function, all that my editor knows is that we're

passing in some argument called $someShip , but it doesn't know what it is. Is it a string? A

boolean? A Ship object? We know that this will be a Ship object, because we're creating

Ship objects below and passing those as the argument. But our editor has no idea. And for

that reason, it doesn't know to look on the Ship class to see that there's a sayHello()

function.

You don't need to fix this, it's totally fine. But if you want to, you can use PHP documentation to

give your editor a little hint about what the heck this $someShip variable is. By using this

syntax, you can say this this is a Ship object:

play.php

 // ... lines 1 - 50

51

52

53

54

55

56

57

58

59

60

61

62

63

 // ... lines 64 - 86

And as soon as I do that, those ugly yellow highlights go away, and I even get auto-completion

on new code I write.

/**

 * @param Ship $someShip

 */

function printShipSummary($someShip)

{

 echo 'Ship Name: '.$someShip->getName();

 echo '<hr/>';

 $someShip->sayHello();

 echo '<hr/>';

 echo $someShip->getNameAndSpecs(false);

 echo '<hr/>';

 echo $someShip->getNameAndSpecs(true);

}

As nice as this is, it makes no functional difference - your code isn't behaving any different than

before. This is just a "nice" thing you can do to help you and your editor get along.

Chapter 8: Using Objects

This play.php file is cute, but it's not our real application. we did make this nice Ship class,

so let's use. It'll clean up our code and give us more power. Sounds good to me!

Moving Ship into Ship.php

But first, the Ship class lives inside play.php , and this is just a garbage file we won't use

anymore. Usually, a class will live all alone in its own file. Create a lib/ directory, and a file

called Ship.php . There's no technical reason why I called the directory lib/ , it just sounds

nice. And the same goes for the filename - we could call it anything. But to keep my sanity,

putting the Ship class inside Ship.php makes a lot more sense than putting it inside of a file

called ThereIsDefinitelyNotAShipClassInHere.php . So even though nothing technical

forces us to do this, put one class per file, and then go celebrate how clean things look.

Go copy the Ship class, and put it into Ship.php :

lib/Ship.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

<?php

class Ship

{

 public $name;

 public $weaponPower = 0;

 public $jediFactor = 0;

 public $strength = 0;

 public function sayHello()

 {

 echo 'Hello!';

 }

 public function getName()

 {

 return $this->name;

 }

 public function getNameAndSpecs($useShortFormat)

 {

 if ($useShortFormat) {

 return sprintf(

 '%s: %s/%s/%s',

 $this->name,

 $this->weaponPower,

 $this->jediFactor,

 $this->strength

);

 } else {

 return sprintf(

 '%s: w:%s, j:%s, s:%s',

 $this->name,

 $this->weaponPower,

 $this->jediFactor,

 $this->strength

);

 }

 }

 public function doesGivenShipHaveMoreStrength($givenShip)

 {

 return $givenShip->strength > $this->strength;

47

48

49

Don't put a closing PHP tag, because you don't need it. PHP will reach the end of the file, and

close it automatically.

I'll head back to play.php , just like when you have functions in an external file you have to

require that file to have access to it. So we'll require once __DIR__'/lib/Ship.php' :

play.php

1

2

3

 // ... lines 4 - 40

The __DIR__ is a constant that points to this directory. So this makes sure that we're requiring

exactly /lib/Ship.php relative to this file.

Get rid of requires?

If you're familiar with modern apps you'll notice that they don't have this require statement,

we'll talk about that in the future. There is a way called autoloading to not even need require

statements. But for now we do need it.

So now that we've moved that out let's refresh. Well look at that, it still works!

Creating Ship Objects... for Real

So now that we have this Ship class inside of a Ship.php file we can start using it from

within our real application. From our get_ships() function, I don't want to return this array

inside of an array thing anymore. I want to do awesome things like return objects.

We'll start with adding our require statement:

functions.php

1

2

3

4

 // ... lines 5 - 107

 }

}

<?php

require __DIR__.'/lib/Ship.php';

<?php

require __DIR__.'/lib/Ship.php';

Next, let's transform our brave starfighter into a Ship object. We do that with

$ship = new Ship(); and then we'll just start setting the details:

name = 'Jedi Starfighter' , weaponPower of 5, jediFactor of 15 and strength of

30:

functions.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 45

46

 // ... lines 47 - 107

Perfect!

I'm commenting out this bottom array, we're not going to use that at all anymore. Instead we're

going to return an array with just this one ship in it, we'll add more to our fleet later.

Remember, we're calling this back in index.php , in that file we call get_ships(); that use

to return an array of ship arrays. Now it returns an array of Ship objects, of which there will

only be the one starfighter. Let's var_dump this to see what it looks like:

index.php

1

2

3

4

5

 // ... lines 6 - 107

Take off the file name, so we load index.php :

http://localhost:8000

function get_ships()

{

 $ships = array();

 $ship1 = new Ship();

 $ship1->name = 'Jedi Starfighter';

 $ship1->weaponPower = 5;

 $ship1->jediFactor = 15;

 $ship1->strength = 30;

 $ships['starfighter'] = $ship1;

 return $ships;

}

<?php

require __DIR__.'/functions.php';

$ships = get_ships();

var_dump($ships);die;

And there it is! We have an array with one item in it which is our Ship object. Look at those

sweet spaceship stats.

Treat that Object like an Object (->)

Let's take that var_dump off and see what that does to our app. When we refresh we see an

exciting error that tells us we cannot use object of type Ship as array on line 68. This is an

error that you might see, so let's see what's happening on line 68:

index.php

 // ... lines 1 - 66

67

68

69

70

71

72

73

74

 // ... lines 75 - 107

Ok, we're using $ship['name'] . Before when each ship was an array, that made sense, now

we know when you reference an object you need to use an arrow. So if you do have an object

and you try to use the square bracket syntax that is the error that you will see. Lucky you!

I don't want to keep seeing errors so let's fix the other ones as well:

index.php

 // ... lines 1 - 65

66

67

68

69

70

71

72

73

 // ... lines 74 - 106

Awesome!

 <?php foreach ($ships as $ship): ?>

 <tr>

 <td><?php echo $ship['name']; ?></td>

 <td><?php echo $ship['weapon_power']; ?></td>

 <td><?php echo $ship['jedi_factor']; ?></td>

 <td><?php echo $ship['strength']; ?></td>

 </tr>

 <?php endforeach; ?>

 <?php foreach ($ships as $ship): ?>

 <tr>

 <td><?php echo $ship->name; ?></td>

 <td><?php echo $ship->weaponPower; ?></td>

 <td><?php echo $ship->jediFactor; ?></td>

 <td><?php echo $ship->strength; ?></td>

 </tr>

 <?php endforeach; ?>

Head back to the browser and refresh and things are looking kinda better! Sweet! Well, at least

we have a different fatal error in our dropdown here, cannot use object of type Ship as array,

we'll fix that in a second.

Back in our editor, because this is an object we can use our methods on it. In our Ship class

we have this getName() method:

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 17

18

19

20

21

 // ... lines 22 - 48

49

Down here let's switch out name for getName();

index.php

 // ... lines 1 - 67

68

 // ... lines 69 - 106

When we refresh, we see it does the exact same thing.

Now, let's fix this little error we have in the select menu. In index.php you can see it's the

same thing as before, we're using the $ship like an array, so change this to use getName();

here and down there as well:

class Ship

{

 public function getName()

 {

 return $this->name;

 }

}

 <td><?php echo $ship->getName(); ?></td>

index.php

 // ... lines 1 - 81

82

83

84

85

86

87

 // ... lines 88 - 91

92

93

94

95

96

97

 // ... lines 98 - 106

Refresh, and now things look just fine!

We have this getNameAndSpecs() function, so perhaps when I'm choosing a ship I might

want to see its important stats since I'm going to use it to save the day:

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

 // ... lines 25 - 41

42

 // ... lines 43 - 48

49

So instead of getName() I'll use getNameAndSpecs() . First, I'm going to make the short

format an optional argument so we don't always have to fill that in:

 <select class="center-block form-control btn drp-

dwn-width btn-default btn-lg dropdown-toggle" name="ship1_name">

 <option value="">Choose a Ship</option>

 <?php foreach ($ships as $key => $ship): ?>

 <option value="<?php echo $key; ?>"><?php

echo $ship->getName(); ?></option>

 <?php endforeach; ?>

 </select>

 <select class="center-block form-control btn drp-

dwn-width btn-default btn-lg dropdown-toggle" name="ship2_name">

 <option value="">Choose a Ship</option>

 <?php foreach ($ships as $key => $ship): ?>

 <option value="<?php echo $key; ?>"><?php

echo $ship->getName(); ?></option>

 <?php endforeach; ?>

 </select>

class Ship

{

 public function getNameAndSpecs($useShortFormat)

 {

 }

}

lib/Ship.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 41

42

 // ... lines 43 - 50

Let's make these updates in index.php and now refresh the browser:

index.php

 // ... lines 1 - 83

84

85

86

 // ... lines 87 - 93

94

95

96

 // ... lines 97 - 106

We see our specs format in the select menu -- cool!

And that's it, switching to an object is not that big of a deal. Next we'll talk about what these

public things in Ship are doing inside of here and what else we can have.

 public function getNameAndSpecs($useShortFormat = false)

 {

 }

 <?php foreach ($ships as $key => $ship): ?>

 <option value="<?php echo $key; ?>"><?php

echo $ship->getNameAndSpecs(); ?></option>

 <?php endforeach; ?>

 <?php foreach ($ships as $key => $ship): ?>

 <option value="<?php echo $key; ?>"><?php

echo $ship->getNameAndSpecs(); ?></option>

 <?php endforeach; ?>

Chapter 9: Private Access

Let me show you a problem with our app, there's nothing stopping me from going in and setting

the strength to something like Jar Jar Binks :

functions.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 12

13

 // ... lines 14 - 45

46

 // ... lines 47 - 107

Clearly this value makes absolutely no sense at all for many reasons.

Sure enough, when we refresh Jar Jar Binks prints out as the strength in the select menu. The

Ship class lets us give this really bad data. If we tried to battle, this would probably break our

app since you can't compare a strength of 10 to Jar Jar Binks mathematically. But if you

disagree, I would love to see your math in the comments.

To fix this, I'll get to show you another strength of classes. So far everything has been public :

lib/Ship.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 48

49

function get_ships()

{

 $ship1 = new Ship();

 $ship1->strength = 'Jar Jar Binks';

}

class Ship

{

 public $name;

 public $weaponPower = 0;

 public $jediFactor = 0;

 public $strength = 0;

}

Public name, weapon power and so on but I haven't told you what that means.

Making a Property private

There's actually three different words that can go here: public , private and protected ,

but we'll only worry about the first two for now. As soon as you make a property private it

can't be accessed from outside of the class. I'll show you what I mean:

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 10

11

 // ... lines 12 - 48

49

Now that it's marked as private my editor is highlighting strength saying, "No no no, you can't

access strength anymore." So from outside of the class it's illegal to access a private property.

And sure enough, when I refresh it says, "Fatal error: Cannot access private property".

Adding a Setter Method

This is called a visibility modifier. Once you make something private if you want someone

from the outside to be able to interact with that property you'll need to add public functions to

be able to do that. In this case down here, we can create what's called a setter :

public function setStrength($strength) it will take an argument called

$strength , which will be a number:

class Ship

{

 private $strength = 0;

}

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 22

23

24

25

26

 // ... lines 27 - 58

59

And then we'll set it on that property. You see that this does not highlight red, so a private

property can still be accessed from within a class using the magic $this keyword. It just can't

be accessed outside of the class.

Here, instead of accessing the strength property directly, we can access the setStrength

method:

functions.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

 // ... lines 10 - 12

13

 // ... lines 14 - 45

46

 // ... lines 47 - 107

When we refresh, it gets further!

Adding a Getter Method

It gets past that setter and now we're down to line 71. We're still accessing the strength

property:

class Ship

{

 public function setStrength($number)

 {

 $this->strength = $number;

 }

}

function get_ships()

{

 $ship1 = new Ship();

 $ship1->setStrength('Jar Jar Binks');

}

index.php

 // ... lines 1 - 65

66

 // ... lines 67 - 70

71

 // ... line 72

73

 // ... lines 74 - 106

So let's fix that right here. Since we can't reference that anymore we need to go in and make a

public function getStrength() and it will go grab the value from that private property and

return it to us:

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 27

28

29

30

31

 // ... lines 32 - 58

59

In index we can say getStrength() and that should take care of the problem:

index.php

 // ... lines 1 - 65

66

 // ... lines 67 - 70

71

 // ... line 72

73

 // ... lines 74 - 106

Head back and refresh and it works! Alright!

Avoiding Jar Jar Binks

The reason we did this, is that when you have a public property there's no way to control who

sets it from the outside. Anyone could have set the strength and they could have set it to any

crazy string, negative number or bad Star Wars character, none of which make any sense. As

 <?php foreach ($ships as $ship): ?>

 <td><?php echo $ship->strength; ?></td>

 <?php endforeach; ?>

class Ship

{

 public function getStrength()

 {

 return $this->strength;

 }

}

 <?php foreach ($ships as $ship): ?>

 <td><?php echo $ship->getStrength(); ?></td>

 <?php endforeach; ?>

soon as you make it private , it means that outsiders are going to have to call public methods,

and this gives us a cool opportunity to run a check inside of here to say, "Hey! Is the strength a

number? If not, let's throw an error."

In setStrength() we'll put in an if statement with the is_numeric() function, and if it's

not numeric, then we're going to throw a new Exception() with a helpful message:

lib/Ship.php

 // ... lines 1 - 22

23

24

25

26

27

28

29

30

 // ... lines 31 - 64

In case you aren't familiar with exceptions, they're a special internal object to php. It stops the

flow and shows an error.

Now when we refresh we get this nice helpful error. This message is for us the developer.

Instead of the application running and tripping up later when we accidentaly put in a bad

strength, we are notified immediately.

It even tells us that the error happened on Ship.php line 52 and we called the method on

functions.php line 13. So let's go back into functions.php line 13 and of course there it

is:

functions.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

 // ... lines 14 - 107

We'll change that back to 30 and when we refresh life is good again:

 public function setStrength($number)

 {

 if (!is_numeric($number)) {

 throw new \Exception('Strength must be a number, duh!');

 }

 $this->strength = $number;

 }

 $ship1 = new Ship();

 $ship1->setStrength('Jar Jar Binks');

functions.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

 // ... lines 14 - 107

Make all the Things Private!

This idea of making your properties private and then adding getters and setters is really

common. Even if you don't need the control like this now you might in the future. If you're

already forcing outsiders to call your setter methods and you realize later that you need to do

some sort of check you have the opportunity to do that by modifying your method.

A really common thing to do is to always make your properties private. So I'll update

jediFactor , weaponPower and name :

lib/Ship.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 101

102

The downside of this is that we'll need a getName() , setName() , getWeaponPower() ,

setWeaponPower() getJediFactor() , and a setJediFactor() .

That can be a lot of work and PHP doesn't give us a way to get around this, so we do need to

write those. A lot of editors allow you to generate these, which is nice. In PHPStorm, go to code

generate and then pick "Getters and Setters" and select the weaponPower and jediFactor

fields. Name isn't in this list because we already have a getName() . I'll go back to code

generate again and pick just setter this time and it recognizes that the name doesn't have a

setter:

 $ship1 = new Ship();

 $ship1->setStrength(30);

class Ship

{

 private $name;

 private $weaponPower = 0;

 private $jediFactor = 0;

 private $strength = 0;

}

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 65

66

67

68

69

 // ... lines 70 - 73

74

75

76

77

 // ... lines 78 - 81

82

83

84

85

 // ... lines 86 - 89

90

91

92

93

 // ... lines 94 - 97

98

99

100

101

102

Now we have getters and setters on all of these properties. And by the way the name of this

doesn't matter, we could get creative and call this setWeaponPowerFooBar() , but in your

project try to be clear and concise.

Now that we've made everything private and we have these getters and setters, we need to use

those everywhere instead of accessing the properties directly. Let's change this to setName() ,

this to setWeaponPower() , and setJediFactor() :

class Ship

{

 public function getWeaponPower()

 {

 return $this->weaponPower;

 }

 public function getJediFactor()

 {

 return $this->jediFactor;

 }

 public function setName($name)

 {

 $this->name = $name;

 }

 public function setWeaponPower($weaponPower)

 {

 $this->weaponPower = $weaponPower;

 }

 public function setJediFactor($jediFactor)

 {

 $this->jediFactor = $jediFactor;

 }

}

functions.php

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 107

Maybe this feels like extra work right now, but if we had made it private in the beginning then we

wouldn't have to go back and change them. Which is what I recommend that you do.

In index.php we have the same thing, we need to call getWeaponPower() and

getJediFactor() :

index.php

 // ... lines 1 - 67

68

69

70

71

 // ... lines 72 - 106

We're already calling getStrength and down here we're calling the public function

getNameAndSpecs .

index.php

 // ... lines 1 - 84

85

 // ... lines 86 - 106

So let's try that out and see if we missed anything. Refresh and everything looks really good

and even the select menu shows up perfect. We're all set!

We now have all these wonderful hooks so that if anyone ever needs to get the

weaponPoweror set the jediFactor , we can do something before returning it. For example,

in getName() you can actually use a strtoupper so whenever someone calls this we'll

return the uppercase version:

public function getName()

{

 $ship1 = new Ship();

 $ship1->setName('Jedi Starfighter');

 $ship1->setWeaponPower(5);

 $ship1->setJediFactor(15);

 $ship1->setStrength(30);

 <td><?php echo $ship->getName(); ?></td>

 <td><?php echo $ship->getWeaponPower(); ?>

</td>

 <td><?php echo $ship->getJediFactor(); ?></td>

 <td><?php echo $ship->getStrength(); ?></td>

 <option value="<?php echo $key; ?>"><?php

echo $ship->getNameAndSpecs(); ?></option>

 return strtoupper($this->name);

}

As cool as that is, I'll just undo it for now.

Creating all the Ship Objects

With all these private properties, getters and setters our Ship class is looking fit for action.

Back in functions.php we used to have these 3 other ships. Let's make object

representations of those. We'll say $ship2 = new Ship() and then we just need to set the

name , weaponPower jediFactor and strength for those other three ships. I'm going to

save us a little bit of time and paste this in:

battle.php

 // ... lines 1 - 25

26

27

28

29

 // ... lines 30 - 99

And there we go, $ship2 , 3 and 4 have their data set on the array. What we're returning from

here is an array of Ship objects.

When we go back and refresh everything looks perfect. And this is starting to look pretty good.

Next, we need to fix up battle.php . If we try to start a battle, we can see that it's super

broken. And that makes sense, since we moved from arrays to objects and we haven't updated

that page yet. But we've learned a ton so far so I'm sure this will be easy.

$ship1 = $ships[$ship1Name];

$ship2 = $ships[$ship2Name];

var_dump($ship1, $ship2);die;

Chapter 10: Type Hinting?!

When we submit the form it goes to battle.php and we see this nasty error:

Argument 1 passed to battle() must be of the type array, object given

It comes from functions.php on line 74 and called on battle.php on line

1. Let's start with battle.php , sure enough we can see the problem is with the battle

function, let me show you why. But first, let's dump $ship1 and $ship2 :

battle.php

 // ... lines 1 - 25

26

27

28

29

 // ... lines 30 - 99

Let's see here, up top we call getShips() which returns an array of objects. Then we read the

$_POST data to figure out which two ships are fighting. Then, down here, we get the ship

objects off this array:

battle.php

 // ... lines 1 - 3

4

 // ... line 5

6

7

8

9

 // ... lines 10 - 25

26

27

 // ... lines 28 - 99

$ship1 = $ships[$ship1Name];

$ship2 = $ships[$ship2Name];

var_dump($ship1, $ship2);die;

$ships = get_ships();

$ship1Name = isset($_POST['ship1_name']) ? $_POST['ship1_name'] : null;

$ship1Quantity = isset($_POST['ship1_quantity']) ?

$_POST['ship1_quantity'] : 1;

$ship2Name = isset($_POST['ship2_name']) ? $_POST['ship2_name'] : null;

$ship2Quantity = isset($_POST['ship2_quantity']) ?

$_POST['ship2_quantity'] : 1;

$ship1 = $ships[$ship1Name];

$ship2 = $ships[$ship2Name];

So this should dump two objects. And it does: we have the Jedi Starfighter and the Super Star

Destroyer.

What is Type-Hinting?

Next, let's look in the battle() function which lives in functions.php :

functions.php

 // ... lines 1 - 73

74

75

 // ... lines 76 - 120

121

 // ... lines 122 - 128

Here's the issue the $ship1 and $ship2 arguments have "array" in front of them. This tells

PHP that this argument must be an array and if someone passes something other than an array,

I want you to throw a huge error. So let's see that error again, it says:

Argument 1 passed to battle() must be of the type array, object given

This is called a type hint and the only purpose of a type hint in PHP is to get better errors: it

doesn't change the behavior. We can just take the type hint off like this and that will fix the error:

functions.php

 // ... lines 1 - 73

74

75

 // ... lines 76 - 120

121

 // ... lines 122 - 128

And down here, knowing that $ship1 is actually an object, instead of using the array syntax

we can call the getStrength() method. Let's go ahead and dump $ship1Health to make

sure it's working:

function battle(array $ship1, $ship1Quantity, array $ship2,

$ship2Quantity)

{

}

function battle($ship1, $ship1Quantity, $ship2, $ship2Quantity)

{

}

functions.php

 // ... lines 1 - 73

74

75

76

77

 // ... lines 78 - 121

122

 // ... lines 123 - 129

Just by removing the type hint it tells PHP to stop making sure it's an array, just let anything in

and be ok with it. Refresh! This time it's printing out 60 which means it's printing out the ship's

mighty strength correctly.

Type-Hinting Saves your Butt

The type hint is a useful thing, not from a functionality standpoint, but for knowing when you're

doing something wrong. Let's go back to battle.php and pretend that something went wrong

here by changing our object $ship1 to the string foo :

battle.php

 // ... lines 1 - 28

29

 // ... lines 30 - 97

When we refresh this time, we get this really weird error:

Call to a member function getStrength() on a non-object

You're going to see this error a lot and it's coming from line 76:

functions.php

 // ... lines 1 - 73

74

75

76

77

 // ... lines 78 - 121

122

 // ... lines 123 - 129

function battle($ship1, $ship1Quantity, $ship2, $ship2Quantity)

{

 $ship1Health = $ship1->getStrength() * $ship1Quantity;

 var_dump($ship1Health);die;

}

$outcome = battle('foo', $ship1Quantity, $ship2, $ship2Quantity);

function battle($ship1, $ship1Quantity, $ship2, $ship2Quantity)

{

 $ship1Health = $ship1->getStrength() * $ship1Quantity;

 var_dump($ship1Health);die;

}

It happens whenever you use the arrow syntax on something that isn't an object. It's a fatal error

and PHP just dies immediately. We know because I just passed foo , that $ship1 is no longer

an object, it's just a string. And when we call this on it, everything dies. The issue is that from

the error message, it isn't exactly clear where the mistake is. It's telling us that the problem is on

line 76 in functions.php . And sure, that is where the error occurred. But the real problem is

in battle.php where we are passing in a bad value to the battle() function.

Type-Hinting with a Class

So in addition to type-hinting with the array, when we use objects we can type hint with the class

name. Which means we can actually type Ship here and we can do that here as well:

functions.php

 // ... lines 1 - 73

74

 // ... lines 75 - 129

That is the exact same thing. It says, "Hey, PHP, if something is passed to this argument that's

not a Ship object, I want you to throw a very clear error." So let's go see this new error!

Refresh and there it is:

Argument 1 passed to battle() must be an instance of Ship, string given

on line 29 `battle.php`

This time it's very clear: it says it should have been a Ship object, but you're passing a string

and it points us to the exact right spot. So type-hinting is optional, but it's a really good idea

because it will make your code easier to debug later. It also has a second benefit: as soon as I

type hinted this $ship1 variable here, all of a sudden my editor knew what type of object

$ship1 was and offered me autocomplete. So it knows about getStrength() and all the

other methods on that object.

Now that we know that these are objects, let's fix this method for all the array syntaxes. Let's

see here we have a few more:

function battle(Ship $ship1, $ship1Quantity, Ship $ship2, $ship2Quantity)

functions.php

 // ... lines 1 - 73

74

75

76

77

 // ... lines 78 - 96

97

98

 // ... lines 99 - 120

121

 // ... lines 122 - 129

And then down here, which is called from above we have one more:

functions.php

 // ... lines 1 - 123

124

125

126

127

128

129

And notice that this one is not giving me autocomplete because it's being type hinted as an

array. This function is called all the way up here, it's passing a $ship1 and $ship2 , so it's

passing a ship object:

functions.php

 // ... lines 1 - 73

74

75

 // ... lines 76 - 82

83

 // ... lines 84 - 87

88

89

 // ... lines 90 - 93

94

 // ... lines 95 - 120

121

 // ... lines 122 - 129

Let's change that type hint to be a Ship instead of an array :

function battle(Ship $ship1, $ship1Quantity, Ship $ship2, $ship2Quantity)

{

 $ship1Health = $ship1->getStrength() * $ship1Quantity;

 $ship2Health = $ship2->getStrength() * $ship2Quantity;

 $ship1Health = $ship1Health - ($ship2->getWeaponPower() *

$ship2Quantity);

 $ship2Health = $ship2Health - ($ship1->getWeaponPower() *

$ship1Quantity);

}

function didJediDestroyShipUsingTheForce(array $ship)

{

 $jediHeroProbability = $ship['jedi_factor'] / 100;

 return mt_rand(1, 100) <= ($jediHeroProbability*100);

}

function battle(Ship $ship1, $ship1Quantity, Ship $ship2, $ship2Quantity)

{

 if (didJediDestroyShipUsingTheForce($ship1)) {

 }

 if (didJediDestroyShipUsingTheForce($ship2)) {

 }

}

functions.php

 // ... lines 1 - 122

123

124

125

126

127

128

And now we will get that nice autocompletion which will make sure the object is being passed

there. Awesome, this function looks good!

Let's go back and refresh. And of course I get that same error because I forgot to go back and

put $ship1 here:

battle.php

 // ... lines 1 - 28

29

 // ... lines 30 - 97

Fixing the Objects inside $outcome

Let's try that again. We still get an error, but if you look closely you'll see that it is happening

farther down the page. The battle function is being called and it's all working. This new error is

from line 61, at this point you can probably even spot what that is:

Cannot use object of type Ship as an array

That's another syntax thing that we need to change.

So, let's go down to line 61 and sure enough there it is:

battle.php

 // ... lines 1 - 60

61

 // ... lines 62 - 97

We'll call getName() on our $ship1 and $ship2 objects:

function didJediDestroyShipUsingTheForce(Ship $ship)

{

 $jediHeroProbability = $ship->getJediFactor() / 100;

 return mt_rand(1, 100) <= ($jediHeroProbability*100);

}

$outcome = battle($ship1, $ship1Quantity, $ship2, $ship2Quantity);

 <?php echo $ship1Quantity; ?> <?php echo

$ship1['name']; ?><?php echo $ship1Quantity > 1 ? 's': ''; ?>

battle.php

 // ... lines 1 - 60

61

62

63

 // ... lines 64 - 98

Now, real quick back up on battle() , what it returns is this $outcome variable, and I'm

going to show you what that actually is. Down here, let's do a var_dump() on $outcome , put

a die statement and refresh:

battle.php

 // ... lines 1 - 65

66

 // ... lines 67 - 98

So the battle() function returns an array with three different keys on it: winning_ship

which is a Ship object, losing_ship which is a Ship object and whether or not Jedi powers

were used to have a really awesome comeback win (used_jedi_powers).

The important part is that winning_ship and losing_ship are Ship objects. Let's just

remove this var_dump real quick. Down here, when we reference

$outcome['winning_ship'] we know that this is an object:

battle.php

 // ... lines 1 - 70

71

 // ... lines 72 - 98

And we want to call getName() on it. The same thing here. And then we'll do the same thing

here as well:

battle.php

 // ... lines 1 - 69

70

 // ... lines 71 - 78

79

 // ... lines 80 - 82

83

 // ... lines 84 - 97

 <?php echo $ship1Quantity; ?> <?php echo $ship1-

>getName(); ?><?php echo $ship1Quantity > 1 ? 's': ''; ?>

 VS.

 <?php echo $ship2Quantity; ?> <?php echo $ship2-

>getName(); ?><?php echo $ship2Quantity > 1 ? 's': ''; ?>

 <?php var_dump($outcome); ?>

 <?php echo $outcome['winning_ship']['name']; ?>

 <?php echo $outcome['winning_ship']->getName(); ?>

 The <?php echo $outcome['winning_ship']-

>getName(); ?>

 overpowered and destroyed the <?php echo

$outcome['losing_ship']->getName() ?>s

We're converting from that array syntax to the object syntax.

Moment of truth, do we have a working battle page? SUCCESS! Super Star Destoyer won. Let's

try it again. We'll throw 10 Jedi Star Ships at our one Super Star Destroyer and it wins again.

Come one Jedi's get it together! If you try enough times the Jedis do come out with a victory.

The key take away here is because we have a Ship class, when we have a Ship object, we

know exactly what we can do with it. This is cool because whenever we pass around a Ship ,

object we can type hint it with Ship and our editor instantly knows what that is and what

methods we can call on it. We're giving definition to our data instead of passing around arrays

which have unknown and probably inconsistent keys.

Chapter 11: The Constructor!

Here's the next challenge, sometimes I want my ships to be broken. So when a ship comes in it

might be able to fight or it might be under repair. This is a property on a Ship , a Ship could be

under repair or not. So I'll add this as a new private property that has a boolean which can be

true or false:

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 12

13

 // ... lines 14 - 108

109

The challenge is that whenever we create our objects inside of functions.php , I want to

randomly set a Ship to be under repair or not under repair, and I want it to happen

automatically. So just by creating a Ship , I want it to internally figure out if it is under repair or

not.

public function __construct

This is where the idea of a constructor comes in. Whenever you create an object, you can

actually hook into that process and say: "Hey whenever a Ship is created, call this function so I

can set some stuff up." The way you do this is by creating a very special public function inside

of your class called __construct() :

class Ship

{

 private $underRepair;

}

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 14

15

16

17

18

 // ... lines 19 - 108

109

The magic here is that name: it must be __construct . And just by having this it should be

called everytime we say new Ship() .

Let's try it, refresh! And that's it: it's called four times, once for each of our ships. And it's called

right when you say new Ship() , so if I throw in a die() statement right after creating a

Ship , we're still going to see one of those called.

Setting up Data in __construct

Now we have a really powerful way to set up our data. Internally we can determine whether or

not the Ship is under repair. We'll use

$this- underRepair = mt_rand(1, 100) < 30; :

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 14

15

16

17

18

19

 // ... lines 20 - 114

115

This gives each ship a 30% chance of being broken...maybe a wing fell off!

To see this in action, let's cheat real quick and var_dump the $ships array. When we refresh

we can see the first two ships are ready for action but the third one isn't. Refresh again and

class Ship

{

 public function __construct()

 {

 echo 'Automatically called!';

 }

}

class Ship

{

 public function __construct()

 {

 // randomly put this ship under repair

 $this->underRepair = mt_rand(1, 100) < 30;

 }

}

they're all ready to fly. And a third time shows that the first two are busted and the other two are

battle worthy. So that's working already!

Don't Create a Getter Function

Next, let's go into index.php and up top we have our table information. Let's include status

which will tell us if our ship is under repair or not:

index.php

1

 // ... lines 2 - 56

57

58

59

 // ... lines 60 - 62

63

64

65

 // ... lines 66 - 118

Now so far, we don't have a way to access that new property. It's private and we don't have a

getter or a setter and you don't necessarily need to create these. In fact, we don't want a setter:

it's being set automatically inside of the class itself. But I do want to figure out if this Ship is

functional or not. So what I'll do is create a new public function and I'll call it isFunctional() :

lib/Ship.php

 // ... lines 1 - 2

3

4

 // ... lines 5 - 20

21

22

23

24

 // ... lines 25 - 114

115

This will be the opposite of the underRepair value. If it is underRepair , then it is not

functional and if it is functional then it is not underRepair . For the outsider whose going to be

calling this function, they don't care what we're doing internally to figure that out.

<?php

 <thead>

 <tr>

 <th>Ship</th>

 <th>Status</th>

 </tr>

 </thead>

class Ship

{

 public function isFunctional()

 {

 return !$this->underRepair;

 }

}

Let's go back to index.php and create a nice if statement. If $ship is functional, else , and

we'll put some adorable icons:

index.php

 // ... lines 1 - 66

67

68

 // ... lines 69 - 72

73

74

75

76

77

78

79

80

81

 // ... lines 82 - 118

A sunshine for functional and a sad cloud for not functional.

Refresh and try it out, four sunshines and one cloud. Awesome!

Leveraging isFunctional() Like a Boss

Now it's really easy to do the next step. If a Ship is under repair, I don't want it to show up in

this select menu. It's easy because we can just call isFunctional and it will take care of all

the internal stuff for us. Down here we only want to print this out if the ship is in working order.

And the same thing down here:

 <?php foreach ($ships as $ship): ?>

 <tr>

 <td>

 <?php if ($ship->isFunctional()): ?>

 <i class="fa fa-sun-o"></i>

 <?php else: ?>

 <i class="fa fa-cloud"></i>

 <?php endif; ?>

 </td>

 </tr>

 <?php endforeach; ?>

index.php

 // ... lines 1 - 91

92

93

94

95

96

 // ... lines 97 - 103

104

105

106

107

108

 // ... lines 109 - 118

Cool! Refresh, all sunshines. Refresh again -- there's a cloud. It looks like we're missing the

Cloakshape Fighter due to repairs. And when you check the list, it isn't there! Perfect!

Adding Arguments to __construct

The __construct() function is something you are going to see a lot but it's a really easy

idea. It just says if you have a function called __construct() , then it's automatically going to

be called when you instantiate your object.

There is one other thing you can do: like most functions, it can have an argument. Let's put a

$name argument here:

lib/Ship.php

 // ... lines 1 - 14

15

16

 // ... line 17

18

19

20

 // ... lines 21 - 117

I'm not going to use it yet because I'm going to show you what happens when we do that.

Go back to functions.php . You can see that my editor is angry because it says required

parameter $name missing:

 <?php foreach ($ships as $key => $ship): ?>

 <?php if ($ship->isFunctional()): ?>

 <option value="<?php echo $key; ?>"><?

php echo $ship->getNameAndSpecs(); ?></option>

 <?php endif; ?>

 <?php endforeach; ?>

 <?php foreach ($ships as $key => $ship): ?>

 <?php if ($ship->isFunctional()): ?>

 <option value="<?php echo $key; ?>"><?

php echo $ship->getNameAndSpecs(); ?></option>

 <?php endif; ?>

 <?php endforeach; ?>

 public function __construct($name)

 {

 // randomly put this ship under repair

 $this->underRepair = mt_rand(1, 100) < 30;

 }

functions.php

 // ... lines 1 - 8

9

 // ... lines 10 - 129

So, you notice whenever we create a new Ship object, it's always Ship() , but you never

pass anything in there. When you create an object, the stuff that goes in between the

parenthesis are arguments that are passed to your __construct() function, if you have one.

Because we have a $name argument here, now we need to pass a name there, just like that:

functions.php

 // ... lines 1 - 8

9

 // ... lines 10 - 126

Now you can see that it is happy.

And what we can do inside of Ship.php is say, ok whatever $name they pass in, let's just set

that to the name property:

lib/Ship.php

 // ... lines 1 - 14

15

16

17

18

19

20

 // ... lines 21 - 117

In functions.php , we don't have to call setName() anymore: we're passing it into the

constructor and the name is being set that way. Let's update the other ones as well:

functions.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

 // ... lines 17 - 21

22

 // ... lines 23 - 27

28

 // ... lines 29 - 126

 $ship = new Ship();

 $ship = new Ship('Jedi Starfighter');

 public function __construct($name)

 {

 $this->name = $name;

 // randomly put this ship under repair

 $this->underRepair = mt_rand(1, 100) < 30;

 }

 $ship = new Ship('Jedi Starfighter');

 //$ship->setName('Jedi Starfighter');

 $ship2 = new Ship('CloakShape Fighter');

 $ship3 = new Ship('Super Star Destroyer');

 $ship4 = new Ship('RZ-1 A-wing interceptor');

And we're good to go!

When to Pass Values to __construct

So, why would you do this? Why would you add a $name argument to the Ship's constructor

and force it to be passed in versus the setter? It's really up to you. In our case, it doesn't make

sense to have a Ship without a name. And before, that would have been possible had we just

instantiated a new Ship and forgotten to call setName() . Then we would have been running

around with a Ship object that had absolutely no name. How embarrassing.

Sometimes, when you have required information, you might choose to set them up as

arguments to your constructor. It says "Hey, when you create a Ship , you have to pass me a

name." We're not forcing the user to pass a weaponPower , jediFactor or strength ,

because those all have a nice default value of 0. So it makes sense not to force those, but we

do force the name.

When you back up I just want you to realize that the __construct function is just like any

other function. But if you give it that special name, it is automatically called and the arguments

are passed to it.

And guess what! You just learned the fundamentals of object-oriented programming. Classes,

check! Objects, super check! Methods, privacy, type-hinting, constructor and other stuff - all old

news now. And there's even more great stuff to learn, like service classes, dependency

injection, inheritance and interfaces. These will make you even more dangerous, and will also

help you understand the outside libraries you use everyday. So keep going, and join us for

episode 2.

Seeya next time!

With <3 from SymfonyCasts

