
PHPUnit: Integration Testing with
Live Services

With <3 from SymfonyCasts

Chapter 1: Hello Integration Tests!

Hey hey, people! Welcome to episode two of our testing series, which is all about integration testing. In episode 1, Anakin
accidentally triggered the auto-pilot on a star fighter... which then taught us all about unit testing! What luck!

Unt tests are the purest form of testing where you test classes and the methods on those classes. And if a class requires other
classes, you mock those dependencies. It's cool and beautiful... and totally doesn't lead to the dark side, I promise.

In this tutorial, things get messier, but also more useful in the right situations! Instead of mocking dependencies, we're going to
test with real live services... which sometimes means our tests will cause real things to happen, like actual queries to the
database! That comes with all kinds of exciting complications! And we're going to dive into all of them.

Project Setup

But first, let's activate our own autopilot and get our app going! Testing is fun, so download the course code from this page and
code along with me. After you unzip the file, you'll find a start/ directory with the same code that you see here, including this
nifty README.md file. This has all the setup instructions, including database setup, because we do have a database in this
course. If you were with us for episode one - welcome back - and be sure to download this course code because we've
changed a few things, like adding a database and upgrading some dependencies.

Oh, and this tutorial uses PHPUnit 9, even though PHPUnit 10 is out. That's fine because there aren't many user-facing
changes in PHPUnit 10.

The last step in the README is to find your terminal, move into the project, and run

to start a local web server at https://127.0.0.1:8000. Click that and... here we are! Dinotopia: The app where we get to see the
status of the dinosaurs inside our park. And now, these dinosaurs are coming from the database. It's not fancy, but we have a
Dinosaur entity. And inside our one controller, we query for all the dinosaurs... and that's what we pass into the template...
which is what we see here.

Checking for a "Lock Down"

Everything with the app is working great. Well... except for that one, minor problem. You see, sometimes Big Eaty (that's our
resident T-Rex) escapes, and we don't have a way to lock down the park and notify people. Basically, management is worried
that too many guests are being eaten. So the first feature we're going to build is a system to initiate a lockdown... and we
already have an entity for this! It's called, creatively, LockDown ... with $createdAt , $endedAt , and $status (which is an Enum).
Inside the Enum , there are three cases: ACTIVE , ENDED , or RUN_FOR_YOUR_LIFE . Let's... try to avoid that last one...

�

symfony serve -d

https://127.0.0.1:8000

��

��

��

 86 lines 86 lines src/Entity/LockDown.phpsrc/Entity/LockDown.php

� ... lines 1 - 4
5

� ... lines 6 - 10
11

12

� ... lines 13 - 17
18

19

20

21

22

23

24

25

� ... lines 26 - 84
85

 11 lines 11 lines src/Enum/LockDownStatus.phpsrc/Enum/LockDownStatus.php

� ... lines 1 - 4
5

6

7

8

9

10

On our MainController (our homepage), if the most recent lockdown record in the database has an ACTIVE or
RUN_FOR_YOUR_LIFE status, we need to render a giant warning message on the screen.

 39 lines 39 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

� ... lines 28 - 37
38

To help with this, open src/Repository/LockDownRepository.php . To figure out if we're in a lockdown, add a new method called
isInLockDown() which will return a bool . For now, just return false .

use App\Enum\LockDownStatus;

class LockDown
{

 #[ORM\Column]
 private ?\DateTimeImmutable $createdAt = null;

 #[ORM\Column(nullable: true)]
 private ?\DateTimeImmutable $endedAt = null;

 #[ORM\Column(type: Types::STRING, enumType: LockDownStatus::class)]
 private ?LockDownStatus $status = LockDownStatus::ACTIVE;

}

enum LockDownStatus: string
{
 case ACTIVE = 'active';
 case ENDED = 'ended';
 case RUN_FOR_YOUR_LIFE = 'run_for_your_life';
}

class MainController extends AbstractController
{
 #[Route(path: '/', name: 'app_homepage', methods: ['GET'])]
 public function index(GithubService $github, DinosaurRepository $repository): Response
 {
 $dinos = $repository->findAll();

 foreach ($dinos as $dino) {
 $dino->setHealth($github->getHealthReport($dino->getName()));
 }

 return $this->render('main/index.html.twig', [
 'dinos' => $dinos,
]);
 }

}

��

��

 29 lines 29 lines src/Repository/LockDownRepository.phpsrc/Repository/LockDownRepository.php

� ... lines 1 - 16
17

18

� ... lines 19 - 23
24

25

26

27

28

Creating the Test

Let's use some test driven development! Before we write this query, let's add a test for it. We don't have a test for the
LockDownRepository class yet, so open tests/ . In the first tutorial, we created a Unit/ directory and matched the directory
structure inside of src/ for all the classes we need to test.

This time, create a directory called Integration/ . You don't need to organize things like this, but it's fairly common to have unit
tests in one directory and integration tests in another. We haven't talked about what an integration test is yet, but we'll see that
in a minute.

Inside of Integration/ , we're still going to follow the directory structure. Create a Repository/ directory since this class lives in
src/Repository/ ... and inside, a new PHP class called LockDownRepositoryTest .

Start like we always do: extend TestCase from PHPUnit. Call the first method testIsInLockDownWithNoLockdownRows() . This will
test that, if the lockdown table is empty, then the method should return false .

 14 lines 14 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 6
7

8

9

10

11

12

13

Ok, let's keep pretending that we're living in the world of unit testing and try to test this... like we did in the previous tutorial. To
do that, say $repository = new LockDownRepository() .

Uh Oh, Instantiating this Object is Hard!

But, hmm. LockDownRepository extends ServiceEntityRepository , which extends another class from Doctrine. If you look, to
instantiate it, we need to pass a ManagerRegistry from Doctrine. And if you hold "command" or "control" and click into this... and
go to the base class, it gets complicated. It calls $registry->getManagerForClass() to get the entity manager... and it passes that
to the parent. So already, we're going to need to mock the registry... so that when getManagerForClass() is called, it returns a
mocked entity manager.

Inside our repository, we will eventually call $this->createQueryBuilder() . If you dive into that, it uses the _em property (that's that
entity manager that we're planning to mock) and calls createQueryBuilder() , which returns a QueryBuilder . So we also need to
mock this method on EntityManager to return a mock QueryBuilder .

This is getting crazy! We have a mock, to return a mock, to return another mock. And ultimately, what would we assert? Would
we assert that our code calls the ->andWhere() method on QueryBuilder with the correct arguments? Or are we going to...
somehow have the QueryBuilder generate a real query string... then assert that the string... looks correct to us?

Why A Unit Test is the Wrong Tool

No: we're going to do none of that. What we're seeing is a situation where a unit test is not the right tool. And there are two
reasons. First, it's too complex! Creating a unit test will require a seemingly never-ending series of mocks. And second, a unit
test wouldn't be useful! If we're creating a complex query inside of LockDownRepository , to make that a truly useful test, we
need to actually execute that query and make sure it returns the results we expect from the database.

class LockDownRepository extends ServiceEntityRepository
{

 public function isInLockDown(): bool
 {
 return false;
 }
}

class LockDownRepositoryTest extends TestCase
{
 public function testIsInLockDownWithNoLockDownRows()
 {

 }
}

So, instead of creating a fresh LockDownRepository with a bunch of mocks, we're going to ask Symfony to give us the real
LockDownRepository : the one that we would use in our normal code. The one that, when we call a method on it from our test,
will execute a real query to the database.

That's called an "integration test", and I'll show you how to do it next.

��

��

Chapter 2: KernelTestCase: Fetching Services

In our app, if we wanted to use LockDownRepository to make some real queries, we could autowire LockDownRepository into a
controller - or somewhere else - call a method on it, and boom! Everything would work.

Now we want to do the same thing in our test: instead of creating the object manually, we want to ask Symfony to give us the
real service that's configured to talk to the real database, so it can do its real logic. Really!

Booting the Kernel

To fetch a service inside a test, we need to boot up Symfony then get access to its service container: the mystical object that
holds every service in our app.

To help with this, Symfony gives us a base class called KernelTestCase . There's nothing particularly special about this class.
Hold "command" or "control" to see that it extends the normal TestCase from PHPUnit. It just adds methods to boot and shut
down Symfony's kernel - that's kind of the heart of Symfony - and to grab the container.

 14 lines 14 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 4
5

� ... line 6
7

� ... lines 8 - 14

Fetching Services

At the top of our test method, start with self::bootKernel() . Once you call this, you can imagine that you have a Symfony app
running in the background, waiting for you to use it. Specifically, this means we can grab any service. Do that with
$lockDownRepository = self::getContainer() (which is a helper method from KernelTestCase) ->get() . Then pass the service ID
which, in our case, is the class name: LockDownRepository::class .

To see if this works, dd($lockDownRepository) .

 18 lines 18 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 9
10

11

12

13

14

15

16

� ... lines 17 - 18

By the way, unit tests and integration tests generally look the same: you call methods on an object and run assertions. If your
test happens to boot the kernel and grab a real service, we give it the name "integration test". But that's just a fancy way of
saying: "A unit test... except we use real services".

Okay, let's try this! At your terminal, run:

You can also run ./bin/phpunit - which is a shortcut set up for Symfony. But I'll stick to running phpunit directly.

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class LockDownRepositoryTest extends KernelTestCase

 public function testIsInLockDownWithNoLockDownRows()
 {
 self::bootKernel();

 $lockDownRepository = self::getContainer()->get(LockDownRepository::class);
 dd($lockDownRepository);
 }

�

./vendor/bin/phpunit

��

��

And... yes! There's our service! It doesn't look like much, but this lazy object is something that lives in the real service.

The Special Test Service Container

So, simple! self::getContainer gives us the service container... and then we call get() on it. But I do want to point out that
accessing the service container and grabbing a service from it is not something we do in our application code. For most
services, which are private, doing this won't even work! Instead, we rely on dependency injection and autowiring.

But in a test, there is no dependency injection or autowiring. So, we need to grab services like this. And the only reason this
even works is because self::getContainer() gives us a special container that only exists in the test environment. It's special
because it does allow you to call a get() method and ask for any service you want by its ID... even if that service is normally
private. So this is a unique superpower to the test environment.

Running Code & Asserting

Ok, since we have LockDownRepository , let's try running a simple test. But, hmm, I'm not getting the right autocompletion. Ah,
that's because my editor doesn't know what the get() method returns. To help it, assert() that $lockDownRepository is an
instanceof LockDownRepository . This isn't a PHPUnit assertion: we didn't say $this->assert -something. This is just a PHP function
that will throw an exception if $lockDownRepository is not a LockDownRepository . It will be... and this code will never cause a
problem... but now we enjoy lovely autocompletion!

 19 lines 19 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 4
5

� ... lines 6 - 7
8

9

10

11

� ... lines 12 - 14
15

� ... line 16
17

18

Say $this->assertFalse($lockDownRepository->isInLockDown()) .

 19 lines 19 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 9
10

11

� ... lines 12 - 15
16

17

� ... lines 18 - 19

The idea is that we haven't added any rows to the database... and because of that, we should not be in a lockdown. And since
the method just returns false right now... this test should pass:

And... it does! So we're using the real service... but it's not, yet, making any queries. Will this keep working if we do make a
query? Let's find out, next.

use App\Repository\LockDownRepository;

class LockDownRepositoryTest extends KernelTestCase
{
 public function testIsInLockDownReturnsFalseWithNoRows()
 {

 assert($lockDownRepository instanceof LockDownRepository);

 }
}

 public function testIsInLockDownReturnsFalseWithNoRows()
 {

 $this->assertFalse($lockDownRepository->isInLockDown());
 }

�

./vendor/bin/phpunit

��

��

Chapter 3: Test Environment Database Setup

This first test was too easy! So let's write another, more interesting one. How about, ahem,
public function testIsInLockDownReturnsTrueIfMostRecentLockdownIsActive() . Phew!

Start the same as before: self::bootKernel() . The tricky thing about this test is that we need the database to not be empty at the
start. We need to insert an active lockdown into the database... so that when we finally call the method and it executes the
query, it will find the record.

 24 lines 24 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 18
19

20

21

22

23

This is a common part of integration tests since they frequently talk to the database.

Seeding the Database

No problem! Let's create a lock down! Add $lockDown = new LockDown() , $lockDown->setReason() so we know why the lockdown
is happening, and $lockDown->setCreatedAt() to, how about, 1 day ago. That part isn't super important yet. Oh, and we don't
need to set the status because, if you look in the class, it defaults to ACTIVE .

 37 lines 37 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 20
21

22

� ... lines 23 - 24
25

26

27

� ... lines 28 - 34
35

� ... lines 36 - 37

Saving this is simple too. Grab the $entityManager with self::getContainer()->get(EntityManagerInterface::class) . And I'll do our
assert() trick with $entityManager instanceof EntityManagerInterface to help my editor. Finish with the usual
$entityManager->persist($lockDown) and $entityManager->flush() .

To see if this is working, down here, dd($lockDown->getId()) .

class LockDownRepositoryTest extends KernelTestCase
{

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {
 self::bootKernel();
 }
}

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {

 $lockDown = new LockDown();
 $lockDown->setReason('Dinos have organized their own lunch break');
 $lockDown->setCreatedAt(new \DateTimeImmutable('-1 day'));

 }

��

��

 37 lines 37 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 20
21

22

� ... lines 23 - 28
29

30

31

32

33

34

35

� ... lines 36 - 37

Let's try it! Run just the tests from this file:

And... oh... it explodes. Let's see... Ah! It's having trouble connecting to the database!

Forgetting about tests for a moment, this is a familiar problem! The key to connecting our app to the database is the
DATABASE_URL environment variable. I'm using Postgres, but that doesn't matter.

Special .env handling for Tests

Normally, when we set up our local environment, we customize DATABASE_URL here in .env ... or we create a .env.local file
and override it there.

 31 lines 31 lines .env.env

� ... lines 1 - 31

And, in general, when we boot the kernel in our tests, everything works exactly the same as loading our app in the browser. It
does boot our code in a Symfony environment called test instead of dev ... and that does change a few things. But 99% of the
behavior is the same.

If you look at the error, the test is having problems connecting to 127.0.0.1 at port 5432 . That makes sense: it's reading that
from our .env file. All very normal.

But, there is one important difference in the test environment. If you create a .env.local file, override DATABASE_URL , and run
your tests (I'll change this port to something crazy like 9999), it won't be used! Check out this error! It's still looking for
port 5432 .

In the test environment only, the .env.local file is not loaded. So if you want to configure a DATABASE_URL specifically for your
test environment, you need to put it into .env.test : the environment-specific variable file.

Before we move on, make sure to delete that .env.local file to avoid any confusion.

Reading from Docker in your Tests

But in our case, we're not going to rely on any of these .env files. That's because, if you followed the README.md instructions,
we're using Docker behind the scenes. We have a docker-compose.yaml file, which starts a Postgres database. And because
we're using the Symfony binary as a web server, it sets the DATABASE_URL automatically to point to that container.

When we refresh the page... it's not using the DATABASE_URL from my .env : it's using the dynamic value that's set by the
symfony binary. This is something that we talked about in our Doctrine tutorial.

However, that magic is clearly not happening in our test! The error makes it obvious that it's looking at the DATABASE_URL
from .env . And... that's true! This is because the symfony binary doesn't have a chance to inject the DATABASE_URL

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {

 $entityManager = self::getContainer()->get(EntityManagerInterface::class);
 assert($entityManager instanceof EntityManagerInterface);
 $entityManager->persist($lockDown);
 $entityManager->flush();

 dd($lockDown->getId());
 }

�

./vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

��

environment variable. To allow that, instead of running ./vendor/bin/phpunit , run symfony php vendor/bin/phpunit ... followed by the
path to the test

The symfony php command is just a way to execute PHP... but by doing this, it lets the symfony binary work its magic.

When we try this... it fails again. But check it out! This is a different error. Now it's talking about port 58292 . That's the random
port that my Docker database can apparently be reached on. It also says database "app_test" does not exist .

Automatically Suffixed Test Databases

To see what that's about, run:

This shows all the environment variables that the Symfony binary is injecting. The most important is DATABASE_URL . This
points at the Docker container... which for me, is running on port 58292 .

The key detail is this app part. That's the name of the database that should be used. So if DATABASE_URL is pointing to a
database named app , why did the error say that a database called app_test doesn't exist?

Before we answer that, I have another question: when we run our tests, do we want them to use the same database that our
local app is using? Ideally, no! Having a different database for your tests versus your normal development environment is a
good idea. For one... it's just annoying to run your tests and have it manipulate your data while developing. And fortunately,
having two different databases is something that happens automatically.

Open config/packages/doctrine.yaml . Down at the bottom, we have this special when@test block. This is config only for the test
environment. And check out that dbname_suffix ! It's set to _test . You can ignore the %env(default::TEST_TOKEN)% bit. That
relates to a library called ParaTest and, in our case, it will be empty. So effectively, it's just _test .

 49 lines 49 lines config/packages/doctrine.yamlconfig/packages/doctrine.yaml

� ... lines 1 - 23
24

25

26

27

28

� ... lines 29 - 49

So thanks to this config, in the test environment, it takes the app config, adds _test to it and ultimately uses a database
called app_test .

That's really nice! And now that we understand that, all we need to do is create that database.

Creating the Database

At your terminal, run symfony console - this is just bin/console , but allows the symfony binary to inject the DATABASE_URL
environment variable - doctrine:database:create --env=test :

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

�

symfony var:export --multiline

when@test:
 doctrine:
 dbal:
 # "TEST_TOKEN" is typically set by ParaTest
 dbname_suffix: '_test%env(default::TEST_TOKEN)%'

�

symfony console doctrine:database:create --env=test

��

��

And... success!! We also need to create the schema : doctrine:schema:create

Cool! Try the test now:

It worked! That 1 ... comes from the dump down here.

Finishing the Query

Let's finish this test. To make life easier, copy the repository line, then create a new private method:
private function getLockDownRepository() . Paste, add return , then the return type. Now we don't need the assert() because PHP
will throw a big error if this returns something else for some reason.

 40 lines 40 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 9
10

11

� ... lines 12 - 34
35

36

37

38

39

Simplify things up here with $this->getLockDownRepository()->isInLockDown() .

 40 lines 40 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 11
12

13

14

15

16

17

� ... lines 18 - 40

Try the test again to make sure it still passes...

It does. And interestingly, the ID is now 2 . More on that soon.

Replace the dump with $this->assertTrue() that $this->getLockDownRepository()->isInLockDown() .

�

symfony console doctrine:schema:create --env=test

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

class LockDownRepositoryTest extends KernelTestCase
{

 private function getLockDownRepository(): LockDownRepository
 {
 return self::getContainer()->get(LockDownRepository::class);
 }
}

 public function testIsInLockDownReturnsFalseWithNoRows()
 {
 self::bootKernel();

 $this->assertFalse($this->getLockDownRepository()->isInLockDown());
 }

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

��

��

 40 lines 40 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 18
19

20

� ... lines 21 - 31
32

33

� ... lines 34 - 40

Over in the repository, I'll paste in the real query. This looks for a lockdown that has not ended, and returns true or false.

 35 lines 35 lines src/Repository/LockDownRepository.phpsrc/Repository/LockDownRepository.php

� ... lines 1 - 17
18

19

� ... lines 20 - 24
25

26

27

28

29

30

31

32

33

34

Let's do this!

And... the test fails? Oh, our second test passed, but the original test is suddenly failing. How did that happen?

It turns out, thanks to the second test, when the first test runs, the database is no longer empty. In fact, it's piling up with more
and more rows each time we run the tests. Watch, run:

Yikes! This is a critical problem: we need to guarantee that the database is in a predictable state at the beginning of every test.
Let's dive into this very important problem next.

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {

 $this->assertTrue($this->getLockDownRepository()->isInLockDown());
 }

class LockDownRepository extends ServiceEntityRepository
{

 public function isInLockDown(): bool
 {
 return $this->createQueryBuilder('lock_down')
 ->andWhere('lock_down.status != :endedStatus')
 ->setParameter('endedStatus', LockDownStatus::ENDED)
 ->setMaxResults(1)
 ->getQuery()
 ->getOneOrNullResult() !== null;
 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

�

symfony console dbal:run-sql 'SELECT * FROM lock_down' --env=test

Chapter 4: Resetting the Database

It's really common with integration tests or functional tests to talk to the database. And we almost always need to seed the
database before the test: to add some rows to LockDown before doing the work and calling the assertions.

In the first tutorial, we talked about a testing philosophy or pattern called AAA: Arrange, Act, and Assert. With an integration
test, the Arrange step commonly involves adding rows to your database, the Act step is where you call the method and then
Assert is, of course, the assertions at the end.

Loading Fixtures?

There are two approaches to seeding your database in a test. The first is to write code inside the test to insert all the data you
need. The second is to create and run a set of fixtures.

And our app does have fixtures that power our local site. Should we... load those from inside our test so that it starts with some
data in a predictable state?

This sounds nice! But... don't do it! Don't load fixtures in your tests. Why? Because a good test reads like a story: you should
be able to read what data is added, what method is called, and what behavior is expected.

If you load a set of fixtures... then suddenly assert that we're in a lockdown, it's not super obvious why we're in a lockdown... or
what we're even testing! You need to go dig into the app fixtures to find which LockDown records there are... and figure out
what's going on. I do not like that.

So, even though it might feel like a bit more work, the best strategy is to insert the data you need inside each test method. And
after the next chapter, it actually won't be much work.

Clearing the Data

Even more importantly, no matter how you seed your database, we need to make sure that, before each test starts, the
database is empty. And we just saw why.

Our original test passed... until our second test inserted a row... which caused the first to suddenly fail. Boo. Unless your
database is in a perfectly predictable state at the start of each test, you can't trust them! And the best way to be predictable is
to start empty!

We could override the setUp() method and run code here that does that. Fortunately, we don't need to because there are
multiple libraries that already solve this problem. My favorite is Foundry.

Installing zenstruck/foundry

Run:

If you watched our Doctrine tutorial, you'll remember Foundry! But you may not know about its testing superpowers... which is
where it really shines.

The main point of this library is to help create dummy data, and we are going to talk about that soon. But it also comes with a
super easy way to empty your database between each test.

To use it, at the top of your test class, say use ResetDatabase ... and also another trait called Factories .

�

composer require zenstruck/foundry --dev

��

��

 44 lines 44 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 8
9

10

� ... line 11
12

13

14

� ... lines 15 - 42
43

Run the tests:

They pass! We can run them over and over and over again! Before each individual test method, it empties the database!

By the way, there's another library that does the same thing called dama/doctrine-test-bundle , which can be even faster than
Foundry's ResetDatabase . Feel free to install that - then use Foundry just for the factory stuff that we'll talk about soon. They
work great together.

Silencing Deprecations with symfony/phpunit-bridge

Before we move on, you probably noticed that we have a bunch of deprecations! Seeing deprecations is great... but an indirect
deprecation means that it's not our code that's triggering the deprecation: it's one library calling a deprecated method on
another library.

I'm not too worried about these... so let's silence them for the rest of the tutorial. These deprecation warnings come from
Symfony's phpunit-bridge package, and we can control how they work.

Open up phpunit.xml.dist . Down here, inside the php section, add env to set an environment variable called
SYMFONY_DEPRECATIONS_HELPER . For the value, an easy way to silence these warnings is to send them to a log file
instead: logFile=var/log/deprecations.log .

 40 lines 40 lines phpunit.xml.distphpunit.xml.dist

� ... lines 1 - 3
4

� ... lines 5 - 9
10

11

� ... lines 12 - 17
18

19

� ... lines 20 - 38
39

Close that up. Now when we run the tests:

Clean and tidy! And the deprecations are still waiting for us in the log file.

Next: let's leverage Foundry Factories to make seeding our database an absolute delight!

use Zenstruck\Foundry\Test\Factories;
use Zenstruck\Foundry\Test\ResetDatabase;

class LockDownRepositoryTest extends KernelTestCase
{
 use ResetDatabase, Factories;

}

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>
 <php>

 <env name="SYMFONY_DEPRECATIONS_HELPER" value="logFile=var/log/deprecations.log"/>
 </php>

</phpunit>

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

��

Chapter 5: Factory Data Seeding

I have a confession: I've been making us do way too much work!

To seed the database, we instantiate the entity, grab the EntityManager, then persist and flush it. There's nothing wrong with
this, but Foundry is about to make our life a lot easier.

Generating the Factory

At your terminal, run:

This command comes from Foundry. I'll select to generate all the factories.

The idea is that you'll create a factory for each entity that you want to create dummy data for, either in a test or for your normal
fixtures. We only need LockDownFactory , but that's fine.

Spin over and look at src/Factory/LockDownFactory.php . I'm not going to talk too much about these factory classes: we already
cover them in our Doctrine tutorial. But this class will make it easy to create LockDown objects, even setting createdAt to a
random DateTime , reason to some random text, and status randomly to one of the valid statuses, by default.

 72 lines 72 lines src/Factory/LockDownFactory.phpsrc/Factory/LockDownFactory.php

� ... lines 1 - 30
31

32

� ... lines 33 - 47
48

49

50

51

52

53

54

55

� ... lines 56 - 70
71

Using the Factory in a Test

Using this in a test is a delight. Say LockDownFactory::createOne() . Here, we can pass an array of any field that we want to
explicitly set. The only thing we care about is that this LockDown has an ACTIVE status. So, set status to
LockDownStatus::ACTIVE .

�

php bin/console make:factory

final class LockDownFactory extends ModelFactory
{

 protected function getDefaults(): array
 {
 return [
 'createdAt' => \DateTimeImmutable::createFromMutable(self::faker()->dateTime()),
 'reason' => self::faker()->text(),
 'status' => self::faker()->randomElement(LockDownStatus::cases()),
];
 }

}

��

��

 41 lines 41 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 6
7

� ... lines 8 - 13
14

15

� ... lines 16 - 24
25

26

� ... lines 27 - 28
29

30

31

� ... lines 32 - 33
34

� ... lines 35 - 39
40

That's it! We don't need to create this LockDown and we don't need the EntityManager. That one call takes care of everything.

Watch, when we run the test:

It passes! I love that.

Foundry Proxy Objects

By the way, the LockDownRepository method returns the new LockDown object... which can often be handy. But it's actually
wrapped in a special proxy object. So if we run the test now, you can see it's a proxy... and the LockDown is hiding inside.

Why does Foundry do that? Well, if you go and find their documentation, they have a whole section about using this library
inside of tests. One spot talks about the object proxy. The proxy allows you to call all the normal methods on your entity plus
several additional methods, like ->save() , ->remove() or even ->repository() to get another proxy object that wraps the
repository.

So it looks and acts like your normal object, but with some extra methods. That's not important for us right now, I just wanted
you to be aware of it. If you do need the real entity object, you can call ->object() to get it.

 42 lines 42 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 24
25

26

� ... lines 27 - 31
32

� ... lines 33 - 34
35

� ... lines 36 - 42

Adding More Objects

Anyway, now that adding data is so simple, we can quickly make our test more robust. To see if we can trick my query, call
createMany() ... to create 5 LockDown objects with LockDownStatus::ENDED .

To make sure our query looks only at the newest LockDown , for the active one, set its createdAt to -1 day . And for the
ENDED , set these to something older.

use App\Factory\LockDownFactory;

class LockDownRepositoryTest extends KernelTestCase
{

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {

 LockDownFactory::createOne([
 'status' => LockDownStatus::ACTIVE,
]);

 }

}

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {

 dd($lockDown->assertNotPersisted());

 }

��

��

��

 46 lines 46 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 24
25

26

� ... lines 27 - 28
29

30

31

32

33

34

35

36

� ... lines 37 - 38
39

� ... lines 40 - 46

Let's see if our query is robust enough to still behave correctly.

It is!

But... actually... management has some extra tricky rules around a lockdown. Copy this test, paste it, and rename it to
testIsInLockdownReturnsFalseIfTheMostRecentIsNotActive .

 60 lines 60 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 40
41

42

� ... lines 43 - 52
53

� ... lines 54 - 60

To explain management's weird rule, let me tweak the data. Make the first LockDown ENDED ... then the next, older 5 status
ACTIVE . Finally, assertFalse() at the bottom.

 62 lines 62 lines tests/Integration/Repository/LockDownRepositoryTest.phptests/Integration/Repository/LockDownRepositoryTest.php

� ... lines 1 - 40
41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

� ... lines 56 - 62

That... might look confusing... and it kind of is. According to management, when determining if we're in lockdown, we should
ONLY look at the MOST recent LockDown status. If there are older active lockdowns... those, apparently, don't matter.

 public function testIsInLockDownReturnsTrueIfMostRecentLockDownIsActive()
 {

 LockDownFactory::createOne([
 'createdAt' => new \DateTimeImmutable('-1 day'),
 'status' => LockDownStatus::ACTIVE,
]);
 LockDownFactory::createMany(5, [
 'createdAt' => new \DateTimeImmutable('-2 day'),
 'status' => LockDownStatus::ENDED,
]);

 }

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

 public function testIsInLockDownReturnsFalseIfMostRecentIsNotActive()
 {

 }

 public function testIsInLockDownReturnsFalseIfMostRecentIsNotActive()
 {
 self::bootKernel();

 LockDownFactory::createOne([
 'createdAt' => new \DateTimeImmutable('-1 day'),
 'status' => LockDownStatus::ENDED,
]);
 LockDownFactory::createMany(5, [
 'createdAt' => new \DateTimeImmutable('-2 days'),
 'status' => LockDownStatus::ACTIVE,
]);

 $this->assertFalse($this->getLockDownRepository()->isInLockDown());
 }

��

Not surprisingly, when we try the tests:

This one fails. But, look on the bright side: that test was super-fast to write! And now we can go into LockDownRepository to fix
things. I'll fast-forward through some changes that fetch the most recent LockDown regardless of its status.

If we don't find any lockdowns, return false. Else, I'll add an assert() to help my editor... then return true if the status does not
equal LockDownStatus::ENDED .

 43 lines 43 lines src/Repository/LockDownRepository.phpsrc/Repository/LockDownRepository.php

� ... lines 1 - 17
18

19

� ... lines 20 - 24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

And now:

We're green!

Using the LockDown Feature

We've been living in our terminal so long that I think we should celebrate by using this on our site. In the fixtures, I've added an
active LockDown by default.

Head over to MainController ... and autowire LockdownRepository $lockdownRepository . Then throw a new variable in the template
called isLockedDown set to $lockdownRepository->isInLockdown() .

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

class LockDownRepository extends ServiceEntityRepository
{

 public function isInLockDown(): bool
 {
 // find the most recent lock down
 $lockDown = $this->createQueryBuilder('lock_down')
 ->orderBy('lock_down.createdAt', 'DESC')
 ->setMaxResults(1)
 ->getQuery()
 ->getOneOrNullResult();

 if (!$lockDown) {
 return false;
 }

 assert($lockDown instanceof LockDown);

 return $lockDown->getStatus() !== LockDownStatus::ENDED;
 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Repository/LockDownRepositoryTest.php

��

��

 41 lines 41 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 6
7

� ... lines 8 - 13
14

15

� ... line 16
17

18

� ... lines 19 - 24
25

� ... line 26
27

28

29

� ... lines 30 - 39
40

Finally, in the template - templates/main/index.html.twig - I already have a _lockdownAlert.html.twig template. If, isLockedDown ,
include that.

 56 lines 56 lines templates/main/index.html.twigtemplates/main/index.html.twig

� ... lines 1 - 2
3

4

5

6

� ... lines 7 - 54
55

Moment of truth. Refresh. Run for your life! We are in lockdown!

Next: we need a way to turn a lockdown off. Because, if I click this, it... does nothing! To help with this new task, we're going to
use an integration test on a different class: on one of our normal services.

use App\Repository\LockDownRepository;

class MainController extends AbstractController
{

 public function index(GithubService $github, DinosaurRepository $repository, LockDownRepository $lockDownRepository): Response
 {

 return $this->render('main/index.html.twig', [

 'isLockedDown' => $lockDownRepository->isInLockDown(),
]);
 }

}

{% block body %}
{% if isLockedDown %}
 {{ include('main/_lockDownAlert.html.twig') }}
{% endif %}

{% endblock %}

��

Chapter 6: Testing a Service

If you click this button to end the lockdown... it hits a die statement. I created a controller... but got lazy...

To end a lockdown, we need to find the active lockdown, change its status to ended, and save it to the database. Easy peasy.
But instead of putting that logic inside our controller, let's create a service.

Creating the Service

We could use TDD, but I'm going to create the class quickly, and then we'll test: it'll be easier to understand.

Inside src/Service/ , add a new LockdownHelper class. I'll paste in some logic... because it's beautifully boring. We have a
method called endCurrentLockDown() , it calls a findMostRecent() method on the repository, sets the status to ENDED and
flushes. Up here, we autowire LockdownRepository and EntityManagerInterface .

 29 lines 29 lines src/Service/LockDownHelper.phpsrc/Service/LockDownHelper.php

� ... lines 1 - 4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The findMostRecent() method doesn't exist yet on the repository. So open LockDownRepository ... and let's do some refactoring.
Create a new public function called findMostRecent() , which will return a nullable Lockdown . Then grab the code from below,
paste, return that and call it: $lockdown equals $this->findMostRecent() .

use App\Enum\LockDownStatus;
use App\Repository\LockDownRepository;
use Doctrine\ORM\EntityManagerInterface;

class LockDownHelper
{
 public function __construct(
 private LockDownRepository $lockDownRepository,
 private EntityManagerInterface $entityManager,
)
 {
 }

 public function endCurrentLockDown(): void
 {
 $lockDown = $this->lockDownRepository->findMostRecent();
 if (!$lockDown) {
 throw new \LogicException('There is no lock down to end');
 }

 $lockDown->setStatus(LockDownStatus::ENDED);
 $this->entityManager->flush();
 }
}

��

��

 45 lines 45 lines src/Repository/LockDownRepository.phpsrc/Repository/LockDownRepository.php

� ... lines 1 - 17
18

19

� ... lines 20 - 24
25

26

27

28

29

30

31

32

33

34

35

36

� ... lines 37 - 42
43

44

And yes, you could create an integration test for findMostRecent() , but we'll skip it.

Back over in LockDownHelper ... this is happy! Before we use this class, let's test it!

Unit Test? Or Integration Test?

The first question is, do we need a unit test or an integration test? And honestly, either would be fine. We could do a unit test,
mock LockdownRepository , make sure findMostRecent() is called, and that it sets the status to ENDED and calls flush() on the
entity manager. So yea, a unit test would be ok: the mocking isn't too complicated... and it would test the logic pretty well.

Or we can write an integration test, which will run a bit slower, but be more realistic. For the sake of this tutorial, let's do an
integration test. And also, you could have both. Heck, there's nothing stopping you from booting the kernel in one test
method... and using mocks in another test method in the same class. Mocks and the container are two different tools to help
you get your work done.

In the Integration/ directory, create a new Service/ directory... then a new PHP class: LockdownHelperTest . This time, go straight
to extending KernelTestCase , then use our two favorite traits: use ResetDatabaseTrait and Factories .

 13 lines 13 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 4
5

6

7

8

9

10

11

12

Since we'll use these traits in every integration test, you can also create a base class. Somewhere inside of tests/ , you could
create an abstract BaseKernelTestCase , put the traits there, then have all of your integration tests extend that.

Down here, let's whip up our test: testEndCurrentLockdown() . And we know how to start: self::bootKernel() .

class LockDownRepository extends ServiceEntityRepository
{

 public function findMostRecent(): ?LockDown
 {
 return $this->createQueryBuilder('lock_down')
 ->orderBy('lock_down.createdAt', 'DESC')
 ->setMaxResults(1)
 ->getQuery()
 ->getOneOrNullResult();
 }

 public function isInLockDown(): bool
 {
 $lockDown = $this->findMostRecent();

 }
}

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;
use Zenstruck\Foundry\Test\Factories;
use Zenstruck\Foundry\Test\ResetDatabase;

class LockDownHelperTest extends KernelTestCase
{
 use ResetDatabase, Factories;
}

��

��

��

��

 30 lines 30 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 15
16

17

18

� ... lines 19 - 27
28

� ... lines 29 - 30

Let's think. If we're going to end a lockdown... we need an active LockDown in the database. Say $lockdown equals
LockDownFactory::createOne() ... and pass status set to LockDownStatus::ACTIVE .

 30 lines 30 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 15
16

17

� ... lines 18 - 19
20

21

22

� ... lines 23 - 27
28

� ... lines 29 - 30

Since we know our database will start empty, we know this will be the item that our query returns. Down here, grab the
$lockDownHelper with self::getContainer()->get(LockDownHelper::class) ... and use the assert() trick to tell our editor that this is an
instanceof LockDownHelper .

 30 lines 30 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 15
16

17

� ... lines 18 - 23
24

25

� ... lines 26 - 27
28

� ... lines 29 - 30

With the "Arrange" part of the test done, let's act: $lockDownHelper->endCurrentLockDown() .

With any luck, this record should have just changed its status in the database. To prove it, assert that LockDownStatus::ENDED
equals $lockDown->getStatus() .

 30 lines 30 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 15
16

17

� ... lines 18 - 25
26

27

28

� ... lines 29 - 30

Auto-Refreshing in Action

That's a good-looking test! Though there is one tiny detail I should mention. First... I'm going to tell a lie. By checking
$lockDown->getStatus() , we're actually only checking that this LockDown object had its status changed by the code... we're not
actually testing whether its new value was saved to the database. To test that, we could make a fresh query to the database,
like via LockDownFactory::repository() ... then find the most recent. We'll talk more about the repository shortcut later.

 public function testEndCurrentLockdown()
 {
 self::bootKernel();

 }

 public function testEndCurrentLockdown()
 {

 $lockDown = LockDownFactory::createOne([
 'status' => LockDownStatus::ACTIVE,
]);

 }

 public function testEndCurrentLockdown()
 {

 $lockDownHelper = self::getContainer()->get(LockDownHelper::class);
 assert($lockDownHelper instanceof LockDownHelper);

 }

 public function testEndCurrentLockdown()
 {

 $lockDownHelper->endCurrentLockDown();
 $this->assertSame(LockDownStatus::ENDED, $lockDown->getStatus());
 }

��

Now, for the truth. You should be thinking critically about what you're testing or not testing like we just did. However, because
we created the $lockDown variable through Foundry, it's wrapped in a Proxy . One of the main features of a Proxy is called
"auto-refreshing". Each time you access a property or call a method on your entity, behind the scenes, Foundry queries for the
latest data from the database and sets it. So if we hadn't flushed the status change to the database, the test would have failed.
Foundry actually would have seen that we had unsaved changes on that entity, and would have yelled at us. Pretty cool.

Inlined or Removed Services?

Ok, let's try this thing! Run:

And... what the heck? It says:

The LockDownHelper service or alias has been removed or inlined when the container was compiled.

What does that mean? Ok, a really cool thing about Symfony's service container is that if a service isn't used by anything in
your app, it's removed from the container... which makes our app leaner and meaner.

In our actual application code, like controllers, repositories & services, nobody is using the LockDownHelper service. We're not
autowiring it into a controller or a service anywhere. And so, Symfony removes this from the container... which means that it's
not there in the test.

The fix for this is... just to make sure it's used somewhere! I mean, if we're writing this code, certainly we intended to... ya
know, use it.

In the endLockDown() action, autowire LockDownHelper $lockDownHelper ... and I'm not even going to call anything on it yet. Just
having it here will be enough.

 42 lines 42 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 8
9

� ... lines 10 - 14
15

16

� ... lines 17 - 32
33

34

� ... lines 35 - 39
40

41

And now:

The test passes! Woo!

Let's use it: call $lockDownHelper->endCurrentLockDown() ... then redirect back to the homepage.

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

use App\Service\LockDownHelper;

class MainController extends AbstractController
{

 public function endLockDown(Request $request, LockDownHelper $lockDownHelper)
 {

 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

�� 44 lines 44 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 32
33

34

� ... lines 35 - 38
39

40

41

42

� ... lines 43 - 44

Let's try it! Refresh, we're in a lockdown... "End Lockdown"... it's gone. All the dinos are back in their pens.

Next: I'm going to complicate things by introducing a situation that will make us want to unit test and integration test
LockDownHelper ... at the same time. That'll lead us to something I call "partial mocking".

 public function endLockDown(Request $request, LockDownHelper $lockDownHelper)
 {

 $lockDownHelper->endCurrentLockDown();

 return $this->redirectToRoute('app_homepage');
 }

��

��

Chapter 7: Partial Mocking

Let's make LockDownHelper more interesting. Let's say that, when a lockdown ends, we need to send an API request to
GitHub. In our first tutorial, we wrote code that made API requests to get info about this SymfonyCasts/dino-park repository. Now,
we're going to pretend that, when we end a lockdown, we need to send an API request to find all the issues with a "lockdown"
label and close them. We're not... actually going to do this, but we'll go through the motions to trigger a fascinating situation.

This Setup: Making API Calls from our Service

In that first tutorial, we made a GitHub service that wraps the API calls. Its one method grabs a health report for the dinosaurs.
Add a new public function called clearLockDownAlerts() . Inside, pretend we're making an API call - we don't really need to - then,
at least, log a message.

 79 lines 79 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 9
10

11

� ... lines 12 - 46
47

48

49

50

51

� ... lines 52 - 77
78

Cool! Also pretend that we've tested this method in some way - via a unit or integration test. The point is: we're confident that
this method works.

Over in LockDownHelper , to make our fake API call, autowire GithubService $githubService ... and down here, after flush() , say
$this->githubService->clearLockDownAlerts() .

 32 lines 32 lines src/Service/LockDownHelper.phpsrc/Service/LockDownHelper.php

� ... lines 1 - 8
9

10

11

� ... lines 12 - 13
14

15

16

17

� ... line 18
19

20

� ... lines 21 - 28
29

30

31

Okay! Try the test!

class GithubService
{

 public function clearLockDownAlerts(): void
 {
 $this->logger->info('Cleaning lock down alerts on GitHub...');
 // pretend like this makes an API call to GitHub
 }

}

class LockDownHelper
{
 public function __construct(

 private GithubService $githubService
)
 {
 }

 public function endCurrentLockDown(): void
 {

 $this->githubService->clearLockDownAlerts();
 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

��

We haven't changed anything and... it still passes. That makes sense. In our test, we ask Symfony for the LockDownHelper and
it handles passing the new GithubService argument when it creates that service. And because GitHubService isn't actually
making a real API call, everything is fine.

But what if GithubService did contain real logic to make an HTTP request to GitHub? That could cause a few problems. First, it
would definitely slow down our test. Second, it might fail because, when it checks the repository, we may not have any issues
with the LockDown label. And third, if it does find issues with that label, it might close them on our real production repository...
even though this is just a test.

Furthermore - I know, I'm on a roll - if we wanted to test that the clearLockDownAlerts() method was actually called, in an
integration test, the only way to do that is by making an API call from our test to seed the repository with some issues (creating
an issue with a LockDown label), calling the method, then making another API request from our test to verify that the issue was
closed. Yikes. That's too much work to check something so simple!

Mocking only Some Services?

I hope you're yelling at your computer:

Ryan! This is the whole point of mocking - what we learned in the first tutorial!

Yea, totally! If we mocked GitHubHelper , we would avoid any API calls and have an easy way to assert that the method was
called. So, darn, we basically want to mock one dependency... but use the real services for the other dependencies. Is that
possible? It is! With something I call "partial mocking".

Injecting a Mock into the Container

When we ask the container for the LockDownHelper service, it instantiates the real services that it needs and passes them to
each of the three arguments. What we really want to do is have it pass the real service for $lockDownRepository and
$entityManager , but a mock for $githubService . And Symfony gives us a way to do that!

Check it out. Before we ask for LockDownHelperService , create a $githubService mock set to
$this->createMock(GitHubService::class) . Below that, say $githubService->expects() and, to make sure this fails at first, use
$this->never() and ->method('clearLockDownAlerts') .

 36 lines 36 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 12
13

14

� ... lines 15 - 16
17

18

� ... lines 19 - 24
25

26

27

� ... lines 28 - 33
34

35

If we stop now and run the test:

It still passes. We created a mock... but no one is using it. We need to tell Symfony:

Hey! Replace the real GitHubService in the container with this mock.

class LockDownHelperTest extends KernelTestCase
{

 public function testEndCurrentLockdown()
 {

 $githubService = $this->createMock(GithubService::class);
 $githubService->expects($this->never())
 ->method('clearLockDownAlerts');

 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

��

��

Doing that is simple: self::getContainer()->set() passing the ID of the service, which is GithubService::class , then $githubService .

 36 lines 36 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 16
17

18

� ... lines 19 - 27
28

� ... lines 29 - 33
34

� ... lines 35 - 36

Suddenly, that becomes the service in the container, and that is what will be passed to LockDownHelper as the third argument.

Try the test!

Because of the $this->never() ... it fails! clearLockDownAlerts() was not expected to be called, but it was... since we're calling it
down here. That proves the mock was used!

Change the test from $this->never() to $this->once() and try again...

 36 lines 36 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 16
17

18

� ... lines 19 - 25
26

� ... lines 27 - 33
34

� ... lines 35 - 36

It passes! This is such a cool strategy.

Next: Let's look at how we can test if our code caused certain external things to happen, starting with testing emails.

 public function testEndCurrentLockdown()
 {

 self::getContainer()->set(GithubService::class, $githubService);

 }

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

 public function testEndCurrentLockdown()
 {

 $githubService->expects($this->once())

 }

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

��

Chapter 8: The Repository Test Helper

All right, team! We've covered all the main parts of integration testing! Woo! And, it's delightfully simple: just a strategy to grab
the real services from a container and test them, which... ultimately gives us a more realistic test.

The downsides of integration tests are that they run slower than unit tests, and they're often more complex... because we need
to think about things like clearing and seeding the database. And sometimes, we don't want real things (like API calls) to
happen. In this case, we can use a bit of mocking to avoid that. The big takeaway is, like everything, use the right tool - unit
testing or integration testing - for the right job. That's situational and it's okay to use both.

As we near the finish line, let's dive into testing some of the trickier parts in our system: like whether emails were sent or
messenger messages were dispatched. To do this, we need to give Bob a new superpower: the ability to put the park into
lockdown. Once activated, our app will shoot off an email to the park crew, basically saying:

Alert! Dinosaurs on the loose!

Creating the Command

Head over to LockDownHelper . Down here, create a new method. We'll call this to put the park into lockdown, so how about
public function dinoEscaped() . Give it a void return type and just put some TODO comments here outlining what we need to do:
save a LockDown to the database and send an email.

 38 lines 38 lines src/Service/LockDownHelper.phpsrc/Service/LockDownHelper.php

� ... lines 1 - 8
9

10

� ... lines 11 - 31
32

33

34

35

36

37

To call this code and trigger the lockdown, let's create a new console command. At the terminal, run:

Call it app:lockdown:start .

Simple enough! That created a single class in src/Command/LockdownStartCommand.php . Inside, autowire a
private LockDownHelper $lockDownHelper and make sure to call the parent constructor.

class LockDownHelper
{

 public function dinoEscaped(): void
 {
 // TODO: create a LockDown & save
 // send an email with subject like "RUUUUUUNNNNNN!!!!"
 }
}

�

php bin/console make:command

��

��

 39 lines 39 lines src/Command/LockdownStartCommand.phpsrc/Command/LockdownStartCommand.php

� ... lines 1 - 4
5

� ... lines 6 - 13
14

15

16

17

18

19

20

21

22

23

� ... lines 24 - 37
38

Down here, delete pretty much all of this logic... and replace it with $this->lockDownHelper->dinoEscaped() and
$io->caution('Lockdown started!!!!!!!!!!') .

 39 lines 39 lines src/Command/LockdownStartCommand.phpsrc/Command/LockdownStartCommand.php

� ... lines 1 - 28
29

30

31

32

33

34

35

36

37

� ... lines 38 - 39

Dangerous. This method doesn't do anything yet, but we can already go ahead and try the command. Copy its name... and
run:

Love it!

Creating the Test

Before we get our hands dirty with the new method, let's write a test. But first, let's do that trick where we add a private function
to help us get the service we're testing: private function getLockDownHelper() , which will return a LockDownHelper . Inside, copy the
code from above... and return it. Then, simplify the code up here to just $this->getLockDownHelper()->endCurrentLockDown() .

use App\Service\LockDownHelper;

#[AsCommand(
 name: 'app:lockdown:start',
 description: 'Add a short description for your command',
)]
class LockdownStartCommand extends Command
{
 public function __construct(private LockDownHelper $lockDownHelper)
 {
 parent::__construct();
 }

}

 protected function execute(InputInterface $input, OutputInterface $output): int
 {
 $io = new SymfonyStyle($input, $output);

 $this->lockDownHelper->dinoEscaped();
 $io->caution('Lockdown started!!!!!!');

 return Command::SUCCESS;
 }

�

php bin/console app:lockdown:start

��

��

��

 39 lines 39 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 12
13

14

� ... lines 15 - 16
17

18

� ... lines 19 - 29
30

� ... line 31
32

� ... line 33
34

35

36

37

38

All right, now create the new test method: public function testDinoEscapedPersistsLockDown() . Start the same way we always do -
by booting the kernel. Then call the method with $this->getLockDownHelper()->dinoEscaped() .

 46 lines 46 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 33
34

35

36

37

38

39

� ... lines 40 - 46

Cool! It's not interesting, but try the test anyway:

It doesn't fail, but... it is risky because we haven't performed any assertions.

Database Assertions via the Repository

What we want to assert is that this did insert a row into the database. To do that, we could grab the entity manager or our
repository service, make a query, and do some assertions using that. However, Foundry comes with a nice trick for this.

After we call the method, say LockDownFactory . Normally, we would call things like create or createMany , but this also has a
method on it named repository . This returns an object from Foundry that wraps the repository - much like how Foundry wraps
our entities in a Proxy object. This means we can call real repository methods on it - like findMostRecent() or isInLockDown() .
But it also has extra stuff, like assert() . Say ->assert()->count(1) to make sure that the there is one record in this table. We could
go further and fetch that record to make sure its status is "active", but I'll skip that.

 47 lines 47 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 33
34

35

� ... lines 36 - 38
39

40

� ... lines 41 - 47

Run the test now.

class LockDownHelperTest extends KernelTestCase
{

 public function testEndCurrentLockdown()
 {

 $this->getLockDownHelper()->endCurrentLockDown();

 }

 private function getLockDownHelper(): LockDownHelper
 {
 return self::getContainer()->get(LockDownHelper::class);
 }
}

 public function testDinoEscapedPersistsLockDown()
 {
 self::bootKernel();

 $this->getLockDownHelper()->dinoEscaped();
 }

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

 public function testDinoEscapedPersistsLockDown()
 {

 LockDownFactory::repository()->assert()->count(1);
 }

��

This should fail and... it does.

I'll go paste in some code that creates the LockDown and saves it. Easy peasy boring code.

 43 lines 43 lines src/Service/LockDownHelper.phpsrc/Service/LockDownHelper.php

� ... lines 1 - 9
10

� ... lines 11 - 32
33

34

35

36

37

38

39

40

41

42

Try the test now... it passes!

Next: let's send the email and test that it was sent. We'll do this with some core Symfony tools and also with another library
from zenstruck.

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

class LockDownHelper

 public function dinoEscaped(): void
 {
 $lockDown = new LockDown();
 $lockDown->setStatus(LockDownStatus::ACTIVE);
 $lockDown->setReason('Dino escaped... NOT good...');
 $this->entityManager->persist($lockDown);
 $this->entityManager->flush();
 // send an email with subject like "RUUUUUUNNNNNN!!!!"
 }
}

��

��

Chapter 9: Testing Emails

When we go into lock down, we need to send an email. Before we write the code to do that, let's add an assertion for it.

Asserting an Email is Sent

How? Symfony has our back: it gives us a few methods related to emails, like $this->assertEmailCount() . We can assert a lot of
things about emails, but for simplicity's sake, we'll stick to this simple count.

 48 lines 48 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 12
13

14

� ... lines 15 - 33
34

35

� ... lines 36 - 39
40

41

� ... lines 42 - 46
47

Run the test:

Epic fail, because... we don't even have mailer installed yet. Let's do that! Run:

If it asks about Docker configuration, that's up to you, but I'm going to say Yes permanently . We'll talk about what that did in a
minute, but it's not super important.

Similar to a database, we need to configure our Mailer connection parameters. That's done in .env via MAILER_DSN .
Uncomment this. The null transport is a great default. It means that emails won't actually be sent in the dev or test
environments. And then you can override on your production environment to set it to something real.

 35 lines 35 lines .env.env

� ... lines 1 - 32
33

� ... lines 34 - 35

If you do want to change this to something else in the dev environment, I would probably add this null transport to .env.test ...
because it's really nice to avoid sending any emails from our tests.

Alright, roll the testing dice again:

class LockDownHelperTest extends KernelTestCase
{

 public function testDinoEscapedPersistsLockDown()
 {

 $this->assertEmailCount(1);
 }

}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

�

composer require symfony/mailer

MAILER_DSN=null://null

�

��

Better! It fails because we haven't sent any emails. Let's do that!

Sending the Email

Over in LockDownHelper , autowire one more service: private MailerInterface $mailer . Then, down here, since this isn't a Mailer
tutorial, call a new sendEmailAlert() method... and I'll paste that in. Hover over the Email class and hit "alt" + "enter" to add the
Symfony\Component\Mime\Email use statement.

 58 lines 58 lines src/Service/LockDownHelper.phpsrc/Service/LockDownHelper.php

� ... lines 1 - 8
9

10

� ... line 11
12

13

14

� ... lines 15 - 17
18

19

20

21

� ... lines 22 - 35
36

37

� ... lines 38 - 42
43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

All set! Hustle back to the command-line:

Got it! The test passes!

Seeing Emails via MailCatcher

By the way, this isn't related to testing, but one cool things about using the Docker integration is, when we installed Mailer, it
added this mailcatcher service.

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

use Symfony\Component\Mailer\MailerInterface;
use Symfony\Component\Mime\Email;

class LockDownHelper
{
 public function __construct(

 private MailerInterface $mailer
)
 {
 }

 public function dinoEscaped(): void
 {

 $this->sendEmailAlert();
 }

 private function sendEmailAlert(): void
 {
 $email = (new Email())
 ->from('bob@dinotopia.com')
 ->to('staff@dinotopia.com')
 ->subject('PARK LOCKDOWN')
 ->text('RUUUUUUNNNNNN!!!!')
 ;

 $this->mailer->send($email);
 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

�� 15 lines 15 lines docker-compose.override.ymldocker-compose.override.yml

� ... lines 1 - 2
3

� ... lines 4 - 10
11

12

13

� ... lines 14 - 15

Run:

Then

to start the new service. Then run the test again. It still passes. However, because the mailcatcher service is running and we
executed our tests through the Symfony binary, it overrode the MAILER_DSN environment variable and pointed it at
MailCatcher. What... is MailCatcher?

To find out, run:

Sweet! MailCatcher is a fake email service with a little web GUI to see the emails your app has sent. If we sent an email via
our real app, that would show up here.

Watch. Run:

Lockdown! And when you check MailCatcher... ha! We have two messages! Pretty cool!

Using zenstruck/mailer-test

Anyway, before we stop talking about emails, I want to show you one more tool. And it's another library from Zenstruck. Run:

Symfony has built-in tools for testing emails, and they work great. This mailer-test library gives us even more tools, and it's
simple to use!

Add another trait to our test - use InteractsWithMailer - and then, down here, instead of assertEmailCount , we can say

services:

 mailer:
 image: schickling/mailcatcher
 ports: ["1025", "1080"]

�

docker compose down

�

docker compose up -d

�

symfony open:local:webmail

�

symfony console app:lockdown:start

�

composer require zenstruck/mailer-test --dev

��

$this->mailer()-> ... and then, woh, we have a ton of different asserts at our disposal. Say ->assertSentEmailCount(1) , and below
that, assertEmailSentTo() with staff@dinotopia.com and Subject line PARK LOCKDOWN . Whoops! Let me fix my typo. You can
see that this is the expectedTo and then this is a callable where we could assert more things or just pass the expected subject.

 51 lines 51 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 11
12

� ... line 13
14

15

� ... line 16
17

� ... lines 18 - 35
36

37

� ... lines 38 - 41
42

43

44

� ... lines 45 - 49
50

This is pretty simple, but it's one of the many things we can do with this library. Check out the docs to learn about everything.

Run the test again:

All good! Next up: let's talk about testing messenger.

use Zenstruck\Mailer\Test\InteractsWithMailer;

class LockDownHelperTest extends KernelTestCase
{

 use InteractsWithMailer;

 public function testDinoEscapedPersistsLockDown()
 {

 $this->mailer()->assertSentEmailCount(1);
 $this->mailer()->assertEmailSentTo('staff@dinotopia.com', 'PARK LOCKDOWN');
 }

}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

��

��

Chapter 10: Testing Messenger

Let's spice up our LockDownHelper a bit more, shall we?! When we create a lockdown, instead of sending the email directly,
we're going to dispatch a message to Messenger and have it send the email. Start by installing Messenger:

Lovely! In .env , this added a MESSENGER_TRANSPORT_DSN which, by default, uses the Doctrine transport type. Though, it
won't matter which transport type you use - Doctrine, Redis, whatever. As you'll see, in the test environment, we'll override
this completely.

 42 lines 42 lines .env.env

� ... lines 1 - 39
40

� ... lines 41 - 42

Setting up the Test Environment Transport

To make testing easier, let's also require another package from, you guessed it, Zenstruck!

Cool! This messenger-test library adds a special Messenger transport called test . We'll still use Doctrine by default, but now
open up config/packages/messenger.yaml . Uncomment the async transport, which uses MESSENGER_TRANSPORT_DSN . Below,
under when@test , we override the async transport and set it to the in-memory type. Oh, and I need to get rid of one extra
space. Perfect!

 23 lines 23 lines config/packages/messenger.yamlconfig/packages/messenger.yaml

1

2

� ... lines 3 - 5
6

� ... line 7
8

� ... lines 9 - 15
16

17

18

19

� ... lines 20 - 21
22

The in-memory comes from Symfony and it is nice for testing. When it's used, messages are not really sent to a transport, but
are stored - in memory - on an object during the test... which you can then use to assert that the message is there.

I like that! But the messenger-test packages gives us something even better. Change this to test:// . We'll see what that does in
a moment.

�

composer require symfony/messenger

MESSENGER_TRANSPORT_DSN=doctrine://default?auto_setup=0

�

composer require zenstruck/messenger-test --dev

framework:
 messenger:

 transports:

 async: '%env(MESSENGER_TRANSPORT_DSN)%'

when@test:
 framework:
 messenger:
 transports:

 async: 'in-memory://'

��

��

��

 23 lines 23 lines config/packages/messenger.yamlconfig/packages/messenger.yaml

� ... lines 1 - 15
16

17

18

19

� ... lines 20 - 21
22

Testing that Messages were Dispatched

Before we dispatch the message inside our code, head into the test. Here, we want to assert that we sent a message to
Messenger. And - surprise, surprise - we're going to use another trait. It's called InteractsWithMessenger . Down here, right
before we call the method, say $this->transport()->queue()->assertEmpty() .

 57 lines 57 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 12
13

� ... line 14
15

16

� ... lines 17 - 18
19

� ... lines 20 - 37
38

39

� ... lines 40 - 41
42

� ... lines 43 - 49
50

� ... lines 51 - 55
56

Similar to the mailer library, there are a lot of different things about messages that we can check. We're asserting that the
queue starts empty, which isn't really necessary - but it's a nice way for us to start. At the end, also assertCount() that 1
message was sent.

 57 lines 57 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 37
38

39

� ... lines 40 - 48
49

50

� ... lines 51 - 57

Let's try this! Keep running all of the tests from LockDownHelper :

And... it fails with the exact message we wanted!

Expected 1 messages, but 0 messages found.

Creating & Dispatching the Message

Sweet! Generate a Messenger message with:

when@test:
 framework:
 messenger:
 transports:

 async: 'test://'

use Zenstruck\Messenger\Test\InteractsWithMessenger;

class LockDownHelperTest extends KernelTestCase
{

 use InteractsWithMessenger;

 public function testDinoEscapedPersistsLockDown()
 {

 $this->transport()->queue()->assertEmpty();

 }

}

 public function testDinoEscapedPersistsLockDown()
 {

 $this->transport()->queue()->assertCount(1);
 }

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

��

��

��

Call it LockDownStartedNotification and put this into the async transport. Done! This created a message class, a handler class,
and also updated messenger.yaml so that this class is sent to the async transport.

 24 lines 24 lines config/packages/messenger.yamlconfig/packages/messenger.yaml

1

2

� ... lines 3 - 11
12

13

� ... lines 14 - 24

Next, waltz into LockDownHelper to dispatch that. On top, add a private MessageBusInterface $messageBus . Then, at the bottom,
say $this->messageBus->dispatch(new LockDownStartedNotification()) .

 48 lines 48 lines src/Service/LockDownHelper.phpsrc/Service/LockDownHelper.php

� ... lines 1 - 10
11

� ... lines 12 - 13
14

15

16

� ... lines 17 - 20
21

22

23

� ... lines 24 - 37
38

39

� ... lines 40 - 44
45

46

47

The handler for this class, if we look in src/MessageHandler/LockDownStartedNotification.php , isn't doing anything yet. But this
should be enough to get our test to pass.

 16 lines 16 lines src/MessageHandler/LockDownLiftedNotificationHandler.phpsrc/MessageHandler/LockDownLiftedNotificationHandler.php

� ... lines 1 - 7
8

9

10

11

12

13

14

15

And... whoops! A gremlin sneaked into my code! I added the code inside endCurrentLockDown() instead of dinoEscaped() . And
that's why we have tests people. When we try again... got it.

�

./bin/console make:message

framework:
 messenger:

 routing:
 App\Message\LockDownLiftedNotification: async

use Symfony\Component\Messenger\MessageBusInterface;

class LockDownHelper
{
 public function __construct(

)
 {
 }

 public function dinoEscaped(): void
 {

 $this->messageBus->dispatch(new LockDownLiftedNotification());
 }
}

#[AsMessageHandler]
final class LockDownLiftedNotificationHandler
{
 public function __invoke(LockDownLiftedNotification $message)
 {
 // do something with your message
 }
}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

��

Let's move all the mailing logic out of this class. Copy the private method, delete where we call it, the MailerInterface ... and
even the old use statements.

Open the handler, paste the private method there and hit "OK" to re-add those use statements. Then say
$this->sendEmailAlert() .

 35 lines 35 lines src/MessageHandler/LockDownLiftedNotificationHandler.phpsrc/MessageHandler/LockDownLiftedNotificationHandler.php

� ... lines 1 - 9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Cool! Everything should still work fine... except that the test fails:

Expected 1 emails to be sent, but 0 emails were sent.

Processing Messages in your Test

Hmm. If this were production, when we dispatch this message to the async transport, it would not send the email immediately.
It will be sent to a queue and processed later. And, the test transport we're using works a lot like a true queue. It receives the
message, but doesn't automatically handle it, which is cool. This means that, over in our test, we are dispatching this
message... but the email is never sent because it's still waiting to be processed.

What you do here is up to you. Maybe you're cool just knowing that the message was sent.

Or you might want to be a bit more hands-on and say:

No way! I want full proof that when this message is handled, it sends an email.

We can do that by telling the test transport to process its messages. Copy those two mailer() lines and delete them. Down
here, say $this->transport()->process() .

#[AsMessageHandler]
final class LockDownLiftedNotificationHandler
{
 public function __construct(private MailerInterface $mailer)
 {

 }

 public function __invoke(LockDownLiftedNotification $message)
 {
 $this->sendEmailAlert();
 }

 private function sendEmailAlert(): void
 {
 $email = (new Email())
 ->from('bob@dinotopia.com')
 ->to('staff@dinotopia.com')
 ->subject('PARK LOCKDOWN')
 ->text('RUUUUUUNNNNNN!!!!')
 ;

 $this->mailer->send($email);
 }
}

��

��

 59 lines 59 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 14
15

16

� ... lines 17 - 37
38

39

� ... lines 40 - 47
48

49

50

51

52

� ... lines 53 - 57
58

That's it! That will execute the handler for any messages in its queue. Below that, the email should be sent.

Try it:

And... it fails. Another bug! Why wasn't it sent? Because I was too quick with my handler: there is no $this->mailer property. I'm
actually surprised that we didn't get a bigger error inside our test.

To fix this, add public function __construct(private MailerInterface $mailer) . That looks better! And if we try that again... it passes.

And we can shorten things! Instead of assertCount(1) and ->process() , we can say processOrFail() . This method makes sure
that there's at least one message to process, and then processes it.

 57 lines 57 lines tests/Integration/Service/LockDownHelperTest.phptests/Integration/Service/LockDownHelperTest.php

� ... lines 1 - 37
38

39

� ... lines 40 - 46
47

� ... lines 48 - 49
50

� ... lines 51 - 57

Double-check the test:

Got it!

We did team! Our Dinotopia application is dangerous and well-tested, thanks to unit and integration tests. In the next tutorial in
this series, we'll turn to the final type of testing - functional testing - where you effectively control a browser, navigate to pages
and check what's on them. It's fun and can also be used to check JavaScript behavior.

Alright friends, see ya next time.

class LockDownHelperTest extends KernelTestCase
{

 public function testDinoEscapedPersistsLockDown()
 {

 $this->transport()->process();

 $this->mailer()->assertSentEmailCount(1);
 $this->mailer()->assertEmailSentTo('staff@dinotopia.com', 'PARK LOCKDOWN');
 }

}

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

 public function testDinoEscapedPersistsLockDown()
 {

 $this->transport()->processOrFail();

 }

�

symfony php vendor/bin/phpunit tests/Integration/Service/LockDownHelperTest.php

file:///contact

	PHPUnit: Integration Testing with Live Services
	With <3 from SymfonyCasts
	Chapter 1: Hello Integration Tests!
	Project Setup
	Checking for a "Lock Down"
	Creating the Test
	Uh Oh, Instantiating this Object is Hard!
	Why A Unit Test is the Wrong Tool
	Chapter 2: KernelTestCase: Fetching Services
	Booting the Kernel
	Fetching Services
	The Special Test Service Container
	Running Code & Asserting
	Chapter 3: Test Environment Database Setup
	Seeding the Database
	Special .env handling for Tests
	Reading from Docker in your Tests
	Automatically Suffixed Test Databases
	Creating the Database
	Finishing the Query
	Chapter 4: Resetting the Database
	Loading Fixtures?
	Clearing the Data
	Installing zenstruck/foundry
	Silencing Deprecations with symfony/phpunit-bridge
	Chapter 5: Factory Data Seeding
	Generating the Factory
	Using the Factory in a Test
	Foundry Proxy Objects
	Adding More Objects
	Using the LockDown Feature
	Chapter 6: Testing a Service
	Creating the Service
	Unit Test? Or Integration Test?
	Auto-Refreshing in Action
	Inlined or Removed Services?
	Chapter 7: Partial Mocking
	This Setup: Making API Calls from our Service
	Mocking only Some Services?
	Injecting a Mock into the Container
	Chapter 8: The Repository Test Helper
	Creating the Command
	Creating the Test
	Database Assertions via the Repository
	Chapter 9: Testing Emails
	Asserting an Email is Sent
	Sending the Email
	Seeing Emails via MailCatcher
	Using zenstruck/mailer-test
	Chapter 10: Testing Messenger
	Setting up the Test Environment Transport
	Testing that Messages were Dispatched
	Creating & Dispatching the Message
	Processing Messages in your Test

