PHPUnNIt: Unit Testing with a Bite!

-

PHPUnit

With <3 from SymfonyCasts

Chapter 1: PHPUnit Install

Hey everyone! Welcome to PHPUnit: testing with a bite! The tutorial where we discover, to our horror,that yet another
Dinosaur theme park has built their systems... without any tests. It won't matter whether or not the raptors can open doors...if
the fences never turn on.

Our park is called Dinotopia. And, to help wrangle our prehistoric friends, we've written a simple appthat shows us which dinos
are where and... how they're feeling. As you'll see, it's great! Except for the complete lack of tests.

App Setup

Anyways, to learn the most about testing and guarantee that nothing deadly will escapefrom your application, you should code
along with me. After clicking "Download" on this page, unzip the file and moveinto the start/ directory to find the code you see
here. Check out the README.md for all the setup details.

The last step will be to open up a terminal and run:

symfony serve -d

to start a local web server on 127.0.0.1 port 8000 .

Cool! Move over to your browser, open a tab, go to localhost:8000 ... and yes! Our Dinotopia Status app!

The App: Dinotopia Status

This simple app has the name of each dino, genus, size,and which enclosure the dino is currently hanging out in.Down here
at the bottom, we also have a link to GenLab's super secret dino-park repository on GitHub. O0000. This is where the
engineers regularly post updates to let Bob, our resident park ranger, know which dinos are feeling good,need their medicine,

or have escaped. Wait, What?! Hopefully, GitHub doesn't go offline when that happens.

And that's where we come in!We've already built the first version of the Dinotopia Status app.Looking at the code behind this,
it's pretty simple: one controller

28 lines src/Controller/MalnController.php

...lines 1-2
namespace App\Controller;

3
4
5 use App\Entity\Dinosaur;

6 use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
7 use Symfony\Component\HttpFoundation\Response;

8 use Symfony\Component\Routing\Annotation\Route;

9

10 class MainController extends AbstractController

11 {

12 #[Route(path: '/', name: 'main_controller', methods: ['GET'])]
13 public function index(): Response

14 {

15 $dinos = [

16 new Dinosaur('Daisy', 'Velociraptor', 2, 'Paddock A'),

17 new Dinosaur('Maverick','Pterodactyl’, 7, 'Aviary 1),

18 new Dinosaur('Big Eaty', "Tyrannosaurus', 15, 'Paddock C'),
19 new Dinosaur('Dennis', 'Dilophosaurus', 6, 'Paddock B'),
20 new Dinosaur('‘Bumpy', 'Triceratops', 10, 'Paddock B'),
2 I;

22

23 return $this->render('main/index.html.twig', [

24 'dinos' => $dinos,

25 D)

2%)

27 '}

one Dinosaur class...

40 lines src/Entlty/Dinosaur.php

...lines 1-2
namespace App\Entity;

3

4

5 class Dinosaur

6 {

7 private string $name;

8 private string $genus;

9 private int $length;

10 private string $enclosure;

12 public function __construct(string $name, string $genus = 'Unknown’, int $length = 0, string $enclosure = 'Unknown')
13 {

14 $this->name = $name;

15 $this->genus = $genus;

16 $this->length = $length;

17 $this->enclosure = $enclosure;

18}

20 public function getName(): string
21 {

22 return $this->name;

23 }

24

25 public function getGenus(): string
2%

27 return $this->genus;

28}

29

30 public function getLength(): int
31 {

32 return $this->length;

33 }

34

35 public function getEnclosure(): string
36 {

37 return $this->enclosure;

38 }

39}

and exactly zero tests. Our job is to fix that. We're also going to add a feature where we read each dino's status from GitHub
and render it. That'll help Bob avoid going into the enclosure of Big Eaty -our resident T-Rex - when his status is "Hungry".
Those accidents involve a lot of paperwork. And thanks to our tests, we'll ship that feature bug-free.You're welcome, Bob!

If you're new to testing, it can be intimidating. There are Unit tests, functional tests, integration tests, acceptance tests, math
tests! The list is almost endless. We'll talk about all of these - except for math tests - throughout this seriesIn this tutorial,
we're going to zoom in on unit tests: tests that cover one specific piece of code - like a function or method.

Oh, and by the way, tests are also super fun. It's automation! So buckley up.

Installing PHPUnit

What's the first step to writing tests?Installing PHP's defacto standard testing tool: PHPUnit.Move over to your terminal and
run:

composer require --dev symfony/test-pack

This test-pack is a Symfony "pack” that will install PHPUnit -which is all we need right now - as well as some other libraries
that'll come in handy later.

After it finishes, run:

git status

Cool! In addition to installing the packages, it looks like some Symfony Flex recipes modified and created a few other files.
Ignore these for now. We'll talk about each one at some point in this series when they become relevant.

Ok, we're ready to write our first test! Let's do that next.

Chapter 2: Our First Test

We already have this Dinosaur class... and it's pretty simple. But when it comes to dinosaurs, bugs in our code can be, mmm,
a bit painful. So let's add some basic tests!

Creating the Test Class

Mmmm... where do we put this new test? We can technically put our tests anywhere within our project. But when we installed
symfony/test-pack , Flex created a tests/ directory which, no surprise,is the recommended place to put our tests.

Remember that, in this tutorial, we're only dealing with Unit tests.So, inside of tests/, create a new directory called Unit . And
because our Dinosaur:class lives in the Entity namespace - create an Entity directory inside of that at the same time.

All of this organization is technically optional: you can organize the tests/ directory however you want. But, putting all of our
unit tests into a Unit directory is just... nice. And the reason we made the Entity directory is because we want the file structure
inside of Unit to mirror our src/ directory structure. That's a best practice that keeps our tests organized.

Finally, create a new class called DinosaurTest . Using that Test suffix makes sense: we're testing Dinosaur , so we call this

DinosaurTest ! But it's also a requirement: PHPUnit - our testing library -requires this. It also requires that each class extend
TestCase :

14 lines tests/Unit/Entity/DinosaurTest.php

...lines 1-2
namespace App\Tests\Unit\Entity;

use PHPUnit\Framework\TestCase;

class DinosaurTest extends TestCase
{

...lines 9- 12

13}

© N o o b~ W

Now let's go ahead and write a simple test to make sure everything is working.

Inside our DinosaurTest class, let's add public function testlsWorks() ... where we'll create the most exciting test ever! If you like
return types - | do! - use void ... though that's optional

Inside call self::assertEquals(42, 42) :

14 lines tests/Unit/Entity/DinosaurTest.php

...lines1-2
3 namespace App\Tests\Unit\Entity;
4
5 use PHPUnit\Framework\TestCase;
6
7 class DinosaurTest extends TestCase
8 {
9 public function testltWorks(): void
10
11 self::assertEquals(42, 42);

13}

That's it! It's not a very interesting test - if our computer thinks that 42 doesn't equal 42,we have bigger problems - but it's
enough.

Executing PHPUnit

How do we execute the test? By executing PHPUnit. At your terminal, run:

./vendor/bin/phpunit

And... awesome! PHPUnit saw one test - for our one test method - and oneassertion.
We could also say bin/phpunit to execute our tests, which is basically just a shortcut to run vendor/bin/phpunit .
But, I'm sure your curious... What's... an assertion?

Looking back at DinosaurTest , the one assertion refers to the assertEquals() method, which comes from PHPUnit's TesiCase
class. If the actual value - 42 - doesn't match theexpected value, the test would fail. PHPUnit has a bunch more assertion
methods... and we can see them all by going tohttps:/phpunit.readthedocs.io. This is full of goodies, including an "Assertions
section. And... wow! Look at them all... We'll talk about the most important assertions throughout the series.But for now, back
to the test!

Test Naming Conventions

Because, | have a question: how did PHPUnitknow that this is a test? When we call vendor/bin/phpunit, PHPUnit does three
things. First, it looks for its configuration file, which is phpunit.xml.dist :

https://phpunit.readthedocs.io

43 lines phpunit.xml.dist

1 <?xml version="1.0" encoding="UTF-8"7?>

2

3 <!-- https://phpunit.readthedocs.io/en/latest/configuration.html -->

4 <phpunit xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
5 xsi:noNamespaceSchemalocation="vendor/phpunit/phpunit/phpunit.xsd"
6 backupGlobals="false"

7 colors="true"

8 bootstrap="tests/bootstrap.php"

9 convertDeprecationsToExceptions="false"

10 >

11 <php>

12 <ini name="display_errors" value="1" />

13 <ini name="error_reporting" value="-1" />

14 <server name="APP_ENV" value="test" force="true" />

15 <server name="SHELL_VERBOSITY" value="-1"/>

16 <server name="SYMFONY_PHPUNIT_REMOVE" value="" />
17 <server name="SYMFONY_PHPUNIT_VERSION" value="9.5" />
18 </php>

19

20 <testsuites>

21 <testsuite name="Project Test Suite">

22 <directory>tests</directory>

23 </testsuite>

24 </testsuites>

25

26 <coverage processUncoveredFiles="true">

27 <include>

28 <directory suffix=".php">src</directory>

29 </include>

30 </coverage>

31

32 <listeners>

33 <listener class="Symfony\Bridge\PhpUnit\SymfonyTestsListener" />
34 </listeners>

35

36 <!-- Run “‘composer require symfony/panther’ before enabling this extension -->
37 <l--
38 <extensions>

39 <extension class="Symfony\Component\Panther\ServerExtension" />
40 </extensions>
41 ->

42 </phpunit>

Inside, it finds testsuites ... and the directory part says:

43 lines phpunit.xml.dist

... lines 1-3
4 <phpunit xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
...lines5-9
10 >
... lines 11 - 19
20 <testsuites>
21 <testsuite name="Project Test Suite">
22 <directory>tests</directory>
23 </testsuite>
24 </testsuites>
... lines 25 - 41

42 </phpunit>

Hey PHPUnit: go look inside a tests/ directory for tests!

Second, it finds that directory and recursively looks for every class that ends with the word Test . In this case, DinosaurTest .
Finally, once it finds a test class, it gets a list of all of its public methods.

So... am | saying that PHPUnit will executeevery public method as a test? Let's find out! Create a new

public function itWorksTheSame(): void

19 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-6
7 class DinosaurTest extends TestCase
8 {

... lines 9-13

14 public function itWorksTheSame(): void
15 {
... line 16
17 }
18 }
Inside we are goingto self::assertSame() that 42 is equal to 42. assertSame() is very similar to assertEquals() and we'll see the

difference in a minute.

19 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-6
7 class DinosaurTest extends TestCase

8
... lines 9- 13
14 public function itWorksTheSame(): void

15 {
16 self::assertSame(42, 42);

18}

Now, move back to your terminal and let's run these tests again:

./vendor/bin/phpunit

Huh? PHPU it still says just one test and one assertion. But inside our test class, we have two tests and two assertions. The

problem is that PHPUnit only executes public methods that are prefixed with the word test . You could put the @test
annotation above the method, but that's not very common. So let's avoid being weird, and change this to testltWorksTheSame() .

19 lines tests/Unit/Entity/DinosaurTest.php

...lines 1-6
7 class DinosaurTest extends TestCase

8
... lines 9-13
14 public function testltWorksTheSame(): void

15 {
16 self::assertSame(42, 42);

18}

Now when we run the test:

./vendor/bin/phpunit

PHPUnit sees 2 tests and 2 assertions! Shweeeet!

Testing Failures

What does it look like when a test fails?Let's find out! Change our expected 42 to a siring inside testltWorks() ... and do the
same inside testltWorksTheSame() . Yup, one of these won't work.

19 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-6
7 class DinosaurTest extends TestCase
8 {
9 public function testltWorks(): void
10
11 self::assertEquals('42', 42);
12 }

14 public function testltWorksTheSame(): void
15 {

16 self::assertSame('42', 42);

17 }

18}

This time when we try it:

./vendor/bin/phpunit

Oh no! One failure!

DinosaurTest::testltWorksTheSame() failed asserting that 42 is identical to 42 .
So... assertEquals() passed, but assertSame() failed. That's because assertEquals() is the equivalent to doing anif 42 == 42:
using the double equal sign. But assertSame() is equivalent to 42 === 42: with three equal signs.
And since the string 42 does not triple-equals the integer 42, that test fails and PHPUnit yells at us.

Ok, we've got our first tests behind us!Though... testing that the answer to life the universe and everything is equal to the
answer to life the universe and everything...isn't very interesting. So next: let's write real tests for the Dinosaur class.

Chapter 3: Testing Class Methods

As a reminder, the class is currently pretty simple: we pass some data to the constructor..and then we can read that data via
some methods. Instead of just "hoping" this all works, let's go ahead and make surethat our Dinosaur class is really bug-free
with some tests!

In DinosaurTest , remove these two tests and replace themwith public function testCanGetAndSetDatay() :

25 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-7
8 class DinosaurTest extends TestCase
o {
10 public function testCanGetAndSetData(): void
11 {
... lines 12 - 22
23 }
24}

Inside... we're literally going to play with the objectby instantiating it and trying some methods.

So, $dino = new Dinosaur() and pass in some data. For the name, eh - let's use Big Eaty : he's our resident Tyrannosaurus who
happens to be 15 meters in length. And Big Eaty is currently living in Paddock A :

25 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-7
8 class DinosaurTest extends TestCase
9 {
10 public function testCanGetAndSetData(): void
11 {
12 $dino = new Dinosaur(
13 name: 'Big Eaty',
14 genus: 'Tyrannosaurus',
15 length: 15,
16 enclosure: 'Paddock A',
17);
... lines 18 - 22
23)
24}

Now that we have our Dinosaur object, we can write a few assertions. self::assertSame() that Big Eaty is identical to
$dino->getName() , assertSame() that Tyrannosaurus is identical to $dino->getGenus() , assertSame() that 15 is identical to
geilLength() , and last but not least, asseriSame() that Big Eaty is still in Paddock A when we call getEnclosure() ... and not
running wild around the island:

25 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
o {
10 public function testCanGetAndSetData(): void
11 {

12 $dino = new Dinosaur(

13 name: 'Big Eaty',

14 genus: 'Tyrannosaurus',

15 length: 15,

16 enclosure: 'Paddock A',

17);

18

19 self::assertSame('Big Eaty', $dino->getName());

20 self::assertSame('Tyrannosaurus', $dino->getGenus());
21 self::assertSame(15, $dino->getLength());

22 self::assertSame('Paddock A', $dino->getEnclosure());
23)

24}

Let's try it! Move back to your terminal and run:

/vendor/bin/phpunit

Should | Test that Method?

And... YES! We have one test with four assertions.But... looking back at our Dinosaur class, we're not really doing a whole
heck of a lot in here. We're requiring a few arguments in our constructor, setting them on properties,and exposing those
properties with getter methods. Nothing complex at all. So while our DinosaurTest is perfectly acceptable, it's not the most
useful. Because the odds of these methods having a bug are low.And besides, if there were a bug, we'll probably catch it
while testing other parts of our app that call these.

The point is: while you can do whatever you want, this probably isn't a testthat | would write in a real project. My rule of thumb
is: if a method scares, it's worth a test. And if you're not sure, it's always safe to add a test.

The Order of the assert() Method Arguments

By the way: the argument order for the assert methods is important.

The first argument should always be the expected argument - like Big Eaty - and the second should be the actual value we get
- like $dino->getName() . This isn't a huge deal for the assertions we're using here...though if you reverse this, the error
message will be confusing.

It is more important for other assertions, like asseriGreaterThan() ... which we can use to test that $dino->getLength() is greater
than 10.

30 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-7
8 class DinosaurTest extends TestCase
o f
10 public function testCanGetAndSetData(): void
11 {
... lines 12- 18
19 self::assertGreaterThan(
20 $dino->getLength(),
21 10
22);
23
24 self::assertSame('Big Eaty', $dino->getName());
25 self::assertSame('Tyrannosaurus', $dino->getGenus());
26 self::assertSame(15, $dino->getLength());
27 self::assertSame('Paddock A', $dino->getEnclosure());
28)
29 '}
When we try this:
/vendor/bin/phpunit

Yup! One failure in DinosaurTest :

Failed asserting that 10 is greater than 15.

Whoops! Looking back in our DinosaurTest , this test failed because we passed the actual value first instead of our expected
value.

The Assert Message

Before we clean this up, let's pass a 3rdoptional argument:

Dino is supposed to be bigger than 10 meters.

31 lines tests/Unit/Entlity/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
9
10 public function testCanGetAndSetData(): void
11 {
...lines 12-18
19 self::assertGreaterThan(
20 $dino->getLength(),
21 10,
22 message: 'Dino is supposed to be bigger than 10 meters!'
23);
24
25 self::assertSame('Big Eaty', $dino->getName());
26 self::assertSame('Tyrannosaurus', $dino->getGenus());
27 self::assertSame(15, $dino->getLength());
28 self::assertSame('Paddock A', $dino->getEnclosure());
29)
30 }

To see what this does, run the tests again:

./vendor/bin/phpunit

And... sweet! The test still fails but now wealso see the message, which can sometimes help us more quickly understand what
failed and why. Every assert method has this "message" argument and | like to use itwhen a complex test could use a bit more

explanation.

Naming Conventions

| want to circle back to thename of our first test method: testCanGetAndSetData .

31 lines tests/Unit/Entlty/DinosaurTest.php

... lines 1-7
8 class DinosaurTest extends TestCase

9 |
10 public function testCanGetAndSetData(): void
11 {
... lines 12 - 28
29}
30 }

In standard PHP, we try to create methods that are descriptive..but not necessarily super long... since we'll need to call them
in our code. Good examples are getGenus() and getName() in the Dinosaur class. But when it comes to testing, keeping things

short is not a benefit.

Check it out: | change the name of our test method totestDinosaur() ... and then run our tests again.

vendor/bin/phpunit

PHPUnit tells usthat DinosaurTest::testDinosaur() failed asserting that 10 is greater than 15.0Kk... but what are we testing? The
method name - testDinosaur() - tells us nothing...especially since we're inside of a class called DinosaurTest | Yea, | get it: we're
testing dinosaurs!

The name of each test method is your chance to describe exactly what you're testing, and even sometimes why. Change the
test name back to testCanGetAndSetData() , which does a much better job of explaining the purpose of this test. Notice that it
almost reads like a sentence. That's great! And some people even take this further by including the word"it", like
testliCanGetAndSetData() . The point is: be descriptive, there's no downside to long test names.

Descriptive Testdox Output

Let me show you one more cool trick with PHPUnit.Move back to the terminal and run our tests again...but this time pass a
--testdox flag:

./vendor/bin/phpunit --testdox

And... Wooah! The output is different. Most importantly, it turned the method name into a human-readable sentence...which is
minor, but cool.

By the way, the phpunit executable has a lot more options and arguments available. Run PHPUnit with the help flag to see
them.

./vendor/bin/phpunit --help

We'll talk about the most useful of these throughout the tutorial.

Before we keep going, we need to cleanup our test.Remove this testGreaterThan() assertion...

25 lines tests/Unit/Entlity/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
9
10 public function testCanGetAndSetData(): void
11 {
12 $dino = new Dinosaur(
13 name: 'Big Eaty',
14 genus: 'Tyrannosaurus',
15 length: 15,
16 enclosure: 'Paddock A',
17);
18
19 self::assertSame('Big Eaty', $dino->getName());
20 self::assertSame('Tyrannosaurus', $dino->getGenus());
21 self::assertSame(15, $dino->getLength());
22 self::assertSame('Paddock A', $dino->getEnclosure());
23 }
24}

and run our tests again:

./vendor/bin/phpunit --testdox

And... YES! All of our tests are passing.Coming up next, we're going to get philosophical and take a lookat Test Driven
Development or simply - TDD.

Chapter 4: TDD - Test Driven Development

All right. So one of the problems is that when Bob, our park ranger, sees the dinosaur size...he can't remember if these are in
meters... or centimeters... which makes a big difference when you step into a cage.

A better way might be to just use words like small, medium, or large.So... let's do that!

What is TDD?

But, to add this feature, we're goingto use a philosophy called Test Driven Development or TDD.TDD is basically a buzzword
that describes a 4-step process for writing your tests first.

Step 1: Write a test for the feature.Step 2: Run your test and watch it fail...since we haven't created that feature yet!Step 3:
Write as little code as possible to get our test to pass. And Step 4: Now that it's passing, refactor your code if needed to make
it more awesome

So, to get the Small, Medium, or Large text,l think we should add a new getSizeDescription() method to our Dinosaur class.
But, remember, we're going to do this the TDD way,where Step 1 is to write a test for that method... even though it doesn't
exist yet. Yes, | know that's weird... but it's kinda awesome!

Step 1: Write a test for the Feature

Add public function and let's first test that a dinosaur that'sover 10 meters or greater is large:

32 lines tests/Unit/Entlity/DinosaurTest.php

...lines1-7
8 class DinosaurTest extends TestCase
9 f
... lines 10 - 24
25 public function testDino10MetersOrGreaterlsLarge(): void
2%
... lines 27 - 29
30 }

31}
Inside, say $dino = new Dinosaur() , give him a name, let's use Big Eaty again,since he's a cool dude, and set his length to 10.

Then, assertSame() that Large will be identical to $dino->getSizeDescription() . For our failure message, let's use
This is supposed to be a Large Dinosaur .

32 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
o {
... lines 10 - 24
25 public function testDino10MetersOrGreaterlsLarge(): void
26 {
27 $dino = new Dinosaur(name: 'Big Eaty', length: 10);
28
29 self::assertSame('Large’, $dino->getSizeDescription(), "This is supposed to be a large Dinosaur');
30 }

31}

Yes, we're literally testing a method that doesn't exist yet. That's TDD.

Step 2: Run the test and watch it fail

Ok, step 1 is done. Step 2 is to run our test and make sure it fails.Open up a terminal and then run ./vendor/bin/phpunit .

./vendor/bin/phpunit

And... great! 2 tests, 4 assertions, and 1 error.Our new test failed because, of course, we called an undefined method'We
kind of knew this would happen. Hm... Did you notice that our "this is supposed to beat large dinosaur" message isn't showing
up here? I'll explain why in just a minute.

Step 3: Write simple code to make it pass

Time for step 3 of TDD: write simple code to make this test pass.This part, taken literally, can get kinda funny.Watch: back in
our Dinosaur class add a new public function getSizeDescription() which will return a string . Inside... return 'Large" :

45 lines src/Entity/Dinosaur.php

..lines 1-4
5 class Dinosaur
6
... lines 7 - 39
40 public function getSizeDescription(): string
41 {
42 return 'Large’;
43 }
4)

Yup, that's it! Move back to your terminal and re-run the tests.

./vendor/bin/phpunit --testdox

And... Awesome - They Pass!Well... of course the test passed - we hard coded the result we wantedBut, that's technically
what TDD says: write the least amount of code possible to get your test to pass.If your method is too simple after doing this, it

means you're missing more tests - like for small or medium dinosaurs - that would force you toimprove the method. We'll see
that in a minute.

But let's be a bit more realistic. Say: if ($this->length >= 10) {, then return 'Large’ :

47 lines src/Entlty/Dinosaur.php

...lines 1-4

class Dinosaur

{

... lines 7 - 39

40 public function getSizeDescription(): string
41 {

(o2 BNe, |

42 if ($this->length >= 10) {
43 return 'Large’;

44 }

45 }

46)}

Run the tests one more time to make sure they're still passing:

./vendor/bin/phpunit --testdox

And... yes! We're still good to go!

Next, let's finish this method the TDD-way:by writing more tests for the missing features first. Then we'll move onto the final -
and most fun step of TDD: Refactoring!

Chapter 5: TDD Part 2: Finish & Refactor

Before we move on to the/ast step in TDD, | think we need to add a couple more size description testsfor medium and small
dinosaurs.

A few more tests

In our DinosaurTest:class copy our testDino10MetersOrGreaterlsLarge method and rename it to
testDinoBetween5And9MetersisMedium() . Inside, change the length of our $dino from 10 to 5, use Medium for the expected
value, and update the message to Medium as well. Finally, paste the method again for our small dino testusing the name
testDinoUnder5MeterslsSmall() . Set the length to 4 , assert that Small is identical to getSizeDescription() and also update the
message.

46 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
9 f
... lines 10 - 24
25 public function testDino10MetersOrGreaterlsLarge(): void
2%
27 $dino = new Dinosaur(name: 'Big Eaty', length: 10);
28
29 self::assertSame('Large’, $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
30 }

32 public function testDinoBetween5And9MeterslsMedium(): void

33 {

34 $dino = new Dinosaur(name: 'Big Eaty', length: 5);

35

36 self::assertSame('Medium', $dino->getSizeDescription(), "This is supposed to be a medium Dinosaur');
37 }

38

39 public function testDinoUnder5MeterslsSmall(): void

40 {

41 $dino = new Dinosaur(name: 'Big Eaty', length: 4);

42

43 self::assertSame('Small', $dino->getSizeDescription(), 'This is supposed to be a small Dinosaur');
44 }

45}

Back in our terminal, run the tests again:

./vendor/bin/phpunit --testdox

And... they're failing! But not because our method returns the wrong result. They're failing due to a type error on
getSizeDescription() :

The return value must be of type string and none is returned.

Do you remember earlier we ran our large dinosaur testbefore writing the method and we didn't see our "this is supposed to
be a large dino" message? Well, we don't see it here either... That's because PHP threw an error...and so the
getSizeDescription() message explodes before PHPUnit can run the assertSame() method. It's no big deal and we can still use
the stack trace to see exactly where things went wrong.

Alrighty, back to the Dinosaur class. Lets fix these tests by adding if ($this->length) is less than 5, return 'Small' :

55 lines src/Entlty/Dinosaur.php

..lines 1-4
5 class Dinosaur
6 {
... lines 7 - 39
40 public function getSizeDescription(): string
41 {
42 if ($this->length >= 10) {
43 return 'Large’;
44 }
45
46 if ($this->length < 5) {
47 return 'Small’;
48 }
... lines 49 - 52
53 }
54}

And if ($this->length) is less than 10, return 'Medium’

55 lines src/Entity/Dinosaur.php

... lines 1-4
5 class Dinosaur
6 f
... lines 7 - 39
40 public function getSizeDescription(): string
41 {
42 if ($this->length >= 10) {
43 return 'Large’;
44 }
45
46 if ($this->length < 5) {
47 return 'Small’;
48 }
49
50 if ($this->length < 10) {
51 return 'Medium’;
52 }
53 }
54}

Back to our terminal, run the test again:

./vendor/bin/phpunit --testdox

And... alright alright alright... they're passing.

Step 4: Refactoring

So let's move on to the last step of TDD...and a fun one! Refactoring our code.
Looking at our getSizeDescription() method, | think we can clean this up a bit.And the great news is that, because we've
covered our method with tests, if we mess something up during refactoring, the tests will tell usWe get to be reckless! It also

means that we didn't really need to worry about writing perfect code earlier. We just needed to make our tests pass.NOW we
can improve things...

Let's change this middle condition to if ($this->length) is greater than or equal to 5, return Medium . We can get rid of this last

conditional altogether and just return Small :

63 lines src/Entity/Dinosaur.php

...lines 1-4
5 class Dinosaur
6 {

... lines 7 - 39

40 public function getSizeDescription(): string
41 {

42 if ($this->length >= 10) {
43 return 'Large’;

44 }

45

46 if ($this->length >=5) {
47 return 'Medium’;

48 }

49

50 return 'Small’;

51 }

52}

| like that! To see if we messed up, move back to the terminal and run our tests again.

./vendor/bin/phpunit --tesdox

And... we've done it! That's TDD - write the test, see the test fail,write simple code to see the test pass, then refactor our
code. Rinse and repeat.

TDD Is interesting because, by writing our test first, it forces us to thinkabout exactly how a feature should work...Instead of
just blindly writing code and seeing what comes out. It also helps us focus onwhat we need to code... Without making things
too fancy. Yes, I'm guilty of that too... Get your tests to pass, then refactor...Nothing more is needed.

Use the Size Description in our Controller

And now that we have our fancy new method - built via the powers of TDD let's celebrate by using it on the site!

Close up our terminal and move to our template: templates/main/index.html.twig . Instead of showing the dino's with dino.length ,
change this to dino.sizeDescription . Save it, go back to our browser and...refresh.

51 lines templates/main/index.html.twig

... lines 1-3
4 <div class="container volcano mt-4" style="flex-grow: 1;">
... line 5
<div class="dino-stats-container mt-2 p-3">
<table class="table table-striped">

N O

... lines 8- 15
16 <tbody>
17 {% for dino in dinos %}
18 <tr>
... lines 19 - 20
21 <td>{{ dino.sizeDescription }}</td>
22 <td>{{ dino.enclosure }}</td>
23 </tr>
24 {% endfor %}
25 </tbody>
26 </table>
27 </div>
28 </div>

... lines 29 - 51

Awesome. We have large, medium, and small for the dinosaur's size instead of a number.No way Bob will accidentally
wander into the T-Rex enclosure again!

We've just used TDD to make our app a bit more human-friendly.Coming up next, we'll use some of the TDD principles we've
learned here to clean up our tests with PHPUnit's data providers!

Chapter 6: Data Providers

We treat our source code as a first-class citizen. That means, among other things, we avoid duplication.Why not do the same
with our tests? Our three tests for the size are...repetitive. They test the same thing just with slightly different input and then a
different assertion. Is there a way to improve this?Absolutely: thanks to PHPUnit Data Providers.

Refactor our tests

Move to the bottom of DinosaurTest and add public function sizeDescriptionProvider() . Inside, yield an array with [10, 'Large", then
yield [5, 'Medium'] , and finally yield [4, 'Small]:

39 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
9 {
... lines 10 - 31
32 public function sizeDescriptionProvider()
33 {
34 yield [10, 'Large'];
35 yield [5, 'Medium'];
36 yield [4, 'Small;
37}
38 }

Yield is just a fancy way of returning arrays using PHP's built-in Generator function As you'll see in a minute, these values -
like 10 and large will become arguments to our test.

Alrighty, up in our test method, add an int $length argument and then string $expectedSize :

42 lines tests/Unit/Entlty/DinosaurTest.php

..lines 1-7
8 class DinosaurTest extends TestCase
o f
... lines 10 - 27
28 public function testDino10MetersOrGreaterlsLarge(int $length, string $expectedSize): void
29
... lines 30 - 32
33 }
... lines 34 - 40

41}

Now instead of Big Eaty's length being 10 , use $length . And for our assertion, use $expectedSize instead of Large :

42 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
o {
... lines 10 - 27
28 public function testDino10MetersOrGreaterlsLarge(int $length, string $expectedSize): void
29
30 $dino = new Dinosaur(name: 'Big Eaty’, length: $length);
31
32 self::assertSame($expectedSize, $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
33 }
... lines 34 - 40

41}

We do not need the medium and small tests anymore, so we can remove both of them.

Ok! Move back to your terminal and run our tests:

./vendor/bin/phpunit --testdox

Uh oh... Our test is failing because! It says:

ArgumentCountError - Too few arguments were provided. 0 passed and exactly 2 expected.

Tell our test to use the Data Provider

Oops, we never told our test method touse the data provider. Move back into our test and add a DocBlock with
@dataProvider sizeDescriptionProvider :

42 lines tests/Unit/Entlty/DinosaurTest.php

... lines 1-7
8 class DinosaurTest extends TestCase
o |
... lines 10 - 24
25 /**
26 * @dataProvider sizeDescriptionProvider
27 */
28 public function testDino10MetersOrGreaterlsLarge(int $length, string $expectedSize): void
29
30 $dino = new Dinosaur(name: 'Big Eaty', length: $length);
31
32 self::assertSame($expectedSize, $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
33 }
... lines 34 - 40

41 }
When PHPUNit 10 gets released, we'll be ableto use a fancy #[DataProvider] attribute instead of this annotation.

Back to the terminal! Run the tests again:

./vendor/bin/phpunit --testdox

And... Yes! Our tests are passing!

Message Keys instead of Arguments

In the output, we see that each test ran with datasets 0, 1, & 2Those are the arrays from the data provider.We can spruce
this up a bit... because it's not going to be very helpful later if PHPUnit tells us that dataset2 failed. Which one is that?

Move back to our test and, down here after the first yield statement, add the message key '10 Meter Large Dino' => . Copy and
paste this for our medium dino with 5 instead of 10 and this needs to be Medium . Do the same for our small dino with 4 and
Small :

42 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
o {
... lines 10 - 34
35 public function sizeDescriptionProvider()
36 {
37 yield '10 Meter Large Dino' => [10, 'Large;
38 yield '5 Meter Medium Dino' => [5, 'Medium'];
39 yield '4 Meter Small Dino' => [4, 'Small’];
40)

41}

Back in our terminal, let's see our tests now:

./vendor/bin/phpunit --testdox

And... Cool Beans! We now have
Dino 10 meters or greater is large with 10 Meter Large Dino

This looks a lot better than just seeing data set 0...though we do need to fix one more thing.That test method name doesn't
make sense anymore. Change it to testDinoHasCorrectSizeDescriptionFromLength() .

And, looking at our assertion, the message argument isn't very useful anymore...so let's remove it.

42 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
9 {
... lines 10 - 34
35 public function sizeDescriptionProvider()
36 {
37 yield '10 Meter Large Dino' => [10, 'Large;
38 yield '5 Meter Medium Dino' => [5, 'Medium'];
39 yield '4 Meter Small Dino' => [4, 'Small';
40 }

41}

Return Types Everywhere!
Finally, although not required... We can use either array or \Generator as the return type for the data provider.Let's go with
\Generator - after all, we may need those for the park fences one day...

42 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-7
8 class DinosaurTest extends TestCase
9 f
... lines 10 - 34
35 public function sizeDescriptionProvider(): \Generator
36 {
... lines 37 - 39
40 }

41}

To make sure this didn't break anything, try the tests one more time:

./vendor/bin/phpunit --testdox

Ummm... Awesome! Green Checks Everywhere!

And there you have it, with a little TLC, our tests are now nice and tidy..Coming up next, let's figure out how we can get our
Dino's health status from GitHub and use it in our app...

Chapter 7: Incomplete Tests and Dancing Dino's

Bob just told us he needs to display which dinos are accepting lunch in our app..I mean accepting visitors. GenlLab has strict
protocols in place: park guests can visit with healthy dinos... but if they're sick, no visitors allowed. To help display this, we
need to store the health status of each dino and have an easy way to figure out whether or not this means they're accepting
visitors...

Let's skip a test...

Let's start by adding a method - isAcceptingVisitors() to Dinosaur . But, we'll do this the TDD way by writing the test first.In
DinosaurTest add public function testlsAcceptingVisitorsByDefault() . Inside, $dino = new Dinosaur() and let's call him Dennis :

49 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
o {
... lines 10 - 41
42 public function testlsAcceptingVisitorsByDefault(): void
43 {
44 $dino = new Dinosaur('Dennis');
... lines 45 - 46
47 }
48 }

If we simply instantiate a Dinosaur and do nothing else, GenLab policy statesthat it is ok to visit that Dinosaur.So asseriTrue()
that Dennis isAcceptingVisitors() :

49 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
o f
... lines 10 - 41
42 public function testlsAcceptingVisitorsByDefault(): void
43 {
44 $dino = new Dinosaur('Dennis');
45
46 self::assertTrue($dino->isAcceptingVisitors());
47 }
48 '}

Below this test, add another called testlsNotAcceptingVisitorslfSick() . And for now, let's be lazy and just say

$this->markTestincomplete() :

68 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-7
8 class DinosaurTest extends TestCase
9
... lines 10 - 48
49 public function testlsNotAcceptingVisitorslfSick(): void
50 {
... lines 51 - 55
56)
57 '}

Ok, let's try the tests:

./vendor/bin/phpunit --testdox

And... no surprise! Our first new test is failing:
Call to an undefined method.

But, our next test has this weird circle @ because we marked the test asincomplete. | use this sometimes when | know | need
to write a test... I'm just not ready to do it quite yet. PHPUnit also has a markSkipped() method that can be used to skip tests
under certain conditions, like if a test should run on PHP 8.1.

Are they accepting visitors?

Anywho, let's get back to coding, shall we...In our Dinosaur class, add a isAcceptingVisitors() method that returns a bool , and
inside we'll return true .

68 lines src/Entity/Dinosaur.php

... lines 1-4
5 class Dinosaur
6 {
... lines 7 - 52
53 public function isAcceptingVisitors(): bool
54 {
55 return true;
56 }
57}

Let's see what happens when we run our tests now...

./vendor/bin/phpunit --testdox

And... Yes! Is accepting visitors by default ... is now passing! We still have one incomplete test as a reminder, but it's not causing
our whole test suite to fail.

Sick Dinos - Stay Away!

Let's finish that now. If we peek at the issues on GitHub - GenLab is using labels to identify the "health’of each dino: "Sick"
versus "Healthy". Pretty soon, we're going to read these labels and use them in our app.To prep for that, we need a way to
store the current health on each Dinosaur .

Inside the test, remove markAsincomplete() and create a $dino named Bumpy ... he's a triceratops. Now call
$dino->setHealth('Sick') and then assertFalse() that Bumpy isAcceptingVisitors() . He's cranky when he's sick.

58 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-7
8 class DinosaurTest extends TestCase
o {
... lines 10 - 48
49 public function testlsNotAcceptingVisitorslfSick(): void
50 {
51 $dino = new Dinosaur('Bumpy');
52
53 $dino->setHealth('Sick');
54
55 self::assertFalse($dino->isAcceptingVisitors());
56 }
57 '}

But, no surprise, PHPStorm is telling us:
Method setHealth() not found inside Dinosaur

So... let's skip running the test and head straight to Dinosaur to add a setHealth() method that accepts a string $health
argument... and returns void . Inside, say $this->health = $health ... then up top, add a private string $health property that defaults

to Healthy :

64 lines src/Entlty/Dinosaur.php

... lines 1-4
5 class Dinosaur
6 f
... lines 7-10
11 private string $health = 'Healthy';
... lines 12 - 58
59 public function setHealth(string $health): void
60 {
61 $this->health = $health;
62)
63 }

Cool! Now we just need to update isAcceptingVisitors() to return $this->health === $healthy instead of true :

64 lines src/Entlity/Dinosaur.php

...lines 1-4
5 class Dinosaur
6 {
... lines 7 - 53
54 public function isAcceptingVisitors(): bool
55 {
56 return $this->health === 'Healthy";
57}
... lines 58 - 62
63 }

Fingers crossed our tests are now passing...

./vendor/bin/phpunit --testdox

And... Mission Accomplished!

Enums are cool for health labels

Now that the tests are passing, I'm thinking we should refactor the setHealth() method to only allow Sick or Healthy ... and not
something like Dancing ... Inside src/, create a new Enum/ directory then a new class: HealthStatus . For the template, select
Enum and click OK . We need HealthStatus to be backed by a : string ...

10 lines src/Enum/HealthStatus.php

... lines 1-2
namespace App\Enum;

enum HealthStatus: string

{

... lines 7-8
9}

o O~ W

And our first case HEALTHY will return Healthy , then case SICK will return Sick .

10 lines src/Enum/HealthStatus.php

... lines 1-2
namespace App\Enum;

3

4

5 enum HealthStatus: string

6 {

7 case HEALTHY = 'Healthy';
8 case SICK ='Sick’;

C

On the Dinosaur:$health property, default to HealthStatus:HEALTHY . And change the property type to HealthStatus . Down in
isAcceptingVisitors() , return true if $this->health === HealthStatus::HEALTHY . Below in setHealth() , change the argument type from
string to HealthStatus .

66 lines src/Entity/Dinosaur.php

...lines 1-4
5 use App\Enum\HealthStatus;
6
7 class Dinosaur
8 {
...lines 9-12
13 private HealthStatus $health = HealthStatus::HEALTHY;
... lines 14 - 55
56 public function isAcceptingVisitors(): bool
57 {
58 return $this->health === HealthStatus::HEALTHY;
59 }
60
61 public function setHealth(HealthStatus $health): void
62 |
63 $this->health = $health;
64}
65 }

The last thing to do is use HealthStatus::SICK in our test.

59 lines tests/Unit/Entlty/DinosaurTest.php

... lines 1-5
6 use App\Enum\HealthStatus;
...lines 7 -8
9 class DinosaurTest extends TestCase
10
... lines 11 -49
50 public function testlsNotAcceptingVisitorslfSick(): void
51 {
... lines 52 - 53
54 $dino->setHealth(HealthStatus::SICK);
... lines 55 - 56
57}
58 '}

Let's see if we broke anything!

./vendor/bin/phpunit --testdox

And... Ya! We didn't break anything... I'm only a little surprised.

Show which exhibits are open

To fulfill Bob's wishes, open the main/index.html.twig template and add an Accepting Visitors heading to the table. In the dino
loop, create a new <td> and call dino.acceptingVisitors . We'll show Yes if this is true or No if we get false.

53 lines templates/main/index.html.twig

... lines 1-3
4 <div class="container volcano mt-4" style="flex-grow: 1;">
... line 5
6 <div class="dino-stats-container mt-2 p-3">
7 <table class="table table-striped">
8 <thead>
9 <tr>
... lines 10- 13
14 <th>Accepting Visitors</th>
15 </tr>
16 </thead>
17 <tbody>
18 {% for dino in dinos %}
19 <tr>
... lines 20 - 23
24 <td>{{ dino.acceptingVisitors ? 'Yes': 'No' }}</td>
25 </tr>
26 {% endfor %}
27 </tbody>
28 </table>
29 </div>
30 </div>
... lines 31 - 63

In the browser, refresh the status page...And... WooHoo! All of our dinos are accepting visitors... because we haven't set any
as "sick" on our code!

But... We already know from looking at GitHub earlier, that some of our dinosare sick. Next: let's use GitHub's API to read the
labels from our GitHub repository and set the real health on each Dinosaur so that our dashboard will update in real-time.

Chapter 8: Create a GitHub Service Test

Now that we can see if a Dinosaur is accepting visitors on our dashboard, we need to keep the dashboard updated in real-time
by using the health status labels that GenLab has applied to several dino issues on GitHub.To do that we'll create a service
that will grab those labels using GitHub's API.

Test for our Service First

To test our new service... which doesn't exist yet, inside of tests/Unit/ create a new Service/ directory and then a new class:
GithubServiceTest ... which will extend TestCase :

53 lines templates/main/index.html.twig

...lines 1-3
4 <div class="container volcano mt-4" style="flex-grow: 1;">
... line 5
6 <div class="dino-stats-container mt-2 p-3">
7 <table class="table table-striped">
8 <thead>
9 <tr>
... lines 10- 13
14 <th>Accepting Visitors</th>
15 </tr>
16 </thead>
17 <tbody>
18 {% for dino in dinos %}
19 <tr>
... lines 20 - 23
24 <td>{{ dino.acceptingVisitors ? 'Yes': 'No' }}</td>
25 </tr>
26 {% endfor %}
27 </tbody>
28 </table>
29 </div>
30 </div>
... lines 31 - 563

I'm creating this in a Service/ sub-directory because I'm planningto put the class in the src/Service/ directory. Add method
testGetHealthReportReturnsCorrectHealthStatusForDino and inside, $service = new GithubService() . Yup, that doesn't exist yet
either...

Our service will return a HealthStatus enum that's created from the health status labelon GitHub, so we'll assertSame() that
$expectedStatus is identical to $service->getHealthReport() and then pass $dinoName . Yup, we'll be using a data provider for this
test... where we accept the name of the dino to check for their expected health status.

Let's go create that: public function dinoNameProvider() that returns a \Generator . Our first dataset for the provider will have the
key Sick Dino , which returns an array with HealthStatus::SICK and Daisy for the dino's name...because when we checked
GitHub a minute ago, Daisy was sick!

Next up is a Healthy Dino with HealthStatus::HEALTHY who happens to be the one and only Maverick . Up on the test method,
add a @dataProvider annotation so the test uses dinoNameProvider ... and then add HealthStatus $expectedStatus and
string $dinoName arguments.

33 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-2
3 namespace App\Tests\Unit\Service;
4
5 use App\Enum\HealthStatus;
6 use PHPUnit\Framework\TestCase;
7
8 class GithubServiceTest extends TestCase
9 |
10 [**
11 * @dataProvider dinoNameProvider
12 */

13 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
14 {

15 $service = new GithubService();
16
17 self::assertSame($expectedStatus, $service->getHealthReport($dinoName));

18}

20 public function dinoNameProvider(): \Generator
21 {

22 yield 'Sick Dino' => [

23 HealthStatus::SICK,
24 'Daisy’',

25 l;

26

27 yield 'Healthy Dino' => [
28 HealthStatus::HEALTHY,
29 'Maverick',

30 I;

31 }

32 }

Let's do this! Find your terminal and run:

./vendor/bin/phpunit

And... Yup! Just as we expected, we have two errors because:

The GithubService class cannot be found

Create the service that will call GitHub

To fix that, find a teammate and ask them nicely to create this class for youTDD - team-driven-development!

I'm kidding: we got this!Inside of src/, create a new Service/ directory. Then we'll need the new class: GithubService and
inside, add a method: getHealthReport() which takes a string $dinosaurName and gives back a HealthStatus object.

18 lines src/Service/ClthubService.php

..lines 1-2
namespace App\Service;

use App\Enum\HealthStatus;

class GithubService

{

public function getHealthReport(string $dinosaurName): HealthStatus
10
... lines 11 - 15
16}
17}

Here's the plan: we'll call GitHub's API to get the list of issues for the dino-park repository. Then we'll filter those issues to pick
the one that matches $dinosaurName . Finally, we'll return HealthStatus:HEALTHY , unless the issue has a Status: Sick label.
Add the use statement in our test

Before we dive into writing that method, jump back into our testand chop off the last couple of letters for GithubService . With a
little PHPStorm Magic... as soon as | type the letter i and hit enter, the use statement is automatically added to the test.Thank
you JetBrains!

34 lines tests/Unit/Service/GlthubServiceTest.php

...lines1-5
6 use App\Service\GithubService;

... lines 7 -8
9 class GithubServiceTest extends TestCase
10 {

... lines 11-13

14 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
15 {

16 $service = new GithubService();
... lines 17 - 18

19 }
... lines 20 - 32

33 }

Let's see how the tests are looking:

./vendor/bin/phpunit

And... Ha! Instead of two failures, we now only have one...

Sick Dino failed asserting that the two variables reference the same object.

Coming up next, we'll add some logic to our GithubService to make this test pass!

Chapter 9: GitHub Service: Implementation

Now that we have an idea of what we need the GithubService to do, let's add the logic insidethat will fetch the issues from the
dino-park repository using GitHub's API.

Add the client and make a request
To make HTTP requests, at your terminal, install Symfony's HTTP Client with:

composer require symfony/http-client

Inside of GithubService , instantiate an HTTP clientwith $client = HitpClient::create() . To make a request, call $client->request() .
This needs 2 things. 1st: what HTTP method to use, like GET or POST . In this case, it should be GET . 2nd: the URL, which 'l
paste in. This will fetch all of the "issues" from the dino-park repository via GitHub's API.

30 lines src/Service/GlthubService.php

... lines 1-5
use Symfony\Component\HttpClient\HttpClient;

class GithubService

{

10 public function getHealthReport(string $dinosaurName): HealthStatus
11 {

6
7
8
9

... lines 12-13
14 $client = HitpClient::create();
15
16 $response = $client->request(
17 method: 'GET',
18 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
19 %
... lines 20 - 27
28}
29 }

Parse the HTTP Response

Ok, now what? Looking back at the dino-park repo, GitHub will return a JSON responsethat contains the issues we see here.
Each issue has a title with a dino's nameand if the issue has a label attached to it, we'll get that back t00.So, set
$client->request() to a new $response variable. Then, below, foreach() over $response->toArray() as an $issue . The cool thing
about using Symfony's HTTP Client is that we don't have to bother transforming the JSON from GitHub into an array - toArray()
does that heavy lifting for us. Inside this loop, check if the issue title contains the $dinosaurName . So

if (str_contains($issue['title’], $dinosaurName)) then we'll // Do Something with that issue.

30 lines src/Service/GithubService.php

...lines1-5
use Symfony\Component\HttpClient\HttpClient;

6
7
8 class GithubService
o f

10 public function getHealthReport(string $dinosaurName): HealthStatus
1 {

... lines 12- 13
14 $client = HitpClient::create();
15
16 $response = $client->request(
17 method: 'GET,
18 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
19);
20
21 foreach ($response->toArray() as Sissue) {
22 if (str_contains($issue['itle'], $dinosaurName)) {
23
24 }
25 }
... lines 26 - 27
28 }
29 }

At this point, we've found the issue for our dinosaur.Woo! Now we need to loop over each label to see if we can find the health
status. To help, I'll paste in a private method: you can copy this from the code block on this page.

49 lines src/Service/GithubService.php

...lines 1-4

5 use App\Enum\HealthStatus;
...lines6-7

8 class GithubService

9 f
... lines 10 - 29

30 private function getDinoStatusFromLabels(array $labels): HealthStatus
31 {

32 $status = null;

33

34 foreach ($labels as $label) {

35 $label = $label['name;

36

37 /I We only care about "Status” labels

38 if (Istr_starts_with($label, 'Status:')) {

39 continue;

40 }

41

42 /I Remove the "Status:" and whitespace from the label
43 $status = trim(substr($label, strlen('Status:')));
44 }

45

46 return HealthStatus::tryFrom($status);

47 }

48 '}

This takes an array of labels...and when it finds one that starts with Status: , it returns the correct HealthStatus enum based on
that label.

Now instead of // Do Something , say $health = $this->getDinoStatusFromLabels() and pass the labels with $issue['labelsT] .

49 lines src/Service/GithubService.php

...lines1-5
use Symfony\Component\HttpClient\HttpClient;

6
7
8 class GithubService
o f

10 public function getHealthReport(string $dinosaurName): HealthStatus
1 {

... lines 12-13
14 $client = HitpClient::create();
15
16 $response = $client->request(
17 method: 'GET,
18 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
19);
20
21 foreach ($response->toArray() as Sissue) {
22 if (str_contains($issue['itle'], $dinosaurName)) {
23 $health = $this->getDinoStatusFromLabels($issue['labels']);
24 }
25 }
... lines 26 - 27
28 }
29
... lines 30 - 49

And now we can return $healih . But... what if an issue doesn't have a health status label? Hmm... at the beginning of this
method, set the default $healih to HealthStatus::HEALTHY - because GenlLab would never forget to put a Sick label on a dino
that isn't feeling well.

49 lines src/Service/CGlthubService.php

...lines 1-7
8 class GithubService
9
10 public function getHealthReport(string $dinosaurName): HealthStatus
11 {
12 $health = HealthStatus::HEALTHY;
13
14 $client = HitpClient::create();
15
16 $response = $client->request(
17 method: 'GET’,
18 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
19);
20
21 foreach ($response->toArray() as $issue) {
22 if (str_contains($issue['itle'’], $dinosaurName)) {
23 $health = $this->getDinoStatusFromLabels($issue['labels']);
24 }
25 }
26
27 return $health;
28}
... lines 29 - 49

Hmm... Welp, | think we did it!Let's run our tests to be sure.

./vendor/bin/phpunit

And... Wow! We have 8 tests, 11 assertions, and they're all passing!Shweeet!

Log all of our requests

One last challenge! To help debugging, | want to log a message each time we make a request to the GitHub API.
No problem! We just need to get the logger service.Add a constructor with private Loggerinterface $logger to add an argument
and property all at once. Right after we call the request() method, add $this->logger->info() and pass Request Dino Issues for the

message and also an array with extra context. How about a dino key set to $dinosaurName and responseStatus to
$response->getStatusCode() .

59 lines src/Service/GithubService.php

...lines1-5
6 use Psr\Log\LoggerInterface;
... lines 7 -8
9 class GithubService
10 |
11 public function __construct(private Loggerinterface $logger)
12 {
13}
14
15 public function getHealthReport(string $dinosaurName): HealthStatus
16 {

... lines 17 -25
26 $this->logger->info('Request Dino Issues', [
27 'dino' => $dinosaurName,
28 'responseStatus' => $response->getStatusCode(),
29 D)
... lines 30 - 37
38 }
... lines 39 - 57

58}

Cool! That shouldn't have broken anything in our class,but let's run the tests to be sure:

./vendor/bin/phpunit

And... Ouch! We did break something!

Too few arguments passed to the constructor in GithubService.0 passed 1 expected.

Of course! When we added the Loggerinterface argument to GithubService , we never updated our test to pass that in.I'll show
you how we can do that next using one of PHPUnit's super abilities: mocking.

Chapter 10: Mocking: Test Doubles

So right now, tests are failing because we need to pass a Loggerinterface instance to the GithubService inside of our test. We
could just create a logger and pass that in.But... That can get a bit hairy. Instantiating a logger object might be simple...but
what if it's not? What if we needed to instantiate an object with 5 required constructor args..and some of those are for other
objects that are also tricky to create. Chaos!

Fortunately, PHPUnit has our back: with super mocking abilities!

A Mock Logger

Inside the GithubServiceTest create a $mockLogger variable setto $this->createMock(Loggerinterface::class) . Pass this into the
GithubService service.

37 lines tests/Unit/Service/GlthubServiceTest.php

...lines 1-7
8 use Psr\Log\Loggerinterface;

10 class GithubServiceTest extends TestCase
11
...lines 12 - 14

15 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
16

17 $mockLogger = $this->createMock(Loggerinterface::class);
18
19 $service = new GithubService($mockLogger);
... lines 20 - 21
22 }
... lines 23 - 35
36 }

Let's see what happens when we run the tests now.

./vendor/bin/phpunit

And... HA! All of our tests are passing again!

But what is a Mock?

Soo... What is this createMock() black magic thing that we're using? createMock() allows us to pass in a class or interface and
get back a "fake" instance of that class or interface. This object is called a mock.

Now | already ready know what you're about to ask...What happens to the message when we call the info() method on the
mock Loggerinterface ?

Welp, a whole lotta nothing... Internally, PHPUnit basically creates a fake class that implements Loggerinterface ... except that
all of the methods are empty. They do nothing and return nothing.

That is unless we tell it do something different. More on that soon.

By the way, this mock logger is actually called atest double. In fact, we'll run across a few different names for mocks like -test
doubles, stubs, and mock objects... All of these names effectively mean the same thing: fake objects that stand in for real
ones. There are some subtle differences between the different namesand we'll clue you in along the way.

We Should Always Mock Services

We still have one minor problem with our test. Anytime we run it, we're calling thereal GitHub API. This is bad mojo... In a unit
test, you should never use real services, like AP or database calls.Why? The whole point of a unit test is to test that the code
inside GithubService works. And, ideally, we would do that independent of any other layers of our app because...we simply
can't control their behavior. For example, what would happen if GitHub's APl is offline for maintenance?Or, tomorrow, GenLab
changes Daisy from sick to healthy! Right now, both of those would cause our tests to fail!But they should not! The unit test for
GithubService should only fail if it contains a bugin its code, like it's not parsing the labels correctly.

What's the solution? Mock the HittpClient .

Refactoring HttpClient to use Dependencylnjection

But... we can't do that as long as we're creating the clientinside of GitHubService . Instead, in the constructor, add a
private HttpClientInterface $httpClient argument.

57 lines src/Service/GithubService.php

...lines 1-6
7 use Symfony\Contracts\HttpClient\HttpClientInterface;
8

9 class GithubService
10
11 public function __construct(private HttpClientlnterface $httpClient, private Loggerinterface $logger)
12 {
13 }
... lines 14 - 55
56}

Then call the request() method on $this->httpClient instead of $client . Since we're now using dependency injection, we can
remove the static $client entire, along with the use statement above.

57 lines src/Service/CGlthubService.php

... lines 1-8
9 class GithubService
10

... lines 11 - 14

15 public function getHealthReport(string $dinosaurName): HealthStatus
16

17 $health = HealthStatus::HEALTHY;
18
19 $response = $this->httpClient->request(
20 method: 'GET',
21 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
22);
... lines 23 - 35
36 }
... lines 37 - 65
56}

Apart from unit testing, this is just a better way to write your code.

In the test, start by giving the GithubService an http client without mocking - HitpClient::create() - just to make sure everything is
working as expected.

38 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-8
9 use Symfony\Component\HttpClient\HttpClient;
10

11 class GithubServiceTest extends TestCase
12
... lines 13- 15
16 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
17 {
... lines 18- 19
20 $service = new GithubService(HttpClient::create(), $mockLogger);
... lines 21 - 22
23)
... lines 24 - 36
37}

Try the tests:

./vendor/bin/phpunit

And... cool! We didn't break anything...

Mocking the HttpClient

Now we can mock the HttpClient . Below $mockLogger add, $mockClient = $this->createMock() and pass in
HttpClientInterface::class . Now pass this to our service.

39 lines tests/Unit/Service/GlthubServiceTest.php

...lines 1-8
9 use Symfony\Contracts\HttpClient\HttpClientInterface;
10
11 class GithubServiceTest extends TestCase
12
... lines 13- 15
16 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
17

18 $mockLogger = $this->createMock(Loggerinterface::class);

19 $mockHttpClient = $this->createMock(HttpClientInterface::class);

20

21 $service = new GithubService($mockHttpClient, $mockLogger);
... lines 22 - 23

24 }
... lines 25 - 37

38 }

Back to the terminal to run our tests:

./vendor/bin/phpunit

And... Oof! Our Sick Dino test

Failed asserting the two variables are the same

Hmm... For Sick Dino , we're expecting a HealthStatus::SICK for Daisy . In our service, we're calling the request() method on our
mock, making a log entry, then looping over the array that was returned in our response...HA! That's the problem. Remember:

whenever PHPUnit creates a mock object, it strips out all the logic for each method within that mock. Yup, we're looping over
nothing!

In this case, we need tofeach the HttpClient mock to return a responsethat contains a matching issue with a Status: Sick label.
That would let us assert that our label-parsing logicis correct.

How do we do that? It's coming up next!

Chapter 11: Mocking: Stubs

Let's take a quick look back at GithubService to see exactly what it's doing. First, the constructor requires an HttpClientinterface
object that we use to call GitHub. In return, we get back a Responselnterface that has an array of issue's for the dino-park
repository. Next we call the toArray() method on the response, and iterate over each issue to seeif the title contains the
$dinosaurName , SO we can get its status label.

57 lines src/Service/GithubService.php

...lines 1-8
9 class GithubService
10
...lines 11 - 14
15 public function getHealthReport(string $dinosaurName): HealthStatus
16

...lines 17 - 18
19 $response = $this->httpClient->request(
20 method: 'GET,
21 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
22);
... lines 23 - 28
29 foreach ($response->toArray() as $issue) {
... lines 30 - 32
33 }
... lines 34 - 35
36 }
... lines 37 - 55
56}

To get our tests to pass, we need toteach our fake hitpClient that when we call the request() method, it should give back a
Responselnterface object containing data that we control. So... let's do that.

Training the Mock on what to Return

Right after $mockHitpClient , say $mockResponse = $this->createMock() using Responselnterface::class for the class name.Below
on $mockHttpClient , call, ->method(request’) which willReturn($mockResponse) . This tells our mock client that hey, anytime we
call the request() method on our mock, you need to return this $mockResponse .

46 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-9

10 use Symfony\Contracts\HttpClient\Responselnterface;
1

12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 16
17 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
18

... line 19
20 $mockHttpClient = $this->createMock(HttpClientinterface::class);
21 $mockResponse = $this->createMock(Responselnterface::class);
22
23 $mockHttpClient
24 ->method('request’)
25 ->willReturn($mockResponse)
26 ;
... lines 27 - 30
31 }
... lines 32 - 44
45 '}

We could run our tests now, but they would fail. We taught our mock clientwhat it should return when we call the request()
method. But, now we need to teach our $mockResponse what it needs to do when we call the toArray() method. So right above,
lets teach the $mockResponse that when we call, method(‘toArray') and it willReturn() an array of issues. Because that's what
GitHub returns when we call the API.

51 lines tests/Unit/Service/GlthubServiceTest.php

... lines 1-9
10 use Symfony\Contracts\HttpClient\Responselnterface;
11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 16
17 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
18 {

... line 19
20 $mockHttpClient = $this->createMock(HttpClientinterface::class);
21 $mockResponse = $this->createMock(Responselnterface::class);
22
23 $mockResponse
24 ->method('toArray')
25 ->willReturn([])
26 ;
27
28 $mockHttpClient
29 ->method('request'’)
30 ->willReturn($mockResponse)
31)
... lines 32 - 35
36 }
... lines 37 - 49
50 }

For each issue, GitHub gives us the issue's "title",and among other things, an array of "labels".So let's mimic GitHub and
make this array include one issue that has 'itle' => 'Daisy".

And, for the test, we'll pretend she sprained her ankle so add a labels key set to an array, that includes 'name' => 'Status: Sick' .

Let's also create a healthy dino so we can assertthat our parsing checks that correctly too. Copy this issue and paste it below.
Change Daisy to Maverick and set his label to Status: Healthy .

60 lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-9

10 use Symfony\Contracts\HttpClient\Responselnterface;
1

12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 16
17 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
18

... line 19
20 $mockHttpClient = $this->createMock(HttpClientinterface::class);
21 $mockResponse = $this->createMock(Responselnterface::class);
22
23 $mockResponse
24 ->method('toArray')
25 ->willReturn([
26 [
27 title' => 'Daisy’,
28 'labels' => [['name’ => 'Status: SickT],
29]
30 [
31 'title' => 'Maverick',
32 'labels' => [['name’ => 'Status: Healthy"],
3]
34 1)
35 ;
36
37 $mockHttpClient
38 ->method('request’)
39 ->willReturn($mockResponse)
40 ;
... lines 41 - 44
45 }
... lines 46 - 58
59 }

Perfect! Our assertions are already expecting Daisy to be sick and Maverick to be healthy. So, if our tests pass, it means that
all of our label-parsing logic is correct.

Fingers crossed, let's try it:

./vendor/bin/phpunit

And... Awesome! They are passing! And the best part about it, we're no longer calling GitHub's APl when we run our tests!
Imagine the panic we would cause if we had to lock down the parkbecause our tests failed due to the api being offline...or just
someone changing the labels up on GitHub, Ya... | don't want that headache either...

Stubs? Mocks?

Remember when we were talking about the different names for mocks?Welp, both mockResponse and mockHitpClient are now
officially called stubs... That's a fancy way of saying fake objectswhere we optionally take control of the values it returns.
That's exactly what we are doing with the willReturn() method. Again, the terminology isn't too important, but there you go.
These are stubs. And yes, every time | teach this, | need to look up these termdo remember exactly what they mean.

Up next, we're going to turn our stubs into full-blown mock objects by also testing the data passed into the mock.

Chapter 12: Mocking: Mock Objects

Our tests are passing, the dino's are wandering, and life is great!But... let's think about this for a second.In GithubService ,
when we test getHealthReport() , we're able to control the $response that we get back from request() by using a stub. That's

great, but it might also be nice to ensure that the service is only calling GitHub one time and that it's using the right HTTP
method with the correct URL. Could we do that? Absolutely!

Expect a Method to Be Called

In GithubServiceTest where we configure the $mockHttpClient , add ->expects() , and pass self::once() .

61 lines tests/Unit/Service/GlthubServiceTest.php

... lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 16
17 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
18

... lines 19 - 36
37 $mockHttpClient
38 ->expects(self::once())
... lines 39 - 40
41 ;
... lines 42 - 45
46 }
... lines 47 - 59
60 }

Over in the terminal, run our tests...

./vendor/bin/phpunit

Expecting Specific Arguments

And... Awesome! We've just added an assertion to our mock clientthat requires the request method be called exactly once.
Let's take it a step further and add ->with() passing GET ... and then I'll paste the URL to the GitHub API.

62 lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 16
17 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
18

... lines 19 - 36
37 $mockHttpClient
38 ->expects(self::once())
39 ->method('request’)
40 ->with('GET", 'https://api.github.com/repos/SymfonyCasts/dino-park'’)
41 ->willReturn($mockResponse)
42 ;
... lines 43 - 46
47 }
... lines 48 - 60
61 }

Try the tests again...

./vendor/bin/phpunit

And... Huh! We have 2 failures:

Failed asserting that two strings are equal

Hmm... Ah Ha! My copy and paste skills are a bit weak.| missed /issue at the end of the URL.Add that.

62 lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 16
17 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
18

... lines 19 - 36
37 $mockHttpClient
... lines 38 - 39
40 ->with('GET', 'https://api.github.com/repos/SymfonyCasts/dino-park/issues')
... line 41
42)
... lines 43 - 46
47 }
... lines 48 - 60

61 }

Let's see if that was the trick:

/vendor/bin/phpunit

Umm... Yes! We're green all day. But best of all, the tests confirm we're using the correct URLand HTTP method when we call
GitHub.

But... What if we actually wanted to call GitHubmore than just once? Or... we wanted to assert that it was not called at all?
PHPUnit has us covered. There are a handful of other methods we can call.For example, change once() to never() .

And watch what happens now:

./vendor/bin/phpunit

Hmm... Yup, we have two failures because:

request() was not expected to be called.

That's really nifty! Change the expects() back to once() and justto be sure we didn't break anything - run the tests again.

./vendor/bin/phpunit

And... Awesome!

Carefully Applying Assertions

We could call expects() on our $mockResponse to make surethat toArray() is being called exactly once in our service.But, do
we really care? If it's not being called at all, our test would certainly fail.And if it's being called twice, no big deal!Using
->expects() and ->with() are greatways to add extra assertions...when you need them. But no need to micromanage how
many times something is called or its arguments if that is not so important.

Using GitHubService in our App

Now that GithubService is fully tested, we can celebrate by using it to drive our dashboard!On MainController::iindex() , add an
argument: GithubService $github to autowire the new service.

33 lines src/Controller/MainController.php

...lines1-5
6 use App\Service\GithubService;
... lines 7-10
11 class MainController extends AbstractController
12 {
13 #[Route(path: '/, name: 'main_controller', methods: ['GET'])]
14 public function index(GithubService $github): Response
15 {
... lines 16 - 30
31 }
32 }

Next, right below the $dinos array, foreach() over $dinos as $dino and, inside say $dino->setHealth() passing
$github->getHealthReport($dino->getName()) .

33 lines src/Controller/MalnController.php

...lines 1-5
6 use App\Service\GithubService;

... lines 7-10
11 class MainController extends AbstractController
12
13 #[Route(path: '/, name: 'main_controller', methods: ['GET'])]
14 public function index(GithubService $github): Response
15

... lines 16 - 23
24 foreach ($dinos as $dino) {
25 $dino->setHealth($github->getHealthReport($dino->getName()));
26 }
... lines 27 - 30
31 }
32}

To the browser and refresh...

And... What!

getDinoStatusFromLabels() must be HealthStatus , null returned

What's going on here? By the way, the fact that our unit test passes but our page failscan sometimes happenand in a future
tutorial, we'll write a functional test to make sure this page actually loads.

The error isn't very obvious, but | think oneof our dino's has a status label that we don't know about.Let's peek back at the
issues on GitHub and... HA! "Dennis" is causing problems yet again. Apparently he's a bit hungry...

In our HealthStatus enum, we don't have a case for Hungry status labels. Go figure. Is a hungry dinosaur accepting visitors?|
don't know - | guess it depends on if you ask the visitor or the dino. Anyways, Hungry is not a status we expected. So next, let's
throw a clear exception if we run into an unknown status and test for that exception.

Chapter 13: Filtering Out Hungry Dino's

Instead of seeing our dinos on the dashboard, we're seeing a TypeError for GithubService :

Return value must be of type HealthStatus, null returned

That's not doing a great jobof telling us what the problem really is. Thanks to the stack trace, it looks like it's being caused by a
Status: Hungry label. Yup! On GitHub, it looks like Dennis is hungry againafter finishing his daily exercise routine.

Our Enum Is Hungry Too
Looking at HealthStatus , we don't have a case for hungry dinos:

10 lines src/Enum/HealthStatus.php

...lines 1-2
namespace App\Enum;

3
4

5 enum HealthStatus: string

6 {

7 case HEALTHY = 'Healthy";
8 case SICK ='Sick’;

9

}

So add case HUNGRY that returns Hungry ... then refresh the dashboard.

11 lines src/Enum/HealthStatus.php

... lines 1-2
namespace App\Enum;

3

4

5 enum HealthStatus: string

6 f

7 case HEALTHY = 'Healthy';
8 case SICK = 'Sick’;

9 case HUNGRY = 'Hungry';
10 }

And... Ya! No more errors...

But, wait... It says that Dennis is not accepting visitors. He isn't sick, just hungry. GenLab said only sick dino's should not be on
exhibit. Besides, who doesn't want to see what happens to the goat?

Test Hungry Dinos Can Have Visitors

In DinosaurTest, we need to assert that hungry dino'scan have visitors. Hmm... | think we might be able to use
testlsNotAccepting VisitorslfSick() for this. Yup, that's what we'll do. Below, add a healthStatusProvider() that returns \Generator and
for the first dataset yield 'Sick dino is not accepting visitors' . In the array say HealthStatus::SICK , and false . Next,

yield 'Hungry dino is accepting visitors' with [HealthStatus::HUNGRY, true] :

65 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-8
9 class DinosaurTest extends TestCase
10
... lines 11 - 58
59 public function healthStatusProvider(): \Generator
60 {
61 yield 'Sick dino is not accepting visitors' => [HealthStatus::SICK, false];
62 yield 'Hungry dino is accepting visitors' => [HealthStatus::HUNGRY, true];
63 }
64 }

Above, add the @dataProvider annotation so we can use healthStatusProvider() . While we're here, rename the methodto
testlsAcceptingVisitorsBasedOnHealthStatus then add the arguments HealthStatus $healthStatus and bool $expectedVisitorStatus :

68 lines tests/Unit/Entlty/DinosaurTest.php

...lines 1-8
9 class DinosaurTest extends TestCase
10 {
... lines 11 - 49
50 /**
51 * @dataProvider healthStatusProvider
52 */
53 public function testlsAcceptingVisitorsBasedOnHealthStatus(HealthStatus $healthStatus, bool $expectedVisitorStatus): void
54 {
... lines 55 - 59
60 }

62 public function healthStatusProvider(): \Generator

63 {

64 yield 'Sick dino is not accepting visitors' => [HealthStatus::SICK, false];

65 yield 'Hungry dino is accepting visitors' => [HealthStatus::HUNGRY, true];
66 }

67)

Inside set the health with $healthStatus then replace asseriFalse() with assertSame($expectedStatus) is identical to
$dino->isAcceptingVisitors() :

68 lines tests/Unit/Entlty/DinosaurTest.php

...lines1-8
9 class DinosaurTest extends TestCase
10 {
... lines 11 -49
50 /**
51 * @dataProvider healthStatusProvider
52 */
53 public function testlsAcceptingVisitorsBasedOnHealthStatus(HealthStatus $healthStatus, bool $expectedVisitorStatus): void
54 {
... lines 55 - 56
57 $dino->setHealth($healthStatus);
58
59 self::assertSame($expectedVisitorStatus, $dino->isAcceptingVisitors());
60 }

62 public function healthStatusProvider(): \Generator

63 {

64 yield 'Sick dino is not accepting visitors' => [HealthStatus::SICK, false];

65 yield 'Hungry dino is accepting visitors' => [HealthStatus::HUNGRY, true];
66 }

67 }

Phew, that was a lot of work!

Filtering Tests
Let's see if that did the trick. Run:

./vendor/bin/phpunit --filter testlsAcceptingVisitorsBasedOnHealthStatus

See what | did there? To focus on just this test, we can add the --filier set to the complete or partial nameof a test class,
method, or anything in between. This comes in really handy when you have a large test suiteand only want to run one or a few

tests.

Anywho, Hungry dino is not accepting visitors is failing:
Failed asserting that false is true.

Looking at Dinosaur:isAcceptingVisitors() , to account for hungry dino's, we need to return $this->health does not equal
HealthStatus::SICK :

66 lines src/Entlty/Dinosaur.php

...lines 1-6
7 class Dinosaur
8 |
... lines 9 - 55
56 public function isAcceptingVisitors(): bool
57 {
58 return $this->health !== HealthStatus::SICK;
59 }
... lines 60 - 64
65 }

Let's see what happens when we run:

./vendor/bin/phpunit --filter "Hungry dino is accepting visitors"

And... boom! Our hungry dino test is now passing, ha!Yup, we can use data provider keys with the filter flag too. But to make
sure we didn't stop healthy dino's from having visitors, run:

./vendor/bin/phpunit

Um... Yes! All dots and no errors. Shweet! We didn't wreck the park. Take a look at the dashboard, refresh, and ya!Dennis is
able to eat his lunch with park guests once again. Though, | think we should be proactive and throw a more clear exceptionin
case we ever see any future status labels that we don't know about. Let's do that next.

Chapter 14: Testing Exceptional Exceptions

Do you remember when we were seeing this exceptionbecause our app didn't understand Maverick's "hungry" status? Welp,
we've fixed that, but we still need to take care of one minor detail. Next time GenLab throws us a curve ball, like setting
"Status: Antsy" on a dino, GithubService should throw a clear exception that mentions the label.

Where can we throw an exception?

To do that, we're going to take a break from TDD for just a moment.In getDinoStatusFromLabels() , if a label has the "Status:"
prefix, we chop that off, set what's left on $status , and pass that into tryFrom() so we can return a HealthStatus . | think this
would be a good spot to throw an exception if tryFrom() returns null .

Cut HealthStatus::tryFrom($status) from the return and right above add $health = and paste. Then if (null === $health) we'll
throw new \RuntimeException() with the message, sprintf('%s is an unknown status label!') passing in $status . Below return $health .

But, if the issue doesn't have a status label, we still need to return a HealthStatus . So above, replace $status with
$health = HealthStatus::HEALTHY , because unless GenlLab adds a "Status: Sick" label, all of our dinosare healthy:

64 lines src/Service/GithubService.php

...lines 1-8
9 class GithubService
10 {
... lines 11 - 37
38 private function getDinoStatusFromLabels(array $labels): HealthStatus
39 {
40 $health = null;
41
42 foreach ($labels as $label) {
... lines 43 - 49
50 /I Remove the "Status:" and whitespace from the label
51 $status = trim(substr($label, strlen('Status:")));
52
53 $health = HealthStatus::tryFrom($status);
54
55 /I Determine if we know about the label - throw an exception if we don't
56 if (null === $health) {
57 throw new \RuntimeException(sprintf('%s is an unknown status label!', $label));
58 }
59 }
60
61 return $health ?? HealthStatus::HEALTHY;
62}
63 }

Is the exception thrown?

Now, normally we write tests for return values. But you can also write tests to verify that the correctexception is thrown. So
let's do that in GithubServiceTest . Hmm... This first test has a lot of the logic we'll need.Copy that and paste it at the bottom.
Change the nameto testExceptionThrownWithUnknownLabel and remove the arguments. Inside, take out the assertion leaving
just the call to $service->getHealthReport() . And instead of $dinoName , pass in Maverick . For $mockResponse , remove Daisy
from willReturn() and change Mavericks label from Healthy to Drowsy :

90 lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 61
62 public function testExceptionThrownWithUnknownLabel(): void
63 {
... lines 64 - 67
68 $mockResponse
69 ->method('toArray')
70 ->willReturn([
71 [
72 'title' => 'Maverick',
73 'labels' => [['name’ => 'Status: Drowsy']],
74]
75)
76 5
... lines 77 - 86
87 $service->getHealthReport('"Maverick');
88 }
89 }

Alrighty, lets give this a shot:

./vendor/bin/phpunit

And... Ouch! GithubServiceTest failed because of a:

RuntimeException: Drowsy is an unknown status label!

This is actually good news. It means GithubService is doing exactly what we want it to do.But, how do we make this test pass?

Right before we call getHealthReport() , add $this->expectException() passing in \RuntimeException::class :

92 lines tests/Unit/Service/GlthubServiceTest.php

...lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 61
62 public function testExceptionThrownWithUnknownLabel(): void
63 {
... lines 64 - 67
68 $mockResponse
69 ->method('toArray')
70 ->willReturn([
71 [
72 'title' => 'Maverick',
73 'labels' => [['name’ => 'Status: Drowsy']],
74 1
75 1)
76 ;
... lines 77 - 86
87 $this->expectException(\RuntimeException::class);
88
89 $service->getHealthReport('"Maverick');

90 |}
91}

Try the tests again:

./vendor/bin/phpunit

Um... awesome sauce! We're green!

Prevent typo's in the exception message

But, hmm... If we manage to dork up our code on accident,a RuntimeException could be coming from someplace else. To make
sure we're testing the correct exception, say $this->expectExceptionMessage('Drowsy is an unknown status label!') :

93 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 61
62 public function testExceptionThrownWithUnknownLabel(): void
63 {
... lines 64 - 67
68 $mockResponse
69 ->method('toArray')
70 ->willReturn([
71 [
72 'title' => 'Maverick',
73 'labels' => [['name’ => 'Status: Drowsy']],
74]
75)
76 ;
... lines 77 - 86
87 $this->expectException(\RuntimeException::class);
88 $this->expectExceptionMessage('Drowsy is an unknown status label!");
89
90 $service->getHealthReport('Maverick');
91 }
92 }

Then run our spell checker again:

./vendor/bin/phpunit

And... HA! We've added another assertion that is passingand we don't have any typo's in our message.WooHoo!

Test more than the exception message

Along with expeciExceptionMessage() , PHPUnit has expectations for the exception code,object, and even has the ability to pass
a regex to match the message. By the way, all of these expect methods are just like the assert methods. The big difference is
that they must be called before the action you're testing ratherthan after. And just like assertions, if we change the expected
message from Drowsy to Sleepy and run the test:

/vendor/bin/phpunit

Hmm... Yup! We'll see the test fail because Drowsy is not Sleepy . Let's change that back in the test...And there you have it!

Dinotopia's gates are now open and Bob is much happier nowthat our app is updated in real-time with GenLab!To celebrate,
let's make our lives a bit easier by using a touchof HitpClient magic to refactor our test.

Chapter 15: Mocking Symfony's Http Client

Having the ability to mock objects in tests is super awesome, and kind of weirdand complex all at the same time. If we have
simple objects, like Dinosaur , we should avoid the extra lines of codeand just instantiate a real Dinosaur for the test. After all,
it's pretty easy to control the behavior of Dinosaur just by calling its real methods. No need for the mock weirdness.

But, for more complex objects, like HtipClient , using the real client... can be a headache. The general rule of thumb is to use
mocks for complex objects like, services... but for simple objects, like models or entities, just use the real thing.

Looking back at Symfony's HTTP Client, wewere able to mock both the clientand the response to control its behavior. But,
because needing to do this sort of thing is so common, Symfony's HTTP Client comes with some special classes that can do
the mocking for us. It comes with two real classes specifically made fortesting: MockHttpClient & MockResponse . Using
PHPUnit's mock system is fine, but these exist to make our life even easier.

Check it out: instead of creating a mock for $mockResponse , instantiate a MockResponse() passing in json_encode() with an
array to mimic GitHub's API response. Grab Maverick's issue below and paste that into the array.Since MockResponse is
already configured, remove the $mockResponse bits below.

82 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-8

9 use Symfony\Component\HttpClient\MockHttpClient;

10 use Symfony\Component\HttpClient\Response\MockResponse;
...lines 11-13

14 class GithubServiceTest extends TestCase

15 {

... lines 16 - 63
64 public function testExceptionThrownWithUnknownLabel(): void
65 |
66 $mockResponse = new MockResponse(json_encode([
67 [
68 title' => 'Maverick',
69 'labels' => [['name’ => 'Status: Drowsy']],
70 1,
71 D);
... lines 72 - 79
80 }

81 }

For the client, remove $mockHitpClient and below, instantiate a new MockHitpClient() passing in $mockResponse instead. Since
we're not doing anything with $mocklLogger , cut createMock() , remove the variable,and paste that as an argument to
GithubService() .

82lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-8
9 use Symfony\Component\HttpClient\MockHttpClient;
10 use Symfony\Component\HttpClient\Response\MockResponse;

... lines 11-13
14 class GithubServiceTest extends TestCase
15
... lines 16 - 63
64 public function testExceptionThrownWithUnknownLabel(): void
65 {
66 $mockResponse = new MockResponse(json_encode([
67 [
68 'title' => 'Maverick',
69 'labels' => [['name’ => 'Status: Drowsy']],
70]
71 1)
72
73 $mockHttpClient = new MockHttpClient($mockResponse);
74 $service = new GithubService($mockHttpClient, $this->createMock(Loggerinterface::class));
... lines 75 - 79
80 }

81 }

Wow, this is looking better already! But, let's see what happens when we run the tests:

/vendor/bin/phpunit

And... Woah! All of the tests are passing!

But, the assertion count did go down to "16" because MockHttpClient and MockResponse do not actually perform any
assertions, like how many times a method is called.

So... what's the actual benefit to using these mock classes?Why not just create our own via PHPUnit?Ha... Check out this diff
of GithubService . We removed 11 lines of code by using the "built-in" mocks in just one testimagine how many lines of code
we could remove by using them in all of our tests. Hm... | think that's exactly what we'll do next.

Chapter 16: Setup and Tearing It Down

Let's continue refactoring our test. In the test method, we create a MockResponse , MockHttpClient , and instantiate
GitHubService with a mock Loggerinterface . We're doing the same thing in this test above.Didn't Ryan say to DRY out our code
in another tutorial? Fine... | suppose we'll listen to him.

Start by adding three private properties to our class: a Loggerinterface $mockLogger , followed by MockHttpClient $mockHttpClient
and finally MockResponse $mockresponse :

95 lines tests/Unit/Service/GlthubServiceTest.php

...lines 1-13
14 class GithubServiceTest extends TestCase
15
16 private LoggerInterface $mockLogger;
17 private MockHttpClient $mockHttpClient;
18 private MockResponse $mockResponse;
... lines 19 - 93
94 }

At the bottom of the test, create a private function createGithubService() that requires array $responseData then returns
GithubService . Inside, say $this->mockResponse = new MockResponse() that json_encode() 's the $responseData :

95 lines tests/Unit/Service/GlthubServiceTest.php

...lines 1-13
14 class GithubServiceTest extends TestCase
15 {
16 private LoggerInterface $mockLogger;
17 private MockHttpClient $mockHttpClient;
18 private MockResponse $mockResponse;

... lines 19 - 85

86 private function createGithubService(array $responseData): GithubService

87 {

88 $this->mockResponse = new MockResponse(json_encode($responseData));
... lines 89 - 92

93 }

94}

Since we'll be creating the MockResponse after we instantiate the MockHitpClient , which you'll see in a second, we need to pass
our response to the client without using the client's constructor. To do that, we can say
$this->mockHitpClient->setResponseFactory($this->mockResponse) . Finally return a new GithubService() with $this->mockHittpClient
and $this->mockLogger .

95 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-13
14 class GithubServiceTest extends TestCase
15 {
16 private LoggerInterface $mockLogger;
17 private MockHttpClient $mockHttpClient;
18 private MockResponse $mockResponse;

... lines 19 - 85
86 private function createGithubService(array $responseData): GithubService
87 |
88 $this->mockResponse = new MockResponse(json_encode($responseData));
89
90 $this->mockHttpClient->setResponseFactory($this->mockResponse);
91
92 return new GithubService($this->mockHttpClient, $this->mockLogger);
93 }
94}

We could use a constructor to instantiate our mocks and set them on those properties.But PHPUnit will only instantiate our

test class once, no matter how many test methods it has.And we want to make sure we have fresh mock objects foreach test
run. How can we do that? At the top, add protected function setUp() . Inside, say
$this->mocklLogger = $this->createMock(LoggerInterface::class) then $this->mockHttpClient = new MockHttpClient() .

98 lines tests/Unit/Service/ClthubServiceTest.php

...lines 1-13
14 class GithubServiceTest extends TestCase
15 {
16 private LoggerInterface $mockLogger;
17 private MockHttpClient $mockHttpClient;
18 private MockResponse $mockResponse;
19
20 protected function setUp(): void
21 {

22 $this->mockLogger = $this->createMock(Loggerinterface::class);
23 $this->mockHttpClient = new MockHttpClient();
24 }

... lines 25 - 88
89 private function createGithubService(array $responseData): GithubService
90 {
91 $this->mockResponse = new MockResponse(json_encode($responseData));
92
93 $this->mockHttpClient->setResponseFactory($this->mockResponse);
94
95 return new GithubService($this->mockHttpClient, $this->mockLogger);
96 }
97}

Down in the test method, cut the response array,then say $service = $this->createGithubService() and paste the array.

98 lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-13

class GithubServiceTest extends TestCase
15 {

16 private Loggerinterface $mockLogger;

17 private MockHttpClient $mockHttpClient;
18 private MockResponse $mockResponse;
19

20 protected function setUp(): void

21 {

-
S

22 $this->mockLogger = $this->createMock(Loggerinterface::class);
23 $this->mockHttpClient = new MockHttpClient();
24 }
... lines 25 - 73
74 public function testExceptionThrownWithUnknownLabel(): void
75 {
76 $service = $this->createGithubService([
77 [
78 title' => 'Maverick’,
79 'labels' => [['name’ => 'Status: Drowsy'],
80]
81 1);
... lines 82 - 85
86 $service->getHealthReport('"Maverick');
87 }
88
89 private function createGithubService(array $responseData): GithubService
90 {
91 $this->mockResponse = new MockResponse(json_encode($responseData));
92
93 $this->mockHttpClient->setResponseFactory($this->mockResponse);
94
95 return new GithubService($this->mockHttpClient, $this->mockLogger);
96 }
97 }

Let's see how our tests are doing in the terminal...

./vendor/bin/phpunit

And... Ya! Everything is looking good!

The idea is pretty simple: if your test class has a method called setUp() , PHPUnit will call it before each test method, which
gives us fresh mocks at the start of every test. Need to do something after each test? Same thing: create a method called
tearDown() . This isn't as common... but you might do it if you want to cleanup some filesystem changes that were made during
the test. In our case, there's no need.

In addition to setUp() and tearDown() , PHPUnit also has a few other methods,like setUpBeforeClass() and tearDownAfterClass() .
These are called once per class, and we'll get more into thoseas they become relevant in future tutorials.And if you were
wondering, these methods are called "Fixture Methods" because they help setup any "fixtures" to get your environmentinto a
known state for your test.

Anyhow, let's get back to refactoring.For the first test in this class, cut out the response array, select all of this "dead code",
add $service = $this->createGithubService() then paste in the array.We can remove the $service variable below:

83 lines tests/Unit/Service/ClthubServiceTest.php

... lines 1-11
12 class GithubServiceTest extends TestCase
13
... lines 14 - 26
27 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
28

29 $service = $this->createGithubService([
30 [
31 title' => 'Daisy’,
32 'labels' => [['name’ => 'Status: Sick"],
3]
34 [
35 'title' => 'Maverick’,
36 'labels' => [['name' => 'Status: Healthy']],
37]
38 B
... lines 39 - 43
44 }
... lines 45 - 81
82 }

But now we need to figure out how to keep these expectationsthat we were using on the old $mockHitpClient . Being able to
test that we only call GitHub once with the GET HTTP Method and that we're using the right URL, is pretty valuable.

Fortunately, those mock classes have special codejust for this. Below, assertSame() that 1 is identical to
$this->mockHttpClient->getRequestCount() then assertSame() that GET is identical to $this->mockResponse->getRequestMethod() .
Finally, copy and paste the URL into assertSame() and call getRequestUrl() on mockResponse . Remove the old
$mockHttpClient ... and the use statements that we're no longer using up top.

83 lines tests/Unit/Service/GlthubServiceTest.php

... lines 1-11
12 class GithubServiceTest extends TestCase
13 {
... lines 14 - 26
27 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
28

29 $service = $this->createGithubService([
30 [
31 title' => 'Daisy’,
32 'labels' => [['name’ => 'Status: SickT],
33 1,
34 [
35 'title' => 'Maverick',
36 'labels' => [['name’ => 'Status: Healthy"],
37 1,
38 B
39
40 self::assertSame($expectedStatus, $service->getHealthReport($dinoName));
4 self::assertSame(1, $this->mockHttpClient->getRequestsCounty());
42 self::assertSame('GET', $this->mockResponse->getRequestMethod());
43 self::assertSame('https://api.github.com/repos/SymfonyCasts/dino-park/issues', $this->mockResponse->getRequestUrl());
44 }
... lines 45 - 81
82 }

Alrighty, time to check the fences...

./vendor/bin/phpunit

And... Wow! Everything is still green!

Welp, there you have it... We've helped Bob improve Dinotopia by adding a few small features to the app.But more
importantly, we're able to test that those features are working as we intended. Is there more work to be done?Absolutely!
We're going to take our app to the next level by adding a persistence layer to store dinosn the database and learn how to
write tests for that too. These tests, where you use real database connections or make real API calls, instead of mocking, are
sometimes called integration tests. That's the topic of the next tutorial in this series.

| hope you enjoyed your time here at the park - and thanks for keeping your armsand legs inside the vehicle at all times.If you
have any questions, suggestions, or want to ride with Big Eaty in the Jeep - just leave us a comment.Alright, see you in the
next episode!

file:///contact

	PHPUnit: Unit Testing with a Bite!
	With <3 from SymfonyCasts
	Chapter 1: PHPUnit Install
	App Setup
	The App: Dinotopia Status
	Installing PHPUnit
	Chapter 2: Our First Test
	Creating the Test Class
	Executing PHPUnit
	Test Naming Conventions
	Testing Failures 😱
	Chapter 3: Testing Class Methods
	Should I Test that Method?
	The Order of the assert() Method Arguments
	The Assert Message
	Naming Conventions
	Descriptive Testdox Output
	Chapter 4: TDD - Test Driven Development
	What is TDD?
	Step 1: Write a test for the Feature
	Step 2: Run the test and watch it fail
	Step 3: Write simple code to make it pass
	Chapter 5: TDD Part 2: Finish & Refactor
	A few more tests
	Step 4: Refactoring
	Use the Size Description in our Controller
	Chapter 6: Data Providers
	Refactor our tests
	Tell our test to use the Data Provider
	Message Keys instead of Arguments

	Return Types Everywhere!
	Chapter 7: Incomplete Tests and Dancing Dino's
	Let's skip a test...
	Are they accepting visitors?
	Sick Dinos - Stay Away!
	Enums are cool for health labels
	Show which exhibits are open
	Chapter 8: Create a GitHub Service Test
	Test for our Service First
	Create the service that will call GitHub
	Add the use statement in our test
	Chapter 9: GitHub Service: Implementation
	Add the client and make a request
	Parse the HTTP Response
	Log all of our requests
	Chapter 10: Mocking: Test Doubles
	A Mock Logger
	But what is a Mock?
	We Should Always Mock Services
	Refactoring HttpClient to use DependencyInjection
	Mocking the HttpClient
	Chapter 11: Mocking: Stubs
	Training the Mock on what to Return
	Stubs? Mocks?
	Chapter 12: Mocking: Mock Objects
	Expect a Method to Be Called
	Expecting Specific Arguments
	Carefully Applying Assertions
	Using GitHubService in our App
	Chapter 13: Filtering Out Hungry Dino's
	Our Enum Is Hungry Too
	Test Hungry Dinos Can Have Visitors
	Filtering Tests
	Chapter 14: Testing Exceptional Exceptions
	Where can we throw an exception?
	Is the exception thrown?
	Prevent typo's in the exception message
	Test more than the exception message
	Chapter 15: Mocking Symfony's Http Client
	Chapter 16: Setup and Tearing It Down

