
PHPUnit: Unit Testing with a Bite!

With <3 from SymfonyCasts

Chapter 1: PHPUnit Install

Hey everyone! Welcome to PHPUnit: testing with a bite! The tutorial where we discover, to our horror, that yet another
Dinosaur theme park has built their systems... without any tests. It won't matter whether or not the raptors can open doors... if
the fences never turn on.

Our park is called Dinotopia. And, to help wrangle our prehistoric friends, we've written a simple app that shows us which dinos
are where and... how they're feeling. As you'll see, it's great! Except for the complete lack of tests.

App Setup

Anyways, to learn the most about testing and guarantee that nothing deadly will escape from your application, you should code
along with me. After clicking "Download" on this page, unzip the file and move into the start/ directory to find the code you see
here. Check out the README.md for all the setup details.

The last step will be to open up a terminal and run:

to start a local web server on 127.0.0.1 port 8000 .

Cool! Move over to your browser, open a tab, go to localhost:8000 ... and yes! Our Dinotopia Status app!

The App: Dinotopia Status

This simple app has the name of each dino, genus, size, and which enclosure the dino is currently hanging out in. Down here
at the bottom, we also have a link to GenLab's super secret dino-park repository on GitHub. OoooO. This is where the
engineers regularly post updates to let Bob, our resident park ranger, know which dinos are feeling good, need their medicine,
or have escaped. Wait, What?! Hopefully, GitHub doesn't go offline when that happens.

And that's where we come in! We've already built the first version of the Dinotopia Status app. Looking at the code behind this,
it's pretty simple: one controller

�

symfony serve -d

�� 28 lines 28 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

one Dinosaur class...

namespace App\Controller;

use App\Entity\Dinosaur;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class MainController extends AbstractController
{
 #[Route(path: '/', name: 'main_controller', methods: ['GET'])]
 public function index(): Response
 {
 $dinos = [
 new Dinosaur('Daisy', 'Velociraptor', 2, 'Paddock A'),
 new Dinosaur('Maverick','Pterodactyl', 7, 'Aviary 1'),
 new Dinosaur('Big Eaty', 'Tyrannosaurus', 15, 'Paddock C'),
 new Dinosaur('Dennis', 'Dilophosaurus', 6, 'Paddock B'),
 new Dinosaur('Bumpy', 'Triceratops', 10, 'Paddock B'),
];

 return $this->render('main/index.html.twig', [
 'dinos' => $dinos,
]);
 }
}

�� 40 lines 40 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

and exactly zero tests. Our job is to fix that. We're also going to add a feature where we read each dino's status from GitHub
and render it. That'll help Bob avoid going into the enclosure of Big Eaty - our resident T-Rex - when his status is "Hungry".
Those accidents involve a lot of paperwork. And thanks to our tests, we'll ship that feature bug-free. You're welcome, Bob!

If you're new to testing, it can be intimidating. There are Unit tests, functional tests, integration tests, acceptance tests, math
tests! The list is almost endless. We'll talk about all of these - except for math tests - throughout this series. In this tutorial,
we're going to zoom in on unit tests: tests that cover one specific piece of code - like a function or method.

Oh, and by the way, tests are also super fun. It's automation! So buckley up.

Installing PHPUnit

What's the first step to writing tests? Installing PHP's defacto standard testing tool: PHPUnit. Move over to your terminal and
run:

This test-pack is a Symfony "pack" that will install PHPUnit - which is all we need right now - as well as some other libraries
that'll come in handy later.

namespace App\Entity;

class Dinosaur
{
 private string $name;
 private string $genus;
 private int $length;
 private string $enclosure;

 public function __construct(string $name, string $genus = 'Unknown', int $length = 0, string $enclosure = 'Unknown')
 {
 $this->name = $name;
 $this->genus = $genus;
 $this->length = $length;
 $this->enclosure = $enclosure;
 }

 public function getName(): string
 {
 return $this->name;
 }

 public function getGenus(): string
 {
 return $this->genus;
 }

 public function getLength(): int
 {
 return $this->length;
 }

 public function getEnclosure(): string
 {
 return $this->enclosure;
 }
}

�

composer require --dev symfony/test-pack

After it finishes, run:

Cool! In addition to installing the packages, it looks like some Symfony Flex recipes modified and created a few other files.
Ignore these for now. We'll talk about each one at some point in this series when they become relevant.

Ok, we're ready to write our first test! Let's do that next.

�

git status

��

��

Chapter 2: Our First Test

We already have this Dinosaur class... and it's pretty simple. But when it comes to dinosaurs, bugs in our code can be, mmm,
a bit painful. So let's add some basic tests!

Creating the Test Class

Mmmm... where do we put this new test? We can technically put our tests anywhere within our project. But when we installed
symfony/test-pack , Flex created a tests/ directory which, no surprise, is the recommended place to put our tests.

Remember that, in this tutorial, we're only dealing with Unit tests. So, inside of tests/ , create a new directory called Unit . And
because our Dinosaur::class lives in the Entity namespace - create an Entity directory inside of that at the same time.

All of this organization is technically optional: you can organize the tests/ directory however you want. But, putting all of our
unit tests into a Unit directory is just... nice. And the reason we made the Entity directory is because we want the file structure
inside of Unit to mirror our src/ directory structure. That's a best practice that keeps our tests organized.

Finally, create a new class called DinosaurTest . Using that Test suffix makes sense: we're testing Dinosaur , so we call this
DinosaurTest ! But it's also a requirement: PHPUnit - our testing library - requires this. It also requires that each class extend
TestCase :

 14 lines 14 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 2
3

4

5

6

7

8

� ... lines 9 - 12
13

Now let's go ahead and write a simple test to make sure everything is working.

Inside our DinosaurTest class, let's add public function testIsWorks() ... where we'll create the most exciting test ever! If you like
return types - I do! - use void ... though that's optional

Inside call self::assertEquals(42, 42) :

 14 lines 14 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 2
3

4

5

6

7

8

9

10

11

12

13

That's it! It's not a very interesting test - if our computer thinks that 42 doesn't equal 42, we have bigger problems - but it's
enough.

Executing PHPUnit

namespace App\Tests\Unit\Entity;

use PHPUnit\Framework\TestCase;

class DinosaurTest extends TestCase
{

}

namespace App\Tests\Unit\Entity;

use PHPUnit\Framework\TestCase;

class DinosaurTest extends TestCase
{
 public function testItWorks(): void
 {
 self::assertEquals(42, 42);
 }
}

How do we execute the test? By executing PHPUnit. At your terminal, run:

And... awesome! PHPUnit saw one test - for our one test method - and one assertion.

We could also say bin/phpunit to execute our tests, which is basically just a shortcut to run vendor/bin/phpunit .

But, I'm sure your curious... What's... an assertion?

Looking back at DinosaurTest , the one assertion refers to the assertEquals() method, which comes from PHPUnit's TestCase
class. If the actual value - 42 - doesn't match the expected value, the test would fail. PHPUnit has a bunch more assertion
methods... and we can see them all by going to https://phpunit.readthedocs.io. This is full of goodies, including an "Assertions"
section. And... wow! Look at them all... We'll talk about the most important assertions throughout the series. But for now, back
to the test!

Test Naming Conventions

Because, I have a question: how did PHPUnit know that this is a test? When we call vendor/bin/phpunit , PHPUnit does three
things. First, it looks for its configuration file, which is phpunit.xml.dist :

�

./vendor/bin/phpunit

https://phpunit.readthedocs.io

��

��

43 lines 43 lines phpunit.xml.distphpunit.xml.dist

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Inside, it finds testsuites ... and the directory part says:

 43 lines 43 lines phpunit.xml.distphpunit.xml.dist

� ... lines 1 - 3
4

� ... lines 5 - 9
10

� ... lines 11 - 19
20

21

22

23

24

� ... lines 25 - 41
42

Hey PHPUnit: go look inside a tests/ directory for tests!

<?xml version="1.0" encoding="UTF-8"?>

<!-- https://phpunit.readthedocs.io/en/latest/configuration.html -->
<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="vendor/phpunit/phpunit/phpunit.xsd"
 backupGlobals="false"
 colors="true"
 bootstrap="tests/bootstrap.php"
 convertDeprecationsToExceptions="false"
>
 <php>
 <ini name="display_errors" value="1" />
 <ini name="error_reporting" value="-1" />
 <server name="APP_ENV" value="test" force="true" />
 <server name="SHELL_VERBOSITY" value="-1" />
 <server name="SYMFONY_PHPUNIT_REMOVE" value="" />
 <server name="SYMFONY_PHPUNIT_VERSION" value="9.5" />
 </php>

 <testsuites>
 <testsuite name="Project Test Suite">
 <directory>tests</directory>
 </testsuite>
 </testsuites>

 <coverage processUncoveredFiles="true">
 <include>
 <directory suffix=".php">src</directory>
 </include>
 </coverage>

 <listeners>
 <listener class="Symfony\Bridge\PhpUnit\SymfonyTestsListener" />
 </listeners>

 <!-- Run `composer require symfony/panther` before enabling this extension -->
 <!--
 <extensions>
 <extension class="Symfony\Component\Panther\ServerExtension" />
 </extensions>
 -->
</phpunit>

<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

 <testsuites>
 <testsuite name="Project Test Suite">
 <directory>tests</directory>
 </testsuite>
 </testsuites>

</phpunit>

��

��

��

Second, it finds that directory and recursively looks for every class that ends with the word Test . In this case, DinosaurTest .
Finally, once it finds a test class, it gets a list of all of its public methods.

So... am I saying that PHPUnit will execute every public method as a test? Let's find out! Create a new
public function itWorksTheSame(): void

 19 lines 19 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 6
7

8

� ... lines 9 - 13
14

15

� ... line 16
17

18

Inside we are going to self::assertSame() that 42 is equal to 42. assertSame() is very similar to assertEquals() and we'll see the
difference in a minute.

 19 lines 19 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 6
7

8

� ... lines 9 - 13
14

15

16

17

18

Now, move back to your terminal and let's run these tests again:

Huh? PHPUnit still says just one test and one assertion. But inside our test class, we have two tests and two assertions. The
problem is that PHPUnit only executes public methods that are prefixed with the word test . You could put the @test
annotation above the method, but that's not very common. So let's avoid being weird, and change this to testItWorksTheSame() .

 19 lines 19 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 6
7

8

� ... lines 9 - 13
14

15

16

17

18

Now when we run the test:

class DinosaurTest extends TestCase
{

 public function itWorksTheSame(): void
 {

 }
}

class DinosaurTest extends TestCase
{

 public function itWorksTheSame(): void
 {
 self::assertSame(42, 42);
 }
}

�

./vendor/bin/phpunit

class DinosaurTest extends TestCase
{

 public function testItWorksTheSame(): void
 {
 self::assertSame(42, 42);
 }
}

�

./vendor/bin/phpunit

��

PHPUnit sees 2 tests and 2 assertions! Shweeeet!

Testing Failures �

What does it look like when a test fails? Let's find out! Change our expected 42 to a string inside testItWorks() ... and do the
same inside testItWorksTheSame() . Yup, one of these won't work.

 19 lines 19 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 6
7

8

9

10

11

12

13

14

15

16

17

18

This time when we try it:

Oh no! One failure!

DinosaurTest::testItWorksTheSame() failed asserting that 42 is identical to 42 .

So... assertEquals() passed, but assertSame() failed. That's because assertEquals() is the equivalent to doing an if 42 == 42:
using the double equal sign. But assertSame() is equivalent to 42 === 42: with three equal signs.

And since the string 42 does not triple-equals the integer 42, that test fails and PHPUnit yells at us.

Ok, we've got our first tests behind us! Though... testing that the answer to life the universe and everything is equal to the
answer to life the universe and everything... isn't very interesting. So next: let's write real tests for the Dinosaur class.

class DinosaurTest extends TestCase
{
 public function testItWorks(): void
 {
 self::assertEquals('42', 42);
 }

 public function testItWorksTheSame(): void
 {
 self::assertSame('42', 42);
 }
}

�

./vendor/bin/phpunit

��

��

Chapter 3: Testing Class Methods

As a reminder, the class is currently pretty simple: we pass some data to the constructor... and then we can read that data via
some methods. Instead of just "hoping" this all works, let's go ahead and make sure that our Dinosaur class is really bug-free
with some tests!

In DinosaurTest , remove these two tests and replace them with public function testCanGetAndSetData() :

 25 lines 25 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

� ... lines 12 - 22
23

24

Inside... we're literally going to play with the object by instantiating it and trying some methods.

So, $dino = new Dinosaur() and pass in some data. For the name, eh - let's use Big Eaty : he's our resident Tyrannosaurus who
happens to be 15 meters in length. And Big Eaty is currently living in Paddock A :

 25 lines 25 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

12

13

14

15

16

17

� ... lines 18 - 22
23

24

Now that we have our Dinosaur object, we can write a few assertions. self::assertSame() that Big Eaty is identical to
$dino->getName() , assertSame() that Tyrannosaurus is identical to $dino->getGenus() , assertSame() that 15 is identical to
getLength() , and last but not least, assertSame() that Big Eaty is still in Paddock A when we call getEnclosure() ... and not
running wild around the island:

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {

 }
}

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {
 $dino = new Dinosaur(
 name: 'Big Eaty',
 genus: 'Tyrannosaurus',
 length: 15,
 enclosure: 'Paddock A',
);

 }
}

�� 25 lines 25 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Let's try it! Move back to your terminal and run:

Should I Test that Method?

And... YES! We have one test with four assertions. But... looking back at our Dinosaur class, we're not really doing a whole
heck of a lot in here. We're requiring a few arguments in our constructor, setting them on properties, and exposing those
properties with getter methods. Nothing complex at all. So while our DinosaurTest is perfectly acceptable, it's not the most
useful. Because the odds of these methods having a bug are low. And besides, if there were a bug, we'll probably catch it
while testing other parts of our app that call these.

The point is: while you can do whatever you want, this probably isn't a test that I would write in a real project. My rule of thumb
is: if a method scares, it's worth a test. And if you're not sure, it's always safe to add a test.

The Order of the assert() Method Arguments

By the way: the argument order for the assert methods is important.

The first argument should always be the expected argument - like Big Eaty - and the second should be the actual value we get
- like $dino->getName() . This isn't a huge deal for the assertions we're using here... though if you reverse this, the error
message will be confusing.

It is more important for other assertions, like assertGreaterThan() ... which we can use to test that $dino->getLength() is greater
than 10 .

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {
 $dino = new Dinosaur(
 name: 'Big Eaty',
 genus: 'Tyrannosaurus',
 length: 15,
 enclosure: 'Paddock A',
);

 self::assertSame('Big Eaty', $dino->getName());
 self::assertSame('Tyrannosaurus', $dino->getGenus());
 self::assertSame(15, $dino->getLength());
 self::assertSame('Paddock A', $dino->getEnclosure());
 }
}

�

./vendor/bin/phpunit

��

��

 30 lines 30 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

� ... lines 12 - 18
19

20

21

22

23

24

25

26

27

28

29

When we try this:

Yup! One failure in DinosaurTest :

Failed asserting that 10 is greater than 15.

Whoops! Looking back in our DinosaurTest , this test failed because we passed the actual value first instead of our expected
value.

The Assert Message

Before we clean this up, let's pass a 3rd optional argument:

Dino is supposed to be bigger than 10 meters.

 31 lines 31 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

� ... lines 12 - 18
19

20

21

22

23

24

25

26

27

28

29

30

To see what this does, run the tests again:

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {

 self::assertGreaterThan(
 $dino->getLength(),
 10
);

 self::assertSame('Big Eaty', $dino->getName());
 self::assertSame('Tyrannosaurus', $dino->getGenus());
 self::assertSame(15, $dino->getLength());
 self::assertSame('Paddock A', $dino->getEnclosure());
 }
}

�

./vendor/bin/phpunit

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {

 self::assertGreaterThan(
 $dino->getLength(),
 10,
 message: 'Dino is supposed to be bigger than 10 meters!'
);

 self::assertSame('Big Eaty', $dino->getName());
 self::assertSame('Tyrannosaurus', $dino->getGenus());
 self::assertSame(15, $dino->getLength());
 self::assertSame('Paddock A', $dino->getEnclosure());
 }
}

��

And... sweet! The test still fails but now we also see the message, which can sometimes help us more quickly understand what
failed and why. Every assert method has this "message" argument and I like to use it when a complex test could use a bit more
explanation.

Naming Conventions

I want to circle back to the name of our first test method: testCanGetAndSetData .

 31 lines 31 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

� ... lines 12 - 28
29

30

In standard PHP, we try to create methods that are descriptive... but not necessarily super long... since we'll need to call them
in our code. Good examples are getGenus() and getName() in the Dinosaur class. But when it comes to testing, keeping things
short is not a benefit.

Check it out: I change the name of our test method to testDinosaur() ... and then run our tests again.

PHPUnit tells us that DinosaurTest::testDinosaur() failed asserting that 10 is greater than 15. Ok... but what are we testing? The
method name - testDinosaur() - tells us nothing... especially since we're inside of a class called DinosaurTest ! Yea, I get it: we're
testing dinosaurs!

The name of each test method is your chance to describe exactly what you're testing, and even sometimes why. Change the
test name back to testCanGetAndSetData() , which does a much better job of explaining the purpose of this test. Notice that it
almost reads like a sentence. That's great! And some people even take this further by including the word "it", like
testItCanGetAndSetData() . The point is: be descriptive, there's no downside to long test names.

Descriptive Testdox Output

Let me show you one more cool trick with PHPUnit. Move back to the terminal and run our tests again... but this time pass a
--testdox flag:

And... Wooah! The output is different. Most importantly, it turned the method name into a human-readable sentence... which is
minor, but cool.

By the way, the phpunit executable has a lot more options and arguments available. Run PHPUnit with the help flag to see
them.

�

./vendor/bin/phpunit

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {

 }
}

�

vendor/bin/phpunit

�

./vendor/bin/phpunit --testdox

��

We'll talk about the most useful of these throughout the tutorial.

Before we keep going, we need to cleanup our test. Remove this testGreaterThan() assertion...

 25 lines 25 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

and run our tests again:

And... YES! All of our tests are passing. Coming up next, we're going to get philosophical and take a look at Test Driven
Development or simply - TDD.

�

./vendor/bin/phpunit --help

class DinosaurTest extends TestCase
{
 public function testCanGetAndSetData(): void
 {
 $dino = new Dinosaur(
 name: 'Big Eaty',
 genus: 'Tyrannosaurus',
 length: 15,
 enclosure: 'Paddock A',
);

 self::assertSame('Big Eaty', $dino->getName());
 self::assertSame('Tyrannosaurus', $dino->getGenus());
 self::assertSame(15, $dino->getLength());
 self::assertSame('Paddock A', $dino->getEnclosure());
 }
}

�

./vendor/bin/phpunit --testdox

��

��

Chapter 4: TDD - Test Driven Development

All right. So one of the problems is that when Bob, our park ranger, sees the dinosaur size... he can't remember if these are in
meters... or centimeters... which makes a big difference when you step into a cage.

A better way might be to just use words like small, medium, or large. So... let's do that!

What is TDD?

But, to add this feature, we're going to use a philosophy called Test Driven Development or TDD. TDD is basically a buzzword
that describes a 4-step process for writing your tests first.

Step 1: Write a test for the feature. Step 2: Run your test and watch it fail... since we haven't created that feature yet! Step 3:
Write as little code as possible to get our test to pass. And Step 4: Now that it's passing, refactor your code if needed to make
it more awesome

So, to get the Small, Medium, or Large text, I think we should add a new getSizeDescription() method to our Dinosaur class.
But, remember, we're going to do this the TDD way, where Step 1 is to write a test for that method... even though it doesn't
exist yet. Yes, I know that's weird... but it's kinda awesome!

Step 1: Write a test for the Feature

Add public function and let's first test that a dinosaur that's over 10 meters or greater is large:

 32 lines 32 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 24
25

26

� ... lines 27 - 29
30

31

Inside, say $dino = new Dinosaur() , give him a name, let's use Big Eaty again, since he's a cool dude, and set his length to 10.

Then, assertSame() that Large will be identical to $dino->getSizeDescription() . For our failure message, let's use
This is supposed to be a Large Dinosaur .

 32 lines 32 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 24
25

26

27

28

29

30

31

Yes, we're literally testing a method that doesn't exist yet. That's TDD.

Step 2: Run the test and watch it fail

Ok, step 1 is done. Step 2 is to run our test and make sure it fails. Open up a terminal and then run ./vendor/bin/phpunit .

class DinosaurTest extends TestCase
{

 public function testDino10MetersOrGreaterIsLarge(): void
 {

 }
}

class DinosaurTest extends TestCase
{

 public function testDino10MetersOrGreaterIsLarge(): void
 {
 $dino = new Dinosaur(name: 'Big Eaty', length: 10);

 self::assertSame('Large', $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
 }
}

��

��

And... great! 2 tests, 4 assertions, and 1 error. Our new test failed because, of course, we called an undefined method! We
kind of knew this would happen. Hm... Did you notice that our "this is supposed to be at large dinosaur" message isn't showing
up here? I'll explain why in just a minute.

Step 3: Write simple code to make it pass

Time for step 3 of TDD: write simple code to make this test pass. This part, taken literally, can get kinda funny. Watch: back in
our Dinosaur class add a new public function getSizeDescription() which will return a string . Inside... return 'Large' :

 45 lines 45 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 39
40

41

42

43

44

Yup, that's it! Move back to your terminal and re-run the tests.

And... Awesome - They Pass! Well... of course the test passed - we hard coded the result we wanted! But, that's technically
what TDD says: write the least amount of code possible to get your test to pass. If your method is too simple after doing this, it
means you're missing more tests - like for small or medium dinosaurs - that would force you to improve the method. We'll see
that in a minute.

But let's be a bit more realistic. Say: if ($this->length >= 10) { , then return 'Large' :

 47 lines 47 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 39
40

41

42

43

44

45

46

Run the tests one more time to make sure they're still passing:

And... yes! We're still good to go!

�

./vendor/bin/phpunit

class Dinosaur
{

 public function getSizeDescription(): string
 {
 return 'Large';
 }
}

�

./vendor/bin/phpunit --testdox

class Dinosaur
{

 public function getSizeDescription(): string
 {
 if ($this->length >= 10) {
 return 'Large';
 }
 }
}

�

./vendor/bin/phpunit --testdox

Next, let's finish this method the TDD-way: by writing more tests for the missing features first. Then we'll move onto the final -
and most fun step of TDD: Refactoring!

��

Chapter 5: TDD Part 2: Finish & Refactor

Before we move on to the last step in TDD, I think we need to add a couple more size description tests for medium and small
dinosaurs.

A few more tests

In our DinosaurTest::class copy our testDino10MetersOrGreaterIsLarge method and rename it to
testDinoBetween5And9MetersIsMedium() . Inside, change the length of our $dino from 10 to 5 , use Medium for the expected
value, and update the message to Medium as well. Finally, paste the method again for our small dino test, using the name
testDinoUnder5MetersIsSmall() . Set the length to 4 , assert that Small is identical to getSizeDescription() and also update the
message.

 46 lines 46 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Back in our terminal, run the tests again:

And... they're failing! But not because our method returns the wrong result. They're failing due to a type error on
getSizeDescription() :

The return value must be of type string and none is returned.

Do you remember earlier we ran our large dinosaur test before writing the method and we didn't see our "this is supposed to
be a large dino" message? Well, we don't see it here either... That's because PHP threw an error... and so the
getSizeDescription() message explodes before PHPUnit can run the assertSame() method. It's no big deal and we can still use
the stack trace to see exactly where things went wrong.

class DinosaurTest extends TestCase
{

 public function testDino10MetersOrGreaterIsLarge(): void
 {
 $dino = new Dinosaur(name: 'Big Eaty', length: 10);

 self::assertSame('Large', $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
 }

 public function testDinoBetween5And9MetersIsMedium(): void
 {
 $dino = new Dinosaur(name: 'Big Eaty', length: 5);

 self::assertSame('Medium', $dino->getSizeDescription(), 'This is supposed to be a medium Dinosaur');
 }

 public function testDinoUnder5MetersIsSmall(): void
 {
 $dino = new Dinosaur(name: 'Big Eaty', length: 4);

 self::assertSame('Small', $dino->getSizeDescription(), 'This is supposed to be a small Dinosaur');
 }
}

�

./vendor/bin/phpunit --testdox

��

��

Alrighty, back to the Dinosaur class. Lets fix these tests by adding if ($this->length) is less than 5 , return 'Small' :

 55 lines 55 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 39
40

41

42

43

44

45

46

47

48

� ... lines 49 - 52
53

54

And if ($this->length) is less than 10 , return 'Medium'

 55 lines 55 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Back to our terminal, run the test again:

And... alright alright alright... they're passing.

Step 4: Refactoring

So let's move on to the last step of TDD... and a fun one! Refactoring our code.

Looking at our getSizeDescription() method, I think we can clean this up a bit. And the great news is that, because we've
covered our method with tests, if we mess something up during refactoring, the tests will tell us! We get to be reckless! It also
means that we didn't really need to worry about writing perfect code earlier. We just needed to make our tests pass. NOW we
can improve things...

Let's change this middle condition to if ($this->length) is greater than or equal to 5 , return Medium . We can get rid of this last

class Dinosaur
{

 public function getSizeDescription(): string
 {
 if ($this->length >= 10) {
 return 'Large';
 }

 if ($this->length < 5) {
 return 'Small';
 }

 }
}

class Dinosaur
{

 public function getSizeDescription(): string
 {
 if ($this->length >= 10) {
 return 'Large';
 }

 if ($this->length < 5) {
 return 'Small';
 }

 if ($this->length < 10) {
 return 'Medium';
 }
 }
}

�

./vendor/bin/phpunit --testdox

��

��

conditional altogether and just return Small :

 53 lines 53 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 39
40

41

42

43

44

45

46

47

48

49

50

51

52

I like that! To see if we messed up, move back to the terminal and run our tests again.

And... we've done it! That's TDD - write the test, see the test fail, write simple code to see the test pass, then refactor our
code. Rinse and repeat.

TDD Is interesting because, by writing our test first, it forces us to think about exactly how a feature should work... Instead of
just blindly writing code and seeing what comes out. It also helps us focus on what we need to code... Without making things
too fancy. Yes, I'm guilty of that too... Get your tests to pass, then refactor... Nothing more is needed.

Use the Size Description in our Controller

And now that we have our fancy new method - built via the powers of TDD - let's celebrate by using it on the site!

Close up our terminal and move to our template: templates/main/index.html.twig . Instead of showing the dino's with dino.length ,
change this to dino.sizeDescription . Save it, go back to our browser and... refresh.

 51 lines 51 lines templates/main/index.html.twigtemplates/main/index.html.twig

� ... lines 1 - 3
4

� ... line 5
6

7

� ... lines 8 - 15
16

17

18

� ... lines 19 - 20
21

22

23

24

25

26

27

28

� ... lines 29 - 51

class Dinosaur
{

 public function getSizeDescription(): string
 {
 if ($this->length >= 10) {
 return 'Large';
 }

 if ($this->length >= 5) {
 return 'Medium';
 }

 return 'Small';
 }
}

�

./vendor/bin/phpunit --tesdox

<div class="container volcano mt-4" style="flex-grow: 1;">

 <div class="dino-stats-container mt-2 p-3">
 <table class="table table-striped">

 <tbody>
 {% for dino in dinos %}
 <tr>

 <td>{{ dino.sizeDescription }}</td>
 <td>{{ dino.enclosure }}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
</div>

Awesome. We have large, medium, and small for the dinosaur's size instead of a number. No way Bob will accidentally
wander into the T-Rex enclosure again!

We've just used TDD to make our app a bit more human-friendly. Coming up next, we'll use some of the TDD principles we've
learned here to clean up our tests with PHPUnit's data providers!

��

��

��

Chapter 6: Data Providers

We treat our source code as a first-class citizen. That means, among other things, we avoid duplication. Why not do the same
with our tests? Our three tests for the size are... repetitive. They test the same thing just with slightly different input and then a
different assertion. Is there a way to improve this? Absolutely: thanks to PHPUnit Data Providers.

Refactor our tests

Move to the bottom of DinosaurTest and add public function sizeDescriptionProvider() . Inside, yield an array with [10, 'Large'] , then
yield [5, 'Medium'] , and finally yield [4, 'Small'] :

 39 lines 39 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 31
32

33

34

35

36

37

38

Yield is just a fancy way of returning arrays using PHP's built-in Generator function. As you'll see in a minute, these values -
like 10 and large will become arguments to our test.

Alrighty, up in our test method, add an int $length argument and then string $expectedSize :

 42 lines 42 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 27
28

29

� ... lines 30 - 32
33

� ... lines 34 - 40
41

Now instead of Big Eaty's length being 10 , use $length . And for our assertion, use $expectedSize instead of Large :

 42 lines 42 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 27
28

29

30

31

32

33

� ... lines 34 - 40
41

We do not need the medium and small tests anymore, so we can remove both of them.

class DinosaurTest extends TestCase
{

 public function sizeDescriptionProvider()
 {
 yield [10, 'Large'];
 yield [5, 'Medium'];
 yield [4, 'Small'];
 }
}

class DinosaurTest extends TestCase
{

 public function testDino10MetersOrGreaterIsLarge(int $length, string $expectedSize): void
 {

 }

}

class DinosaurTest extends TestCase
{

 public function testDino10MetersOrGreaterIsLarge(int $length, string $expectedSize): void
 {
 $dino = new Dinosaur(name: 'Big Eaty', length: $length);

 self::assertSame($expectedSize, $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
 }

}

��

Ok! Move back to your terminal and run our tests:

Uh oh... Our test is failing because! It says:

ArgumentCountError - Too few arguments were provided. 0 passed and exactly 2 expected.

Tell our test to use the Data Provider

Oops, we never told our test method to use the data provider. Move back into our test and add a DocBlock with
@dataProvider sizeDescriptionProvider :

 42 lines 42 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 24
25

26

27

28

29

30

31

32

33

� ... lines 34 - 40
41

When PHPUnit 10 gets released, we'll be able to use a fancy #[DataProvider] attribute instead of this annotation.

Back to the terminal! Run the tests again:

And... Yes! Our tests are passing!

Message Keys instead of Arguments

In the output, we see that each test ran with datasets 0, 1, & 2. Those are the arrays from the data provider. We can spruce
this up a bit... because it's not going to be very helpful later if PHPUnit tells us that dataset 2 failed. Which one is that?

Move back to our test and, down here after the first yield statement, add the message key '10 Meter Large Dino' => . Copy and
paste this for our medium dino with 5 instead of 10 and this needs to be Medium . Do the same for our small dino with 4 and
Small :

�

./vendor/bin/phpunit --testdox

class DinosaurTest extends TestCase
{

 /**
 * @dataProvider sizeDescriptionProvider
 */
 public function testDino10MetersOrGreaterIsLarge(int $length, string $expectedSize): void
 {
 $dino = new Dinosaur(name: 'Big Eaty', length: $length);

 self::assertSame($expectedSize, $dino->getSizeDescription(), 'This is supposed to be a large Dinosaur');
 }

}

�

./vendor/bin/phpunit --testdox

��

��

��

 42 lines 42 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 34
35

36

37

38

39

40

41

Back in our terminal, let's see our tests now:

And... Cool Beans! We now have

Dino 10 meters or greater is large with 10 Meter Large Dino

This looks a lot better than just seeing data set 0... though we do need to fix one more thing. That test method name doesn't
make sense anymore. Change it to testDinoHasCorrectSizeDescriptionFromLength() .

And, looking at our assertion, the message argument isn't very useful anymore... so let's remove it.

 42 lines 42 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 34
35

36

37

38

39

40

41

Return Types Everywhere!
Finally, although not required... We can use either array or \Generator as the return type for the data provider. Let's go with
\Generator - after all, we may need those for the park fences one day...

 42 lines 42 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 34
35

36

� ... lines 37 - 39
40

41

To make sure this didn't break anything, try the tests one more time:

class DinosaurTest extends TestCase
{

 public function sizeDescriptionProvider()
 {
 yield '10 Meter Large Dino' => [10, 'Large'];
 yield '5 Meter Medium Dino' => [5, 'Medium'];
 yield '4 Meter Small Dino' => [4, 'Small'];
 }
}

�

./vendor/bin/phpunit --testdox

class DinosaurTest extends TestCase
{

 public function sizeDescriptionProvider()
 {
 yield '10 Meter Large Dino' => [10, 'Large'];
 yield '5 Meter Medium Dino' => [5, 'Medium'];
 yield '4 Meter Small Dino' => [4, 'Small'];
 }
}

class DinosaurTest extends TestCase
{

 public function sizeDescriptionProvider(): \Generator
 {

 }
}

Ummm... Awesome! Green Checks Everywhere!

And there you have it, with a little TLC, our tests are now nice and tidy... Coming up next, let's figure out how we can get our
Dino's health status from GitHub and use it in our app...

�

./vendor/bin/phpunit --testdox

��

��

��

Chapter 7: Incomplete Tests and Dancing Dino's

Bob just told us he needs to display which dinos are accepting lunch in our app... I mean accepting visitors. GenLab has strict
protocols in place: park guests can visit with healthy dinos... but if they're sick, no visitors allowed. To help display this, we
need to store the health status of each dino and have an easy way to figure out whether or not this means they're accepting
visitors...

Let's skip a test...

Let's start by adding a method - isAcceptingVisitors() to Dinosaur . But, we'll do this the TDD way by writing the test first. In
DinosaurTest add public function testIsAcceptingVisitorsByDefault() . Inside, $dino = new Dinosaur() and let's call him Dennis :

 49 lines 49 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 41
42

43

44

� ... lines 45 - 46
47

48

If we simply instantiate a Dinosaur and do nothing else, GenLab policy states that it is ok to visit that Dinosaur. So assertTrue()
that Dennis isAcceptingVisitors() :

 49 lines 49 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 41
42

43

44

45

46

47

48

Below this test, add another called testIsNotAcceptingVisitorsIfSick() . And for now, let's be lazy and just say
$this->markTestIncomplete() :

 58 lines 58 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 48
49

50

� ... lines 51 - 55
56

57

Ok, let's try the tests:

class DinosaurTest extends TestCase
{

 public function testIsAcceptingVisitorsByDefault(): void
 {
 $dino = new Dinosaur('Dennis');

 }
}

class DinosaurTest extends TestCase
{

 public function testIsAcceptingVisitorsByDefault(): void
 {
 $dino = new Dinosaur('Dennis');

 self::assertTrue($dino->isAcceptingVisitors());
 }
}

class DinosaurTest extends TestCase
{

 public function testIsNotAcceptingVisitorsIfSick(): void
 {

 }
}

��

And... no surprise! Our first new test is failing:

Call to an undefined method.

But, our next test has this weird circle ∅ because we marked the test as incomplete. I use this sometimes when I know I need
to write a test... I'm just not ready to do it quite yet. PHPUnit also has a markSkipped() method that can be used to skip tests
under certain conditions, like if a test should run on PHP 8.1.

Are they accepting visitors?

Anywho, let's get back to coding, shall we... In our Dinosaur class, add a isAcceptingVisitors() method that returns a bool , and
inside we'll return true .

 58 lines 58 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 52
53

54

55

56

57

Let's see what happens when we run our tests now...

And... Yes! Is accepting visitors by default ... is now passing! We still have one incomplete test as a reminder, but it's not causing
our whole test suite to fail.

Sick Dinos - Stay Away!

Let's finish that now. If we peek at the issues on GitHub - GenLab is using labels to identify the "health" of each dino: "Sick"
versus "Healthy". Pretty soon, we're going to read these labels and use them in our app. To prep for that, we need a way to
store the current health on each Dinosaur .

Inside the test, remove markAsIncomplete() and create a $dino named Bumpy ... he's a triceratops. Now call
$dino->setHealth('Sick') and then assertFalse() that Bumpy isAcceptingVisitors() . He's cranky when he's sick.

�

./vendor/bin/phpunit --testdox

class Dinosaur
{

 public function isAcceptingVisitors(): bool
 {
 return true;
 }
}

�

./vendor/bin/phpunit --testdox

��

��

��

 58 lines 58 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 7
8

9

� ... lines 10 - 48
49

50

51

52

53

54

55

56

57

But, no surprise, PHPStorm is telling us:

Method setHealth() not found inside Dinosaur

So... let's skip running the test and head straight to Dinosaur to add a setHealth() method that accepts a string $health
argument... and returns void . Inside, say $this->health = $health ... then up top, add a private string $health property that defaults
to Healthy :

 64 lines 64 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 10
11

� ... lines 12 - 58
59

60

61

62

63

Cool! Now we just need to update isAcceptingVisitors() to return $this->health === $healthy instead of true :

 64 lines 64 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

� ... lines 7 - 53
54

55

56

57

� ... lines 58 - 62
63

Fingers crossed our tests are now passing...

And... Mission Accomplished!

Enums are cool for health labels

class DinosaurTest extends TestCase
{

 public function testIsNotAcceptingVisitorsIfSick(): void
 {
 $dino = new Dinosaur('Bumpy');

 $dino->setHealth('Sick');

 self::assertFalse($dino->isAcceptingVisitors());
 }
}

class Dinosaur
{

 private string $health = 'Healthy';

 public function setHealth(string $health): void
 {
 $this->health = $health;
 }
}

class Dinosaur
{

 public function isAcceptingVisitors(): bool
 {
 return $this->health === 'Healthy';
 }

}

�

./vendor/bin/phpunit --testdox

��

��

��

Now that the tests are passing, I'm thinking we should refactor the setHealth() method to only allow Sick or Healthy ... and not
something like Dancing ... Inside src/ , create a new Enum/ directory then a new class: HealthStatus . For the template, select
Enum and click OK . We need HealthStatus to be backed by a : string ...

 10 lines 10 lines src/Enum/HealthStatus.phpsrc/Enum/HealthStatus.php

� ... lines 1 - 2
3

4

5

6

� ... lines 7 - 8
9

And our first case HEALTHY will return Healthy , then case SICK will return Sick .

 10 lines 10 lines src/Enum/HealthStatus.phpsrc/Enum/HealthStatus.php

� ... lines 1 - 2
3

4

5

6

7

8

9

On the Dinosaur::$health property, default to HealthStatus::HEALTHY . And change the property type to HealthStatus . Down in
isAcceptingVisitors() , return true if $this->health === HealthStatus::HEALTHY . Below in setHealth() , change the argument type from
string to HealthStatus .

 66 lines 66 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 4
5

6

7

8

� ... lines 9 - 12
13

� ... lines 14 - 55
56

57

58

59

60

61

62

63

64

65

The last thing to do is use HealthStatus::SICK in our test.

namespace App\Enum;

enum HealthStatus: string
{

}

namespace App\Enum;

enum HealthStatus: string
{
 case HEALTHY = 'Healthy';
 case SICK = 'Sick';
}

use App\Enum\HealthStatus;

class Dinosaur
{

 private HealthStatus $health = HealthStatus::HEALTHY;

 public function isAcceptingVisitors(): bool
 {
 return $this->health === HealthStatus::HEALTHY;
 }

 public function setHealth(HealthStatus $health): void
 {
 $this->health = $health;
 }
}

��

��

 59 lines 59 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 5
6

� ... lines 7 - 8
9

10

� ... lines 11 - 49
50

51

� ... lines 52 - 53
54

� ... lines 55 - 56
57

58

Let's see if we broke anything!

And... Ya! We didn't break anything... I'm only a little surprised.

Show which exhibits are open

To fulfill Bob's wishes, open the main/index.html.twig template and add an Accepting Visitors heading to the table. In the dino
loop, create a new <td> and call dino.acceptingVisitors . We'll show Yes if this is true or No if we get false.

 53 lines 53 lines templates/main/index.html.twigtemplates/main/index.html.twig

� ... lines 1 - 3
4

� ... line 5
6

7

8

9

� ... lines 10 - 13
14

15

16

17

18

19

� ... lines 20 - 23
24

25

26

27

28

29

30

� ... lines 31 - 53

In the browser, refresh the status page... And... WooHoo! All of our dinos are accepting visitors... because we haven't set any
as "sick" on our code!

But... We already know from looking at GitHub earlier, that some of our dinos are sick. Next: let's use GitHub's API to read the
labels from our GitHub repository and set the real health on each Dinosaur so that our dashboard will update in real-time.

use App\Enum\HealthStatus;

class DinosaurTest extends TestCase
{

 public function testIsNotAcceptingVisitorsIfSick(): void
 {

 $dino->setHealth(HealthStatus::SICK);

 }
}

�

./vendor/bin/phpunit --testdox

<div class="container volcano mt-4" style="flex-grow: 1;">

 <div class="dino-stats-container mt-2 p-3">
 <table class="table table-striped">
 <thead>
 <tr>

 <th>Accepting Visitors</th>
 </tr>
 </thead>
 <tbody>
 {% for dino in dinos %}
 <tr>

 <td>{{ dino.acceptingVisitors ? 'Yes' : 'No' }}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
</div>

��

Chapter 8: Create a GitHub Service Test

Now that we can see if a Dinosaur is accepting visitors on our dashboard, we need to keep the dashboard updated in real-time
by using the health status labels that GenLab has applied to several dino issues on GitHub. To do that we'll create a service
that will grab those labels using GitHub's API.

Test for our Service First

To test our new service... which doesn't exist yet, inside of tests/Unit/ create a new Service/ directory and then a new class:
GithubServiceTest ... which will extend TestCase :

 53 lines 53 lines templates/main/index.html.twigtemplates/main/index.html.twig

� ... lines 1 - 3
4

� ... line 5
6

7

8

9

� ... lines 10 - 13
14

15

16

17

18

19

� ... lines 20 - 23
24

25

26

27

28

29

30

� ... lines 31 - 53

I'm creating this in a Service/ sub-directory because I'm planning to put the class in the src/Service/ directory. Add method
testGetHealthReportReturnsCorrectHealthStatusForDino and inside, $service = new GithubService() . Yup, that doesn't exist yet
either...

Our service will return a HealthStatus enum that's created from the health status label on GitHub, so we'll assertSame() that
$expectedStatus is identical to $service->getHealthReport() and then pass $dinoName . Yup, we'll be using a data provider for this
test... where we accept the name of the dino to check for their expected health status.

Let's go create that: public function dinoNameProvider() that returns a \Generator . Our first dataset for the provider will have the
key Sick Dino , which returns an array with HealthStatus::SICK and Daisy for the dino's name... because when we checked
GitHub a minute ago, Daisy was sick!

Next up is a Healthy Dino with HealthStatus::HEALTHY who happens to be the one and only Maverick . Up on the test method,
add a @dataProvider annotation so the test uses dinoNameProvider ... and then add HealthStatus $expectedStatus and
string $dinoName arguments.

<div class="container volcano mt-4" style="flex-grow: 1;">

 <div class="dino-stats-container mt-2 p-3">
 <table class="table table-striped">
 <thead>
 <tr>

 <th>Accepting Visitors</th>
 </tr>
 </thead>
 <tbody>
 {% for dino in dinos %}
 <tr>

 <td>{{ dino.acceptingVisitors ? 'Yes' : 'No' }}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
</div>

�� 33 lines 33 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Let's do this! Find your terminal and run:

And... Yup! Just as we expected, we have two errors because:

The GithubService class cannot be found

Create the service that will call GitHub

To fix that, find a teammate and ask them nicely to create this class for you! TDD - team-driven-development!

I'm kidding: we got this! Inside of src/ , create a new Service/ directory. Then we'll need the new class: GithubService and
inside, add a method: getHealthReport() which takes a string $dinosaurName and gives back a HealthStatus object.

namespace App\Tests\Unit\Service;

use App\Enum\HealthStatus;
use PHPUnit\Framework\TestCase;

class GithubServiceTest extends TestCase
{
 /**
 * @dataProvider dinoNameProvider
 */
 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {
 $service = new GithubService();

 self::assertSame($expectedStatus, $service->getHealthReport($dinoName));
 }

 public function dinoNameProvider(): \Generator
 {
 yield 'Sick Dino' => [
 HealthStatus::SICK,
 'Daisy',
];

 yield 'Healthy Dino' => [
 HealthStatus::HEALTHY,
 'Maverick',
];
 }
}

�

./vendor/bin/phpunit

��

��

 18 lines 18 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 2
3

4

5

6

7

8

9

10

� ... lines 11 - 15
16

17

Here's the plan: we'll call GitHub's API to get the list of issues for the dino-park repository. Then we'll filter those issues to pick
the one that matches $dinosaurName . Finally, we'll return HealthStatus::HEALTHY , unless the issue has a Status: Sick label.

Add the use statement in our test

Before we dive into writing that method, jump back into our test and chop off the last couple of letters for GithubService . With a
little PHPStorm Magic... as soon as I type the letter i and hit enter, the use statement is automatically added to the test. Thank
you JetBrains!

 34 lines 34 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 5
6

� ... lines 7 - 8
9

10

� ... lines 11 - 13
14

15

16

� ... lines 17 - 18
19

� ... lines 20 - 32
33

Let's see how the tests are looking:

And... Ha! Instead of two failures, we now only have one...

Sick Dino failed asserting that the two variables reference the same object.

Coming up next, we'll add some logic to our GithubService to make this test pass!

namespace App\Service;

use App\Enum\HealthStatus;

class GithubService
{
 public function getHealthReport(string $dinosaurName): HealthStatus
 {

 }
}

use App\Service\GithubService;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {
 $service = new GithubService();

 }

}

�

./vendor/bin/phpunit

��

Chapter 9: GitHub Service: Implementation

Now that we have an idea of what we need the GithubService to do, let's add the logic inside that will fetch the issues from the
dino-park repository using GitHub's API.

Add the client and make a request

To make HTTP requests, at your terminal, install Symfony's HTTP Client with:

Inside of GithubService , instantiate an HTTP client with $client = HttpClient::create() . To make a request, call $client->request() .
This needs 2 things. 1st: what HTTP method to use, like GET or POST . In this case, it should be GET . 2nd: the URL, which I'll
paste in. This will fetch all of the "issues" from the dino-park repository via GitHub's API.

 30 lines 30 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 5
6

7

8

9

10

11

� ... lines 12 - 13
14

15

16

17

18

19

� ... lines 20 - 27
28

29

Parse the HTTP Response

Ok, now what? Looking back at the dino-park repo, GitHub will return a JSON response that contains the issues we see here.
Each issue has a title with a dino's name and if the issue has a label attached to it, we'll get that back too. So, set
$client->request() to a new $response variable. Then, below, foreach() over $response->toArray() as an $issue . The cool thing
about using Symfony's HTTP Client is that we don't have to bother transforming the JSON from GitHub into an array - toArray()
does that heavy lifting for us. Inside this loop, check if the issue title contains the $dinosaurName . So
if (str_contains($issue['title'], $dinosaurName)) then we'll // Do Something with that issue.

�

composer require symfony/http-client

use Symfony\Component\HttpClient\HttpClient;

class GithubService
{
 public function getHealthReport(string $dinosaurName): HealthStatus
 {

 $client = HttpClient::create();

 $response = $client->request(
 method: 'GET',
 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
);

 }
}

��

��

 30 lines 30 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 5
6

7

8

9

10

11

� ... lines 12 - 13
14

15

16

17

18

19

20

21

22

23

24

25

� ... lines 26 - 27
28

29

At this point, we've found the issue for our dinosaur. Woo! Now we need to loop over each label to see if we can find the health
status. To help, I'll paste in a private method: you can copy this from the code block on this page.

 49 lines 49 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 4
5

� ... lines 6 - 7
8

9

� ... lines 10 - 29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

This takes an array of labels... and when it finds one that starts with Status: , it returns the correct HealthStatus enum based on
that label.

Now instead of // Do Something , say $health = $this->getDinoStatusFromLabels() and pass the labels with $issue['labels'] .

use Symfony\Component\HttpClient\HttpClient;

class GithubService
{
 public function getHealthReport(string $dinosaurName): HealthStatus
 {

 $client = HttpClient::create();

 $response = $client->request(
 method: 'GET',
 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
);

 foreach ($response->toArray() as $issue) {
 if (str_contains($issue['title'], $dinosaurName)) {

 }
 }

 }
}

use App\Enum\HealthStatus;

class GithubService
{

 private function getDinoStatusFromLabels(array $labels): HealthStatus
 {
 $status = null;

 foreach ($labels as $label) {
 $label = $label['name'];

 // We only care about "Status" labels
 if (!str_starts_with($label, 'Status:')) {
 continue;
 }

 // Remove the "Status:" and whitespace from the label
 $status = trim(substr($label, strlen('Status:')));
 }

 return HealthStatus::tryFrom($status);
 }
}

��

��

 49 lines 49 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 5
6

7

8

9

10

11

� ... lines 12 - 13
14

15

16

17

18

19

20

21

22

23

24

25

� ... lines 26 - 27
28

29
� ... lines 30 - 49

And now we can return $health . But... what if an issue doesn't have a health status label? Hmm... at the beginning of this
method, set the default $health to HealthStatus::HEALTHY - because GenLab would never forget to put a Sick label on a dino
that isn't feeling well.

 49 lines 49 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

� ... lines 29 - 49

Hmm... Welp, I think we did it! Let's run our tests to be sure.

use Symfony\Component\HttpClient\HttpClient;

class GithubService
{
 public function getHealthReport(string $dinosaurName): HealthStatus
 {

 $client = HttpClient::create();

 $response = $client->request(
 method: 'GET',
 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
);

 foreach ($response->toArray() as $issue) {
 if (str_contains($issue['title'], $dinosaurName)) {
 $health = $this->getDinoStatusFromLabels($issue['labels']);
 }
 }

 }

class GithubService
{
 public function getHealthReport(string $dinosaurName): HealthStatus
 {
 $health = HealthStatus::HEALTHY;

 $client = HttpClient::create();

 $response = $client->request(
 method: 'GET',
 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
);

 foreach ($response->toArray() as $issue) {
 if (str_contains($issue['title'], $dinosaurName)) {
 $health = $this->getDinoStatusFromLabels($issue['labels']);
 }
 }

 return $health;
 }

�

./vendor/bin/phpunit

��

And... Wow! We have 8 tests, 11 assertions, and they're all passing! Shweeet!

Log all of our requests

One last challenge! To help debugging, I want to log a message each time we make a request to the GitHub API.

No problem! We just need to get the logger service. Add a constructor with private LoggerInterface $logger to add an argument
and property all at once. Right after we call the request() method, add $this->logger->info() and pass Request Dino Issues for the
message and also an array with extra context. How about a dino key set to $dinosaurName and responseStatus to
$response->getStatusCode() .

 59 lines 59 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 5
6

� ... lines 7 - 8
9

10

11

12

13

14

15

16

� ... lines 17 - 25
26

27

28

29

� ... lines 30 - 37
38

� ... lines 39 - 57
58

Cool! That shouldn't have broken anything in our class, but let's run the tests to be sure:

And... Ouch! We did break something!

Too few arguments passed to the constructor in GithubService. 0 passed 1 expected.

Of course! When we added the LoggerInterface argument to GithubService , we never updated our test to pass that in. I'll show
you how we can do that next using one of PHPUnit's super abilities: mocking.

use Psr\Log\LoggerInterface;

class GithubService
{
 public function __construct(private LoggerInterface $logger)
 {
 }

 public function getHealthReport(string $dinosaurName): HealthStatus
 {

 $this->logger->info('Request Dino Issues', [
 'dino' => $dinosaurName,
 'responseStatus' => $response->getStatusCode(),
]);

 }

}

�

./vendor/bin/phpunit

��

Chapter 10: Mocking: Test Doubles

So right now, tests are failing because we need to pass a LoggerInterface instance to the GithubService inside of our test. We
could just create a logger and pass that in. But... That can get a bit hairy. Instantiating a logger object might be simple... but
what if it's not? What if we needed to instantiate an object with 5 required constructor args... and some of those are for other
objects that are also tricky to create. Chaos!

Fortunately, PHPUnit has our back: with super mocking abilities!

A Mock Logger

Inside the GithubServiceTest create a $mockLogger variable set to $this->createMock(LoggerInterface::class) . Pass this into the
GithubService service.

 37 lines 37 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 7
8

9

10

11

� ... lines 12 - 14
15

16

17

18

19

� ... lines 20 - 21
22

� ... lines 23 - 35
36

Let's see what happens when we run the tests now.

And... HA! All of our tests are passing again!

But what is a Mock?

Soo... What is this createMock() black magic thing that we're using? createMock() allows us to pass in a class or interface and
get back a "fake" instance of that class or interface. This object is called a mock.

Now I already ready know what you're about to ask... What happens to the message when we call the info() method on the
mock LoggerInterface ?

Welp, a whole lotta nothing... Internally, PHPUnit basically creates a fake class that implements LoggerInterface ... except that
all of the methods are empty. They do nothing and return nothing.

That is unless we tell it do something different. More on that soon.

By the way, this mock logger is actually called a test double. In fact, we'll run across a few different names for mocks like - test
doubles, stubs, and mock objects... All of these names effectively mean the same thing: fake objects that stand in for real
ones. There are some subtle differences between the different names and we'll clue you in along the way.

We Should Always Mock Services

use Psr\Log\LoggerInterface;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {
 $mockLogger = $this->createMock(LoggerInterface::class);

 $service = new GithubService($mockLogger);

 }

}

�

./vendor/bin/phpunit

��

��

We still have one minor problem with our test. Anytime we run it, we're calling the real GitHub API. This is bad mojo... In a unit
test, you should never use real services, like API or database calls. Why? The whole point of a unit test is to test that the code
inside GithubService works. And, ideally, we would do that independent of any other layers of our app because... we simply
can't control their behavior. For example, what would happen if GitHub's API is offline for maintenance? Or, tomorrow, GenLab
changes Daisy from sick to healthy! Right now, both of those would cause our tests to fail! But they should not! The unit test for
GithubService should only fail if it contains a bug in its code, like it's not parsing the labels correctly.

What's the solution? Mock the HttpClient .

Refactoring HttpClient to use DependencyInjection

But... we can't do that as long as we're creating the client inside of GitHubService . Instead, in the constructor, add a
private HttpClientInterface $httpClient argument.

 57 lines 57 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 6
7

8

9

10

11

12

13

� ... lines 14 - 55
56

Then call the request() method on $this->httpClient instead of $client . Since we're now using dependency injection, we can
remove the static $client entire, along with the use statement above.

 57 lines 57 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 8
9

10

� ... lines 11 - 14
15

16

17

18

19

20

21

22

� ... lines 23 - 35
36

� ... lines 37 - 55
56

Apart from unit testing, this is just a better way to write your code.

In the test, start by giving the GithubService an http client without mocking - HttpClient::create() - just to make sure everything is
working as expected.

use Symfony\Contracts\HttpClient\HttpClientInterface;

class GithubService
{
 public function __construct(private HttpClientInterface $httpClient, private LoggerInterface $logger)
 {
 }

}

class GithubService
{

 public function getHealthReport(string $dinosaurName): HealthStatus
 {
 $health = HealthStatus::HEALTHY;

 $response = $this->httpClient->request(
 method: 'GET',
 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
);

 }

}

��

��

 38 lines 38 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 8
9

10

11

12

� ... lines 13 - 15
16

17

� ... lines 18 - 19
20

� ... lines 21 - 22
23

� ... lines 24 - 36
37

Try the tests:

And... cool! We didn't break anything...

Mocking the HttpClient

Now we can mock the HttpClient . Below $mockLogger add, $mockClient = $this->createMock() and pass in
HttpClientInterface::class . Now pass this to our service.

 39 lines 39 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 8
9

10

11

12

� ... lines 13 - 15
16

17

18

19

20

21

� ... lines 22 - 23
24

� ... lines 25 - 37
38

Back to the terminal to run our tests:

And... Oof! Our Sick Dino test

Failed asserting the two variables are the same

Hmm... For Sick Dino , we're expecting a HealthStatus::SICK for Daisy . In our service, we're calling the request() method on our
mock, making a log entry, then looping over the array that was returned in our response... HA! That's the problem. Remember:

use Symfony\Component\HttpClient\HttpClient;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $service = new GithubService(HttpClient::create(), $mockLogger);

 }

}

�

./vendor/bin/phpunit

use Symfony\Contracts\HttpClient\HttpClientInterface;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {
 $mockLogger = $this->createMock(LoggerInterface::class);
 $mockHttpClient = $this->createMock(HttpClientInterface::class);

 $service = new GithubService($mockHttpClient, $mockLogger);

 }

}

�

./vendor/bin/phpunit

whenever PHPUnit creates a mock object, it strips out all the logic for each method within that mock. Yup, we're looping over
nothing!

In this case, we need to teach the HttpClient mock to return a response that contains a matching issue with a Status: Sick label.
That would let us assert that our label-parsing logic is correct.

How do we do that? It's coming up next!

��

Chapter 11: Mocking: Stubs

Let's take a quick look back at GithubService to see exactly what it's doing. First, the constructor requires an HttpClientInterface
object that we use to call GitHub. In return, we get back a ResponseInterface that has an array of issue's for the dino-park
repository. Next we call the toArray() method on the response, and iterate over each issue to see if the title contains the
$dinosaurName , so we can get its status label.

 57 lines 57 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 8
9

10

� ... lines 11 - 14
15

16

� ... lines 17 - 18
19

20

21

22

� ... lines 23 - 28
29

� ... lines 30 - 32
33

� ... lines 34 - 35
36

� ... lines 37 - 55
56

To get our tests to pass, we need to teach our fake httpClient that when we call the request() method, it should give back a
ResponseInterface object containing data that we control. So... let's do that.

Training the Mock on what to Return

Right after $mockHttpClient , say $mockResponse = $this->createMock() using ResponseInterface::class for the class name. Below
on $mockHttpClient , call, ->method('request') which willReturn($mockResponse) . This tells our mock client that hey, anytime we
call the request() method on our mock, you need to return this $mockResponse .

class GithubService
{

 public function getHealthReport(string $dinosaurName): HealthStatus
 {

 $response = $this->httpClient->request(
 method: 'GET',
 url: 'https://api.github.com/repos/SymfonyCasts/dino-park/issues'
);

 foreach ($response->toArray() as $issue) {

 }

 }

}

��

��

 46 lines 46 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 9
10

11

12

13

� ... lines 14 - 16
17

18

� ... line 19
20

21

22

23

24

25

26

� ... lines 27 - 30
31

� ... lines 32 - 44
45

We could run our tests now, but they would fail. We taught our mock client what it should return when we call the request()
method. But, now we need to teach our $mockResponse what it needs to do when we call the toArray() method. So right above,
lets teach the $mockResponse that when we call, method('toArray') and it willReturn() an array of issues. Because that's what
GitHub returns when we call the API.

 51 lines 51 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 9
10

11

12

13

� ... lines 14 - 16
17

18

� ... line 19
20

21

22

23

24

25

26

27

28

29

30

31

� ... lines 32 - 35
36

� ... lines 37 - 49
50

For each issue, GitHub gives us the issue's "title", and among other things, an array of "labels". So let's mimic GitHub and
make this array include one issue that has 'title' => 'Daisy' .

And, for the test, we'll pretend she sprained her ankle so add a labels key set to an array, that includes 'name' => 'Status: Sick' .

Let's also create a healthy dino so we can assert that our parsing checks that correctly too. Copy this issue and paste it below.
Change Daisy to Maverick and set his label to Status: Healthy .

use Symfony\Contracts\HttpClient\ResponseInterface;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $mockHttpClient = $this->createMock(HttpClientInterface::class);
 $mockResponse = $this->createMock(ResponseInterface::class);

 $mockHttpClient
 ->method('request')
 ->willReturn($mockResponse)
 ;

 }

}

use Symfony\Contracts\HttpClient\ResponseInterface;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $mockHttpClient = $this->createMock(HttpClientInterface::class);
 $mockResponse = $this->createMock(ResponseInterface::class);

 $mockResponse
 ->method('toArray')
 ->willReturn([])
 ;

 $mockHttpClient
 ->method('request')
 ->willReturn($mockResponse)
 ;

 }

}

�� 60 lines 60 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 9
10

11

12

13

� ... lines 14 - 16
17

18

� ... line 19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

� ... lines 41 - 44
45

� ... lines 46 - 58
59

Perfect! Our assertions are already expecting Daisy to be sick and Maverick to be healthy. So, if our tests pass, it means that
all of our label-parsing logic is correct.

Fingers crossed, let's try it:

And... Awesome! They are passing! And the best part about it, we're no longer calling GitHub's API when we run our tests!
Imagine the panic we would cause if we had to lock down the park because our tests failed due to the api being offline... or just
someone changing the labels up on GitHub, Ya... I don't want that headache either...

Stubs? Mocks?

Remember when we were talking about the different names for mocks? Welp, both mockResponse and mockHttpClient are now
officially called stubs... That's a fancy way of saying fake objects where we optionally take control of the values it returns.
That's exactly what we are doing with the willReturn() method. Again, the terminology isn't too important, but there you go.
These are stubs. And yes, every time I teach this, I need to look up these terms to remember exactly what they mean.

Up next, we're going to turn our stubs into full-blown mock objects by also testing the data passed into the mock.

use Symfony\Contracts\HttpClient\ResponseInterface;

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $mockHttpClient = $this->createMock(HttpClientInterface::class);
 $mockResponse = $this->createMock(ResponseInterface::class);

 $mockResponse
 ->method('toArray')
 ->willReturn([
 [
 'title' => 'Daisy',
 'labels' => [['name' => 'Status: Sick']],
],
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Healthy']],
],
])
 ;

 $mockHttpClient
 ->method('request')
 ->willReturn($mockResponse)
 ;

 }

}

�

./vendor/bin/phpunit

��

Chapter 12: Mocking: Mock Objects

Our tests are passing, the dino's are wandering, and life is great! But... let's think about this for a second. In GithubService ,
when we test getHealthReport() , we're able to control the $response that we get back from request() by using a stub. That's
great, but it might also be nice to ensure that the service is only calling GitHub one time and that it's using the right HTTP
method with the correct URL. Could we do that? Absolutely!

Expect a Method to Be Called

In GithubServiceTest where we configure the $mockHttpClient , add ->expects() , and pass self::once() .

 61 lines 61 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 16
17

18

� ... lines 19 - 36
37

38

� ... lines 39 - 40
41

� ... lines 42 - 45
46

� ... lines 47 - 59
60

Over in the terminal, run our tests...

Expecting Specific Arguments

And... Awesome! We've just added an assertion to our mock client that requires the request method be called exactly once.
Let's take it a step further and add ->with() passing GET ... and then I'll paste the URL to the GitHub API.

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $mockHttpClient
 ->expects(self::once())

 ;

 }

}

�

./vendor/bin/phpunit

��

��

 62 lines 62 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 16
17

18

� ... lines 19 - 36
37

38

39

40

41

42

� ... lines 43 - 46
47

� ... lines 48 - 60
61

Try the tests again...

And... Huh! We have 2 failures:

Failed asserting that two strings are equal

Hmm... Ah Ha! My copy and paste skills are a bit weak. I missed /issue at the end of the URL. Add that.

 62 lines 62 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 16
17

18

� ... lines 19 - 36
37

� ... lines 38 - 39
40

� ... line 41
42

� ... lines 43 - 46
47

� ... lines 48 - 60
61

Let's see if that was the trick:

Umm... Yes! We're green all day. But best of all, the tests confirm we're using the correct URL and HTTP method when we call
GitHub.

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $mockHttpClient
 ->expects(self::once())
 ->method('request')
 ->with('GET', 'https://api.github.com/repos/SymfonyCasts/dino-park')
 ->willReturn($mockResponse)
 ;

 }

}

�

./vendor/bin/phpunit

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {

 $mockHttpClient

 ->with('GET', 'https://api.github.com/repos/SymfonyCasts/dino-park/issues')

 ;

 }

}

�

./vendor/bin/phpunit

��

But... What if we actually wanted to call GitHub more than just once? Or... we wanted to assert that it was not called at all?
PHPUnit has us covered. There are a handful of other methods we can call. For example, change once() to never() .

And watch what happens now:

Hmm... Yup, we have two failures because:

request() was not expected to be called.

That's really nifty! Change the expects() back to once() and just to be sure we didn't break anything - run the tests again.

And... Awesome!

Carefully Applying Assertions

We could call expects() on our $mockResponse to make sure that toArray() is being called exactly once in our service. But, do
we really care? If it's not being called at all, our test would certainly fail. And if it's being called twice, no big deal! Using
->expects() and ->with() are great ways to add extra assertions... when you need them. But no need to micromanage how
many times something is called or its arguments if that is not so important.

Using GitHubService in our App

Now that GithubService is fully tested, we can celebrate by using it to drive our dashboard! On MainController::index() , add an
argument: GithubService $github to autowire the new service.

 33 lines 33 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 5
6

� ... lines 7 - 10
11

12

13

14

15

� ... lines 16 - 30
31

32

Next, right below the $dinos array, foreach() over $dinos as $dino and, inside say $dino->setHealth() passing
$github->getHealthReport($dino->getName()) .

�

./vendor/bin/phpunit

�

./vendor/bin/phpunit

use App\Service\GithubService;

class MainController extends AbstractController
{
 #[Route(path: '/', name: 'main_controller', methods: ['GET'])]
 public function index(GithubService $github): Response
 {

 }
}

�� 33 lines 33 lines src/Controller/MainController.phpsrc/Controller/MainController.php

� ... lines 1 - 5
6

� ... lines 7 - 10
11

12

13

14

15

� ... lines 16 - 23
24

25

26

� ... lines 27 - 30
31

32

To the browser and refresh...

And... What!

getDinoStatusFromLabels() must be HealthStatus , null returned

What's going on here? By the way, the fact that our unit test passes but our page fails can sometimes happen and in a future
tutorial, we'll write a functional test to make sure this page actually loads.

The error isn't very obvious, but I think one of our dino's has a status label that we don't know about. Let's peek back at the
issues on GitHub and... HA! "Dennis" is causing problems yet again. Apparently he's a bit hungry...

In our HealthStatus enum, we don't have a case for Hungry status labels. Go figure. Is a hungry dinosaur accepting visitors? I
don't know - I guess it depends on if you ask the visitor or the dino. Anyways, Hungry is not a status we expected. So next, let's
throw a clear exception if we run into an unknown status and test for that exception.

use App\Service\GithubService;

class MainController extends AbstractController
{
 #[Route(path: '/', name: 'main_controller', methods: ['GET'])]
 public function index(GithubService $github): Response
 {

 foreach ($dinos as $dino) {
 $dino->setHealth($github->getHealthReport($dino->getName()));
 }

 }
}

��

��

Chapter 13: Filtering Out Hungry Dino's

Instead of seeing our dinos on the dashboard, we're seeing a TypeError for GithubService :

Return value must be of type HealthStatus , null returned

That's not doing a great job of telling us what the problem really is. Thanks to the stack trace, it looks like it's being caused by a
Status: Hungry label. Yup! On GitHub, it looks like Dennis is hungry again after finishing his daily exercise routine.

Our Enum Is Hungry Too

Looking at HealthStatus , we don't have a case for hungry dinos:

 10 lines 10 lines src/Enum/HealthStatus.phpsrc/Enum/HealthStatus.php

� ... lines 1 - 2
3

4

5

6

7

8

9

So add case HUNGRY that returns Hungry ... then refresh the dashboard.

 11 lines 11 lines src/Enum/HealthStatus.phpsrc/Enum/HealthStatus.php

� ... lines 1 - 2
3

4

5

6

7

8

9

10

And... Ya! No more errors...

But, wait... It says that Dennis is not accepting visitors. He isn't sick, just hungry. GenLab said only sick dino's should not be on
exhibit. Besides, who doesn't want to see what happens to the goat?

Test Hungry Dinos Can Have Visitors

In DinosaurTest , we need to assert that hungry dino's can have visitors. Hmm... I think we might be able to use
testIsNotAcceptingVisitorsIfSick() for this. Yup, that's what we'll do. Below, add a healthStatusProvider() that returns \Generator and
for the first dataset yield 'Sick dino is not accepting visitors' . In the array say HealthStatus::SICK , and false . Next,
yield 'Hungry dino is accepting visitors' with [HealthStatus::HUNGRY, true] :

namespace App\Enum;

enum HealthStatus: string
{
 case HEALTHY = 'Healthy';
 case SICK = 'Sick';
}

namespace App\Enum;

enum HealthStatus: string
{
 case HEALTHY = 'Healthy';
 case SICK = 'Sick';
 case HUNGRY = 'Hungry';
}

��

��

��

 65 lines 65 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 8
9

10

� ... lines 11 - 58
59

60

61

62

63

64

Above, add the @dataProvider annotation so we can use healthStatusProvider() . While we're here, rename the method to
testIsAcceptingVisitorsBasedOnHealthStatus then add the arguments HealthStatus $healthStatus and bool $expectedVisitorStatus :

 68 lines 68 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 8
9

10

� ... lines 11 - 49
50

51

52

53

54

� ... lines 55 - 59
60

61

62

63

64

65

66

67

Inside set the health with $healthStatus then replace assertFalse() with assertSame($expectedStatus) is identical to
$dino->isAcceptingVisitors() :

 68 lines 68 lines tests/Unit/Entity/DinosaurTest.phptests/Unit/Entity/DinosaurTest.php

� ... lines 1 - 8
9

10

� ... lines 11 - 49
50

51

52

53

54

� ... lines 55 - 56
57

58

59

60

61

62

63

64

65

66

67

Phew, that was a lot of work!

class DinosaurTest extends TestCase
{

 public function healthStatusProvider(): \Generator
 {
 yield 'Sick dino is not accepting visitors' => [HealthStatus::SICK, false];
 yield 'Hungry dino is accepting visitors' => [HealthStatus::HUNGRY, true];
 }
}

class DinosaurTest extends TestCase
{

 /**
 * @dataProvider healthStatusProvider
 */
 public function testIsAcceptingVisitorsBasedOnHealthStatus(HealthStatus $healthStatus, bool $expectedVisitorStatus): void
 {

 }

 public function healthStatusProvider(): \Generator
 {
 yield 'Sick dino is not accepting visitors' => [HealthStatus::SICK, false];
 yield 'Hungry dino is accepting visitors' => [HealthStatus::HUNGRY, true];
 }
}

class DinosaurTest extends TestCase
{

 /**
 * @dataProvider healthStatusProvider
 */
 public function testIsAcceptingVisitorsBasedOnHealthStatus(HealthStatus $healthStatus, bool $expectedVisitorStatus): void
 {

 $dino->setHealth($healthStatus);

 self::assertSame($expectedVisitorStatus, $dino->isAcceptingVisitors());
 }

 public function healthStatusProvider(): \Generator
 {
 yield 'Sick dino is not accepting visitors' => [HealthStatus::SICK, false];
 yield 'Hungry dino is accepting visitors' => [HealthStatus::HUNGRY, true];
 }
}

��

Filtering Tests

Let's see if that did the trick. Run:

See what I did there? To focus on just this test, we can add the --filter set to the complete or partial name of a test class,
method, or anything in between. This comes in really handy when you have a large test suite and only want to run one or a few
tests.

Anywho, Hungry dino is not accepting visitors is failing:

Failed asserting that false is true.

Looking at Dinosaur::isAcceptingVisitors() , to account for hungry dino's, we need to return $this->health does not equal
HealthStatus::SICK :

 66 lines 66 lines src/Entity/Dinosaur.phpsrc/Entity/Dinosaur.php

� ... lines 1 - 6
7

8

� ... lines 9 - 55
56

57

58

59

� ... lines 60 - 64
65

Let's see what happens when we run:

And... boom! Our hungry dino test is now passing, ha! Yup, we can use data provider keys with the filter flag too. But to make
sure we didn't stop healthy dino's from having visitors, run:

Um... Yes! All dots and no errors. Shweet! We didn't wreck the park. Take a look at the dashboard, refresh, and ya! Dennis is
able to eat his lunch with park guests once again. Though, I think we should be proactive and throw a more clear exception in
case we ever see any future status labels that we don't know about. Let's do that next.

�

./vendor/bin/phpunit --filter testIsAcceptingVisitorsBasedOnHealthStatus

class Dinosaur
{

 public function isAcceptingVisitors(): bool
 {
 return $this->health !== HealthStatus::SICK;
 }

}

�

./vendor/bin/phpunit --filter "Hungry dino is accepting visitors"

�

./vendor/bin/phpunit

��

Chapter 14: Testing Exceptional Exceptions

Do you remember when we were seeing this exception because our app didn't understand Maverick's "hungry" status? Welp,
we've fixed that, but we still need to take care of one minor detail. Next time GenLab throws us a curve ball, like setting
"Status: Antsy" on a dino, GithubService should throw a clear exception that mentions the label.

Where can we throw an exception?

To do that, we're going to take a break from TDD for just a moment. In getDinoStatusFromLabels() , if a label has the "Status:"
prefix, we chop that off, set what's left on $status , and pass that into tryFrom() so we can return a HealthStatus . I think this
would be a good spot to throw an exception if tryFrom() returns null .

Cut HealthStatus::tryFrom($status) from the return and right above add $health = and paste. Then if (null === $health) we'll
throw new \RuntimeException() with the message, sprintf('%s is an unknown status label!') passing in $status . Below return $health .

But, if the issue doesn't have a status label, we still need to return a HealthStatus . So above, replace $status with
$health = HealthStatus::HEALTHY , because unless GenLab adds a "Status: Sick" label, all of our dinos are healthy:

 64 lines 64 lines src/Service/GithubService.phpsrc/Service/GithubService.php

� ... lines 1 - 8
9

10

� ... lines 11 - 37
38

39

40

41

42

� ... lines 43 - 49
50

51

52

53

54

55

56

57

58

59

60

61

62

63

Is the exception thrown?

Now, normally we write tests for return values. But you can also write tests to verify that the correct exception is thrown. So
let's do that in GithubServiceTest . Hmm... This first test has a lot of the logic we'll need. Copy that and paste it at the bottom.
Change the name to testExceptionThrownWithUnknownLabel and remove the arguments. Inside, take out the assertion leaving
just the call to $service->getHealthReport() . And instead of $dinoName , pass in Maverick . For $mockResponse , remove Daisy
from willReturn() and change Mavericks label from Healthy to Drowsy :

class GithubService
{

 private function getDinoStatusFromLabels(array $labels): HealthStatus
 {
 $health = null;

 foreach ($labels as $label) {

 // Remove the "Status:" and whitespace from the label
 $status = trim(substr($label, strlen('Status:')));

 $health = HealthStatus::tryFrom($status);

 // Determine if we know about the label - throw an exception if we don't
 if (null === $health) {
 throw new \RuntimeException(sprintf('%s is an unknown status label!', $label));
 }
 }

 return $health ?? HealthStatus::HEALTHY;
 }
}

��

��

 90 lines 90 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 61
62

63

� ... lines 64 - 67
68

69

70

71

72

73

74

75

76

� ... lines 77 - 86
87

88

89

Alrighty, lets give this a shot:

And... Ouch! GithubServiceTest failed because of a:

RuntimeException: Drowsy is an unknown status label!

This is actually good news. It means GithubService is doing exactly what we want it to do. But, how do we make this test pass?

Right before we call getHealthReport() , add $this->expectException() passing in \RuntimeException::class :

 92 lines 92 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 61
62

63

� ... lines 64 - 67
68

69

70

71

72

73

74

75

76

� ... lines 77 - 86
87

88

89

90

91

class GithubServiceTest extends TestCase
{

 public function testExceptionThrownWithUnknownLabel(): void
 {

 $mockResponse
 ->method('toArray')
 ->willReturn([
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Drowsy']],
],
])
 ;

 $service->getHealthReport('Maverick');
 }
}

�

./vendor/bin/phpunit

class GithubServiceTest extends TestCase
{

 public function testExceptionThrownWithUnknownLabel(): void
 {

 $mockResponse
 ->method('toArray')
 ->willReturn([
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Drowsy']],
],
])
 ;

 $this->expectException(\RuntimeException::class);

 $service->getHealthReport('Maverick');
 }
}

��

Try the tests again:

Um... awesome sauce! We're green!

Prevent typo's in the exception message

But, hmm... If we manage to dork up our code on accident, a RuntimeException could be coming from someplace else. To make
sure we're testing the correct exception, say $this->expectExceptionMessage('Drowsy is an unknown status label!') :

 93 lines 93 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 61
62

63

� ... lines 64 - 67
68

69

70

71

72

73

74

75

76

� ... lines 77 - 86
87

88

89

90

91

92

Then run our spell checker again:

And... HA! We've added another assertion that is passing and we don't have any typo's in our message. WooHoo!

Test more than the exception message

Along with expectExceptionMessage() , PHPUnit has expectations for the exception code, object, and even has the ability to pass
a regex to match the message. By the way, all of these expect methods are just like the assert methods. The big difference is
that they must be called before the action you're testing rather than after. And just like assertions, if we change the expected
message from Drowsy to Sleepy and run the test:

Hmm... Yup! We'll see the test fail because Drowsy is not Sleepy . Let's change that back in the test... And there you have it!

�

./vendor/bin/phpunit

class GithubServiceTest extends TestCase
{

 public function testExceptionThrownWithUnknownLabel(): void
 {

 $mockResponse
 ->method('toArray')
 ->willReturn([
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Drowsy']],
],
])
 ;

 $this->expectException(\RuntimeException::class);
 $this->expectExceptionMessage('Drowsy is an unknown status label!');

 $service->getHealthReport('Maverick');
 }
}

�

./vendor/bin/phpunit

�

./vendor/bin/phpunit

Dinotopia's gates are now open and Bob is much happier now that our app is updated in real-time with GenLab! To celebrate,
let's make our lives a bit easier by using a touch of HttpClient magic to refactor our test.

��

Chapter 15: Mocking Symfony's Http Client

Having the ability to mock objects in tests is super awesome, and kind of weird and complex all at the same time. If we have
simple objects, like Dinosaur , we should avoid the extra lines of code and just instantiate a real Dinosaur for the test. After all,
it's pretty easy to control the behavior of Dinosaur just by calling its real methods. No need for the mock weirdness.

But, for more complex objects, like HttpClient , using the real client... can be a headache. The general rule of thumb is to use
mocks for complex objects like, services... but for simple objects, like models or entities, just use the real thing.

Looking back at Symfony's HTTP Client, we were able to mock both the client and the response to control its behavior. But,
because needing to do this sort of thing is so common, Symfony's HTTP Client comes with some special classes that can do
the mocking for us. It comes with two real classes specifically made for testing: MockHttpClient & MockResponse . Using
PHPUnit's mock system is fine, but these exist to make our life even easier.

Check it out: instead of creating a mock for $mockResponse , instantiate a MockResponse() passing in json_encode() with an
array to mimic GitHub's API response. Grab Maverick's issue below and paste that into the array. Since MockResponse is
already configured, remove the $mockResponse bits below.

 82 lines 82 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 8
9

10

� ... lines 11 - 13
14

15

� ... lines 16 - 63
64

65

66

67

68

69

70

71

� ... lines 72 - 79
80

81

For the client, remove $mockHttpClient and below, instantiate a new MockHttpClient() passing in $mockResponse instead. Since
we're not doing anything with $mockLogger , cut createMock() , remove the variable, and paste that as an argument to
GithubService() .

use Symfony\Component\HttpClient\MockHttpClient;
use Symfony\Component\HttpClient\Response\MockResponse;

class GithubServiceTest extends TestCase
{

 public function testExceptionThrownWithUnknownLabel(): void
 {
 $mockResponse = new MockResponse(json_encode([
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Drowsy']],
],
]));

 }
}

�� 82 lines 82 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 8
9

10

� ... lines 11 - 13
14

15

� ... lines 16 - 63
64

65

66

67

68

69

70

71

72

73

74

� ... lines 75 - 79
80

81

Wow, this is looking better already! But, let's see what happens when we run the tests:

And... Woah! All of the tests are passing!

But, the assertion count did go down to "16" because MockHttpClient and MockResponse do not actually perform any
assertions, like how many times a method is called.

So... what's the actual benefit to using these mock classes? Why not just create our own via PHPUnit? Ha... Check out this diff
of GithubService . We removed 11 lines of code by using the "built-in" mocks in just one test. Imagine how many lines of code
we could remove by using them in all of our tests. Hm... I think that's exactly what we'll do next.

use Symfony\Component\HttpClient\MockHttpClient;
use Symfony\Component\HttpClient\Response\MockResponse;

class GithubServiceTest extends TestCase
{

 public function testExceptionThrownWithUnknownLabel(): void
 {
 $mockResponse = new MockResponse(json_encode([
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Drowsy']],
],
]));

 $mockHttpClient = new MockHttpClient($mockResponse);
 $service = new GithubService($mockHttpClient, $this->createMock(LoggerInterface::class));

 }
}

�

./vendor/bin/phpunit

��

��

Chapter 16: Setup and Tearing It Down

Let's continue refactoring our test. In the test method, we create a MockResponse , MockHttpClient , and instantiate
GitHubService with a mock LoggerInterface . We're doing the same thing in this test above. Didn't Ryan say to DRY out our code
in another tutorial? Fine... I suppose we'll listen to him.

Start by adding three private properties to our class: a LoggerInterface $mockLogger , followed by MockHttpClient $mockHttpClient
and finally MockResponse $mockresponse :

 95 lines 95 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 13
14

15

16

17

18

� ... lines 19 - 93
94

At the bottom of the test, create a private function createGithubService() that requires array $responseData then returns
GithubService . Inside, say $this->mockResponse = new MockResponse() that json_encode() 's the $responseData :

 95 lines 95 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 13
14

15

16

17

18

� ... lines 19 - 85
86

87

88

� ... lines 89 - 92
93

94

Since we'll be creating the MockResponse after we instantiate the MockHttpClient , which you'll see in a second, we need to pass
our response to the client without using the client's constructor. To do that, we can say
$this->mockHttpClient->setResponseFactory($this->mockResponse) . Finally return a new GithubService() with $this->mockHttpClient
and $this->mockLogger .

class GithubServiceTest extends TestCase
{
 private LoggerInterface $mockLogger;
 private MockHttpClient $mockHttpClient;
 private MockResponse $mockResponse;

}

class GithubServiceTest extends TestCase
{
 private LoggerInterface $mockLogger;
 private MockHttpClient $mockHttpClient;
 private MockResponse $mockResponse;

 private function createGithubService(array $responseData): GithubService
 {
 $this->mockResponse = new MockResponse(json_encode($responseData));

 }
}

��

��

 95 lines 95 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 13
14

15

16

17

18

� ... lines 19 - 85
86

87

88

89

90

91

92

93

94

We could use a constructor to instantiate our mocks and set them on those properties. But PHPUnit will only instantiate our
test class once, no matter how many test methods it has. And we want to make sure we have fresh mock objects for each test
run. How can we do that? At the top, add protected function setUp() . Inside, say
$this->mockLogger = $this->createMock(LoggerInterface::class) then $this->mockHttpClient = new MockHttpClient() .

 98 lines 98 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 13
14

15

16

17

18

19

20

21

22

23

24

� ... lines 25 - 88
89

90

91

92

93

94

95

96

97

Down in the test method, cut the response array, then say $service = $this->createGithubService() and paste the array.

class GithubServiceTest extends TestCase
{
 private LoggerInterface $mockLogger;
 private MockHttpClient $mockHttpClient;
 private MockResponse $mockResponse;

 private function createGithubService(array $responseData): GithubService
 {
 $this->mockResponse = new MockResponse(json_encode($responseData));

 $this->mockHttpClient->setResponseFactory($this->mockResponse);

 return new GithubService($this->mockHttpClient, $this->mockLogger);
 }
}

class GithubServiceTest extends TestCase
{
 private LoggerInterface $mockLogger;
 private MockHttpClient $mockHttpClient;
 private MockResponse $mockResponse;

 protected function setUp(): void
 {
 $this->mockLogger = $this->createMock(LoggerInterface::class);
 $this->mockHttpClient = new MockHttpClient();
 }

 private function createGithubService(array $responseData): GithubService
 {
 $this->mockResponse = new MockResponse(json_encode($responseData));

 $this->mockHttpClient->setResponseFactory($this->mockResponse);

 return new GithubService($this->mockHttpClient, $this->mockLogger);
 }
}

�� 98 lines 98 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 13
14

15

16

17

18

19

20

21

22

23

24

� ... lines 25 - 73
74

75

76

77

78

79

80

81

� ... lines 82 - 85
86

87

88

89

90

91

92

93

94

95

96

97

Let's see how our tests are doing in the terminal...

And... Ya! Everything is looking good!

The idea is pretty simple: if your test class has a method called setUp() , PHPUnit will call it before each test method, which
gives us fresh mocks at the start of every test. Need to do something after each test? Same thing: create a method called
tearDown() . This isn't as common... but you might do it if you want to clean up some filesystem changes that were made during
the test. In our case, there's no need.

In addition to setUp() and tearDown() , PHPUnit also has a few other methods, like setUpBeforeClass() and tearDownAfterClass() .
These are called once per class, and we'll get more into those as they become relevant in future tutorials. And if you were
wondering, these methods are called "Fixture Methods" because they help setup any "fixtures" to get your environment into a
known state for your test.

Anyhow, let's get back to refactoring. For the first test in this class, cut out the response array, select all of this "dead code",
add $service = $this->createGithubService() then paste in the array. We can remove the $service variable below:

class GithubServiceTest extends TestCase
{
 private LoggerInterface $mockLogger;
 private MockHttpClient $mockHttpClient;
 private MockResponse $mockResponse;

 protected function setUp(): void
 {
 $this->mockLogger = $this->createMock(LoggerInterface::class);
 $this->mockHttpClient = new MockHttpClient();
 }

 public function testExceptionThrownWithUnknownLabel(): void
 {
 $service = $this->createGithubService([
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Drowsy']],
],
]);

 $service->getHealthReport('Maverick');
 }

 private function createGithubService(array $responseData): GithubService
 {
 $this->mockResponse = new MockResponse(json_encode($responseData));

 $this->mockHttpClient->setResponseFactory($this->mockResponse);

 return new GithubService($this->mockHttpClient, $this->mockLogger);
 }
}

�

./vendor/bin/phpunit

��

��

 83 lines 83 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 26
27

28

29

30

31

32

33

34

35

36

37

38

� ... lines 39 - 43
44

� ... lines 45 - 81
82

But now we need to figure out how to keep these expectations that we were using on the old $mockHttpClient . Being able to
test that we only call GitHub once with the GET HTTP Method and that we're using the right URL, is pretty valuable.

Fortunately, those mock classes have special code just for this. Below, assertSame() that 1 is identical to
$this->mockHttpClient->getRequestCount() then assertSame() that GET is identical to $this->mockResponse->getRequestMethod() .
Finally, copy and paste the URL into assertSame() and call getRequestUrl() on mockResponse . Remove the old
$mockHttpClient ... and the use statements that we're no longer using up top.

 83 lines 83 lines tests/Unit/Service/GithubServiceTest.phptests/Unit/Service/GithubServiceTest.php

� ... lines 1 - 11
12

13

� ... lines 14 - 26
27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

� ... lines 45 - 81
82

Alrighty, time to check the fences...

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {
 $service = $this->createGithubService([
 [
 'title' => 'Daisy',
 'labels' => [['name' => 'Status: Sick']],
],
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Healthy']],
],
]);

 }

}

class GithubServiceTest extends TestCase
{

 public function testGetHealthReportReturnsCorrectHealthStatusForDino(HealthStatus $expectedStatus, string $dinoName): void
 {
 $service = $this->createGithubService([
 [
 'title' => 'Daisy',
 'labels' => [['name' => 'Status: Sick']],
],
 [
 'title' => 'Maverick',
 'labels' => [['name' => 'Status: Healthy']],
],
]);

 self::assertSame($expectedStatus, $service->getHealthReport($dinoName));
 self::assertSame(1, $this->mockHttpClient->getRequestsCount());
 self::assertSame('GET', $this->mockResponse->getRequestMethod());
 self::assertSame('https://api.github.com/repos/SymfonyCasts/dino-park/issues', $this->mockResponse->getRequestUrl());
 }

}

�

And... Wow! Everything is still green!

Welp, there you have it... We've helped Bob improve Dinotopia by adding a few small features to the app. But more
importantly, we're able to test that those features are working as we intended. Is there more work to be done? Absolutely!
We're going to take our app to the next level by adding a persistence layer to store dinos in the database and learn how to
write tests for that too. These tests, where you use real database connections or make real API calls, instead of mocking, are
sometimes called integration tests. That's the topic of the next tutorial in this series.

I hope you enjoyed your time here at the park - and thanks for keeping your arms and legs inside the vehicle at all times. If you
have any questions, suggestions, or want to ride with Big Eaty in the Jeep - just leave us a comment. Alright, see you in the
next episode!

./vendor/bin/phpunit

file:///contact

	PHPUnit: Unit Testing with a Bite!
	With <3 from SymfonyCasts
	Chapter 1: PHPUnit Install
	App Setup
	The App: Dinotopia Status
	Installing PHPUnit
	Chapter 2: Our First Test
	Creating the Test Class
	Executing PHPUnit
	Test Naming Conventions
	Testing Failures 😱
	Chapter 3: Testing Class Methods
	Should I Test that Method?
	The Order of the assert() Method Arguments
	The Assert Message
	Naming Conventions
	Descriptive Testdox Output
	Chapter 4: TDD - Test Driven Development
	What is TDD?
	Step 1: Write a test for the Feature
	Step 2: Run the test and watch it fail
	Step 3: Write simple code to make it pass
	Chapter 5: TDD Part 2: Finish & Refactor
	A few more tests
	Step 4: Refactoring
	Use the Size Description in our Controller
	Chapter 6: Data Providers
	Refactor our tests
	Tell our test to use the Data Provider
	Message Keys instead of Arguments

	Return Types Everywhere!
	Chapter 7: Incomplete Tests and Dancing Dino's
	Let's skip a test...
	Are they accepting visitors?
	Sick Dinos - Stay Away!
	Enums are cool for health labels
	Show which exhibits are open
	Chapter 8: Create a GitHub Service Test
	Test for our Service First
	Create the service that will call GitHub
	Add the use statement in our test
	Chapter 9: GitHub Service: Implementation
	Add the client and make a request
	Parse the HTTP Response
	Log all of our requests
	Chapter 10: Mocking: Test Doubles
	A Mock Logger
	But what is a Mock?
	We Should Always Mock Services
	Refactoring HttpClient to use DependencyInjection
	Mocking the HttpClient
	Chapter 11: Mocking: Stubs
	Training the Mock on what to Return
	Stubs? Mocks?
	Chapter 12: Mocking: Mock Objects
	Expect a Method to Be Called
	Expecting Specific Arguments
	Carefully Applying Assertions
	Using GitHubService in our App
	Chapter 13: Filtering Out Hungry Dino's
	Our Enum Is Hungry Too
	Test Hungry Dinos Can Have Visitors
	Filtering Tests
	Chapter 14: Testing Exceptional Exceptions
	Where can we throw an exception?
	Is the exception thrown?
	Prevent typo's in the exception message
	Test more than the exception message
	Chapter 15: Mocking Symfony's Http Client
	Chapter 16: Setup and Tearing It Down

