
Symfony 5 Security:
Authenticators

Chapter 1: composer require security

Welcome back friends! I'm so happy that you've stumbled into my Symfony 5 security tutorial for

a bunch of reasons. The first is that well... uh... the site that we've been building has NO

security... and the raptors are starting to jiggle the door handles.

The other reason is that, once we make it to the maintenance shed on other side of the

compound, we're going to explore Symfony's new security system, called the "authenticator"

system. Ooh. If you've used the old system, you'll feel right at home. If you're new to Symfony

security, you chose a great time to start. The new system is easier to learn and understand...

but it's also more powerful.

Project Setup

And because the security system isn't going to come online by itself, let's get to work. To learn

how to authenticate & authorize & do other cool security stuff at a pro level, you should

definitely download the course code from this page and code along with me. Making real-world

mistakes.... yeah, it's the best way to remember this stuff.

After unzipping the file, you'll find a start/ directory with the same code that you see here.

Pop open the README.md file for all the setup instructions. The last step will be to find a

terminal, move into the project and start a web server. I'm going to use the symfony binary for

this:

symfony serve -d

This starts up a new server at https://127.0.0.1:8000. Open that in your browser... or be lazy and

run:

symfony open:local

https://127.0.0.1:8000/

to... "delegate" the work to someone else. Say hello to Cauldron Overflow! A question and

answer site for witches and wizards, who... unfortunately... keep casting their spells live on

production first without testing them... and usually on a Friday afternoon. Sheesh. Then they

come here to ask how to undo the damage.

Installing Security

Because Symfony's philosophy is to start small and then allow you to install the stuff you need

later, right now our app... literally does not have a security system.

That's no fun, so let's install one! Go back to your terminal and run:

composer require security

This installs Symfony's security bundle. After it finishes... run:

git status

to see what its recipe did. In addition to the normal stuff, it added one new configuration file:

security.yaml . Let's go check that out: config/packages/security.yaml :

config/packages/security.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

As you hopefully guessed by its name, this file powers the security system! By the time we're

done, each section in here will be simple and boring to you. I love when programming stuff is

boring.

enable_authenticator_manager

Oh, but see this enable_authenticator_manager key?

security:

 # https://symfony.com/doc/current/security/authenticator_manager.html

 enable_authenticator_manager: true

 # https://symfony.com/doc/current/security.html#c-hashing-passwords

 password_hashers:

Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface:

'auto'

 # https://symfony.com/doc/current/security.html#where-do-users-come-

from-user-providers

 providers:

 users_in_memory: { memory: null }

 firewalls:

 dev:

 pattern: ^/(_(profiler|wdt)|css|images|js)/

 security: false

 main:

 lazy: true

 provider: users_in_memory

 # activate different ways to authenticate

 # https://symfony.com/doc/current/security.html#firewalls-

authentication

 #

https://symfony.com/doc/current/security/impersonating_user.html

 # switch_user: true

 # Easy way to control access for large sections of your site

 # Note: Only the *first* access control that matches will be used

 access_control:

 # - { path: ^/admin, roles: ROLE_ADMIN }

 # - { path: ^/profile, roles: ROLE_USER }

config/packages/security.yaml

1

2

3

 // ... lines 4 - 29

In Symfony 5.3 - the version I'm using - the old and new security systems live side-by-side and

you get to choose which one you want! When you set enable_authenticator_manager to

true , you are activating the new system. Yay! Shiny! If you're working on a legacy project and

need to learn the old system, check out our Symfony 4 Security tutorial. It's pretty cool too!

Authentication & Authorization

Anyways, when you talk about security, there are two big parts: authentication and

authorization. Authentication asks the question, "who are you"? And "can you prove it?" Users,

login forms, remember me cookies, passwords, API keys... all of that stuff is related to

authentication.

Authorization asks a different question: "Should you have access to this resource?"

Authorization doesn't care much about who you are... it's all about allowing or denying access to

different things, like different URLs or controllers.

In Symfony, or really in any security system, authentication is the tricky part. I mean, just think

about how many ways there are to authenticate! Login forms, API token authentication, social

authentication with OAuth, SSO's, LDAP, putting on a fake mustache and walking confidently

passed a security guard. I mean... the possibilities are endless. But I also think that

authentication is super fun.

So next: let's start on our journey into the new shiny authenticator system by creating the most

basic part of authentication: a user class.

security:

 # https://symfony.com/doc/current/security/authenticator_manager.html

 enable_authenticator_manager: true

https://symfonycasts.com/screencast/symfony4-security

Chapter 2: make:user

No matter how your users authenticate - a login form, social authentication, or an API key - your

security system needs some concept of a user: some class that describes the "thing" that is

logged in.

Yup, step 1 of authentication is to create a User class. And there's a command that can help

us! Find your terminal and run:

symfony console make:user

As a reminder, symfony console is just a shortcut for bin/console ... but because I'm

using the Docker integration with the Symfony web server, calling symfony console allows

the symfony binary to inject some environment variables that point to the Docker database. It

won't matter for this command, but it will matter for any command that talks to the database.

Ok, question one:

“The name of the user class”

Typically, this will be User ... though it would be cooler to use something like

HumanoidEntity . If the "thing" that logs into your site would be better called a Company or

University or Machine , use that name here.

“Do you want to store user data in the database via Doctrine?”

For us: that's a definite yes... but it's not a requirement. Your user data might be stored on some

other server... though even in that case, it's often convenient to store some extra data in your

local database... in which case you would also say yes here.

Next:

“Enter a property name that will be the unique display name for the user.”

I'm going to use email . This is not that important, and I'll explain how it's used in a few

minutes. Finally:

“Will this app need to hash and check user passwords?”

You only need to say yes if it will be your application's responsibility to check the user's

password when they log in. We are going to do this... but I'm going to say "no". We'll add it

manually a bit later.

Hit enter and... done!

The User Class & Entity

Okay. What did this do? First, it created a User entity and a UserRepository ... the exact

same stuff you normally get from running make:entity . Let's go check out that new User

class: src/Entity/User.php :

src/Entity/User.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 113

114

First and foremost, this is a normal boring Doctrine entity: it has annotations - or maybe PHP 8

attributes for you - and an id. It is... just an entity: there is nothing special about it.

UserInterface & Deprecated Methods

The only thing that Symfony cares about is that your user class implements UserInterface .

Hold Command or Ctrl and click to jump way into the core code to see this.

This interface really has just 3 methods: getUserIdentifier() , which you see documented

above the interface, getRoles() ... and another one way down here called

namespace App\Entity;

use App\Repository\UserRepository;

use Doctrine\ORM\Mapping as ORM;

use

Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;

use Symfony\Component\Security\Core\User\UserInterface;

/**

 * @ORM\Entity(repositoryClass=UserRepository::class)

 */

class User implements UserInterface

{

 /**

 * @ORM\Id

 * @ORM\GeneratedValue

 * @ORM\Column(type="integer")

 */

 private $id;

 /**

 * @ORM\Column(type="string", length=180, unique=true)

 */

 private $email;

 /**

 * @ORM\Column(type="json")

 */

 private $roles = [];

}

eraseCredentials() . If you're confused about why I'm skipping all of these other methods,

it's because they're deprecated. In Symfony 6, this interface will only have those 3:

getUserIdentifier() , getRoles() and eraseCredentials() .

In our User , class, if you scroll down, the make:user command implemented all of this for us.

Thanks to how we answered one of its questions, getUserIdentier() returns the email:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 48

49

50

51

52

53

54

55

56

57

 // ... lines 58 - 113

114

This... isn't too important: it's mostly just a visual representation of your User object... it's used in

the web debug toolbar... and in a few optional systems, like the "remember me" system.

If you're using Symfony 5 like I am, you'll notice that the deprecated methods are still generated.

They're needed just for backwards compatibility, and you can delete them once you're on

Symfony 6.

The getRoles() method deals with permissions:

class User implements UserInterface

{

 /**

 * A visual identifier that represents this user.

 *

 * @see UserInterface

 */

 public function getUserIdentifier(): string

 {

 return (string) $this->email;

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 66

67

68

69

70

71

72

73

74

75

76

77

 // ... lines 78 - 113

114

more on that later. And then getPassword() and getSalt() are both deprecated:

class User implements UserInterface

{

 /**

 * @see UserInterface

 */

 public function getRoles(): array

 {

 $roles = $this->roles;

 // guarantee every user at least has ROLE_USER

 $roles[] = 'ROLE_USER';

 return array_unique($roles);

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

 // ... lines 105 - 113

114

You will still need a getPassword() method if you check passwords on your site - but we'll

learn about that later. Finally, eraseCredentials() is part of UserInterface :

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 105

106

107

108

109

110

111

112

113

114

class User implements UserInterface

{

 /**

 * This method can be removed in Symfony 6.0 - is not needed for apps

that do not check user passwords.

 *

 * @see PasswordAuthenticatedUserInterface

 */

 public function getPassword(): ?string

 {

 return null;

 }

 /**

 * This method can be removed in Symfony 6.0 - is not needed for apps

that do not check user passwords.

 *

 * @see UserInterface

 */

 public function getSalt(): ?string

 {

 return null;

 }

}

class User implements UserInterface

{

 /**

 * @see UserInterface

 */

 public function eraseCredentials()

 {

 // If you store any temporary, sensitive data on the user, clear

it here

 // $this->plainPassword = null;

 }

}

but it's not very important and we'll also talk about it later.

So at a high level... if you ignore the deprecated methods... and the not-so-important

eraseCredentials() , the only thing that our User class needs to have is an identifier and a

method that returns the array of roles that this user should have. Yup... it's mostly just a User

entity.

"providers": The User Provider

The make:user command also made one tweak to our security.yaml file: you can see it

right here:

config/packages/security.yaml

1

 // ... lines 2 - 7

8

9

10

11

12

13

 // ... lines 14 - 33

It added what's called a "user provider", which is an object that knows how to load your user

objects... whether you're loading that data from an API or from a database. Because we're using

Doctrine, we get to use the built-in entity provider: it knows how to fetch our users from the

database using the email property.

I wanted you to see this change... but the user provider isn't important yet. I'll show you exactly

how and where it's used as we go along.

Next: we have total control over how our User class looks. The power! So let's add a custom

field to it and then load up our database with a nice set of dummy users.

security:

 providers:

 # used to reload user from session & other features (e.g.

switch_user)

 app_user_provider:

 entity:

 class: App\Entity\User

 property: email

Chapter 3: Customizing the User Class

What's cool about the User class is that... it's our class! As long as we implement

UserInterface , we can add whatever else we want:

src/Entity/User.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 113

114

For example, I'd like to store the first name of my users. So let's go add a property for that. At

your terminal, run:

symfony console make:entity

We'll edit the User entity, add a firstName property, have it be a string, 255 length... and say

"yes" to nullable. Let's make this property optional in the database.

Done! Back over in the User class, no surprises! We have a new property... and new getter

and setter methods:

use Symfony\Component\Security\Core\User\UserInterface;

class User implements UserInterface

{

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 31

32

33

34

35

 // ... lines 36 - 119

120

121

122

123

124

125

126

127

128

129

130

131

Go generate a migration for our new User . At the terminal, run

symfony console make:migration

Cool! Spin over and open that up to make sure it's not hiding any surprises:

class User implements UserInterface

{

 /**

 * @ORM\Column(type="string", length=255, nullable=true)

 */

 private $firstName;

 public function getFirstName(): ?string

 {

 return $this->firstName;

 }

 public function setFirstName(string $firstName): self

 {

 $this->firstName = $firstName;

 return $this;

 }

}

migrations/Version20211001172813.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Awesome: CREATE TABLE user with id , email , roles and first_name columns. Close

this... and run it:

symfony console doctrine:migrations:migrate

Success!

declare(strict_types=1);

namespace DoctrineMigrations;

use Doctrine\DBAL\Schema\Schema;

use Doctrine\Migrations\AbstractMigration;

/**

 * Auto-generated Migration: Please modify to your needs!

 */

final class Version20211001172813 extends AbstractMigration

{

 public function getDescription(): string

 {

 return '';

 }

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('CREATE TABLE user (id INT AUTO_INCREMENT NOT NULL,

email VARCHAR(180) NOT NULL, roles JSON NOT NULL, first_name VARCHAR(255)

DEFAULT NULL, UNIQUE INDEX UNIQ_8D93D649E7927C74 (email), PRIMARY KEY(id))

DEFAULT CHARACTER SET utf8mb4 COLLATE `utf8mb4_unicode_ci` ENGINE =

InnoDB');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('DROP TABLE user');

 }

}

Adding User Fixtures

And because the User entity is... just a normal Doctrine entity, we can also add dummy users

to our database using the fixtures system.

Open up src/DataFixtures/AppFixtures.php . We're using Foundry to help us load

data. So let's create a new Foundry factory for User . Since we're having SO much fun running

commands in this video, let's sneak in one... or three more:

symfony console make:factory

Yup! We want one for User . Go open it up: src/Factory/UserFactory.php :

src/Factory/UserFactory.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

namespace App\Factory;

use App\Entity\User;

use App\Repository\UserRepository;

use Zenstruck\Foundry\RepositoryProxy;

use Zenstruck\Foundry\ModelFactory;

use Zenstruck\Foundry\Proxy;

final class UserFactory extends ModelFactory

{

 public function __construct()

 {

 parent::__construct();

 // TODO inject services if required

(https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#facto

as-services)

 }

 protected function getDefaults(): array

 {

 return [

 // TODO add your default values here

(https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#model

factories)

 'email' => self::faker()->text(),

 'roles' => [],

 'firstName' => self::faker()->text(),

];

 }

 protected function initialize(): self

 {

 // see

https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#initia

 return $this

 // ->afterInstantiate(function(User $user) {})

 ;

 }

 protected static function getClass(): string

 {

 return User::class;

 }

}

Our job in getDefaults() is to make sure that all of the required properties have good

default values. Set email to self::faker()->email() , I won't set any roles right now and

set firstName to self::faker()->firstName() :

src/Factory/UserFactory.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 37

38

39

40

41

42

43

44

 // ... lines 45 - 57

58

Cool! Over in AppFixtures , at the bottom, create a user: UserFactory::createOne() .

But use a specific email so we can log in using this later. How about,

abraca_admin@example.com :

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 11

12

 // ... lines 13 - 15

16

17

18

19

 // ... lines 20 - 41

42

 // ... lines 43 - 45

46

47

48

 // ... lines 49 - 51

52

53

Then, to fill out the system a bit, add UserFactory::createMany(10) :

final class UserFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'email' => self::faker()->email(),

 'firstName' => self::faker()->firstName(),

];

 }

}

use App\Factory\UserFactory;

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 AnswerFactory::new(function() use ($questions) {

 })->needsApproval()->many(20)->create();

 UserFactory::createOne(['email' => 'abraca_admin@example.com']);

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 11

12

 // ... lines 13 - 15

16

17

18

19

 // ... lines 20 - 47

48

49

 // ... lines 50 - 51

52

53

Let's try it! Back at the terminal, run:

symfony console doctrine:fixtures:load

No errors! Check out the new table:

symfony console doctrine:query:sql 'SELECT * FROM user'

And... there they are! Now that we have users in the database, we need to add one or more

ways for them to authenticate. It's time to build a login form!

use App\Factory\UserFactory;

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 UserFactory::createOne(['email' => 'abraca_admin@example.com']);

 UserFactory::createMany(10);

 }

}

Chapter 4: Building a Login Form

There are a lot of ways that you can allow your users to log in... one way being a login form that

loads users from the database. That's what we're going to build first.

The easiest way to build a login form system is by running a symfony console make:auth

command. That will generate everything you need. But since we want to really learn security,

let's do this step-by-step... mostly by hand.

Before we start thinking about authenticating the user, we first need to build a login page,

which... if you think about it... has nothing to do with security! It's just a normal Symfony route,

controller & template that renders a form. Let's cheat a little to make this. Run:

symfony console make:controller

Answer SecurityController . Cool! Go open up the new class:

src/Controller/SecurityController.php :

src/Controller/SecurityController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Nothing too fancy here. Let's customize this to be a login page: set the URL to /login , call the

route app_login and rename the method to login() :

src/Controller/SecurityController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... line 16

17

18

For the template, call it security/login.html.twig ... and don't pass any variables right

now:

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

class SecurityController extends AbstractController

{

 /**

 * @Route("/security", name="security")

 */

 public function index(): Response

 {

 return $this->render('security/index.html.twig', [

 'controller_name' => 'SecurityController',

]);

 }

}

class SecurityController extends AbstractController

{

 /**

 * @Route("/login", name="app_login")

 */

 public function login(): Response

 {

 }

}

src/Controller/SecurityController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

Down in the templates/ directory, open templates/security/ ... and rename the

template to login.html.twig :

templates/security/login.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class SecurityController extends AbstractController

{

 /**

 * @Route("/login", name="app_login")

 */

 public function login(): Response

 {

 return $this->render('security/login.html.twig');

 }

}

{% extends 'base.html.twig' %}

{% block title %}Hello SecurityController!{% endblock %}

{% block body %}

<style>

 .example-wrapper { margin: 1em auto; max-width: 800px; width: 95%;

font: 18px/1.5 sans-serif; }

 .example-wrapper code { background: #F5F5F5; padding: 2px 6px; }

</style>

<div class="example-wrapper">

 <h1>Hello {{ controller_name }}! ✅</h1>

 This friendly message is coming from:

 Your controller at <code><a href="{{

'/Users/weaverryan/Sites/knp/knpu-

repos/symfony5/src/Controller/SecurityController.php'|file_link(0)

}}">src/Controller/SecurityController.php</code>

 Your template at <code><a href="{{

'/Users/weaverryan/Sites/knp/knpu-

repos/symfony5/templates/security/index.html.twig'|file_link(0)

}}">templates/security/index.html.twig</code>

</div>

{% endblock %}

To get started, I'm going to completely replace this template and paste in a new structure: you

can copy this from the code block on this page:

templates/security/login.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

There's nothing fancy here: we extend base.html.twig , override the title block... then we

have a form that submits a POST right back to /login . It doesn't have an action attribute,

which means it submits back to this same URL. The form has two fields - input name="email"

and input name="password" - and a submit button... all with Bootstrap 5 classes to look nice.

Let's add a link to this page from base.html.twig . Search for sign up. Cool. Right before

this, add a link with {{ path('app_login') }} , say "Log In"... and give this some classes

{% extends 'base.html.twig' %}

{% block title %}Log In!{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <h1 class="h3 mb-3 font-weight-normal">Please sign in</h1>

 <div class="col-12">

 <label for="inputEmail">Email</label>

 <input type="email" name="email" id="inputEmail"

class="form-control" required autofocus>

 </div>

 <div class="col-12">

 <label for="inputPassword">Password</label>

 <input type="password" name="password"

id="inputPassword" class="form-control" required>

 </div>

 <div class="col-12">

 <button class="btn btn-lg btn-primary float-end"

type="submit">

 Sign in

 </button>

 </div>

 </form>

 </div>

 </div>

</div>

{% endblock %}

to make it look nice:

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 33

34

35

36

37

38

 // ... lines 39 - 43

44

45

Let's check it out! Refresh the home page... and click the link. Hello log in page!

And of course, if we fill out the form and submit... absolutely nothing happens! That makes

sense. This submits right back to /login ... but because we don't have any form-processing

logic yet... the page just re-renders.

So next: let's write that processing code. But... surprise! It won't live in the controller. It's time to

create an authenticator and learn all about Symfony firewalls.

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 <a class="nav-link text-black-50" href="{{

path('app_login') }}">Log In

 Sign up

 </div>

 </div>

 </nav>

 </body>

</html>

Chapter 5: Firewalls & Authenticators

We built this log in form by making a route, controller and rendering a template:

src/Controller/SecurityController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

Dead simple. When we submit the form, it POSTs right back to /login . So, to authenticate the

user, you might expect us to put some logic right here: like if this is a POST request, read the

POSTed email & password, query for the User object... and eventually check the password.

That makes perfect sense! And that is completely not what we're going to do.

Hello Firewalls

Symfony's authentication system works in a... bit of a magic way, which I guess is fitting for our

site. At the start of every request, before Symfony calls the controller, the security system

executes a set of "authenticators". The job of each authenticator is to look at the request, see if

there is any authentication information that it understands - like a submitted email and

password, or an API key that's stored on a header - and if there is, use that to query the user

and check the password. If all that happens successfully then... boom! Authentication complete.

Our job is to write and activate these authenticators. Open up

config/packages/security.yaml . Remember the two parts of security: authentication

(who you are) and authorization (what you can do).

The most important part of this file is firewalls :

class SecurityController extends AbstractController

{

 /**

 * @Route("/login", name="app_login")

 */

 public function login(): Response

 {

 return $this->render('security/login.html.twig');

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 13

14

15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 33

A firewall is all about authentication: its job is to figure out who you are. And, it usually makes

sense to have only one firewall in your app... even if there are multiple different ways to

authenticate, like a login form and an API key and OAuth.

The "dev" Firewall

But... woh woh woh. If we almost always want only one firewall... why are there are already

two? Here's how this works: at the start of each request, Symfony goes down the list of

firewalls, reads the pattern key - which is a regular expression - and finds the first firewall

whose pattern matches the current URL. So there's only ever one firewall active per request.

If you look closely, this first firewall is a fake! It basically matches if the URL starts with

/_profiler or /_wdt ... and then sets security to false :

config/packages/security.yaml

1

 // ... lines 2 - 13

14

15

16

17

 // ... lines 18 - 33

security:

 firewalls:

 dev:

 pattern: ^/(_(profiler|wdt)|css|images|js)/

 security: false

 main:

 lazy: true

 provider: app_user_provider

 # activate different ways to authenticate

 # https://symfony.com/doc/current/security.html#firewalls-

authentication

 #

https://symfony.com/doc/current/security/impersonating_user.html

 # switch_user: true

security:

 firewalls:

 dev:

 pattern: ^/(_(profiler|wdt)|css|images|js)/

 security: false

In other words, it's basically making sure that you don't create a security system that is so

epically awesome that... you block the web debug toolbar and profiler.

So... in reality, we only have one real firewall called main . It has no pattern key, which

means that it will match all requests that don't match the dev firewall. Oh, and the names of

these firewalls - main and dev? They're totally meaningless.

Activating Authenticators

Most of the config that we're going to put beneath the firewall relates to activating

authenticators: those things that execute early in each request and try to authenticate the user.

We'll add some of that config soon. But these two top keys do something different. lazy allows

the authentication system to not authenticate the user until it needs to and provider ties this

firewall to the user provider we talked about earlier. You should have both of these lines... but

neither are terribly important:

config/packages/security.yaml

1

 // ... lines 2 - 13

14

 // ... lines 15 - 17

18

19

20

 // ... lines 21 - 33

Creating a Custom Authenticator Class

Anyways, anytime that we want to authenticate the user - like when we submit a login form - we

need an authenticator. There are some core authenticator classes that we can use, including

one for login forms.... and I'll show you some of those later. But to start, let's build our own

authenticator class from scratch.

To do that, go to terminal and run:

symfony console make:auth

security:

 firewalls:

 main:

 lazy: true

 provider: app_user_provider

As you can see, you can select "Login form authenticator" to cheat and generate a bunch of

code for a login form. But since we're building things from scratch, select "Empty authenticator"

and call it LoginFormAuthenticator .

Awesome. This did two things: it created a new authenticator class and also updated

security.yaml . Open the class first: src/Security/LoginFormAuthenticator.php :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 43

44

The only rule about an authenticator is that it needs to implement

AuthenticatorInterface ... though usually you'll extend AbstractAuthenticator ...

which implements AuthenticatorInterface for you:

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function supports(Request $request): ?bool

 {

 // TODO: Implement supports() method.

 }

 public function authenticate(Request $request): PassportInterface

 {

 // TODO: Implement authenticate() method.

 }

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 // TODO: Implement onAuthenticationSuccess() method.

 }

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 // TODO: Implement onAuthenticationFailure() method.

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

13

 // ... lines 14 - 43

44

We'll talk about what these methods do one-by-one. Anyways, AbstractAuthenticator is

nice because it implements a super boring method for you.

Once we activate this new class in the security system, at the beginning of every request,

Symfony will call this supports() method and basically ask:

“Do you see authentication information on this request that you understand?”

To prove that Symfony will call this, let's just dd('supports') :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 11

12

13

14

15

16

17

 // ... lines 18 - 43

44

Activating Authenticators with custom_authenticators

Okay, so how do we activate this authenticator? How do we tell our firewall that it should use

our new class? Back in security.yaml , we already have the code that does that! This

custom_authenticator line was added by the make:auth command:

use Symfony\Component\Security\Http\Authenticator\AbstractAuthenticator;

class LoginFormAuthenticator extends AbstractAuthenticator

{

}

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function supports(Request $request): ?bool

 {

 dd('supports!');

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 13

14

 // ... lines 15 - 17

18

 // ... lines 19 - 20

21

 // ... lines 22 - 34

So if you have a custom authenticator class, this is how you activate it. Later, we'll see that you

can have multiple custom authenticators if you want.

Anyways, this means that our authenticator is already active! So let's try it. Refresh the login

page. It hits the supports() method! In fact, if you go to any URL it will hit our dd() . On

every request, before the controller, Symfony now asks our authenticator if it supports

authentication on this request.

Next let's fill in the authenticator logic and get our user logged in!

security:

 firewalls:

 main:

 custom_authenticator: App\Security\LoginFormAuthenticator

Chapter 6: Authenticator & The Passport

On a basic level, authenticating a user when we submit the login form is... pretty simple. We

need to read the submitted email , query the database for that User object... and eventually

check the user's password.

Symfony's Security Doesn't Happen in a Controller

The weird thing about Symfony's security system is that... we're not going to write this logic in

the controller. Nope. When we POST to /login , our authenticator is going to intercept that

request and do all the work itself. Yup, when we submit the login form, our controller will actually

never be executed.

The supports() Method

Now that our authenticator is activated, at the start of each request, Symfony will call the

supports() method on our class. Our job is to return true if this request "contains

authentication info that we know how to process". If not, we return false . If we return false ,

we don't fail authentication: it just means that our authenticator doesn't know how to

authenticate this request... and the request continues processing like normal... executing

whatever controller it matches.

So let's think: when do we want our authenticator to "do its work"? Which requests will "contains

authentication info that we know how to process"? The answer to that is: whenever the user

submits the login form.

Inside of supports() return true if $request->getPathInfo() - that's a fancy method to

get the current URL - equals /login and if $request->isMethod('POST') :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 11

12

13

14

15

16

17

 // ... lines 18 - 43

44

So if the current request is a POST to /login , we want to try to authenticate the user. If not,

we want to allow the request to continue like normal.

To see what happens next, down in authenticate() , dd('authenticate') :

 Tip

PassportInterface was deprecated since Symfony 5.4: use Passport as a return

type instead.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 18

19

20

21

22

 // ... lines 23 - 43

44

Testing time! Go refresh the homepage. Yup! The supports() method returned false ... and

the page kept loading like normal. In the web debug toolbar, we have a new security icon that

says "Authenticated: no". But now go to the login form. This page still loads like normal. Enter

abraca_admin@example.com - that's the email of a real user in the database - and any

password - I'll use foobar . Submit and... got it! It hit our dd('authenticate') !

The authenticate() Method

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function supports(Request $request): ?bool

 {

 return ($request->getPathInfo() === '/login' && $request-

>isMethod('POST'));

 }

}

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 dd('authenticate!');

 }

}

So if supports() returns true, Symfony then calls authenticate() . This is the heart of our

authenticator... and its job is to communicate two important things. First, who the user is that's

trying to log in - specifically, which User object they are - and second, some proof that they are

this user. In the case of a login form, that would be a password. Since our users don't actually

have passwords yet... we'll fake it temporarily.

The Passport Object: UserBadge & Credentials

We communicate these two things by returning a Passport object: return new Passport() :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 12

13

 // ... lines 14 - 15

16

17

 // ... lines 18 - 22

23

24

 // ... lines 25 - 27

28

 // ... lines 29 - 32

33

34

 // ... lines 35 - 55

56

This simple object is basically just a container for things called "badges"... where a badge is a

little piece of information that goes into the passport. The two most important badges are

UserBadge and some sort of "credentials badge" that helps prove that this user is who they

say they are.

Start by grabbing the POSTed email and password:

$email = $request->request->get('email') . If you haven't seen it before,

$request->request->get() is how you read POST data in Symfony. In the login template,

the name of the field is email ... so we read the email POST field. Copy and paste this line to

create a $password variable that reads the password field from the form:

use Symfony\Component\Security\Http\Authenticator\Passport\Passport;

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

 // ... lines 29 - 32

33

34

 // ... lines 35 - 55

56

Next, inside of the Passport , the first argument is always the UserBadge . Say

new UserBadge() and pass this our "user identifier". For us, that's the $email :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 10

11

 // ... lines 12 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

29

 // ... lines 30 - 32

33

34

 // ... lines 35 - 55

56

We'll talk very soon about how this is used.

The second argument to Passport is some sort of "credentials". Eventually we're going to

pass it a PasswordCredentials() but since our users don't have passwords yet, use a

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 $email = $request->request->get('email');

 $password = $request->request->get('password');

 return new Passport(

);

 }

}

use

Symfony\Component\Security\Http\Authenticator\Passport\Badge\UserBadge;

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 $email = $request->request->get('email');

 $password = $request->request->get('password');

 return new Passport(

 new UserBadge($email),

);

 }

}

new CustomCredentials() . Pass this a callback with a $credentials arguments and a

$user argument type-hinted with our User class:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 22

23

24

 // ... lines 25 - 27

28

29

30

 // ... lines 31 - 32

33

34

 // ... lines 35 - 55

56

Symfony will execute our callback and allow us to manually "check the credentials" for this

user... whatever that means in our app. To start, dd($credentials, $user) . Oh, and

CustomCredentials needs a second argument - which is whatever our "credentials" are. For

us, that's $password :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 22

23

24

 // ... lines 25 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 55

56

use

Symfony\Component\Security\Http\Authenticator\Passport\Credentials\CustomCre

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email),

 new CustomCredentials(function($credentials, User $user) {

);

 }

}

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email),

 new CustomCredentials(function($credentials, User $user) {

 dd($credentials, $user);

 }, $password)

);

 }

}

If this CustomCredentials thing is a little fuzzy, don't worry: we really need to see this in

action.

But on a high level... it's kind of cool. We return a Passport object, which says who the user is

- identified by their email - and some sort of a "credentials process" that will prove that the

user is who they say they are.

Ok: with just this, let's try it. Go back to the login form and re-submit. Remember: we filled in the

form using an email address that does exist in our database.

And... awesome! foobar is what I submitted for my password and it's also dumping the correct

User entity object from the database! So... woh! Somehow it knew to query for the User

object using that email. How does that work?

The answer is the user provider! Let's dive into that next, learn how we can make a custom

query for our user and finish the authentication process.

Chapter 7: Custom User Query & Credentials

On the screen, we see a dd() of the password I entered into the login form and the User

entity object for the email I entered. Something, somehow knew to take the submitted email and

query for the User!

UserBadge & The User Provider

Here's how this works. After we return the Passport object, the security system tries to find

the User object from the UserBadge . If you just pass one argument to UserBadge - like we

are - then it does this by leveraging our user provider. Remember that thing in

security.yaml called providers?

config/packages/security.yaml

1

 // ... lines 2 - 7

8

9

10

11

12

13

 // ... lines 14 - 34

Because our User class is an entity, we're using the entity provider that knows how to load

users using the email property. So basically this is an object that's really good at querying the

user table via the email property. So when we pass just the email to the UserBadge , the user

provider uses that to query for the User .

If a User object is found, Symfony then tries to "check the credentials" on our passport.

Because we're using CustomCredentials , this means that it executes this callback... where

we're dumping some data. If a User could not be found - because we entered an email that

isn't in the database - authentication fails. More on both of these situations soon.

security:

 providers:

 # used to reload user from session & other features (e.g.

switch_user)

 app_user_provider:

 entity:

 class: App\Entity\User

 property: email

Custom User Query

Anyways, the point is this: if you just pass one argument to UserBadge , the user provider

loads the user automatically. That's the easiest thing to do. And you can even customize this

query a bit if you need to - search for "Using a Custom Query to Load the User" on the Symfony

docs to see how.

Or... you can write your own custom logic to load the user right here. To do that, we're going to

need the UserRepository . At the top of the class, add

public function __construct() ... and autowire a UserRepository argument. I'll hit

Alt+Enter and select "Initialize properties" to create that property and set it:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 5

6

 // ... lines 7 - 17

18

19

20

21

22

23

24

25

 // ... lines 26 - 73

74

Down in authenticate() , UserBadge has an optional second argument called a user

loader. Pass it a callback with one argument: $userIdentifier :

use App\Repository\UserRepository;

class LoginFormAuthenticator extends AbstractAuthenticator

{

 private UserRepository $userRepository;

 public function __construct(UserRepository $userRepository)

 {

 $this->userRepository = $userRepository;

 }

}

https://bit.ly/sf-entity-provider-query
https://bit.ly/sf-entity-provider-query

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 36

37

38

 // ... lines 39 - 46

47

 // ... lines 48 - 50

51

52

 // ... lines 53 - 73

74

It's pretty simple: if you pass a callable, then when Symfony loads your User , it will call this

function instead of your user provider. Our job here is to load the user and return it. The

$userIdentifier will be whatever we passed to the first argument of UserBadge ... so the

email in our case.

Say $user = $this->userRepository->findOneBy() to query for email set to

$userIdentifier :

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 }),

);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 36

37

38

39

40

 // ... lines 41 - 46

47

 // ... lines 48 - 50

51

52

 // ... lines 53 - 73

74

This is where you could use whatever custom query you want. If we can't find the user, we need

to throw a special exception. So if not $user , throw new UserNotFoundException() .

That will cause authentication to fail. At the bottom, return $user :

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 // optionally pass a callback to load the User manually

 $user = $this->userRepository->findOneBy(['email' =>

$userIdentifier]);

 }),

);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 36

37

38

39

40

41

42

43

44

45

46

47

 // ... lines 48 - 50

51

52

 // ... lines 53 - 73

74

This... is basically identical to what our user provider was doing a minute ago... so it won't

change anything. But you can see how we have the power to load the User however we want

to.

Let's refresh. Yup! The same dump as before.

Validating the Credentials

Ok, so if a User object is found - either from our custom callback or the user provider -

Symfony next checks our credentials, which means something different depending on which

credentials object you pass. There are 3 main ones: PasswordCredentials - we'll see that

later, a SelfValidatingPassport which is good for API authentication and doesn't need

any credentials - and CustomCredentials .

If you use CustomCredentials , Symfony executes the callback... and our job is to "check

their credentials"... whatever that means in our app. The $credentials argument will match

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 // optionally pass a callback to load the User manually

 $user = $this->userRepository->findOneBy(['email' =>

$userIdentifier]);

 if (!$user) {

 throw new UserNotFoundException();

 }

 return $user;

 }),

);

 }

}

whatever we passed to the 2nd argument to CustomCredentials . For us, that's the

submitted password:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 36

37

 // ... lines 38 - 47

48

 // ... line 49

50

51

52

 // ... lines 53 - 73

74

Let's pretend that all users have the same password tada ! To validate that, return true if

$credentials === 'tada' :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 36

37

 // ... lines 38 - 47

48

49

50

51

52

 // ... lines 53 - 73

74

Air-tight security!

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new CustomCredentials(function($credentials, User $user) {

 }, $password)

);

 }

}

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new CustomCredentials(function($credentials, User $user) {

 return $credentials === 'tada';

 }, $password)

);

 }

}

Authentication Failure and Success

If we return true from this function, authentication is successful! Woo! If we return false ,

authentication fails. To prove this, go down to onAuthenticationSuccess() and

dd('success') . Do the same thing inside onAuthenticationFailure() :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 53

54

55

56

57

58

59

60

61

62

 // ... lines 63 - 73

74

We'll put real code into these methods soon... but their purpose is pretty self-explanatory: if

authentication is successful, Symfony will call onAuthenticationSuccess() . If

authentication fails for any reason - like an invalid email or password - Symfony will call

onAuthenticationFailure() .

Let's try it! Go directly back to /login . Use the real email again -

abraca_admin@example.com with the correct password: tada . Submit and... yes! It hit

onAuthenticationSuccess() . Authentication is complete!

I know, it doesn't look like much yet... so next, let's do something on success, like redirect to

another page. We're also going to learn about the other critical job of a user provider: refreshing

the user from the session at the beginning of each request to keep us logged in.

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 dd('success');

 }

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 dd('failure');

 }

}

Chapter 8: Authentication Success & Refreshing
the User

Let's do a quick review of how our authenticator works. After activating it in security.yaml :

config/packages/security.yaml

1

 // ... lines 2 - 13

14

 // ... lines 15 - 17

18

 // ... lines 19 - 20

21

 // ... lines 22 - 34

Symfony calls our supports() method on every request before the controller:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 26

27

28

29

30

 // ... lines 31 - 73

74

Since our authenticator knows how to handle the login form submit, we return true if the current

request is a POST to /login . Once we return true, Symfony then calls authenticate()

and basically asks:

“Okay, tell me who is trying to log in and what proof they have.”

We answer these questions by returning a Passport :

security:

 firewalls:

 main:

 custom_authenticator: App\Security\LoginFormAuthenticator

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function supports(Request $request): ?bool

 {

 return ($request->getPathInfo() === '/login' && $request-

>isMethod('POST'));

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 31

32

33

 // ... lines 34 - 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

 // ... lines 53 - 73

74

The first argument identifies the user and the second argument identifies some proof... in this

case, just a callback that checks that the submitted password is tada . If we are able to find a

user and the credentials are correct... then we are authenticated!

We saw this at the end of the last video! When we logged in using the email of a real user in our

database and password tada ... we hit this dd() statement:

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 // optionally pass a callback to load the User manually

 $user = $this->userRepository->findOneBy(['email' =>

$userIdentifier]);

 if (!$user) {

 throw new UserNotFoundException();

 }

 return $user;

 }),

 new CustomCredentials(function($credentials, User $user) {

 return $credentials === 'tada';

 }, $password)

);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 53

54

55

56

57

 // ... lines 58 - 73

74

onAuthenticationSuccess

Yep! If authentication is successful Symfony calls onAuthenticationSuccess() and asks:

“Congrats on authenticating! We're super proud! But... what should we do now?”

In our situation, after success, we probably want to redirect the user to some other page. But for

other types of authentication you might do something different. For example, if you're

authenticating via an API token, you would return null from this method to allow the request to

continue to the normal controller.

Anyways, that's our job here: to decide what to do "next"... which will either be "do nothing" -

null - or return some sort of Response object. We're going to redirect.

Head up to the top of this class. Add a second argument - RouterInterface $router - use

the Alt+Enter trick and select "Initialize properties" to create that property and set it:

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 dd('success');

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 9

10

 // ... lines 11 - 19

20

21

 // ... line 22

23

24

25

26

 // ... line 27

28

29

 // ... lines 30 - 79

80

Back down in onAuthenticationSuccess() , we need to return null or a Response .

Return a new RedirectResponse() and, for the URL, say

$this->router->generate() and pass app_homepage :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 6

7

 // ... lines 8 - 19

20

21

 // ... lines 22 - 57

58

59

60

61

62

63

 // ... lines 64 - 79

80

Let me go... double-check that route name.... it should be inside of QuestionController .

Yup! app_homepage is correct:

use Symfony\Component\Routing\RouterInterface;

class LoginFormAuthenticator extends AbstractAuthenticator

{

 private RouterInterface $router;

 public function __construct(UserRepository $userRepository,

RouterInterface $router)

 {

 $this->router = $router;

 }

}

use Symfony\Component\HttpFoundation\RedirectResponse;

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 return new RedirectResponse(

 $this->router->generate('app_homepage')

);

 }

}

src/Controller/QuestionController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 29

30

31

32

33

34

 // ... lines 35 - 43

44

 // ... lines 45 - 86

87

I'm not sure why PhpStorm thinks this route is missing... it's definitely there.

Anyways, let's log in from scratch. Go directly to /login , enter

abraca_admin@example.com - because that's a real email in our database - and password

"tada". When we submit... it works! We're redirected! And we're logged in! I know because of the

web debug toolbar: logged in as abraca_admin@example.com , authenticated: Yes.

If you click this icon to jump into the profiler, there is a ton of juicy info about security. We're

going to talk about the most important parts of this as we go along.

Authentication Info & The Session

Click back to the homepage. Notice that, if we surf around the site, we stay logged in... which is

what we want. This works because Symfony firewalls are, by default, "stateful". That's a fancy

way of saying that, at the end of each request, the User object is saved to the session. Then at

the start of the next request, that User object is loaded from the session... and we stay logged

in.

Refreshing the User

This works great! But... there is one potential problem. Imagine we log in at our work computer.

Then, we go home, log in on a totally different computer, and change some of our user data -

like maybe we change our firstName in the database via an "edit profile" section. When we

class QuestionController extends AbstractController

{

 /**

 * @Route("/{page<\d+>}", name="app_homepage")

 */

 public function homepage(QuestionRepository $repository, int $page =

1)

 {

 }

}

come back to work the next day and refresh the site, Symfony will, of course, load the User

object from the session. But... that User object will now have the wrong firstName ! Its data

will no longer match what's in the database... because we're reloading a "stale" object from the

session.

Fortunately... this is not a real problem. Why? Because at the beginning of every request,

Symfony also refreshes the user. Well, actually our "user provider" does this. Back in

security.yaml , remember that user provider thingy?

config/packages/security.yaml

1

 // ... lines 2 - 7

8

9

10

11

12

13

14

 // ... lines 15 - 17

18

 // ... line 19

20

 // ... lines 21 - 34

Yep it has two jobs. First, if we give it an email, it knows how to find that user. If we only pass a

single argument to UserBadge then the user provider does the hard work of loading the User

from the database:

security:

 providers:

 # used to reload user from session & other features (e.g.

switch_user)

 app_user_provider:

 entity:

 class: App\Entity\User

 property: email

 firewalls:

 main:

 provider: app_user_provider

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 35

36

37

 // ... lines 38 - 40

41

42

 // ... lines 43 - 50

51

 // ... lines 52 - 54

55

56

 // ... lines 57 - 79

80

But the user provider also has a second job. At the start of every request, it refreshes the User

by querying the database for fresh data. This all happens automatically in the background....

which is great! It's a boring, but critical process that you, at least, should be aware of.

User Changed === Logged Out

Oh, and by the way: after querying for the fresh User data, if some important data on the user

changed - like the email , password or roles - you'll actually get logged out. This is a

security feature: it allows a user to, for example, change their password and cause any "bad"

users who may have gotten access to their account to get logged out. If you want to learn more

about this, search for EquatableInterface : that's an interface that allows you to control this

process.

Let's find out what happens when we fail authentication. Where does the user go? How are

errors displayed? How will we deal with the emotional burden of failure? Most of that is next.

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 }),

);

 }

}

Chapter 9: When Authentication Fails

Go back to the login form. What happens if we fail login? Right now, there are two ways to fail: if

we can't find a User for the email or if the password is incorrect. Let's try a wrong password

first.

onAuthenticationFailure & AuthenticationException

Enter a real email from the database... and then any password that isn't "tada". And... yep! We

hit the dd() ... that comes from onAuthenticationFailure() :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 64

65

66

67

68

 // ... lines 69 - 79

80

So no matter how we fail authentication, we end up here, and we're passed an $exception

argument. Let's also dump that:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 64

65

66

67

68

 // ... lines 69 - 79

80

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 dd('failure');

 }

}

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 dd('failure', $exception);

 }

}

Head back... and refresh. Cool! It's a BadCredentialsException .

This is cool. If authentication fails - no matter how it fails - we're going to end up here with some

sort of AuthenticationException . BadCredentialsException is a subclass of that....

as is the UserNotFoundException that we're throwing from our user loader callback:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 35

36

37

 // ... lines 38 - 40

41

42

 // ... lines 43 - 45

46

47

48

 // ... lines 49 - 50

51

 // ... lines 52 - 54

55

56

 // ... lines 57 - 79

80

All of these exception classes have one important thing in common. Hold Command or Ctrl to

open up UserNotFoundException to see it. All of these authentication exceptions have a

special getMessageKey() method that contains a safe explanation of why authentication

failed. We can use this to tell the user what went wrong.

hide_user_not_found: Showing Invalid Username/Email Errors

So here's the big picture: when authentication fails, it's because something threw an

AuthenticationException or one of its sub-classes. And so, since we're throwing a

UserNotFoundException when an unknown email is entered... if we try to log in with a bad

email, that exception should be passed to onAuthenticationFailure() .

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 if (!$user) {

 throw new UserNotFoundException();

 }

 }),

);

 }

}

Let's test that theory. At the login form, enter some invented email... and... submit. Oh! We still

get a BadCredentialsException ! I was expecting this to be the actual exception that was

thrown: the UserNotFoundException .

For the most part... that is how this works. If you throw an AuthenticationException

during the authenticator process, that exception is passed to you down in

onAuthenticationFailure() . Then you can use it to figure out what went wrong.

However, UserNotFoundException is a special case. On some sites, when the user enters

a valid email address but a wrong password, you might not want to tell the user that email was

in fact found. So you say "Invalid credentials" both if the email wasn't found or if the password

was incorrect.

This problem is called user enumeration: it's where someone can test emails on your login form

to figure out which people have accounts and which don't. For some sites, you definitely do not

want to expose that information.

And so, to be safe, Symfony converts UserNotFoundException to a

BadCredentialsException so that entering an invalid email or invalid password both give

the same error message. However, if you do want to be able to say "Invalid email" - which is

much more helpful to your users - you can do this.

Open up config/packages/security.yaml . And, anywhere under the root security

key, add a hide_user_not_found option set to false :

config/packages/security.yaml

1

 // ... lines 2 - 4

5

 // ... lines 6 - 37

This tells Symfony to not convert UserNotFoundException to a

BadCredentialsException .

If we refresh now... boom! Our UserNotFoundException is now being passed directly to

onAuthenticationFailure() .

Storing the Authentication Error in the Session

security:

 hide_user_not_found: false

Ok, so let's think. Down in onAuthenticationFailure() ... what do we want to do? Our job

in this method is, as you can see, to return a Response object. For a login form, what we

probably want to do is redirect the user back to the login page but show an error.

To be able to do that, let's stash this exception - which holds the error message - into the

session. Say $request->getSession()->set() . We can really use whatever key we

want... but there's a standard key that's used to store authentication errors. You can read it from

a constant: Security - the one from the Symfony Security component -

::AUTHENTICATION_ERROR . Pass $exception to the second argument:

 Tip

In Symfony 6.2 and higher, use the SecurityRequestAttributes class instead:

Symfony\Component\Security\Http\SecurityRequestAttributes , then

SecurityRequestAttributes::AUTHENTICATION_ERROR .

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 65

66

67

68

 // ... lines 69 - 72

73

 // ... lines 74 - 84

85

Now that the error is in the session, let's redirect back to the login page. I'll cheat and copy the

RedirectResponse from earlier... and change the route to app_login :

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 $request->getSession()->set(Security::AUTHENTICATION_ERROR,

$exception);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 65

66

67

68

69

70

71

72

73

 // ... lines 74 - 84

85

AuthenticationUtils: Rendering the Error

Cool! Next, inside login() controller, we need to read that error and render it. The most

straightforward way to do that would be to grab the session and read out this key. But... it's even

easier than that! Symfony provides a service that will grab the key from the session

automatically. Add a new argument type-hinted with AuthenticationUtils :

src/Controller/SecurityController.php

 // ... lines 1 - 7

8

9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 19

20

21

And then give render() a second argument. Let's pass an error variable to Twig set to

$authenticationUtils->getLastAuthenticationError() :

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 $request->getSession()->set(Security::AUTHENTICATION_ERROR,

$exception);

 return new RedirectResponse(

 $this->router->generate('app_login')

);

 }

}

use Symfony\Component\Security\Http\Authentication\AuthenticationUtils;

class SecurityController extends AbstractController

{

 public function login(AuthenticationUtils $authenticationUtils):

Response

 {

 }

}

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

17

18

19

20

21

That's just a shortcut to read that key off of the session.

This means that the error variable is literally going to be an AuthenticationException

object. And remember, to figure out what went wrong, all AuthenticationException

objects have a getMessageKey() method that returns an explanation.

In templates/security/login.html.twig , let's render that. Right after the h1 , say if

error , then add a div with alert alert-danger . Inside render error.messageKey :

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 29

30

31

32

33

34

You don't want to use error.message because if you had some sort of internal error - like a

database connection error - that message might contain sensitive details. But

class SecurityController extends AbstractController

{

 public function login(AuthenticationUtils $authenticationUtils):

Response

 {

 return $this->render('security/login.html.twig', [

 'error' => $authenticationUtils->getLastAuthenticationError(),

]);

 }

}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <h1 class="h3 mb-3 font-weight-normal">Please sign in</h1>

 {% if error %}

 <div class="alert alert-danger">{{ error.messageKey }}

</div>

 {% endif %}

 </form>

 </div>

 </div>

</div>

{% endblock %}

error.messageKey is guaranteed to be safe.

Testing time! Refresh! Yes! We're redirected back to /login and we see:

“Username could not be found.”

That's the message if the User object can't be loaded: the error that comes form

UserNotFoundException . It's... not a great message... since our users are logging in with

an email, not a username.

So next, let's learn how to customize these error messages and add a way to log out.

Chapter 10: Customize Error Messages & Adding
Logout

When we fail login, we store the AuthenticationException in the session - which explains

what went wrong - and then redirect to the login page:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 65

66

67

68

69

70

71

72

73

 // ... lines 74 - 84

85

On that page, we read that exception out of the session using this nice

AuthenticationUtils service:

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

17

18

19

20

21

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 $request->getSession()->set(Security::AUTHENTICATION_ERROR,

$exception);

 return new RedirectResponse(

 $this->router->generate('app_login')

);

 }

}

class SecurityController extends AbstractController

{

 public function login(AuthenticationUtils $authenticationUtils):

Response

 {

 return $this->render('security/login.html.twig', [

 'error' => $authenticationUtils->getLastAuthenticationError(),

]);

 }

}

And ultimately, in the template, call the getMessageKey() method to render a safe message

that describes why authentication failed:

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 11

12

13

14

 // ... lines 15 - 29

30

31

32

33

34

For example, if we enter an email that doesn't exist, we see:

“Username could not be found.”

On a technical level, this means that the User object could not be found. Cool... but for us, this

isn't a great message because we're logging in via an email. Also, if we enter a valid user -

abraca_admin@example.com - with an invalid password, we see:

“Invalid credentials.”

That's a better message... but it's not super friendly.

Translating the Error Messages?

So how can we customize these? The answer is both simple and... maybe a bit surprising. We

translate them. Check it out: over in the template, after messageKey , add |trans to translate

it. Pass this two arguments. The first is error.messageData . This isn't too important... but in

the translation world, sometimes your translations can have "wildcard" values in them... and you

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 {% if error %}

 <div class="alert alert-danger">{{ error.messageKey }}

</div>

 {% endif %}

 </form>

 </div>

 </div>

</div>

{% endblock %}

pass in the values for those wildcards here. The second argument is called a "translation

domain"... which is almost like a translation category. Pass security :

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 11

12

13

14

 // ... lines 15 - 29

30

31

32

33

34

If you do have a multi-lingual site, all of the core authentication messages have already been

translated to other languages... and those translations are available in a domain called

security . So by using the security domain here, if we switched the site to Spanish, we

would instantly get Spanish authentication messages.

If we stopped now... absolutely nothing would change! But because we're going through the

translator, we have the opportunity to "translate" these strings from English to... different

English!

In the translations/ directory - which you should automatically have because the

translation component is already installed - create a new file called security.en.yaml :

security because we're using the security translation domain and en for English. You

can also create .xlf translation files - YAML is just easier for what we need to do.

Now, copy the exact error message including the period, paste - I'll wrap it in quotes to be safe -

and set it to something different like:

“Invalid password entered!”

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 {% if error %}

 <div class="alert alert-danger">{{

error.messageKey|trans(error.messageData, 'security') }}</div>

 {% endif %}

 </form>

 </div>

 </div>

</div>

{% endblock %}

translations/security.en.yaml

1

Cool! Let's try it again. Log in as abraca_admin@example.com with an invalid password

and... much better! Let's try with a bad email.

Ok, repeat the process: copy the message, go over to the translation file, paste... and change it

to something a bit more user-friendly like:

“Email not found!”

translations/security.en.yaml

 // ... line 1

2

Let's try it again: same email, any password and... got it!

“Email not found.”

Okay! Our authenticator is done! We load the User from the email, check their password and

handle both success and failure. Booya! We are going to add more stuff to this later - including

checking real user passwords - but this is fully functional.

Logging Out

Let's add a way to log out. So... like if the user goes to /logout , they get... logged it! This

starts exactly like you expect: we need a route & controller.

Inside of SecurityController , I'll copy the login() method, paste, change it to

/logout , app_logout and call the method logout :

"Invalid credentials.": "Invalid password entered!"

"Username could not be found.": "Email not found!"

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 21

22

23

24

25

26

 // ... line 27

28

29

To perform the logging out itself... we're going to put absolutely no code in this method. Actually,

I'll throw a new \Exception() that says "logout() should never be reached":

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 21

22

23

24

25

26

27

28

29

Let me explain. Logging out works a bit like logging in. Instead of putting some logic in the

controller, we're going activate something on our firewall that says:

“Hey! If the user goes to /logout , please intercept that request, log out the user, and

redirect them somewhere else.”

To activate that magic, open up config/packages/security.yaml . Anywhere under our

firewall, add logout: true :

class SecurityController extends AbstractController

{

 /**

 * @Route("/logout")

 */

 public function logout()

 {

 }

}

class SecurityController extends AbstractController

{

 /**

 * @Route("/logout")

 */

 public function logout()

 {

 throw new \Exception('logout() should never be reached');

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 39

Internally, this activates a "listener" that looks for any requests to /logout .

Configuring logout

And actually, instead of just saying logout: true , you can customize how this works. Find

your terminal and run:

symfony console debug:config security

As a reminder, this command shows you all of your current configuration under the security

key. So all of our config plus any default values.

If we run this... and find the main firewall... check out the logout section. All of these keys are

the default values. Notice there's one called path: /logout . This is why it's listening to the

URL /logout . If you wanted to log out via another URL, you would just tweak this key here.

But since we have /logout here... and that matches our /logout right here, this should

work. By the way, you might be wondering why we needed to create a route and controller at all!

Great question! We actually don't need a controller, it will never be called. But we do need a

route. If we didn't have one, the routing system would trigger a 404 error before the logout

system could work its magic. Plus, it's nice to have a route, so we can generate a URL to it.

Ok: let's test this thing! Log in first: abraca_admin@example.com and password tada .

Awesome: we are authenticated. Manually go to /logout and... we are now logged out! The

default behavior of the system is to log us out and redirect back to the homepage. If you need to

customize that, there are a few options. First, under the logout key, you can change target

to some other URL or route name.

security:

 firewalls:

 main:

 logout: true

But we can also hook into the logout process via an event listener, a topic that we'll talk about

towards the end of the tutorial.

Next: let's give each user a real password. This will involve hashing passwords, so we can

securely store them in the database and then checking those hashed passwords during

authentication. Symfony makes both of these easy.

Chapter 11: Giving Users Passwords

Symfony doesn't really care if the users in your system have passwords or not. If you're building

a login system that reads API keys from a header, then there are no passwords. The same is

true if you have some sort of SSO system. Your users might have passwords... but they enter

them on some other site.

But for us, we do want each user to have a password. When we used the make:user

command earlier, it actually asked us if we wanted our users to have passwords. We answered

no... so that we could do all of this manually. But in a real project, I would answer "yes" to save

time.

PasswordAuthenticatedUserInterface

We know that all User classes must implement UserInterface :

src/Entity/User.php

 // ... lines 1 - 7

8

 // ... lines 9 - 12

13

14

 // ... lines 15 - 130

131

Then, if you need to check user passwords in your application, you also need to implement a

second interface called PasswordAuthenticatedUserInterface :

src/Entity/User.php

 // ... lines 1 - 6

7

 // ... lines 8 - 12

13

14

 // ... lines 15 - 128

129

use Symfony\Component\Security\Core\User\UserInterface;

class User implements UserInterface

{

}

use

Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

This requires you to have one new method: getPassword() .

If you're using Symfony 6, you won't have this yet, so add it:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 90

91

92

93

94

95

96

97

98

99

 // ... lines 100 - 130

131

I do have it because I'm using Symfony 5 and the getPassword() method is needed for

backwards compatibility: it used to be part of UserInterface .

Now that our users will have a password, and we're implementing

PasswordAuthenticatedUserInterface , I'm going to remove this comment above the

method:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 90

91

92

93

94

95

96

97

 // ... lines 98 - 128

129

class User implements UserInterface

{

 /**

 * This method can be removed in Symfony 6.0 - is not needed for apps

that do not check user passwords.

 *

 * @see PasswordAuthenticatedUserInterface

 */

 public function getPassword(): ?string

 {

 return null;

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @see PasswordAuthenticatedUserInterface

 */

 public function getPassword(): ?string

 {

 return null;

 }

}

Storing a Hashed Password for each User

Ok, let's forget about security for a minute. Instead, focus on the fact that we need to be able to

store a unique password for each user in the database. This means that our user entity needs a

new field! Find your terminal and run:

symfony console make:entity

Let's update the User entity, to add a new field call password ... which is a string, 255 length

is overkill but fine... and then say "no" to nullable. Hit enter to finish.

Back over in the User class, it's... mostly not surprising. We have a new $password

property... and at the bottom, a new setPassword() method:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 36

37

38

39

40

 // ... lines 41 - 134

135

136

137

138

139

140

141

Notice that it did not generate a getPassword() method... because we already had one. But

we do need to update this to return $this->password :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @ORM\Column(type="string", length=255)

 */

 private $password;

 public function setPassword(string $password): self

 {

 $this->password = $password;

 return $this;

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 98

99

100

101

102

 // ... lines 103 - 140

141

Very important thing about this $password property: it is not going to store the plaintext

password. Never ever store the plaintext password! That's the fastest way to have a security

breach... and lose friends.

Instead, we're going to store a hashed version of the password... and we'll see how to generate

that hashed password in a minute. But first, let's make the migration for the new property:

symfony console make:migration

Go peek at that file to make sure everything looks good:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getPassword(): ?string

 {

 return $this->password;

 }

}

migrations/Version20211001185505.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 Tip

If you are using PostgreSQL, you should modify your migration. Add DEFAULT '' at the

end so that the new column can be added without an error:

$this->addSql('ALTER TABLE product ADD description VARCHAR(255) NOT NULL DEF

And... it does! Close it... and run it:

symfony console doctrine:migrations:migrate

The password_hashers Config

Perfect! Now that our users have a new password column in the database, let's populate that in

our fixtures. Open up src/Factory/UserFactory.php and find getDefaults() .

final class Version20211001185505 extends AbstractMigration

{

 public function getDescription(): string

 {

 return '';

 }

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE user ADD password VARCHAR(255) NOT

NULL');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('ALTER TABLE user DROP password');

 }

}

Again, what we are not going to do is set password to the plain-text password. Nope, that

password property needs to store the hashed version of the password.

Open up config/packages/security.yaml . This has a little bit of config on top called

password_hashers , which tells Symfony which hashing algorithm it should use for hashing

user passwords:

config/packages/security.yaml

1

 // ... lines 2 - 6

7

8

9

 // ... lines 10 - 39

This config says that any User classes that implement

PasswordAuthenticatedUserInterface - which our class, of course, does - will use the

auto algorithm where Symfony chooses the latest and greatest algorithm automatically.

The Password Hasher Service

Thanks to this config, we have access to a "hasher" service that's able to convert a plaintext

password into a hashed version using this auto algorithm. Back inside UserFactory , we can

use that to set the password property:

src/Factory/UserFactory.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 37

38

39

40

 // ... lines 41 - 42

43

44

45

 // ... lines 46 - 58

59

security:

 # https://symfony.com/doc/current/security.html#c-hashing-passwords

 password_hashers:

Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface:

'auto'

final class UserFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'plainPassword' => 'tada',

];

 }

}

In the constructor, add a new argument:

UserPasswordHasherInterface $passwordHasher . I'll hit Alt+Enter and go to

"Initialize properties" to create that property and set it:

src/Factory/UserFactory.php

 // ... lines 1 - 6

7

 // ... lines 8 - 29

30

31

32

33

34

35

36

37

38

39

 // ... lines 40 - 67

68

Below, we can set password to $this->passwordHasher->hashPassword() and then

pass it some plain-text string.

Well... to be honest... while I hope this makes sense on a high level... this won't quite work

because the first argument to hashPassword() is the User object... which we don't have yet

inside getDefaults() .

That's ok because I like to create a plainPassword property on User to help make all of this

easier anyways. Let's add that next, finish the fixtures and update our authenticator to validate

the password. Oh, but don't worry: that new plainPassword property won't be stored in the

database.

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

final class UserFactory extends ModelFactory

{

 private UserPasswordHasherInterface $passwordHasher;

 public function __construct(UserPasswordHasherInterface

$passwordHasher)

 {

 parent::__construct();

 $this->passwordHasher = $passwordHasher;

 }

}

Chapter 12: Hashing Plain Passwords &
PasswordCredentials

The process of saving a user's password always looks like this: start with a plain-text password,

hash that, then save the hashed version onto the User . This is something we're going to do in

the fixtures... but we'll also do this on a registration form later... and you would also need it on a

change password form.

Adding a plainPassword Field

To make this easier, I'm going to do something optional. In User , up on top, add a new

private $plainPassword property:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 41

42

 // ... lines 43 - 154

155

The key thing is that this property will not be persisted to the database: it's just a temporary

property that we can use during, for example, registration, to store the plain password.

Below, I'll go to "Code"->"Generate" - or Command+N on a Mac - to generate the getter and

setter for this. The getter will return a nullable string :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 private $plainPassword;

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 143

144

145

146

147

148

149

150

151

152

153

154

155

Now, if you do have a plainPassword property, you'll want to find eraseCredentials()

and set $this->plainPassword to null:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 118

119

120

121

122

123

 // ... lines 124 - 154

155

This... is not really that important. After authentication is successful, Symfony calls

eraseCredentials() . It's... just a way for you to "clear out any sensitive information" on

your User object once authentication is done. Technically we will never set plainPassword

during authentication... so it doesn't matter. But, again, it's a safe thing to do.

Hashing the Password in the Fixtures

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getPlainPassword(): ?string

 {

 return $this->plainPassword;

 }

 public function setPlainPassword(string $plainPassword): self

 {

 $this->plainPassword = $plainPassword;

 return $this;

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function eraseCredentials()

 {

 // If you store any temporary, sensitive data on the user, clear

it here

 $this->plainPassword = null;

 }

}

Back inside UserFactory , instead of setting the password property, set plainPassword

to "tada":

src/Factory/UserFactory.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 37

38

39

40

 // ... lines 41 - 42

43

44

45

 // ... lines 46 - 58

59

If we just stopped now, it would set this property... but then the password property would stay

null ... and it would explode in the database because that column is required.

So after Foundry has finished instantiating the object, we need to run some extra code that

reads the plainPassword and hashes it. We can do that down here in the initialize()

method... via an "after instantiation" hook:

src/Factory/UserFactory.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 46

47

48

49

50

51

52

53

 // ... lines 54 - 58

59

This is pretty cool: call $this->afterInstantiate() , pass it a callback and, inside say if

$user->getPlainPassword() - just in case we override that to null - then

$user->setPassword() . Generate the hash with

final class UserFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'plainPassword' => 'tada',

];

 }

}

final class UserFactory extends ModelFactory

{

 protected function initialize(): self

 {

 // see

https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#initia

 return $this

 // ->afterInstantiate(function(User $user) {})

 ;

 }

}

$this->passwordHasher->hashPassword() passing the user that we're trying to hash -

so $user - and then whatever the plain password is: $user->getPlainPassword() :

src/Factory/UserFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 49

50

51

52

53

54

55

56

57

58

59

60

61

62

 // ... lines 63 - 67

68

Done! Let's try this. Find your terminal and run:

symfony console doctrine:fixtures:load

This will take a bit longer than before because hashing passwords is actually CPU intensive.

But... it works! Check the user table:

symfony console doctrine:query:sql 'SELECT * FROM user'

And... got it! Every user has a hashed version of the password!

Validating the Password: PasswordCredentials

final class UserFactory extends ModelFactory

{

 protected function initialize(): self

 {

 // see

https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#initia

 return $this

 ->afterInstantiate(function(User $user) {

 if ($user->getPlainPassword()) {

 $user->setPassword(

 $this->passwordHasher->hashPassword($user, $user-

>getPlainPassword())

);

 }

 })

 ;

 }

}

Finally we're ready to check the user's password inside our authenticator. To do this, we need to

hash the submitted plain password then safely compare that with the hash in the database.

Well we don't need to do this... because Symfony is going to do it automatically. Check it out:

replace CustomCredentials with a new PasswordCredentials and pass it the plain-text

submitted password:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 17

18

 // ... lines 19 - 21

22

23

 // ... lines 24 - 37

38

39

 // ... lines 40 - 42

43

 // ... lines 44 - 53

54

55

56

 // ... lines 57 - 83

84

That's it! Try it. Log in using our real user - abraca_admin@example.com - I'll copy that, then

some wrong password. Nice! Invalid password! Now enter the real password tada . It works!

That's awesome! When you put a PasswordCredentials inside your Passport , Symfony

automatically uses that to compare the submitted password to the hashed password of the user

in the database. I love that.

This is all possible thanks to a powerful event listener system inside of security. Let's learn more

about that next and see how we can leverage it to add CSRF protection to our login form... with

about two lines of code.

use

Symfony\Component\Security\Http\Authenticator\Passport\Credentials\PasswordC

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new PasswordCredentials($password)

);

 }

}

Chapter 13: Security Listener System & Csrf
Protection

After we return the Passport object, we know that two things happen. First, the UserBadge

is used to get the User object:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 37

38

39

 // ... lines 40 - 42

43

44

45

46

47

48

49

50

51

52

53

 // ... line 54

55

56

 // ... lines 57 - 83

84

In our case, because we passed this a second argument, it just calls our function, and we do

the work. But if you only pass one argument, then the user provider does the work.

The second thing that happens is that the "credentials badge" is "resolved":

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 // optionally pass a callback to load the User manually

 $user = $this->userRepository->findOneBy(['email' =>

$userIdentifier]);

 if (!$user) {

 throw new UserNotFoundException();

 }

 return $user;

 }),

);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 37

38

39

 // ... lines 40 - 42

43

 // ... lines 44 - 53

54

55

56

 // ... lines 57 - 83

84

Originally it did this by executing our callback. Now it checks the user's password in the

database.

The Event System in Action

All of this is powered by a really cool event system. After our authenticate() method, the

security system dispatches several events... and there are a set of listeners to these events that

do different work. We're going to see a full list of these listeners later... and even add our own

listeners to the system.

UserProviderListener

But let's look at a few of them. Hit Shift+Shift so we can load some core files from

Symfony. The first is called UserProviderListener . Make sure to "Include non-project

items"... and open it up.

This is called after we return our Passport . It first checks to make sure the Passport has a

UserBadge - it always will in any normal situation - and then grabs that object. It then checks

to see if the badge has a "user loader": that's the function that we're passing to the second

argument of our UserBadge . If the badge already has a user loader, like in our case, it does

nothing. But if it does not, it sets the user loader to the loadUserByIdentifier() method

on our user provider.

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new PasswordCredentials($password)

);

 }

}

It's... a little technical... but this is what causes our user provider in security.yaml to be

responsible for loading the user if we only pass one argument to UserBadge .

CheckCredentialsListener

Let's check one other class. Close this one and hit Shift+Shift to open

CheckCredentialsListener . As the name suggests, this is responsible for checking the

user's "credentials". It first checks to see if the Passport has a PasswordCredentials

badge. Even though its name doesn't sound like it, the "credentials" objects are just badges...

like any other badge. So this checks to see if the Passport has that badge and if it does, it

grabs the badge, reads the plain-text password off of it, and, eventually way down here, uses

the password hasher to verify that the password is correct. So this contains all of that password

hashing logic. Below, this listener also handles the CustomCredentials badge.

Badges Must be Resolved

So your Passport always has at least these two badges: the UserBadge and also some sort

of "credentials badge". One important property of badges is that each one must be "resolved".

You can see this in CheckCredentialsListener . After it finishes checking the password, it

calls $badge->markResolved() . If, for some reason, this CheckCredentialsListener

was never called due to some misconfiguration... the badge would remain "unresolved" and that

would actually cause authentication to fail. Yup, after calling the listeners, Symfony checks to

make sure that all badges have been resolved. This means that you can confidently return

PasswordCredentials and not have to wonder if something did actually verify that

password.

Adding CSRF Protection

And here's where things start to get more interesting. In addition to these two badges, we can

also add more badges to our Passport to activate more super powers. For example, one

good thing to have on a login form is CSRF protection. Basically you add a hidden field to your

form that contains a CSRF token... then, on submit, you validate that token.

Let's do this. Anywhere inside your form, add an input type="hidden" ,

name="_csrf_token" - this name could be anything, but this is a standard name - then

value="{{ csrf_token() }}" . Pass this the string authenticate :

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 24

25

26

27

 // ... lines 28 - 33

34

35

36

37

38

That authenticate could also be anything... it's like a unique name for this form.

Now that we have the field, copy its name and head over to LoginFormAuthenticator .

Here, we need to read that field from the POST data and then ask Symfony:

“Is this CSRF token valid?”

Well, in reality, that second part will happen automatically.

How? The Passport object has a third argument: an array of any other badges that we want

to add. Add one: a new CsrfTokenBadge() :

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <input type="hidden" name="_csrf_token"

 value="{{ csrf_token('authenticate') }}"

 >

 </form>

 </div>

 </div>

</div>

{% endblock %}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 15

16

 // ... lines 17 - 22

23

24

 // ... lines 25 - 38

39

40

 // ... lines 41 - 43

44

 // ... lines 45 - 55

56

57

 // ... lines 58 - 59

60

61

62

63

 // ... lines 64 - 90

91

This needs two things. The first is the CSRF token ID. Say authenticate :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 38

39

40

 // ... lines 41 - 43

44

 // ... lines 45 - 55

56

57

58

 // ... line 59

60

61

62

63

 // ... lines 64 - 90

91

use

Symfony\Component\Security\Http\Authenticator\Passport\Badge\CsrfTokenBadge;

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 [

 new CsrfTokenBadge(

)

]

);

 }

}

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 [

 new CsrfTokenBadge(

 'authenticate',

)

]

);

 }

}

this just needs to match whatever we used in the form. The second argument is the submitted

value, which is $request->request->get() and the name of our field: _csrf_token :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 38

39

40

 // ... lines 41 - 43

44

 // ... lines 45 - 55

56

57

58

59

60

61

62

63

 // ... lines 64 - 90

91

And... we're done! Internally, a listener will notice this badge, validate the CSRF token and

resolve the badge.

Let's try it! Go to /login , inspect the form... and find the hidden field. There it is. Enter any

email, any password... but mess with the CSRF token value. Hit "Sign in" and... yes! Invalid

CSRF token! Now if we don't mess with the token... and use any email and password...

beautiful! The CSRF token was valid... so it continued to the email error.

Next: let's leverage Symfony's "remember me" system to allow users to stay logged in for a long

time. This feature also leverages the listener system and a badge.

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 [

 new CsrfTokenBadge(

 'authenticate',

 $request->request->get('_csrf_token')

)

]

);

 }

}

Chapter 14: Remember Me System

Another nice feature of a login form is a "remember me" checkbox. This is where we store a

long-lived "remember me" cookie in the user's browser so that when they close their browser -

and so, lose their session - that cookie will keep them logged in... for a week... or a year... or

whatever we configure. Let's add this.

Enabling the remember_me System

The first step is to go to config/packages/security.yaml and activate the system. We

do this by saying remember_me: and then, below, setting one required piece of config:

secret : set to %kernel.secret% :

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 27

28

29

 // ... lines 30 - 42

This is used to "sign" the remember me cookie value... and the kernel.secret parameter

actually comes from our .env file:

.env

 // ... lines 1 - 15

16

 // ... line 17

18

19

 // ... lines 20 - 28

Yup, this APP_SECRET ends up becoming the kernel.secret parameter... which we can

reference here.

security:

 firewalls:

 main:

 remember_me:

 secret: '%kernel.secret%'

###> symfony/framework-bundle ###

APP_SECRET=c28f3d37eba278748f3c0427b313e86a

###

Like normal, there are a bunch of other options that you can put under remember_me ... and

you can see many of them by running:

symfony console debug:config security

Look for the remember_me: section. One important one is lifetime: , which is how long the

remember me cookie will be valid for.

Earlier, I said that most of the configuration that we put under our firewall serves to activate

different authenticators. For example, custom_authenticator: activates our

LoginFormAuthenticator :

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 42

Which means that our class is now called at the start of every request and looks for a login form

submit. The remember_me config also activates an authenticator: a core authenticator called

RememberMeAuthenticator . On every request, this looks for a "remember me" cookie - that

we'll create in a second - and, if it's there, uses it to authenticate the user.

Adding the Remember Me Checkbox

Now that this is in place, our next job is to set that cookie on the user's browser after they log in.

Open up login.html.twig . Instead of always adding the cookie, let's let the user choose.

Right after the password, add a div with some classes, a label and an input

type="checkbox" , name="_remember_me" :

security:

 firewalls:

 main:

 custom_authenticator: App\Security\LoginFormAuthenticator

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 24

25

26

27

28

29

 // ... lines 30 - 39

40

41

42

43

44

The name - _remember_me - is important and needs to be that value. As we'll see in a minute,

the system looks for a checkbox with this exact name.

Ok, refresh the form. Cool, we have a checkbox! Though... it's a little ugly... I think messed

something up. Use form-check and let's give our checkbox form-check-input :

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <div class="form-check mb-3">

 <label>

 <input type="checkbox" name="_remember_me"

class="form-check-input"> Remember me

 </label>

 </div>

 </form>

 </div>

 </div>

</div>

{% endblock %}

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 24

25

26

27

28

29

 // ... lines 30 - 39

40

41

42

43

44

Now... better!

Opting into the Remember Me Cookie

If we checked the box and submitted... absolutely nothing different would happen: Symfony

would not set a remember me cookie.

That's because our authenticator needs to advertise that it supports remember me cookies

being set. This is a little weird, but think about it: just because we activated the remember_me

system in security.yaml doesn't mean that we ALWAYS want remember me cookies to be

set. In a login form, definitely. But if we had some sort of API token authentication... then we

wouldn't want Symfony to try to set a remember me cookie on that API request.

Anyways, all we need to add is a little flag that says that this authentication mechanism does

support adding remember me cookies. Do this with a badge: new RememberMeBadge() :

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <div class="form-check mb-3">

 <label>

 <input type="checkbox" name="_remember_me"

class="form-check-input"> Remember me

 </label>

 </div>

 </form>

 </div>

 </div>

</div>

{% endblock %}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 16

17

 // ... lines 18 - 23

24

25

 // ... lines 26 - 39

40

41

 // ... lines 42 - 44

45

46

 // ... lines 47 - 55

56

57

 // ... lines 58 - 61

62

63

64

65

 // ... lines 66 - 92

93

That's it! But there's one kind of odd thing. With the CsrfTokenBadge , we read the POSTed

token and passed it to the badge. But with RememberMeBadge ... we don't do that. Instead,

internally, the remember me system knows to look for a check box called, exactly,

_remember_me .

The entire process works like this. After we successfully authenticate, the remember me system

will look for this badge and look to see if this checkbox is checked. If both are true, it will add the

remember me cookie.

Let's see this in action. Refresh the page... and enter our normal email, password "tada", click

the remember me checkbox... and hit "Sign in". Authentication successful! No surprise. But now

open your browser tools, go to "Application", find "Cookies" and... yes! We have a new

REMEMBERME cookie... which expires a long time from now: that's in 1 year!

Watching the RememberMe Cookie Authenticate Us

To prove the system works, delete the session cookie that normally keeps us logged in. Watch

what happens when we refresh. We're still logged in! That is thanks to the remember_me

use

Symfony\Component\Security\Http\Authenticator\Passport\Badge\RememberMeBadge

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 new PasswordCredentials($password),

 [

 new RememberMeBadge(),

]

);

 }

}

authenticator.

In the web debug toolbar, you can see a slight difference: it's this token class. When you

authenticate, internally, your User object is wrapped in a "token" object... which usually isn't too

important. But that token shows how you were authenticated. Now it says

RememberMeToken ... which proves that the remember me cookie was what authenticated us.

Oh, and if you're wondering why Symfony didn't add a new session cookie... that's only because

Symfony's session is lazy. You won't see it until you go to a page that uses the session - like the

login page. Now it's back.

And... that's really it! In addition to our LoginFormAuthenticator , there is now a second

authenticator that looks for authentication information on a REMEMBERME cookie.

Though, we can make all of this a bit fancier. Next, let's see how we could add a remember me

cookie for all users when they log in, without needing a checkbox. We're also going to explore a

brand-new option on the remember me system that allows you to invalidate all existing

remember me cookies if the user changes their password.

Chapter 15: Always Remember Me &
"signature_properties"

Now that we've got the remember me system working, let's play with it! Instead of giving the

user the option to enable "remember me", could we... just enable it always?

Sure! In this case, we no longer need a remember me checkbox... so we delete that entirely.

always_remember_me: true

There are two ways that you can "force" the remember me system to always set a cookie even

though the checkbox isn't there. The first is in security.yaml : set always_remember_me:

to true :

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 27

28

 // ... line 29

30

 // ... lines 31 - 43

Yes, I totally just misspelled remember ... so don't do that!

With this, our authenticator still needs to add a RememberMeBadge :

security:

 firewalls:

 main:

 remember_me:

 always_remember_me: true

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 55

56

57

 // ... lines 58 - 61

62

63

64

65

 // ... lines 66 - 92

93

But the system will no longer look for that checkbox. As long as it sees this badge, it will add the

cookie.

Enabling on the RememberMeBadge

The other way that you can enable the remember me cookie in all situations is via the badge

itself. Comment-out the new option. Well... let me fix my typo and then comment it out:

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 27

28

 // ... line 29

30

 // ... lines 31 - 43

Inside of LoginFormAuthenticator , on the badge itself, you can call ->enable() ... which

returns the badge instance:

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new PasswordCredentials($password),

 [

 new RememberMeBadge(),

]

);

 }

}

security:

 firewalls:

 main:

 remember_me:

 #always_remember_me: true

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 55

56

57

 // ... lines 58 - 61

62

63

64

65

 // ... lines 66 - 92

93

This says:

“I don't care about any other settings or the checkbox: I definitely want the remember me

system to add a cookie.”

Let's try it! Clear the session and REMEMBERME cookie. This time when we login... oh, invalid

CSRF token! That's because I just killed my session without refreshing - silly Ryan! Refresh and

try again.

Beautiful! We have the REMEMBERME cookie!

Securing Remember Me Cookies: Invalidate on User Data
Change

There is one thing that you need to be careful with when it comes to remember me cookies. If a

bad user somehow got access to my account - like they stole my password - then they could, of

course, log in. Normally, that sucks... but as soon as I find out, I could change my password,

which will log them out.

But... if that bad user has a REMEMBERME cookie... then even if I change my password, they will

stay logged in until that cookie expires... which could be a long time from now. These cookies

class LoginFormAuthenticator extends AbstractAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 new PasswordCredentials($password),

 [

 (new RememberMeBadge())->enable(),

]

);

 }

}

are almost as good as the real thing: they act like "free authentication tickets". And they keep

working - no matter what we do - until they expire.

 Tip

You no longer need to add signature_properties: [password] : Symfony now adds

it automatically!

Fortunately, in the new authenticator system, there's a really cool way to avoid this. In

security.yaml , below remember_me , add a new option called signature_properties

set to an array with password inside:

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 27

28

 // ... line 29

30

 // ... lines 31 - 44

Let me explain. When Symfony creates the remember me cookie, it creates a "signature" that

proves that this cookie is valid. Thanks to this config, it will now fetch the password property

off of our User and include that in the signature. Then, when that cookie is used to

authenticate, Symfony will re-create the signature using the password of the User that's

currently in the database and make sure the two signatures match. So if the password in the

database is different than the password that was used to originally create the cookie... the

signature match will fail!

In other words, for any properties in this list, if even one of these changes in the database on

that User , all remember me cookies for that user will instantly be invalidated.

So if a bad user steals my account, all I need to do is change my password and that bad user

will get kicked out.

This is super cool to see in action. Refresh the page. If you tweak the

signature_properties config, that will invalidate all REMEMBERME cookies on your entire

system: so make sure to get the config right when you first set things up. Watch: if I delete the

security:

 firewalls:

 main:

 remember_me:

 signature_properties: [password]

session cookie and refresh... yup! I'm not authenticated: the REMEMBERME cookie didn't work.

It's still there... but it's non-functional.

Let's log in - with our normal email address... and password... so that we get a new remember

me cookie that's created with the hashed password.

Cool! And now, under normal conditions, things will work just like normal. I can delete the

session cookie, refresh, and I'm still logged in.

But now, let's change the user's password in the database. We can cheat and do this on the

command line:

symfony console doctrine:query:sql 'UPDATE user SET password="foo" WHERE email

Setting the password to foo is utter nonsense... since this column needs to hold a hashed

password... but it'll be ok for our purposes. Hit it and... awesome! This imitated what would

happen if I changed the password on my account.

Now, if we are the bad user, the next time we come back to the site... suddenly we're logged

out! Blast! And I would've gotten away with it, too, if it weren't for you meddling kids! The

remember me cookie is there... but it's not working. I love this feature.

Let's go back... and reload our fixtures to fix my password:

symfony console doctrine:fixtures:load

And... once that's done, go log in again as abraca_admin@example.com , password tada .

Next: it's time to have a power trip and start denying access! Let's look at access_control :

the simplest way to block access to entire sections of your site.

Chapter 16: Denying Access, access_control &
Roles

We've now talked a lot about authentication: the process of logging in. And... we're even logged

in right now. So let's get our first look at authorization. That's the fun part where we get to run

around and deny access to different parts of our site.

Hello access_control

The easiest way to kick someone out of your party is actually right inside of

config/packages/security.yaml . It's via access_control :

config/packages/security.yaml

1

 // ... lines 2 - 38

39

40

41

42

43

Un-comment the first entry:

config/packages/security.yaml

1

 // ... lines 2 - 40

41

42

43

The path is a regular expression. So this basically says:

“If a URL starts with /admin - so /admin or /admin* - then I shall deny access unless

the user has ROLE_ADMIN .”

security:

 # Easy way to control access for large sections of your site

 # Note: Only the *first* access control that matches will be used

 access_control:

 # - { path: ^/admin, roles: ROLE_ADMIN }

 # - { path: ^/profile, roles: ROLE_USER }

security:

 access_control:

 - { path: ^/admin, roles: ROLE_ADMIN }

 # - { path: ^/profile, roles: ROLE_USER }

We'll talk more about roles in a minute... but I can tell you that our user does not have that role.

So... let's try to go to a URL that matches this path. We actually do have a small admin section

on our site. Make sure you're logged in... then go to /admin . Access denied! I've never been

so happy to be rejected. We get kicked out with a 403 error.

On production, you can customize what this 403 error page looks like... in addition to

customizing the 404 error page or 422.

Roles! User::getRoles()

So let's talk about these "roles" thingies. Open up the User class: src/Entity/User.php .

Here's how this works. The moment we log in, Symfony calls this getRoles() method, which

is part of UserInterface :

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 78

79

80

81

82

83

84

85

86

87

88

89

 // ... lines 90 - 154

155

We return an array of whatever roles this user should have. The make:user command

generated this so that we always have a role called ROLE_USER ... plus any extra roles stored

on the $this->roles property. That property holds an array of strings... which are stored in

the database as JSON:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @see UserInterface

 */

 public function getRoles(): array

 {

 $roles = $this->roles;

 // guarantee every user at least has ROLE_USER

 $roles[] = 'ROLE_USER';

 return array_unique($roles);

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 26

27

28

29

30

 // ... lines 31 - 154

155

This means that we can give each user as many roles as we want. So far, when we've created

our users, we haven't given them any roles yet... so our roles property is empty. But thanks to

how the getRoles() method is written, every user at least has ROLE_USER . The

make:user command generated the code like this because all users need to have a least one

role... otherwise they wander around our site like half-dead zombie users. It's... not pretty.

So, by convention, we always give a user at least ROLE_USER . Oh, and the only rule about

roles - that's a mouthful - is that they must start with ROLE_ . Later in the tutorial, we'll learn why.

Anyways, the moment we log in, Symfony calls getRoles() , we return the array of roles, and

it stores them. We can actually see this if we click the security icon on the web debug toolbar.

Yup! Roles: ROLE_USER .

So then, when we go to /admin , this matches our first access_control entry, it checks to

see if we have ROLE_ADMIN , we don't, and it denies access.

Only ONE access_control Matches

Oh, but there's one important detail to know about access_control : only one will ever be

matched on a request.

For example, suppose you had two access controls like this:

security:

 # ...

 access_control:

 - { path: ^/admin, roles: ROLE_ADMIN }

 - { path: ^/admin/foo, roles: ROLE_USER }

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @ORM\Column(type="json")

 */

 private $roles = [];

}

If we went to /admin , that would match the first rule and only use the first rule. It works like

routing: it goes down the access control list one-by-one and as soon as it finds the first match, it

stops, and uses only that entry.

This will help us later when we deny access to all of a section except for one URL. But for now,

just be aware of it!

And... that's it. Access controls give us a really easy way to secure entire sections of our site.

But it's just one way to deny access. Soon we'll talk about how we can deny access on a

controller-by-controller basis, which I really like.

But before we do, I know that if I try to access this page without ROLE_ADMIN , I get the 403

forbidden error. But what if I try to access this page as an anonymous user? Go to /logout?

We're now not logged in.

Go back to /admin and... whoa! An error!

“Full authentication is required to access this resource.”

Next, let's talk about the "entry point" of your firewall: the way that you help anonymous users

start the login process.

Chapter 17: The Entry Point: Inviting Users to Log
In

Log back in using abraca_admin@example.com and password tada . When we go to

/admin , like we saw earlier, we get "Access Denied". This is because of the

access_control ... and the fact that our user does not have ROLE_ADMIN .

But if we change this to ROLE_USER - a role that we do have - then access is granted:

config/packages/security.yaml

1

 // ... lines 2 - 40

41

42

 // ... lines 43 - 44

And we get to see some pretty impressive graphs.

Let's try one more thing. Log out - so manually go to /logout . Now that we are not logged in,

if I went directly to /admin : what should happen?

Well, right now, we get a big error page with a 401 status code. But... that's not what we want! If

an anonymous user tries to access a protected page on our site, instead of an error, we want to

be super friendly and invite them to log in. Because we have a login form, it means that we want

to redirect the user to the login page.

Hello Entry Point!

To figure out what to do when an anonymous user accesses a protected page, each firewall

defines something called an "entry point". The entry point of a firewall is literally a function that

says:

“Here's what we should do when an anonymous user tries to access a protected page!”

security:

 access_control:

 - { path: ^/admin, roles: ROLE_USER }

Each authenticator under our firewall may or may not "provide" an entry point. Right now, we

have two authenticators: our custom LoginFormAuthenticator and also the

remember_me authenticator:

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 27

28

29

30

31

 // ... lines 32 - 44

But neither of these provides an entry point, which is why, instead of redirecting the user to a

page... or something different, we get this generic 401 error. Some built-in authenticators - like

form_login , which we'll talk about soon - do provide an entry point... and we'll see that.

Making our Authenticator an Entry Point

But anyways, none of our authenticators provide an entry point... so let's add one!

Open up our authenticator: src/Security/LoginFormAuthenticator.php . If you want

your authenticator to provide an entry point, all you need to do is implement a new interface:

AuthenticationEntryPointInterface :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 22

23

24

25

26

 // ... lines 27 - 89

90

security:

 firewalls:

 main:

 custom_authenticator: App\Security\LoginFormAuthenticator

 remember_me:

 secret: '%kernel.secret%'

 signature_properties: [password]

 #always_remember_me: true

use

Symfony\Component\Security\Http\EntryPoint\AuthenticationEntryPointInterface

class LoginFormAuthenticator extends AbstractAuthenticator implements

AuthenticationEntryPointInterface

{

}

This requires the class to have one new method... which we actually already have down here.

It's called start() . Uncomment the method. Then, inside, very simply, we're going to redirect

to the login page. I'll steal the code from above:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 22

23

24

25

26

 // ... lines 27 - 83

84

85

86

87

88

89

90

And done!

As soon as an authenticator implements this interface, the security system will notice this and

start using it. Literally, if an anonymous user tries to access a protected page, it will now call our

start() method... and we're going to redirect them to the login page.

Watch: refresh! Boom! It knocks us over to the login page.

A Firewall has Exactly ONE Entry Point

But there's one important thing to understand about entry points. Each firewall can only have

one of them. Think about: at the moment we go to /admin as an anonymous user.... we're not

trying to log in via a login form... or via an API token. We're truly anonymous. And so, if we did

have multiple authenticators that each provided an entry point, our firewall wouldn't know which

to choose. It needs one entry point for all cases.

Right now, since only one of our two authenticators is providing an entry point, it knows to use

this one. But what if that were not the case? Let's actually see what would happen. Find your

terminal and generate a second custom authenticator:

use

Symfony\Component\Security\Http\EntryPoint\AuthenticationEntryPointInterface

class LoginFormAuthenticator extends AbstractAuthenticator implements

AuthenticationEntryPointInterface

{

 public function start(Request $request, AuthenticationException

$authException = null): Response

 {

 return new RedirectResponse(

 $this->router->generate('app_login')

);

 }

}

symfony console make:auth

Make an empty authenticator... and call it DummyAuthenticator .

Beautiful! Like This created a new class called DummyAuthenticator :

src/Security/DummyAuthenticator.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

namespace App\Security;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;

use Symfony\Component\Security\Core\Exception\AuthenticationException;

use Symfony\Component\Security\Http\Authenticator\AbstractAuthenticator;

use

Symfony\Component\Security\Http\Authenticator\Passport\PassportInterface;

class DummyAuthenticator extends AbstractAuthenticator

{

 public function supports(Request $request): ?bool

 {

 // TODO: Implement supports() method.

 }

 public function authenticate(Request $request): PassportInterface

 {

 // TODO: Implement authenticate() method.

 }

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 // TODO: Implement onAuthenticationSuccess() method.

 }

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 // TODO: Implement onAuthenticationFailure() method.

 }

// public function start(Request $request, AuthenticationException

$authException = null): Response

// {

// /*

// * If you would like this class to control what happens when an

anonymous user accesses a

// * protected page (e.g. redirect to /login), uncomment this

method and make this class

// * implement

Symfony\Component\Security\Http\EntryPoint\AuthenticationEntrypointInterface

// *

41

42

43

44

And it also updated custom_authenticator in security.yaml to use both custom

classes:

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

24

25

26

 // ... lines 27 - 46

In the new class, inside supports() , return false :

src/Security/DummyAuthenticator.php

 // ... lines 1 - 11

12

13

14

15

16

17

 // ... lines 18 - 43

44

We're... not going to turn this into a real authenticator.

If we stopped right now... and tried to go to /admin , it would still use the entry point from

LoginFormAuthenticator . But now implement

AuthenticationEntryPointInterface :

// * For more details, see

https://symfony.com/doc/current/security/experimental_authenticators.html#co

the-authentication-entry-point

// */

// }

}

security:

 firewalls:

 main:

 custom_authenticator:

 - App\Security\LoginFormAuthenticator

 - App\Security\DummyAuthenticator

class DummyAuthenticator extends AbstractAuthenticator

{

 public function supports(Request $request): ?bool

 {

 return false;

 }

}

src/Security/DummyAuthenticator.php

 // ... lines 1 - 10

11

12

13

14

 // ... lines 15 - 38

39

And then go down... and uncomment the start() method. For the body, just dd() a

message... because this won't ever be executed:

src/Security/DummyAuthenticator.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 34

35

36

37

38

39

Now the firewall will notice that we have two authenticators that each provide an entry point.

And so, when we refresh any page, it panics! The error says:

“Run for you liiiiives!”

Oh wait, it actually says:

“Because you have multiple authenticators in firewall "main", you need to set the

entry_point key to one of your authenticators.”

And it helpfully tells us the two authenticators that we have. In other words: it's making us

choose.

Copy the entry_point key... then, anywhere under the firewall, say entry_point: and

then point to the LoginFormAuthenticator service:

use

Symfony\Component\Security\Http\EntryPoint\AuthenticationEntryPointInterface

class DummyAuthenticator extends AbstractAuthenticator implements

AuthenticationEntryPointInterface

{

}

class DummyAuthenticator extends AbstractAuthenticator implements

AuthenticationEntryPointInterface

{

 public function start(Request $request, AuthenticationException

$authException = null): Response

 {

 dd('DummyAuthenticator::start()!');

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 47

Technically we can point to any service that implements

AuthenticationEntryPointInterface ... but usually I put that in my authenticator.

Now... if we go back to /admin it works fine! It knows to choose the entry point from

LoginFormAuthenticator .

Speaking of LoginFormAuthenticator ... um... we've been doing way too much work inside

of it! That's my bad - we're doing things the hard way for... ya know... "learning"! But next, let's

cut that out and leverage a base class from Symfony that will let us delete a bunch of code.

We're also going to learn about something called TargetPathTrait : an intelligent way to

redirect the user on success.

security:

 firewalls:

 main:

 entry_point: App\Security\LoginFormAuthenticator

Chapter 18: AbstractLoginFormAuthenticator &
Redirecting to Previous URL

I have a confession to make: in our authenticator, we did too much work! Yep, when you build a

custom authenticator for a "login form", Symfony provides a base class that can make life much

easier. Instead of extending AbstractAuthenticator extend

AbstractLoginFormAuthenticator :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 15

16

 // ... lines 17 - 25

26

27

 // ... lines 28 - 95

96

Hold Command or Ctrl to open that class. Yup, it extends AbstractAuthenticator and

also implements AuthenticationEntryPointInterface . Cool! That means that we can

remove our redundant AuthenticationEntryPointInterface :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 23

24

25

26

27

 // ... lines 28 - 95

96

The abstract class requires us to add one new method called getLoginUrl() . Head to the

bottom of this class and go to "Code"->"Generate" - or Command+N on a Mac - and then

"Implement Methods" to generate getLoginUrl() . For the inside, steal the code from

above... and return $this->router->generate('app_login') :

use

Symfony\Component\Security\Http\Authenticator\AbstractLoginFormAuthenticator

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

}

use

Symfony\Component\Security\Http\EntryPoint\AuthenticationEntryPointInterface

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 91

92

93

94

95

96

The usefulness of this base class is pretty easy to see: it implements three of the methods for

us! For example, it implements supports() by checking to see if the method is POST and if

the getLoginUrl() string matches the current URL. In other words, it does exactly what our

supports() method does. It also handles onAuthenticationFailure() - storing the

error in the session and redirecting back to the login page - and also the entry point - start()

- by, yet again, redirecting to /login .

This means that... oh yea... we can remove code! Let's see: delete supports() ,

onAuthenticationFailure() and also start() :

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 protected function getLoginUrl(Request $request): string

 {

 return $this->router->generate('app_login');

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 36

37

38

39

40

 // ... lines 41 - 75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

 // ... lines 91 - 95

96

Much nicer:

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function supports(Request $request): ?bool

 {

 return ($request->getPathInfo() === '/login' && $request-

>isMethod('POST'));

 }

 public function onAuthenticationFailure(Request $request,

AuthenticationException $exception): ?Response

 {

 $request->getSession()->set(Security::AUTHENTICATION_ERROR,

$exception);

 return new RedirectResponse(

 $this->router->generate('app_login')

);

 }

 public function start(Request $request, AuthenticationException

$authException = null): Response

 {

 return new RedirectResponse(

 $this->router->generate('app_login')

);

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

28

29

30

31

32

 // ... lines 33 - 34

35

36

37

38

 // ... lines 39 - 61

62

63

64

65

 // ... lines 66 - 68

69

70

71

72

 // ... line 73

74

75

Let's make sure we didn't break anything: go to /admin and... perfect! The start() method

still redirects us to /login . Let's log in with abraca_admin@example.com , password tada

and... yes! That still works too: it redirects us to the homepage... because that's what we're

doing inside of onAuthenticationSuccess :

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 private UserRepository $userRepository;

 private RouterInterface $router;

 public function __construct(UserRepository $userRepository,

RouterInterface $router)

 {

 }

 public function authenticate(Request $request): PassportInterface

 {

 }

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 }

 protected function getLoginUrl(Request $request): string

 {

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 63

64

65

66

67

68

69

 // ... lines 70 - 74

75

TargetPathTrait: Smart Redirecting

But... if you think about it... that's not ideal. Since I was originally trying to go to /admin ...

shouldn't the system be smart enough to redirect us back there after we successfully log in?

Yep! And that's totally possible.

Log back out. When an anonymous user tries to access a protected page like /admin , right

before calling the entry point function, Symfony stores the current URL somewhere in the

session. Thanks to this, in onAuthenticationSuccess() , we can read that URL - which is

called the "target path" - and redirect there.

To help us do this, we can leverage a trait! At the top of the class use TargetPathTrait :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 24

25

26

27

28

29

 // ... lines 30 - 81

82

Then, down in onAuthenticationSuccess() , we can check to see if a "target path" was

stored in the session. We do that by saying if $target = $this->getTargetPath() -

passing the session - $request->getSession() - and then the name of the firewall, which

we actually have as an argument. That's that key main :

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 return new RedirectResponse(

 $this->router->generate('app_homepage')

);

 }

}

use Symfony\Component\Security\Http\Util\TargetPathTrait;

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 use TargetPathTrait;

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 66

67

68

69

 // ... line 70

71

72

73

74

75

76

 // ... lines 77 - 81

82

This line does two things at once: it sets a $target variable to the target path and, in the if

statement, checks to see if this has something in it. Because, if the user goes directly to the

login page, then they won't have a target path in the session.

So, if we have a target path, redirect to it: return new RedirectResponse($target) :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 66

67

68

69

70

71

72

73

74

75

76

 // ... lines 77 - 81

82

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 if ($target = $this->getTargetPath($request->getSession(),

$firewallName)) {

 }

 return new RedirectResponse(

 $this->router->generate('app_homepage')

);

 }

}

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 if ($target = $this->getTargetPath($request->getSession(),

$firewallName)) {

 return new RedirectResponse($target);

 }

 return new RedirectResponse(

 $this->router->generate('app_homepage')

);

 }

}

Done and done! If you hold Command or Ctrl and click getTargetPath() to jump into that

core method, you can see that it's super simple: it just reads a very specific key from the

session. This is the key that the security system sets when an anonymous user tries to access a

protected page.

Let's try this thing! We're already logged out. Head to /admin . Our entry point redirects us to

/login . But also, behind the scenes, Symfony just set the URL /admin onto that key in the

session. So when we log in now with our usual email and password... awesome! We get

redirected back to /admin !

Next: um... we're still doing too much work in LoginFormAuthenticator . Dang! It turns out

that, unless we need some especially custom stuff, if you're building a login form, you can skip

the custom authenticator class entirely and rely on a core authenticator from Symfony.

Chapter 19: form_login: The Built-in Authenticator

Custom authenticator classes like this give us tons of control. Like, imagine that, in addition to

email and password fields, you needed a third field - like a "company" dropdown menu... and

you use that value - along with the email - to query for the User . Doing that in here would

be... pretty darn simple! Grab the company POST field, use it in your custom query and

celebrate with nachos.

But a login form is a pretty common thing. And so, Symfony comes with a built-in login form

authenticator that we can... just use!

Checking out the Core FormLoginAuthenticator

Let's open it up and check it out. Hit Shift+Shift and look for

FormLoginAuthenticator .

The first thing to notice is that this extends the same base class that we do. And if you look at

the methods - it references a bunch of options - but ultimately... it does the same stuff that our

class does: getLoginUrl() generates a URL to the login page... and authenticate()

creates a Passport with UserBadge , PasswordCredentials , a RememberMeBadge and

a CsrfTokenBadge .

Both onAuthenticationSuccess and onAuthenticationFailure offload their work to

another object... but if you looked inside of those, you would see that they're basically doing the

same thing that we are.

Using form_login

So let's use this instead of our custom authenticator... which I would do in a real project unless I

need the flexibility of a custom authenticator.

In security.yaml , comment-out our customer authenticator... and also comment-out the

entry_point config:

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 27

28

29

 // ... lines 30 - 50

Replace it with a new key form_login . This activates that authenticator. Below, this has a ton

of options - I'll show you them in a minute. But there are two important ones we need:

login_path: set to the route to your login page... so for us that's app_login ... and also the

check_path , which is the route that the login form submits to... which for us is also

app_login : we submit to the same URL:

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 24

25

26

27

 // ... lines 28 - 50

Setting the entry_point to form_login

And... that's it to start! Let's go try it! Refresh any page and... error! An error that we've seen:

“Because you have multiple authenticators on firewall "main", you need to set "entry_point" to

one of them: either DummyAuthenticator , or form_login .”

I mentioned earlier that some authenticators provide an entry point and some don't. The

remember_me authenticator does not provide one... but our DummyAuthenticator does and

so does form_login . Its entry point redirects to the login page.

security:

 firewalls:

 main:

 #entry_point: App\Security\LoginFormAuthenticator

 custom_authenticator:

 # - App\Security\LoginFormAuthenticator

security:

 firewalls:

 main:

 form_login:

 login_path: app_login

 check_path: app_login

So since we have multiple, we need to choose one. Set entry_point: to form_login :

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 50

Customizing the Login Form Field Names

Now if we refresh... cool: no error. So let's try to log in. Actually... I'll log out first... that still

works... then go log in with abraca_admin@example.com password tada . And... ah!

Another error!

“The key "_username" must be a string, NULL given.”

And it's coming from FormLoginAuthenticator::getCredentials() . Ok, so when you

use the built-in form_login , you need to make sure a few things are lined up. Open the login

template: templates/security/login.html.twig . Our two fields are called email ...

and password :

security:

 firewalls:

 main:

 entry_point: form_login

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 15

16

 // ... line 17

18

19

20

 // ... line 21

22

23

 // ... lines 24 - 34

35

36

37

38

Whelp, it turns out that Symfony expects these fields to be called _username and

_password ... that's why we get this error: it's looking for an _username POST parameter...

but it's not there. Fortunately, this is the type of thing you can configure.

Find your favorite terminal and run:

symfony console debug:config security

to see all of our current security configuration. Scroll up... and look for form_login ... here it is.

There are a bunch of options that allow you to control the form_login behavior. Two of the

most important ones are username_parameter and password_parameter . Let's configure

these to match our field names.

So, in security.yaml add username_parameter: email and

password_parameter: password :

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <div class="col-12">

 <input type="email" name="email" id="inputEmail"

class="form-control" required autofocus>

 </div>

 <div class="col-12">

 <input type="password" name="password"

id="inputPassword" class="form-control" required>

 </div>

 </div>

 </div>

</div>

{% endblock %}

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 27

28

29

 // ... lines 30 - 53

This tells it to read the email POST parameter... and then it will pass that string to our user

provider... which will handle querying the database.

Let's test it. Refresh to resubmit and... got it! We're logged in!

The moral of the story is this: using form_login lets you have a login form with less code. But

while using a custom authenticator class is more work... it has infinite flexibility. So, it's your

choice.

Next: let's see a few other things that we can configure on the login form and add a totally new-

feature: pre-filling the email field when we fail login.

security:

 firewalls:

 main:

 form_login:

 username_parameter: email

 password_parameter: password

Chapter 20: More form_login Config

Using form_login isn't as flexible as a custom authenticator class... though a lot of stuff can

be configured.

For example, right now, it's not checking our CSRF token. Enable that by saying

enable_csrf: true :

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 29

30

 // ... lines 31 - 54

That's it! Over in the options, when you enable CSRF protection, it looks for a hidden field called

_csrf_token with the string authenticate used to generate it. Fortunately, in our

template, we're already using both of those things... so this is just going to work.

Seeing the Full List of Options

And there are even more ways we can configure this. Remember: to get this config, I ran

debug:config security ... which shows your current configuration, including defaults. But

not all options are shown here. To see a full list, run config:dump security .

symfony console config:dump security

Instead of showing your actual config, this shows a huge list of example config. This is a much

bigger list... here's form_login . A lot of this we saw before... but success_handler and

security:

 firewalls:

 main:

 form_login:

 enable_csrf: true

failure_handler are both new. You can search the docs for these to learn how to control

what happens after success or failure.

But also, later, we're going to learn about a more global way of hooking into the success or

failure process by registering an event listener.

Rendering "last_username" On the Login Form

Anyways, we're not using our LoginFormAuthenticator anymore, so feel free to delete it.

And... I have good news! The core authenticator is doing one thing that our class never did! Up

in authenticate() ... this calls getCredentials() to read the POST data. Let me search

for "session"... yup! This took me into getCredentials() . Anyways, after grabbing the

submitted email - in this code that's stored as $credentials['username'] - it saves that

value into the session.

It's doing that so that if authentication fails, we can read that and pre-fill the email box on the

login form.

Let's do it! Go to our controller: src/Controller/SecurityController.php . This

AuthenticationUtils has one other useful method. Pass a new variable to the template

called last_username - you can call it last_email if you'd like - set to

$authenticationUtils->getLastUsername() :

src/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

17

 // ... line 18

19

20

21

 // ... lines 22 - 29

30

Once again, this is just a helper to read a specific key off of the session.

class SecurityController extends AbstractController

{

 public function login(AuthenticationUtils $authenticationUtils):

Response

 {

 return $this->render('security/login.html.twig', [

 'last_username' => $authenticationUtils->getLastUsername(),

]);

 }

}

Now, in the template - login.html.twig - up here on the email field, add

value="{{ last_username }} " :

templates/security/login.html.twig

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 15

16

 // ... line 17

18

19

 // ... lines 20 - 33

34

35

36

37

38

Cool! If we go to /login ... it's already there from filling out the form a minute ago! If we enter a

different email... yes! That sticks too.

Next: let's get back to authorization by learning how to deny access in a controller... in a number

of different ways.

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form method="post" class="row g-3">

 <div class="col-12">

 <input type="email" name="email" id="inputEmail"

class="form-control" value="{{ last_username }}" required autofocus>

 </div>

 </form>

 </div>

 </div>

</div>

{% endblock %}

Chapter 21: Denying Access in a Controller

I like using access control in security.yaml to help me protect entire sections of my site...

like everything under /admin requires some role:

config/packages/security.yaml

1

 // ... lines 2 - 50

51

52

 // ... lines 53 - 54

But most of the time, I protect my site on a controller-by-controller basis.

Open QuestionController and find the new() action:

src/Controller/QuestionController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 45

46

47

48

49

50

51

52

 // ... lines 53 - 86

87

This... obviously... is not a real page... but we're totally going to finish it someday... probably.

Let's pretend that this page does work and anyone on our site should be allowed to ask new

questions... but you do need to be logged in to load this page. To enforce that, in the controller -

on the first line - let's $this->denyAccessUnlessGranted('ROLE_USER') :

security:

 access_control:

 - { path: ^/admin, roles: ROLE_USER }

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/new")

 */

 public function new()

 {

 return new Response('Sounds like a GREAT feature for V2!');

 }

}

src/Controller/QuestionController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 45

46

47

48

49

50

51

 // ... lines 52 - 53

54

 // ... lines 55 - 88

89

So if the user does not have ROLE_USER - which is only possible if you're not logged in - then

deny access. Yup, denying access in a controller is just that easy.

Let's log out... then go to that page: /questions/new . Beautiful! Because we're anonymous,

it redirected us to /login . Now let's log in - abraca_admin@example.com , password tada

and... access granted!

If we change this to ROLE_ADMIN ... which is not a role that we have, we get access denied:

src/Controller/QuestionController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 45

46

47

48

49

50

51

 // ... lines 52 - 53

54

 // ... lines 55 - 88

89

The AccessDeniedException

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/new")

 */

 public function new()

 {

 $this->denyAccessUnlessGranted('ROLE_USER');

 }

}

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/new")

 */

 public function new()

 {

 $this->denyAccessUnlessGranted('ROLE_ADMIN');

 }

}

One cool thing about the denyAccessUnlessGranted() method is that we're not returning

the value. We can just say $this->denyAccessUnlessGranted() and that interrupts the

controller.... meaning the code down here is never executed.

This works because, to deny access in Symfony, you actually throw a special exception class:

AccessDeniedException . This line throws that exception.

We can actually rewrite this code in a longer way... just for the sake of learning. This one line is

identical to saying: if not $this->isGranted('ROLE_ADMIN') - isGranted() is another

helper method on the base class - then throw that special exception by saying

throw $this->createAccessDeniedException() with:

“No access for you!”

src/Controller/QuestionController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 45

46

47

48

49

50

51

52

53

 // ... lines 54 - 55

56

 // ... lines 57 - 90

91

That does the same thing as before.... and the message you pass to the exception is only going

to be seen by developers. Hold Command or Ctrl to jump into the

createAccessDeniedException() method... you can see that it lives in

AbstractController . This method is so beautifully boring: it creates and returns a new

AccessDeniedException . This exception is the key to denying access, and you could throw

it from anywhere in your code.

Close that... and then go refresh. Yup, we get the same thing as before.

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/new")

 */

 public function new()

 {

 if (!$this->isGranted('ROLE_ADMIN')) {

 throw $this->createAccessDeniedException('No access for

you!');

 }

 }

}

Denying Access with IsGranted Annotation/Attribute

There's one other interesting way to deny access in a controller... and it works if you have

sensio/framework-extra-bundle installed, which we do. Instead of writing your security

rules in PHP, you can write them as PHP annotations or attributes. Check it out: above the

controller, say @IsGranted() - I'll hit tab to autocomplete that so I get the use statement -

then "ROLE_ADMIN" :

src/Controller/QuestionController.php

 // ... lines 1 - 12

13

 // ... lines 14 - 18

19

20

 // ... lines 21 - 46

47

 // ... line 48

49

50

51

52

53

54

 // ... lines 55 - 88

89

If we try this... access denied! We as developers see a slightly different error message, but the

end user would see the same 403 error page. Oh, and if you're using PHP 8, you can use

IsGranted as a PHP attribute instead of an annotation:

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

class QuestionController extends AbstractController

{

 // ...

 /**

 * ...

 */

 #[IsGranted("ROLE_ADMIN")]

 public function new()

 {

 return new Response('Sounds like a GREAT feature for V2!');

 }

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

class QuestionController extends AbstractController

{

 /**

 * @IsGranted("ROLE_ADMIN")

 */

 public function new()

 {

 return new Response('Sounds like a GREAT feature for V2!');

 }

}

 // ...

}

Denying Access to an Entire Controller Class

One of the coolest things about the IsGranted annotation or attribute is that you can use it up

on the controller class. So above QuestionController , add

@IsGranted("ROLE_ADMIN") :

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

/**

 * @IsGranted("ROLE_ADMIN")

 */

class QuestionController extends AbstractController

{

 // ...

 public function new()

 {

 return new Response('Sounds like a GREAT feature for V2!');

 }

 // ...

}

Suddenly, ROLE_ADMIN will be required to execute any controller in this file. I won't do this...

because then only admin users could access my homepage, but it's a great feature.

Ok, back down in new() , let's change this to ROLE_USER ... so that the page kind of works

again:

src/Controller/QuestionController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 46

47

 // ... line 48

49

50

51

52

 // ... line 53

54

 // ... lines 55 - 88

89

Right now, every user has just ROLE_USER . So next: let's start adding extra roles to some

users in the database to differentiate between normal users and admins. We'll also learn how to

check authorization rules in Twig so that we can conditionally render links - like "log in" or "log

out" - in the right situation.

class QuestionController extends AbstractController

{

 /**

 * @IsGranted("ROLE_USER")

 */

 public function new()

 {

 }

}

Chapter 22: Dynamic Roles

Earlier, we talked about how the moment a user logs in, Symfony calls the getRoles()

method on the User object to figure out which roles that user will have:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 26

27

28

29

30

 // ... lines 31 - 78

79

80

81

82

83

84

85

86

87

88

89

 // ... lines 90 - 154

155

This method reads a $roles array property that's stored in the database as JSON... then

always adds ROLE_USER to it.

Until now, we haven't given any users any extra roles in the database... so all users have just

ROLE_USER . You can see this in the web debug toolbar: click to jump into the profiler. Yup, we

have ROLE_USER .

This is too boring... so let's add some true admin users! First, open

config/packages/security.yaml ... and, down under access_control , change this to

once again require ROLE_ADMIN :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @ORM\Column(type="json")

 */

 private $roles = [];

 /**

 * @see UserInterface

 */

 public function getRoles(): array

 {

 $roles = $this->roles;

 // guarantee every user at least has ROLE_USER

 $roles[] = 'ROLE_USER';

 return array_unique($roles);

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 50

51

52

 // ... lines 53 - 54

Remember: roles are just strings that we invent... they can be anything: ROLE_USER

ROLE_ADMIN , ROLE_PUPPY , ROLE_ROLLERCOASTER ... whatever. The only rule is that they

must start with ROLE_ . Thanks to this, if we go to /admin ... access denied!

Populating Roles in the Database

Let's add some admin users to the database. Open up the fixtures class:

src/DataFixtures/AppFixtures.php . Let's see... down here, we're creating one custom

user and then 10 random users. Make this first user an admin: set roles to an array with

ROLE_ADMIN :

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 15

16

17

18

19

 // ... lines 20 - 47

48

49

50

51

 // ... lines 52 - 57

58

59

Let's also create one normal user that we can use to log in. Copy the UserFactory code,

paste, use abraca_user@example.com ... and leave roles empty:

security:

 access_control:

 - { path: ^/admin, roles: ROLE_ADMIN }

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 UserFactory::createOne([

 'email' => 'abraca_admin@example.com',

 'roles' => ['ROLE_ADMIN']

]);

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 15

16

17

18

19

 // ... lines 20 - 47

48

49

50

51

52

53

54

 // ... lines 55 - 57

58

59

Let's do it! At your terminal, run:

symfony console doctrine:fixtures:load

When that finishes... spin over and refresh. We got logged out! That's because, when the user

was loaded from the session, our user provider tried to refresh the user from the database... but

the old user with its old id was gone thanks to the fixtures. Log back in.... with password tada

and... access granted! We rock! And in the profiler, we have the two roles.

Checking for Access inside Twig

In addition to checking or enforcing roles via access_control ... or from inside a controller,

we often also need to check roles in Twig. For example, if the current user has ROLE_ADMIN ,

let's a link to the admin page.

Open templates/base.html.twig . Right after this answers link... so let me search for

"answers"... there we go, add if, then use a special is_granted() function to check to see if

the user has ROLE_ADMIN :

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 UserFactory::createOne([

 'email' => 'abraca_admin@example.com',

 'roles' => ['ROLE_ADMIN']

]);

 UserFactory::createOne([

 'email' => 'abraca_user@example.com',

]);

 }

}

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

28

 // ... lines 29 - 31

32

 // ... lines 33 - 35

36

37

 // ... lines 38 - 40

41

42

43

 // ... lines 44 - 48

49

50

It's that easy! If that's true, copy the nav link up here... paste.. send the user to

admin_dashboard and say "Admin":

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 <ul class="navbar-nav me-auto mb-2 mb-lg-0">

 {% if is_granted('ROLE_ADMIN') %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

28

 // ... lines 29 - 31

32

33

34

35

36

37

 // ... lines 38 - 40

41

42

43

 // ... lines 44 - 48

49

50

When we refresh... got it!

Let's do the same with the "log in" and "sign up" links: we only need those if we are not logged

in. Down here, to simply check if the user is logged in, use is_granted('ROLE_USER') ...

because, in our app, every user has at least that role. Add else , endif , then I'll indent. If we

are logged in, we can paste to add a "Log out" link that points to the app_logout route:

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 <ul class="navbar-nav me-auto mb-2 mb-lg-0">

 {% if is_granted('ROLE_ADMIN') %}

 <li class="nav-item">

 <a class="nav-link" href="{{

path('admin_dashboard') }}">Admin

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

42

43

44

45

46

47

 // ... lines 48 - 52

53

54

Cool! Refresh and... so much better. This is looking like a real site!

Next, let's learn about a few special "strings" that you can use with authorization: strings that do

not start with ROLE_ . We'll use one of these to show how we could easily deny access to every

page in a section except for one.

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('ROLE_USER') %}

 <a class="nav-link text-black-50" href="{{

path('app_logout') }}">Log Out

 {% else %}

 <a class="nav-link text-black-50" href="{{

path('app_login') }}">Log In

 Sign up

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

Chapter 23: The Special IS_AUTHENTICATED_
Strings

If we simply need to figure out whether or not the user is currently logged in, we check for

ROLE_USER :

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

 // ... lines 40 - 43

44

45

46

47

 // ... lines 48 - 52

53

54

This works.... just because of how our app is built: it works because in getRoles() , we make

sure that every logged in user at least has this role:

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('ROLE_USER') %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 81

82

83

84

85

86

87

88

89

 // ... lines 90 - 154

155

Checking if Logged In: IS_AUTHENTICATED_FULLY

Cool. But it does make me wonder: is there a more "official" way in Symfony to check if a user is

logged in? It turns out, there is! Check for is_granted('IS_AUTHENTICATED_FULLY') :

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

 // ... lines 40 - 43

44

45

46

47

 // ... lines 48 - 52

53

54

By the way, anything we pass to is_granted() in Twig - like ROLE_USER or

IS_AUTHENTICATED_FULLY - we can also pass to the isGranted() method in the

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getRoles(): array

 {

 $roles = $this->roles;

 // guarantee every user at least has ROLE_USER

 $roles[] = 'ROLE_USER';

 return array_unique($roles);

 }

}

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_FULLY') %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

controller, or denyAccessUnlessGranted() ... or to access_control . They all call the

security system in the same way.

I bet you noticed that IS_AUTHENTICATED_FULLY does not start with ROLE_ . Yup! Roles

must start with ROLE_ ... but this string is not a role: it's handled by an entirely different system:

a part of the security system that simply returns true or false based on whether or not the

user is logged in.

So, in practice, this should have the same effect as ROLE_USER . When we refresh... yup! No

change.

Access Decision Log in the Profiler

Oh, but click the security link in the web debug toolbar to jump into the profiler. Scroll down to

the bottom to find something called the "Access decision log". This is super cool: Symfony

keeps track of all the times that the authorization system was called during the request and

what the result was.

For example, this first check was for ROLE_ADMIN , which is probably coming from

access_control : because we went to /admin , this rule matched and it checked for

ROLE_ADMIN . The next check is again for ROLE_ADMIN - that's probably to show the admin

link in Twig - and then there's the check for IS_AUTHENTICATED_FULLY to show the log in or

log out link. Access was granted for all three of these.

Remember Me Authed: IS_AUTHENTICATED_REMEMBER

In addition to IS_AUTHENTICATED_FULLY , there are a couple of other special strings that you

can pass into the security system. The first is IS_AUTHENTICATED_REMEMBERED , which is

super powerful... but can be a bit confusing.

Here's how it works. If I am logged in, then I always have IS_AUTHENTICATED_REMEMBERED .

That... so far should sound identical to IS_AUTHENTICATED_FULLY . But, there's one key

difference. Suppose I log in, close my browser, open my browser, and refresh... so that I'm

logged in thanks to a remember me cookie. In this situation, I will have

IS_AUTHENTICATED_REMEMBERED but I will not have IS_AUTHENTICATED_FULLY . Yup,

you only have IS_AUTHENTICATED_FULLY if you logged in during this browser session.

We can see this. Head over to your browser, open your debugging tools, go to Application and

then Cookies. Oh... my remember me cookie is gone! This... was a mistake I made. Log out...

then go to security.yaml .

Earlier, we switched from using our custom LoginFormAuthenticator to form_login .

That system totally works with remember me cookies. But we also removed the checkbox from

our login form. And, inside of our authenticator, we were relying on calling enable() on the

RemmeberMeBadge to force the cookie to be set:

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 56

57

 // ... lines 58 - 61

62

63

64

65

 // ... lines 66 - 81

82

Whelp, the core form_login authenticator definitely adds the RememberMeBadge , which

advertises that it opts into the "remember me" system. But it does not call enable() on it. This

means that we either need to add a checkbox to the form... or, in security.yaml , add

always_remember_me: true :

config/packages/security.yaml

1

 // ... lines 2 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 37

38

 // ... lines 39 - 40

41

 // ... lines 42 - 54

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 return new Passport(

 [

 (new RememberMeBadge())->enable(),

]

);

 }

}

security:

 firewalls:

 main:

 remember_me:

 always_remember_me: true

Let's log back in now: abraca_admin@example.com , password tada and... got it! There's

my REMEMBERME cookie.

Ok: because we just logged in - so we "logged in during this session", we are "authenticated

fully". But, if I closed my browser, which I'll imitate by deleting the session cookie - and refresh...

we do stay logged in, but we are now logged in thanks to the remember me cookie. You can see

that via the RememberMeToken .

And look up here! We have the "Log in" and "Sign up" links! Yup, we are now not

IS_AUTHENTICATED_FULLY because we did not authenticate during this session.

This is a long way of saying that if you use remember me cookies, then most of the time you

should use IS_AUTHENTICATED_REMEMBERED when you simply want to know whether or not

the user is logged in:

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

 // ... lines 40 - 43

44

45

46

47

 // ... lines 48 - 52

53

54

And then, if there are a couple of parts of your site that are more sensitive - like maybe the

"change password" page - then protect those with IS_AUTHENTICATED_FULLY . If the user

tries to access this page and only has IS_AUTHENTICATED_REMEMBERED , Symfony will

actually execute your entry point. In other words, it will redirect them to the login form.

Refresh the page and... yes! The correct links are back.

<!DOCTYPE html>

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

PUBLIC_ACCESS & access_control

Ok, there are a few other strings special similar to IS_AUTHENTICATED_REMEMBERED , but

only one more that I think is useful. It's called PUBLIC_ACCESS ... and it returns true 100% of

time. Yup, everyone has PUBLIC_ACCESS , even if you're not logged in.

So... you might be thinking: how could that ever possibly be useful? Fair question!

Look again at access_control in security.yaml . To access any URL that starts with

/admin , you need ROLE_ADMIN :

config/packages/security.yaml

1

 // ... lines 2 - 50

51

52

 // ... lines 53 - 54

But pretend that we had a login page at the URL /admin/login .

Let's actually create a dummy controller for this. Down at the bottom of AdminController ,

add public function adminLogin() ... with a route - /admin/login - and, inside,

return a new Response() with:

“Pretend admin login page that should be public”

src/Controller/AdminController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 57

58

59

60

61

62

63

64

65

security:

 access_control:

 - { path: ^/admin, roles: ROLE_ADMIN }

class AdminController extends AbstractController

{

 /**

 * @Route("/admin/login")

 */

 public function adminLogin()

 {

 return new Response('Pretend admin login page, that should be

public');

 }

}

Log out... and go to /admin/login . Access denied! We're redirected to /login . And really, if

/admin/login were our login page, then we would get redirected to /admin/login ... which

would redirect us to /admin/login ... which would redirect us to /admin/login ... which

would... well you get the idea: we would get stuck in a redirect loop. Yikes!

In security.yaml , we want to be able to require ROLE_ADMIN for all URLs starting with

/admin ... except for /admin/login . The key to do that is PUBLIC_ACCESS

Copy the access control and paste above. Remember: only one access_control matches

per request and it matches from top to bottom. So we can add a new rule matching anything

starting with /admin/login and have it require PUBLIC_ACCESS ... which will always return

true!

config/packages/security.yaml

1

 // ... lines 2 - 50

51

52

53

 // ... lines 54 - 55

Thanks to this, if we go to anything that starts with /admin/login , it will match only this one

access_control ... and access will be granted!

Try it: go to /admin/login and... it loads!

Next: we've talked about roles and we've talked about denying access in various different ways.

So let's turn to the User object: how we can ask Symfony who is logged in.

security:

 access_control:

 - { path: ^/admin/login, roles: PUBLIC_ACCESS }

 - { path: ^/admin, roles: ROLE_ADMIN }

Chapter 24: Fetching the User Object

One of the amazing features of our site is that you can up vote and down vote each answer.

Right now, you don't even need to be logged in to do this. Let's change that.

Requiring Login to Vote

Find the controller that handles the Ajax call that's made when we vote: it's

src/Controller/AnswerController.php ... the answerVote() method. Ok: I want to

require the user to be logged in to use this endpoint. Let's do that with an annotation... or

attribute: @IsGranted ... then select that class and hit tab so that it adds the use statement

we need up on top. Inside, use IS_AUTHENTICATED_REMEMBERED :

src/Controller/AnswerController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 13

14

15

 // ... lines 16 - 29

30

 // ... line 31

32

33

34

35

 // ... lines 36 - 51

52

53

Because we're using the remember me system, this is the correct way to check if the user is

simply logged in.

If we stop now, because we're not logged in, we won't be able to vote. Yay! But it's going to look

funny on the frontend because the vote links are still visible. So let's hide those.

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

class AnswerController extends AbstractController

{

 /**

 * @IsGranted("IS_AUTHENTICATED_REMEMBERED")

 */

 public function answerVote(Answer $answer, LoggerInterface $logger,

Request $request, EntityManagerInterface $entityManager)

 {

 }

}

The template for this section is templates/answer/_answer.html.twig . Let's see...

down... here are the vote arrows. So we basically want to hide this entire div section if we are

not logged in. If is_granted('IS_AUTHENTICATED_REMEMBERED') , find the closing div ...

here it is, and add endif :

templates/answer/_answer.html.twig

1

 // ... lines 2 - 12

13

 // ... lines 14 - 20

21

 // ... line 22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 44

45

46

47

48

49

When we refresh... yes! The vote links are gone.

Fetching the User Object from a Controller

In a real app, when we save the vote to the database, we will probably also store who voted so

we can prevent a user from voting multiple times on the same answer. We're not going to do

that right now... but let's try something simpler: let's log a message that includes the email

address of who is voting.

But wait: how do we find out who is logged in? In a controller, it's easy peasy: use the

$this->getUser() shortcut. Check it out: on top, I'll say $logger->info('') with the

message:

“{user} is voting on answer {answer}”

<li class="mb-4">

 <div class="row">

 <div class="col-2 text-end">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div

 class="vote-arrows"

 {{ stimulus_controller('answer-vote', {

 url: path('answer_vote', {

 id: answer.id

 })

 }) }}

 >

 </div>

 {% endif %}

 </div>

 </div>

src/Controller/AnswerController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 56

57

58

Pass this a second argument, which is called the logger "context". This is unrelated to security...

it's just kind of cool. The second argument is an array of any extra data that you want to store

along with the message. For example, we can set answer to $answer->getId() :

src/Controller/AnswerController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

36

 // ... line 37

38

39

 // ... lines 40 - 56

57

58

And... if you use this nifty {answer} format, then the answer context will automatically be put

into the message. We'll see that in a minute.

For the user , get the current user with $this->getUser() ... it's that easy. This will give us

the User object... and then we can call a method on it, like ->getUserIdentifier() , which

we know will be the email:

class AnswerController extends AbstractController

{

 public function answerVote(Answer $answer, LoggerInterface $logger,

Request $request, EntityManagerInterface $entityManager)

 {

 $logger->info('{user} is voting on answer {answer}!', [

]);

 }

}

class AnswerController extends AbstractController

{

 public function answerVote(Answer $answer, LoggerInterface $logger,

Request $request, EntityManagerInterface $entityManager)

 {

 $logger->info('{user} is voting on answer {answer}!', [

 'answer' => $answer->getId(),

]);

 }

}

src/Controller/AnswerController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

36

37

38

39

 // ... lines 40 - 56

57

58

Sweet! Let's test this thing! First... we need to log in - abraca_admin@example.com ,

password tada . And... got it! It redirected us back to /admin/login because, a few minutes

ago, we tried to access this and were redirected to the login form. So it's technically still in the

session as our "target path".

Head to the homepage, click into a question... and vote! On the web debug toolbar, we can see

that Ajax call... and we can even open the profiler for that request by clicking the link. Head to

Logs . Sweet!

“abraca_admin@example.com is voting on answer 498”

Custom Base Controller Class

Back in the controller, we know that $this->getUser() will return our User object... which

means that we can call whatever methods it has. For example, our User class has a

getEmail() method:

class AnswerController extends AbstractController

{

 public function answerVote(Answer $answer, LoggerInterface $logger,

Request $request, EntityManagerInterface $entityManager)

 {

 $logger->info('{user} is voting on answer {answer}!', [

 'user' => $this->getUser()->getUserIdentifier(),

 'answer' => $answer->getId(),

]);

 }

}

src/Controller/AnswerController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 33

34

35

36

37

 // ... line 38

39

 // ... lines 40 - 56

57

58

So this will work. But notice that my editor did not auto-complete that. Bummer!

Hold Command or Ctrl and click getUser() . This jumps us to the core

AbstractController . Ah... the method advertises that it returns a UserInterface , which

is true! But, more specifically, we know that this will return our User entity. Unfortunately,

because this method doesn't say that, we don't get nice auto-completion.

I use $this->getUser() a lot in my controllers... so I like to "fix" this. How? By creating a

custom base controller class. Inside of the Controller/ directory, create a new class called

BaseController .

You can make this abstract ... because we won't ever use it directly. Make it extended

AbstractController so that we get the normal shortcut methods:

src/Controller/BaseController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

Creating a custom base controller is... just kind of a nice idea: you can add whatever extra

shortcut methods you want. Then, in your real controllers, you extend this and... have fun! I'm

only going to do this in AnswerController right now... just to save time:

class AnswerController extends AbstractController

{

 public function answerVote(Answer $answer, LoggerInterface $logger,

Request $request, EntityManagerInterface $entityManager)

 {

 $logger->info('{user} is voting on answer {answer}!', [

 'user' => $this->getUser()->getEmail(),

]);

 }

}

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

abstract class BaseController extends AbstractController

{

}

src/Controller/AnswerController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 58

59

Anyways, if we stopped now... congratulations! This doesn't change anything because

BaseController extends AbstractController . To solve our problem, we don't need to

add a new shortcut method... we just need to give our editor a hint so that it knows that

getUser() returns our User object... not just a UserInterface .

To do that, above the class, add @method then User then getUser() :

src/Controller/BaseController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

13

Done! Back in AnswerController , re-type getEmail() and... yes! We get auto-

completion!

Cool! So the way that you get the current user in a controller is $this->getUser() . But there

are a few other places where we might need to do this, like in Twig or from a service. Let's

check those out next.

class AnswerController extends BaseController

{

}

use App\Entity\User;

/**

 * @method User getUser()

 */

abstract class BaseController extends AbstractController

{

}

Chapter 25: Custom User Methods & the User in a
Service

We know how to fetch the current user object in a controller. What about from Twig? Head to

base.html.twig . Let's see... this is where we render our "log out" and "log in" links. Let's try

to render the first name of the user right here.

App.user In Twig

How? In Twig, we have access to a single global variable called app , which has lots of useful

stuff on it, like app.session and app.request . It also has app.user which will be the

current User object or null . So we can say app.user.firstName :

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

 // ... line 41

42

 // ... lines 43 - 44

45

46

47

48

 // ... lines 49 - 53

54

55

This is safe because we're inside of the is_granted() check... so we know there's a User .

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 {{ app.user.firstName }}

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

Let's try it! Close the profiler, refresh the page and... perfect! Apparently my name is Tremayne!

Now that we've got this... time to make it fancier. Inside of the is_granted() check, I'm going

to paste in a big user menu: you can get this from the code block on this page:

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 // ... lines 61 - 62

63

64

65

66

 // ... lines 67 - 71

72

73

This is completely hard-coded to start... but it renders nicely!

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <button

 class="dropdown-toggle btn"

 type="button"

 id="user-dropdown"

 data-bs-toggle="dropdown"

 aria-expanded="false"

 >

 <img

 src="https://ui-avatars.com/api/?

name=John+Doe&size=32&background=random"

 alt="John Doe Avatar">

 </button>

 <ul class="dropdown-menu dropdown-menu-end"

aria-labelledby="user-dropdown">

 Log

Out

 </div>

 {{ app.user.firstName }}

 <a class="nav-link text-black-50" href="{{

path('app_logout') }}">Log Out

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

Let's make it dynamic... there are a few spots. For the image, I'm using an avatar API. We just

need to take out the "John Doe" part and print the user's real first name:

app.user.firstName . Oh, then pipe that into |url_encode so it's safe to put in a URL.

Also render app.user.firstName inside the alt text:

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

 // ... lines 42 - 46

47

48

49

50

51

 // ... lines 52 - 56

57

58

 // ... lines 59 - 60

61

62

63

64

 // ... lines 65 - 69

70

71

For the "log out" link, steal the path() function from below... and put it here:

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <button

 >

 <img

 src="https://ui-avatars.com/api/?name=

{{ app.user.firstName|url_encode }}&size=32&background=random"

 alt="{{ app.user.firstName }} Avatar">

 </button>

 </div>

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

 // ... lines 41 - 51

52

53

54

55

56

57

58

 // ... lines 59 - 60

61

62

63

64

 // ... lines 65 - 69

70

71

Delete the old stuff at the bottom to finish this up:

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <ul class="dropdown-menu dropdown-menu-end"

aria-labelledby="user-dropdown">

 <a class="dropdown-item" href="{{

path('app_logout') }}">Log Out

 </div>

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 // ... lines 59 - 60

61

62

63

64

 // ... lines 65 - 69

70

71

Sweet! When we refresh.. voilà! A real user drop-down menu.

Adding Custom Methods to User

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <button

 class="dropdown-toggle btn"

 type="button"

 id="user-dropdown"

 data-bs-toggle="dropdown"

 aria-expanded="false"

 >

 <img

 src="https://ui-avatars.com/api/?name=

{{ app.user.firstName|url_encode }}&size=32&background=random"

 alt="{{ app.user.firstName }} Avatar">

 </button>

 <ul class="dropdown-menu dropdown-menu-end"

aria-labelledby="user-dropdown">

 <a class="dropdown-item" href="{{

path('app_logout') }}">Log Out

 </div>

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

I've mentioned a few times that our User class is our class.... so we are free to add whatever

methods we want to it. For example, imagine that we need to get the user's avatar URL in a few

places on our site... and we don't want to repeat this long string.

Copy this and then go open the User class: src/Entity/User.php . All the way at the

bottom, create a new public function getAvatarUri() . Give this an int $size

argument that defaults to 32 ... and a string return type:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 155

156

157

 // ... lines 158 - 162

163

164

Paste the URL as an example. Let's return the first part of that... add a ? - which I totally just

forgot - then use http_build_query() :

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 155

156

157

158

 // ... lines 159 - 161

162

163

164

Pass this an array... with the first query parameter we need: name set to

$this->getFirstName() .

Oh, but we can be even smarter. If you scroll up, the firstName property is allowed to be

null :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getAvatarUri(int $size = 32): string

 {

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getAvatarUri(int $size = 32): string

 {

 return 'https://ui-avatars.com/api/?' . http_build_query([

]);

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 31

32

33

34

35

 // ... lines 36 - 163

164

It's an optional thing that a user can provide. So, back down in the method, use

getFirstName() if it has a value... else fallback to the user's email. For size , which is the

second query parameter, set it to $size ... and we also need background set to random to

make the images more fun:

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 155

156

157

158

159

160

161

162

163

164

Thanks to this nice little method, back in base.html.twig we can replace all of this with

app.user.avatarUri :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @ORM\Column(type="string", length=255, nullable=true)

 */

 private $firstName;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getAvatarUri(int $size = 32): string

 {

 return 'https://ui-avatars.com/api/?' . http_build_query([

 'name' => $this->getFirstName() ?: $this->getEmail(),

 'size' => $size,

 'background' => 'random',

]);

 }

}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

 // ... lines 42 - 46

47

48

49

 // ... line 50

51

 // ... lines 52 - 56

57

58

 // ... lines 59 - 61

62

63

64

 // ... lines 65 - 69

70

71

You can also say getAvatarUri() : both will do the same thing.

If we try it... broken image! Ryan: go add the ? you forgot, you knucklehead.

http_build_query adds the & between the query parameters, but we still need the first ? :

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <button

 >

 <img

 src="{{ app.user.avatarUri }}"

 </button>

 </div>

 {% else %}

 </div>

 </div>

 </nav>

 </body>

</html>

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 155

156

157

158

159

 // ... lines 160 - 161

162

163

164

Now... much better!

But we can make this even better-er! In base.html.twig , we're using

app.user.firstName :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getAvatarUri(int $size = 32): string

 {

 return 'https://ui-avatars.com/api/?' . http_build_query([

 'name' => $this->getFirstName() ?: $this->getEmail(),

]);

 }

}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

 // ... lines 42 - 46

47

48

 // ... line 49

50

51

 // ... lines 52 - 56

57

58

 // ... lines 59 - 61

62

63

64

 // ... lines 65 - 69

70

71

As we just saw, this might be empty. So let's add one more helper method to User called

getDisplayName() , which will return a string :

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 164

165

166

 // ... line 167

168

169

I'll steal some logic from above... and return that:

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <button

 >

 <img

 alt="{{ app.user.firstName }} Avatar">

 </button>

 </div>

 {% else %}

 </div>

 </div>

 </nav>

 </body>

</html>

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getDisplayName(): string

 {

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 164

165

166

167

168

169

So we either return the first name or the email. We can use this up in getAvatarUri() -

getDisplayName() :

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 155

156

157

158

159

 // ... lines 160 - 161

162

163

 // ... lines 164 - 168

169

And also in base.html.twig :

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getDisplayName(): string

 {

 return $this->getFirstName() ?: $this->getEmail();

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 public function getAvatarUri(int $size = 32): string

 {

 return 'https://ui-avatars.com/api/?' . http_build_query([

 'name' => $this->getDisplayName(),

]);

 }

}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... lines 18 - 26

27

 // ... lines 28 - 38

39

40

41

 // ... lines 42 - 46

47

48

 // ... line 49

50

51

 // ... lines 52 - 56

57

58

 // ... lines 59 - 61

62

63

64

 // ... lines 65 - 69

70

71

When we refresh... yup! It still works!

Security Service: Fetching the User in a Service

Ok: we have now fetched the User object from a controller via $this->getUser() ... and in

Twig via app.user . The only other place where you'll need to fetch the User object is from

within a service.

For example, a couple of tutorials ago, we created this MarkdownHelper service:

<html>

 <body>

 <nav class="navbar navbar-expand-lg navbar-light bg-light px-1">

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <button

 >

 <img

 alt="{{ app.user.displayName }}

Avatar">

 </button>

 </div>

 {% else %}

 </div>

 </div>

 </nav>

 </body>

</html>

src/Service/MarkdownHelper.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

We pass it markdown, it converts that into HTML... and then... profit... or something. Let's

pretend that we need the User object inside of this method: we're going to use it log another

message.

If you need the currently authenticated User object from a service, you can get it via another

service called Security . Add a new argument type-hinted with Security - the one from

Symfony\Component - called $security . Hit Alt + Enter and go to "Initialize properties"

to create that property and set it:

class MarkdownHelper

{

 public function parse(string $source): string

 {

 if (stripos($source, 'cat') !== false) {

 $this->logger->info('Meow!');

 }

 if ($this->isDebug) {

 return $this->markdownParser->transformMarkdown($source);

 }

 return $this->cache->get('markdown_'.md5($source), function() use

($source) {

 return $this->markdownParser->transformMarkdown($source);

 });

 }

}

src/Service/MarkdownHelper.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 17

18

19

 // ... lines 20 - 23

24

25

 // ... lines 26 - 46

47

Because I'm using PHP 7.4, this added a type to my property.

Down below, let's log a message if the user is logged in. To do this, say if

$this->security->getUser() :

src/Service/MarkdownHelper.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 26

27

28

29

30

31

32

33

 // ... lines 34 - 36

37

 // ... lines 38 - 45

46

47

Really, this is the way to fetch the User object... but we can also use it to see if the User is

logged in because this will return null if they're not. A more "official" way to do this would be to

use isGranted() - that's another method on the Security class - and check for

IS_AUTHENTICATED_REMEMBERED :

use Symfony\Component\Security\Core\Security;

class MarkdownHelper

{

 public function __construct(MarkdownParserInterface $markdownParser,

CacheInterface $cache, bool $isDebug, LoggerInterface $mdLogger, Security

$security)

 {

 $this->security = $security;

 }

}

class MarkdownHelper

{

 public function parse(string $source): string

 {

 if (stripos($source, 'cat') !== false) {

 $this->logger->info('Meow!');

 }

 if ($this->security->getUser()) {

 }

 }

}

class MarkdownHelper

{

 // ...

 public function parse(string $source): string

 {

 // ...

 if ($this->security->isGranted('IS_AUTHENTICATED_REMEMBERED')) {

 // ...

 }

 // ...

 }

}

Anyways, inside say $this->logger->info() with:

“Rendering markdown for {user}”

Pass a context array with user set to $this->security->getUser()->getEmail() :

src/Service/MarkdownHelper.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 26

27

28

 // ... lines 29 - 32

33

34

35

36

37

 // ... lines 38 - 45

46

47

Like before, we know this will to be our User object... but our editor only knows that it's some

UserInterface . So we could use getEmail() ... but I'll stick with

getUserIdentifier() :

class MarkdownHelper

{

 public function parse(string $source): string

 {

 if ($this->security->getUser()) {

 $this->logger->info('Rendering markdown for {user}', [

 'user' => $this->security->getUser()->getUserIdentifier()

]);

 }

 }

}

src/Service/MarkdownHelper.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 26

27

28

 // ... lines 29 - 32

33

34

35

36

37

 // ... lines 38 - 45

46

47

Let's try it! We have markdown on this page... so refresh... then click any link on the web debug

toolbar to jump into the profiler. Go to logs and... got it! There are a bunch of logs because we

call this method a bunch of times.

Next, let's talk about a super useful feature called "role hierarchy". This gives you the power to

assign extra roles to any user that has some other role.

class MarkdownHelper

{

 public function parse(string $source): string

 {

 if ($this->security->getUser()) {

 $this->logger->info('Rendering markdown for {user}', [

 'user' => $this->security->getUser()->getUserIdentifier()

]);

 }

 }

}

Chapter 26: Role Hierarchy

Right now, our site has two types of users: normal users and admin users. If you're a normal

user, you can vote on answers and probably do a bunch of other things once we're done. If

you're an admin, you can also go to the admin section.

There's not much here yet... but in theory, an admin user might have access to edit questions,

answers or manage user data. And... a lot of sites are just this simple: you're either a normal

user or an admin user.

Organizing Role Names

But in a larger company, things might not be so simple: you might have many types of admin

users. Some will have access to some sections and other access to other sections. The

question is: what's the best way to organize our roles to accomplish this?

Well, there are really only two possibilities. The first is to assign roles to users that are named

after the type of user. For example, you assign roles to users like ROLE_HUMAN_RESOURCES or

ROLE_IT or ROLE_PERSON_WHO_OWNS_THE_COMPANY . Then, you deny access to controllers

using these strings. But... I don't love this. You end up in weird situations where, in a controller,

you realize that you need to allow access to ROLE_HUMAN_RESOURCES or ROLE_IT , which is

just messy.

Ok, so what's the second option? To protect controllers with role names that describe what

access that role gives you. For example, at the bottom of this controller, let's create a pretend

admin page for moderating answers. Set the URL to /admin/answers ... and call it

adminAnswers() :

src/Controller/AdminController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 65

66

67

68

69

70

 // ... lines 71 - 72

73

74

75

Imagine that our "human resources" department and IT department should both have access to

this. Well, as I mentioned earlier, I do not want to try to put logic here that allows

ROLE_HUMAN_RESOURCES or ROLE_IT .

Instead, say $this->denyAccessUnlessGranted() and pass this

ROLE_COMMENT_ADMIN , a role name that I just invented that describes what is being

protected:

src/Controller/AdminController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 65

66

67

68

69

70

71

72

73

74

75

Oh, dummy Ryan! I should've called this ROLE_ANSWER_ADMIN - I keep using "comment"

when I mean "answer". This will work fine - but ROLE_ANSWER_ADMIN is really the best name.

Anyways, what I love about this is how clear the controller is: you can't access this unless you

have a role that's specific to this controller. There's just one problem: if we go to

class AdminController extends AbstractController

{

 /**

 * @Route("/admin/comments")

 */

 public function adminComments()

 {

 return new Response('Pretend comments admin page');

 }

}

class AdminController extends AbstractController

{

 /**

 * @Route("/admin/comments")

 */

 public function adminComments()

 {

 $this->denyAccessUnlessGranted('ROLE_COMMENT_ADMIN');

 return new Response('Pretend comments admin page');

 }

}

/admin/answers , we get access denied... because we do not have this role.

You can probably see the problem with this approach. Each time we create a new section and

protect it with a new role name, we're going to need to add that role to every user in the

database that should have access. That sounds like a pain in the butt!

Hello role_hierarchy

Fortunately, Symfony has a feature just for this called role hierarchy. Open up

config/packages/security.yaml and, anywhere inside of here... but I'll put it near the

top, add role_hierarchy . Below this, say ROLE_ADMIN and set this to an array. For now,

just include ROLE_COMMENT_ADMIN :

config/packages/security.yaml

1

 // ... lines 2 - 6

7

8

 // ... lines 9 - 58

This looks just as simple as it is. It says:

“If you have ROLE_ADMIN , then you automatically also have ROLE_COMMENT_ADMIN .”

The result? If we refresh the page, access granted!

The idea is that, for each "type" of user - like "human resources", or IT - you would create a new

item in role_hierarchy for them, like ROLE_HUMAN_RESOURCES set to an array of

whatever roles it should have.

For example, let's pretend that we are also protecting another admin controller with

ROLE_USER_ADMIN :

config/packages/security.yaml

1

 // ... lines 2 - 6

7

 // ... line 8

9

 // ... lines 10 - 59

security:

 role_hierarchy:

 ROLE_ADMIN: ['ROLE_COMMENT_ADMIN']

security:

 role_hierarchy:

 ROLE_HUMAN_RESOURCES: ['ROLE_USER_ADMIN']

In this case, if you have ROLE_HUMAN_RESOURCES , then you automatically get

ROLE_USER_ADMIN ... which gives you access to modify user data. And if you have

ROLE_ADMIN , maybe you can also access this section:

config/packages/security.yaml

1

 // ... lines 2 - 6

7

8

9

 // ... lines 10 - 59

With this setup, each time we add a new section to our site and protect it with a new role, we

only need to go to role_hierarchy and add it to whatever groups need it. We don't need to

change the roles in the database for anyone. And in the database, most - or all - users will only

need one role: the one that represents the "type" of user they are, like

ROLE_HUMAN_RESOURCES .

Speaking of admin users, when we're debugging a customer issue on our site, sometimes it

would be really useful if we could temporarily log into that user's account... just to see what

they're seeing. In Symfony, that's totally possible. Let's talk about impersonation next.

security:

 role_hierarchy:

 ROLE_ADMIN: ['ROLE_COMMENT_ADMIN', 'ROLE_USER_ADMIN']

 ROLE_HUMAN_RESOURCES: ['ROLE_USER_ADMIN']

Chapter 27: Impersonation: switch_user

Have you ever had a situation where you're helping someone online... and it would be so much

easier if you could see what they're seeing on their screen... or, better, if you could temporarily

take over and fix the problem yourself?

“Yeah, just click the little paper clip icon to attach the file. It should be like near the bottom... a

paper clip. What's "attaching a file"? Oh... it's um... like sending a "package"... but on the

Internet.”

Ah, memories. Symfony can't help teach your family how to attach files to an email. But! It can

help your customer service people via a feature called impersonation. Very simply: this gives

some users the superpower to temporarily log in as someone else.

Enabling the switch_user Authenticator

Here's how. First, we need to enable the feature. In security.yaml , under our firewall

somewhere, add switch_user: true :

config/packages/security.yaml

1

 // ... lines 2 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 46

47

 // ... lines 48 - 61

This activates a new authenticator. So we now have our CustomAuthenticator ,

form_login , remember_me and also switch_user .

How does it work? Well, we can now "log in" as anyone by adding ?_switch_user= to the

URL and then an email address. Head back to the fixtures file -

src/Fixtures/AppFixtures.php - and scroll down. We have one other user whose email

we know - it's abraca_user@example.com :

security:

 firewalls:

 main:

 switch_user: true

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 15

16

17

18

19

 // ... lines 20 - 51

52

53

54

 // ... lines 55 - 57

58

59

Copy that, paste it on the end of the URL and...

“Access Denied.”

Of course! We can't allow just anyone to do this. The authenticator will only allow this if we have

a role called ROLE_ALLOWED_TO_SWITCH . Let's give this to our admin users. We can do this

via role_hierarchy . Up here, ROLE_ADMIN has ROLE_COMMENT_ADMIN and

ROLE_USER_ADMIN . Let's also give them ROLE_ALLOWED_TO_SWITCH :

config/packages/security.yaml

1

 // ... lines 2 - 6

7

8

 // ... lines 9 - 61

And now... whoa! We switched users! That's a different user icon! And most importantly, down

on the web debug toolbar, we see abraca_user@example.com ... and it even shows who the

original user is.

Behind the scenes, when we entered the email address in the URL, the switch_user

authenticator grabbed that and then leveraged our user provider to load that User object.

Remember: we have a user provider that knows how to load users from the database by

querying on their email property:

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 UserFactory::createOne([

 'email' => 'abraca_user@example.com',

]);

 }

}

security:

 role_hierarchy:

 ROLE_ADMIN: ['ROLE_COMMENT_ADMIN', 'ROLE_USER_ADMIN',

'ROLE_ALLOWED_TO_SWITCH']

config/packages/security.yaml

1

 // ... lines 2 - 13

14

15

16

17

18

19

20

 // ... lines 21 - 61

So that's why we used email in the URL.

To "exit" and go back to our original user, add ?_switch_user= again with the special

_exit .

Styling Changes During Impersonation

But before we do that, once a customer service person has switched to another account, we

want to make sure they don't forget that they switched. So let's add a very obvious indicator to

our page that we're currently "switched": let's make this header background red.

Open the base layout: templates/base.html.twig . Up on top... find the body and nav ...

and I'll break this onto multiple lines. How can we check to see if we are currently impersonating

someone? Say is_granted() and pass this ROLE_PREVIOUS_ADMIN . If you're

impersonating someone, you will have this role.

In that case, add style="background-color: red" ... with !important to override the

nav styling:

security:

 # https://symfony.com/doc/current/security.html#where-do-users-come-

from-user-providers

 providers:

 # used to reload user from session & other features (e.g.

switch_user)

 app_user_provider:

 entity:

 class: App\Entity\User

 property: email

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

18

19

 // ... lines 20 - 66

67

 // ... lines 68 - 72

73

74

Let's see it! Refresh and... ha! That's a very obvious hint that we're impersonating.

Helping the User End Impersonation

To help the user stop impersonation, let's add a link. Go down to the dropdown menu. Once

again, check if is_granted('ROLE_PREVIOUS_ADMIN') . Copy the link below... paste...

then send the user to - app_homepage but pass an extra _switch_user parameter set to

_exit .

If you pass something to the second argument of path() that is not a wildcard on the route,

Symfony will set it as a query parameter. So this should give us exactly what we want. For the

text, say "Exit Impersonation":

<html>

 <body>

 <nav

 class="navbar navbar-expand-lg navbar-light bg-light px-1"

 {{ is_granted('ROLE_PREVIOUS_ADMIN') ? 'style="background-

color: red !important"' }}

 >

 </nav>

 </body>

</html>

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

18

19

20

 // ... lines 21 - 29

30

 // ... lines 31 - 41

42

43

 // ... lines 44 - 54

55

56

57

58

59

60

61

62

 // ... lines 63 - 65

66

67

68

 // ... lines 69 - 70

71

72

73

74

 // ... lines 75 - 79

80

81

Try that! Refresh. It's obvious that we're impersonating... hit "Exit Impersonation" and... we are

back as abraca_admin@example.com . Sweet!

By the way, if you need more control over which users someone is allowed to switch to, you can

listen to the SwitchUserEvent . To prevent switching, throw an

<html>

 <body>

 <nav

 class="navbar navbar-expand-lg navbar-light bg-light px-1"

 {{ is_granted('ROLE_PREVIOUS_ADMIN') ? 'style="background-

color: red !important"' }}

 >

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <ul class="dropdown-menu dropdown-menu-end"

aria-labelledby="user-dropdown">

 {% if is_granted('ROLE_PREVIOUS_ADMIN') %}

 <a class="dropdown-item" href="{{

path('app_homepage', {

 '_switch_user': '_exit'

 }) }}">Exit Impersonation

 {% endif %}

 </div>

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

AuthenticationException . We'll talk more about event listeners later.

Next: let's take a short break to do something totally fun, but... kind of not related to security:

build a user API endpoint.

Chapter 28: User API & the Serializer

Most of our pages so far have been normal HTML pages. So let's create a pure API endpoint

that returns JSON data about the currently-authenticated user. This might be an endpoint that

we call from our own JavaScript... or maybe you're creating an API for someone else to

consume. More on that later.

Let's create a new controller for this called UserController ... and make it extend our

BaseController class:

src/Controller/UserController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

 // ... lines 10 - 17

18

Inside, add a method called apiMe() . Give this an @Route() - autocomplete the one from

the Symfony Component - and set the URL to /api/me :

src/Controller/UserController.php

 // ... lines 1 - 5

6

7

8

9

10

11

 // ... line 12

13

14

15

 // ... line 16

17

18

This isn't a very restful endpoint, but it's often a convenient one to have. To require

authentication to use this endpoint, add

namespace App\Controller;

class UserController extends BaseController

{

}

use Symfony\Component\Routing\Annotation\Route;

class UserController extends BaseController

{

 /**

 * @Route("/api/me")

 */

 public function apiMe()

 {

 }

}

@IsGranted("IS_AUTHENTICATED_REMEMBERED") :

src/Controller/UserController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

 // ... line 11

12

13

14

15

 // ... line 16

17

18

I'm using a mixture of annotations and PHP code to deny access in this project. Choose

whichever one you like better for your app. Inside the method, we can just say: return

$this->json() and pass it the current user: $this->getUser() :

src/Controller/UserController.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

That's beautiful! Let's try it. We are logged in right now... so we can go to /api/me and see...

absolutely nothing! Just empty braces!

By default, when you call $this->json() , it passes the data to Symfony's JsonResponse

class. And then that class calls PHP's json_encode() function on our User object. In PHP,

unless you do extra work, when you pass an object to json_encode() , all it does is include

the public properties. Since our User class doesn't have any public properties:

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

class UserController extends BaseController

{

 /**

 * @IsGranted("IS_AUTHENTICATED_REMEMBERED")

 */

 public function apiMe()

 {

 }

}

class UserController extends BaseController

{

 /**

 * @Route("/api/me")

 * @IsGranted("IS_AUTHENTICATED_REMEMBERED")

 */

 public function apiMe()

 {

 return $this->json($this->getUser());

 }

}

src/Entity/User.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 29

30

 // ... lines 31 - 34

35

 // ... lines 36 - 39

40

41

42

 // ... lines 43 - 168

169

We get a boring response back.

Leveraging the Serializer

This... isn't good enough. So instead, let's leverage Symfony's serializer component. To get it

installed, at your terminal, run:

composer require "serializer:1.0.4"

This installs the serializer pack, which includes Symfony's Serializer component as well as a few

other libraries that help it work in a really smart way. But it doesn't have a recipe that does

anything fancy: it just installs code.

One of the cool things about using $this->json() is that as soon as the Symfony serializer

is installed, it will automatically start using it to serialize the data instead of the normal

json_encode() . In other words, when we refresh the endpoint, it works!

Adding Serialization Groups

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 private $id;

 private $email;

 private $roles = [];

 private $firstName;

 private $password;

 private $plainPassword;

}

We're not going to talk too much about how the Symfony serializer works - we talk a lot about it

in our API Platform tutorials. But let's at least get some basics.

By default, the serializer will serialize any public property or any property that has a "getter" on

it. Heck, it will even serialize displayName - which is not a real property - because there is a

getDisplayName() method.

In reality... this is too much info to include in the endpoint. So let's take more control. We can do

this by telling the serializer to only serialize fields that are in a specific group. Pass 200 for the

status code, an empty headers array - both of which are the default values - so that we can get

to the fourth $context argument:

src/Controller/UserController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 13

14

15

16

 // ... line 17

18

19

20

This is sort of like "options" that you pass to the serializer. Pass one called groups set to an

array. I'm going to invent a group called user:read ... because we're "reading" from "user":

src/Controller/UserController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 13

14

15

16

17

18

19

20

Copy that group name. Now, inside the User entity, we need to add this group to every field

that we want to include in the API. For example, let's include id . Above the property, add an

class UserController extends BaseController

{

 public function apiMe()

 {

 return $this->json($this->getUser(), 200, [], [

]);

 }

}

class UserController extends BaseController

{

 public function apiMe()

 {

 return $this->json($this->getUser(), 200, [], [

 'groups' => ['user:read']

]);

 }

}

annotation or PHP attribute: @Groups() . Make sure you auto-complete the one from

Symfony's serializer to get the use statement on top. Inside, I'll paste user:read :

src/Entity/User.php

 // ... lines 1 - 8

9

 // ... lines 10 - 13

14

15

16

 // ... lines 17 - 19

20

21

22

 // ... lines 23 - 175

176

Copy that and... let's expose email , we don't want to expose roles , yes to firstName

and... that's it:

src/Entity/User.php

 // ... lines 1 - 13

14

15

16

 // ... lines 17 - 19

20

21

22

23

24

 // ... line 25

26

27

28

 // ... lines 29 - 34

35

 // ... line 36

37

38

39

 // ... lines 40 - 175

176

use Symfony\Component\Serializer\Annotation\Groups;

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @Groups("user:read")

 */

 private $id;

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @Groups("user:read")

 */

 private $id;

 /**

 * @Groups("user:read")

 */

 private $email;

 /**

 * @Groups("user:read")

 */

 private $firstName;

}

We could also put the group above getDisplayName() if we wanted to include that... or

getAvatarUri() ... actually I will add it there:

src/Entity/User.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 159

160

161

162

163

164

 // ... lines 165 - 169

170

 // ... lines 171 - 175

176

Let's try it! Refresh and... super cool! We have those 4 fields!

And notice one thing: even though this is an "API endpoint"... and our API endpoint requires us

to be logged in, we can totally access this... even though we don't have a fancy API token

authentication system. We have access thanks to our normal session cookie.

So that leads us to our next question: if you have API endpoints like this, do you need an API

token authentication system or not? Let's tackle that topic next.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @Groups("user:read")

 */

 public function getAvatarUri(int $size = 32): string

 {

 }

}

Chapter 29: To use API Token Authentication or
Not?

Here's the million-dollar question when it comes to security and APIs: does my site need some

sort of API token authentication? There's a pretty good chance that the answer is no. Even if

your app has some API endpoints - like ours - if you're creating these endpoints solely so that

your own JavaScript for your own site can use them, then you do not need an API token

authentication system. Nope, your life will be much simpler if you use a normal login form and

session-based authentication.

Session-based authentication is precisely why we have access to this endpoint: we previously

logged in... and our session cookie is used to authenticate us. This works just as well on a real

page as on an API endpoint.

To prove it, before I started the tutorial, I created a Stimulus controller called

user-api_controller.js :

assets/controllers/user-api_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

It's dead simple: it makes an API request... and logs the result. We're going to use it to make an

API request to /api/me to prove that Ajax calls can access the authenticated endpoints.

To activate the Stimulus controller, open templates/base.html.twig ... and find the body

element: that's an easy place to attach it: if

import { Controller } from 'stimulus';

import axios from 'axios';

export default class extends Controller {

 static values = {

 url: String

 }

 async connect() {

 const response = await axios.get(this.urlValue);

 console.log(response.data);

 }

}

is_granted('IS_AUTHENTICATED_REMEMBERED') , then

{{ stimulus_controller() }} and the name: user-api :

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

 // ... line 18

19

20

21

 // ... lines 22 - 85

86

87

So, our JavaScript will be called only if we're logged in. To pass the URL to the endpoint, add a

2nd arg with url set to path('app_user_api_me') :

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 85

86

87

And I'm realizing that I haven't given our API endpoint a route name yet... so let's do that:

<html>

 <body

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 {{ stimulus_controller('user-api', {

 }) }}

 {% endif %}

 >

 </body>

</html>

<html>

 <body

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 {{ stimulus_controller('user-api', {

 url: path('app_user_api_me')

 }) }}

 {% endif %}

 >

 </body>

</html>

src/Controller/UserController.php

 // ... lines 1 - 7

8

9

10

11

 // ... line 12

13

14

15

 // ... lines 16 - 18

19

20

Back in base.html.twig , yup! My editor looks happy now.

Ok, head back to the homepage, inspect element, go to the console and... there's my user data!

The Ajax request sends the session cookie and so... authentication just works.

So if the only thing that needs to use your API is your own JavaScript, save yourself a lot of

trouble and just use a login form. And if you do want to get fancy and submit your login for via

Ajax, you can totally do that. In fact, if you use Turbo, that happens automatically. But if you

wanted to write some custom JavaScript, it's still no problem. Just use Ajax to submit the login

form and the session cookie will be automatically set like normal. If you do decide to do this, the

only tweak you'll need is to make your login form authenticator return JSON instead of

redirecting. I would probably go back to using my custom LoginFormAuthenticator

because it would be super easy to return JSON from onAuthenticationSuccess() :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 66

67

68

 // ... lines 69 - 75

76

 // ... lines 77 - 81

82

When You Do Need API Tokens

class UserController extends BaseController

{

 /**

 * @Route("/api/me", name="app_user_api_me")

 */

 public function apiMe()

 {

 }

}

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, string $firewallName): ?Response

 {

 }

}

So then, when do we need an API token authentication system? The answer is pretty simple: if

someone other than your own site's JavaScript needs to access your API... including if your

JavaScript lives on a completely different domain. If you have this situation, you're probably

going to need some sort of API token system. Whether you need OAuth or a simpler system...

depends. We won't cover API tokens in this tutorial, but we create a pretty nice system in our

Symfony 4 Security tutorial, which you can check out.

Next: let's add a registration form!

https://symfonycasts.com/screencast/symfony4-security

Chapter 30: Registration Form

Let's add a registration form to our site. There's a funny thing about registration forms: they

have basically nothing to do with security! Think about it: the point of a registration form is just to

insert new users into the database. So creating a registration form is really not any different

than creating a form to insert any data into your database.

And to make things even simpler, we're going to cheat... by generating code. Find your terminal

and run:

symfony console make:registration-form

Ooh! This gives us an error! It says:

“Missing packages: run composer require form validator ”

In this Symfony 5 series, we haven't talked about the Form component. And that's in part

because it hasn't changed much since our Symfony 4 tutorial. We're not going to go into too

much detail about it right now, but we do need it to run this command. So let's install both

packages:

composer require form validator

Awesome. When that finishes, run:

symfony console make:registration-form

again. Cool! So the first question asks:

https://symfonycasts.com/screencast/symfony4-forms

“Do we want to add a @UniqueEntity validation annotation to our User class to make

sure duplicate accounts aren't created.”

You almost definitely want to say "Yes" so that the user gets a validation error if they enter an

email that's already taken.

Next:

“Do you want to send an email to verify the user's email address after registration?”

We're going to add this later, but I want to do it manually. So say "No".

“Do you want to automatically authenticate the user after registration?”

That sounds awesome, but say "No", because we're also going to do that manually. I know, I'm

making us work! The last question is:

“What route should the user be redirected to after registration?”

Let's just use our homepage route. So that's number 16 for me. And... done!

Checking out the Generated Code

This command just gave us a RegistrationController , a form type, and a template that

renders that form. Let's... go check that stuff out!

Start with the controller: src/Controller/RegistrationController.php :

src/Controller/RegistrationController.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Again, we're not going to talk much about the Form component. But, on a high level, this

controller creates a User object and then, on submit, it hashes the plain password that was

submitted and then saves the User . This is exactly the same thing that we're doing in our

fixtures to create users: there's nothing special about this at all.

Fixing the Form Styling

class RegistrationController extends AbstractController

{

 /**

 * @Route("/register", name="app_register")

 */

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher): Response

 {

 $user = new User();

 $form = $this->createForm(RegistrationFormType::class, $user);

 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {

 // encode the plain password

 $user->setPassword(

 $userPasswordHasher->hashPassword(

 $user,

 $form->get('plainPassword')->getData()

)

);

 $entityManager = $this->getDoctrine()->getManager();

 $entityManager->persist($user);

 $entityManager->flush();

 // do anything else you need here, like send an email

 return $this->redirectToRoute('app_homepage');

 }

 return $this->render('registration/register.html.twig', [

 'registrationForm' => $form->createView(),

]);

 }

}

So... let's see what this looks like! Head over to /register to see... the world's ugliest form!

We... can do better. The template for this page is registration/register.html.twig .

Open that up:

templates/registration/register.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

and... I'm just going to add a couple of divs to give this more structure. Awesome... then indent

all of this form stuff to be inside of those... and then we just need 3 closing divs on the bottom:

{% extends 'base.html.twig' %}

{% block title %}Register{% endblock %}

{% block body %}

 <h1>Register</h1>

 {{ form_start(registrationForm) }}

 {{ form_row(registrationForm.email) }}

 {{ form_row(registrationForm.plainPassword, {

 label: 'Password'

 }) }}

 {{ form_row(registrationForm.agreeTerms) }}

 <button type="submit" class="btn">Register</button>

 {{ form_end(registrationForm) }}

{% endblock %}

templates/registration/register.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Cool. That doesn't really fix the form... but at least our ugly form sort of appear in the center of

the page. Oh, but let me fix my typo on the mt-4 . And... yea, that looks better.

To fix the form itself, we can tell Symfony to output the form with markup that's Bootstrap 5-

friendly. This is... kind of a topic for the form tutorial, but it's easy. Go to

config/packages/twig.yaml . Here, add an option called form_themes with one new

item: boostrap_5_layout.html.twig :

config/packages/twig.yaml

1

2

3

4

5

 // ... lines 6 - 9

Try it now and... woh! That made a huge difference! Oh, but let me add one more class to that

registration button... so that it's not invisible: btn-primary :

{% block body %}

 <div class="container">

 <div class="row">

 <div class="bg-light mt-4 p-4">

 <h1>Register</h1>

 {{ form_start(registrationForm) }}

 {{ form_row(registrationForm.email) }}

 {{ form_row(registrationForm.plainPassword, {

 label: 'Password'

 }) }}

 {{ form_row(registrationForm.agreeTerms) }}

 <button type="submit" class="btn">Register</button>

 {{ form_end(registrationForm) }}

 </div>

 </div>

 </div>

{% endblock %}

twig:

 default_path: '%kernel.project_dir%/templates'

 form_themes:

 - bootstrap_5_layout.html.twig

templates/registration/register.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 17

18

19

20

21

22

23

Cool.

And while we're making things look and work nicely, we can finally make the "Sign up" button..

actually go somewhere. In base.html.twig , search for "Sign up" - here it is - set the href

to path() and target the new route, which... if we look... is called app_register :

src/Controller/RegistrationController.php

 // ... lines 1 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 43

44

45

So path('app_register') :

{% block body %}

 <div class="container">

 <div class="row">

 <div class="bg-light mt-4 p-4">

 {{ form_start(registrationForm) }}

 <button type="submit" class="btn btn-

primary">Register</button>

 {{ form_end(registrationForm) }}

 </div>

 </div>

 </div>

{% endblock %}

class RegistrationController extends AbstractController

{

 /**

 * @Route("/register", name="app_register")

 */

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher): Response

 {

 }

}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

 // ... lines 16 - 21

22

23

24

25

26

 // ... lines 27 - 35

36

 // ... lines 37 - 47

48

 // ... lines 49 - 73

74

 // ... line 75

76

77

78

79

80

 // ... lines 81 - 85

86

87

Beautiful!

This would now work if we tried it. But, before we do, I want to add one other feature to this.

After successfully submitting the registration form, I want to automatically authenticate the user.

Is that possible? Of course! Let's do it next.

<html>

 <body

 <nav

 class="navbar navbar-expand-lg navbar-light bg-light px-1"

 {{ is_granted('ROLE_PREVIOUS_ADMIN') ? 'style="background-

color: red !important"' }}

 >

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 {% else %}

 <a href="{{ path('app_register') }}" class="btn

btn-dark">Sign up

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

Chapter 31: Manual Authentication

Our registration form would work if we tried it. But, after registration, I want to also automatically

authenticate the user... so they don't need to register and then immediately log in... that would

be silly.

So far, all authentication has been done... kind of indirectly: the user makes a request, some

authenticator handles it and... voilà! But in this case, we want to authenticate the user directly,

by writing code inside of a controller.

Hello UserAuthenticatorInterface

And... this is totally possible, by autowiring a service specifically for this. Add a new argument

up here type-hinted with UserAuthenticatorInterface and I'll call it

$userAuthenticator :

src/Controller/RegistrationController.php

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 48

49

50

This object allows you to just... authenticate any User object. Right before the redirect, let's do

that: $userAuthenticator->authenticateUser() and we need to pass this a few

arguments. The first one is the User we want to authenticate:

use

Symfony\Component\Security\Http\Authentication\UserAuthenticatorInterface;

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator):

Response

 {

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 38

39

40

41

42

43

44

 // ... lines 45 - 48

49

50

Easy. The second is an "authenticator" that you want to use. This system works by basically

taking your User object and... kind of "running it through" one of your authenticators.

If we were still using our custom LoginFormAuthenticator , passing this argument would

be really easy. We could just autowire the LoginFormAuthenticator service up here and

pass it in.

Injecting the Service for form_login

But, in our security.yaml file, our main way of authenticating is form_login :

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator):

Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $userAuthenticator->authenticateUser(

 $user,

);

 return $this->redirectToRoute('app_homepage');

 }

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 28

29

30

31

32

33

34

 // ... lines 35 - 61

That does activate an authenticator service behind the scenes - just like our custom

LoginFormAuthenticator . The tricky part is figuring out what that service is and injecting it

into our controller.

So, we need to do a bit of digging. At your terminal, run

symfony console debug:container

and search for form_login :

symfony console debug:container form_login

In this list, I see a service called security.authenticator.form_login.main ... and

remember that "main" is the name of our firewall. This is the id of the service that we want. If

you're wondering about the service above this, if you checked, you'd find that it's an "abstract"

service. A, sort of "fake" service that's used as a template to create the real service for any

firewalls that use form_login .

Anyways, I'll hit "1" to get more details. Ok cool: this service is an instance of

FormLoginAuthenticator , which is the core class that we looked at earlier.

Back in our controller, add another argument type-hinted with FormLoginAuthenticator :

security:

 firewalls:

 main:

 form_login:

 login_path: app_login

 check_path: app_login

 username_parameter: email

 password_parameter: password

 enable_csrf: true

src/Controller/RegistrationController.php

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 51

52

53

Then, down here, pass the new argument to authenticateUser() :

src/Controller/RegistrationController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 39

40

41

42

 // ... line 43

44

 // ... lines 45 - 46

47

 // ... lines 48 - 51

52

53

This won't work yet, but stick with me.

The final argument to authenticateUser() is the Request object... which we already

have... it's our first controller argument:

use Symfony\Component\Security\Http\Authenticator\FormLoginAuthenticator;

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator,

FormLoginAuthenticator $formLoginAuthenticator): Response

 {

 }

}

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator,

FormLoginAuthenticator $formLoginAuthenticator): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $userAuthenticator->authenticateUser(

 $user,

 $formLoginAuthenticator,

);

 }

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 39

40

41

42

43

44

 // ... lines 45 - 46

47

 // ... lines 48 - 51

52

53

authenticateUser Returns a Response

Done! Oh, and one cool thing about authenticateUser() is that it returns a Response

object! Specifically, the Response object from the onAuthenticationSuccess() method

of whatever authenticator we passed in. This means that instead of redirecting to the

homepage, we can return this and, wherever that authenticator normally redirects to, we will

redirect there as well, which could be the "target path".

Binding the form_login Service

Let's try this thing! Refresh the registration form to be greeted with... an awesome error!

“Cannot autowire argument $formLoginAuthenticator .”

Hmm. We did type-hint that argument with the correct class: FormLoginAuthenticator :

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator,

FormLoginAuthenticator $formLoginAuthenticator): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $userAuthenticator->authenticateUser(

 $user,

 $formLoginAuthenticator,

 $request

);

 }

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 51

52

53

The problem is that this is a rare example of a service that is not available for autowiring! So, we

need to configure this manually.

Fortunately, if we didn't already know what service we need, the error message gives us a great

hint. It says:

“... no such service exists, maybe you should alias this class to the existing

security.authenticator.form_login.main service”

Yup, it gave us the id of the service that we need to wire.

Go copy the argument name - formLoginAuthenticator - and then open

config/services.yaml . Beneath _defaults , add a new bind called

$formLoginAuthenticator set to @ then... I'll go copy that long service id... and paste it

here:

config/services.yaml

 // ... lines 1 - 8

9

10

11

 // ... lines 12 - 13

14

 // ... line 15

16

 // ... lines 17 - 32

use Symfony\Component\Security\Http\Authenticator\FormLoginAuthenticator;

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator,

FormLoginAuthenticator $formLoginAuthenticator): Response

 {

 }

}

services:

 # default configuration for services in *this* file

 _defaults:

 bind:

 $formLoginAuthenticator:

'@security.authenticator.form_login.main'

This says: whenever a service has a $formLoginAuthenticator argument, pass it this

service.

That... if we refresh... will get rid of our error.

Ok, let's finally register a new user! I'll use my real-life email... then any password... as long as

it's 6 characters: our registration form came pre-built with that validation rule. And... we got it.

Down on the web debug toolbar, we are logged in as Merlin! I feel the magical power.

Next: sometimes denying access is not as simple as just checking a role. For example, what if

you had a question edit page and it needs to only be accessible to the creator of that question?

It's time to discover a powerful system inside of Symfony called voters.

Chapter 32: Making Questions owned by Users

Our site has users and these questions are created by those users. So in the database, each

Question needs to be related to the User that created it via a Doctrine relationship. Right

now, if you open src/Entity/Question.php , that is not the case. There's nothing that

relates this back to the User that created it. Time to fix that. We'll need this so we can properly

talk about voters!

Generating the Relationship

Find your terminal and run:

symfony console make:entity

We're going to modify the Question entity and add a new property called owner , which will

be the "user" that owns this Question . We need a ManyToOne relationship. If you're ever not

sure, just type "relation" and it will guide you through a wizard to help. This will be a relation to

the User class... and the owner property will not be nullable: every question must be owned

by some user.

Next it asks if we want to map the other side of the relationship so that we can say

$user->getQuestions() . That might be handy, so let's say yes. And call that property

questions . Finally, I'm going to say no to orphan removal. And... done!

If you went through our Doctrine relationships tutorial, then you know that there's nothing

special here. This added a ManyToOne relationship above a new $owner property... and

made getter and setter methods at the bottom:

src/Entity/Question.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 64

65

66

67

68

69

 // ... lines 70 - 227

228

229

230

231

232

233

234

235

236

237

238

239

Over in the User class, it also mapped the inverse side of the relationship:

class Question

{

 /**

 * @ORM\ManyToOne(targetEntity=User::class, inversedBy="questions")

 * @ORM\JoinColumn(nullable=false)

 */

 private $owner;

 public function getOwner(): ?User

 {

 return $this->owner;

 }

 public function setOwner(?User $owner): self

 {

 $this->owner = $owner;

 return $this;

 }

}

src/Entity/User.php

 // ... lines 1 - 5

6

7

 // ... lines 8 - 17

18

19

 // ... lines 20 - 51

52

53

54

55

56

57

58

59

60

 // ... lines 61 - 190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

use Doctrine\Common\Collections\ArrayCollection;

use Doctrine\Common\Collections\Collection;

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @ORM\OneToMany(targetEntity=Question::class, mappedBy="owner")

 */

 private $questions;

 public function __construct()

 {

 $this->questions = new ArrayCollection();

 }

 /**

 * @return Collection|Question[]

 */

 public function getQuestions(): Collection

 {

 return $this->questions;

 }

 public function addQuestion(Question $question): self

 {

 if (!$this->questions->contains($question)) {

 $this->questions[] = $question;

 $question->setOwner($this);

 }

 return $this;

 }

 public function removeQuestion(Question $question): self

 {

 if ($this->questions->removeElement($question)) {

 // set the owning side to null (unless already changed)

 if ($question->getOwner() === $this) {

 $question->setOwner(null);

 }

 }

 return $this;

 }

220

Let's go make a migration for this change:

symfony console make:migration

And... as usual, we'll run over to the new migration file... to make sure it contains only the stuff

we expect. Yep: ALTER TABLE question , add owner_id and then the foreign key stuff:

migrations/Version20211012184326.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Fixing the Migration

Let's run that:

}

final class Version20211012184326 extends AbstractMigration

{

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE question ADD owner_id INT NOT NULL');

 $this->addSql('ALTER TABLE question ADD CONSTRAINT

FK_B6F7494E7E3C61F9 FOREIGN KEY (owner_id) REFERENCES user (id)');

 $this->addSql('CREATE INDEX IDX_B6F7494E7E3C61F9 ON question

(owner_id)');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('ALTER TABLE question DROP FOREIGN KEY

FK_B6F7494E7E3C61F9');

 $this->addSql('DROP INDEX IDX_B6F7494E7E3C61F9 ON question');

 $this->addSql('ALTER TABLE question DROP owner_id');

 }

}

symfony console doctrine:migrations:migrate

And... it failed! That's okay. It fails because there are already rows in the question table. So

adding a new owner_id NOT NULL makes those existing records... explode. In the Doctrine

relations tutorial, we talked about how to responsibly handle, fix, and test failed migrations.

Because we already talked about it there, I'm going to take the easy route here and just drop

our database:

symfony console doctrine:database:drop --force

Then create a fresh database:

symfony console doctrine:database:create

And migrate again.

symfony console doctrine:migrations:migrate

Now it works. Reload the fixtures:

symfony console doctrine:fixtures:load

Assigning Owners in the Fixtures

And... that exploded too! Come on! The insert into question is failing because owner_id

cannot be null. That makes sense: we haven't - yet - gone into our fixtures and given each

question an owner.

Let's do that. Open src/Factory/QuestionFactory.php . Our job in getDefaults() , is

to supply a default value for every required property. So I'm now going to add an owner key set

to UserFactory::new() :

src/Factory/QuestionFactory.php

 // ... lines 1 - 28

29

30

 // ... lines 31 - 42

43

44

45

 // ... lines 46 - 52

53

54

55

 // ... lines 56 - 68

69

Thanks to this, if we execute QuestionFactory without overriding any variables, this will

create a brand new user for each new question.

But inside of our fixtures, that's... not exactly what we want. Head down to the bottom where we

create the users. What I want to do is create these users first. And then, when we create the

questions up here... oh actually right here, I want to use a random user from the ones that we

already created.

To do this, we first need to move our users up to the top so that they're created first:

final class QuestionFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'owner' => UserFactory::new(),

];

 }

}

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 61

62

63

Then, down here for our main questions, pass a function to the second argument and return an

array... so that we can override the owner property. Set it to UserFactory::random() :

src/DataFixtures/AppFixtures.php

 // ... lines 1 - 15

16

17

18

19

 // ... lines 20 - 30

31

32

33

34

35

 // ... lines 36 - 61

62

63

I'm not going to worry about also doing this for the unpublished questions down here... but we

could.

Ok: let's try the fixtures again:

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 UserFactory::createOne([

 'email' => 'abraca_admin@example.com',

 'roles' => ['ROLE_ADMIN']

]);

 UserFactory::createOne([

 'email' => 'abraca_user@example.com',

]);

 UserFactory::createMany(10);

 TagFactory::createMany(100);

 }

}

class AppFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 $questions = QuestionFactory::createMany(20, function() {

 return [

 'owner' => UserFactory::random(),

];

 });

 }

}

symfony console doctrine:fixtures:load

This time... they work!

Cool! So let's leverage the new relationship on our site to print the real owner of each question.

We're also going to start a question edit page and then... have to figure out how to make it so

that only the owner of each question can access it.

Chapter 33: Leveraging the Question Owner

Now that each Question has an owner - a User object - it's time to celebrate! On the

frontend, we can start rendering real data... instead of always having the same cat picture and

question written by the same Tisha. Those are both hard-coded, though we do love Tisha the

cat here at SymfonyCasts.

Start on the homepage. Open up templates/question/homepage.html.twig . And...

here's where we loop over the questions. First, for the avatar, we can use the helper method we

created earlier: {{ question.owner.avatarUri }} :

templates/question/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 15

16

17

18

19

20

21

22

23

 // ... lines 24 - 29

30

 // ... lines 31 - 38

39

40

 // ... lines 41 - 45

46

47

48

 // ... lines 49 - 50

51

52

53

 // ... lines 54 - 55

{% block body %}

<div class="container">

 <div class="row">

 {% for question in pager %}

 <div class="col-12 mb-3">

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ question.owner.avatarUri }}"

width="100" height="100" alt="{{ question.owner.displayName}} avatar">

 </div>

 </div>

 </div>

 </div>

 </div>

 {% endfor %}

 </div>

</div>

{% endblock %}

Next... down towards the bottom, here's where we print the question owner's name. Let's use

question.owner.displayName :

templates/question/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 15

16

17

18

19

20

21

 // ... lines 22 - 30

31

 // ... line 32

33

 // ... lines 34 - 35

36

37

38

39

40

 // ... lines 41 - 45

46

47

48

 // ... lines 49 - 50

51

52

53

 // ... lines 54 - 55

100 experience points for using two custom methods in a row.

And now... our page is starting to look real! Click into a question. Let's do the same thing for the

show page. Open that template: show.html.twig .

For the avatar, use question.owner.avatarUri :

{% block body %}

<div class="container">

 <div class="row">

 {% for question in pager %}

 <div class="col-12 mb-3">

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container p-4">

 <div class="row">

 <div class="col">

 <div class="q-display p-3">

 <p class="pt-4">--{{

question.owner.displayName }}</p>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 {% endfor %}

 </div>

</div>

{% endblock %}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 32

33

 // ... lines 34 - 41

42

43

44

45

46

 // ... lines 47 - 59

60

61

Then... down here, for the name, {{ question.owner.displayName }} :

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ question.owner.avatarUri }}"

width="100" height="100" alt="{{ question.owner.displayName}} avatar">

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

35

36

 // ... lines 37 - 38

39

40

41

42

43

44

45

46

 // ... lines 47 - 59

60

61

Oh, and I forgot to do one thing. Copy that, head back up to the avatar... so that we can also

update the alt attribute:

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col">

 <h1 class="q-title-show">{{ question.name }}

</h1>

 <div class="q-display p-3">

 <p class="pt-4">--{{

question.owner.displayName }}</p>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 32

33

 // ... lines 34 - 41

42

43

44

45

46

 // ... lines 47 - 59

60

61

I also need to do that on the homepage... here it is:

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ question.owner.avatarUri }}"

width="100" height="100" alt="{{ question.owner.displayName}} avatar">

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

templates/question/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 15

16

17

18

19

20

21

22

23

 // ... lines 24 - 29

30

 // ... lines 31 - 38

39

40

 // ... lines 41 - 45

46

47

48

 // ... lines 49 - 50

51

52

53

 // ... lines 54 - 55

Let's try this! Refresh the page and... we are dynamic!

Creating the Question Edit Page

In a real site, we're probably going to need a page where the owner of this question can edit its

details. We're not going to build this out all the way - I don't want to dive into the form system -

but we are going to get it started. And this is going to lead us to a really interesting security

situation.

Over in src/Controller/QuestionController.php ... find the show() action. Let's

cheat by copying this and pasting it. Change the URL to /questions/edit/{slug} , tweak

the route name and update the method name. Inside, just render a template:

question/edit.html.twig :

{% block body %}

<div class="container">

 <div class="row">

 {% for question in pager %}

 <div class="col-12 mb-3">

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ question.owner.avatarUri }}"

width="100" height="100" alt="{{ question.owner.displayName}} avatar">

 </div>

 </div>

 </div>

 </div>

 </div>

 {% endfor %}

 </div>

</div>

{% endblock %}

src/Controller/QuestionController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 69

70

71

72

73

74

75

76

77

78

 // ... lines 79 - 98

99

Cool! In templates/question/ , create that: edit.html.twig .

I'll paste in a basic template:

templates/question/edit.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Nothing special here, except that I'm printing the dynamic question text. There's no actually

form... since we're focusing on security... but pretend that there is.

Linking to the Edit Page

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/edit/{slug}", name="app_question_edit")

 */

 public function edit(Question $question)

 {

 return $this->render('question/edit.html.twig', [

 'question' => $question,

]);

 }

}

{% extends 'base.html.twig' %}

{% block title %}Edit Question: {{ question.name }}{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h1 class="my-4">Edit Question</h1>

 <blockquote>{{ question.question }}</blockquote>

 TODO

 </div>

 </div>

</div>

{% endblock %}

Before we try this page, head back into the question show template. Let's add an edit link to

help out the owner. Actually, find the h1 . Here we go.

Wrap this in a div with class="d-flex justify-content-between" ... and then close

and indent:

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

35

36

 // ... lines 37 - 40

41

 // ... lines 42 - 46

47

48

49

50

51

52

 // ... lines 53 - 65

66

67

Now add a link with href= path('app_question_edit') . And, of course, we need to pass

this the wildcard: id set to question.id . Oh... wait, actually, the wildcard is slug :

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col">

 <div class="d-flex justify-content-between">

 <h1 class="q-title-show">{{ question.name

}}</h1>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

src/Controller/QuestionController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 69

70

71

72

73

74

 // ... lines 75 - 77

78

 // ... lines 79 - 98

99

So use slug set to question.slug :

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/edit/{slug}", name="app_question_edit")

 */

 public function edit(Question $question)

 {

 }

}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

35

36

37

38

39

40

41

 // ... lines 42 - 46

47

48

49

50

51

52

 // ... lines 53 - 65

66

67

Cool. Then say "Edit"... and give this a few classes for prettiness.

Thanks to this... we have an edit button! Oh, but we need some margin! Add mb-2 :

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col">

 <div class="d-flex justify-content-between">

 <h1 class="q-title-show">{{ question.name

}}</h1>

 <a href="{{ path('app_question_edit', {

 slug: question.slug

 }) }}" class="btn btn-secondary btn-sm mb-

2">Edit

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

35

 // ... lines 36 - 37

38

39

40

41

 // ... lines 42 - 46

47

48

49

50

51

52

 // ... lines 53 - 65

66

67

and... much better. Click that. This is the question edit page... which is not really an edit page...

but pretend that it is.

Now let's circle back to the topic of security. Because... we can't just let anyone get to this page:

only the owner of this question should be able to edit it.

So inside of QuestionController , we need a security check. We first need to make sure

that the user is logged in. Do that with $this->denyAccessUnlessGranted() passing

IS_AUTHENTICATED_REMEMBERED :

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col">

 <div class="d-flex justify-content-between">

 <a href="{{ path('app_question_edit', {

 slug: question.slug

 }) }}" class="btn btn-secondary btn-sm mb-

2">Edit

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

src/Controller/QuestionController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 72

73

74

75

 // ... lines 76 - 82

83

 // ... lines 84 - 103

104

Thanks to this, we're guaranteed to get a User object if we say $this->getUser() . We can

use that: if $question->getOwner() does not equal $this->getUser() , then someone

other than the owner is trying to access this page. Deny access with

throw $this->createAccessDeniedException() . I'll say:

“You are not the owner!”

But, remember, these error messages are only shown to developers:

src/Controller/QuestionController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 72

73

74

75

76

77

78

 // ... lines 79 - 82

83

 // ... lines 84 - 103

104

Ok, so right now I'm not logged in at all. So if we refresh, it kicks us back to the login page. So...

yay! We just successfully prevented anyone other than the owner from accessing this edit page!

But... bad news friends: I don't like this solution. I don't like putting any manual security logic

inside my controller. Why? Because it means that we're going to need to repeat that logic in

class QuestionController extends AbstractController

{

 public function edit(Question $question)

 {

 $this->denyAccessUnlessGranted('ROLE_USER');

 }

}

class QuestionController extends AbstractController

{

 public function edit(Question $question)

 {

 $this->denyAccessUnlessGranted('ROLE_USER');

 if ($question->getOwner() !== $this->getUser()) {

 throw $this->createAccessDeniedException('You are not the

owner!');

 }

 }

}

Twig in order to hide or show the edit button. And what if our logic gets more complex? What if

you can edit a question if you're the owner or if you have ROLE_ADMIN? Now we would need to

update and maintain the duplicate logic in two places at least. Nope, we do not want to

duplicate our security rules.

So next let's learn about the voter system, which is the key to centralizing all of this

authorization logic in a beautiful way.

Chapter 34: Voters

When we need to deny access to something, we can do it in a couple of different places, like

access_control in security.yaml :

config/packages/security.yaml

1

 // ... lines 2 - 54

55

56

57

58

59

60

Or various ways inside of a controller. And when we deny access, we know that we can do it by

checking for a role like ROLE_ADMIN or by checking one of the special strings like

IS_AUTHENTICATED_REMEMBERED . It seems pretty simple, right? If we use something like

ROLE_ADMIN , it clearly calls getRoles() on the User and denies or allows access.

Introducing: the Voter System

So all of this is... basically true. But in reality, whenever you call the authorization system - either

via access_control , ->denyAccessUnlessGranted() , or even the IsGranted()

annotation/attribute, something more interesting happens internally. It activates what's called the

voter system.

We can see this. Refresh the page and then click on the security icon in the web debug toolbar

to jump into the profiler. Down near the bottom of this page, as we saw earlier, you'll find an

"Access decision log" that shows all the different times that the authorization system was called

during this request. Apparently it was called a bunch of times. Most of these represent us trying

to figure out whether we should show or hide the voting links for each answer.

But check out this little "Show voter details" link. When you click, ooooh. There are two "voters".

The first one voted ACCESS_DENIED and the second voted ACCESS_ABSTAIN .

security:

 # Easy way to control access for large sections of your site

 # Note: Only the *first* access control that matches will be used

 access_control:

 - { path: ^/admin/login, roles: PUBLIC_ACCESS }

 - { path: ^/admin, roles: ROLE_ADMIN }

 # - { path: ^/profile, roles: ROLE_USER }

When you call the authorization system, it loops over these things called voters and asks each

one:

“Do you know how to decide whether or not the user has

IS_AUTHENTICATED_REMEMBERED , or ROLE_ADMIN ... or whatever string we pass in.”

In practice, exactly one of these voters will say that they do understand how to vote on that

string, and they'll answer with either ACCESS_DENIED or ACCESS_GRANTED . All the other

voters will return ACCESS_ABSTAIN ... which just means that they don't want to vote one way or

another.

So, for example, whenever you call the authorization system and pass it one of those

IS_AUTHENTICATED_ strings, it's this AuthenticatedVoter that knows how to decide

whether the user has that or not.

The RoleHierarchyVoter , well you can probably guess. That's responsible for voting on

anything that starts with ROLE_ . Internally, that voter checks to see if the user has that role.

Well technically it checks the "token"... but that's not too important. It also takes our

role_hierarchy config into account.

And, by the way, even though this is called the "voter" system, in all cases, every voter except

for one will abstain, which means they don't vote at all. You'll never have a situation where you

have 5 voters and 3 vote access granted and 2 vote access denied. You could create voters

that did that, but you won't.

Passing Custom "Attributes" into Authorization

Until now, denying access on our site has been pretty simple. We've either wanted to check to

see if the user is logged in, or we've checked for a specific role.

But security isn't always that simple. For our edit question page, we can't just check for a global

role. We need to check to see if the current user is the owner of this question. Yes: the security

logic is specific to some data. In this case, the Question object. Putting the logic in the

controller worked, but it means that we're going to have to duplicate this logic in our Twig

template in order to hide or show the "edit question" link.

The way to fix this is by creating our own custom voter that centralizes our logic. To do this,

delete all of this code and replace it with $this->denyAccessUnlessGranted() .

Here is where things get interesting: we're going to "invent" a new string to pass to this. These

strings - which you may have thought of as "roles" until now - are actually called attributes. Say

EDIT . I totally just made that up. You'll see how that's used in a minute.

Then, we haven't seen it yet, but you can also pass a second argument to

denyAccessUnlessGranted() , which is some data related to this security check. Pass the

Question object:

src/Controller/QuestionController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 72

73

74

75

 // ... lines 76 - 79

80

 // ... lines 81 - 100

101

Ok, stop right now and click to the edit page. Ooh, we get "access denied". Well, it redirected us

to the login page... but that means we didn't have access. Click any link on the web debug

toolbar to jump into the profiler, click "Last 10", then find the request to the question edit page.

Click to view its profiler info... and go down to the Security section.

At the bottom, under the "Access Decision Log", access was Denied for attribute "EDIT" and

this Question object. If you look at the voter details... oh! They all abstained. So every voter

said:

“I have no idea how to vote on the attribute "EDIT" and a Question object.”

If all voters abstain, we get access denied.

Next: let's fix this by adding our own custom voter that does know how to vote on this situation.

Once we're finished, we'll make or logic even more complex by also allowing admin users to

access the edit page.

class QuestionController extends AbstractController

{

 public function edit(Question $question)

 {

 $this->denyAccessUnlessGranted('EDIT', $question);

 }

}

Chapter 35: Custom Voter

To make the security system understand what it means when we check for EDIT access on a

Question object, we need a custom voter. And... to help us out, we can generate this.

Find your terminal and run:

symfony console make:voter

Let's call it QuestionVoter . I often have one voter class per object in my system that I need

to check access for. And... done!

Adding the Voter Logic

Let's go check it out: src/Security/Voter/QuestionVoter.php :

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

As usual, the location of this class makes no difference. The important thing is that our voter

implements VoterInterface . Well, not directly... but if you open the core class we extend,

you can see that it implements VoterInterface . The point is: as soon as we create a class

namespace App\Security\Voter;

use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;

use Symfony\Component\Security\Core\Authorization\Voter\Voter;

use Symfony\Component\Security\Core\User\UserInterface;

class QuestionVoter extends Voter

{

 protected function supports(string $attribute, $subject): bool

 {

 // replace with your own logic

 // https://symfony.com/doc/current/security/voters.html

 return in_array($attribute, ['POST_EDIT', 'POST_VIEW'])

 && $subject instanceof \App\Entity\Question;

 }

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 $user = $token->getUser();

 // if the user is anonymous, do not grant access

 if (!$user instanceof UserInterface) {

 return false;

 }

 // ... (check conditions and return true to grant permission) ...

 switch ($attribute) {

 case 'POST_EDIT':

 // logic to determine if the user can EDIT

 // return true or false

 break;

 case 'POST_VIEW':

 // logic to determine if the user can VIEW

 // return true or false

 break;

 }

 return false;

 }

}

that implements VoterInterface , each time that the authorization system is called, Symfony

will now call our supports() method and basically ask:

“Hey! Do you understand how to vote on this $attribute and this $subject?”

For us, I'm going to say if in_array($attribute, ['EDIT']) . So basically, if the attribute

that is passed is equal to EDIT :

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 10

11

12

13

14

15

16

 // ... line 17

18

 // ... lines 19 - 40

41

I'm just using an array in case we support other attributes in this voter later - like DELETE .

Anyways, if the $attribute is EDIT and the $subject is an instance of Question , then

yes, we know how to vote on this:

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

 // ... lines 19 - 40

41

If we return false , it means that our voter will "abstain" from voting. But if we return true, then

Symfony calls voteOnAttribute() :

class QuestionVoter extends Voter

{

 protected function supports(string $attribute, $subject): bool

 {

 // https://symfony.com/doc/current/security/voters.html

 return in_array($attribute, ['EDIT'])

 }

}

class QuestionVoter extends Voter

{

 protected function supports(string $attribute, $subject): bool

 {

 // https://symfony.com/doc/current/security/voters.html

 return in_array($attribute, ['EDIT'])

 && $subject instanceof \App\Entity\Question;

 }

}

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 19

20

21

 // ... lines 22 - 39

40

41

Very simply, we need to take the attribute - in our case EDIT - and the $subject - in our case

a Question object - and determine whether or not the user should have access by returning

true or false .

I'm going to start by adding a few things that will help my editor. First, to get the current User

object, you use this $token and call $token->getUser() :

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 19

20

21

 // ... line 22

23

 // ... lines 24 - 39

40

41

The only problem is that my editor doesn't know that this is an instance of my specific User

class: it only knows that it's some UserInterface . To help, I'll add @var User $user

above this:

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 }

}

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 $user = $token->getUser();

 }

}

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 5

6

 // ... lines 7 - 10

11

12

 // ... lines 13 - 19

20

21

22

23

 // ... lines 24 - 39

40

41

Even better, you could add an if statement to check if $user is not an instance of User and

throw an exception:

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 19

20

21

22

23

24

25

26

27

 // ... lines 28 - 39

40

41

I'll actually do that down here. We know that $subject will be an instance of our Question

class. To help our editor know that, say if not $subject is an instanceof Question , then

throw a new Exception and just say "wrong type somehow passed":

use App\Entity\User;

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 /** @var User $user */

 $user = $token->getUser();

 }

}

use Symfony\Component\Security\Core\User\UserInterface;

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 /** @var User $user */

 $user = $token->getUser();

 // if the user is anonymous, do not grant access

 if (!$user instanceof UserInterface) {

 return false;

 }

 }

}

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 19

20

21

22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 39

40

41

That should never happen, but we're coding defensively. And more importantly, my editor - or

static analysis tools like PHPStan - will now know what type the $subject variable is.

Finally, down here, the generated code has a switch-case to handle multiple attributes. I'll

remove the second case... and make the first case EDIT . And... I don't even need the break

because I'm going to return true if $user is equal to $subject->getOwner() :

use App\Entity\Question;

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 /** @var User $user */

 $user = $token->getUser();

 // if the user is anonymous, do not grant access

 if (!$user instanceof UserInterface) {

 return false;

 }

 if (!$subject instanceof Question) {

 throw new \Exception('Wrong type somehow passed');

 }

 }

}

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Let's try it! Back at the browser, I'm not logged in. So if we go back... to a question page... and

click "edit"... access is still denied. Log in with our normal user. And then... access is still

denied... which makes sense. We're an admin user... but we are not the owner of this question.

So let's log in as the owner! Go back to the homepage and click into a question. To make it

more obvious which user owns this, temporarily, open

templates/question/show.html.twig and... down here, after the display name, just to

help debug, print question.owner.email :

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 /** @var User $user */

 $user = $token->getUser();

 // if the user is anonymous, do not grant access

 if (!$user instanceof UserInterface) {

 return false;

 }

 if (!$subject instanceof Question) {

 throw new \Exception('Wrong type somehow passed');

 }

 // ... (check conditions and return true to grant permission) ...

 switch ($attribute) {

 case 'EDIT':

 return $user === $subject->getOwner();

 }

 return false;

 }

}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

 // ... lines 35 - 41

42

 // ... lines 43 - 44

45

46

47

48

49

50

51

52

 // ... lines 53 - 65

66

67

And... cool. Copy the email and let's use impersonation! At the end of the URL, add

?_switch_user= , paste that email and... boom! Access is granted thanks to our voter! We

can prove it. Jump into the profiler and scroll down. Here it is: access granted for EDIT of this

Question object. I love that.

Using the Voter in Twig

Now that we have this cool voter system, we can intelligently hide and show the edit button.

Back in show.html.twig , wrap the anchor tag with if is_granted() passing the string

EDIT and the question object:

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col">

 <div class="q-display p-3">

 <p class="pt-4">--{{

question.owner.displayName }} ({{ question.owner.email }})</p>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

35

 // ... lines 36 - 37

38

39

40

41

42

43

 // ... lines 44 - 48

49

50

51

52

53

54

 // ... lines 55 - 67

68

69

How cool is that? We should still have access, and... when we refresh, it's still there. But if I exit

impersonation... and then click back to the question, it's gone!

Also Allowing Admin Users to Edit

But I have one more challenge. Could we make it so that you can edit a question if you are the

owner or if you have ROLE_ADMIN . Sure! To do that, in the voter, we just need to check for that

role. To do that, we need a new service.

Add a constructor and autowire the Security service from the Symfony component. I'll hit

Alt+Enter and go to "Initialize properties" to set things up:

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question:</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col">

 <div class="d-flex justify-content-between">

 {% if is_granted('EDIT', question) %}

 <a href="{{ path('app_question_edit',

{

 slug: question.slug

 }) }}" class="btn btn-secondary btn-sm

mb-2">Edit

 {% endif %}

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

13

14

15

16

17

18

19

 // ... lines 20 - 52

53

We talked about this service earlier: we used it to get the currently-authenticated User object

from inside a service. It can also be used to check security from within a service.

Even before the switch case, let's add: if $this->security->isGranted('ROLE_ADMIN')

then always return true :

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 8

9

 // ... lines 10 - 11

12

13

 // ... lines 14 - 27

28

29

 // ... lines 30 - 40

41

42

43

44

45

46

 // ... lines 47 - 48

49

 // ... lines 50 - 51

52

53

So admin users can do anything. Oh, but whooops, I didn't mean to add that exclamation point!

use Symfony\Component\Security\Core\Security;

class QuestionVoter extends Voter

{

 private Security $security;

 public function __construct(Security $security)

 {

 $this->security = $security;

 }

}

use Symfony\Component\Security\Core\Security;

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject,

TokenInterface $token): bool

 {

 if ($this->security->isGranted('ROLE_ADMIN')) {

 return true;

 }

 // ... (check conditions and return true to grant permission) ...

 switch ($attribute) {

 }

 }

}

Since we are currently logged in as an admin user.... as soon as we refresh, we have the edit

button... and it works. So cool!

Next: Let's add an email confirmation system to our registration form.

Chapter 36: Verify Email after Registration

On some sites, after registration, you need to verify your email. You're almost definitely familiar

with the process: you register, they send a special link to your email, you click that link and

voilà! Your email is verified. If you don't click that link, depending on the site, you might not have

access to certain sections... or you may not be able to log in at all. That's what we're going to

do.

When we originally ran the make:registration-form command, it asked us if we wanted to

generate an email verification process. If we had said yes, it would have generated some code

for us. We said no... so that we could build it by hand, learn a bit more about how it works and

customize things a bit.

User.isVerified Property

But before we jump into sending the verification email, inside our User class, we need some

way to track whether or not a user has verified their email. Let's add a new field for that. Run:

symfony console make:entity

Update User , add an isVerified property, boolean type, not nullable and... perfect! Head

over to the class. Let's see... here we go: $isVerified :

src/Entity/User.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 56

57

58

59

60

 // ... lines 61 - 225

226

227

228

229

230

231

232

233

234

235

236

237

Let's default this to false :

src/Entity/User.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 59

60

 // ... lines 61 - 236

237

Ok, time for the migration:

symfony console make:migration

Go check that out and... awesome. It looks exactly like we expect:

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * @ORM\Column(type="boolean")

 */

 private $isVerified;

 public function getIsVerified(): ?bool

 {

 return $this->isVerified;

 }

 public function setIsVerified(bool $isVerified): self

 {

 $this->isVerified = $isVerified;

 return $this;

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 private $isVerified = false;

}

migrations/Version20211012235912.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Run it!

symfony console doctrine:migrations:migrate

Beautiful! Let's do one more thing related to the database. Inside of

src/Factory/UserFactory.php , to make life simpler, set $isVerified to true :

namespace DoctrineMigrations;

use Doctrine\DBAL\Schema\Schema;

use Doctrine\Migrations\AbstractMigration;

/**

 * Auto-generated Migration: Please modify to your needs!

 */

final class Version20211012235912 extends AbstractMigration

{

 public function getDescription(): string

 {

 return '';

 }

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE user ADD is_verified TINYINT(1) NOT

NULL');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('ALTER TABLE user DROP is_verified');

 }

}

src/Factory/UserFactory.php

 // ... lines 1 - 29

30

31

 // ... lines 32 - 40

41

42

43

 // ... lines 44 - 46

47

48

49

 // ... lines 50 - 68

69

So, by default, users in our fixtures will be verified. But I won't worry about reloading my fixtures

quite yet.

Hello VerifyEmailBundle!

Okay: now let's add the email confirmation system! How? By leveraging a bundle! At your

terminal, run:

composer require "symfonycasts/verify-email-bundle:1.11.0"

Hey, I know them! This bundle gives us a couple of services that will help generate a signed

URL that we will include in the email and then validate that signed URL when the user clicks it.

To get this working, open up RegistrationController . We already have our working

register() method. Now we need one other method. Add public function

verifyUserEmail() . Above this, give it a route: @Route("/verify") with

name="app_verify_email" :

final class UserFactory extends ModelFactory

{

 protected function getDefaults(): array

 {

 return [

 'isVerified' => true,

];

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 53

54

55

56

57

58

59

60

61

When the user clicks the "confirm email" link in the email that we send them, this is the route

and controller that link will take them to. I'm going to leave it empty for now. But eventually, its

job will be to validate the signed URL, which will prove that the user did click on the exact link

that we sent them.

Sending the Confirmation Email

Up in the register() action, here is where we need to send that email. As I mentioned

earlier, you can do different things on your site based on whether or not the user's email is

verified. In our site, we are going to completely prevent the user from logging in until their email

is verified. So I'm going to remove the $userAuthenticator stuff:

class RegistrationController extends AbstractController

{

 /**

 * @Route("/verify", name="app_verify_email")

 */

 public function verifyUserEmail(): Response

 {

 // TODO

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 39

40

41

42

43

44

45

46

47

 // ... lines 48 - 51

52

 // ... lines 53 - 60

61

And replace that with the original redirect to app_homepage :

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 47

48

49

 // ... lines 50 - 53

54

 // ... lines 55 - 62

63

Up top, we can remove some arguments.

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, UserAuthenticatorInterface $userAuthenticator,

FormLoginAuthenticator $formLoginAuthenticator): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $userAuthenticator->authenticateUser(

 $user,

 $formLoginAuthenticator,

 $request

);

 return $this->redirectToRoute('app_homepage');

 }

 }

}

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, VerifyEmailHelperInterface $verifyEmailHelper):

Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 return $this->redirectToRoute('app_homepage');

 }

 }

}

Cool. Now we need to generate the signed email confirmation link and send it to the user. To do

that, autowire a new service type-hinted with VerifyEmailHelperInterface . Call it

$verifyEmailHelper :

src/Controller/RegistrationController.php

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 53

54

 // ... lines 55 - 62

63

Below, after we save the user, let's generate that signed URL. This... looks a little weird at first.

Say $signatureComponents equals $verifyEmailHelper->generateSignature() :

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 35

36

37

38

 // ... lines 39 - 42

43

 // ... lines 44 - 48

49

 // ... lines 50 - 53

54

 // ... lines 55 - 62

63

use SymfonyCasts\Bundle\VerifyEmail\VerifyEmailHelperInterface;

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, VerifyEmailHelperInterface $verifyEmailHelper):

Response

 {

 }

}

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, VerifyEmailHelperInterface $verifyEmailHelper):

Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $entityManager->flush();

 $signatureComponents = $verifyEmailHelper->generateSignature(

);

 }

 }

}

The first argument is the route name to the verification route. For us, that will be

app_verify_email :

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 55

56

57

58

59

60

 // ... line 61

62

63

So I'll put that here. Then the user's id - $user->getId() - and the user's email,

$user->getEmail() :

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 37

38

39

40

41

 // ... line 42

43

 // ... lines 44 - 48

49

 // ... lines 50 - 53

54

 // ... lines 55 - 62

63

class RegistrationController extends AbstractController

{

 /**

 * @Route("/verify", name="app_verify_email")

 */

 public function verifyUserEmail(): Response

 {

 }

}

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, VerifyEmailHelperInterface $verifyEmailHelper):

Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $signatureComponents = $verifyEmailHelper->generateSignature(

 'app_verify_email',

 $user->getId(),

 $user->getEmail(),

);

 }

 }

}

These are both used to "sign" the URL, which will help prove that this user did click the link from

the email we sent them:

Verifying the Email without Being Logged In

But now we have a decision point. There are two different ways to use the VerifyEmailBundle.

The first one is where, when the user clicks this email confirmation link, you expect them to be

logged in. In this situation, down in verifyUserEmail() , we can use $this->getUser()

to figure out who is trying to verify their email and use that to help validate the signed URL.

The other way, which is the way that we're going to use, is to allow the user to not be logged in

when they click the confirmation link in their email. With this mode, we need to pass an array as

the final argument to include the user id:

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 37

38

39

40

41

42

43

 // ... lines 44 - 48

49

 // ... lines 50 - 53

54

 // ... lines 55 - 62

63

The whole point of this generateSignature() method is to generate a signed URL. And

thanks to this last argument, that URL will now contain an id query parameter... which we can

use down in the verifyUserEmail() method to query for the User . We'll see that soon.

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, VerifyEmailHelperInterface $verifyEmailHelper):

Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $signatureComponents = $verifyEmailHelper->generateSignature(

 'app_verify_email',

 $user->getId(),

 $user->getEmail(),

 ['id' => $user->getId()]

);

 }

 }

}

At this point, in a real app, you would take this $signatureComponents thing, pass it into an

email template, use it to render the link and then send the email. But this is not a tutorial about

sending emails - though we do have that tutorial. So I'm going to take a shortcut. Instead of

sending an email, say $this->addFlash('success') with a little message that says,

"Confirm your email at:" and then the signed URL. You can generate that by saying

$signatureComponents->getSignedUrl() :

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 24

25

 // ... lines 26 - 37

38

39

40

41

42

43

44

45

46

 // ... lines 47 - 48

49

 // ... lines 50 - 53

54

 // ... lines 55 - 62

63

We haven't talked about flash messages. They're basically temporary messages that you can

put into the session... then render them one time. I put this message into a success category.

Thanks to this, over in templates/base.html.twig , right after the navigation - so it's on top

of the page - we can render any success flash messages. Add for

flash in app.flashes() and then look up that key success . Inside, add div with

alert , alert-success and render the message:

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface

$userPasswordHasher, VerifyEmailHelperInterface $verifyEmailHelper):

Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $signatureComponents = $verifyEmailHelper->generateSignature(

 'app_verify_email',

 $user->getId(),

 $user->getEmail(),

 ['id' => $user->getId()]

);

 // TODO: in a real app, send this as an email!

 $this->addFlash('success', 'Confirm your email at:

'.$signatureComponents->getSignedUrl());

 }

 }

}

https://symfonycasts.com/screencast/mailer

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

 // ... lines 16 - 81

82

83

84

85

86

 // ... lines 87 - 89

90

91

This flash stuff has nothing to do with email confirmation... it's just a feature of Symfony that's

most commonly used when you're handling forms. But it's a nice shortcut to help us test this.

Next: let's... do that! Test out our registration form and see what this signed URL looks like.

Then we'll fill in the logic to verify that URL and confirm our user.

<!DOCTYPE html>

<html>

 <body

 {% for flash in app.flashes('success') %}

 <div class="alert alert-success">{{ flash }}</div>

 {% endfor %}

 {% block body %}{% endblock %}

 </body>

</html>

Chapter 37: Verifying the Signed Confirm Email
URL

We're now generating a signed URL that we would normally include in a "confirm your email

address" email that we send to the user after registration. To keep things simple, we're just

rendering that URL onto the page after registration.

Removing our Unused Bind

Let's... go see what it looks like. Refresh and... ah! A terrible-looking error!

“A binding is configured for an argument named $formLoginAuthenticator under

_defaults , but no corresponding argument has been found.”

So until a few minutes ago, we had an argument to our register() action that was called

$formLoginAuthenticator . Over in config/services.yaml , we set up a global "bind"

that said:

“Whenever an autowired service has an argument named $formLoginAuthenticator ,

please pass this service.”

config/services.yaml

 // ... lines 1 - 8

9

10

11

 // ... lines 12 - 13

14

 // ... line 15

16

 // ... lines 17 - 32

One of the cool things about bind is that if there is no matching argument anywhere in our app,

it throws an exception. It's trying to make sure that we're not making an accidental typo.

services:

 # default configuration for services in *this* file

 _defaults:

 bind:

 $formLoginAuthenticator:

'@security.authenticator.form_login.main'

In our situation, we... just don't need that argument anymore. So, delete it. And now... our

registration page is alive!

Checking out the Verify URL

Let's do this! Enter an email, some password, agree to the terms and hit register. Beautiful!

Here is our email confirmation URL. You can see that it goes to /verify : that will hit our new

verifyUserEmail() action. It also includes an expiration. That's something you can

configure... it's how long the link is valid for. And it has a signature : that's something that will

help prove that the user didn't just make up this URL: it definitely came from us.

It also includes an id=18 : our user id.

Verifying the Signed URL

So our job now is to go into the verifyUserEmail controller method down here and validate

that signed URL. To do that, we need a few arguments: the Request object - so we can read

data from the URL - a VerifyEmailHelperInterface to help us validate the URL - and

finally, our UserRepository - so we can query for the User object:

src/Controller/RegistrationController.php

 // ... lines 1 - 6

7

 // ... line 8

9

 // ... lines 10 - 13

14

15

16

17

 // ... lines 18 - 60

61

62

 // ... lines 63 - 80

81

82

use App\Repository\UserRepository;

use Symfony\Component\HttpFoundation\Request;

use SymfonyCasts\Bundle\VerifyEmail\VerifyEmailHelperInterface;

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository): Response

 {

 }

}

And actually, that's our first job. Say $user = $userRepository->find() and find the

user that this confirmation link belongs to by reading the id query parameter. So,

$request->query->get('id') . And if, for some reason, we can't find the User , let's

trigger a 404 page by throwing $this->createNotFoundException() :

src/Controller/RegistrationController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 60

61

62

63

64

65

66

 // ... lines 67 - 80

81

82

Now we can make sure that the signed URL hasn't been tampered with. To do that, add a try-

catch block. Inside, say $verifyEmailHelper->validateEmailConfirmation() and

pass in a couple of things. First, the signed URL, which... is the current URL. Get that with

$request->getUri() . Next pass the user's id - $user->getId() then the user's email -

$user->getEmail() :

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository): Response

 {

 $user = $userRepository->find($request->query->get('id'));

 if (!$user) {

 throw $this->createNotFoundException();

 }

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 60

61

62

63

64

65

66

67

68

69

70

71

72

73

 // ... lines 74 - 77

78

 // ... lines 79 - 80

81

82

This makes sure that the id and email haven't changed in the database since the verification

email was sent. Well, the id definitely hasn't changed... since we just used it to query. This part

only really applies if you rely on the user being logged in to verify their email.

Anyways, if this is successful... nothing will happen! If it fails, it will throw a special exception

that implements VerifyEmailExceptionInterface :

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository): Response

 {

 $user = $userRepository->find($request->query->get('id'));

 if (!$user) {

 throw $this->createNotFoundException();

 }

 try {

 $verifyEmailHelper->validateEmailConfirmation(

 $request->getUri(),

 $user->getId(),

 $user->getEmail(),

);

 }

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 60

61

62

 // ... lines 63 - 67

68

69

70

71

72

73

74

 // ... lines 75 - 77

78

 // ... lines 79 - 80

81

82

So, down here, we know that verifying the URL failed... maybe someone messed with it. Or,

more likely, the link expired. Let's tell the user the reason by leveraging the flash system again.

Say $this->addFlash() , but this time put it into a different category called error . Then, to

say what went wrong, use $e->getReason() . Finally, use redirectToRoute() to send

them somewhere. How about the registration page?

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository): Response

 {

 try {

 $verifyEmailHelper->validateEmailConfirmation(

 $request->getUri(),

 $user->getId(),

 $user->getEmail(),

);

 } catch (VerifyEmailExceptionInterface $e) {

 }

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 60

61

62

 // ... lines 63 - 67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

To render the error, back in base.html.twig , duplicate this entire block, but look for error

messages and use alert-danger :

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

 // ... lines 16 - 81

82

83

84

85

86

87

 // ... lines 88 - 92

93

94

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository): Response

 {

 try {

 $verifyEmailHelper->validateEmailConfirmation(

 $request->getUri(),

 $user->getId(),

 $user->getEmail(),

);

 } catch (VerifyEmailExceptionInterface $e) {

 $this->addFlash('error', $e->getReason());

 return $this->redirectToRoute('app_register');

 }

 dd('TODO');

 }

}

<!DOCTYPE html>

<html>

 <body

 {% for flash in app.flashes('success') %}

 <div class="alert alert-success">{{ flash }}</div>

 {% endfor %}

 {% for flash in app.flashes('error') %}

 <div class="alert alert-danger">{{ flash }}</div>

 {% endfor %}

 </body>

</html>

Phew! Let's try the error case. Copy the URL then open a new tab and paste. If I go to this real

URL... it works. Well, we still need to do some more coding, but it hits our TODO at the bottom

of the controller. Now mess with the URL, like remove a few characters... or tweak the

expiration or change the id . Now... yes! It failed because our link is invalid. If the link were

expired, you would see a message about that.

So, finally, let's finish the happy case! At the bottom of our controller, now that we know that the

verification link is valid, we are done. For our app, we can say $user->isVerified(true)

and then store that in the database:

src/Controller/RegistrationController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 61

62

63

 // ... lines 64 - 68

69

 // ... lines 70 - 78

79

80

81

 // ... lines 82 - 86

87

88

Let' see... we need one more argument: EntityManagerInterface $entityManager :

src/Controller/RegistrationController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 16

17

18

 // ... lines 19 - 61

62

63

 // ... lines 64 - 86

87

88

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository, EntityManagerInterface $entityManager): Response

 {

 try {

 }

 $user->setIsVerified(true);

 }

}

use Doctrine\ORM\EntityManagerInterface;

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository, EntityManagerInterface $entityManager): Response

 {

 }

}

Back down here, use $entityManager->flush() to save that change:

src/Controller/RegistrationController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 61

62

63

 // ... lines 64 - 80

81

82

 // ... lines 83 - 86

87

88

And let's give this a happy success message:

“Account verified! You can now log in.”

Well, the truth is, we're not yet preventing them from logging in before they verify their email.

But we will soon. Anyways, finish by redirecting to the login page: app_login :

src/Controller/RegistrationController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 61

62

63

 // ... lines 64 - 80

81

82

83

84

85

86

87

88

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository, EntityManagerInterface $entityManager): Response

 {

 $user->setIsVerified(true);

 $entityManager->flush();

 }

}

class RegistrationController extends AbstractController

{

 public function verifyUserEmail(Request $request,

VerifyEmailHelperInterface $verifyEmailHelper, UserRepository

$userRepository, EntityManagerInterface $entityManager): Response

 {

 $user->setIsVerified(true);

 $entityManager->flush();

 $this->addFlash('success', 'Account Verified! You can now log

in.');

 return $this->redirectToRoute('app_login');

 }

}

If you wanted to be even cooler, you could manually authenticate the user in the same way that

we did earlier in our registration controller. That's totally ok and up to you.

Back in my main tab... copy that link again, paste and... we are verified! Sweet!

The only thing left to do is to prevent the user from logging in until they've verified their email. To

do that, we first need to learn about the events that happen inside of the security system. And to

show off those, we'll leverage a really cool new feature: login throttling.

Chapter 38: Login Throttling & Events

Symfony's security system comes packed with a lot of cool stuff, like remember me,

impersonation and voters. Heck, it even has built in support for a "login link" authenticator - also

known as "magic login links". That's where you email a link to your user and they click that to

log in.

One other really cool feature is login throttling: a way to prevent someone from a single IP

address from testing passwords over and over again on your site... by trying to log in over and

over and over again. And it's super easy to use.

Activating login_throttling

Under your firewall, enable it with login_throttling: true :

config/packages/security.yaml

1

 // ... lines 2 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 28

29

 // ... lines 30 - 62

If you stopped right there... and refreshed any page, you're going to get an error:

“Login throttling requires the Rate Limiter component.”

And then a helpful command to install it! Nice! Copy that, spin over to your terminal and run:

composer require symfony/rate-limiter

security:

 firewalls:

 main:

 login_throttling: true

 Tip

Starting in Symfony 6.2, when you install symfony/rate-limiter , the symfony/lock

package is no longer needed (so you won't see a lock.yaml file, and that's ok!).

This package also installs a package called symfony/lock , which has a recipe. Run:

git status

to see what it did. Interesting. It created a new config/packages/lock.yaml , and also

modified our .env file.

To keep track of the login attempts, the throttling system needs to store that data somewhere. It

uses the symfony/lock component to do that. Inside of our .env file, at the bottom, there's a

new LOCK_DSN environment variable which is set to semaphore :

.env

 // ... lines 1 - 28

29

30

31

32

33

A semaphore... is basically a super easy way to store this data if you only have a single server.

If you need something more advanced, check out the symfony/lock documentation: it shows

all the different storage options with their pros and cons. But this will work great for us.

So, step 1 was to add the login_throttling config. Step 2 was to install the Rate Limiter

component. And step 3 is... to enjoy the feature! Yea, we're done!

Refresh. No more error. By default, this will only allow 5 consecutive log in attempts for the

same email and IP address per minute. Let's try it. One, two, three, four, five and... the sixth one

is rejected! It locks us out for 1 minute. Both the max attempts and interval can be configured.

Actually, we can see that.

At your terminal, run:

###> symfony/lock ###

Choose one of the stores below

postgresql+advisory://db_user:db_password@localhost/db_name

LOCK_DSN=semaphore

###

symfony console debug:config security

And... look for login_throttling . There it is. Yup, this max_attempts defaults to 5 and

interval to 1 minute. Oh, and by the way, this will also block the same IP address from

making 5 times the max_attempts for any email. In other words, if the same IP address

quickly tried 25 different emails, it would still block them. And if you want an awesome first line

of defense, I would also highly recommend using something like Cloudflare, which can block

bad users even before they hit your server... or enable defenses if your site is attacked from

many IP addresses.

Digging into How Login Throttling Works

So... I think this feature is pretty cool. But the most interesting thing for us about it is how it

works behind-the-scenes. It works via Symfony's listener system. After we log in, whether

successfully or unsuccessfully, a number of events are dispatched throughout that process. We

can hook into those events to do all sorts of cool things.

For example, the class that holds the login throttling logic is called

LoginThrottlingListener . Let's... open it up! Hit Shift+Shift and open

LoginThrottlingListener.php .

Awesome. The details inside of this aren't too important. You can see it's using something called

a rate limiter... which does the checking of if the limit has been hit. Ultimately, if the limit has

been hit, it throws this exception, which causes the message that we saw. For those of you

watching closely, that exception extends AuthenticationException ... and remember, you

can throw an AuthenticationException at any point in the authentication process to make

it fail.

Anyways, this method is listening to an event called CheckPassportEvent . This is

dispatched after the authenticate() method is called from any authenticator. At this point,

authentication isn't successful yet... and the job of most listeners to CheckPassportEvent is

to do some extra checking and fail authentication if something went wrong.

This class also listens to another event called LoginSuccessEvent ... which... well, it's kind of

obvious: this is dispatched after any successful authentication. This resets the rate limiter on

success.

So this is really cool, and it's our first vision into how the event system works. Next, let's go

deeper by discovering that almost every part of authentication is done by a listener. Then, we'll

create our own.

Chapter 39: Security Events & Listeners

If you've used Symfony for a while, you probably know that Symfony dispatches events during

the request-response process and that you can listen to them. To see these events and their

listeners, we can run:

symfony console debug:event

I'm not going to go too deeply, but, this kernel.request event is dispatched on every

request before the controller is called. This means that all of these listeners are executed before

our controller. Listeners to this kernel.response event are called after our controller.

These two events have... nothing to do with the security system. But it turns out that our firewall

also dispatches several events during the authentication process. And, we can also listen to

those.

To see a list of all of the listeners to these events, we can run debug:event again, but with a

special --dispatcher= set to security.event_dispatcher.main :

symfony console debug:event --dispatcher=security.event_dispatcher.main

I know, that looks a little funny... but this allows us to list the event listeners for the event

dispatcher that's specific to the main firewall.

Looking at the Core Security Events & Listeners

And... awesome! A totally different set of events and listeners. This is so cool. Look back at our

custom LoginFormAuthenticator class. We're not using this anymore, but it can help us

understand which events are dispatched through the process.

We know that, in our authenticate() method, our job is to return the Passport :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 26

27

28

 // ... lines 29 - 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 // ... lines 66 - 81

82

Then, after the authenticate() method is called - on any authenticator - Symfony

dispatches CheckPassportEvent . There are a bunch of cool listeners to this.

For example, UserProviderListener is basically responsible for loading the User object,

CheckCredentialsListener is responsible for checking the password,

CsrfProtectionListener validates the CSRF token and LoginThrottlingListener

checks... the login throttling.

If we fail authentication, there's a different event for that: LoginFailureEvent . Right now, our

app has just one listener - RememberMeListener - which clears the "remember me" cookie if

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function authenticate(Request $request): PassportInterface

 {

 $email = $request->request->get('email');

 $password = $request->request->get('password');

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 // optionally pass a callback to load the User manually

 $user = $this->userRepository->findOneBy(['email' =>

$userIdentifier]);

 if (!$user) {

 throw new UserNotFoundException();

 }

 return $user;

 }),

 new PasswordCredentials($password),

 [

 new CsrfTokenBadge(

 'authenticate',

 $request->request->get('_csrf_token')

),

 (new RememberMeBadge())->enable(),

]

);

 }

}

the user had one.

When login is successful, Symfony dispatches LoginSuccessEvent . This already has 5

listeners in our app, including the listener that sets the "remember me" cookie.

There's also an event that's dispatched when you log out... so you can run code or even control

what happens - like where the user is redirected to.

This next one - TokenDeauthenticatedEvent - is a bit more subtle. It's dispatched if the

user "loses" authentication... but didn't log out. It's basically dispatched if certain data changes

on the user. For example, imagine you're logged in on two computers and then you change your

password on the first. When you refresh the site on the second computer, you will be

"deauthenticated" because your password changed on another machine. In that case, this event

is dispatched.

Oh, and this security.authentication.success isn't too important, it's very similar to

LoginSuccessEvent .

Knowing about these events is critical because I want to make it so that if the user tries to log in

using an email that has not been verified, we prevent that and show them a nice message.

Let's do that next by bootstrapping our very own shiny event listener that has the ability to cause

authentication to fail.

Chapter 40: Creating a Security Event Subscriber

Here's our goal: if a user tries to log in but they have not verified their email yet, we need to

cause authentication to fail.

If you want to stop authentication for some reason, then you probably want to listen to the

CheckPassportEvent : that's called right after the authenticate() method is executed on

any authenticator and... its job is to do stuff like this.

Creating the Event Susbcriber

In your src/ directory, it doesn't matter where, but I'm going to create a new directory called

EventSubscriber/ . Inside, add a class called CheckVerifiedUserSubscriber . Make

this implement EventSubscriberInterface and then go to the "Code"-> "Generate" menu

- or Command + N on a Mac - and hit "Implement Methods" to generate the one we need:

getSubscribedEvents() :

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

Inside, return an array of all the events that we want to listen to, which is just one. Say

CheckPassportEvent::class set to the method on this class that should be called when

that event is dispatched. How about, onCheckPassport :

namespace App\EventSubscriber;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 }

}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 5

6

7

8

9

 // ... lines 10 - 14

15

16

17

18

19

20

21

Up above, add that: public function onCheckPassport() ... and this will receive this

event object. So CheckPassportEvent $event . Start with dd($event) so we can see

what it looks like:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

 // ... lines 14 - 20

21

Now, just by creating this class and making it implement EventSubscriberInterface ,

thanks to Symfony's "autoconfigure" feature, it will already be called when the

CheckPassportEvent happens. And... if you want to get technical, our subscriber listens to

the CheckPassportEvent on all firewalls. For us, we only have one real firewall, so it doesn't

matter:

use Symfony\Component\Security\Http\Event\CheckPassportEvent;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 return [

 CheckPassportEvent::class => 'onCheckPassport',

];

 }

}

use Symfony\Component\Security\Http\Event\CheckPassportEvent;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 {

 dd($event);

 }

}

config/packages/security.yaml

1

 // ... lines 2 - 20

21

22

 // ... lines 23 - 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 // ... lines 49 - 62

But if you did have multiple real firewalls, our subscriber would be called whenever the event is

triggered for any firewall. If you need to, you can add a little extra config to target just one of the

firewalls.

Tweaking the Event Priority

Anyways, let's try this thing!. Log in as abraca_admin@example.com . We did set the

isVerified flag in the fixtures to true for all users... but we haven't reloaded the database

yet. So this user will not be verified.

security:

 firewalls:

 dev:

 main:

 lazy: true

 provider: app_user_provider

 entry_point: form_login

 login_throttling: true

 form_login:

 login_path: app_login

 check_path: app_login

 username_parameter: email

 password_parameter: password

 enable_csrf: true

 custom_authenticator:

 # - App\Security\LoginFormAuthenticator

 - App\Security\DummyAuthenticator

 logout: true

 remember_me:

 secret: '%kernel.secret%'

 signature_properties: [password]

 always_remember_me: true

 switch_user: true

Try typing an invalid password and submitting. Yes! It hit our dd() . So this is working. But if I

type an invalid email, our listener is not executed. Why?

Both the loading of the user and the checking of the password happen via listeners to the

CheckPassportEvent : the same event we're listening to. The inconsistency in behavior - the

fact that our listener was executed with an invalid password but not with an invalid email - is due

to the priority of the listeners.

Go back to your terminal. Ah, each event shows a priority, and the default is zero. Let me make

this a bit smaller so we can read it. There we go.

Look closely: our listener is called before the CheckCredentialsListener . That's why it

called our listener before the password check could fail.

But, that's not what we want. We don't want to do our "is verified" check until we know the

password is valid: no reason to expose whether the account is verified or not until we know the

real user is logging in.

The point is: we want our code to run after CheckCredentialsListener . To do that, we can

give our listener a negative priority. Tweak the syntax: set the event name to an array with the

method name as the first key and the priority as the second. How about negative 10:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 14

15

16

17

18

19

20

21

Thanks to this, the user will need to enter a valid email and a valid password before our listener

is called. Try it: go back to abraca_admin@example.com , password tada and... beautiful!

Using the Event Object

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 return [

 CheckPassportEvent::class => ['onCheckPassport', -10],

];

 }

}

Check out the event object that we're passed: it's full of good stuff. It contains the authenticator

that was used, in case we need to do something different based on that. It also holds the

Passport ... which is huge because that contains the User object and badges... because

sometimes you need to do different things based on the badges on the passport.

Inside of our subscriber, let's get to work. To get the user, we first need to get the passport:

$passport = $event->getPassport() . Now, add if not $passport is an

instanceof UserPassportInterface , throw an exception:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 25

26

This check isn't important and is not needed in Symfony 6 and higher. Basically, this check

makes sure that our Passport has a getUser() method, which in practice, it always will. In

Symfony 6, the check isn't needed at all because the Passport class literally always has this

method.

This means that, down here, we can say $user = $passport->getUser() . And then let's

add a sanity check: if $user is not an instance of our User class, throw an exception:

"Unexpected user type":

use

Symfony\Component\Security\Http\Authenticator\Passport\UserPassportInterface

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 {

 $passport = $event->getPassport();

 if (!$passport instanceof UserPassportInterface) {

 throw new \Exception('Unexpected passport type');

 }

 }

}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 31

32

In practice, in our app, this isn't possible. But that's a nice way to hint to my editor - or static

analysis tools - that $user is our User class. Thanks to this, when we say if not

$user->getIsVerified() , it auto-completes that method:

use App\Entity\User;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 {

 $passport = $event->getPassport();

 if (!$passport instanceof UserPassportInterface) {

 throw new \Exception('Unexpected passport type');

 }

 $user = $passport->getUser();

 if (!$user instanceof User) {

 throw new \Exception('Unexpected user type');

 }

 }

}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 // ... line 27

28

29

 // ... lines 30 - 36

37

Failing Authentication

Ok, if we are not verified, we need to cause authentication to fail. How do we do that? It turns

out that, at any time during the authentication process, we can throw an

AuthenticationException - from Security - and that will cause authentication to fail:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 7

8

 // ... lines 9 - 11

12

13

14

15

 // ... lines 16 - 25

26

27

28

29

 // ... lines 30 - 36

37

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 {

 $passport = $event->getPassport();

 if (!$passport instanceof UserPassportInterface) {

 throw new \Exception('Unexpected passport type');

 }

 $user = $passport->getUser();

 if (!$user instanceof User) {

 throw new \Exception('Unexpected user type');

 }

 if (!$user->getIsVerified()) {

 }

 }

}

use Symfony\Component\Security\Core\Exception\AuthenticationException;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 {

 if (!$user->getIsVerified()) {

 throw new AuthenticationException();

 }

 }

}

And there are a bunch of subclasses to this class, like BadCredentialsException . You can

throw any of these because they all extend AuthenticationException .

Check it out. Let's refresh and... got it!

“An authentication exception occurred.”

That's the generic error message tied to the AuthenticationException class... not a very

good error message. But it did get the job done.

How can we customize that? Either by throwing a different authentication exception that

matches the message you want - like BadCredentialsException - or by taking complete

control by throwing the special CustomUserMessageAuthenticationException() . Pass

this the message to show the user:

“Please verify your account before logging in.”

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

14

15

 // ... lines 16 - 26

27

28

29

30

31

32

 // ... lines 33 - 39

40

Let's see how this works. Hold Cmd or Ctrl and click to open this class. No surprise: it

extends AuthenticationException . If you try to pass a custom exception message to

AuthenticationException or one of its sub-classes, that message will normally not be

shown to the user.

This is because every authentication exception class has a getMessageKey() method

containing a hardcoded message... and that is what is shown to the user. This is done for

use

Symfony\Component\Security\Core\Exception\CustomUserMessageAuthenticationExc

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 if (!$user->getIsVerified()) {

 throw new CustomUserMessageAuthenticationException(

 'Please verify your account before logging in.'

);

 }

 }

}

security so that we don't accidentally expose some internal exception message to our users.

This is why different authentication exception sub-classes give us different messages.

However, there are some cases when you want to show a truly custom message. You can do

that by using this class. This will fail authentication just like before, but now we control the

message. Beautiful.

But we can do even better! Instead of just saying, "please verify your account", let's redirect the

user to another page where we can better explain why they can't log in and give them an

opportunity to re-send the email. This will require a second listener and some serious team

work. That's next.

Chapter 41: Custom Redirect when "Email Not
Verified"

It's cool that we can listen to the CheckPassportEvent and cause authentication to fail by

throwing any authentication exception, like this

CustomUserMessageAuthenticationException :

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

14

15

 // ... lines 16 - 26

27

28

29

30

31

32

 // ... lines 33 - 39

40

But what if, instead of the normal failure behavior - where we redirect to the login page and

show the error - we want to do something different. What if, in just this situation, we want to

redirect to a totally different page so we can explain that their email isn't verified... and maybe

even allow them to resend that email.

Well, unfortunately, there is no way - on this event - to control the failure response. There's no

$event->setResponse() or anything like that.

So we can't control the error behavior from here, but we can control it by listening to a different

event. We'll "signal" from this event that the account wasn't verified, look for that signal from a

different event listener, and redirect to that other page. It's ok if this doesn't make sense yet:

let's see it in action.

use

Symfony\Component\Security\Core\Exception\CustomUserMessageAuthenticationExc

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 if (!$user->getIsVerified()) {

 throw new CustomUserMessageAuthenticationException(

 'Please verify your account before logging in.'

);

 }

 }

}

Creating a Custom Exception Class

To start, we need to create a custom authentication exception class. This will serve as the

"signal" that we're in this "account not verified" situation.

In the Security/ directory, add a new class: how about

AccountNotVerifiedAuthenticationException . Make it extend

AuthenticationException . And then... do absolutely nothing else:

src/Security/AccountNotVerifiedAuthenticationException.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

This is just a marker class we'll use to hint that we're failing authentication due to an unverified

email.

Back in the subscriber, replace the CustomUserMessageAuthenticationException with

AccountNotVerifiedAuthenticationException . We don't need to pass it any

message:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 5

6

 // ... lines 7 - 13

14

15

16

17

 // ... lines 18 - 27

28

29

30

31

 // ... lines 32 - 38

39

namespace App\Security;

use Symfony\Component\Security\Core\Exception\AuthenticationException;

class AccountNotVerifiedAuthenticationException extends

AuthenticationException

{

}

use App\Security\AccountNotVerifiedAuthenticationException;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onCheckPassport(CheckPassportEvent $event)

 {

 if (!$user->getIsVerified()) {

 throw new AccountNotVerifiedAuthenticationException();

 }

 }

}

If we stopped right now, this won't be very interesting. Logging in still fails, but we're back to the

generic message:

“An authentication exception occurred”

This is because our new custom class extends AuthenticationException ... and that's the

generic message you get from that class. So this isn't what we want yet, but step 1 is done!

Listening to LoginFailureEvent

For the next step, remember from the debug:event command that one of the listeners we

have is for a LoginFailureEvent , which, as the name suggests, is called any time that

authentication fails.

Let's add another listener right in this class for that. Say LoginFailureEvent::class set to,

how about, onLoginFailure . In this case, the priority won't matter:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 38

39

40

41

 // ... line 42

43

44

45

46

Add the new method: public function onLoginFailure() ... and we know this will

receive a LoginFailureEvent argument. Just like before, start with dd($event) to see

what it looks like:

use Symfony\Component\Security\Http\Event\LoginFailureEvent;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 return [

 LoginFailureEvent::class => 'onLoginFailure',

];

 }

}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 33

34

35

36

37

 // ... lines 38 - 45

46

So with any luck, if we fail login - for any reason - our listener will be called. For example, if I

enter a bad password, yup! It gets hit. And notice that the LoginFailureEvent has an

exception property. In this case, it holds a BadCredentialsException .

Now log in with the correct password and... it got hit again. But this time, check out the

exception. It's our custom AccountNotVerifiedAuthenticationException ! So the

LoginFailureEvent object contains the authentication exception that caused the failure. We

can use that to know - from this method - if authentication failed due to the account not being

verified.

Redirecting when Account is Not Verified

So, if not $event->getException() is an instance of

AccountNotVerifiedAuthenticationException , then just return and allow the default

failure behavior to do its thing:

use Symfony\Component\Security\Http\Event\LoginFailureEvent;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onLoginFailure(LoginFailureEvent $event)

 {

 dd($event);

 }

}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 33

34

35

36

37

38

39

 // ... lines 40 - 47

48

Finally, down here, we know that we should redirect to that custom page. Let's... go create that

page real quick. Do it in src/Controller/RegistrationController.php . Down at the

bottom, add a new method. I'll call it resendVerifyEmail() . Above this, add @Route()

with, how about /verify/resend and name equals app_verify_resend_email . Inside,

I'm just going to render a template: return $this->render() ,

registration/resend_verify_email.html.twig :

src/Controller/RegistrationController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 88

89

90

91

92

93

94

95

96

Let's go make that! Inside of templates/registration/ , create

resend_verify_email.html.twig . I'll paste in the template:

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onLoginFailure(LoginFailureEvent $event)

 {

 if (!$event->getException() instanceof

AccountNotVerifiedAuthenticationException) {

 return;

 }

 }

}

class RegistrationController extends AbstractController

{

 /**

 * @Route("/verify/resend", name="app_verify_resend_email")

 */

 public function resendVerifyEmail()

 {

 return $this-

>render('registration/resend_verify_email.html.twig');

 }

}

templates/registration/resend_verify_email.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

There's nothing fancy here at all. It just explains the situation.

I did include a button to resend the email, but I'll leave the implementation to you. I'd probably

surround it with a form that POSTs to this URL. And then, in the controller, if the method is

POST, I’d use the verify email bundle to generate a new link and re-send it. Basically the same

code we used after registration.

Anyways, now that we have a functional page, copy the route name and head back to our

subscriber. To override the normal failure behavior, we can use a setResponse() method on

the event.

Start with $response = new RedirectResponse() - we're going to generate a URL to the

route in a minute - then $event->setResponse($response) :

{% extends 'base.html.twig' %}

{% block title %}Verify Email{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <h1 class="h3 mb-3 font-weight-normal">Verify your Email</h1>

 <p>

 A verification email was sent - please click it to enable

your

 account before logging in.

 </p>

 Re-send Email

 </div>

 </div>

</div>

{% endblock %}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 42

43

44

45

46

47

48

49

 // ... line 50

51

52

53

 // ... lines 54 - 61

62

To generate the URL, we need a __construct() method - let me spell that correctly - with a

RouterInterface $router argument. Hit Alt+Enter and go to "Initialize properties" to

create that property and set it:

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 8

9

 // ... lines 10 - 16

17

18

19

20

21

22

23

24

 // ... lines 25 - 61

62

Back down here, we're in business: $this->router->generate() with

app_verify_resend_email :

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onLoginFailure(LoginFailureEvent $event)

 {

 if (!$event->getException() instanceof

AccountNotVerifiedAuthenticationException) {

 return;

 }

 $response = new RedirectResponse(

);

 $event->setResponse($response);

 }

}

use Symfony\Component\Routing\RouterInterface;

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 private RouterInterface $router;

 public function __construct(RouterInterface $router)

 {

 $this->router = $router;

 }

}

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 42

43

44

 // ... lines 45 - 48

49

50

51

 // ... line 52

53

 // ... lines 54 - 61

62

Donezo! We fail authentication, our first listener throws the custom exception, we look for that

exception from the LoginFailureEvent listener... and set the redirect.

Testing time! Refresh and... got it! We're sent over to /verify/resend . I love that!

Next: let's finish this tutorial by doing something super cool, super fun, and... kinda nerdy. Let's

add two-factor authentication, complete with fancy QR codes.

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public function onLoginFailure(LoginFailureEvent $event)

 {

 $response = new RedirectResponse(

 $this->router->generate('app_verify_resend_email')

);

 }

}

Chapter 42: 2 Factor Authentication &
Authentication Tokens

For our last trick in this tutorial, we're going to do something fun: add two-factor authentication.

This can take a few forms, but the basic flow looks like this, you're probably familiar. First, the

user submits a valid email and password to the login form. But then, instead of that logging

them in, they're redirected to a form where they need to enter a temporary code.

This code could be something that we email them or text to their phone... or it could be a code

from an authenticator app like Google authenticator or Authy. Once the user fills in the code and

submits, then they are finally logged in.

Installing The scheb/2fa-bundle

In the Symfony world, we're super lucky to have a fantastic library to help with two-factor auth.

Search for Symfony 2fa to find the scheb/2fa library. Scroll down... and click into the

documentation, which lives on Symfony.com. Then head to the Installation page.

Cool! Let's get this thing installed! At your terminal, run:

composer require "2fa:^5.13"

Where 2fa is a Flex alias to the actual bundle name.

Once this finishes... I'll run:

git status

to see what the bundle's recipe did. Cool: it added a new configuration file... and also a new

routes file.

https://github.com/scheb/2fa

That routes file, which lives at config/routes/scheb_2fa.yaml , adds two routes to our

app:

config/routes/scheb_2fa.yaml

1

2

3

4

5

6

7

The first will render the "enter the code” form that we see after submitting our email and

password. The second route is the URL that this form will submit to.

Bundle Configuration / Setup

Back at the docs, let's walk through this. Step 2 - enable the bundle - was done by Flex

automatically… and step 3 - define the routes - was handled thanks to the recipe. Nice!

Step 4 is to configure the firewall. This part we do need to do.

Start by copying the two_factor stuff. Then open up config/packages/security.yaml .

This new config can live anywhere under our main firewall. I'll paste it after form_login ...

and we can remove this comment: it highlighted that 2fa_login should match the route name

in our routes file, which it does:

config/packages/security.yaml

1

 // ... lines 2 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 49

50

51

52

 // ... lines 53 - 71

Oh, and remember how the job of most keys under our firewall is to activate another

authenticator? Whelp, the two_factor key is no exception: this activates a new authenticator

2fa_login:

 path: /2fa

 defaults:

 _controller: "scheb_two_factor.form_controller:form"

2fa_login_check:

 path: /2fa_check

security:

 firewalls:

 main:

 two_factor:

 auth_form_path: 2fa_login

 check_path: 2fa_login_check

that handles the "enter your code" form submit that we'll see in a few minutes.

The README also recommends a couple of access controls, which are a good idea. Copy

those... and paste them at the top of our access_control :

config/packages/security.yaml

1

 // ... lines 2 - 61

62

63

64

65

66

67

68

69

70

This second one makes sure that you can't go to /2fa - that's the URL that renders the "enter

your code" form - unless you have already submitted your valid email and password. When

you're in that, sort of, “in-between-login” state, the 2fa bundle makes sure that you have this

IS_AUTHENTICATED_2FA_IN_PROGRESS attribute:

config/packages/security.yaml

1

 // ... lines 2 - 61

62

 // ... lines 63 - 65

66

67

 // ... lines 68 - 71

The first entry - for /logout - makes sure that if you are in that “in-between” state, you can still

cancel the login by going to /logout . Oh, but change this to PUBLIC_ACCESS :

security:

 access_control:

 # This makes the logout route accessible during two-factor

authentication. Allows the user to

 # cancel two-factor authentication, if they need to.

 - { path: ^/logout, role: PUBLIC_ACCESS }

 # This ensures that the form can only be accessed when two-factor

authentication is in progress.

 - { path: ^/2fa, role: IS_AUTHENTICATED_2FA_IN_PROGRESS }

 - { path: ^/admin/login, roles: PUBLIC_ACCESS }

 - { path: ^/admin, roles: ROLE_ADMIN }

 # - { path: ^/profile, roles: ROLE_USER }

security:

 access_control:

 # This ensures that the form can only be accessed when two-factor

authentication is in progress.

 - { path: ^/2fa, role: IS_AUTHENTICATED_2FA_IN_PROGRESS }

config/packages/security.yaml

1

 // ... lines 2 - 61

62

63

64

65

 // ... lines 66 - 71

Configuring the security_tokens

The last step in the README is to configure this security_tokens config.

Let me explain. When we submit a valid email and password into the login form, the two-factor

authentication system - via a listener - is going to decide whether or not it should interrupt

authentication and start the two-factor authentication process... where it redirects the user to the

"enter the code" form.

If we think about it, we definitely do want this to happen when a user logs in via the login form.

But... we probably wouldn't want this to happen if, for example, a user was authenticating via an

API token. The bundle needs a way to figure out whether or not we want 2fa based on how the

user just authenticated.

We haven't talked about it much, but whenever you log in, you're authenticated with a certain

type of token object. This token object is... sort of a wrapper around the User object... and you

almost never care about it.

But, different authentication systems - like form_login or remember_me - use different token

classes... which means that you can figure out how the user originally logged in, by looking at

the currently-authenticated token.

For example, this top token class is actually the token that you get if you log in via the

form_login authenticator. I'll prove it. Hit Shift+Shift and search for

FormLoginAuthenticator . Inside... it has a createAuthenticatedToken() method, a

method that every authenticator has. It returns a new UsernamePasswordToken .

Here's the point. If we login via this authenticator... and the matching token class is listed under

our scheb_two_factor config, the two-factor authentication process will take over and

redirect the user to the "enter the code" form.

security:

 access_control:

 # This makes the logout route accessible during two-factor

authentication. Allows the user to

 # cancel two-factor authentication, if they need to.

 - { path: ^/logout, role: PUBLIC_ACCESS }

Let's go see what our file looks like: config/packages/scheb_2fa.yaml :

config/packages/scheb_2fa.yaml

1

2

3

4

5

6

7

8

By default, the only uncommented class is UsernamePasswordToken , which is perfect for us.

But notice the last comment. If you're authenticating via a custom authenticator - like we were

doing earlier - then you should use this class.

Let see exactly why that’s the case. Open our custom LoginFormAuthenticator . We're not

using this anymore, but pretend we are. This extends AbstractLoginFormAuthenticator :

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 15

16

 // ... lines 17 - 26

27

28

 // ... lines 29 - 81

82

Hold Cmd or Ctrl to open that... then open its base class AbstractAuthenticator . Scroll

down a bit and... hello createAuthenticatedToken() ! This returns a new

PostAuthenticatedToken . And so, by default, this is the token class you get with a custom

authenticator.

These token classes aren't super important... they basically all extend the same

AbstractToken ... and mostly just help to identify how the user logged in.

See the configuration reference at

https://github.com/scheb/2fa/blob/master/doc/configuration.md

scheb_two_factor:

 security_tokens:

 -

Symfony\Component\Security\Core\Authentication\Token\UsernamePasswordToken

 # If you're using guard-based authentication, you have to use this

one:

 # -

Symfony\Component\Security\Guard\Token\PostAuthenticationGuardToken

 # If you're using authenticator-based security (introduced in

Symfony 5.1), you have to use this one:

 # -

Symfony\Component\Security\Http\Authenticator\Token\PostAuthenticationToken

use

Symfony\Component\Security\Http\Authenticator\AbstractLoginFormAuthenticator

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

}

By leveraging this knowledge, along with the scheb configuration, you can tell the two-factor

bundle which authenticators require two-factor authentication and which don't.

Oh, and if you're using two custom authenticators... and only one of them needs two-factor

authentication, you'll need to create a custom token class and override the

createAuthenticatedToken() method in your authenticator to return that. Then you can

target just the custom class here.

Phew! It may not feel like we've done much yet... other than listen to me talk about tokens... but

the bundle is now... basically set up. But next, we need to choose how our users will get the

tokens. Will we email them? Or will they use an authenticator app with a QR code? We're going

to do the second.

Chapter 43: 2fa with TOTP (Time-Based One Time
Password)

It may not feel like it yet, but the bundle is now set up... except for one big missing piece: how

do we want our users to get the temporary token they'll enter into the form?

In the docs, there are 3 choices... well kind of only 2. These first two are where you use an

authenticator app - like Google authenticator or Authy. The other option is to send the code via

email.

We're going to use this "totp" authentication, which is basically the same as Google

authenticator and stands for "time-based one-time password".

The logic for this actually lives in a separate library. Copy the Composer require line, find your

terminal, and paste:

composer require "scheb/2fa-totp:^5.13"

This time there's no recipe or anything fancy: it just installs the library. Next, if you head back to

the documentation, we need to enable this as an authentication method inside the config file.

That's back in config/packages/scheb_2fa.yaml . Paste that at the bottom:

config/packages/scheb_2fa.yaml

1

2

 // ... lines 3 - 8

9

10

Implementing TwoFactorInterface

See the configuration reference at

https://github.com/scheb/2fa/blob/master/doc/configuration.md

scheb_two_factor:

 totp:

 enabled: true

The last step, if you look over at the docs, is to make our User implements a

TwoFactorInterface . Open up our user class: src/Entity/User.php , add

TwoFactorInterface :

src/Entity/User.php

 // ... lines 1 - 9

10

 // ... lines 11 - 19

20

21

 // ... lines 22 - 253

254

Then head down to the bottom. Now go to the "Code"->"Generate" menu - or Command+N on a

Mac - and choose implement methods to generate the 3 we need:

src/Entity/User.php

 // ... lines 1 - 8

9

 // ... lines 10 - 19

20

21

 // ... lines 22 - 239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

Beautiful. Here's how TOTP authentication works. Each user that decides to activate two-factor

authentication for their account will have a TOTP secret - a random string - stored on a property.

use Scheb\TwoFactorBundle\Model\Totp\TwoFactorInterface;

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

}

use Scheb\TwoFactorBundle\Model\Totp\TotpConfigurationInterface;

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function isTotpAuthenticationEnabled(): bool

 {

 // TODO: Implement isTotpAuthenticationEnabled() method.

 }

 public function getTotpAuthenticationUsername(): string

 {

 // TODO: Implement getTotpAuthenticationUsername() method.

 }

 public function getTotpAuthenticationConfiguration(): ?

TotpConfigurationInterface

 {

 // TODO: Implement getTotpAuthenticationConfiguration() method.

 }

}

This will be used to validate the code and will be used to help the user set up their authenticator

app when they first activate two-factor authentication.

The methods from the interface are fairly straightforward.

isTotpAuthenticationEnabled() returns whether or not the user has activated two-factor

auth... and we can just check to see if the property is set. The

getTotpAuthenticationUsername() method is used to help generate some info on the

QR code. The last method - getTotpAuthenticationConfiguration() - is the most

interesting: it determines how the codes are generated, including the number of digits and how

long each will last. Usually, authenticator apps generate a new code every 30 seconds.

Copy the $totpSecret property, scroll up to the properties in our class and paste:

src/Entity/User.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 63

64

65

66

67

 // ... lines 68 - 270

271

Then head back to the bottom and use the "Code"->"Generate" menu to generate a getter and

setter for this. But we can make this nicer: give the argument a nullable string type, a self

return type, and return $this ... because the rest of our setters are "fluent" like this:

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 /**

 * @ORM\Column(type="string", length=255, nullable=true)

 */

 private $totpSecret;

}

src/Entity/User.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 259

260

261

262

263

264

265

266

267

268

269

270

271

For the getter... let's delete this entirely. We just won't need it... and it's kind of a sensitive value.

Let's fill in the three methods. I'll steal the code for the first... and paste:

src/Entity/User.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 245

246

247

248

249

 // ... lines 250 - 266

267

For the username, in our case, return $this->getUserIdentifier() , which is really just

our email:

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function getTotpSecret(): ?string

 {

 return $this->totpSecret;

 }

 public function setTotpSecret(?string $totpSecret): self

 {

 $this->totpSecret = $totpSecret;

 return $this;

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function isTotpAuthenticationEnabled(): bool

 {

 return $this->totpSecret ? true : false;

 }

}

src/Entity/User.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 250

251

252

253

254

 // ... lines 255 - 266

267

For the last method, copy the config from the docs... and paste:

src/Entity/User.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 255

256

257

258

259

 // ... lines 260 - 266

267

I'll re-type the end of TotpConfiguration and hit tab so that PhpStorm adds the use

statement on top:

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function getTotpAuthenticationUsername(): string

 {

 return $this->getUserIdentifier();

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function getTotpAuthenticationConfiguration(): ?

TotpConfigurationInterface

 {

 return new TotpConfiguration($this->totpSecret,

TotpConfiguration::ALGORITHM_SHA1, 30, 6);

 }

}

src/Entity/User.php

 // ... lines 1 - 8

9

 // ... lines 10 - 20

21

22

 // ... lines 23 - 255

256

257

258

259

 // ... lines 260 - 266

267

But, be careful. Change the 20 to 30, and the 8 to 6:

src/Entity/User.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 255

256

257

258

259

 // ... lines 260 - 266

267

This says that each code should last for 30 seconds and contain 6 digits. The reason I'm using

these exact values - including the algorithm - is to support the Google Authenticator app. Other

apps, apparently, allow you to tweak these, but Google Authenticator doesn’t. So if you want to

support Google Authenticator, stick with this config.

Okay, our user system is ready! In theory, if we set a totpSecret value for one of our users in

the database, and then tried to log in as that user, we would be redirected to the "enter your

code" form. But, we're missing a step.

Next: let's add a way for a user to activate two-factor authentication on their account. When they

do that, we'll generate a totpSecret and - most importantly - use it to show a QR code the

use Scheb\TwoFactorBundle\Model\Totp\TotpConfiguration;

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function getTotpAuthenticationConfiguration(): ?

TotpConfigurationInterface

 {

 return new TotpConfiguration($this->totpSecret,

TotpConfiguration::ALGORITHM_SHA1, 30, 6);

 }

}

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function getTotpAuthenticationConfiguration(): ?

TotpConfigurationInterface

 {

 return new TotpConfiguration($this->totpSecret,

TotpConfiguration::ALGORITHM_SHA1, 30, 6);

 }

}

user can scan to set up their authenticator app.

Chapter 44: Activating 2FA

Ok: here's the flow. When we submit a valid email and password, the two-factor bundle will

intercept that and redirect us to an "enter the code" form. To validate the code, it will read the

totpSecret that's stored for that User :

src/Entity/User.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 64

65

66

67

68

 // ... lines 69 - 266

267

But in order to know what code to type, the user first needs to activate two-factor authentication

on their account and scan a QR code we provide with their authenticator app.

Let's build that side of things now: the activation and QR code.

Oh, but before I forget again, we added a new property to our User in the last chapter... and I

forgot to make a migration for it. At your terminal, run:

symfony console make:migration

Let's go check out that file:

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 /**

 * @ORM\Column(type="string", length=255, nullable=true)

 */

 private $totpSecret;

}

migrations/Version20211012201423.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

And... good. No surprises, it adds one column to our table. Run that:

symfony console doctrine:migrations:migrate

Adding a way to Activate 2fa

Here's the plan. A user will not have two-factor authentication enabled by default. Instead, they'll

activate it by clicking a link. When they do that, we'll generate a totpSecret , set it on the

user, save it to the database and show the user a QR code to scan.

namespace DoctrineMigrations;

use Doctrine\DBAL\Schema\Schema;

use Doctrine\Migrations\AbstractMigration;

/**

 * Auto-generated Migration: Please modify to your needs!

 */

final class Version20211012201423 extends AbstractMigration

{

 public function getDescription(): string

 {

 return '';

 }

 public function up(Schema $schema): void

 {

 // this up() migration is auto-generated, please modify it to your

needs

 $this->addSql('ALTER TABLE user ADD totp_secret VARCHAR(255)

DEFAULT NULL');

 }

 public function down(Schema $schema): void

 {

 // this down() migration is auto-generated, please modify it to

your needs

 $this->addSql('ALTER TABLE user DROP totp_secret');

 }

}

Head over to src/Controller/SecurityController.php . Let's create the endpoint that

activates two-factor authentication: public function enable2fa() . Give this a route: how

about /authenticate/2fa/enable - and name="app_2fa_enable" :

src/Controller/SecurityController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 33

34

35

 // ... line 36

37

38

39

 // ... lines 40 - 47

48

49

Just be careful not to start the URL with /2fa ... that's kind of reserved for the two-factor

authentication process:

config/packages/security.yaml

1

 // ... lines 2 - 61

62

 // ... lines 63 - 65

66

67

 // ... lines 68 - 71

Inside of the method, we need two services. The first is an autowireable service from the bundle

- TotpAuthenticatorInterface $totpAuthenticator . That will help us generate the

secret. The second is EntityManagerInterface $entityManager :

class SecurityController extends BaseController

{

 /**

 * @Route("/authentication/2fa/enable", name="app_2fa_enable")

 */

 public function enable2fa(TotpAuthenticatorInterface

$totpAuthenticator, EntityManagerInterface $entityManager)

 {

 }

}

security:

 access_control:

 # This ensures that the form can only be accessed when two-factor

authentication is in progress.

 - { path: ^/2fa, role: IS_AUTHENTICATED_2FA_IN_PROGRESS }

src/Controller/SecurityController.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 12

13

14

 // ... lines 15 - 37

38

39

 // ... lines 40 - 47

48

49

Oh, and, of course, you can only use this route if you're authenticated. Add

@IsGranted("ROLE_USER") . Let me re-type that and hit tab to get the use statement on

top:

src/Controller/SecurityController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 12

13

14

 // ... lines 15 - 33

34

 // ... line 35

36

37

38

39

 // ... lines 40 - 47

48

49

 Tip

This next paragraph is... wrong! Using ROLE_USER will not force a user to re-enter their

password if they're only authenticated via a "remember me" cookie. To do that, you should

use IS_AUTHENTICATED_FULLY . And that's what I should have used here.

use Doctrine\ORM\EntityManagerInterface;

use

Scheb\TwoFactorBundle\Security\TwoFactor\Provider\Totp\TotpAuthenticatorInte

class SecurityController extends BaseController

{

 public function enable2fa(TotpAuthenticatorInterface

$totpAuthenticator, EntityManagerInterface $entityManager)

 {

 }

}

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

class SecurityController extends BaseController

{

 /**

 * @IsGranted("ROLE_USER")

 */

 public function enable2fa(TotpAuthenticatorInterface

$totpAuthenticator, EntityManagerInterface $entityManager)

 {

 }

}

For the most part, I've been using IS_AUTHENTICATED_REMEMBERED for security... so that

you just need to be logged in... even if it’s via a "remember me" cookie. But I'm using

ROLE_USER here, which is effectively identical to IS_AUTHENTICATED_FULLY . That’s on

purpose. The result is that if the user were authenticated... but only thanks to a "remember me"

cookie, Symfony will force them to re-type their password before getting here. A little extra

security before we enable two-factor authentication.

Anyways, say $user = this->getUser() ... and then if not

$user->isTotpAuthenticationEnabled() :

src/Controller/SecurityController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 37

38

39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 47

48

49

Hmm, I want to see if totp authentication is not already enabled... but I'm not getting auto-

completion for this.

We know why: the getUser() method only knows that it returns a UserInterface . We

fixed this earlier by making our own base controller. Let's extend that:

src/Controller/SecurityController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 48

49

Back down here, if not $user->isTotpAuthenticationEnabled() - so if the user does

not already have a totpSecret - let's set one: $user->setTotpSecret() passing

$totpAuthentiator->generateSecret() . Then, save with

$entityManager->flush() .

class SecurityController extends BaseController

{

 public function enable2fa(TotpAuthenticatorInterface

$totpAuthenticator, EntityManagerInterface $entityManager)

 {

 $user = $this->getUser();

 if (!$user->isTotpAuthenticationEnabled()) {

 }

 }

}

class SecurityController extends BaseController

{

}

At the bottom, for now, just dd($user) so we can make sure this is working:

src/Controller/SecurityController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 37

38

39

40

41

42

43

44

45

46

47

48

49

Linking to the Route

Cool! Let's link to this! Copy the route name... then open templates/base.html.twig .

Search for "Log Out". There we go. I'll paste that route name, duplicate the entire li , clean

things up, paste the new route name, remove my temporary code and say "Enable 2FA":

class SecurityController extends BaseController

{

 public function enable2fa(TotpAuthenticatorInterface

$totpAuthenticator, EntityManagerInterface $entityManager)

 {

 $user = $this->getUser();

 if (!$user->isTotpAuthenticationEnabled()) {

 $user->setTotpSecret($totpAuthenticator->generateSecret());

 $entityManager->flush();

 }

 dd($user);

 }

}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 14

15

 // ... lines 16 - 21

22

23

24

25

26

 // ... lines 27 - 35

36

 // ... lines 37 - 47

48

49

 // ... lines 50 - 60

61

 // ... lines 62 - 68

69

70

71

 // ... lines 72 - 74

75

76

77

 // ... lines 78 - 79

80

81

82

83

 // ... lines 84 - 95

96

97

Testing time! Oh, but first, at your terminal, reload your fixtures:

symfony console doctrine:fixtures:load

<html>

 <body

 <nav

 class="navbar navbar-expand-lg navbar-light bg-light px-1"

 {{ is_granted('ROLE_PREVIOUS_ADMIN') ? 'style="background-

color: red !important"' }}

 >

 <div class="container-fluid">

 <div class="collapse navbar-collapse" id="navbar-

collapsable">

 {% if is_granted('IS_AUTHENTICATED_REMEMBERED') %}

 <div class="dropdown">

 <ul class="dropdown-menu dropdown-menu-end"

aria-labelledby="user-dropdown">

 <a class="dropdown-item" href="{{

path('app_2fa_enable') }}">Enble 2fa

 </div>

 {% else %}

 {% endif %}

 </div>

 </div>

 </nav>

 </body>

</html>

That will make sure all of the users have verified emails so that we can actually log in. When

that finishes, log in with abraca_admin@example.com , password tada . Beautiful. Then hit

"Enable 2FA" and... got it! It hits our user dump! And most importantly, we have a totpSecret

set!

That's great! But the final step is to show the user a QR code that they can scan to get their

authenticator app set up. Let's do that next.

Chapter 45: Rendering the QR Code

Ok, we've just added a URL the user can go to in order to enable two-factor authentication on

their account. What this really means is pretty simple: we generate a totpSecret and save it

to their user record in the database. Thanks to this, when the user tries to log in, the 2-factor

bundle will notice this and send them to the "fill in the code" form.

But, in order to know what code to enter, the user needs to set up an authenticator app. And to

do that, we need to render a QR code they can scan.

Dumping the QR Content

How? The $totpAuthenticator has a method that can help. Try dumping

$totpAuthenticator->getQRContent() and pass it $user :

src/Controller/SecurityController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 37

38

39

 // ... lines 40 - 46

47

48

49

When we refresh we see... a super weird-looking URL! This is the info that we need to send to

our authenticator app. It contains our email address - that's just a label that will help the app -

and most importantly the totp secret, which the app will use to generate the codes.

In theory, we could enter this URL manually into an authenticator app. But, pfff. That's crazy! In

the real world, we translate this string into a QR code image.

Generating the QR Code

class SecurityController extends BaseController

{

 public function enable2fa(TotpAuthenticatorInterface

$totpAuthenticator, EntityManagerInterface $entityManager)

 {

 dd($totpAuthenticator->getQRContent($user));

 }

}

Fortunately, this is also handled by the Scheb library. If you scroll down a bit, there's a spot

about QR codes. If you want to generate one, you need one last library. Actually, right after I

recorded this, the maintainer deprecated this 2fa-qr-code library! Dang! So, you can still

install it, but I'll also show you how to generate the QR code without it. The library was

deprecated because, well, it's pretty darn easy to create the QR code even without it.

Anyways, I'll copy that, find my terminal, and paste.

composer require "scheb/2fa-qr-code:^5.12.1"

To use the new way of generating QR codes - which I recommend - skip this step and instead

run:

composer require "endroid/qr-code:^3.0"

While that's working. Head back to the docs... and copy this controller from the documentation.

Over in SecurityController , at the bottom, paste. I'll tweak the URL to be

/authentication/2fa/qr-code and call the route app_qr_code :

src/Controller/SecurityController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 50

51

52

53

54

55

56

57

58

59

60

61

62

class SecurityController extends BaseController

{

 /**

 * @Route("/authentication/2fa/qr-code", name="app_qr_code")

 */

 public function displayGoogleAuthenticatorQrCode(QrCodeGenerator

$qrCodeGenerator)

 {

 // $qrCode is provided by the endroid/qr-code library. See the

docs how to customize the look of the QR code:

 // https://github.com/endroid/qr-code

 $qrCode = $qrCodeGenerator->getTotpQrCode($this->getUser());

 return new Response($qrCode->writeString(), 200, ['Content-Type'

=> 'image/png']);

 }

}

I also need to re-type the "R" on QrCodeGenerator to get its use statement:

src/Controller/SecurityController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 13

14

15

 // ... lines 16 - 53

54

55

 // ... lines 56 - 60

61

62

If you're using the new way of generating the QR codes, then your controller should like this

instead. You can copy this from the code block on this page:

namespace App\Controller;

use Endroid\QrCode\Builder\Builder;

use Scheb\TwoFactorBundle\Security\TwoFactor\Provider\Totp\TotpAuthenticatorInt

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

class SecurityController extends BaseController

{

 // ...

 /**

 * @Route("/authentication/2fa/qr-code", name="app_qr_code")

 * @IsGranted("ROLE_USER")

 */

 public function displayGoogleAuthenticatorQrCode(TotpAuthenticatorInterface

 {

 $qrCodeContent = $totpAuthenticator->getQRContent($this->getUser());

 $result = Builder::create()

 ->data($qrCodeContent)

 ->build();

 return new Response($result->getString(), 200, ['Content-Type' => 'imag

use Scheb\TwoFactorBundle\Security\TwoFactor\QrCode\QrCodeGenerator;

class SecurityController extends BaseController

{

 public function displayGoogleAuthenticatorQrCode(QrCodeGenerator

$qrCodeGenerator)

 {

 }

}

 }

}

This special endpoint literally returns the QR code image, as a png. Oh, and I forgot it here, but

you should add an @IsGranted("ROLE_USER") above this: only authenticated users should

be able to load this image.

Anyways, the user won't go to this URL directly: we'll use it inside an img tag. But to see if it's

working, copy the URL, paste that into your browser and... sweet! Hello QR code!

Finally, after the user enables two-factor authentication, let's render a template with an image to

this URL. Return $this->render('security/enable2fa.html.twig') .

Copy the template name, head into templates/security , and create that:

enable2fa.html.twig . I'll paste in a basic structure... it's just an h1 that tells you to scan

the QR code... but no image yet:

templates/security/enable2fa.html.twig

1

2

3

4

5

6

7

8

9

 // ... lines 10 - 11

12

13

14

15

Let's add it: an img with src set to {{ path() }} and then the route name to the controller

we just built. So app_qr_code . For the alt, I'll say 2FA QR code :

{% extends 'base.html.twig' %}

{% block title %}2fa Activation{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <h1 class="h3 mb-3 font-weight-normal">Use Authy or Google

Authenticator to Scan the QR Code</h1>

 </div>

 </div>

</div>

{% endblock %}

templates/security/enable2fa.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sweet! Time to try the whole flow. Start on the homepage, enable two-factor authentication

and... yes! We see the QR code! We are ready to scan this and try logging in.

Making the User Confirm The Scanned the QR Code

Oh, but before we do, in a real app, I would probably add an extra property on my user, called

isTotpEnabled and use that in the isTotpAuthenticationEnabled() method on my

User class. Why? Because it would allow us to have the following flow. First, the user clicks

"Enable two-factor authentication", we generate the totpSecret , save it, and render the QR

code. So, exactly what we're doing now. But, that new isTotpEnabled flag would still be

false. So if something went wrong and the user never scanned the QR code, they would still be

able to log in without us requiring the code. Then, at the bottom of this page, we could add a

"Confirm" button. When the user clicks that, we would finally set that isTotpEnabled property

to true. Heck, you could even require the user to enter a code from their authenticator app to

prove they set things up: the TotpAuthenticatorInterface service has a checkCode()

method in case you ever want to manually check a code.

Next: let's scan this QR code with an authenticator app and finally try the full two-factor

authentication flow. We'll then learn how to customize the "enter the code template" to match

our design.

{% extends 'base.html.twig' %}

{% block title %}2fa Activation{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <h1 class="h3 mb-3 font-weight-normal">Use Authy or Google

Authenticator to Scan the QR Code</h1>

 </div>

 </div>

</div>

{% endblock %}

Chapter 46: QR Data & Scanning with an
Authenticator App

Okay, status check. Any user can now enable two-factor authentication on their account by

clicking this link. Behind the scenes, when they do that, we populate the totpSecret on the

User object, save that to the database, and then render a QR code the user can scan. This QR

code is a fancy image that contains two pieces of information. The first is the email of our user.

Or, more precisely, if I scroll down to the "totp methods" in User , it contains whatever we return

from getTotpAuthenticationUsername() :

src/Entity/User.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 250

251

252

253

254

 // ... lines 255 - 266

267

The second thing the QR code image contains is the totpSecret . In a minute, I'm going to

scan this code with an authenticator app, which will allow me to generate the correct two-factor

authentication code that I'll need to log in. It does that by leveraging that secret.

Adding Extra Info to the QR Code

But first, there is some extra info that we can add to the QR code. Head over to

config/packages/scheb_2fa.yaml . Under totp: , one of the most important things that

you can add is called an issuer . I'm going to set this to Cauldron Overflow :

class User implements UserInterface, PasswordAuthenticatedUserInterface,

TwoFactorInterface

{

 public function getTotpAuthenticationUsername(): string

 {

 return $this->getUserIdentifier();

 }

}

config/packages/scheb_2fa.yaml

1

2

 // ... lines 3 - 8

9

 // ... line 10

11

That literally just added new information to the QR code image. Watch the image when we

refresh. See that? It changed!

Thanks to this, in addition to the email and totpSecret , the code now contains an "issuer"

key. If you want to learn about all the extra information that you can put here, check out the

documentation or read about totp authentication in general. Because, for example, "issuer" is

just a "totp concept"... that helps authenticator apps generate a label for our site when we scan

this code.

Scanning with our Authenticator App

At this point, I want to pretend that we're a real user and test the entire flow. If we were a real

user we would pull out our phone, open an authenticator app - like Google authenticator or

Authy - and scan this code.

I like using Authy, here's what it looks like for me. I add a new account, scan and... got it! It

reads my email and the "issuer" from the QR code and suggests a name and logo. If your

company is well-known, it might actually guess the correct logo, but you can also add an

image to your QR code in the same way that we added the “issuer”. When I accept this, it

gives me codes!

Logging in

So we are ready! Let's try it! Log out... and then log back in with

abraca_admin@example.com , password tada . Submit and... sweet! Instead of actually

being logged in, we're redirected to the two-factor authentication page! This happened for two

reasons. First, the user has two-factor authentication enabled on their account. Specifically, this

isTotpAuthenticationEnabled() method returned true. Second, the security "token" -

that internal thing that wraps your User object when you log in - well, it matches one of the

See the configuration reference at

https://github.com/scheb/2fa/blob/master/doc/configuration.md

scheb_two_factor:

 totp:

 issuer: 'Cauldron Overflow'

tokens in our configuration. Specifically, we get the UsernamePasswordToken when we log in

via the form_login mechanism.

If we try going anywhere else on the site, it kicks us right back here. The only place we can go

to is /logout if we wanted to cancel the process. This is because the two-factor bundle will

now deny access to any page on our site unless you've explicitly allowed it via the

access_control rules, like we did for /logout and for the URL showing this form. This

form is ugly, but we'll fix that soon.

Ok, back to pretending I'm a real user. I'll open up my authenticator app, type in a valid code: 5,

3, 9, 9, 2, 2 and... got it! We're logged in! So cool!

Next, let's customize that two-factor authentication form... because it was ugly.

Chapter 47: Customize The 2-Factor Auth Form

We just successfully logged in using two-factor authentication. Woo! But, the form where we

entered the code was ugly. Time to fix that! Log out... then log back in… with our usual email...

and password tada . Here's our ugly form.

How can we customize this? Well, the wonderful documentation, of course, could tell us. But

let's be tricky and see if we can figure it out for ourselves. Find your terminal and load the

current configuration for this bundle: symfony console debug:config ... and then, find the

config file, copy the root key - scheb_two_factor - and paste.

symfony console debug:config scheb_two_factor

Awesome! We see security_tokens with UsernamePasswordToken ... that's no surprise

because that's what we have here. But this also shows us some default values that we have not

specifically configured. The one that's interesting to us is template . This is the template that's

currently rendered to show the two-factor "enter the code" page.

Overriding the Template

Let's go check it out. Copy most of the file name, hit Shift+Shift , paste and... here it is! It's

not too complex: we have an authenticationError variable that renders a message if we

type an invalid code.

Then… we basically have a form with an action set to the correct submit path, an input and a

button.

To customize this, go down into the templates/security/ directory and create a new file

called, how about, 2fa_form.html.twig . I'll paste in a structure to get us started:

templates/security/2fa_form.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

This extends base.html.twig ... but there's nothing dynamic yet: the form is a big TODO.

So obviously, this isn't done... but, let's try to use it anyways! Back in

config/packages/scheb_2fa.yaml , under totp , add template set to

security/2fa_form.html.twig :

config/packages/scheb_2fa.yaml

1

2

 // ... lines 3 - 8

9

 // ... lines 10 - 11

12

Back at the browser, refresh and... yes! That's our template!

Oh, and now that this renders a full HTML page, we have our web debug toolbar again. Hover

over the security icon to see one interesting thing. We're, sort of, authenticated, but with this

special TwoFactorToken . And if you look closer, we don't have any roles. So, we are kind of

logged in, but without any roles.

{% extends 'base.html.twig' %}

{% block title %}Two Factor Auth{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <h1 class="h3 mb-3 font-weight-normal">Two Factor

Authentication</h1>

 <p>

 Open your Authenticator app and type in the number.

 </p>

 FORM TODO

 </div>

 </div>

</div>

{% endblock %}

See the configuration reference at

https://github.com/scheb/2fa/blob/master/doc/configuration.md

scheb_two_factor:

 totp:

 template: security/2fa_form.html.twig

And also, the two-factor bundle executes a listener at the start of each request that guarantees

the user can't try to navigate the site in this half-logged-in state: it stops all requests and

redirects them back to this URL. And if you scroll down, even on this page, all security checks

return ACCESS DENIED. The two-factor bundle hooks into the security system to cause this.

Anyways, let's fill in the form TODO part. For this, copy all of the core template, and paste it

over our TODO:

templates/security/2fa_form.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <h1 class="h3 mb-3 font-weight-normal">Two Factor

Authentication</h1>

 <p>

 Open your Authenticator app and type in the number.

 </p>

 {% if authenticationError %}

 <p>{{ authenticationError|trans(authenticationErrorData,

'SchebTwoFactorBundle') }}</p>

 {% endif %}

 {# Let the user select the authentication method #}

 <p>{{ "choose_provider"|trans({}, 'SchebTwoFactorBundle') }}:

 {% for provider in availableTwoFactorProviders %}

 <a href="{{ path("2fa_login", {"preferProvider":

provider}) }}">{{ provider }}

 {% endfor %}

 </p>

 {# Display current two-factor provider #}

 <p class="label"><label for="_auth_code">{{

"auth_code"|trans({}, 'SchebTwoFactorBundle') }} {{ twoFactorProvider }}:

</label></p>

 <form class="form" action="{{ checkPathUrl ? checkPathUrl:

path(checkPathRoute) }}" method="post">

 <p class="widget">

 <input

 id="_auth_code"

 type="text"

 name="{{ authCodeParameterName }}"

 autocomplete="one-time-code"

 autofocus

 {#

 https://www.twilio.com/blog/html-attributes-two-

factor-authentication-autocomplete

 If your 2fa methods are using numeric codes only,

add these attributes for better user experience:

 inputmode="numeric"

 pattern="[0-9]*"

 #}

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Now... it's just a matter of customizing this. Change the error p to a div with

class="alert alert-error" . That should be alert-danger ... I'll fix it in a minute.

Below, I'm going to remove the links to authenticate in a different way because we're only

supporting totp. For the input we need class="form-control" . Then all the way down

here, I'll leave these displayTrusted and isCsrfProtectionEnabled sections... though

I'm not using them. You can activate these in the config. Finally, remove the p around the

button, change it to a button - I just like those better - put the text inside the tag... then add a

few classes to it.

Oh, and I'm also going to move the "Log Out" link up a bit... clean it up a little... and add some

extra classes:

 />

 </p>

 {% if displayTrustedOption %}

 <p class="widget"><label for="_trusted"><input

id="_trusted" type="checkbox" name="{{ trustedParameterName }}" /> {{

"trusted"|trans({}, 'SchebTwoFactorBundle') }}</label></p>

 {% endif %}

 {% if isCsrfProtectionEnabled %}

 <input type="hidden" name="{{ csrfParameterName }}"

value="{{ csrf_token(csrfTokenId) }}">

 {% endif %}

 <p class="submit"><input type="submit" value="{{

"login"|trans({}, 'SchebTwoFactorBundle') }}" /></p>

 </form>

 {# The logout link gives the user a way out if they can't

complete two-factor authentication #}

 <p class="cancel">{{

"cancel"|trans({}, 'SchebTwoFactorBundle') }}</p>

 </div>

 </div>

</div>

{% endblock %}

templates/security/2fa_form.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 25

26

 // ... lines 27 - 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Phew! With any luck, that should make it look fairly good. Refresh and... sweet! Bah, except for

a little extra quotation on my "Login". I always do that. There we go, that looks better:

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 {% if authenticationError %}

 <div class="alert alert-danger">{{

authenticationError|trans(authenticationErrorData, 'SchebTwoFactorBundle')

}}</div>

 {% endif %}

 <form class="form" action="{{ checkPathUrl ? checkPathUrl:

path(checkPathRoute) }}" method="post">

 <p class="widget">

 <input

 class="form-control"

 />

 </p>

 {% if displayTrustedOption %}

 <p class="widget"><label for="_trusted"><input

id="_trusted" type="checkbox" name="{{ trustedParameterName }}" /> {{

"trusted"|trans({}, 'SchebTwoFactorBundle') }}</label></p>

 {% endif %}

 {% if isCsrfProtectionEnabled %}

 <input type="hidden" name="{{ csrfParameterName }}"

value="{{ csrf_token(csrfTokenId) }}">

 {% endif %}

 {{

"cancel"|trans({}, 'SchebTwoFactorBundle') }}

 <button type="submit" class="btn btn-primary">{{

"login"|trans({}, 'SchebTwoFactorBundle') }}</button>

 </form>

 </div>

 </div>

</div>

{% endblock %}

templates/security/2fa_form.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 18

19

 // ... lines 20 - 43

44

45

46

47

48

49

50

If we type an invalid code... error! Oh, but it's not red... the class should be alert-danger .

That's why we test things! And now... that's better:

templates/security/2fa_form.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... lines 9 - 14

15

16

17

 // ... lines 18 - 46

47

48

49

50

If we type a valid code from my Authy app, we've got it! Mission accomplished!

Also, even though we won't talk about them, the two-factor bundle also supports "backup

codes" and "trusted devices" where a user can choose to skip future two-factor authentication

on a specific device. Check out their docs for the details.

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 <form class="form" action="{{ checkPathUrl ? checkPathUrl:

path(checkPathRoute) }}" method="post">

 <button type="submit" class="btn btn-primary">{{

"login"|trans({}, 'SchebTwoFactorBundle') }}</button>

 </form>

 </div>

 </div>

</div>

{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="login-form bg-light mt-4 p-4">

 {% if authenticationError %}

 <div class="alert alert-danger">{{

authenticationError|trans(authenticationErrorData, 'SchebTwoFactorBundle')

}}</div>

 {% endif %}

 </div>

 </div>

</div>

{% endblock %}

And... we made it! Congrats on your incredibly hard work! Security is supposed to be a dry,

boring topic, but I absolutely love this stuff. I hope you enjoyed the journey as much as I did. If

there's something we didn't cover or you still have some questions, we're here for you down in

the comments section.

All right friends, see ya next time!

With <3 from SymfonyCasts

