
Symfony 6 Fundamentals:
Services, Config &

Environments

Chapter 1: Bundles!

Hey friends! Welcome back to Episode 2 of our Symfony 6 tutorial series. This is the one where

we seriously level-up and unlock our potential to do anything we want. That's because, in this

course, we're diving into the fundamentals behind everything in Symfony. We're talking about

services, bundles, configuration, environments, environment variables - the stuff that truly

makes Symfony tick. We're gonna throw open Symfony's hood and find out what's inside.

Site Setup!

To get the most fundamentals out of this fundamentals tutorial, I warmly invite you to cozy up to

a fire, download the course code from this page and code along with me. It'll be fun! After you

unzip the file, you'll find a start/ directory with the same code that you see here. Follow our

hand-crafted, locally-sourced README.md file for all of the setup instructions. The last step will

be to open a terminal, move into the project and run

symfony serve -d

to start a local web server at https://127.0.0.1:8000 . I'll cheat and click that link to see

our site. It is... Mixed Vinyl! Our new startup where users can build their own custom "mixtape" -

I'm thinking MMMBop followed by some Spice Girls - except that we deliver it straight to your

door on a freshly pressed vinyl record. We even throw in that musty old record collection smell

for free!

Services: Services Everywhere

In the previous tutorial, we talked briefly about how everything in Symfony is actually done by a

service. And that the word "service" is a fancy term for a simple concept: a service is an object

that does work.

For example, in src/Controller/SongController.php , we leveraged Symfony's Logger

service to log a message:

src/Controller/SongController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... line 13

14

15

 // ... lines 16 - 22

23

24

25

 // ... lines 26 - 27

28

29

And, though we don't have the code in VinylController anymore, we briefly used the Twig

service to directly render a Twig template:

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

 // ... line 12

13

14

 // ... lines 15 - 23

24

 // ... lines 25 - 26

27

28

 // ... lines 29 - 38

39

So a service is just an object that does work... and every bit of work that's done in Symfony is

done by a service. Heck, even the core code that figures which route matches the current URL

is a service, called the "router" service.

Hello Bundles

use Psr\Log\LoggerInterface;

class SongController extends AbstractController

{

 public function getSong(int $id, LoggerInterface $logger): Response

 {

 $logger->info('Returning API response for song {song}', [

 'song' => $id,

]);

 }

}

class VinylController extends AbstractController

{

 public function homepage(): Response

 {

 return $this->render('vinyl/homepage.html.twig', [

]);

 }

}

So the next question is: where do these services come from? The answer to that is mordor. I

mean bundles... services come from bundles.

Open up config/bundles.php :

config/bundles.php

1

2

3

4

5

6

7

8

9

10

11

12

This isn't a file that you need to look at or worry about much, but this is where your bundles are

activated.

Very simply: bundles are Symfony plugins. They're just PHP code... but they hook into Symfony.

And thanks to the recipe system, when we install a new bundle, that bundle is automatically

added to this file, which is how we already have 8 bundles here. When we started our project,

we only had 1!

So a bundle is a Symfony plugin. And bundles can give us several things... though they largely

exist for one reason: to give us services. For example, this TwigBundle up here gives us the

Twig service. If we removed this line, the Twig service would no longer exist and our application

would explode... since we are rendering templates. This render() line would no longer work.

And MonologBundle is what gives us the Logger service that we're using in SongController .

So by adding more bundles into our application, we're getting more services, and services are

tools! Need more services? Install more bundles! It's like Neo in the best, I mean first Matrix

movie.

Next... let's teach our app some Kung fu by installing a new bundle that gives us a new service

to solve a new problem.

<?php

return [

 Symfony\Bundle\FrameworkBundle\FrameworkBundle::class => ['all' =>

true],

 Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],

 Twig\Extra\TwigExtraBundle\TwigExtraBundle::class => ['all' => true],

 Symfony\Bundle\WebProfilerBundle\WebProfilerBundle::class => ['dev' =>

true, 'test' => true],

 Symfony\Bundle\MonologBundle\MonologBundle::class => ['all' => true],

 Symfony\Bundle\DebugBundle\DebugBundle::class => ['dev' => true],

 Symfony\WebpackEncoreBundle\WebpackEncoreBundle::class => ['all' =>

true],

 Symfony\UX\Turbo\TurboBundle::class => ['all' => true],

];

Chapter 2: New Bundle, New Service:
KnpTimeBundle

On our site, you can create your own vinyl mix. (Or you'll eventually be able to do this... right

now, this button doesn't do anything). But another great feature of our site is the ability to

browse other user's mixes.

Now that I'm looking at this, it might be useful if we could see when each mix was created.

If you don't remember where in our code this page was built, you can use a trick. Down on the

web debug toolbar, hover over the 200 status code. Ah, ha! This shows us that the controller

behind this page is VinylController::browse .

Cool! Go open up src/Controller/VinylController.php . Here is the browse action:

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 29

30

31

32

33

34

35

36

37

38

39

40

 // ... lines 41 - 65

66

By the way, I did update the code a little bit since episode one... so make sure you've got a

fresh copy if you're coding along with me.

class VinylController extends AbstractController

{

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(string $slug = null): Response

 {

 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) :

null;

 $mixes = $this->getMixes();

 return $this->render('vinyl/browse.html.twig', [

 'genre' => $genre,

 'mixes' => $mixes,

]);

 }

}

This method calls $this->getMixes() ... which is a private function I created down at the

bottom:

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

This returns a big array of fake data that represents the mixes we're going to render on the

page. Eventually, we'll get this from a dynamic source, like a database.

Printing Dates in Twig

Notice that each mix has a createdAt date field. We get these mixes up in browse() ... and

pass them as a mixes variable into vinyl/browse.html.twig . Let's jump into that

template.

class VinylController extends AbstractController

{

 private function getMixes(): array

 {

 // temporary fake "mixes" data

 return [

 [

 'title' => 'PB & Jams',

 'trackCount' => 14,

 'genre' => 'Rock',

 'createdAt' => new \DateTime('2021-10-02'),

],

 [

 'title' => 'Put a Hex on your Ex',

 'trackCount' => 8,

 'genre' => 'Heavy Metal',

 'createdAt' => new \DateTime('2022-04-28'),

],

 [

 'title' => 'Spice Grills - Summer Tunes',

 'trackCount' => 10,

 'genre' => 'Pop',

 'createdAt' => new \DateTime('2019-06-20'),

],

];

 }

}

Down here, we use Twig's for loop to loop over mixes . Simple enough!

templates/vinyl/browse.html.twig

 // ... lines 1 - 3

4

 // ... lines 5 - 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

 // ... lines 43 - 44

Let's also now print the "created at" date. Add a | , another and then say

{{ mix.createdAt }} .

There's just one problem. If you look at createdAt ... it's a DateTime object. And you can't

just print DateTime objects... you'll get a big error reminding you... that you can't just print

DateTime objects. Cruel world!

Fortunately, Twig has a handy date filter. We talked about filters briefly in the first episode: we

using them by adding a | after some value and then the name of the filter. This particular filter

also takes an argument, which is the format the date should be printed. To keep things simple,

let's use Y-m-d , or "year-month-day".

<div class="container">

 <div>

 <h2 class="mt-5">Mixes</h2>

 <div class="row">

 {% for mix in mixes %}

 <div class="col col-md-4">

 <div class="mixed-vinyl-container p-3 text-center">

 <img src="https://via.placeholder.com/300" data-

src="https://via.placeholder.com/300" alt="Square placeholder img">

 <p class="mt-2">{{ mix.title }}</p>

 {{ mix.trackCount }} Tracks

 |

 {{ mix.genre }}

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

</div>

templates/vinyl/browse.html.twig

 // ... lines 1 - 3

4

 // ... lines 5 - 25

26

27

28

29

30

31

 // ... lines 32 - 35

36

37

38

39

40

41

42

43

44

 // ... lines 45 - 46

Head over and refresh and... okay! We can now see when each was created, though the format

isn't very attractive. We could do more work to spruce this up... but it would be way cooler if we

could print this out in the "ago" format.

You've probably seen it before.... like for comments on a blog post... they say something like

"posted three months ago" or "posted 10 minutes ago".

So... the question is: How can we convert a DateTime object into that nice "ago" format? Well,

that sounds like work to me and, as I said earlier, work in Symfony is done by a service. So the

real question is: Is there a service in Symfony that can convert DateTime objects to the "ago"

format? The answer is... no. But there is a third party bundle that can give us that service.

Installing KnpTimeBundle

Go to https://github.com/KnpLabs/KnpTimeBundle. If you look at this bundle's documentation,

you'll see that it gives us a service that can do that conversion. So... let's get it installed!

Scroll to the composer require line, copy that, spin over to our terminal, and paste.

<div class="container">

 <div>

 <h2 class="mt-5">Mixes</h2>

 <div class="row">

 {% for mix in mixes %}

 <div class="col col-md-4">

 <div class="mixed-vinyl-container p-3 text-center">

 {{ mix.genre }}

 |

 {{ mix.createdAt|date('Y-m-d') }}

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

</div>

https://github.com/KnpLabs/KnpTimeBundle

composer require knplabs/knp-time-bundle

Cool! This grabbed knplabs/knp-time-bundle ... as well as symfony/translation :

Symfony's translation component, which is a dependency of KnpTimeBundle . Near the

bottom, it also configured two recipes. Let's see what those did. Run:

git status

Awesome! Any time you install a third party package, Composer will always modify your

composer.json and composer.lock files. This also updated the config/bundles.php

file:

config/bundles.php

1

2

3

 // ... lines 4 - 11

12

13

That's because we just installed a bundle - KnpTimeBundle - and its recipe handled that

automatically. It also looks like the translation recipe added a config file and a translations/

directory. The translator is needed to use KnpTimeBundle... but we won't need to work with it

directly.

So... what did installing this new bundle give us? Services of course! Let's find and use those

next!

<?php

return [

 Knp\Bundle\TimeBundle\KnpTimeBundle::class => ['all' => true],

];

Chapter 3: Finding & Using the Services from a
Bundle

We just installed KnpTimeBundle. Hooray! Um... but... uh... what does that mean? What did

doing that give us?

The number one thing that a bundle gives us is... services! What services does this bundle give

us? Well, we could, of course, read the documentation, blah, blah. Well, ok, you should do

that... but, come on! Let's venture ahead recklessly and learn by exploring!

In the last tutorial, we learned about a command that shows us all of the services in our app:

debug:autowiring :

php bin/console debug:autowiring

For example, if we search for "logger", there's apparently a service called LoggerInterface .

We also learned that we can autowire any service in this list into our controller by using its type.

By using this LoggerInterface type - which is actually Psr\Log\LoggerInterface -

Symfony knows to pass us this service. Then, down here, we call methods on it like

$logger->info() .

We installed KnpTimeBundle a moment ago, so let's search for "time":

php bin/console debug:autowiring time

And... hey! Look at this! We have a new DateTimeFormatter service! That's from the new

bundle and I bet that's what we're looking for. Let's go use it in our controller.

Using the New DateTimeFormatter Service

The type-hint we need is Knp\Bundle\TimeBundle\DateTimeFormatter . Ok! In

VinylController , find browse() , then add the new argument.

By the way, the order of the arguments does not matter... except when it comes to optional

arguments. I made the $slug argument optional and you typically need your optional

arguments at the end of the list. So I'll add DateTimeFormatter right here and hit "tab" to

add the use statement on top.

We can name the argument anything we want, like $sherlockHolmes or $timeFormatter :

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 45

46

 // ... lines 47 - 71

72

To use this, loop over the mixes - foreach ($mixes as $key => $mix) :

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 36

37

 // ... line 38

39

 // ... lines 40 - 45

46

 // ... lines 47 - 71

72

use Knp\Bundle\TimeBundle\DateTimeFormatter;

class VinylController extends AbstractController

{

 public function browse(DateTimeFormatter $timeFormatter, string $slug

= null): Response

 {

 }

}

use Knp\Bundle\TimeBundle\DateTimeFormatter;

class VinylController extends AbstractController

{

 public function browse(DateTimeFormatter $timeFormatter, string $slug

= null): Response

 {

 foreach ($mixes as $key => $mix) {

 }

 }

}

then, on each, add a new ago key: $mixes[$key]['ago'] = ... and this is where we need

the new service. How do we use the DateTimeFormatter? I have no idea! But we used its

type, so PhpStorm should tell us what methods it has. Type $timeFormatter-> ... and ok! It

has 4 public methods.

The one we want is formatDiff() . Pass it the "from" time... which is $mix['createdAt'] :

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 36

37

38

39

 // ... lines 40 - 45

46

 // ... lines 47 - 71

72

That's all we need! We're looping over these $mixes , taking the createdAt key, which is a

DateTime object, passing it to the formatDiff() method, which should return a string in the

"ago" format. To see if this is working, below, dd($mixes) :

use Knp\Bundle\TimeBundle\DateTimeFormatter;

class VinylController extends AbstractController

{

 public function browse(DateTimeFormatter $timeFormatter, string $slug

= null): Response

 {

 foreach ($mixes as $key => $mix) {

 $mixes[$key]['ago'] = $timeFormatter-

>formatDiff($mix['createdAt']);

 }

 }

}

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 36

37

38

39

40

 // ... lines 41 - 45

46

 // ... lines 47 - 71

72

Let's try it! Spin over, refresh... and let's open it up. Yes! Look at that:

"ago" => "7 months ago" ... "ago" => "18 days ago" ... It works. So remove that

dump:

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 36

37

38

39

40

41

 // ... lines 42 - 43

44

45

 // ... lines 46 - 70

71

use Knp\Bundle\TimeBundle\DateTimeFormatter;

class VinylController extends AbstractController

{

 public function browse(DateTimeFormatter $timeFormatter, string $slug

= null): Response

 {

 foreach ($mixes as $key => $mix) {

 $mixes[$key]['ago'] = $timeFormatter-

>formatDiff($mix['createdAt']);

 }

 dd($mixes);

 }

}

class VinylController extends AbstractController

{

 public function browse(DateTimeFormatter $timeFormatter, string $slug

= null): Response

 {

 foreach ($mixes as $key => $mix) {

 $mixes[$key]['ago'] = $timeFormatter-

>formatDiff($mix['createdAt']);

 }

 return $this->render('vinyl/browse.html.twig', [

]);

 }

}

And now that each mix has a new ago field, in browse.html.twig , replace the

mix.createdAt|date code with mix.ago :

templates/vinyl/browse.html.twig

 // ... lines 1 - 3

4

 // ... lines 5 - 25

26

27

28

29

30

31

 // ... lines 32 - 35

36

37

38

39

40

41

42

43

44

 // ... lines 45 - 46

And now... much better.

So: we had a problem... and knew it needed to be solved by a service... because services do

work. We didn't have a service that did what we needed yet, so we went out, found one, and

installed it. Problem solved! Symfony itself has a ton of different packages, and each of them

gives us several services. But sometimes you'll need a third party bundle like this one to get the

job done. Typically, you can just search online for the problem you're trying to solve, plus

"Symfony bundle", to find it.

Using the ago Twig Filter

In addition to the nice DateTimeFormatter service that we just used, this bundle also gave

us another service. But, this isn't a service that we're meant to use directly, like in the controller.

Nope! This service is meant to be used by Twig itself... to power a brand new Twig filter! That's

right! You can add custom functions, filters... or anything to Twig.

To see the new filter, let's try another useful debugging command:

<div class="container">

 <div>

 <h2 class="mt-5">Mixes</h2>

 <div class="row">

 {% for mix in mixes %}

 <div class="col col-md-4">

 <div class="mixed-vinyl-container p-3 text-center">

 {{ mix.genre }}

 |

 {{ mix.ago }}

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

</div>

php bin/console debug:twig

This prints a list of all of the functions, filters, and tests in Twig, along with the one global Twig

variable we have. If you go up to Filters, there's a new one called "ago"! That was not there

before we installed KnpTimeBundle .

So, all of the work we did in our controller is perfectly fine ... but it turns out that there's an

easier way to do all of this. Delete the foreach ... remove the DateTimeFormatter service...

and, though it's optional, clean up the extra use statement on top:

src/Controller/VinylController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 29

30

31

32

33

34

35

36

37

38

39

40

 // ... lines 41 - 65

66

In browse.html.twig , we don't have an ago field anymore... but we still have a

createdAt field. Instead of piping this into the date filter, pipe it to ago :

class VinylController extends AbstractController

{

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(string $slug = null): Response

 {

 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) :

null;

 $mixes = $this->getMixes();

 return $this->render('vinyl/browse.html.twig', [

 'genre' => $genre,

 'mixes' => $mixes,

]);

 }

}

templates/vinyl/browse.html.twig

 // ... lines 1 - 3

4

 // ... lines 5 - 25

26

27

28

29

30

31

 // ... lines 32 - 35

36

37

38

39

40

41

42

43

44

 // ... lines 45 - 46

That's all we need! Back over on the site refresh and... we get the exact same result.

By the way, we won't do it in this tutorial, but by the end, you'll be able to easily follow the

documentation to create your own custom Twig functions and filters.

Ok, so our app does not have a database yet... and it won't until the next episode. But to make

things more interesting, let's get our mixes data by making an HTTP call to a special GitHub

repository. That's next.

<div class="container">

 <div>

 <h2 class="mt-5">Mixes</h2>

 <div class="row">

 {% for mix in mixes %}

 <div class="col col-md-4">

 <div class="mixed-vinyl-container p-3 text-center">

 {{ mix.genre }}

 |

 {{ mix.createdAt|ago }}

 </div>

 </div>

 {% endfor %}

 </div>

 </div>

</div>

Chapter 4: The HTTP Client Service

We don't have a database yet... and we'll save that for a future tutorial. But to make things a bit

more fun, I've created a GitHub repository - https://github.com/SymfonyCasts/vinyl-mixes - with

a mixes.json file that holds a fake database of vinyl mixes. Let's make an HTTP request from

our Symfony app to this file and use that as our temporary database.

So... how can we make HTTP requests in Symfony? Well, making an HTTP request is work,

and - say it with me now - "Work is done by a service". So the next question is: Is there already

a service in our app that can make HTTP requests?

Let's find out! Spin over to your terminal and run:

php bin/console debug:autowiring http

to search the services for "http". We do get a bunch of results, but... nothing that looks like an

HTTP client. And, that's correct. There is not currently any service in our app that can make

HTTP requests.

Installing the HTTPClient Component

But, we can install another package to give us one. At your terminal, type:

composer require symfony/http-client

But, before we run that, I want to show you where this command comes from. Search for

"symfony http client". One of the top results is Symfony.com's documentation that teaches about

an HTTP Client component. Remember: Symfony is a collection of many different libraries,

called components. And this one helps us make HTTP requests!

Near the top, you'll see a section called "Installation", and there's the line from our terminal!

https://github.com/SymfonyCasts/vinyl-mixes

Anyways, if we run that... cool! Once it finishes, try that debug:autowiring command again:

php bin/console debug:autowiring http

And... here it is! Right at the bottom: HttpClientInterface , which

“Provides flexible methods for requesting HTTP resources synchronously or asynchronously.”

The Super Smart FrameworkBundle

Woo! We just got a new service! That means that we must have just installed a new bundle,

right? Because... bundles give us services? Well... go check out config/bundles.php :

config/bundles.php

1

2

3

4

5

6

7

8

9

10

11

12

13

Woh! There's no new bundle here! Try running

git status

Yea... that only installed a normal PHP package. Inside composer.json , here's the new

package... But it's just a "library": not a bundle.

<?php

return [

 Symfony\Bundle\FrameworkBundle\FrameworkBundle::class => ['all' =>

true],

 Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],

 Twig\Extra\TwigExtraBundle\TwigExtraBundle::class => ['all' => true],

 Symfony\Bundle\WebProfilerBundle\WebProfilerBundle::class => ['dev' =>

true, 'test' => true],

 Symfony\Bundle\MonologBundle\MonologBundle::class => ['all' => true],

 Symfony\Bundle\DebugBundle\DebugBundle::class => ['dev' => true],

 Symfony\WebpackEncoreBundle\WebpackEncoreBundle::class => ['all' =>

true],

 Symfony\UX\Turbo\TurboBundle::class => ['all' => true],

 Knp\Bundle\TimeBundle\KnpTimeBundle::class => ['all' => true],

];

composer.json

1

 // ... lines 2 - 5

6

 // ... lines 7 - 15

16

 // ... lines 17 - 24

25

 // ... lines 26 - 84

85

So, normally, if you install "just" a PHP library, it gives you PHP classes, but it doesn't hook into

Symfony to give you new services. What we just saw is a special trick that many of the Symfony

components use. The main bundle in our app is framework-bundle . In fact, when we started

our project, this was the only bundle we had. framework-bundle is smart. When you install a

new Symfony component - like the HTTP Client component - that bundle notices the new library

and automatically adds the services for it.

So the new service comes from framework-bundle ... which adds that as soon as it detects

that the http-client package is installed.

Using the HttpClientInterface service

Anyways, time to use the new service. The type we need is HttpClientInterface . Head

over to VinylController.php and, up here in the browse() action, autowire

HttpClientInterface and let's name it $httpClient :

src/Controller/VinylController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 41

42

 // ... lines 43 - 67

68

{

 "require": {

 "symfony/http-client": "6.1.*",

 },

}

use Symfony\Contracts\HttpClient\HttpClientInterface;

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, string $slug =

null): Response

 {

 }

}

Then, instead of calling $this->getMixes() , say $response = $httpClient-> . This

lists all of its methods... we probably want request() . Pass this GET ... and then I'll paste the

URL: you can copy this from the code block on this page. It's a direct link to the content of the

mixes.json file:

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... line 34

35

 // ... lines 36 - 41

42

 // ... lines 43 - 67

68

Cool! So we make the request and it returns a response containing the mixes.json data that

we see here. Fortunately, this data has all of the same keys as the old data we were using down

here... so we should be able to swap it in super easily. To get the mix data from the response,

we can say $mixes = $response->toArray() :

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... line 34

35

36

 // ... lines 37 - 41

42

 // ... lines 43 - 67

68

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, string $slug =

null): Response

 {

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 }

}

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, string $slug =

null): Response

 {

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 $mixes = $response->toArray();

 }

}

a handy method that JSON decodes the data for us!

Moment of truth! Move over, refresh and... it works! We now have six mixes on the page. And...

super cool! A new icon showed up on the web debug toolbar: "Total requests: 1". The HTTP

Client service hooks into the web debug toolbar to add this, which is pretty awesome. If we click

it, we can see info about the request and the response. I love that.

To celebrate this working, spin back over and remove the hardcoded getMixes() method:

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... line 13

14

15

 // ... lines 16 - 28

29

 // ... lines 30 - 31

32

33

 // ... lines 34 - 41

42

43

The only problem I can think of now is that, every single time someone visits our page, we're

making an HTTP request to GitHub's API... and HTTP requests are slow! To make matters

worse, once our site becomes super popular - which won't take long - GitHub's API will probably

start rate limiting us.

To fix this, let's leverage another Symfony service: the cache service.

class VinylController extends AbstractController

{

 public function homepage(): Response

 {

 }

 public function browse(HttpClientInterface $httpClient, string $slug =

null): Response

 {

 }

}

Chapter 5: The Cache Service

Now when we refresh the browse page, the mixes are coming from a repository on GitHub! We

make an HTTP request to the GitHub API, that fetches this file right here, we call

$response->toArray() to decode that JSON into a $mixes array... and then we render

that in the template. Yup, this file on GitHub is our temporary fake database!

One practical problem is that every single page load is now making an HTTP request... and

HTTP requests are slow. If we deployed this to production, our site would be so popular, of

course, that we'd pretty quickly hit our GitHub API limit. And then this page would explode.

So... I'm thinking: what if we cache the result? We could make this HTTP request, then cache

the data for 10 minutes, or even an hour. That just might work! How do we cache things in

Symfony? You guessed it: with a service! Which service? I dunno! So let's go find out.

Finding the Cache Service

Run:

php bin/console debug:autowiring cache

to search for services with "cache" in their name. And... yes! There are, in fact, several! There's

one called CacheItemPoolInterface , and another called StoreInterface . Some of

these aren't exactly what we're looking for, but CacheItemPoolInterface ,

CacheInterface , and TagAwareCacheInterface are all different services that you can

use for caching. They all effectively do the same thing... but the easiest to use is

CacheInterface .

So let's grab that.... by doing our fancy autowiring trick! Add another argument to our method

typed with CacheInterface (make sure you get the one from

Symfony\Contracts\Cache) and call it, how about, $cache :

src/Controller/VinylController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 11

12

13

 // ... lines 14 - 32

33

34

 // ... lines 35 - 46

47

48

To use the $cache service, copy these two lines from before, delete them, and replace them

with $mixes = $cache->get() , as if you're going to fetch some key out of the cache. We

can invent whatever cache key we want: how about mixes_data .

Symfony's cache object works in a unique way. We call $cache->get() and pass it this key. If

that result already exists in the cache, it will be returned immediately. If it does not exist in the

cache yet, then it will call our second argument, which is a function. In here, our job is to return

the data that should be cached. Paste in the two lines of code that we copied earlier. This

$httpClient is undefined, so we need to add use ($httpClient) to bring it into scope.

There we go! And instead of setting the $mixes variable, just return this

$response->toArray() line:

use Symfony\Contracts\Cache\CacheInterface;

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, string $slug = null): Response

 {

 }

}

src/Controller/VinylController.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 32

33

34

 // ... lines 35 - 36

37

38

39

40

41

 // ... lines 42 - 46

47

48

If you haven't used Symfony's caching service before, this might look strange! But I love it! The

first time we refresh the page, there won't be any mixes_data in the cache yet. So it will call

our function, return the result, and then the cache system will store that in the cache. The next

time we refresh the page, the key will be in the cache, and it will return the result immediately.

So we don't need any "if" statements to see if something is already in the cache... just this!

Debugging with the Cache Profiler

But... will it blend? Let's go find out. Refresh and... beautiful! The first refresh still made the

HTTP request like normal. Down on the web debug toolbar, we can see that there were three

cache calls and one cache write. Open this in a new tab to jump into the cache section of the

profiler.

So cool: this shows us that there was one call to the cache for mixes_data , one cache write,

and one cache miss. A cache "miss" means that it called our function and wrote that to the

cache.

On the next refresh, watch this icon here. It disappears! That's because there was no HTTP

request. If you open the Cache profiler again, this time there was one read and one hit. That hit

means that the result was loaded from the cache and it did not make an HTTP request. That's

exactly what we wanted!

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, string $slug = null): Response

 {

 $mixes = $cache->get('mixes_data', function() use ($httpClient) {

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 return $response->toArray();

 });

 }

}

Setting the Cache Lifetime

Now, you might be wondering: how long will this info stay in the cache? Right now... forever.

Ooooh. That's the default.

To make it expire sooner than forever, give the function a CacheItemInterface argument -

make sure to hit "tab" to add that use statement - and call it $cacheItem . Now we can say

$cacheItem->expiresAfter() and, to make it easy, say 5 :

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 33

34

35

 // ... lines 36 - 37

38

39

 // ... lines 40 - 42

43

 // ... lines 44 - 48

49

50

The item will expire after 5 seconds.

Clearing the Cache

Unfortunately, if we try this, the item that's already in the cache is set to never expire. So... this

won't actually work until we clear the cache. But... where is the cache being stored? Another

great question! We'll talk more about that in a second... but, by default, it's stored in

var/cache/dev/ ... along with a bunch of other cache files that help Symfony do its job.

We could delete this directory manually to clear the cache... but Symfony has a better way! It is,

of course, another bin/console command.

Symfony has a bunch of different "categories" of cache called "cache pools". If you run:

use Psr\Cache\CacheItemInterface;

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, string $slug = null): Response

 {

 $mixes = $cache->get('mixes_data', function(CacheItemInterface

$cacheItem) use ($httpClient) {

 $cacheItem->expiresAfter(5);

 });

 }

}

php bin/console cache:pool:list

you'll see all of them. Most of these are meant for Symfony to use internally. The cache pool

that we're using is called cache.app . To clear that, run:

php bin/console cache:pool:clear cache.app

Thats it! This isn't something you'll need to do very often, but it's good to know, just in case.

Okay, check this out. When we refresh... we get a cache miss and you can see that it did make

an HTTP call. But if we refresh again really quickly... it's gone! Refresh again and... it's back!

That's because the five seconds just expired.

Ok team: we're now leveraging an HTTP client service and cache service... both of which were

prepared for us by one of our bundles so that we can just... use them!

But, I do have a question. What if we need to control these services? For example, how could

we tell the cache service that, instead of saving things onto the filesystem in this directory, we

want to store things in Redis... or memcache? Let's explore the idea of controlling our services

through configuration next.

Chapter 6: Bundle Config (to Control Bundle
Services)

We're now using the HttpClientInterface and CacheInterface services. Yay! But we

aren't actually responsible for instantiating these service objects. Nope, they're created by

something else (we'll talk about that in a few minutes), and then just passed to us.

That's great because all of these services - the "tools" of our app - come ready to use, out-of-

the-box. But... if something else is responsible for instantiating these service objects, how can

we control them?

Introducing: bundle configuration!

Bundle Configuration

Go check out the config/packages/ directory. This has a number of different YAML files, all

of which are loaded automatically by Symfony when it first boots up. These files all have exactly

one purpose: to configure the services that each bundle gives us.

Open up twig.yaml :

config/packages/twig.yaml

1

2

3

4

5

6

For now, ignore this when@test : we're going to talk about that in a few minutes. This file has a

root key called twig . And so, the entire purpose of this file is to control the services provide by

the "Twig" bundle. And, it's not the filename - twig.yaml - that's important. I could rename this

to pineapple_pizza.yaml and it would work exactly the same and be delicious. I don't care

what you think.

twig:

 default_path: '%kernel.project_dir%/templates'

when@test:

 twig:

 strict_variables: true

When Symfony loads this file, it sees this root key - twig - and says:

“Oh, okay. I'm going to pass whatever configuration is below to TwigBundle.”

And remember! Bundles give us services. Thanks to this config, when TwigBundle is preparing

its services, Symfony passes it this configuration and TwigBundle uses it to decide how its

services should be instantiated... like what class names to use for each service... or what first

second or third constructor arguments to pass.

For example, if we changed the default_path to something like

%kernel.project_dir%/views , the result is that the Twig service that renders templates

would now be pre-configured to look in that directory.

The point is: the config in these files give us the power to control the services that each bundle

provides.

Let's check out another one: framework.yaml :

config/packages/framework.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Because the root key is framework , all of this config is passed to FrameworkBundle... which

uses it to configure the services it provides.

And, as I mentioned, the filename doesn't matter... though the name often matches the root

key... just for sanity reasons: like framework and framework.yaml . But that's not always

the case. Open up cache.yaml :

see

https://symfony.com/doc/current/reference/configuration/framework.html

framework:

 secret: '%env(APP_SECRET)%'

 #csrf_protection: true

 http_method_override: false

 # Enables session support. Note that the session will ONLY be started

if you read or write from it.

 # Remove or comment this section to explicitly disable session

support.

 session:

 handler_id: null

 cookie_secure: auto

 cookie_samesite: lax

 storage_factory_id: session.storage.factory.native

 #esi: true

 #fragments: true

 php_errors:

 log: true

when@test:

 framework:

 test: true

 session:

 storage_factory_id: session.storage.factory.mock_file

config/packages/cache.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Woh! This is... just more config for FrameworkBundle! It lives in its own file... just because it's

nice to have a separate file to control the cache.

Debugging the Available Bundle Config

At this point, you might be asking yourself:

“Ok, cool... but what config keys are we allowed to put here? Where can I find which options

are available?”

Great question! Because... you can't just "invent" whatever keys you want: that would throw an

error. First, yes, you can, of course, read the documentation. But there's another way: and it's

one of my favorite things about Symfony's config system.

If you want to know what configuration you can pass to "Twig" bundle, there are two

bin/console commands to help you. The first is:

framework:

 cache:

 # Unique name of your app: used to compute stable namespaces for

cache keys.

 #prefix_seed: your_vendor_name/app_name

 # The "app" cache stores to the filesystem by default.

 # The data in this cache should persist between deploys.

 # Other options include:

 # Redis

 #app: cache.adapter.redis

 #default_redis_provider: redis://localhost

 # APCu (not recommended with heavy random-write workloads as

memory fragmentation can cause perf issues)

 #app: cache.adapter.apcu

 # Namespaced pools use the above "app" backend by default

 #pools:

 #my.dedicated.cache: null

php bin/console debug:config twig

This will print out all of the current configuration under the twig key, including any default

values that the bundle is adding. You can see our default_path set to the templates/

directory, which comes from our config file. This %kernel.project_dir% is just a fancy way

to point to the root of our project. More on that later.

Try this: change the value to views , re-run that command and... yup! We see "views" in the

output. Let me go ahead and change that back.

So debug:config shows us all of the actual, current config for a specific bundle, like twig ...

which is especially handy since it also shows you defaults added by the bundle. It's a great way

to see what you can configure. For example, apparently we can add a global variable to Twig

via this globals key!

The second command is similar: Instead of debug:config , it's config:dump :

php bin/console config:dump twig

debug:config shows you the current configuration... but config:dump shows you a giant

tree of example configuration, which includes everything that's possible. Here you can see

globals with some examples of how you could use that key. This is a great way to see every

potential option that you can pass to a bundle... to help it configure its services.

Let's use this new knowledge to see if we can "teach" the cache service to store its files

somewhere else. That's next.

Chapter 7: Configuring the Cache Service

So... I want to know how I can configure the cache service... like to store the cache somewhere

else. In the real world, we can just search for "How do I configure Symfony's cache service".

But... we can also figure this out on our own, by using the commands we just learned.

We already noticed there's a cache.yaml file:

config/packages/cache.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

It looks like FrameworkBundle is responsible for creating the cache service... and it has a sub

cache key where we can pass some values to control it. All of this is commented-out at the

moment.

To get more information about FrameworkBundle, run:

php bin/console config:dump framework

framework:

 cache:

 # Unique name of your app: used to compute stable namespaces for

cache keys.

 #prefix_seed: your_vendor_name/app_name

 # The "app" cache stores to the filesystem by default.

 # The data in this cache should persist between deploys.

 # Other options include:

 # Redis

 #app: cache.adapter.redis

 #default_redis_provider: redis://localhost

 # APCu (not recommended with heavy random-write workloads as

memory fragmentation can cause perf issues)

 #app: cache.adapter.apcu

 # Namespaced pools use the above "app" backend by default

 #pools:

 #my.dedicated.cache: null

FrameworkBundle is the main bundle inside of Symfony. So you can see that this dumps...

wow... a ton. FrameworkBundle provides a lot of services... so there's a lot of config.

Debugging the Cache Config

To... zoom in a bit, re-run the command again, passing framework and then cache to filter for

that sub-key:

php bin/console config:dump framework cache

And... cool! This may not always be super understandable, but it's a great starting point. This

definitely just helped us answer the question:

“Why does the cache system store stuff in the var/cache directory?”

Because... there's a directory key that defaults to %kernel.cache_dir% ... which is a

fancy way of pointing at the /var/cache/dev directory. And then we see /pools/app ,

which is the actual directory that holds our cache.

Using dump() and the Profiler

So here's the goal: instead of caching things to the filesystem, I want to change the cache

system to store somewhere else. Before we do that, go into VinylController and, so we

can see the result of the change we're about to make, dump($cache) . We've been using

dd() so far, which stands for "dump and die". But in this case I want dump() ... but let the

page load.

src/Controller/VinylController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 33

34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 49

50

51

Refresh now. Wait, where is my dump? This is a... feature! When you use dump() , you won't

actually see it on the page: it hides down here on the web debug toolbar. If you look there, the

cache is some sort of TraceableAdapter . But inside of that, there's an object called

FilesystemAdapter . That's proof that the cache system is saving to the filesystem.

Configuring the Cache Adapter

To make this store somewhere else, go into cache.yaml and change this app key. You can

set this to a number of different special strings, called adapters. If we wanted to store our cache

in Redis, we would use cache.adapter.redis .

To make things really easy, use cache.adapter.array :

config/packages/cache.yaml

1

2

 // ... lines 3 - 10

11

 // ... lines 12 - 20

The array adapter is a fake cache where it does store things... but it only lives for the duration

of the request. So, at the end of each request, it forgets everything. It's a fake cache, but it's

enough to see how changing this key will affect the cache service itself.

Watch what happens. Currently, we have a FilesystemAdapter . When we refresh... the

cache is an ArrayAdapter ! And since the ArrayAdapter forgets its cache at the end of the

request, you can see that every single request does now makes an HTTP request.

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, string $slug = null): Response

 {

 dump($cache);

 }

}

framework:

 cache:

 app: cache.adapter.array

Takeaway: It's all about Controlling how Services are
Instantiated

If you're a little confused by this, let me try to clear things up. The point of this chapter is not to

teach you how to change this specific key in the cache file. Ultimately, if you need to configure

something in Symfony, you'll just search the docs... which will tell you exactly what to do and

which key to change.

Nope, the big takeaway is that the sole purpose of these config files is to configure the services

in our app. Each time you change a key in any of these files, the end result is that you just

changed how some service is instantiated. Tweaking a key may change the entire class name

of a service object, like in this case, or it may change the 2nd or 3rd constructor argument that

will be passed when the service is instantiated. It doesn't really matter what changes, as long as

you realize that this config is all about services and how they're instantiated.

In fact, none of this config can be read directly from your app. You couldn't, for example, ask for

the "cache" configuration from inside of a controller. Nope, Symfony reads this config, uses it to

configure how each service object will be instantiated, then throws it away. Services are

supreme.

Next, sometimes you'll need certain configuration to be different based on whether you're

developing locally or running on production. Symfony has a system for this called

"environments". Let's learn all about that.

Chapter 8: debug:container & How Autowiring
Works

Ok, I lied. Before we talk about environments, I need to come clean about something: I have not

been showing you all of the services in Symfony. Not even close.

Head over your terminal and run our favorite command:

php bin/console debug:autowiring

We know that all of these services are floating around in Symfony, waiting for us to ask for them.

And we know that bundles give us services. The Twig service down here comes from

TwigBundle.

And since each service is an object, something somewhere must be responsible for

instantiating these objects. The question is: "Who?" And the answer is... the service container!

Hello Service Container

It turns out that all of the services aren't really... "floating around": they all live inside something

called the "container". And there are way more services in the container than

debug:autowiring has been telling us about. Ooh... secrets! This time, run:

php bin/console debug:container

And... whoa! This prints out a huge list. It's so big, it's hard to see everything. Let me make my

font smaller. Much better!

This is the full list of all of the services in our app... or in the "container". The container is

basically a giant "array" where each service has a unique name that points to its service object.

For example, down here... there we go... we can see that there's a service whose unique name

- or "id" is twig .

Knowing that the id of the Twig service is twig is not usually important, but it is useful to

understand that each service has a unique id... and that you can see all of them inside the

debug:container command.

The Container Creates Objects

And really, the container might be better-described as a big array of instructions on how to

instantiate services, if and when something asks for them. For instance, the container knows

exactly how to instantiate this Twig service. It knows that its class is Twig\Environment . And

even though you can't see it on this list, it knows the exact arguments to pass to its constructor.

The moment someone needs the Twig service, the container instantiates it and returns it.

Yup, when we autowire a service, we're basically saying:

“Hey container, can you please give me the HTTP Client service?”

If nothing in our code has asked for that service yet during this request, the container will create

it. But if something has already asked for it, then the container will simply return the one it

already created. This means that if we ask for the HTTP Client service in ten different places,

the container will only create and return the same one instance. Pretty cool!

How Autowiring Works

Anyway, debug:container shows us all of the services that the container knows how to

instantiate. But debug:autowiring only shows us a fraction of those services. Why?

Well, it turns out that not all services are autowireable. Many of the items in this list are low-level

services that just exist to help other services do their job. You'll probably never need to use

these low-level services directly... and you actually cannot fetch them via autowiring.

But, let's back up a minute. Now that we know a bit more, we can now learn exactly how

Symfony's autowiring system works. It's beautifully simple.

As we've seen, the container is really an array where every service has an id that points to that

service object. When Symfony sees this HttpClientInterface type - this is the full type

that it sees, thanks to our use statement - in order to figure out which service in the container it

needs to pass us, it simply looks for a service whose ID matches this string exactly. Let me

show you!

Scroll towards the top of this list to find... a service whose ID is

Symfony\Contracts\HttpClient\HttpClientInterface ! The vast majority of the

services in the container use the "snake case" naming strategy. But if a service is intended for

us to use in our code, Symfony will add an additional service inside that matches its class or

interface name.

Thanks to that, when we type-hint HttpClientInterface , Symfony looks in the container

for a service whose id is Symfony\Contracts\HttpClient\HttpClientInterface , it

finds it and passes it to us.

Service Aliases

But look over on the right side: it says that this is an alias for a different service ID. An "alias" is

like a symbolic link. It means that when someone asks for the HttpClientInterface

service, Symfony will actually pass us this other service.

We can use the same logic down here for the CacheInterface type. If we check the list,

here's the service whose id matches that type. But, in reality, it's just an alias for a service called

cache.app . So when we autowire CacheInterface , the cache.app service is what's

actually being passed to us.

If you're feeling unsure, here are the three big takeaways. One: there are a ton of service

objects floating around and they all live inside something called the "container". Each service

has a unique id.

Two, only a small percentage of these are useful to us... and those are set up so that we can

autowire them. Autowiring works by looking in the container for a service whose id exactly

matches the type. When we run debug:autowiring , it's basically just showing us the

services from this list whose id is a class or interface name. Those are the "autowireable

services".

The third and final takeaway is that services also have an alias system... which just means that

when we ask for the CacheInterface service, what it will really give us is the service whose

id is cache.app .

If you're wondering how we could ever use a non-autowireable service in our code, that's a

great question! It's somewhat rare, but we will learn how to do that later.

Next, let's talk about using different configuration locally versus production. Let's talk about

environments.

Chapter 9: Environments

Our application is like a machine: it's a set of services and PHP classes that do work... and

ultimately render some pages. But we can make our machine work differently by feeding it

different configuration.

For example, in SongController , we're using the $logger service to log some information:

src/Controller/SongController.php

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 27

28

29

If we feed the logger some configuration that says "log everything", it will log everything,

including low level debug messages. But if we change the config to say "only log errors", then

this will only log errors. In other words, the same machine can behave differently based on our

configuration. And sometimes, like with logging, we might need that configuration to be different

while we're developing locally versus on production.

To handle this, Symfony has an important concept called "environments". I don't mean

environments like local vs staging vs beta vs production. A Symfony environment is a set of

configuration.

For example, you can run your code in the dev environment with a set of config that's designed

for development. Or you can run your app in the prod environment with a set of config that's

optimized for production. Let me show you!

The APP_ENV Variable

In the root of our project, we have a .env file:

class SongController extends AbstractController

{

 #[Route('/api/songs/{id<\d+>}', methods: ['GET'], name:

'api_songs_get_one')]

 public function getSong(int $id, LoggerInterface $logger): Response

 {

 }

}

.env

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

We're going to talk more about this file later. But see this APP_ENV=dev? This tells Symfony

that the current environment is dev , which is perfect for local development. When we deploy to

production, we'll change this to prod . More on that in a few minutes.

But... what difference does that make? What happens in our app when we change this from

dev to prod? To answer, let me close some folders... and open public/index.php :

public/index.php

1

2

3

4

5

6

7

8

9

In all environments, the following files are loaded if they exist,

the latter taking precedence over the former:

#

* .env contains default values for the environment

variables needed by the app

* .env.local uncommitted file with local overrides

* .env.$APP_ENV committed environment-specific defaults

* .env.$APP_ENV.local uncommitted environment-specific overrides

#

Real environment variables win over .env files.

#

DO NOT DEFINE PRODUCTION SECRETS IN THIS FILE NOR IN ANY OTHER COMMITTED

FILES.

#

Run "composer dump-env prod" to compile .env files for production use

(requires symfony/flex >=1.2).

https://symfony.com/doc/current/best_practices.html#use-environment-

variables-for-infrastructure-configuration

###> symfony/framework-bundle ###

APP_ENV=dev

APP_SECRET=4777a99cd6c61ce84969bd1338737c38

###

<?php

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

return function (array $context) {

 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

};

Remember: this is our front controller. It's the first file that's executed on every request. We don't

really care much about this file, but its job is important: it boots up Symfony.

What's interesting is that it reads the APP_ENV value and passes it as the first argument to this

Kernel class. And... this Kernel class is actually in our code! It lives at src/Kernel.php .

Cool. So what I want to know now is: What does the first argument to Kernel control?

If we open the class we find... absolutely nothing. It's empty. That's because the majority of the

logic lives in this trait. Hold "cmd" or "control" and click MicroKernelTrait to open that up.

The config/packages/{ENV} Directory

The job of the Kernel is to load all of the services and routes in our app. If you scroll down, it

has a method called configureContainer() . Ooh! We know what the container is now! And

check out what it does! It takes this $container object and imports

$configDir.'/{packages}/*.{php,yaml}' . This line says:

“Yo container! I want to load all of the files from the config/packages/ directory.”

It loads all of those files, and then it passes the configuration from each to whatever bundle is

defined as the root key. But what's really interesting for environments is this next line: import

$configDir.'/{packages}/'.$this->environment.'/*.{php,yaml}' . If you dug a

little, you'd learn that $this->environment is equal to the first argument that's passed to

Kernel !

In other words, in the dev environment, this will be dev . So, in addition to the main config files,

this will also load anything in the config/packages/dev/ directory. Yup, we can add extra

config there that overrides the main configuration in the dev environment. For example, we

could add logging config that tells the logger to log everything!

Below this, we also load a file called services.yaml and, if we have it,

services_dev.yaml . We'll talk more about services.yaml real soon.

The when@{ENV} Config

So, if you want to add environment-specific configuration, you can put it in the correct

environment directory. But there's one other way. It's a pretty new feature and we saw it at the

bottom of twig.yaml . It's the when@ syntax:

config/packages/twig.yaml

 // ... lines 1 - 3

4

5

6

In Symfony, by default, there are three environments: dev , prod , and then if you run

automated tests, there's an environment called test . Inside of twig.yaml , by saying,

when@test , it means that this configuration will only be loaded if the environment is equal to

test .

The best example of this might be in monolog.yaml . monolog is the bundle that controls the

logger service. It does have some configuration that's used in all environments. But, below this,

it has when@dev . We won't talk too much about the specific monolog configuration, but this

controls how log messages are handled. In the dev environment, this says that it should log

everything and it should log to a file, using this fancy %kernel.logs_dir% syntax that we'll

learn about soon.

Anyways, this points to a var/logs/dev.log file and the level: debug part means that it

will log every single message to dev.log ... regardless of how important or unimportant that

message is.

Below this, for the prod environment, it's quite different. The most important line is

action_level: error . That says:

“Hi Ms Logger! This app probably logs a ton of messages, but I only want you to actually

save messages that are an error importance level or higher.”

That makes sense! In production, we don't want our log files filling up with tons and tons of

debug messages. With this, we only log error messages.

The big point is this: by using these tricks, we can configure our services differently based on

the environment.

when@test:

 twig:

 strict_variables: true

Environment-Specific Routing

And, we can even do the same thing with routes! Sometimes you have entire routes that you

only want to load in a certain environment. Back in MicroKernelTrait , if you go down,

there's a method called configureRoutes() . This is what's responsible for loading all of our

routes... and it's very similar to the other code. It loads

$configDir.'/{routes}/*.{php,yaml}' as well as this dev environment directory, if

you have one. We don't.

You can also use the when@dev trick. This file is responsible for registering the routes used by

the web debug toolbar. We don't want the web debug toolbar in production... so these routes

are only imported in the dev environment.

config/routes/web_profiler.yaml

1

2

3

4

5

6

7

8

Heck, certain bundles are only enabled in some environments! If you open

config/bundles.php , we have the name of the bundle... and then on the right, the

environments in which that bundle should be enabled. This all means all environments.... and

most are enabled in all environments.

The WebProfilerBundle however - the bundle that gives us the web debug toolbar and

profiler - is only loaded in the dev and test environments. Yup, the entire bundle - and the

services it provides - are never loaded in the prod environment.

So, now that we understand the basics of environments, let's see if we can switch our

application to the prod environment. And then, as a challenge, we'll configure our cache

service differently in dev . That's next.

when@dev:

 web_profiler_wdt:

 resource: '@WebProfilerBundle/Resources/config/routing/wdt.xml'

 prefix: /_wdt

 web_profiler_profiler:

 resource:

'@WebProfilerBundle/Resources/config/routing/profiler.xml'

 prefix: /_profiler

Chapter 10: The "prod" Environment

Our app is currently running in the dev environment. Let's switch it to prod ... which is what

you would use on production. Temporarily change APP_ENV=dev to prod :

.env

 // ... lines 1 - 15

16

17

 // ... lines 18 - 20

then head over and refresh. Whoa! The web debug toolbar is gone. That... makes sense! The

entire web profiler bundle is not enabled in the prod environment.

You'll also notice that the dump from our controller appears on the top of the page. The web

profiler normally captures that and displays it down on the web debug toolbar. But... since that

whole system isn't enabled anymore, it now dumps right where you call it.

And there are a lot of other differences, like the logger, which now behaves differently thanks to

the configuration in monolog.yaml .

Clearing the prod Cache

The way pages are built has also changed. For example, Symfony caches a lot of files... but you

don't notice that in the dev environment. That's because Symfony is super smart and rebuilds

that cache automatically when we change certain files. However, in the prod environment, that

doesn't happen.

Check it out! Open up templates/base.html.twig ... and change the title on the page to

Stirred Vinyl . If you go back over and refresh... look up here! No change! The Twig

templates themselves are cached. In the dev environment, Symfony rebuilds that cache for us.

But in the prod environment? Nope! We need to clear it manually.

How? At your terminal, run:

###> symfony/framework-bundle ###

APP_ENV=prod

php bin/console cache:clear

Notice it says that it's clearing the cache for the prod environment. So, just like how our app

always runs in a specific environment, the console commands also run in a specific

environment. And, it reads that same APP_ENV flag. So because we have APP_ENV=prod

here, cache:clear knew that it should run in the prod environment and clear the cache for

that environment.

Thanks to this, when we refresh... now the title updates. I'll change this back to our cool name,

Mixed Vinyl .

Changing the Cache Adapter for prod Only

Let's try something else! Open up config/packages/cache.yaml . Our cache service

currently uses the ArrayAdapter , which is a fake cache. That might be cool for development,

but it won't be much help on production:

config/packages/cache.yaml

1

2

 // ... lines 3 - 10

11

 // ... lines 12 - 25

Let's see if we can switch that back to the filesystem adapter, but only for the prod

environment. How? Down here, use when@prod and then repeat the same keys. So

framework , cache , and then app . Set this to the adapter we want, which is called

cache.adapter.filesystem :

framework:

 cache:

 app: cache.adapter.array

config/packages/cache.yaml

1

2

 // ... lines 3 - 10

11

 // ... lines 12 - 20

21

22

23

24

It's going to be really easy to see if this works because we're still dumping the cache service in

our controller. Right now, it's an ArrayAdapter . If we refresh... surprise! It's still an

ArrayAdapter . Why? Because we're in the prod environment... and pretty much any time you

make a change in the prod environment, you need to rebuild your cache.

Go back to your terminal and run

php bin console cache:clear

again and now... got it - FilesystemAdapter !

But... let's reverse this config. Copy cache.adapter.array and change it to filesystem .

We'll use that by default. Then at the bottom, change to when@dev , and this to

cache.adapter.array :

config/packages/cache.yaml

1

2

 // ... lines 3 - 10

11

 // ... lines 12 - 20

21

22

23

24

Why am I doing that? Well, that literally makes zero difference in the dev and prod

environments. But if we decide to start writing tests later, which run in the test environment, with

this new config, the test environment will use the same cache service as production... which is

probably more realistic and better for testing.

framework:

 cache:

 app: cache.adapter.array

when@prod:

 framework:

 cache:

 app: cache.adapter.filesystem

framework:

 cache:

 app: cache.adapter.filesystem

when@dev:

 framework:

 cache:

 app: cache.adapter.array

To make sure this still works, clear the cache one more time. Refresh and... it does! We still

have FilesystemAdapter . And... if we switch back to the dev environment in .env :

.env

 // ... lines 1 - 15

16

17

 // ... lines 18 - 20

and refresh... yes! The web debug toolbar is back, and down here, we are once again using

ArrayAdapter !

Now, in reality, you probably won't ever switch to the prod environment while you're developing

locally. It's hard to work with... and there's just no point! The prod environment is really meant

for production! And so, you will run that bin/console cache:clear command during

deployment... but probably almost never on your local machine.

Before we go on, head into VinylController , go down to browse() , and take out that

dump() :

###> symfony/framework-bundle ###

APP_ENV=dev

src/Controller/VinylController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Okay, status check! First, everything in Symfony is done by a service. Second, bundles give us

services. And third, we can control how those services are instantiated via the different bundle

configuration in config/packages/ .

Now, let's go one important step further by creating our own service.

class VinylController extends AbstractController

{

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, string $slug = null): Response

 {

 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) :

null;

 $mixes = $cache->get('mixes_data', function(CacheItemInterface

$cacheItem) use ($httpClient) {

 $cacheItem->expiresAfter(5);

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 return $response->toArray();

 });

 return $this->render('vinyl/browse.html.twig', [

 'genre' => $genre,

 'mixes' => $mixes,

]);

 }

}

Chapter 11: Creating a Service

We know that bundles give us services and services do work. Ok. But what if we need to write

our own custom code that does work? Should we... put that into our own service class?

Absolutely! And it's a great way to organize your code.

We are already doing some work in our app. In the browse() action:

src/Controller/VinylController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

we make an HTTP request and cache the result. Putting this logic in our controller is fine. But by

moving it into its own service class, it'll make the purpose of the code more clear, allow us to

reuse it from multiple places... and even enable us to unit test that code if we want to.

class VinylController extends AbstractController

{

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, string $slug = null): Response

 {

 $genre = $slug ? u(str_replace('-', ' ', $slug))->title(true) :

null;

 $mixes = $cache->get('mixes_data', function(CacheItemInterface

$cacheItem) use ($httpClient) {

 $cacheItem->expiresAfter(5);

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 return $response->toArray();

 });

 return $this->render('vinyl/browse.html.twig', [

 'genre' => $genre,

 'mixes' => $mixes,

]);

 }

}

Creating the Service Class

That sounds amazing, so let's do it! How do we create a service? In the src/ directory, create

a new PHP class wherever you want. It seriously doesn't matter what directories or

subdirectories you create in src/ : do whatever feels good for you.

For this example, I'll create a Service/ directory - though again, you could call that

PizzaParty or Repository - and inside of that, a new PHP class. Let's call it... how about

MixRepository . "Repository" is a pretty common name for a service that returns data. Notice

that when I create this, PhpStorm automatically adds the correct namespace. It doesn't matter

how we organize our classes inside of src/ ... as long as our namespace matches the

directory:

src/Service/MixRepository.php

1

2

3

 // ... lines 4 - 5

6

7

8

 // ... lines 9 - 17

18

One important thing about service classes: they have nothing to do with Symfony. Our controller

class is a Symfony concept. But MixRepository is a class we're creating to organize our own

code. That means... there are no rules! We don't need to extend a base class or implement an

interface. We can make this class look and feel however we want. The power!

With that in mind, let's create a new public function called, how about, findAll() that

will return an array of all of the mixes in our system. Back in VinylController , copy all

of the logic that fetches the mixes and paste that here:

<?php

namespace App\Service;

class MixRepository

{

}

src/Service/MixRepository.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

PhpStorm will ask if we want to add a use statement for the CacheItemInterface . We

totally do! Then, instead of creating a $mixes variable, just return :

src/Service/MixRepository.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

There are some undefined variables in this class... and those will be a problem. But ignore them

for a minute: I first want to see if we can use our shiny new MixRepository .

use Psr\Cache\CacheItemInterface;

class MixRepository

{

 public function findAll(): array

 {

 $mixes = $cache->get('mixes_data', function(CacheItemInterface

$cacheItem) use ($httpClient) {

 $cacheItem->expiresAfter(5);

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 return $response->toArray();

 });

 }

}

use Psr\Cache\CacheItemInterface;

class MixRepository

{

 public function findAll(): array

 {

 return $cache->get('mixes_data', function(CacheItemInterface

$cacheItem) use ($httpClient) {

 $cacheItem->expiresAfter(5);

 $response = $httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 return $response->toArray();

 });

 }

}

Is our Service already in the Container?

Head into VinylController . Let's think: we somehow need to tell Symfony's service

container about our new service so that we can then autowire it in the same way we're

autowiring core services like HtttpClientInterface and CacheInterface .

Whelp, I have a surprise! Spin over to your terminal and run:

php bin/console debug:autowiring --all

Scroll up to the top and... amaze! MixRepository is already a service in the container! Let

me explain two things here. First, the --all flag is not that important. It basically tells this

command to show you the core services like $httpClient and $cache , plus our own

services like MixRepository .

Second, the container... somehow already saw our repository class and recognized it as a

service. We'll learn how that happened in a few minutes... but for now, it's enough to know that

our new MixRepository is already inside the container and its service id is the full class

name. That means we can autowire it!

Autowiring the new Service

Back over in our controller, add a third argument type-hinted with MixRepository - hit tab to

add the use statement - and call it... how about $mixRepository :

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 33

34

35

 // ... lines 36 - 43

44

45

use App\Service\MixRepository;

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, MixRepository $mixRepository, string $slug = null): Response

 {

 }

}

Then, down here, we don't need any of this $mixes code anymore. Replace it with

$mixes = $mixRepository->findAll() :

src/Controller/VinylController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 33

34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 43

44

45

How nice is that? Will it work? Let's find out! Refresh and... it does! Ok, working in this case

means that we get an Undefined variable $cache message coming from

MixRepository . But the fact that our code got here means that autowiring MixRepository

worked: the container saw this, instantiated MixRepository and passed it to us so that we

could use it.

So, we created a service and made it available for autowiring! We are so cool! But our new

service needs the $httpClient and $cache services in order to do its job. How do we get

those? The answer is one of the most important concepts in Symfony and object-oriented

coding in general: dependency injection. Let's talk about that next.

use App\Service\MixRepository;

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, MixRepository $mixRepository, string $slug = null): Response

 {

 $mixes = $mixRepository->findAll();

 }

}

Chapter 12: Dependency Injection

Our MixRepository service is sort of working. We can autowire it into our controller and the

container is instantiating the object and passing it to us. We prove that over here because,

when we run the code, it successfully calls the findAll() method.

But.... then it explodes. That's because, inside MixRepository we have two undefined

variables. In order for our class to do its job, it needs two services: the $cache service and the

$httpClient service.

Autowiring to Methods is a Controller-Only Superpower

I keep saying that there are many services floating around inside of Symfony, waiting for us to

use them. That's true. But, you can't just grab them out of thin air from anywhere in your code.

For example, there's no Cache::get() static method that you can call whenever you want

that will return the $cache service object. Nothing like that exists in Symfony. And that's good!

Allowing us to grab objects out of thin air is a recipe for writing bad code.

So how can we get access to these services? Currently, we only know one way: by autowiring

them into our controller. But that won't work here. Autowiring services into a method is a

superpower that only works for controllers.

Watch: if we added a CacheInterface argument... then went over and refreshed, we'd see:

“Too few arguments to function [...]findAll(), 0 passed [...] and exactly 1 expected.”

That's because we are calling findAll() . So if findAll() needs an argument, it is our

responsibility to pass them: there's no Symfony magic. My point is: autowiring works in

controller methods, but don't expect it to work for any other methods.

Manually Passing Services to a Method?

But one way we might get this to work is by adding both services to the findAll() method

and then manually passing them in from the controller. This won't be the final solution, but let's

try it.

I already have a CacheInterface argument... so now add the HttpClientInterface

argument and call it $httpClient :

src/Service/MixRepository.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

 // ... lines 13 - 18

19

20

Perfect! The code in this method is now happy.

Back over in our controller, for findAll() , pass $httpClient and $cache :

src/Controller/VinylController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 33

34

35

 // ... lines 36 - 37

38

 // ... lines 39 - 43

44

45

And now... it works!

"Dependencies" Versus "Arguments"

use Symfony\Contracts\Cache\CacheInterface;

use Symfony\Contracts\HttpClient\HttpClientInterface;

class MixRepository

{

 public function findAll(HttpClientInterface $httpClient,

CacheInterface $cache): array

 {

 }

}

class VinylController extends AbstractController

{

 public function browse(HttpClientInterface $httpClient, CacheInterface

$cache, MixRepository $mixRepository, string $slug = null): Response

 {

 $mixes = $mixRepository->findAll($httpClient, $cache);

 }

}

So, on a high level, this solution makes sense. We know that we can autowire services into our

controller... and then we just pass them into MixRepository . But if you think a bit deeper, the

$httpClient and $cache services aren't really input to the findAll() function. They don't

really make sense as arguments.

Let's look at an example. Pretend that we decide to change the findAll() method to accept

a string $genre argument so the method will only return mixes for that genre. This

argument makes perfect sense: passing different genres changes what it returns. The argument

controls how the method behaves.

But the $httpClient and $cache arguments don't control how the function behaves. In

reality, we would pass these same two values every time we call the method... just so things

work.

Instead of arguments, these are really dependencies that the service needs. They're just stuff

that must be available so that findAll() can do its job!

Dependency Injection & The Constructor

For "dependencies" like this, whether they're service objects or static configuration that your

service needs, instead of passing them to the methods, we pass them into the constructor.

Delete that pretend $genre argument... then add a public function __construct() .

Copy the two arguments, delete them, and move them up here:

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 28

29

Before we finish this, I need to tell you that autowiring works in two places. We already know

that we can autowire arguments into our controller methods. But we can also autowire

arguments into the __construct() method of any service. In fact, that's the main place that

class MixRepository

{

 public function __construct(HttpClientInterface $httpClient,

CacheInterface $cache)

 {

 }

}

autowiring is meant to work! The fact that autowiring also works for controller methods is... kind

of an "extra" just to make life nicer.

Anyways, autowiring works in the __construct() method of our services. So as long as we

type-hint the arguments (and we have), when Symfony instantiates our service, it will pass us

these two services. Yay!

And what do we do with these two arguments? We set them onto properties.

Create a private $httpClient property and a private $cache property. Then, down in

the constructor, assign them: $this->httpClient = $httpClient , and

$this->cache = $cache :

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 28

29

So when Symfony instantiates our MixRepository , it passes us these two arguments and we

store them on properties so we can use them later.

Watch! Down here, instead of $cache , use $this->cache . And then we don't need this

use ($httpClient) over here... because we can say $this->httpClient :

class MixRepository

{

 private $httpClient;

 private $cache;

 public function __construct(HttpClientInterface $httpClient,

CacheInterface $cache)

 {

 $this->httpClient = $httpClient;

 $this->cache = $cache;

 }

}

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 19

20

21

22

 // ... line 23

24

 // ... lines 25 - 26

27

28

29

This service is now in perfect shape.

Back over in VinylController , now we can simplify! The findAll() method doesn't need

any arguments... and so we don't even need to autowire $httpClient or $cache at all. I'm

going to celebrate by removing those use statements on top:

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

 // ... lines 34 - 35

36

 // ... lines 37 - 41

42

43

Look how much easier that is! We autowire the one service we need, call the method on it,

and... it even works! This is how we write services. We add any dependencies to the

constructor, set them onto properties, and then use them.

Hello Dependency Injection!

class MixRepository

{

 public function findAll(): array

 {

 return $this->cache->get('mixes_data', function(CacheItemInterface

$cacheItem) {

 $response = $this->httpClient->request('GET',

'https://raw.githubusercontent.com/SymfonyCasts/vinyl-

mixes/main/mixes.json');

 });

 }

}

class VinylController extends AbstractController

{

 public function browse(MixRepository $mixRepository, string $slug =

null): Response

 {

 $mixes = $mixRepository->findAll();

 }

}

By the way, what we just did has a fancy schmmancy name: "Dependency injection". But don't

run away! That may be a scary... or at least "boring sounding" term, but it's a very simple

concept.

When you're inside of a service like MixRepository and you realize you need another

service (or maybe some config like an API key), to get it, create a constructor, add an argument

for the thing you need, set it onto a property, and then use it down in your code. Yep! That's

dependency injection.

Put simply, dependency injection says:

“If you need something, instead of grabbing it out of thin air, force Symfony to pass it to you

via the constructor.”

This is one of the most important concepts in Symfony... and we'll do this over and over again.

PHP 8 Property Promotion

Okay, unrelated to dependency injection and autowiring, there are two minor improvements that

we can make to our service. The first is that we can add types to our properties:

HttpClientInterface and CacheInterface :

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

18

 // ... lines 19 - 28

29

That doesn't change how our code works... it's just a nice, responsible way to do things.

But we can go further! In PHP 8, there's a new, shorter syntax for creating a property and

setting it in the constructor like we're doing. It looks like this. First, I'll move my arguments onto

class MixRepository

{

 public function __construct(HttpClientInterface $httpClient,

CacheInterface $cache)

 {

 $this->httpClient = $httpClient;

 $this->cache = $cache;

 }

}

multiple lines... just to keep things organized. Now add the word private in front of each

argument. Finish by deleting the properties... as well as the inside of the method.

That might look weird at first, but as soon as you add private , protected , or public in

front of a __construct() argument, that creates a property with this name and sets the

argument onto that property:

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

11

12

13

14

 // ... lines 15 - 24

25

So it looks different, but it's the exact same as what we had before.

When we try it... yup! It still works.

Next: I keep saying that the container holds services. That's true! But it also holds one other

thing - simple configuration called "parameters".

class MixRepository

{

 public function __construct(

 private HttpClientInterface $httpClient,

 private CacheInterface $cache

) {}

}

Chapter 13: Parameters

We know there's this container concept that holds all of our services... and we can see the full

list of services by running:

php bin/console debug:container

Listing Parameters

Well, it turns out that the container holds one other thing: grudges. Seriously, don't expect to pull

a prank on the service container and get away with it.

Ok, what it really holds, in addition to services, is parameters. These are simple configuration

values, and we can see them by running a similar command:

php bin/console debug:container --parameters

These are basically variables that you can read and reference in your code. We don't need to

worry about most of these, actually. They're set by internal things and used by internal things.

But there are a few that start with kernel that are pretty interesting, like

kernel.project_dir , which points to the directory of our project. Yep! If you ever need a

way to refer to the directory of your app, this parameter can help.

Fetching Parameters from a Controller

So... how do we use these parameters? There are two ways. First, it's not super common, but

you can fetch a parameter in your controller. For example, in VinylController , let's

dd($this->getParameter()) - which is a shortcut method from AbstractController -

and then kernel.project_dir . We even get some nice auto-completion thanks to the

Symfony PhpStorm plugin!

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

34

 // ... lines 35 - 42

43

44

And when we try it... yep! There it is!

Referencing Parameters with %parameter%

Now... delete that. This works, but most of the time, the way you'll use parameters is by

referencing them in your configuration files. And we've seen this before! Open up

config/packages/twig.yaml :

config/packages/twig.yaml

1

2

 // ... lines 3 - 7

Remember that default_path? That's referencing the kernel.project_dir parameter.

When you're in any of these .yaml configuration files and you want to reference a parameter,

you can use this special syntax: % , the name of the parameter, then another % .

Creating a new Parameter

Open up cache.yaml . We're setting cache.adapter to filesystem for all environments.

Then, we're overriding it to be the array adapter in the dev environment only. Let's see if we

can shorten this by creating a new parameter.

class VinylController extends AbstractController

{

 public function browse(MixRepository $mixRepository, string $slug =

null): Response

 {

 dd($this->getParameter('kernel.project_dir'));

 }

}

twig:

 default_path: '%kernel.project_dir%/templates'

How do we create parameters? In any of these files, add a root key called parameters . Below

that, you can just... invent a name. I'll call it cache_adapter , and set that to our value:

cache.adapter.filesystem :

config/packages/cache.yaml

1

2

 // ... lines 3 - 28

If you have a root framework key, Symfony will pass all of the config to FrameworkBundle.

The same is true with the twig key and TwigBundle.

But parameters is special: anything under this will create a parameter.

So yea... we now have a new cache.adapter parameter... that we're not actually using yet.

But we can already see it! Run:

php bin/console debug:container --parameters

Near the top... there it is - cache_adapter ! To use this, down here for app , say

%cache_adapter% :

config/packages/cache.yaml

1

2

 // ... line 3

4

5

 // ... lines 6 - 13

14

 // ... lines 15 - 28

That's it. Quick note: You may have noticed that sometimes I use quotes in YAML and

sometimes I don't. Mostly, in YAML, you don't need to use quotes... but you always can. And if

you're ever not sure if they're needed or not, better to be safe and use them.

Parameters are actually one example where quotes are required. If we didn't surround this with

quotes, it would look like a special YAML syntax and throw an error.

parameters:

 cache_adapter: 'cache.adapter.filesystem'

parameters:

 cache_adapter: 'cache.adapter.filesystem'

framework:

 cache:

 app: '%cache_adapter%'

Anyway, in the dev environment, instead of saying framework , cache , and app , all we

need to do is override that parameter. I'll say parameters , then cache_adapter ... and set it

to cache.adapter.array :

config/packages/cache.yaml

1

2

 // ... line 3

4

5

 // ... lines 6 - 13

14

 // ... lines 15 - 23

24

25

26

To see if that's working, spin over here and run another helper command:

php bin/console debug:config framework cache

Remember, debug:config will show you what your current configuration is under the

framework key, and then the cache sub-key. And you can see here that app is set to

cache.adapter.array - the resolved value for the parameter.

Let's check the value in the prod environment... just to make sure it's right there too. When you

run any bin/console command, that command will execute in the same environment your

app is running in. So when we ran debug:config , that ran in the dev environment.

To run the command in the prod environment, we could go over here and change APP_ENV to

prod temporarily... but there's an easier way. You can override the environment when running

any command by adding a flag at the end. For example:

php bin/console debug:config framework cache --env=prod

But before we try that, we always need to clear our cache first to see changes in the prod

environment. Do that by running:

parameters:

 cache_adapter: 'cache.adapter.filesystem'

framework:

 cache:

 app: '%cache_adapter%'

when@dev:

 parameters:

 cache_adapter: 'cache.adapter.array'

php bin/console cache:clear --env=prod

Now try:

php bin/console debug:config framework cache --env=prod

And... beautiful! It shows cache.adapter.filesystem . So, the container also holds

parameters. This isn't a super important concept in Symfony, so, as long as you understand

how they work, you're good.

Ok, let's turn back to dependency injection. We know that we can autowire services into the

constructor of a service or into controller methods. But what if we need to pass something that's

not autowireable? Like, what if we wanted to pass one of these parameters to a service? Let's

find out how that works next.

Chapter 14: Manual Service Config in
services.yaml

At your terminal, run:

bin/console debug:container --parameters

One of the kernel parameters is called kernel.debug . In addition to environments,

Symfony has this concept of "debug mode". It's true for the dev environment and false for

prod . And, occasionally, it comes in handy!

Here's our new challenge (mostly to see if we can do it). Inside of MixRepository , I want to

figure out if we're in debug mode. If debug mode is true, we will cache for 5 seconds. If it's false,

I want to cache for 60 seconds:

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

11

 // ... lines 12 - 13

14

15

16

17

18

19

20

 // ... lines 21 - 23

24

25

26

Dependency Injection!

class MixRepository

{

 public function __construct(

 private bool $isDebug

) {}

 public function findAll(): array

 {

 return $this->cache->get('mixes_data', function(CacheItemInterface

$cacheItem) {

 $cacheItem->expiresAfter($this->isDebug ? 5 : 60);

 });

 }

}

Let's back up for a minute. Suppose you're working inside of a service like MixRepository .

Suddenly you realize that you need some other service like the logger. What do you do to get

the logger? The answer: you do the dependency injection dance. You add a

private LoggerInterface $logger argument and property... then you use it down in

your code. You'll do this tons of times in Symfony.

Let me undo that... because we don't actually need the logger right now. But what we do need is

similar. Right now we're inside of a service and we've suddenly realized that we need some

configuration (the kernel.debug flag) to do our work. What do we do to get that config? The

same thing! Add that as an argument to our constructor. Say private bool $isDebug , and

down here, use it: if $this->isDebug , cache for 5 seconds, else cache for 60 seconds.

Non-Autowireable Arguments

But... there's a slight complication... and I bet you already know what it is. When we refresh the

page... yikes! We get a Cannot resolve argument error. If you skip a bit, it says:

“Cannot autowire service App\Service\MixRepository : argument $isDebug of

method __construct() is type-hinted bool , you should configure its value explicitly.”

That makes sense. Autowiring only works for services. You can't have a bool $isDebug

argument and expect Symfony to somehow realize that we want the kernel.debug

parameter. I might be a wizard, but I don't have a spell for that. I can make a whole slice of pie

disappear, though. With magic. Definitely.

Configuring MixRepository in services.yaml

How do we fix this? Open a file that we haven't looked at yet: config/services.yaml :

config/services.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

So far, we haven't needed to add any configuration for our MixRepository service. The

container saw the MixRepository class as soon as we created it... and autowiring helped the

container know which arguments to pass to the constructor. But now that we have a non-

autowireable argument, we need to give the container a hint. And we do that in this file.

Head down to the bottom and add the full namespace of this class:

App\Service\MixRepository :

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

 // ... lines 27 - 29

This file is the entry point to configure your own services.

Files in the packages/ subdirectory configure your dependencies.

Put parameters here that don't need to change on each machine where the

app is deployed

https://symfony.com/doc/current/best_practices.html#use-parameters-for-

application-configuration

parameters:

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

 # makes classes in src/ available to be used as services

 # this creates a service per class whose id is the fully-qualified

class name

 App\:

 resource: '../src/'

 exclude:

 - '../src/DependencyInjection/'

 - '../src/Entity/'

 - '../src/Kernel.php'

 # add more service definitions when explicit configuration is needed

 # please note that last definitions always *replace* previous ones

services:

 App\Service\MixRepository:

Below that, use the word bind . And below that, give the container a hint to tell it what to pass

to the argument by saying $isDebug set to %kernel.debug% :

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 25

26

27

28

I'm using $isDebug on purpose. That needs to exactly match the name of the argument in the

class. Thanks to this, the container will pass the kernel.debug parameter value.

And when we try it... it works! The two service arguments are still autowired, but we filled in the

one missing argument so that the container can instantiate our service. Nice!

I want to talk more about the purpose of this file and all of the configuration up here. It turns out

that a lot of the magic we've been seeing related to services and autowiring can be explained by

this code. That's next.

services:

 App\Service\MixRepository:

 bind:

 '$isDebug': '%kernel.debug%'

Chapter 15: All About services.yaml

When Symfony first boots up, it needs to get the full list of all of the services that should be in

the container. That includes the service ID, its class name, and all of its constructor arguments.

The first and biggest source of services are bundles. If you run

php bin/console debug:container

the vast majority of these services come from bundles. The second place the container gets

services from is our code. And to learn about our services, Symfony reads services.yaml .

The Special _defaults Section

At the moment that Symfony starts parsing the first line of this file, nothing in our src/ directory

has been registered as a service in the container. This is really important. Adding our classes to

the container is, in fact, the job of this file! And the way it does it is pretty amazing. Let's take a

tour!

Notice that the config is under a services key. Like parameters , this is a special key. And,

like its name suggests, anything under this is meant to configure services.

The first sub-key under this is _defaults . _defaults is a magic key that allows us to define

some default options that will be added to all services that are registered in this file. So every

service that we register below will automatically have autowire: true and

autoconfigure: true :

config/services.yaml

 // ... lines 1 - 7

8

9

10

11

12

 // ... lines 13 - 29

Let's look at an example. The most basic thing you can do under the services key is...

register a service! That's what we're doing at the bottom. This tells the container that there

should be an App\Service\MixRepository service in the container and we specified one

option: bind .

config/services.yaml

 // ... lines 1 - 7

8

9

10

11

12

13

 // ... lines 14 - 24

25

26

27

28

Services can actually have a bunch of options, including autowire and autoconfigure . So

it would be totally legal to say, autowire: true and autoconfigure: true right here.

This would work just fine. But thanks to the _defaults section, those aren't needed! The

_defaults says:

“Unless it's been overridden on a specific service, set autowire and autoconfigure to

true for all services in this file.”

And what does autowire do? Simple! It tells Symfony's container:

“Hey! Please try to guess my constructor arguments by looking at their type-hints.”

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

 App\Service\MixRepository:

 bind:

 '$isDebug': '%kernel.debug%'

This feature is pretty awesome... which is why it's automatically turned on for all of our services.

The other option - autoconfigure - is more subtle and we'll talk about it later.

Service Auto-Registration

All right, by the time we get to the _defaults line, we've established some default

configuration... but we haven't actually registered any services yet. That's the job of the next

section... and it's the key to everything:

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 13

14

15

16

17

18

19

20

21

 // ... lines 22 - 29

This special syntax says

“Please look inside the src/ directory and automatically register all PHP classes as a

service... except for these three things.”

This is why, immediately after we created the MixRepository class, it was already in the

container! And thanks to the _defaults section, any services registered by this will

automatically have autowire: true and autoconfigure: true . That's some serious

team work! This mechanism is called "Service Auto-Registration".

But remember, every service in the container needs to have a unique ID. If you look back at

debug:container , most of the service IDs are snake case. Let me zoom out a bit so it's

easier to see. Better! So, for example, the Twig service has the snake case twig ID. But if

you scroll up to the top of this list, our MixRepository ID is... the full class name.

services:

 # makes classes in src/ available to be used as services

 # this creates a service per class whose id is the fully-qualified

class name

 App\:

 resource: '../src/'

 exclude:

 - '../src/DependencyInjection/'

 - '../src/Entity/'

 - '../src/Kernel.php'

Yep! When you use Service Auto-Registration, it uses the class name as both the class and the

service ID. This is done for simplicity... but also for autowiring. When we try to autowire

MixRepository into our controller or anywhere else, to figure out which service to pass us,

Symfony will look for a service whose ID exactly matches App\Service\MixRepository .

So Service Auto-Registration not only registers our classes as services, it does it in a way that

makes them autowireable. That's awesome!

Auto-Registration of Non-Services?

Anyway, after this section here, every class in src/ is now registered as a service in the

container. Except, well... we don't want every class in src/ to be a service.

There are really two types of classes in your app: "Service classes" that do work, and "model

classes" - sometimes called "DTOs" - whose job is mostly to hold data - like a Product class

with name and price properties. We want the container to handle instantiating our services.

But for model classes, we will create them whenever we need them - like with

$product = new Product() . So, these will not be services in the container.

In the next tutorial, we'll create Doctrine entity classes, which are model classes for the

database. These will live in the src/Entity/ directory... and since they're not meant to be

services, that directory is excluded. So we register everything in the src/ directory as a

service, except for these three things.

But.. fun fact! This exclude key is not that important. Heck, you could delete it and everything

would still work! If you accidentally register something as a service that isn't meant to be a

service, no worries! Since you'll never try to autowire and use that class like a service, Symfony

will realize it's not being used and remove it from the container. Dang, that is smart!

Custom Service Configuration

So everything in src/ is automatically registered as a service without us needing to do

anything or touch this file.

But... occasionally, you'll need to add extra config to a specific service. That's what happened

with MixRepository thanks to its non-autowireable $isDebug argument.

To fix that, at the bottom of this file, we're registering a new service whose ID and class is

App\Service\MixRepository . This will actually override the service that was created

during Service Auto-Registration, since both IDs will match App\Service\MixRepository .

So, we're defining a brand new service.

But thanks to _defaults , it automatically has autowire: true and

autoconfigure: true . Then we add the additional bind option.

So the only thing we need to put at the bottom of this file are services that need additional

configuration to work. And... there's actually a cooler way to fix non-autowireable arguments that

I'll show you next.

All Configuration Files are Equals!

But before we get to that, I want to mention one more thing: this file, services.yaml , is

loaded via the same system that loads all of the files in config/packages/ . In fact, there's

no technical difference between this file and say... framework.yaml . That's right! If we

wanted to, we could copy and delete the contents of services.yaml , paste them into

framework.yaml , and everything would work exactly the same.

Except that... we would need to, y'know, just correct these paths since we're one directory

deeper. Watch! I'll move this around real quick and... this still works just fine! Cool! Let's put that

back the way it was and... there we go.

The only reason we have a service.yaml file is for organization. It feels good to have one

file to "configure your services". The truly important thing is that all of this config lives under the

services key. In fact, near the top of this file, you'll notice there's an empty parameters key.

In cache.yaml , we created a parameters key there to register a new parameter. It's really

up to us to decide where we want to define this parameter. We can do it in cache.yaml or, to

keep all parameters in one spot, we could copy this and move it over to services.yaml .

In cache.yaml , I'll also grab the when@dev , delete that, and paste it into services.yaml :

config/services.yaml

 // ... lines 1 - 5

6

7

8

9

10

11

 // ... lines 12 - 34

On a technical level, that makes no difference and our app still works. But I like this better.

Services and parameters are a global idea in your app... so it's nice to organize them all in one

file.

All right, the only reason we wrote any code at the bottom of services.yaml was to tell the

container what to pass to the non-autowireable $isDebug argument. But what if I told you

there's a more automatic way to solve these problematic arguments? That's next.

parameters:

 cache_adapter: 'cache.adapter.filesystem'

when@dev:

 parameters:

 cache_adapter: 'cache.adapter.array'

Chapter 16: Bind Arguments Globally

In practice, you rarely need to do anything inside of services.yaml . Most of the time, when

you add an argument to the constructor of a service, it's autowireable. So you add the

argument, give it a type-hint... and keep coding!

src/Service/MixRepository.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 25

26

But the $isDebug argument is not autowireable... since it's not a service. And that forced us to

completely override the service so we could specify that one argument with bind . It works

but... that was... kind of a lot of typing to do such a small thing!

config/services.yaml

 // ... lines 1 - 12

13

 // ... lines 14 - 30

31

32

33

Moving bind to _defaults

So here's a different solution. Copy that bind key, delete the service entirely, and up, under

_defaults , paste:

class MixRepository

{

 public function __construct(

 private HttpClientInterface $httpClient,

 private CacheInterface $cache,

 private bool $isDebug

) {}

}

services:

 App\Service\MixRepository:

 bind:

 '$isDebug': '%kernel.debug%'

config/services.yaml

 // ... lines 1 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 32

When we move over and try this... the page still works! How cool is that? And, it makes sense.

This section will automatically register MixRepository as a service... and then anything

under _defaults will be applied to that service. So the end result is exactly what we had

before.

I love doing this! It allows me to set up project-wide conventions. Now that we have this, we

could add an $isDebug argument to the constructor of any service and it will instantly work.

Binding with Type_hints

By the way, if you want, you can also include the type with the bind.

So this would now only work if we use the bool type-hint with the argument:

config/services.yaml

 // ... lines 1 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 32

If we used string , for example, Symfony would not try to pass in that value.

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

 bind:

 '$isDebug': '%kernel.debug%'

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

 bind:

 'bool $isDebug': '%kernel.debug%'

The Autowire Attribute

So the global bind is awesome. But starting in Symfony 6.1, there's another way to specify a

non-autowireable argument. Comment out the global bind . I do still like doing this... but let's try

the new way:

config/services.yaml

 // ... lines 1 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 32

If we refresh now, we get an error because Symfony doesn't know what to pass to the

$isDebug argument. To fix that, go into MixRepository and, above the argument (or before

the argument if you're not using multiple lines), add a PHP 8 attribute called Autowire .

Normally, PHP 8 attributes will auto-complete, but this isn't auto-completing for me. That's

actually due to a bug in PhpStorm. To get around this, I'm going to type out Autowire ... then

go to the top and start adding the use statement for this manually, which does give us an

option to auto-complete. Hit "tab" and... tah dah! If you want to make them alphabetical, you can

move it around.

You may also notice that it's underlined with a message:

“Attribute cannot be applied to a property [...]”

Again, PhpStorm is a bit confused because this is both a property and an argument.

Anyway, go ahead and pass this an argument %kernel.debug% :

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

bind:

'bool $isDebug': '%kernel.debug%'

src/Service/MixRepository.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

12

 // ... lines 13 - 14

15

16

17

 // ... lines 18 - 27

28

Refresh now and... got it! Pretty cool, right?

Next: most of the time when you autowire an argument like HttpClientInterface , there's

only one service in the container that implements that interface. But what if there were multiple

HTTP clients in our container? How could we choose the one we want? It's time to talk about

named autowiring.

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class MixRepository

{

 public function __construct(

 #[Autowire('%kernel.debug%')]

 private bool $isDebug

) {}

}

Chapter 17: Named Autowiring & Scoped HTTP
Clients

In MixRepository , it would be cool if we didn't need to specify the host name when we make

the HTTP request. Like, it'd be great if that were preconfigured and we only needed to include

the path. Also, pretty soon, we're going to configure an access token that will be used when we

make requests to the GitHub API. We could pass that access token manually here in our

service, but how cool would it be if the HttpClient service came preconfigured to always include

the access token?

So, does Symfony have a way for us to, sort of, "preconfigure" the HttpClient service? It does!

It's called "scoped clients": a feature of HttpClient where you can create multiple HttpClient

services, each preconfigured differently.

Creating a Scoped Client

Here's how it works. Open up config/packages/framework.yaml . To create a scoped

client, under the framework key, add http_client followed by scoped_clients . Now,

give your scoped client a name, like githubContentClient ... since we're using a part of

their API that returns the content of files. Also add base_uri , go copy the host name over

here... and paste:

config/packages/framework.yaml

 // ... line 1

2

 // ... lines 3 - 19

20

21

22

23

 // ... lines 24 - 30

Remember: the purpose of these config files is to change the services in the container. The end

result of this new code is that a second HttpClient service will be added to the container. We'll

see that in a minute. And, by the way, there's no way that you could just guess that you need

framework:

 http_client:

 scoped_clients:

 githubContentClient:

 base_uri: https://raw.githubusercontent.com

http_client and scoped_clients keys to make this work. Configuration is the kind of

thing where you really need to rely on the documentation.

Anyways, now that we've preconfigured this client, we should be able to go into

MixRepository and make a request directly to the path:

src/Service/MixRepository.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

 // ... line 22

23

 // ... lines 24 - 25

26

27

28

But if we head over and refresh... ah...

“Invalid URL: scheme is missing [...]. Did you forget to add "http(s)://"?”

I didn't think we forgot... since we configured it via the base_uri option... but apparently that

didn't work. And you may have guessed why. Find your terminal and run:

php bin/console debug:autowiring client

There are now two HttpClient services in the container: The normal, non-configured one and the

one that we just configured. Apparently, in MixRepository , Symfony is still passing us the

unconfigured HttpClient service.

How can I be sure? Well, think back to how autowiring works. Symfony looks at the type-hint of

our argument, which is Symfony\Contracts\HttpClient\HttpClientInterface , and

then looks in the container to find a service whose ID is an exact match. It's that simple

class MixRepository

{

 public function findAll(): array

 {

 return $this->cache->get('mixes_data', function(CacheItemInterface

$cacheItem) {

 $response = $this->httpClient->request('GET',

'/SymfonyCasts/vinyl-mixes/main/mixes.json');

 });

 }

}

Fetching the Named Version of a Service

So... if there are multiple services with the same "type" in our container, is only the main one

autowireable? Fortunately, no! We can use something called "named autowiring"... and it's

already showing us how. If we type-hint an argument with HttpClientInterface and name

the argument $githubContentClient , Symfony will pass us the second one.

Let's try it: change the argument from $httpClient to $githubContentClient :

src/Service/MixRepository.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 27

28

and now... it doesn't work. Whoops...

“Undefined property: MixRepository::$httpClient ”

That's... just me being careless. When I changed the argument name, it changed the property

name. So... we need to adjust the code below:

class MixRepository

{

 public function __construct(

 private HttpClientInterface $githubContentClient,

) {}

}

src/Service/MixRepository.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 16

17

 // ... line 18

19

20

21

 // ... line 22

23

 // ... lines 24 - 25

26

27

28

And now... it's alive! We just autowired a specific HttpClientInterface service!

Next, let's tackle another tricky problem with autowiring by learning how to fetch one of the

many services in our container that is totally not available for autowiring.

class MixRepository

{

 public function __construct(

 private HttpClientInterface $githubContentClient,

) {}

 public function findAll(): array

 {

 return $this->cache->get('mixes_data', function(CacheItemInterface

$cacheItem) {

 $response = $this->githubContentClient->request('GET',

'/SymfonyCasts/vinyl-mixes/main/mixes.json');

 });

 }

}

Chapter 18: Non-Autowireable Services

Run:

php bin/console debug:container

And... I'll make this a bit smaller so that everything shows up on one line. As we know, this

command shows all of the services in our container... but only a small number of these are

autowireable. We know that because a service is autowireable only if its ID, which is this over

here, is a class or interface name.

So at first, it might look like the Twig service is not autowireable. After all, its ID - twig - is

definitely not a class or interface. But if you scroll up to the top... let's see... yep! There's another

service in the container whose ID is Twig\Environment , which is an alias to the service

twig . This is a little trick Symfony does to make services autowireable. If we type-hint an

argument with Twig\Environment , we get the twig service.

However, most of services in this list do not have an alias like that. So they are not

autowireable. And, that's usually fine. If a service isn't autowireable, it's probably because you'll

never need to use it. But let's pretend that we do want to use one of these.

Check this one out! It's called twig.command.debug . Open up another tab. Earlier, we ran:

php bin/console debug:twig

This shows us all of the functions and filters from Twig... which is nice! Well, surprise! This

command comes from the twig.command.debug service! Because, "everything in Symfony

is done by a service" - even console commands.

As a challenge, let's see if we can inject this service into MixRepository , execute it, and

dump its output.

Dependency Injection: Adding the new Argument

First things first. In MixRepository , we just discovered that, in order to do our work, we need

access to another service. What do we do? The answer: Dependency injection, which is that

fancy word for adding another construct argument and setting it onto a property, which we can

do all at once with private $twigDebugCommand :

src/Service/MixRepository.php

 // ... lines 1 - 9

10

11

12

 // ... lines 13 - 15

16

17

18

 // ... lines 19 - 28

29

If we stopped right now and refreshed... no surprise! We get an error. Symfony has no idea

what to pass for that argument.

What if we added the type for this class? Back over in our terminal, we can see that this service

is an instance of DebugCommand . Over here, let's add that type-hint: DebugCommand ... we

want the one from Symfony\Bridge\Twig\Command . Hit "tab" to autocomplete that:

src/Service/MixRepository.php

 // ... lines 1 - 5

6

 // ... lines 7 - 11

12

13

14

 // ... lines 15 - 18

19

20

 // ... lines 21 - 30

31

And then... refresh. Still an error! Okay, we should add the type-hint because we're good

programmers. But... no matter how hard we try, this is not an autowireable service. So, how do

we fix this?

class MixRepository

{

 public function __construct(

 private bool $isDebug,

 private $twigDebugCommand,

) {}

}

use Symfony\Bridge\Twig\Command\DebugCommand;

class MixRepository

{

 public function __construct(

 private DebugCommand $twigDebugCommand,

) {}

}

Binding the Argument in YAML

There are two main ways. I'll show you the old way first, which I'm mostly doing because you'll

see it in documentation and blog posts all over the place. In config/services.yaml , just

like we did earlier for the $isDebug argument, override our service entirely. Say

App\Service\MixRepository , and add a bind key. Then, we're going to hint what to pass

to the $twigDebugCommand argument.

The only tricky thing is figuring out what value to set. For example, if I go and copy the service

ID - twig.command.debug - and paste that here... that's not going to work! That's literally

going to pass that string. If you refresh, yup!

“Argument 4 must be of type DebugCommand , string given.”

We need to tell Symfony to pass the service that has this ID. In these YAML files, there's a

special syntax to do just that: prefix the service ID with the @ symbol:

config/services.yaml

 // ... lines 1 - 12

13

 // ... lines 14 - 32

33

34

35

As soon as we do that... the fact that this doesn't explode means it's working!

The Autowire Attribute

But... let's remove this. Because I want to show you the new way do this... which leverages that

same fancy Autowire attribute.

Up here, say #[Autowire()] , but instead of just passing a string, say

service: 'twig.command.debug' :

services:

 App\Service\MixRepository:

 bind:

 $twigDebugCommand: '@twig.command.debug'

src/Service/MixRepository.php

 // ... lines 1 - 11

12

13

14

 // ... lines 15 - 18

19

20

21

 // ... lines 22 - 31

32

Using the new Argument

I love that! Before we try this, let's actually use the service. Head down to findAll() .

Executing a console command manually in your PHP code is totally possible. It's a little weird,

but cool! We need to create an $output = new BufferedOutput() object... then we can

execute the command by saying $this->twigDebugCommand->run(new ArrayInput())

- this is, sort of, faking the command-line arguments - pass that an empty [] - then $output .

Whatever the command outputs will be set onto that object.

To see if it's working, just dd($output) :

src/Service/MixRepository.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 13

14

15

 // ... lines 16 - 24

25

26

27

28

29

 // ... lines 30 - 35

36

37

Testing time! Refresh... and got it! How fun is that?

class MixRepository

{

 public function __construct(

 #[Autowire(service: 'twig.command.debug')]

 private DebugCommand $twigDebugCommand,

) {}

}

use Symfony\Component\Console\Input\ArrayInput;

use Symfony\Component\Console\Output\BufferedOutput;

class MixRepository

{

 public function findAll(): array

 {

 $output = new BufferedOutput();

 $this->twigDebugCommand->run(new ArrayInput([]), $output);

 dd($output);

 }

}

All right, now that this is working, let's comment out this silliness. I'll keep our

$twigDebugCommand injected just for reference.

The key takeaway is this: most arguments to services will be autowireable. Yay! But when you

hit an argument that is not autowireable, you can use the Autowire attribute to point to the

value or service you need.

Next: Remember when I told you that MixRepository was the first service we ever created?

Well... I lied. It turns out that our controllers have been services this whole time!

Chapter 19: Controllers are Services Too!

Open up src/Controller/VinylController.php . It may or may not be obvious, but our

controller classes are also services in the container! Yep! They feel special because they're

controllers... but they're really just good old, boring services like everything else. Well, except

that they have one superpower that nothing else has: the ability to autowire arguments into their

action methods. Normally, autowiring only works with the constructor.

Binding Action Arguments

And, the action methods really do work just like the constructors when it comes to autowiring.

For example, add a bool $isDebug argument to the browse() action... then

dump($isDebug) below:

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 31

32

33

34

 // ... lines 35 - 42

43

44

And that... doesn't work! So far, the only two things that we know we are allowed to have as

arguments to our "actions" are (A), any wildcards in the route like $slug and (B) autowireable

services, like MixRepository .

But now, go back to config/services.yaml and uncomment that global bind from earlier:

class VinylController extends AbstractController

{

 public function browse(MixRepository $mixRepository, bool $isDebug,

string $slug = null): Response

 {

 dump($isDebug);

 }

}

config/services.yaml

 // ... lines 1 - 12

13

14

15

 // ... lines 16 - 17

18

19

 // ... lines 20 - 32

This time... it works!

Adding a Constructor

Going in the other direction, because controllers are services, you can absolutely have a

constructor if you want. Let's move MixRepository and $isDebug up to a new constructor.

Copy those, remove them... add public function __construct() , paste... then I'll put

them on their own lines. To turn them into properties, add private in front of each:

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 36

37

38

39

 // ... lines 40 - 48

49

50

Back down below, we just need to make sure we change to dump($this->isDebug) and

add $this-> in front of mixRepository :

services:

 # default configuration for services in *this* file

 _defaults:

 bind:

 'bool $isDebug': '%kernel.debug%'

class VinylController extends AbstractController

{

 public function __construct(

 private bool $isDebug,

 private MixRepository $mixRepository

)

 {}

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(string $slug = null): Response

 {

 }

}

src/Controller/VinylController.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 36

37

38

39

40

 // ... lines 41 - 42

43

 // ... lines 44 - 48

49

50

Nice! If we try this now... that works just fine!

I don't normally follow this approach... mainly because adding arguments to the action method

is just so darn easy. But if you need a service or other value in every action method of your

class, you can definitely clean up your argument list by injecting it through the constructor. I'll go

remove that dump() .

Next, let's talk about environment variables and the purpose of the .env file that we looked at

earlier. This stuff will become increasingly important as we make our app more and more

realistic.

class VinylController extends AbstractController

{

 public function __construct(

 private bool $isDebug,

 private MixRepository $mixRepository

)

 {}

 #[Route('/browse/{slug}', name: 'app_browse')]

 public function browse(string $slug = null): Response

 {

 dump($this->isDebug);

 $mixes = $this->mixRepository->findAll();

 }

}

Chapter 20: Environment Variables

Open config/packages/framework.yaml . We don't need to be authenticated to use this

raw user content part of GitHub's API:

config/packages/framework.yaml

 // ... line 1

2

 // ... lines 3 - 19

20

21

22

23

 // ... lines 24 - 30

But if we hit this endpoint a lot, we might hit their rate-limiting, which is pretty low for anonymous

users. So let's authenticate our request.

Adding an Authorization Header to the HTTP Request

First, if you're coding along with me, head to "github.com" and create your own personal access

token. Once you've done that, open up MixRepository and go down to where we make the

HTTP request. To attach the access token to the request pass a third argument, which is an

array. Inside, add a headers key set to another array, with an Authorization header

assigned to the word Token and then the access token. Start by using a fake token:

framework:

 http_client:

 scoped_clients:

 githubContentClient:

 base_uri: https://raw.githubusercontent.com

src/Service/MixRepository.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 24

25

26

 // ... lines 27 - 32

33

 // ... line 34

35

36

37

38

39

 // ... lines 40 - 41

42

43

44

You can tell this is working because, when we go back over to the page and refresh... it

explodes! Our API call now fails with a 404 because it recognizes that we're trying to

authenticate with a token... but the one we passed is bogus.

Now add your real token. Try it again and... it works!

Moving Authorization Header to framework.yaml

So this is cool! But it would be nicer if the service came preconfigured to automatically set this

authorization header... especially if we want to use this HTTP Client service in multiple places.

Can we do that? You bet!

Copy the Token line, head into framework.yaml , and after base_uri , pass a headers

key with Authorization set to our long string. Actually, let me put a fake token in there

temporarily:

class MixRepository

{

 public function findAll(): array

 {

 return $this->cache->get('mixes_data', function(CacheItemInterface

$cacheItem) {

 $response = $this->githubContentClient->request('GET',

'/SymfonyCasts/vinyl-mixes/main/mixes.json', [

 'headers' => [

 'Authorization' => 'Token ghp_foo_bar',

]

]);

 });

 }

}

config/packages/framework.yaml

 // ... line 1

2

 // ... lines 3 - 19

20

21

22

23

24

25

 // ... lines 26 - 32

Back in MixRepository , remove that third argument:

src/Service/MixRepository.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 24

25

26

 // ... lines 27 - 32

33

 // ... line 34

35

 // ... lines 36 - 37

38

39

40

And now, when we try this... great! Things are broken, which proves we're sending that header...

just with the wrong value. If we change to our real token... once again... it works! Awesome!

Hello Environment Variables

So far, this is just a nice feature of the HttpClient. But this also helps highlight a common

problem. It's... not super great to have our sensitive GitHub API token hardcoded in this file. I

mean, this file is going to be committed to our repository. I love my teammates... but I don't love

them so much that I want to share my access token to with them... or the access token for our

company.

framework:

 http_client:

 scoped_clients:

 githubContentClient:

 base_uri: https://raw.githubusercontent.com

 headers:

 Authorization: 'Token ghp_FAKE'

class MixRepository

{

 public function findAll(): array

 {

 return $this->cache->get('mixes_data', function(CacheItemInterface

$cacheItem) {

 $response = $this->githubContentClient->request('GET',

'/SymfonyCasts/vinyl-mixes/main/mixes.json');

 });

 }

}

This is where environment variables come in handy. If you're not familiar with environment

variables, they're variables that you can set on any system (Windows, Linux, whatever.)... and

then you can read them from inside of PHP. Many hosting platforms make it super easy to set

these. How does that help us? Because, in theory, we could set our access token as an

environment variable then simply read it in PHP. That would let us avoid putting that sensitive

value inside our code.

Reading Environment Variables

But, before we talk about setting environment variables, how do we read environment variables

in Symfony? Copy your access token so you don't lose it, put single quotes around Token , and

then we're going to use a very special syntax to read an environment variable. It's actually going

to look like a parameter. Start and end with % , and inside, say env() with the name of the

environment variable. How about GITHUB_TOKEN . I just made that name up:

config/packages/framework.yaml

 // ... line 1

2

 // ... lines 3 - 19

20

21

22

23

24

25

 // ... lines 26 - 32

If we head back and refresh... we are now reading that GITHUB_TOKEN environment variable...

but we haven't set it yet, so we get this "Environment variable not found" error.

Setting Environment Variables & .env

In the real world, setting environment variables is... actually kind of tricky. It's different on

Windows versus Linux. And while many hosting platforms do make it super easy to set

environment variables, it's not very simple to do locally on your computer.

That is why this .env file exists. Very simply, when Symfony boots up, it reads the .env file

and turns all of these into environment variables. This means we can say GITHUB_TOKEN= and

framework:

 http_client:

 scoped_clients:

 githubContentClient:

 base_uri: https://raw.githubusercontent.com

 headers:

 Authorization: 'Token %env(GITHUB_TOKEN)%'

paste our token... and now... it works!

.env

 // ... lines 1 - 18

19

20

21

By the way, if there were a real GITHUB_TOKEN environment variable set on my system that

real environment variable would win over what we have in this file.

The .env.local File

Okay... this is cool... but we still have the same problem! We have a sensitive value that's inside

of a file... which is committed to our repository.

Ok, then, let's try something else. Copy the GitHub token, delete the value from this file, and

then create a new file called .env.local . Set the environment variable here.

And now... things still work!

Here's the deal. When Symfony boots up, it first reads the .env file and turns all of these into

environment variables. Then it reads .env.local and turns anything in here into environment

variables... which override any values set in .env .

The result is that your .env file is meant to hold safe, default values that are ok to be

committed to your repository. Then locally, (and maybe also on production, depending on how

you deploy), you create a .env.local file and put the sensitive values there. The key thing is

that .env.local is ignored by Git. You can see it's already in our .gitignore file. So while

this file will contain sensitive values, it will not be committed to the repository.

There are a few other .env files that you can create... and you can see them mentioned here.

They're not as important, but if you want to read about them, you can check out the

documentation.

Visualizing Env Vars with debug:dotenv

###

GITHUB_TOKEN=

Another cool thing about environment variables is that you can visualize them by running:

php bin/console debug:dotenv

Sweet! You can see the current value of GITHUB_TOKEN ... and that this value is also set in

.env.local . In contrast, APP_ENV and APP_SECRET have n/a here, meaning their values

are not being overridden in .env.local . It also tells us which .env files it detected.

Env Var Processors

There are a few tricks you can use with environment variables. For example, there's something

called a "processor system" where you could use trim to "trim" the white space on

GITHUB_TOKEN . Or you could use file where the GITHUB_TOKEN variable is actually a path

to a file that contains the true value. Anyways, these are called "env var processors" if you want

to read more about them.

Next, let's talk quickly about deployment... but even more about how we can safely store these

sensitive values when you deploy to production. One option is Symfony's secrets vault.

Chapter 21: The Secrets Vault

I don't want to get too far into deployment, but let's do a quick "How To Deploy Your Symfony

App 101" course. Here's the idea.

Deployment 101

Step 1: You need to somehow get all of your committed code onto your production machine and

then run

composer install

to populate the vendor/ directory.

Step 2: Somehow create a .env.local file with all of your production environment variables,

which will include APP_ENV=prod , so that you're in the prod environment.

And Step 3: run

php bin/console cache:clear

which will clear the cache in the production environment, and then

php bin/console cache:warmup

to "warm up" the cache. There may be a few other commands, like running your database

migrations... but this is the general idea. And the Symfony docs have more details.

By the way, in case you're wondering, we deploy via https://platform.sh, using Symfony's Cloud

integration... which handles a lot of stuff for us. You can check it out by going to

https://platform.sh/

https://symfony.com/cloud. It also helps support the Symfony project, so it's a win-win.

Use Real Environment Variables When Possible

Anyway, the trickiest part of the process is Step 2 - creating the .env.local file with all of

your production values, which will include things like API keys, your database connection details

and more.

Now, if your hosting platform allows you to store real environment variables directly inside of it,

problem solved! If you set real env vars, then there is no need to manage a .env.local file at

all. As soon as you deploy, Symfony will instantly see and use the real env vars. That's what we

do for Symfonycasts.

Creating .env.local During Deploy?

But if that's not an option for you, you'll need to somehow give your deployment system access

to your sensitive values so that it can create the .env.local file. But... since we're not

committing any of these values to our repository, where should we store them?

One option for handling sensitive values is Symfony's secrets vault. It's a set of files that contain

environment variables in an encrypted form. These files are safe to commit to your repository...

because they're encrypted!

Creating the dev Vault

If you want to store secrets in a vault, you'll need two of them: one for the dev environment and

one for the prod environment. We're going to create these two vaults first... then I'll explain

how to read values out of them.

Start by creating one for the dev environment. Run:

php bin/console secrets:set

https://symfony.com/cloud

Pass this GITHUB_TOKEN , which is the secret we want to set. It then asks for our "secret

value". Since this is the vault for the dev environment, we want to put something that's safe for

everyone to see. I'll explain why in a moment. I'll say CHANGEME . You can't see me type that...

only because Symfony hides it for security reasons.

Since this is the first secret we've created, Symfony automatically created the secrets vault

behind the scenes... which is literally a set of files that live in config/secrets/dev/ . For the

dev vault, we're going to commit all of these files to the repository. Let's do that. Add the entire

secrets directory:

git add config/secrets/dev

Then commit with:

git commit -m "adding dev secrets vault"

The Secrets Vault Files

Here's a quick explanation of the files. dev.list.php stores a list of which values live inside

the vault, dev.GITHUB_TOKEN.28bd2f.php stores the actual encrypted value, and

dev.encrypt.public.php is the cryptographic key that allows developers on your team to

add more secrets. So if another developer pulled down the project, they'll have this file... so they

can add more secrets. Finally, dev.decrypt.private.php is the secret key that allows us

to decrypt and read the values in the vault.

As soon as the vault files are present, Symfony will automatically open them, decrypt the

secrets, and expose them as environment variables! But, more on that in a few minutes.

Storing the dev Decrypt Key?

But wait: did we really just commit the decrypt key to the repository? Yes! That would

normally be a no-no! Why would you go to the trouble of encrypting values... just to store the

decryption key right next to them?

The reason we're doing exactly that is that this is our dev vault, which means we're only going

to store values that are safe for all developers to look at. The dev vault will only be used local

development... and we want our teammates to be able to pull down the code and read those

without any trouble.

Ok, at this point we have a dev vault that Symfony will automatically use in the dev

environment. Next: let's create the prod vault, which will hold the truly secret values. We'll then

learn relationship between vault secrets and environment variables... as well as an easy way to

visualize all of this.

Chapter 22: Reading Secrets vs Env Vars

We just created a secrets vault for our dev environment... which will contain a default "safe"

version of any sensitive environment variables. For example, we set the GITHUB_TOKEN value

to CHANGEME .

Now let's create the prod environment vault. Do that by saying:

./bin/console secrets:set GITHUB_TOKEN --env=prod

This time, grab the real secret value from .env.local and paste it here. Just like before,

since there wasn't a prod vault already, Symfony created it. And it's got the same four files as

before. Though, there is one subtle, but important difference.

Add that new directory to git:

git add config/secrets/prod

Then run:

git status

Woh! Only three of the four files were added. The fourth file - the decrypt key - is ignored by

Git. We already have a line inside in .gitignore for that. We do not want to commit the

prod decrypt key to the repository... because anyone that has this key will be able to read all of

our secrets.

So, if another developer pulls down the project now, they will have the dev decrypt key, so

they'll have no problems reading values from the dev vault. They won't have the prod decrypt

key... but no big deal! The only place where you need the prod decrypt key is on production!

So with this setup, when you deploy, instead of needing to create an entire .env.local file

containing all of your secrets, you just need to worry about getting this one

prod.decrypt.private.php file up into your code. Or, alternatively, you can read this key

and set it on an environment variable: you can check the docs for details on how.

Using The Secrets Vault

But... wait a second. I haven't really explained how the vault is used! We know that the dev

environment will use the dev vault... and prod will use prod ... but how do we read secrets

out of the vault?

The answer is... we already are! Secrets become environment variables. It's as simple as that!

So in config/packages/framework.yaml , by using this env syntax, this GITHUB_TOKEN

could be a real environment variable, or it could be a secret in our vault.

To see if this is working, head to MixRepository and

dd($this->githubContentClient) :

src/Service/MixRepository.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 24

25

26

 // ... lines 27 - 31

32

 // ... lines 33 - 39

40

41

Move over, refresh, and... let's see if we can find the Authorization header in this. Actually,

there's a really cool trick with dump. Click on this area and hold "command" or "control" + "F" to

search inside of it. Search for the word "token" and... oh, that's not right! That's our real token.

But... since we're in the dev environment, shouldn't it be reading our dev vault where we set the

fake CHANGEME value? What's going on?

Secrets Must Fully Be Converted Away from Env Vars

class MixRepository

{

 public function findAll(): array

 {

 dd($this->githubContentClient);

 }

}

As I mentioned, secrets become environment variables. But environment variables take

precedence over secrets: even environment variables defined in the .env files. Yup, because

we have a GITHUB_TOKEN env var set in .env and .env.local , that is taking precedence

over the value in the vault!

Here's the point. As soon as you choose to convert a value from an environment variable into a

secret, you need to stop setting it as an environment variable completely. In other words, delete

GITHUB_TOKEN in .env and also in .env.local .

Go refresh, click on this again, use "command" + "F", search for "token", and... got it! We see

"CHANGEME"! If we were in the prod environment, it would read the value from the prod

vault... assuming the prod decrypt key was available.

The secrets:list Command

Ok, remove that dd() and refresh to discover that... locally, everything is broken! Dang! But...

of course! It's now using that fake token from the dev vault. It would work ok on production... but

how can I fix my local setup so I can keep working?

We could temporarily override the GITHUB_TOKEN secret value in the dev vault by running the

secrets:set command. But... that's lame! We would need to be extra careful to not commit

the modified, encrypted file.

Before we fix this, I want to show you a really handy command for the vault:

php bin/console secrets:list

Yup, this shows you all of the secrets in our vault. Pretty cool! And you can even pass

--reveal to reveal the value... as long as you have the decrypt key.

You may have noticed that it gives us the value right here... but then says "Local Value" with a

blank space. Hmm...

Re-run the command, but this time add --env=prod .

php bin/console secrets:list --reveal --env=prod

And... same thing! This shows us the real prod value... but there's still this "Local Value" spot

with nothing.

This "Local Value" is the key to fixing our broken dev setup: it's a way to override a secret, but

only locally on our one machine.

How do you set this local override value? Copy the real GITHUB_TOKEN value, then move over,

find .env.local - the same file we've been working in - and say GITHUB_TOKEN= and paste

the value we just copied.

Yup! Locally, we're going to take advantage of the fact that environment variables "win" over

secrets! Back at your terminal, run

php bin/console secrets:list --reveal

again. Yes! The official value in the vault is "CHANGEME"... but the local value is our real token

which, as we know, will override the secret and be used. If we try the page again... it works!

Okay, team! We're... well... basically done! So as a reward for your hard work on these super

important topics, let's celebrate by using Symfony's code generator library: MakerBundle.

Chapter 23: MakerBundle & Autoconfiguration

Congrats, team! We are done with the heavy stuff in this tutorial! So it's time for a victory lap.

Let's install one of my favorite Symfony bundles: MakerBundle. Find your terminal and run:

composer require maker --dev

In this case, I'm using the --dev flag because this is a code generation utility that we only

need locally, not on production.

This bundle, of course, provides services. But these services aren't really meant for us to use

directly. Instead, all of the services from this bundle power a bunch of new bin/console

commands. Run

php bin/console

and look for the make section. Ooh. There's a ton of stuff here for setting up security,

generating doctrine entities for the database (which we'll do in the next tutorial), making a

CRUD, and much more.

Generating a new Command Class

Let's try one: how about we try to build our own new custom console command that will appear

in this list. To do that, run:

php bin/console make:command

This will interactively ask you for the name of the command. Let's say app:talk-to-me . You

don't have to, but it's pretty common to prefix your custom commands with app: . And... done!

That created exactly one new file: src/Command/TalkToMeCommand.php . Let's go open

that up:

src/Command/TalkToMeCommand.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

<?php

namespace App\Command;

use Symfony\Component\Console\Attribute\AsCommand;

use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputArgument;

use Symfony\Component\Console\Input\InputInterface;

use Symfony\Component\Console\Input\InputOption;

use Symfony\Component\Console\Output\OutputInterface;

use Symfony\Component\Console\Style\SymfonyStyle;

#[AsCommand(

 name: 'app:talk-to-me',

 description: 'Add a short description for your command',

)]

class TalkToMeCommand extends Command

{

 protected function configure(): void

 {

 $this

 ->addArgument('arg1', InputArgument::OPTIONAL, 'Argument

description')

 ->addOption('option1', null, InputOption::VALUE_NONE, 'Option

description')

 ;

 }

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $arg1 = $input->getArgument('arg1');

 if ($arg1) {

 $io->note(sprintf('You passed an argument: %s', $arg1));

 }

 if ($input->getOption('option1')) {

 // ...

 }

 $io->success('You have a new command! Now make it your own! Pass -

-help to see your options.');

 return Command::SUCCESS;

43

44

Cool! On top, you can see that the name and description of the command are done in a PHP

attribute! Then, down in this configure() method, which we'll talk about more in a minute, we

can configure arguments and options that can be passed from the command line.

When we run the command, execute() will be called... where we can print things out to the

screen or read options and arguments.

Perhaps the best thing about this class is that... it already works. Check it out! Back at your

terminal, run;

php bin/console app:talk-to-me

And... it's alive! It doesn't do much, but this output is coming from down here. Woo!

Autoconfiguration: Auto Discovering "Plugins"

But wait... how did Symfony instantly see our new Command class and know to start using it? Is

it because it lives in the src/Command/ directory... and Symfony scans for classes that live

here? Nope! We could rename this directory to ThereAreDefinitelyNoCommandsInHere ...

and Symfony would still see the command.

The way this works is much cooler. Open up config/services.yaml and look at the

_defaults section:

config/services.yaml

 // ... lines 1 - 12

13

14

15

16

17

 // ... lines 18 - 32

 }

}

services:

 # default configuration for services in *this* file

 _defaults:

 autowire: true # Automatically injects dependencies in your

services.

 autoconfigure: true # Automatically registers your services as

commands, event subscribers, etc.

We talked about what autowire: true means, but I didn't explain the purpose of

autoconfigure: true . Because this is below _defaults , autoconfiguration is active on

all of our services, including our new TalkToMeCommand service. When

autoconfiguration is enabled, it basically tells Symfony:

“Hey, please look at the base class or interface of each service, and if it looks like a class

should be a console command... or an event subscriber... or any other class that hooks into a

part of Symfony, please automatically integrate the service into that system. Okay, thanks.

Bye!”

Yep! Symfony sees that our class extends Command and thinks:

“Hmm, I may not be a self-aware AI... but I bet this is a command. I better notify the console

system about it!”

I love autoconfiguration. It means that we can create a PHP class, extend whatever base class

or implement whatever interface needed for the "thing" that we're building, and... it will just work.

Internally, if you want all the nerdy details, autoconfiguration adds a tag to your service, like

console.command , which is what ultimately helps it get noticed by the console system.

All right, now that our command is working, let's have some fun and customize it next.

Chapter 24: Customizing a Command

We have a new console command! But... it doesn't do much yet, aside from printing out a

message. Let's make it fancier.

Scroll to the top. This is where we have the name of our command, and there's also a

description... which shows up next to the command. Let me change ours to

“A self-aware command that can do... only one thing.”

src/Command/TalkToMeCommand.php

 // ... lines 1 - 12

13

 // ... line 14

15

16

17

18

 // ... lines 19 - 43

44

Configuring Arguments and Options

Our command is called app:talk-to-me because, when we run this, I want to make it

possible to pass a name to the command - like Ryan - and then it'll reply with "Hey Ryan!". So,

literally, we'll type bin/console app:talk-to-me ryan and it'll reply back.

When you want to pass a value to a command, that's known as an argument... and those are

configured down in... the configure() method. There's already an argument called arg1 ...

so let's change that to name .

This key is completely internal: you'll never see the word name when you're using this

command. But we will use this key to read the argument value in a minute. We can also give the

argument a description and, if you want, you can make it required. I'll keep it as optional.

#[AsCommand(

 description: 'A self-aware command that can do... only one thing.',

)]

class TalkToMeCommand extends Command

{

}

The next thing we have are options. These are like arguments... except that they start with a --

when you use them. I want to have an optional flag where we can say --yell to make the

command yell our name back.

In this case, the name of the option, yell , is important: we will use this name when passing

the option at the command line to use it. The InputOption::VALUE_NONE means that our

flag will just be --yell and not --yell= some value. If your option accepts a value, you

would change this to VALUE_REQUIRED . Finally, give this a description.

src/Command/TalkToMeCommand.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

 // ... lines 26 - 43

44

Beautiful! We're not using this argument and option yet... but we can already re-run our

command with a --help option:

php bin/console app:talk-to-me --help

And... awesome! We see the description up here... along with some details about how to use

the argument and the --yell option.

Filling in execute()

When we call our command, very simply, Symfony will call execute() ... which is where the

fun starts. Inside, we can do whatever we want. It passes us two arguments: $input and

$output . If you want to read some input - like the name argument or the yell option, use

$input . And if you want to output something, use $output .

class TalkToMeCommand extends Command

{

 protected function configure(): void

 {

 $this

 ->addArgument('name', InputArgument::OPTIONAL, 'Your name')

 ->addOption('yell', null, InputOption::VALUE_NONE, 'Shall I

yell?')

 ;

 }

}

But in Symfony, we normally pop these two things into another object called SymfonyStyle .

This is helper class makes reading and outputing easier... and fancier.

Ok: let's start by saying $name = $input->getArgument('name') . If we don't have a

name, I'll default this to whoever you are . Below, read the option:

$shouldYell = $input->getOption('yell') :

src/Command/TalkToMeCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 26

27

28

29

30

31

 // ... lines 32 - 40

41

42

Cool. Let's clear out this stuff down here and start our message:

$message = sprintf('Hey %s!', $name) . Then if we want to yell, you know what to do:

$message = strtoupper($message) . Below, use $io->success() and put the

message there.

class TalkToMeCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $name = $input->getArgument('name') ?: 'whoever you are';

 $shouldYell = $input->getOption('yell');

 }

}

src/Command/TalkToMeCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

This is one of the many helper methods on the SymfonyStyle class that help format your

output. There's also $io->warning() , $io->note() , and several others.

Let's try it. Spin over and run:

php bin/console app:talk-to-me ryan

And... oh hello there! If we yell:

php bin/console app:talk-to-me ryan --yell

THAT WORKS TOO! We can even yell at 'whoever I am':

php bin/console app:talk-to-me --yell

class TalkToMeCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $name = $input->getArgument('name') ?: 'whoever you are';

 $shouldYell = $input->getOption('yell');

 $message = sprintf('Hey %s!', $name);

 if ($shouldYell) {

 $message = strtoupper($message);

 }

 $io->success($message);

 return Command::SUCCESS;

 }

}

Awesome! But let's get crazier... by autowiring a service and asking a question interactively on

the command line. That's next... and it's the last chapter!

Chapter 25: Command: Autowiring & Interactive
Questions

Last chapter team! Let's do this!

Ok, what if we need a service from inside our command? For example, let's say that we want to

use MixRepository to print out a vinyl mix recommendation. How can we do that?

Well, we're inside of a service and we need access to another service, which means we need...

the dreaded dependency injection. Kidding - not dreaded, easy with autowiring!

Add public function __construct() with

private MixRepository $mixRepository to create and set that property all at once.

src/Command/TalkToMeCommand.php

 // ... lines 1 - 4

5

 // ... lines 6 - 17

18

19

20

21

22

23

 // ... line 24

25

 // ... lines 26 - 55

56

Though, if you hover over __construct() , it says:

“Missing parent constructor call.”

To fix this, call parent::__construct() :

use App\Service\MixRepository;

class TalkToMeCommand extends Command

{

 public function __construct(

 private MixRepository $mixRepository

)

 {

 }

}

src/Command/TalkToMeCommand.php

 // ... lines 1 - 4

5

 // ... lines 6 - 17

18

19

20

21

22

23

24

25

 // ... lines 26 - 55

56

This is a super rare situation where the base class has a constructor that we need to call. In

fact, this is the only situation I can think of in Symfony like this... so not normally something you

need to worry about.

Interactive Questions

Down here, let's output a mix recommendation... but make it even cooler by first asking the user

if they want this recommendation.

We can ask interactive questions by leveraging the $io object. I'll say

if ($io->confirm('Do you want a mix recommendation?')) :

use App\Service\MixRepository;

class TalkToMeCommand extends Command

{

 public function __construct(

 private MixRepository $mixRepository

)

 {

 parent::__construct();

 }

}

src/Command/TalkToMeCommand.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 34

35

36

 // ... lines 37 - 45

46

47

48

 // ... lines 49 - 51

52

 // ... lines 53 - 54

55

56

This will ask that question, and if the user answers "yes", return true. The $io object is full of

cool stuff like this, including asking multiple choice questions, and auto-completing answers.

Heck, we can even build a progress bar!

Inside the if, get all of the mixes with $mixes = $this->mixRepository->findAll() .

Then... we need just a bit of ugly code - $mix = $mixes[array_rand($mixes)] - to get a

random mix.

Print the mix with one more $io method $io->note() passing I recommend the mix

and then pop in $mix['title'] :

class TalkToMeCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io->success($message);

 if ($io->confirm('Do you want a mix recommendation?')) {

 }

 }

}

src/Command/TalkToMeCommand.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 34

35

36

 // ... lines 37 - 45

46

47

48

49

50

51

52

 // ... lines 53 - 54

55

56

And... done! By the way, notice this return Command::SUCCESS? That controls the exit code

of your command, so you'll always want to have Command::SUCCESS at the bottom of your

command. If there was an error, you could return Command::ERROR .

 Tip

Whoops, the correct constant name if the command fails is Command::FAILURE !

Okay, let's try this! Head over to your terminal and run:

php bin/console app:talk-to-me --yell

We get the output... and then we get:

“Do you want a mix recommendation?”

Why, yes we do! And what an excellent recommendation!

All right, team! We did it! We finished - what I think is - the most important Symfony tutorial of all

time! No matter what you need to build in Symfony, the concepts we've just learned will be the

class TalkToMeCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io->success($message);

 if ($io->confirm('Do you want a mix recommendation?')) {

 $mixes = $this->mixRepository->findAll();

 $mix = $mixes[array_rand($mixes)];

 $io->note('I recommend the mix: ' . $mix['title']);

 }

 }

}

foundation of doing it.

For example, if you need to add a custom function or filter to Twig, no problem! You do this by

creating a Twig extension class... and you can use MakerBundle to generate this for you or

build it by hand. It's very similar to creating a custom console command: in both cases, you're

building something to "hook into" part of Symfony.

So, to create a Twig extension, you would create a new PHP class, make it implement whatever

interface or base class that Twig extensions need (the documentation will tell you that)... and

then you just fill in the logic... which I won't show here.

That's it! Behind the scenes, your Twig extension would automatically be seen as a service, and

autoconfiguration would make sure it's integrated into Twig... exactly like the console command.

In the next course, we'll put our new superpowers to work by adding a database to our app so

that we can load real, dynamic data. And if you have any real, dynamic questions, we are here

for you, as always, down in the comment section.

All right, friends. Thanks so much for coding with me and we'll see you next time.

With <3 from SymfonyCasts

