
Symfony Mailer: Love Sending
Emails Again

Chapter 1: Hello Symfony Mailer

The year is 1995: internet connection speeds are reaching a blistering 56 kbit/s, GeoCities is

transforming everyone into an accomplished web designer, and sending emails... is all the rage.

Quick, fast-forward 25 years! Self-driving cars are a reality, you can download an entire HD

movie in seconds, we can send rockets into space and then land them safely back on Earth

and... yes, love it or hate it... sending emails is still all the rage... or at least... something nobody

can avoid.

Yep, emails are still a huge part of our life and pretty much every app needs to send at least

some... if not a lot of emails. But sending emails has always been kind of a pain - it feels like an

old process. On top of that, emails are hard to preview, a pain to debug, there are multiple ways

to deliver them - do I need an SMTP server? - each email has text and HTML parts, and don't

even get me started about styling emails and embedding CSS in a way that will work in all mail

clients. Oof.

But then, out of the ashes of this ancient practice grew... a hero. Ok it's actually just a Symfony

component - but a cool one! Enter Symfony Mailer: a fresh & modern library that makes

something old - sending emails - feel... new! Seriously, Mailer actually makes sending emails

fun again and handles the ugliest details automatically. Will you love sending emails after this

tutorial? Yea... I think you kinda might!

Setting up the App

As always, unless you're just "mailing it in", you should totally code along with me. Dial onto the

internet, download the course code from this page and unzip it with WinRAR 1.54b. Inside,

you'll find a start/ directory with the same code that you see here. Open up the README.md

file to find all the setup details. The last step will be to open a terminal, move into the project

and use the Symfony Binary to start a web server:

symfony serve

If you don't have the Symfony binary, you can grab it at Symfony.com/download. Once that's

running, open your favorite browser - mine is Netscape Navigator - and go to

https://localhost:8000 to see... The Space Bar! A news site for aliens... and the app that

you probably recognize from other Symfony 4 tutorials here on the site.

In this tutorial, we'll be using Symfony 4.3. There are a few cool features that are coming in

Symfony 4.4 and 5.0... but don't worry! I'll point those out along the way: they aren't big

changes, mostly some nice debugging features.

Installing Mailer

Like most things in Symfony, the Mailer component is not installed by default. No problem, find

your terminal, open a new tab and run:

composer require symfony/mailer

Notice that I didn't just use composer require mailer ... using the "mailer" alias.

Remember: Symfony Flex lets us say things like composer require forms or

composer require templating and then it maps that to a recommended package. But at

the time of this recording, composer require mailer would not download the Mailer

component. Nope, it would download Swift Mailer... was was the recommended library for

sending emails with Symfony before Symfony 4.3: that's when the Mailer component was

introduced.

And even when you're Googling for documentation about Symfony's Mailer, be careful: you

might end up on the docs for using SwiftMailer inside Symfony. The Mailer docs might be the

second or third result.

Anyways after this installs, yea! We get some nice, post-install instructions. We'll talk about all

of this.

The first step... is to create and configure an Email object! Let's do that next... then send it!

https://symfony.com/download

Chapter 2: Creating, Configuring & Sending the
Email Object

Time to send... an email! After a user registers for a new account, we should probably send

them a welcome email. The controller for this page lives at

src/Controller/SecurityController.php ... find the register() method.

This is a very traditional controller: it creates a Symfony form, processes it, saves a new User

object to the database and ultimately redirects when it finishes.

Let's send an email right here: right after the user is saved, but before the redirect. How? It's

gorgeous. Start with $email = (new Email()) - the one from the Mime namespace.

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 16

17

18

 // ... lines 19 - 46

47

48

 // ... lines 49 - 51

52

 // ... lines 53 - 70

71

72

73

 // ... lines 74 - 84

85

 // ... lines 86 - 89

90

91

Mime & Mailer Components

use Symfony\Component\Mime\Email;

class SecurityController extends AbstractController

{

 public function register(Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $em->flush();

 $email = (new Email())

 }

 }

}

Actually, this is a good moment to mention that when we talk about the Mailer component in

Symfony, we're actually talking about two components: Mailer and Mime. The Mime component

is all about creating & configuring the email itself and Mailer is all about sending that email. But

mostly... that's not too important: just don't be surprised when you're using objects from this

Mime namespace.

Configuring the Email

I've put the new Email object in parentheses on purpose: it allows us to immediately chain off

of this to configure the message. Pretty much all the methods on the Email class are...

delightfully boring & familiar. Let's set the ->from() address to, how about,

alienmailer@example.com , the ->to() to the address of the user that just registered - so

$user->getEmail() - and this email needs a snazzy subject!

“Welcome to the Space Bar!”

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 16

17

18

 // ... lines 19 - 46

47

48

 // ... lines 49 - 72

73

74

75

76

 // ... lines 77 - 89

90

91

Pure poetry. Finally, our email needs content! If you've sent emails before, then you might know

that an email can have text content, HTML content or both. We'll talk about HTML content soon.

But for now, let's set the ->text() content of the email to:

“Nice to meet you”

use Symfony\Component\Mime\Email;

class SecurityController extends AbstractController

{

 public function register(Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 $email = (new Email())

 ->from('alienmailcarrier@example.com')

 ->to($user->getEmail())

 ->subject('Welcome to the Space Bar!')

 }

}

And then open curly close curly, $user->getFirstName() , and, of course, a ❤️ emoji.

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 16

17

18

 // ... lines 19 - 46

47

48

 // ... lines 49 - 72

73

74

75

76

77

 // ... lines 78 - 89

90

91

There are a bunch more methods on this class, like cc() , addCc() , bcc() and more... but

most of these are dead-easy to understand. And because it's such a simple class, you can look

inside to see what else is possible, like replyTo() . We'll talk about many of these - like

attaching files - later.

So... that's it! That's what it looks like to create an email. I hope this "wow'ed" you... and

disappointed you in its simplicity... all at the same time.

Sending the Email

Ok... so now... how do we send this email? As soon as we installed the Mailer component,

Symfony configured a new mailer service for us that we can autowire by using - surprise! - the

MailerInterface type-hint.

Let's add that as one of the arguments to our controller method:

MailerInterface $mailer .

use Symfony\Component\Mime\Email;

class SecurityController extends AbstractController

{

 public function register(Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 $email = (new Email())

 ->from('alienmailcarrier@example.com')

 ->to($user->getEmail())

 ->subject('Welcome to the Space Bar!')

 ->text("Nice to meet you {$user->getFirstName()}! ❤️");

 }

}

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 17

18

19

 // ... lines 20 - 47

48

49

 // ... lines 50 - 92

93

94

And... what methods does this object have on it? Oh, just one: $mailer->send() and pass

this $email .

src/Controller/SecurityController.php

 // ... lines 1 - 10

11

 // ... lines 12 - 17

18

19

 // ... lines 20 - 47

48

49

 // ... lines 50 - 52

53

 // ... lines 54 - 73

74

75

76

77

78

79

80

 // ... lines 81 - 87

88

 // ... lines 89 - 92

93

94

use Symfony\Component\Mailer\MailerInterface;

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 }

}

use Symfony\Component\Mailer\MailerInterface;

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->from('alienmailcarrier@example.com')

 ->to($user->getEmail())

 ->subject('Welcome to the Space Bar!')

 ->text("Nice to meet you {$user->getFirstName()}! ❤️");

 $mailer->send($email);

 }

 }

}

I love how this looks. But... will it work? We haven't actually configured how emails should be

sent but... ah, let's just see what happens. Move over and register: first name Fox (last name,

Mulder, in case you're wondering), email: thetruthisoutthere@example.com , any

password, agree to the terms that we definitely read and, register!

Ah! Error!

“Environment variable not found: MAILER_DSN”

Ok, fine! To actually deliver emails, we need to add some configuration via this environment

variable. Let's talk about that next... including some awesome options for debugging emails

while you're developing.

Chapter 3: Transport Config & Mailtrap

We've already learned quite a bit about how to customize a specific email... with a lot more

coming. But how do we customize how an email is sent. In Symfony, the way that your

messages are delivered is called a transport. Go back to your terminal and run:

git status

The Mailer dsn

When we installed the Mailer component, its recipe did a couple of interesting things. First, it

created a new file called config/packages/mailer.yaml . Let's open up that up. Wow... as

you can see: the mailer system doesn't really have a lot of config. The only thing here is the

dsn : a URL that tells Mailer what server or cloud service to use for delivery. This references an

environment variable called MAILER_DSN . Hey! That's the error we just saw:

“Environment variable not found: "MAILER_DSN".”

The recipe also modified the .env file. If you run

git diff .env

Yep! You'll see that it added a section with an example MAILER_DSN .

Configuring MAILER_DSN

Open up .env . And, at the bottom, uncomment that MAILER_DSN line. By default, this tries to

send to a local SMTP server... and I definitely do not have one of those running. But... let's try it

anyways. Refresh to resubmit the registration form and... boom!

“Connection could not be established with host "tcp://localhost:25"”

So how are we going to send emails? Because... there are a lot of different options. You could

run your own SMTP server... which is not something I recommend... or register with a cloud

email sender - like SendGrid - and use your connection details from them for Mailer. Mailer

supports a bunch of the most famous cloud providers... as well as any cloud provider that

implements SMTP... which is like... all of them. We're going to show how to use SendGrid a bit

later.

Why are we not going to use SendGrid right now? Because... when you're developing and

debugging your emails, there's a better option. Instead of sending real emails to a real email

server, you can send them to a "fake" mailbox.

One of the most famous tools to do this is called MailCatcher. Basically, you download

MailCatcher, start it on your machine, and it creates a temporary SMTP server that you can

send to. But instead of delivering the messages, it holds onto them and you can view them all in

a fake inbox in your browser. MailCatcher is written in Ruby and a similar tool - MailHog - is

written in Go. Those are both great options.

Hello Mailtrap

But... to save me the headache of getting those running, I'm going to use a third option called

Mailtrap. Head to mailtrap.io. This is basically a "hosted" version of those tools: it gives us a

fake SMTP server and fake inbox, but we don't need to install anything. And it has an excellent

free plan.

After you register, you'll end up in a spot like this: with a "Demo inbox". Click into that Demo

inbox. On the right, you'll see a bunch of information about how to connect to this. At the time of

recording, they do have specific instructions for Symfony 4... but these are for using Mailtrap

with SwiftMailer, not Symfony Mailer.

No worries, setup is dead simple. The DSN follows a standard structure:

username:password@server:port . Copy the username from Mailtrap, paste, add a colon,

copy and paste the password, then @ the server - smtp.mailtrap.io - one more colon, and

the port. We could use any of these. Try 2525 .

Done! If we haven't messed anything up, our email should be delivered to our Mailtrap inbox.

Let's try it! Refresh the form submit and... ah! Validation error. The last time we tried this, the

https://mailtrap.io/blog/send-emails-in-symfony/

email failed to send but the user was saved to the database. Make the email unique by adding a

"2". Then click the terms, enter any password and... register!

Ok, no errors! Go check Mailtrap! There it is! It's got the subject, text content, but no HTML

content because we haven't set that yet. There are also a couple of other cool debugging

features in Mailtrap - we'll talk about some of these soon.

Now that we've got some success, it's time to attack the obvious shortcoming of this email... it's

just text! It's not 1995 anymore people, we need to send HTML emails. And Mailer gives us a

great way to do this: native integration with Twig. That's next.

Chapter 4: HTML Emails with Twig

Every email can contain content in two formats, or "parts": a "text" part and an HTML part. And

an email can contain just the text part, just the HTML part or both. Of course, these days, most

email clients support HTML, so that's the format you really need to focus on. But there are still

some situations where having a text version is useful - so we won't completely forget about text.

You'll see what I mean.

The email we just sent did not contain the HTML "part" - only the text version. How do we also

include an HTML version of the content? Back in the controller, you can almost guess how: copy

the ->text(...) line, delete the semicolon, paste and change the method to html() . It's

that simple! To make it fancier, put an <h1> around this.

src/Controller/SecurityController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 47

48

49

 // ... lines 50 - 52

53

 // ... lines 54 - 73

74

 // ... lines 75 - 77

78

79

 // ... lines 80 - 88

89

 // ... lines 90 - 93

94

95

This email now has two "parts": a text part and an HTML part. The user's email client will

choose which to show, usually HTML. Let's see what this looks like in Mailtrap. Click back to get

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new Email())

 ->text("Nice to meet you {$user->getFirstName()}! ❤️")

 ->html("<h1>Nice to meet you {$user->getFirstName()}! ❤️
</h1>");

 }

 }

}

to the registration form again, change the email address, add a password and... register! No

errors! Check out Mailtrap.

Yeah! This time we have an HTML version! One of the things I love about Mailtrap is how easily

we can see the original HTML source, the text or the rendered HTML.

MIME: The "Multipart" Behind Emails

Or, you can check what the "Raw" message looks like. Ooooo, nerdy. It turns out that what an

email looks like under-the-hood is almost exactly what an HTTP response looks like that's

returned from our app: it has some headers on top, like To , From and Subject , and content

below. But, the content is a bit different. Normally, our app returns an HTTP response whose

content is probably HTML or JSON. But this email's content contains two formats all at once:

HTML and text.

Check out the Content-Type header: it's multipart/alternative and then has this

weird boundary string - _=_symfony - then some random numbers and letters. Below, we

can see the content: the plain-text version of the email on top and the text/html version

below that. That weird boundary string is placed between these two... and literally acts as a

separator: it's how the email client knows where the "text" content stops and the next "part" of

the message - the HTML part - begins. Isn't that cool? I mean, if this isn't a hot topic for your

next dinner party, I don't know what is.

This is what the Symfony's Mime component helps us build. I mean, sheesh, this is ugly. But all

we had to do was use the text() method to add text content and the html() method to add

HTML content.

Using Twig

So... as simple as this Email was to build, we're not really going to put HTML right inside of our

controller. We have our standards! Normally, when we need to write some HTML, we put that in

a Twig template. When you need HTML for an email, we'll do the exact same thing. Mailer's

integration with Twig is awesome.

First, if you downloaded the course code, you should have a tutorial/ directory with a

welcome.html.twig template file inside. Open up the templates/ directory. To organize

our email-related templates, let's create a new sub-directory called email/ . Then, paste the

welcome.html.twig template inside.

templates/email/welcome.html.twig

1

2

3

 // ... lines 4 - 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

 // ... lines 70 - 83

84

 // ... lines 85 - 93

94

95

96

97

Say hello to our fancy new templates/email/welcome.html.twig file. This is a full HTML

page with embedded styling via a <style> tag... and... nothing else interesting: it's 100%

static. This %name% thing I added here isn't a variable: it's just a reminder of something that we

need to make dynamic later.

But first, let's use this! As soon as your email needs to leverage a Twig template, you need to

change from the Email class to TemplatedEmail .

Hold Command or Ctrl and click that class to jump into it. Ah, this TemplatedEmail class

extends the normal Email : we're really still using the same class as before, but with a few

<!doctype html>

<html lang="en">

<head>

</head>

<body>

<div class="body">

 <div class="container">

 <div class="header text-center">

 <img src="path/to/logo.png" class="logo" alt="SpaceBar

Logo">

 </div>

 <div class="content">

 <h1 class="text-center">Nice to meet you %name%!</h1>

 <p class="block">

 Welcome to the Space Bar, we can't wait

to read what you have to write.

 Get started on your first article and connect with the

space bar community.

 </p>

 </div>

 </div>

</div>

</body>

</html>

extra methods related to templates. Let's use one of these. Remove both the html() and

text() calls - you'll see why in a minute - and replace them with ->htmlTemplate() and

then the normal path to the template: email/welcome.html.twig .

src/Controller/SecurityController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 18

19

20

 // ... lines 21 - 48

49

50

 // ... lines 51 - 53

54

 // ... lines 55 - 74

75

 // ... lines 76 - 77

78

79

 // ... lines 80 - 88

89

 // ... lines 90 - 93

94

95

And... that's it! Before we try this, let's make a few things in the template dynamic, like the URLs

and the image path. But, there's an important thing to remember with emails: paths must always

be absolute. That's next.

use Symfony\Bridge\Twig\Mime\TemplatedEmail;

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->subject('Welcome to the Space Bar!')

 ->htmlTemplate('email/welcome.html.twig');

 }

 }

}

Chapter 5: Absolute URLs to Routes & Assets

The HTML content of our email will use this template... which is still totally static. For example,

see this link going to #homepage? That's just a placeholder. Normally in a template, we would

use the {{ path() }} function to generate a URL to the homepage route. The name of that

route is... check out ArticleController ... there it is: the homepage route name is

app_homepage . So we would normally say path('app_homepage') .

Using the url() Function

The problem is that this will generate a relative URL - it will literally generate href="/" . But for

an email, all paths must be absolute. To force that, change path() to url() .

templates/email/welcome.html.twig

1

2

 // ... lines 3 - 55

56

57

58

59

60

 // ... line 61

62

63

 // ... lines 64 - 93

94

95

96

97

That's it! Symfony will detect the domain name - localhost:8000 while we're coding locally -

and use that to prefix the URL.

Let's fix a few other URLs: for the link to create a new article, replace the hardcoded string with

url() and the name of that route, which if you looked in the app, is admin_article_new .

<!doctype html>

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="header text-center">

 </div>

 </div>

</div>

</body>

</html>

templates/email/welcome.html.twig

1

2

 // ... lines 3 - 55

56

57

58

 // ... lines 59 - 63

64

 // ... lines 65 - 69

70

71

72

 // ... lines 73 - 83

84

 // ... lines 85 - 93

94

95

96

97

At the bottom, there's one more link to the homepage. Say {{ url('app_homepage') }} .

templates/email/welcome.html.twig

1

2

 // ... lines 3 - 55

56

57

58

 // ... lines 59 - 63

64

 // ... lines 65 - 75

76

77

78

 // ... lines 79 - 83

84

 // ... lines 85 - 93

94

95

96

97

<!doctype html>

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="content">

 <p class="block text-center">

 Get

writing!

 </p>

 </div>

 </div>

</div>

</body>

</html>

<!doctype html>

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="content">

 <p class="block text-center">

 Get

reading!

 </p>

 </div>

 </div>

</div>

</body>

</html>

A Bit about Webpack Encore & Images

Links, done! But there's one other path we need to fix: the path to this image. But... forget about

emails for a minute. This project uses Webpack Encore to compile its assets: I have an

assets/ directory at the root, an images directory inside that, and an email/logo.png file

that I want to reference. You don't need to run Encore, but if you did, I've configured it to copy

that file into a public/build/images/ directory. There it is:

public/build/images/email/logo.66125a81.png .

If you downloaded the starting code for the tutorial, you don't need to worry about running

Encore... only because we ran it for you and included the final, built public/build directory. I

mean, you can run Encore if you want - you just don't need to because the built files are already

there.

The point is, whether you're using Encore or not, the end goal is to generate an absolute URL to

a file that lives somewhere in your public/ directory. To do that in Twig, we use the

{{ asset() }} function. Pass this build/images/email/logo.png . Because we're

using Encore, we don't need to include the version hash that's part of the real file: the asset

function will add that automatically. Go team!

If you're not using Encore, it's the same process: just use asset() then include the actual path

to the physical file, relative to the public/ directory.

Absolute Image Paths

But... this leaves us with the same problem we had for the generated URLs! By default, the

asset() function generates relative URLs: they don't contain the domain name. To fix that,

wrap this in another function: absolute_url() .

templates/email/welcome.html.twig

1

2

 // ... lines 3 - 55

56

57

58

59

60

61

62

63

 // ... lines 64 - 93

94

95

96

97

And... done! Ready to try this? Move over to the site, go back, change the email address

again... we're going to do this a lot... type a new password, wave a magic wand and... hit enter.

Ok... no errors... a good sign!

Over in Mailtrap, it's already there! Oh, it looks so much better: we even have a working image

and, if we hover over a link, the URL does contain our domain: localhost:8000 . This is even

more obvious in the HTML source: everything has a full URL.

Automatic "Text" Part

Woh, and... our email also has a text part! How did that happen? In the controller, we only called

htmlTemplate() - we removed our call to the text() method. Well... thank you Mailer. If

you set the HTML on an email but do not explicitly set the text, Symfony automatically adds it for

you by calling strip_tags() on your HTML. That's awesome.

Well... awesome... but not totally perfect: it included all the styles on top! Don't worry: we'll fix

that soon... kinda on accident. But the bottom looks pretty great... with zero effort.

Next, the URLs and image paths in our email are now dynamic... but nothing else is! Any self-

respecting email must have real data, like the name of the user... or their favorite color. Let's

<!doctype html>

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="header text-center">

 <img src="{{

absolute_url(asset('build/images/email/logo.png')) }}" class="logo"

alt="SpaceBar Logo">

 </div>

 </div>

</div>

</body>

</html>

make the email truly dynamic by passing in variables. We'll also find out what other information

is available for free from inside an email template.

Chapter 6: Email Context & the Magic "email"
Variable

When you set the HTML part of an email, Mailer helps out by creating the "text" version for us!

It's not perfect... and we'll fix that soon... but... it's a nice start! If you did want to control this

manually, in SecurityController , you could set this the text by calling either the text()

method or textTemplate() to render a template that would only contain text.

Passing Variables (context)

In both cases - htmlTemplate() and textTemplate() - you're probably going to want to

pass some data into the template to make the mail dynamic. The way to do this is not via a

second argument to htmlTemplate() . Nope, to pass variables into the templates, call

context() and give this an array . Let's pass a user variable set to the $user that was

just registered.

src/Controller/SecurityController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 48

49

50

 // ... lines 51 - 53

54

 // ... lines 55 - 74

75

 // ... lines 76 - 79

80

81

82

 // ... lines 83 - 91

92

 // ... lines 93 - 96

97

98

As soon as we do this, in welcome.html.twig , we can replace that weird %name%

placeholder with {{ user.firstName }} ... because user is a instance of our User

entity... and it has a getFirstName() method on it.

templates/email/welcome.html.twig

 // ... line 1

2

 // ... lines 3 - 55

56

57

58

 // ... lines 59 - 63

64

65

 // ... lines 66 - 83

84

 // ... lines 85 - 93

94

95

96

97

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->context([

 'user' => $user,

]);

 }

 }

}

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="content">

 <h1 class="text-center">Nice to meet you {{ user.firstName }}!

</h1>

 </div>

 </div>

</div>

</body>

</html>

Let's try it! In your browser, go back one page, tweak the email, type a password, hit enter and

then... there it is! Nice to meet you "Fox".

The Built-in "app" and "email" Variables

But wait, there's more! In addition to whatever variables you pass via context() , you also

have access to exactly two other variables... absolutely free. What a deal!

The first one... we already know: it's the app variable... which every Twig template in Symfony

can access. It's useful if you need read info from the session, the request, get the current user

or a few other things.

The other variable that you magically get access to in all email templates is more interesting. It's

called... emu . I mean, email ... and is not a large flightless bird from Australia... which would be

awesome... but less useful. Nope, it's an an instance of WrappedTemplatedEmail .

Hello WrappedTemplatedEmail

I'll hit Shift+Shift and look for WrappedTemplatedEmail under "classes".

This is a super powerful class... full of tons of info. It gives us access to things like the name of

who the email is being sent to - more about that in a minute - the subject, return path... and it

even allows us to configure a few things on the email, like embedding an image right from Twig!

We're not going to talk about all of these methods... but basically, any information about the

email itself can be found here... and it even allows you to change a few things about the email...

all from inside Twig.

Go back to the welcome.html.twig email template. All the way at the top, we have a title

tag set to

“Welcome to the Space Bar!”

Having a <title> tag in an email.... is usually not that important... but it doesn't hurt to have it

and make it match the email's subject. Now that we know about the email variable, we can do

this properly. Change the text to {{ email.subject }} .

templates/email/welcome.html.twig

 // ... line 1

2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 54

55

 // ... lines 56 - 96

97

NamedAddress and email.toName()

 Tip

In Symfony 4.4 and higher, you won't see NamedAddress mentioned here. But the idea is

the same: an address can consist of an email and a "name".

Back inside WrappedTemplatedEmail , all the way on top, one of my favorite methods is

toName() . When you're sending an email to just one person, this is a super nice way to get

that person's name. It's interesting... if the "to" is an instance of NamedAddress , it returns

$to->getName() . Otherwise it returns an empty string .

What is that NamedAddress? Go back to SecurityController . Hmm, for the to()

address... we passed an email string... and that's a totally legal thing to do. But instead of a

string, this method also accepts a NamedAddress object... or even an array of

NamedAddress objects.

 Tip

In Symfony 4.4 and higher, use new Address() - it works the same way as the

NamedAddress we describe here.

Check this out: replace the email string with a new NamedAddress() . This takes two

arguments: the address that we're sending to - $user->getEmail() - and the "name" that

you want to identify this person as. Let's use $user->getFirstName() .

<html lang="en">

<head>

 <title>{{ email.subject }}</title>

</head>

</html>

src/Controller/SecurityController.php

 // ... lines 1 - 13

14

 // ... lines 15 - 19

20

21

 // ... lines 22 - 49

50

51

 // ... lines 52 - 54

55

 // ... lines 56 - 75

76

 // ... line 77

78

 // ... lines 79 - 80

81

 // ... lines 82 - 83

84

 // ... lines 85 - 93

94

 // ... lines 95 - 98

99

100

We can do the same thing with from. I'll copy the from email address and replace it with

new NamedAddress() , alienmailer@example.com and for the name, we're sending as

The Space Bar .

use Symfony\Component\Mime\NamedAddress;

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->to(new NamedAddress($user->getEmail(), $user-

>getFirstName()))

 ->context([

]);

 }

 }

}

src/Controller/SecurityController.php

 // ... lines 1 - 13

14

 // ... lines 15 - 19

20

21

 // ... lines 22 - 49

50

51

 // ... lines 52 - 54

55

 // ... lines 56 - 75

76

77

78

 // ... lines 79 - 80

81

 // ... lines 82 - 83

84

 // ... lines 85 - 93

94

 // ... lines 95 - 98

99

100

This is actually even cooler than it looks... and helps us in two ways. First, in

welcome.html.twig , we can use the email object to get the name of the person we're

sending to instead of needing the user variable.

To prove it, let's get crazy and comment-out the user variable in context.

use Symfony\Component\Mime\NamedAddress;

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($user->getEmail(), $user-

>getFirstName()))

 ->context([

]);

 }

 }

}

src/Controller/SecurityController.php

 // ... lines 1 - 13

14

 // ... lines 15 - 19

20

21

 // ... lines 22 - 49

50

51

 // ... lines 52 - 54

55

 // ... lines 56 - 75

76

77

78

 // ... lines 79 - 80

81

 // ... line 82

83

84

 // ... lines 85 - 93

94

 // ... lines 95 - 98

99

100

In the template, use {{ email.toName }} . This will call the toName() method... which

should give us the first name.

use Symfony\Component\Mime\NamedAddress;

class SecurityController extends AbstractController

{

 public function register(MailerInterface $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($user->getEmail(), $user-

>getFirstName()))

 ->context([

 //'user' => $user,

]);

 }

 }

}

templates/email/welcome.html.twig

 // ... line 1

2

 // ... lines 3 - 55

56

57

58

 // ... lines 59 - 63

64

65

 // ... lines 66 - 83

84

 // ... lines 85 - 93

94

95

96

97

This is nice... but the real advantage of NamedAddress can be seen in the inbox.

Try the flow from the start: find your browser, go back, change the email again - we'll be doing

this a lot - type a password, submit and... go check Mailtrap. There it is:

“Nice to meet you Fox.”

It's now getting that from the NamedAddress . The real beauty is on top: from "The Space Bar",

then the email and to "Fox" next to that email. This is how pretty much all emails you receive

appear to come from a specific "name", not just an address.

The "Check HTML"

By the way, one of the tabs in Mailtrap is "Check HTML"... which is kinda cool... well... only "kind

of". There is a lot of variability on how different email clients render emails, like some apparently

don't support using the background-color style attribute. Crazy!

If you really want to test how your emails looks, this "Check HTML" tab probably isn't going to

help too much - there are other services like Litmus that can help you. But this does highlight

one huge thing we're doing wrong. It says that some style thing on line 7 isn't supported.

That's referring to the style tag. It turns out that Gmail doesn't support embedding CSS in

your email: it doesn't let you do it with a style tag or with a CSS file. Nope, to make things

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="content">

 <h1 class="text-center">Nice to meet you {{ email.toName }}!

</h1>

 </div>

 </div>

</div>

</body>

</html>

look good in gmail, you must manually put all the styles as style attributes on every single

element. Gross. Fortunately, Mailer will help us with this. We'll see how soon.

But first, let's perfect how our auto-generated text content looks... by running one command and

high-fiving Mailer.

Chapter 7: Pretty Text Emails

When we send an HTML email, we know that Mailer automatically generates a text version for

us. Thanks Mailer! And, other than this extra style stuff on top... which we don't really want, it

does a pretty good job! But we can make it even better - and remove those weird extra styles -

with one simple command. Find your terminal and run:

composer require league/html-to-markdown

This is a library that's good at taking HTML and transforming it into Markdown... which, I know,

seems like an odd thing to do... but it's super handy! As soon as you install it, Mailer will

automatically use it to transform the HTML email into text. Well... it will transform the HTML to

markdown... and it turns out that Markdown is a very attractive text format.

Check it out: on the site, go back, bump the email again, submit and... there's our new email.

The HTML looks the same, but check out the text. Yea! First of all, the html-to-markdown library

was smart enough to get rid of the CSS styles code. It also embedded the logo image on top...

which may or may not be useful, but it does correctly represent the image & link.

The most important thing is that it turned the HTML into a nice structure: the header is obvious,

bold content is inside asterisks and the line breaks are correct. Basically, we can now stop

worrying about the text emails entirely: our emails will have them and they will look great.

Next, there are two ways to add an image to an email: linking to them or embedding them. Let's

learn how to embed an image and when that's the best option.

Chapter 8: Embedded Images

Look book at the HTML source. When we added the logo earlier, we added it as a normal img

tag. The only thing special was that we needed to use the absolute_url function in Twig to

make sure the URL contained our domain.

Linking versus Embedding Images

It turns out that there are two ways to put an image into an email. The first is this one: a normal,

boring img tag that links to your site. The other option is to embed the image inside the email

itself.

There are pros and cons to both. For example, if you link directly to an image on your site... and

you delete that image... if the user opens up the email, that image will be broken. But... the fact

that you're linking to an image on your site... means that you could change the image... and it

would change on all the emails.

We'll talk more about when you should link to an image versus embed an image in a few

minutes. But first, let's see how we can embed this logo.

Remember, the source logo image is located at assets/images/email/logo.png . This is

the physical file we want to embed.

Adding a Twig Path to Images

How do we do that? We're going to do it entirely from inside of Twig with a special function that

points to that image.

But to do this, we need a way to refer to the image file from inside of Twig. We're going to do

that by adding a new twig path. Open up config/packages/twig.yaml ... and I'll close a

few files.

One of the config keys you can put under twig is called paths... and it's super cool. Add one

new "path" below this: assets/images - I'm literally referring to the assets/images

directory - set to the word... how about... images . That part could be anything.

config/packages/twig.yaml

1

 // ... line 2

3

4

 // ... lines 5 - 9

Ok... so what did this just do? Forget about emails entirely for a minute. Out-of-the-box, when

you render a template with Twig, it knows to look for that file in the templates/ directory...

and only in the templates/ directory. If you have template files that live somewhere else, that

is where "paths" are handy. For example, pretend that, for some crazy reason, we decided to

put a template inside the assets/images/ directory called dark-energy.html.twig .

Thanks to the item we added under paths , we could render that template by using a special

path @images/dark-energy.html.twig .

This feature is referred to as "namespaced Twig paths". You configure any directory, set it to a

string "namespace" - like images - then refer to that directory from twig by using @ then the

namespace.

Embedding an Image

In our case, we're not planning to put a template inside the assets/images/ directory and

render it. But we can leverage the Twig path to refer to the logo file.

Back in the template, remove all the asset stuff that was pointing to the logo. Replace it with

{{ email.image() }} . Remember, the email variable is an instance of this

WrappedTemplatedEmail class. We're literally calling this image() method: we pass it the

physical path to an image file, and it takes care of embedding it.

What's the path to the logo file? It's @images/email/logo.png .

twig:

 paths:

 'assets/images': images

templates/email/welcome.html.twig

1

2

 // ... lines 3 - 55

56

57

58

59

60

61

62

63

 // ... lines 64 - 93

94

95

96

97

Yep, thanks to our config, @images points to assets/images , and then we put the path after

that - email/logo.png .

The "cid" and how Images are Embedded

So... what difference does this make in the final email? Let's find out! Go back to the site and do

our normal thing to re-submit the registration form. Over in Mailtrap... ok cool - the email looks

exactly the same. The difference is hiding in the HTML source. Woh! Instead of the image src

being a URL that points to our site... it's some weird cid: then a long string.

This is great email nerdery. Check out the "Raw" tab. We already know that the content of the

email has multiple parts: here's the text version, below is the text/html version and... below

that, there is now a third part of the email content: the logo image! It has a Content-ID

header - this long cfdf933 string - and then the image contents below.

The Content-Id is the key. Inside the message itself, that is what the cid is referring to. This

tells the mail client to go find that "part" of the original message and display it here.

So it's kind of like an email attachment, except that it's displayed within the email. We'll talk

about true email attachments later.

<!doctype html>

<html lang="en">

<body>

<div class="body">

 <div class="container">

 <div class="header text-center">

 <img src="{{ email.image('@images/email/logo.png') }}"

class="logo" alt="SpaceBar Logo">

 </div>

 </div>

</div>

</body>

</html>

Linking Versus Embedding

So, which method should we use to add images to an email: linking or embedding? Oof, that's a

tough question. Embedding an image makes it more robust: if the source image is deleted or

your server isn't available, it still shows up. It also makes the email "heavier". This can be a

problem: if the total size of an email gets too big - even 100kb - it could start to affect

deliverability: a bigger size sometimes counts against your email's SPAM score. Deliverability is

an art, but this is something to be aware of.

Some email clients will also make a user click a "Show images from sender" link before

displaying linked images... but they will display embedded images immediately. But I've also

seen some inconsistent handling of embedded images in gmail.

So... the general rule of thumb... if there is one, is this: if you need to include the same image

for everyone - like a logo or anything that's part of the email's layout - link to the image. But if

what you're displaying is specific to that email - like the email is showing you a photo that was

just shared with your account on the site - theni you can embed the image, if it's small. When

you embed, the image doesn't need to be hosted publicly anywhere because it's literally

contained inside the email.

Next, I already mentioned that the style tag doesn't work in gmail... which means that our

email will be completely unstyled for anyone using gmail. That's... a huge problem. To fix this,

every style you need must be attached directly to the element that needs it via a style

attribute... which is insane! But no worries - Mailer can help, with something called CSS inlining.

Chapter 9: Automatic CSS Inlining

Our email looks good in Mailtrap, but will it look good in Gmail or Outlook? That's one of the

things that Mailtrap can't answer: it gives us a ton of great info about our email... but it is not

showing an accurate representation of how it would look in the real world. If you need to be

super strict about making sure your email looks good everywhere, check out services like

Litmus.

But generally speaking, there are two big rules you should follow if you want your emails to

display consistently across all mail clients. First, use a table-based layout instead of floating or

Flex-box. We'll talk about how to do this... without hating it... a bit later. The second rule is that

you can't use CSS files or even add a <style> tag. These will not work in gmail. If you want to

style your elements... which you totally do... then you literally need to add style="" to every

HTML element.

But... that's insane! It's no way to live! So... we are not going to do that. Well... what I mean is,

we are not going to do that manually.

Checking for the twig-pack

To get this all working, we need to check that a certain bundle is installed. If you started your

project after October 2019, you can skip this because you will already have it.

For older projects, first make sure you have Twig 2.12 or higher: you can find your version by

running:

composer show twig/twig

Mine is too old, so I'll update it by running:

composer update twig/twig

Now run:

composer require twig

That... might look confusing: don't we already have Twig installed? Before October 2019,

composer require twig installed TwigBundle... only. But if you run this command after

October 16th, 2019 - to be exact - the twig alias will download symfony/twig-pack . The

only difference is that the twig-pack will install the normal TwigBundle and a new

twig/extra-bundle , which is a library that will help us use some new Twig features. You'll

see what I mean.

The main point is: make sure twig/extra-bundle is installed, and the best way to get it is

from the pack. If you installed Twig after October 2019, you probably already have it.

The inline_css Filter

Ok, back to work! In welcome.html.twig , all the way on top, add

{% apply inline_css %} .

inline_css is actually a filter... and in Twig, you normally use a filter with the | symbol - like

foo|inline_css . But if you want to run a lot of stuff through a filter, you can do it with this

handy apply tag. At the bottom of the template, say {% endapply %} .

templates/email/welcome.html.twig

1

 // ... lines 2 - 98

99

And... that's it! This passes our entire template through this filter... which is super smart. It reads

the CSS from inside the style tag and uses that to add style attributes to every HTML

element that it finds. Yea... it's crazy!

Let's see this in action. Go back to /register and fill the form back in... I'll use

thetruthisoutthere9@example.com , any password, agree and... register!

TwigExtraBundle Invites you to Install Packages

{% apply inline_css %}

{% endapply %}

It works! I'm kidding! But it's the next best thing. The error tells us exactly what's going on:

“The "inline_css" filter is part of the CssInlinerExtension - try running "composer require

twig/cssinliner-extra"”

Why, what a fabulous idea! This error comes from that new TwigExtraBundle, which allows you

to install several outside Twig extension libraries and start using them immediately with zero

config. And... to be even shinier, if you try to use a feature but don't have the library that the

feature requires, it tells you!

Copy the composer require line, move over to your terminal, and run:

composer require twig/cssinliner-extra

When that finishes... move over to the browser again, hit back and... let's change the email to

9b to be unique. Type a password, hit enter and... go check out that email! It still looks the

same... but check out the HTML source. The style tag is still there but if you scroll... wow. The

styles have been applied to every element!

This is one of my absolute favorite features of mailer. It's a huge chore that... just works.

Next, let's use this to clean things up even more. Instead of having all this CSS right in the

template, let's use a proper, standalone CSS file.

Chapter 10: Inlining CSS Files

Now that the styles are being inlined, we can go a step further. I don't love having all my email

styles inside a style tag. It works... but will be a problem once our app sends multiple emails:

we don't want to duplicate this in every template.

Nope, in the real world, we put CSS into CSS files. Let's do that. Copy all of the styles and

delete them. Inside the assets/css directory, let's create a new email.css file. Paste!

assets/css/email.css

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

body {

 margin: 0;

 padding: 0;

 background-color: #f3f3f3;

 font-family: Helvetica, Arial, sans-serif;

}

h1 {

 background-color: #264459;

 color: #ffffff;

 padding: 30px 0 50px 0;

 font-weight: normal;

}

hr {

 border: none;

 border-top: 3px solid #264459;

 margin: 20px;

}

.container {

 background-color: #fefefe;

 width: 580px;

 margin: 0 auto;

}

.bottom {

 background-color: #efefee;

}

.block {

 margin: 0;

 padding: 10px 20px 20px 20px;

}

.logo {

 width: 100%;

}

.text-center {

 text-align: center;

}

.btn {

 display: inline-block;

 padding: 10px 20px;

 background-color: #264459;

 color: #fefefe;

 border: 1px solid #fff;

 border-radius: 3px;

 font-size: 20px;

 font-weight: bold;

 text-decoration: none;

}

So far, we've seen that the inline_css filter is smart enough to notice any style tags in the

template and use that CSS to style the HTML tags. But you can also point the filter to an

external CSS file.

Go back to config/packages/twig.yaml . To point to the CSS file, we need to add another

Twig path: let's set the assets/css directory to styles . So, @styles will point here.

config/packages/twig.yaml

1

 // ... line 2

3

 // ... line 4

5

 // ... lines 6 - 10

Back in welcome.html.twig , we can pass an argument to inline_css() : a string of

styles that it should use. To get that, use the source() function, @styles/ and then the

name of our file email.css .

templates/email/welcome.html.twig

1

 // ... lines 2 - 50

51

The source() function is a standard Twig function... that you don't see very often. It tells Twig

to go find the file - which could be a CSS file or another Twig template - and return its contents.

It's basically a file_get_contents() for Twig. That's perfect, because inline_css()

doesn't want the path to a CSS file, it wants the string styles it should use.

Let's try this! Hit back once again in your browser, bump the email, type a password, submit

and... it looks good! And this time in the HTML source, the style tag is not there... but the

inline styles are. That's another benefit of the CSS file: it got rid of the extra style tag, which

makes our email a little bit smaller.

Using Sass or Encore for Email CSS?

By the way, if you prefer to use Sass or LESS for your CSS and are using Webpack Encore to

compile all of that into your final CSS file, then... you have a problem. You must pass CSS to

inline_css - you can't pass it Sass and expect it to know how to process that. Instead, you

twig:

 paths:

 'assets/css': styles

{% apply inline_css(source('@styles/email.css')) %}

{% endapply %}

need to point inline_css at the final, built version of your CSS - the file that lives in

public/build/ .

Doing that seems easy enough: you could add another Twig path - maybe called encore - that

refers to the public/build directory. Except... if you're using versioned filenames... then how

do you know exactly what the built filename will be? And if you're using

splitEntryChunks() , your one CSS file may be split into multiple!

This is a long way of saying that pointing to a CSS file with inline_css is easy... but pointing

to a Sass file is... trickier. Later, we'll walk you through how to do it.

But first! The two rules of making an email look good in every email client are, one, use a table-

based layout instead of floats or flex-box. And two, inline your styles. We've done the second,

now its time to do the first. Does this mean we need to rewrite our HTML to use ugly, annoying

tables? Actually... no!

Chapter 11: Ink: Automatic CSS Email Framework

Our email template is HTML... very traditional HTML. What I mean is, this is the type of HTML

and CSS you would see on a normal website. And, at least inside Mailtrap... it looks good! But a

big lesson of sending emails is that the HTML is often not rendered like a normal browser would

render it. Some email clients don't support float or flexbox... so if you're using those to establish

an email layout then... oof, it's going to look bad for some people... like people using gmail.

If you want to write an email that's going to look consistently good in every email client, the best

practice is actually to use tables for your layout. If you have no idea what a table layout is... oh,

you are so, so lucky. Back in the dark ages of the Internet, back before CSS float and flexbox

existed, every webpage's layout consisted of tables, rows and cells. It was tables, inside of

tables, inside of tables, inside of tables. It was... a nightmare.

So... um... am I saying that the nightmare of needing to write table-based layouts is still a reality

when you create emails? Yes... and no. Mailer has another trick up its sleeve.

Hello Ink / Foundation for Emails

Google for "Inky Framework" to find something called "Ink" by "Zurb". Let me define... a few

things. Zurb is the name of a company, a cool name - it sounds like an alien race: "the Zurb".

Anyways, Zurb is the company that created "Foundation": a CSS framework that's probably the

second most famous in the world behind Bootstrap. "Ink" is the name of a CSS framework that's

designed specifically for emails. And actually, they've renamed "Ink" to just "Foundation for

Emails".

So, Ink, or Foundation for Emails is a CSS framework for responsive HTML emails that works

on any device. Even Outlook! Click on the docs.

Foundation for emails is basically two parts. First, it's a CSS file that defines useful CSS classes

and a grid structure for designing emails. Again... it's just like Bootstrap CSS for emails.

The Inky Templating Language

That CSS file is super handy. But the second part of Foundation for emails is even more

interesting. Click the "Inky" link on the left. The second part of this library is centered around a

custom templating language called "Inky". It's a simple, but fascinating tool. Click the "Switch to

Inky" link.

Here's the idea: we write HTML using some custom Inky HTML tags, like <container> ,

<row> and <columns> ... as well as a few others like <button> and <menu> . Then, Inky will

transform this pretty HTML into the crazy, ugly table-based layout required for it to render in an

email! Yea, it lets us have table-based emails... without needing to use tables! Yeehaw!

Using the inky_to_html Filter

Now if you downloaded the course code, you should have a tutorial/ directory, which holds

the original welcome.html.twig and an inky/ directory with an updated

welcome.html.twig . New stuff!

This is basically the same template but written in that special "Inky" markup: containers, rows,

columns, etc. Copy the contents... and let's close a few things. Then open up

templates/email/welcome.html.twig and completely replace this file with the updated

version.

It's really the same email as before: it has the same dynamic URLs and is printing the recipient's

name. It's just different markup. Oh, and notice that the inline_css() stuff we added a few

minutes ago is gone! Gasp! Don't worry: we'll put that back in a minute. But until then, forget

about CSS.

If we sent this email right now, it would literally send with this markup. To transform this into the

table-based markup we want, we'll use another special filter on the entire template. On top, add

{% apply inky_to_html %} ... and all the way at the bottom, put {% endapply %} . I'll

indent this to make it look nice.

templates/email/welcome.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

{% apply inky_to_html %}

 <container>

 <row class="header">

 <columns>

 <img src="{{ email.image('@images/email/logo.png') }}"

class="logo" alt="SpaceBar Logo">

 </columns>

 </row>

 <row class="welcome">

 <columns>

 <spacer size="35"></spacer>

 <h1>

 <center>

 Nice to meet you {{ email.toName }}!

 </center>

 </h1>

 <spacer size="10"></spacer>

 </columns>

 </row>

 <spacer size="30"></spacer>

 <row>

 <columns>

 <p>

 Welcome to the Space Bar, we can't

wait to read what you have to write.

 Get started on your first article and connect with the

space bar community.

 </p>

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <button href="{{ url('admin_article_new') }}">Get

writing!</button>

 </center>

 </columns>

 </row>

 <row>

 <columns>

 <p>

 Check out our existing articles and share your

thoughts in the comments!

 </p>

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Let's try it! Find your browser and make sure you're on the registration page. Let's register as

thetruthisoutthere11@example.com , any password, check the terms, register and...

error!

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <button href="{{ url('app_homepage') }}">Get reading!

</button>

 </center>

 </columns>

 </row>

 <row>

 <columns>

 <p>

 We're so excited that you've decided to join us in our

corner of the universe,

 it's a friendly one with other creative and insightful

writers just like you!

 Need help from a friend? We're always just a message

away.

 </p>

 </columns>

 </row>

 <row class="footer">

 <columns>

 <p>Cheers,</p>

 <p>Your friendly Space Bar Team</p>

 </columns>

 </row>

 <row class="bottom">

 <columns>

 <center>

 <spacer size="20"></spacer>

 <div>

 Sent with ❤️ from the friendly folks at The Space

Bar

 </div>

 </center>

 </columns>

 </row>

 </container>

{% endapply %}

Ah, but we know this error! Well, not this exact error, but almost! This is Twig telling us that

we're trying to use a filter that requires an extra library. Cool! Copy the composer require line,

move back over to your terminal, and paste:

composer require twig/inky-extra

 Tip

Make sure you have XSL extension installed for your PHP to be able to use Inky. To check it

- you can run php -m | grep xsl in your console and check the output has "xsl".

When that finishes... move back to your browser, go back to the registration form, tweak that

email and... deep breath... register! I think it worked! Let's go check it out.

There's the new email! Oof, it looks terrible... but that's only because it doesn't any CSS yet.

Check out the HTML source. So cool: it transformed our clean markup into table elements! We

just took a huge step towards making our emails look good in every email client... without

needing to write bad markup.

Inlining the foundation-emails CSS

To get this to look good, we need to include some CSS from Foundation for Emails. Go back to

the documentation, click on the "CSS Version" link and click download. When you unzip this,

you'll find a foundation-emails.css file inside. Copy that... and paste it into, how about,

the assets/css directory.

How do we include this in our email template? We already know how: the inline_css filter.

But instead of adding another apply tag around the entire template, we can piggyback off of

inky! Add |inline_css and pass this source() and the path to the CSS file:

@styles/foundation-emails.css .

Remember: if you look in config/packages/twig.yaml , we set up a path that allows us to

say @styles to refer to the assets/css directory. That's how this path works.

And... I still do want to include my custom email.css code. Copy the source() stuff, add a

second argument to inline_css - you can pass this as many arguments of CSS as you want

- and point this at email.css .

templates/email/welcome.html.twig

1

 // ... lines 2 - 76

77

That should do it! Oh, but before we try this, back in tutorial/ , that inky/ directory also

holds an email.css file. Now that we're using a CSS framework, some of the code in our

original email.css ... just isn't needed anymore! This new email.css is basically the same

as the original one... but with some extra stuff removed. Copy the code from the file, and paste

it over the one in assets/css .

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

{% endapply %}

assets/css/email.css

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Ok, time to see the final product! Go back to the registration page, update the email, add a

password, enter and... go check out Mailtrap. There it is and... it looks awesome. Well, it looks

exactly like it did before, but in the HTML source, now that we have a table-based layout, we

know this will display more consistently across all email clients. I won't say perfect... because

you'll need to do some testing - but it's now much more likely to look good.

body {

 margin: 0;

 padding: 0;

 background-color: #f3f3f3;

 font-family: Helvetica, Arial, sans-serif;

}

h1 {

 background-color: #264459;

 color: #ffffff;

 /*padding: 30px 0 50px 0;*/

 font-weight: normal;

}

hr {

 border: none;

 border-top: 3px solid #264459;

 margin: 20px;

}

.welcome {

 background-color: #264459;

}

.bottom {

 background-color: #efefee;

}

.logo {

 width: 100%;

}

.text-center {

 text-align: center;

}

table.button a {

 background-color: #264459;

}

table.button table td {

 background-color: #264459;

 border: 2px solid #264459;

}

So that's "Foundation for Emails". It's, one, a CSS framework for emails... a lot like Bootstrap for

emails... and two, a tool to transform the pretty markup known as Inky into the ugly table-based

HTML that the CSS framework styles and that email clients require.

Watch your Email Sizes

Before we keep going, one thing to watch out for regardless of how you're styling your emails, is

email size. It's far from a science, but gmail tends to truncate emails once their size is greater

than about 100kb: it hides the rest of the email with a link to see more. Keep that in mind, but

more than anything, test your emails to make sure they look good in the real world!

Next, let's bootstrap a console command that will send some emails! It turns out that sending

emails in a console command requires an extra trick.

Chapter 12: Let's Make a Console Command!

We've created exactly one email... and done some pretty cool stuff with it. Let's introduce a

second email... but with a twist: instead of sending this email when a user does something on

the site - like register - we're going to send this email from a console command. And that...

changes a few things.

Let's create the custom console command first. Here's my idea: one of the fields on User is

called $subscribeToNewsletter . In our pretend app, if this field is set to true for an author -

someone that writes content on our site - once a week, via a CRON job, we'll run a command

that will email them an update on what they published during the last 7 days.

Making the Command

Let's bootstrap the command... the lazy way. Find your terminal and run:

php bin/console make:command

Call it app:author-weekly-report:send . Perfect! Back in the editor, head to the

src/Command directory to find... our shiny new console command.

src/Command/AuthorWeeklyReportSendCommand.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

<?php

namespace App\Command;

use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputArgument;

use Symfony\Component\Console\Input\InputInterface;

use Symfony\Component\Console\Input\InputOption;

use Symfony\Component\Console\Output\OutputInterface;

use Symfony\Component\Console\Style\SymfonyStyle;

class AuthorWeeklyReportSendCommand extends Command

{

 protected static $defaultName = 'app:author-weekly-report:send';

 protected function configure()

 {

 $this

 ->setDescription('Add a short description for your command')

 ->addArgument('arg1', InputArgument::OPTIONAL, 'Argument

description')

 ->addOption('option1', null, InputOption::VALUE_NONE, 'Option

description')

 ;

 }

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $arg1 = $input->getArgument('arg1');

 if ($arg1) {

 $io->note(sprintf('You passed an argument: %s', $arg1));

 }

 if ($input->getOption('option1')) {

 // ...

 }

 $io->success('You have a new command! Now make it your own! Pass -

-help to see your options.');

 return 0;

 }

}

Let's start customizing this: we don't need any arguments or options... and I'll change the

description:

“Send weekly reports to authors.”

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 25

26

27

28

29

30

31

 // ... lines 32 - 46

47

The first thing we need to do is find all users that have this $subscribeToNewsletter

property set to true in the database. To keep our code squeaky clean, let's add a custom

repository method for that in UserRepository . How about

public function findAllSubscribedToNewsletter() . This will return an array .

src/Repository/UserRepository.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 49

50

51

 // ... lines 52 - 55

56

 // ... lines 57 - 85

86

Inside, return $this->createQueryBuilder() , u as the alias,

->andWhere('u.subscribeToNewsletter = 1') , ->getQuery() and

->getResult() .

class AuthorWeeklyReportSendCommand extends Command

{

 protected function configure()

 {

 $this

 ->setDescription('Send weekly reports to authors')

 ;

 }

}

class UserRepository extends ServiceEntityRepository

{

 public function findAllSubscribedToNewsletter(): array

 {

 }

}

src/Repository/UserRepository.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 49

50

51

52

53

54

55

56

 // ... lines 57 - 85

86

Above the method, we can advertise that this specifically returns an array of User objects.

src/Repository/UserRepository.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 46

47

48

49

50

51

52

53

54

55

56

 // ... lines 57 - 85

86

Autowiring Services into the Command

Back in the command, let's autowire the repository by adding a constructor. This is one of the

rare cases where we have a parent class... and the parent class has a constructor. I'll go to the

Code -> Generate menu - or Command + N on a Mac - and select "Override methods" to

override the constructor.

class UserRepository extends ServiceEntityRepository

{

 public function findAllSubscribedToNewsletter(): array

 {

 return $this->createQueryBuilder('u')

 ->andWhere('u.subscribeToNewsletter = 1')

 ->getQuery()

 ->getResult();

 }

}

class UserRepository extends ServiceEntityRepository

{

 /**

 * @return User[]

 */

 public function findAllSubscribedToNewsletter(): array

 {

 return $this->createQueryBuilder('u')

 ->andWhere('u.subscribeToNewsletter = 1')

 ->getQuery()

 ->getResult();

 }

}

Notice that this added a $name argument - that's an argument in the parent constructor - and it

called the parent constructor. That's important: the parent class needs to set some stuff up. But,

we don't need to pass the command name: Symfony already gets that from a static property on

our class. Instead, make the first argument: UserRepository $userRepository . Hit Alt +

Enter and select "Initialize fields" to create that property and set it. Perfect.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 16

17

18

19

20

21

22

23

24

 // ... lines 25 - 46

47

Next, in execute() , clear everything out except for the $io variable, which is a nice little

object that helps us print things and interact with the user... in a pretty way.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 32

33

34

35

 // ... lines 36 - 45

46

47

Start with

$authors = $this->userRepository->findAllSubscribedToNewsletter() .

use App\Repository\UserRepository;

class AuthorWeeklyReportSendCommand extends Command

{

 private $userRepository;

 public function __construct(UserRepository $userRepository)

 {

 parent::__construct(null);

 $this->userRepository = $userRepository;

 }

}

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 $io = new SymfonyStyle($input, $output);

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 32

33

34

35

36

37

38

 // ... lines 39 - 45

46

47

Well, this really returns all users... not just authors - but we'll filter them out in a minute. To be

extra fancy, let's add a progress bar! Start one with $io->progressStart() . Then, foreach

over $authors as $author , and advance the progress inside.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 32

33

34

35

36

37

38

39

40

41

42

 // ... lines 43 - 45

46

47

Oh, and of course, for progressStart() , I need to tell it how many data points we're going to

advance. Use count($authors) . Leave the inside of the foreach empty for now, and after,

say $io->progressFinish() . Finally, for a big happy message, add $io->success()

“Weekly reports were sent to authors!”

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 $io = new SymfonyStyle($input, $output);

 $authors = $this->userRepository

 ->findAllSubscribedToNewsletter();

 }

}

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 $io = new SymfonyStyle($input, $output);

 $authors = $this->userRepository

 ->findAllSubscribedToNewsletter();

 $io->progressStart(count($authors));

 foreach ($authors as $author) {

 $io->progressAdvance();

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Brilliant! We're not doing anything yet... but let's try it! Copy the command name, find your

terminal, and do it!

php bin/console app:author-weekly-report:send

Super fast!

Counting Published Articles

Inside the foreach , the next step is to find all the articles this user published - if any - from the

past week. Open up ArticleRepository ... and add a new method for this -

findAllPublishedLastWeekByAuthor() - with a single argument: the User object. This

will return an array ... of articles: let's advertise that above.

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output): int

 {

 $io = new SymfonyStyle($input, $output);

 $authors = $this->userRepository

 ->findAllSubscribedToNewsletter();

 $io->progressStart(count($authors));

 foreach ($authors as $author) {

 $io->progressAdvance();

 }

 $io->progressFinish();

 $io->success('Weekly reports were sent to authors!');

 return 0;

 }

}

src/Repository/ArticleRepository.php

 // ... lines 1 - 5

6

 // ... lines 7 - 16

17

18

 // ... lines 19 - 37

38

39

40

41

42

 // ... lines 43 - 49

50

 // ... lines 51 - 73

74

The query itself is pretty simple: return $this->createQueryBuilder() with

->andWhere('a.author = :author) to limit to only this author - we'll set the :author

parameter in a second - then ->andWhere('a.publishedAt > :week_ago') . For the

placeholders, call setParameter() to set author to the $author variable, and

->setParameter() again to set week_ago to a new \DateTime('-1 week') . Finish

with the normal ->getQuery() and ->getResult() .

src/Repository/ArticleRepository.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 37

38

39

40

41

42

43

44

45

46

47

48

49

50

 // ... lines 51 - 73

74

use App\Entity\User;

class ArticleRepository extends ServiceEntityRepository

{

 /**

 * @return Article[]

 */

 public function findAllPublishedLastWeekByAuthor(User $author): array

 {

 }

}

class ArticleRepository extends ServiceEntityRepository

{

 /**

 * @return Article[]

 */

 public function findAllPublishedLastWeekByAuthor(User $author): array

 {

 return $this->createQueryBuilder('a')

 ->andWhere('a.author = :author')

 ->andWhere('a.publishedAt > :week_ago')

 ->setParameter('author', $author)

 ->setParameter('week_ago', new \DateTime('-1 week'))

 ->getQuery()

 ->getResult();

 }

}

Boom! Back in the command, autowire the repository via the second constructor argument:

ArticleRepository $articleRepository . Hit Alt + Enter to initialize that field.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 4

5

 // ... lines 6 - 13

14

15

 // ... lines 16 - 18

19

20

21

22

 // ... lines 23 - 25

26

27

 // ... lines 28 - 56

57

Down in execute, we can say

$articles = $this->articleRepository->findAllPublishedLastWeekByAuthor()

and pass that $author .

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 35

36

37

 // ... lines 38 - 42

43

44

45

46

47

 // ... lines 48 - 51

52

 // ... lines 53 - 55

56

57

use App\Repository\ArticleRepository;

class AuthorWeeklyReportSendCommand extends Command

{

 private $articleRepository;

 public function __construct(UserRepository $userRepository,

ArticleRepository $articleRepository)

 {

 $this->articleRepository = $articleRepository;

 }

}

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $io->progressAdvance();

 $articles = $this->articleRepository

 ->findAllPublishedLastWeekByAuthor($author);

 }

 }

}

Phew! Because we're actually querying for all users, not everyone will be an author... and even

less will have authored some articles in the past 7 days. Let's skip those to avoid sending empty

emails: if count($articles) is zero, then continue .

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 35

36

37

 // ... lines 38 - 42

43

44

45

46

47

48

49

50

51

52

 // ... lines 53 - 55

56

57

By the way, in a real app, where you would have hundreds, thousands or even more users,

querying for all that have subscribed is not going to work. Instead, I would make my query

smarter by only returning users that are authors or even query for a limited number of authors,

keep track of which you've sent to already, then run the command over and over again until

everyone has gotten their update. These aren't even the only options. The point is: I'm being a

little loose with how much data I'm querying for: be careful in a real app.

Ok, I think we're good! I mean, we're not actually emailing yet, but let's make sure it runs. Find

your terminal and run the command again:

php bin/console app:author-weekly-report:send

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $io->progressAdvance();

 $articles = $this->articleRepository

 ->findAllPublishedLastWeekByAuthor($author);

 // Skip authors who do not have published articles for the

last week

 if (count($articles) === 0) {

 continue;

 }

 }

 }

}

All smooth. Next... let's actually send an email! And then, fix the duplication we're going to have

between our two email templates.

Chapter 13: Using a Base Email Template

We found all the authors that want to receive an update about the articles they wrote during the

last 7 days. Now, let's send them that update as an email.

If you downloaded the course code, you should have a tutorial/ directory with an inky/

directory and a file inside called author-weekly-report.html.twig . Copy that and throw

it into templates/email/ .

templates/email/author-weekly-report.html.twig

 // ... line 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 // ... lines 40 - 41

Nice! This template is already written using the Inky markup: the markup that Inky will translate

into HTML that will work in any email client. But mostly, other than a link to the homepage and

 <container>

 {# Header #}

 <hr>

 <spacer size="20"></spacer>

 <row>

 <columns>

 <p>

 What a week {{ email.toName }}! Here's a quick review

of what you've been up to on the Space Bar this week

 </p>

 </columns>

 </row>

 <row>

 <columns>

 <table>

 <tr>

 <th>#</th>

 <th>Title</th>

 <th>Comments</th>

 </tr>

 <tr>

 <td>1</td>

 <td>Article Title</td>

 <td>99</td>

 </tr>

 </table>

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <spacer size="20"></spacer>

 <button href="{{ url('app_homepage') }}">Check on the

Space Bar</button>

 <spacer size="20"></spacer>

 </center>

 </columns>

 </row>

 {# Footer #}

 </container>

the user's name, this is a boring, empty email: we still need to print the core content of the

email.

Designing, Configuring & Sending that Email

Let's open up welcome.html.twig , steal the apply line from here, and paste it on top of

the new template. This will translate the markup to Inky and inline our CSS. At the bottom, add

endapply ... and I'll indent everything to satisfy my burning inner need for order in the universe!

templates/email/author-weekly-report.html.twig

1

2

 // ... lines 3 - 38

39

40

To send this email, we know the drill! In the command, start with

$email = (new TemplatedEmail()) , ->from() and... ah: let's cheat a little.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 6

7

 // ... lines 8 - 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 53

54

55

56

57

58

 // ... lines 59 - 67

68

 // ... lines 69 - 71

72

73

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

 <container>

 </container>

{% endapply %}

use Symfony\Bridge\Twig\Mime\TemplatedEmail;

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 if (count($articles) === 0) {

 continue;

 }

 $email = (new TemplatedEmail())

 }

 }

}

Go back to src/Controller/SecurityController.php , find the register() method

and copy its from() line: we'll probably always send from the same user. And yes, we'll learn

how not to duplicate this later. I'll re-type the "S" on NamedAddress and hit tab to add the

missing use statement on top.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 14

15

 // ... line 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 57

58

59

 // ... lines 60 - 67

68

 // ... lines 69 - 71

72

73

 Tip

In Symfony 4.4 and higher, use new Address() - it works the same way as the old

NamedAddress .

Ok, let's finish the rest: ->to() with new NamedAddress() $author->getEmail() and

$author->getFirstName() ,

use Symfony\Component\Mime\NamedAddress;

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 14

15

 // ... line 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 57

58

59

60

 // ... lines 61 - 67

68

 // ... lines 69 - 71

72

73

->subject('Your weekly report on The Space Bar!') and

use Symfony\Component\Mime\NamedAddress;

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($author->getEmail(), $author-

>getFirstName()))

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 14

15

 // ... line 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 57

58

59

60

61

 // ... lines 62 - 67

68

 // ... lines 69 - 71

72

73

->htmlTemplate() to render email/author-weekly-report.html.twig .

use Symfony\Component\Mime\NamedAddress;

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($author->getEmail(), $author-

>getFirstName()))

 ->subject('Your weekly report on the Space Bar!')

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 14

15

 // ... line 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 57

58

59

60

61

62

 // ... lines 63 - 67

68

 // ... lines 69 - 71

72

73

Do we need to pass any variables to the template? Technically... no: the only variable we're

using so far is the built-in email variable. But we will need the articles, so let's call

->context([]) . Pass this an author variable... I'm not sure if we'll actually need that... and

the $articles that this author recently wrote.

use Symfony\Component\Mime\NamedAddress;

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($author->getEmail(), $author-

>getFirstName()))

 ->subject('Your weekly report on the Space Bar!')

 ->htmlTemplate('email/author-weekly-report.html.twig')

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 14

15

 // ... line 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 57

58

59

60

61

62

63

64

65

66

 // ... line 67

68

 // ... lines 69 - 71

72

73

Done! Another beautiful Email object. We're a machine! How do we send it? Oh, we know that

too: we need the mailer service. Add a third argument to the constructor:

MailerInterface $mailer . I'll do our usual Alt+Enter trick and select "Initialize Fields" to

create that property and set it.

use Symfony\Component\Mime\NamedAddress;

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($author->getEmail(), $author-

>getFirstName()))

 ->subject('Your weekly report on the Space Bar!')

 ->htmlTemplate('email/author-weekly-report.html.twig')

 ->context([

 'author' => $author,

 'articles' => $articles,

]);

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 13

14

 // ... lines 15 - 16

17

18

 // ... lines 19 - 22

23

24

25

26

 // ... lines 27 - 30

31

32

 // ... lines 33 - 72

73

Back down below, give a co-worker a serious "nod"... as if you're about to take on a task of

great gravity... but instead, send an email: $this->mailer->send($email) .

use Symfony\Component\Mailer\MailerInterface;

class AuthorWeeklyReportSendCommand extends Command

{

 private $mailer;

 public function __construct(UserRepository $userRepository,

ArticleRepository $articleRepository, MailerInterface $mailer)

 {

 $this->mailer = $mailer;

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 40

41

42

 // ... lines 43 - 47

48

 // ... lines 49 - 57

58

59

60

61

62

63

64

65

66

67

68

 // ... lines 69 - 71

72

73

Love that. In our fixtures, thanks to some randomness we're using, about 75% of users will be

subscribed to the newsletter. Before we run the command, let's make sure the data is fresh...

with recent article created dates. Run:

php bin/console doctrine:fixtures:load

This should add enough users and articles that about 1-2 authors will be subscribed to the

newsletter and have recent articles. Try that command:

php bin/console app:author-weekly-report:send

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com',

'The Space Bar'))

 ->to(new NamedAddress($author->getEmail(), $author-

>getFirstName()))

 ->subject('Your weekly report on the Space Bar!')

 ->htmlTemplate('email/author-weekly-report.html.twig')

 ->context([

 'author' => $author,

 'articles' => $articles,

]);

 $this->mailer->send($email);

 }

 }

}

Ha! It didn't explode! It found 6 authors... or really, 6 users that are subscribed to the

newsletter... but anywhere from 0 to 6 of these might actually have recent articles. Spin over to

Mailtrap. If you don't see any emails - try reloading the fixtures again... just in case you got

some bad random data, then re-run the command. Oh, and if you got an error when running the

command about too many emails being sent, you've hit a limit on Mailtrap. The free plan only

allows sending 2 emails each 10 seconds. In that case, ignore the error - because two emails

did send - or reload your fixtures to hopefully send less emails.

We have exactly one email: phew! So... we rock! Or do we?

I see a few problems. First, the link to the homepage is broken: it links to localhost . Not

localhost:8000 - or whatever our real domain is - just localhost . When you send emails

from a console command... your paths break. More on that later.

Base Email Template

The second problem is more obvious... and it's my fault: this email is missing the cool header

and footer we had in the other email! Why? Simple: in welcome.html.twig , we have a

header with a logo on top and a footer at the bottom. In

author-weekly-report.html.twig? I forgot to put that stuff!

Ok, I really did it on purpose: we probably do want a consistent layout for every email... but we

definitely do not want to duplicate that layout in every email template.

We know the fix! We do it all the time in normal twig: create a base template, a base email

template. In the templates/email directory, add a new file called, how about

emailBase.html.twig .

And... I'll close a few files. In welcome.html.twig , copy that entire template and paste in

emailBase . Then... select the middle of the template and delete! We basically want the

header, the footer and, in the middle, a block for the content. Add

{% block content %}{% endblock %} .

templates/email/emailBase.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

That block name could be anything. Now that we have this nifty template, back in

welcome.html.twig , life gets simpler. On top, start with

{% extends 'email/emailBase.html.twig' %} . Then, delete the apply and

endapply , and replace it with {% block content %} ... and {% endblock %} .

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

 <container>

 <row class="header">

 <columns>

 <img src="{{ email.image('@images/email/logo.png') }}"

class="logo" alt="SpaceBar Logo">

 </columns>

 </row>

 {% block content %}

 {% endblock %}

 <row class="footer">

 <columns>

 <p>Cheers,</p>

 <p>Your friendly Space Bar Team</p>

 </columns>

 </row>

 <row class="bottom">

 <columns>

 <center>

 <spacer size="20"></spacer>

 <div>

 Sent with ❤️ from the friendly folks at The Space

Bar

 </div>

 </center>

 </columns>

 </row>

 </container>

{% endapply %}

templates/email/welcome.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

{% extends 'email/emailBase.html.twig' %}

{% block content %}

 <row class="welcome">

 <columns>

 <spacer size="35"></spacer>

 <h1>

 <center>

 Nice to meet you {{ email.toName }}!

 </center>

 </h1>

 <spacer size="10"></spacer>

 </columns>

 </row>

 <spacer size="30"></spacer>

 <row>

 <columns>

 <p>

 Welcome to the Space Bar, we can't wait

to read what you have to write.

 Get started on your first article and connect with the

space bar community.

 </p>

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <button href="{{ url('admin_article_new') }}">Get writing!

</button>

 </center>

 </columns>

 </row>

 <row>

 <columns>

 <p>

 Check out our existing articles and share your thoughts in

the comments!

 </p>

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <button href="{{ url('app_homepage') }}">Get reading!

</button>

42

43

44

45

46

47

48

49

50

51

52

53

54

If you're wondering why we don't need the inky_to_html and inline_css filter stuff

anymore, it's because the contents of this template will be put into a block that is inside of those

same filters. The content will go through those filters... but we don't need to worry about adding

them in every template.

Now we can delete most of the content: all we really need is the welcome row... and down

below, we can get rid of the bottom and footer stuff. Celebrate your inner desire for order by un-

indenting this.

Perfecto! Repeat this beautiful code in author-weekly-report.html.twig :

{% extends 'email/emailBase.html.twig' %} , {% block content %} and all the

way at the bottom, {% endblock %} . We can also remove the container element... and

unindent.

 </center>

 </columns>

 </row>

 <row>

 <columns>

 <p>

 We're so excited that you've decided to join us in our

corner of the universe,

 it's a friendly one with other creative and insightful

writers just like you!

 Need help from a friend? We're always just a message away.

 </p>

 </columns>

 </row>

{% endblock %}

templates/email/author-weekly-report.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

That felt great! Let's see how it looks: run our weekly report:

{% extends 'email/emailBase.html.twig' %}

{% block content %}

 <hr>

 <spacer size="20"></spacer>

 <row>

 <columns>

 <p>

 What a week {{ email.toName }}! Here's a quick review of

what you've been up to on the Space Bar this week

 </p>

 </columns>

 </row>

 <row>

 <columns>

 <table>

 <tr>

 <th>#</th>

 <th>Title</th>

 <th>Comments</th>

 </tr>

 <tr>

 <td>1</td>

 <td>Article Title</td>

 <td>99</td>

 </tr>

 </table>

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <spacer size="20"></spacer>

 <button href="{{ url('app_homepage') }}">Check on the

Space Bar</button>

 <spacer size="20"></spacer>

 </center>

 </columns>

 </row>

{% endblock %}

php bin/console app:author-weekly-report:send

And... move back over! Woo! Now every email can easily share the same "look".

Next, let's finish the email by making it dynamic. And, most importantly, let's figure out why our

link paths are broken. You need to be extra careful when you send an email from the command

line.

Chapter 14: Router Request Context: Fix Paths in
the CLI

We sent the email, but it's missing its core content: info about the articles that each author wrote

last week. That's no problem for us: we're already passing an articles variable to the

template via context() . In the template, replace the <tr> with

{% for article in articles %} :

templates/email/author-weekly-report.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 26

27

28

29

30

 // ... lines 31 - 39

40

add the <tr> , a <td> and print some data: {{ loop.index }} to number the list, 1, 2, 3,

4, etc, {{ article.title }} and finally, how about:

{{ article.comments|length }} .

{% block content %}

 <row>

 <columns>

 <table>

 <tr>

 <th>#</th>

 <th>Title</th>

 <th>Comments</th>

 </tr>

 {% for article in articles %}

 {% endfor %}

 </table>

 </columns>

 </row>

{% endblock %}

templates/email/author-weekly-report.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 39

40

That's good enough. Double check that by running the command:

php bin/console app:author-weekly-report:send

And... in Mailtrap... we are good.

Why is the Link Broken

Now let's turn to the glaring, horrible bug in our email! Ah! As I mentioned a few minutes ago, if

you hover over the link its, gasp, broken! For some reason, it points to localhost not our real

domain... which is localhost:8000 . Close, but not right.

Hmm. In the template... yea... that looks right: {{ url('app_homepage') }} . Ok, then why

- when we click on the link - is it broken?

{% block content %}

 <row>

 <columns>

 <table>

 <tr>

 <th>#</th>

 <th>Title</th>

 <th>Comments</th>

 </tr>

 {% for article in articles %}

 <tr>

 <td>{{ loop.index }}</td>

 <td>{{ article.title }}</td>

 <td>{{ article.comments|length }}</td>

 </tr>

 {% endfor %}

 </table>

 </columns>

 </row>

{% endblock %}

templates/email/author-weekly-report.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 30

31

32

33

 // ... line 34

35

 // ... line 36

37

38

39

40

We know that the url() function tells Symfony to generate an absolute URL. And... it is. I'll run

"Inspect Element" on the broken link button. Check out the href : http://localhost not

localhost:8000 . The same thing would happen if you deployed this to production: it would

always say localhost . The URL is absolute... it's just wrong!

Why? Think about it: in the registration email - where this did work - how did Symfony know

what our domain was when it generated the link? Did we configure that somewhere? Nope!

When you submit the registration form, Symfony simply looks at what the current domain is -

localhost:8000 - and uses that for all absolute URLs.

But when you're in a console command, there is no request! Symfony has no idea if the code

behind this site is deployed to localhost:8000 , example.com , or lolcats.com . So, it

just guesses localhost ... which is totally wrong... but probably better than guessing

lolcats.com?

If you're sending emails from the command line - or rendering templates for any reason that

contain paths - you need to help Symfony: you need to tell it what domain to use.

Setting router.request_context

To fix this, start by looking inside our .env file. One of our keys here is called

SITE_BASE_URL .

{% block content %}

 <row>

 <columns>

 <center>

 <button href="{{ url('app_homepage') }}">Check on the

Space Bar</button>

 </center>

 </columns>

 </row>

{% endblock %}

.env

 // ... lines 1 - 32

33

34

35

 // ... lines 36 - 39

It is the URL to our app. But, but, but! This is not a standard Symfony environment variable and

Symfony is not currently using this. Nope, this is an environment variable that we invented in

our file uploads tutorial for a totally different purpose. You can see it used in

config/services.yaml . It has nothing to do with how Symfony generates URLs.

Anyways, to fix the path problem, you need to set two special parameters. The first is

router.request_context.scheme , which you'll set to https or http . The other is

router.request_context.host which, for our local development, will be

localhost:8000 .

 Tip

In Symfony 5.1, instead of setting these 2 parameters, you can set 1 new piece of config:

config/packages/routing.yaml

framework:

 router:

 # ...

 default_uri: 'https://example.org/my/path/'

Now obviously, we don't want to hardcode these - at least not the second value: it will be

different on production. Instead, we need to set these as new environment variables. And... hey!

In .env , the SITE_BASE_URL is almost what we need... we just need it to be kind of split into

two pieces. Hmm.

Check this out, create two new environment variables: SITE_BASE_SCHEME set to https and

SITE_BASE_HOST set to localhost:8000 .

SITE_BASE_URL=https://localhost:8000

.env

 // ... lines 1 - 31

32

33

34

35

 // ... lines 36 - 41

Back in services.yaml , use these values: %env(SITE_BASE_SCHEME)% and

%env(SITE_BASE_HOST)%

config/services.yaml

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 53

Cool!

Using Environment Variables... in Environment Variables

The problem is that we now have some duplication. Fortunately, one of the properties of

environment variables is that... um... they can contain environment variables! For

SITE_BASE_URL , set it to $SITE_BASE_SCHEME - yep, that's legal - :// and then

$SITE_BASE_HOST .

.env

 // ... lines 1 - 31

32

33

34

35

36

 // ... lines 37 - 41

I love that trick. Anyways, now that we've set those two parameters, Symfony will use them to

generate the URL instead of trying to guess it.

END CUSTOM VARS

SITE_BASE_SCHEME=https

SITE_BASE_HOST=localhost:8000

parameters:

 router.request_context.scheme: '%env(SITE_BASE_SCHEME)%'

 router.request_context.host: '%env(SITE_BASE_HOST)%'

END CUSTOM VARS

SITE_BASE_SCHEME=https

SITE_BASE_HOST=localhost:8000

SITE_BASE_URL=$SITE_BASE_SCHEME://$SITE_BASE_HOST

 Tip

This works, but if you need to override the scheme or host in .env.local , you would also

need to repeat the SITE_BASE_URL= to set it again. A better solution would be to set the

SITE_BASE_URL just once using a config trick in services.yaml :

parameters:

 env(SITE_BASE_URL): '%env(SITE_BASE_SCHEME)%://%env(SITE_BASE_HOST)%'

Try the command one last time:

php bin/console app:author-weekly-report:send

And... check it out in Mailtrap! Yes! This time the link points to localhost:8000 .

Next! Let's talk about attaching files to an email. Hmm, but to make it more interesting, let's first

learn how to generate a styled PDF.

Chapter 15: PDF: Snappy, wkhtmltopdf & Template
Setup

How can we make the email we're sending from the console command cooler? By adding an

attachment! Wait, hmm. That's probably too easy - Mailer makes attachments simple. Ok,

then... how about this: in addition to having the table inside the email that summarizes what the

author wrote during the past week, let's generate a PDF with a similar table and attach it to the

email.

So that's the first challenge: generating a styled PDF... and hopefully enjoying the process!

Installing Snappy & wkhtmltopdf

My favorite tool for creating PDFs is called Snappy. Fly over to your terminal and install it with:

composer require "knplabs/knp-snappy-bundle:^1.6"

Snappy is a wrapper around a command-line utility called wkhtmltopdf . It has some quirks,

but is a super powerful tool: you create some HTML that's styled with CSS, give it to

wkhtmltopdf , it renders it like a browser would, and gives you back a PDF version. Snappy

makes working with wkhtmltopdf pretty easy, but you'll need to make sure it's installed on

your system. I installed it on my Mac via brew .

wkhtmltopdf --version

Also, check where it's installed with which or whereis :

which wkhtmltopdf

Mine is installed at /usr/local/bin/wkhtmltopdf . If your binary live somewhere else,

you'll need to tweak some config. When we installed the bundle, the bundle's recipe added a

new section to the bottom of our .env file with two new environment variables.

.env

 // ... lines 1 - 41

42

43

44

45

These are both used inside a new knp_snappy.yaml file that was also added by the bundle.

config/packages/knp_snappy.yaml

1

2

3

4

5

6

7

8

9

The WKHTMLTOPDF_PATH variable already equals what I have on my machine. So if your path

is different, copy this, paste it to your .env.local file, and customize it. Oh, and don't worry

about wkhtmltoimage : we won't use that utility.

Creating the PDF Templates

Ultimately, to create the PDF, we're going to render a template with Twig and pass the HTML

from that to Snappy so it can do its work. Open up

templates/email/author-weekly-report.html.twig .

###> knplabs/knp-snappy-bundle ###

WKHTMLTOPDF_PATH=/usr/local/bin/wkhtmltopdf

WKHTMLTOIMAGE_PATH=/usr/local/bin/wkhtmltoimage

###

knp_snappy:

 pdf:

 enabled: true

 binary: '%env(WKHTMLTOPDF_PATH)%'

 options: []

 image:

 enabled: true

 binary: '%env(WKHTMLTOIMAGE_PATH)%'

 options: []

templates/email/author-weekly-report.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Hmm. In theory, we could just render this template and use its HTML. But... that won't work

because it relies on the special email variable. And more importantly, we probably don't want

{% extends 'email/emailBase.html.twig' %}

{% block content %}

 <hr>

 <spacer size="20"></spacer>

 <row>

 <columns>

 <p>

 What a week {{ email.toName }}! Here's a quick review of

what you've been up to on the Space Bar this week

 </p>

 </columns>

 </row>

 <row>

 <columns>

 <table>

 <tr>

 <th>#</th>

 <th>Title</th>

 <th>Comments</th>

 </tr>

 {% for article in articles %}

 <tr>

 <td>{{ loop.index }}</td>

 <td>{{ article.title }}</td>

 <td>{{ article.comments|length }}</td>

 </tr>

 {% endfor %}

 </table>

 </columns>

 </row>

 <row>

 <columns>

 <center>

 <spacer size="20"></spacer>

 <button href="{{ url('app_homepage') }}">Check on the

Space Bar</button>

 <spacer size="20"></spacer>

 </center>

 </columns>

 </row>

{% endblock %}

the PDF to look exactly like the email - we don't want the logo on top, for example.

No problem: let's do some organizing! Copy the table code. Then, in the templates/email

directory, I'll create a new file called _report-table.html.twig and paste!

templates/email/_report-table.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Let's make this fancier by adding class="table table-striped" . Oo, fancy!

templates/email/_report-table.html.twig

1

 // ... lines 2 - 13

14

Those CSS classes come from Bootstrap CSS, which our site uses, but our emails do not. So

when we render this table in the email, these won't do anything. But my hope is that when we

generate the PDF, we will include Bootstrap CSS and our table will look pretty.

Back in author-weekly-report.html.twig , take out that table and just say

{{ include('email/_report-table.html.twig') }}

<table>

 <tr>

 <th>#</th>

 <th>Title</th>

 <th>Comments</th>

 </tr>

 {% for article in articles %}

 <tr>

 <td>{{ loop.index }}</td>

 <td>{{ article.title }}</td>

 <td>{{ article.comments|length }}</td>

 </tr>

 {% endfor %}

</table>

<table class="table table-striped">

</table>

templates/email/author-weekly-report.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 12

13

14

15

16

17

 // ... lines 18 - 26

27

Now we can create a template that we will render to get the HTML for the PDF. Well, we could

just render this _report-table.html.twig template... but because it doesn't have an

HTML body or CSS, it would look... simply awful.

Instead, in templates/email/ , create a new file:

author-weekly-report-pdf.html.twig . To add some basic HTML, I'll use a PhpStorm

shortcut that I just learned! Add an exclamation point then hit "tab". Boom! Thanks Victor!

templates/email/author-weekly-report-pdf.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

Because we're going to add Bootstrap CSS to this template, let's add a little Bootstrap structure:

<div class="container"> , <div class="row"> and <div class="col-sm-12"> .

{% block content %}

 <row>

 <columns>

 {{ include('email/_report-table.html.twig') }}

 </columns>

 </row>

{% endblock %}

<!doctype html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport"

 content="width=device-width, user-scalable=no, initial-

scale=1.0, maximum-scale=1.0, minimum-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Document</title>

</head>

<body>

</body>

</html>

templates/email/author-weekly-report-pdf.html.twig

 // ... lines 1 - 11

12

13

14

15

 // ... lines 16 - 18

19

20

21

22

 // ... lines 23 - 24

Inside, how about an <h1> with "Weekly Report" and today's date, which we can get with

{{ 'now'|date('Y-m-d') }} .

templates/email/author-weekly-report-pdf.html.twig

 // ... lines 1 - 11

12

13

14

15

16

 // ... lines 17 - 18

19

20

21

22

 // ... lines 23 - 24

Bring in the table with {{ include('email/_report-table.html.twig') }} .

templates/email/author-weekly-report-pdf.html.twig

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 24

<body>

 <div class="container">

 <div class="row">

 <div class="col-sm-12">

 </div>

 </div>

 </div>

</body>

<body>

 <div class="container">

 <div class="row">

 <div class="col-sm-12">

 <h1>Weekly report {{ 'now'|date('Y-m-d') }}</h1>

 </div>

 </div>

 </div>

</body>

<body>

 <div class="container">

 <div class="row">

 <div class="col-sm-12">

 <h1>Weekly report {{ 'now'|date('Y-m-d') }}</h1>

 {{ include('email/_report-table.html.twig') }}

 </div>

 </div>

 </div>

</body>

Adding CSS to the Template

If we just rendered this and passed the HTML to Snappy, it would work, but would contain no

CSS styling... so it would look like it was designed in the 90's. If you look in base.html.twig ,

this project uses Webpack Encore. The encore_entry_link_tags() function basically

adds the base CSS, which includes Bootstrap.

Copy this line, close that template, and add this to the PDF template.

templates/email/author-weekly-report-pdf.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 24

Even if you're not using Encore, the point is that an easy way to style your PDF is by bringing in

the same CSS that your site uses. Oh, and because our site has a gray background... but I want

my PDF to not share that specific styling, I'll hack in a background-color: #fff .

By the way, if our app needed to generate multiple PDF files, I would absolutely create a PDF

"base template" - like pdfBase.html.twig - so that every PDF could share the same look

and feel. Also, I'm not bringing in any JavaScript tags, but you could if your JavaScript is

responsible for helping render how your page looks.

Ok, we're ready! Next, let's use Snappy to create the PDF, attach it to the email and high-five

ourselves. Because celebrating victories is important!

<head>

 {{ encore_entry_link_tags('app') }}

</head>

Chapter 16: Lets Generate a PDF!

Let's transform this Twig template into a PDF.

Back in AuthorWeeklyReportSendCommand , right before we create the Email , this is

where we'll generate the PDF, so we can attach it. To do that, our command needs two new

services: Environment $twig - yes, it looks weird, but the type-hint to get Twig directly is

called Environment - and Pdf $pdf . That second service comes from SnappyBundle.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 6

7

 // ... lines 8 - 16

17

 // ... line 18

19

20

 // ... lines 21 - 28

29

30

 // ... lines 31 - 37

38

 // ... lines 39 - 84

85

As a reminder, if you don't know what type-hint to use, you can always spin over to your

terminal and run:

php bin/console debug:autowiring pdf

There it is!

Ok, step 1 is to use Twig to render the template and get the HTML:

$html = $this->twig->render() . Oh... PhpStorm doesn't like that... because I forgot to

use Knp\Snappy\Pdf;

use Twig\Environment;

class AuthorWeeklyReportSendCommand extends Command

{

 public function __construct(UserRepository $userRepository,

ArticleRepository $articleRepository, MailerInterface $mailer, Environment

$twig, Pdf $pdf)

 {

 }

}

add the properties! I'll put my cursor on the new arguments, hit Alt+Enter, and select "Initialize

Fields" to create those 2 properties and set them.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 6

7

 // ... lines 8 - 16

17

 // ... line 18

19

20

 // ... lines 21 - 25

26

27

28

29

30

 // ... lines 31 - 35

36

37

38

 // ... lines 39 - 84

85

Now, back to work: $this->twig->render() and pass this the template name -

email/author-weekly-report-pdf.html.twig - and an array of the variables it needs...

which I think is just articles . Pass 'articles' => $articles .

use Knp\Snappy\Pdf;

use Twig\Environment;

class AuthorWeeklyReportSendCommand extends Command

{

 private $twig;

 private $pdf;

 public function __construct(UserRepository $userRepository,

ArticleRepository $articleRepository, MailerInterface $mailer, Environment

$twig, Pdf $pdf)

 {

 $this->twig = $twig;

 $this->pdf = $pdf;

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 46

47

48

 // ... lines 49 - 53

54

 // ... lines 55 - 59

60

61

62

63

64

65

66

67

 // ... lines 68 - 79

80

 // ... lines 81 - 83

84

85

To turn that HTML into PDF content, we can say

$pdf = $this->pdf->getOutputFromHtml($html) .

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 if (count($articles) === 0) {

 continue;

 }

 $html = $this->twig->render('email/author-weekly-report-

pdf.html.twig', [

 'articles' => $articles,

]);

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 46

47

48

 // ... lines 49 - 53

54

 // ... lines 55 - 64

65

66

67

68

 // ... lines 69 - 79

80

 // ... lines 81 - 83

84

85

Cool, right! Behind the scenes, this simple method does a lot: it takes the HTML content, saves

it to a temporary file, then executes wkhtmltopdf and points it at that file. As long as

wkhtmltopdf is set up correctly... and our HTML generates a nice-looking page, it should

work!

If all has gone well, the $pdf variable will now be a string containing the actual PDF content...

which we could do anything with, like save to a file or attach to an email. Why, what a wonderful

idea!

Adding an Attachment

Adding an attachment to an email... probably looks exactly like you would expect:

->attach() . The first argument is the file contents - so $pdf . If you need to attach

something big, you can also use a file resource here - like use fopen on a file and pass the file

handle so you don't need to read the whole thing into memory. The second argument will be the

filename for the attachment. Let's uses weekly-report-%s.pdf and pass today's date for

the wildcard: date('Y-m-d') .

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $html = $this->twig->render('email/author-weekly-report-

pdf.html.twig', [

 'articles' => $articles,

]);

 $pdf = $this->pdf->getOutputFromHtml($html);

 }

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 46

47

48

 // ... lines 49 - 53

54

 // ... lines 55 - 67

68

69

70

 // ... lines 71 - 74

75

 // ... lines 76 - 77

78

79

80

81

 // ... lines 82 - 84

85

86

Love it! We're ready to try this thing. Find your terminal and run:

php bin/console app:author-weekly-report:send

As a reminder, even though this looks like it's sending to six authors, it's a lie! It's really looping

over 6 possible authors, but only sending emails to those that have written an article within the

past 7 days. Because the database fixtures for this project have a bunch of randomness, this

might send to 5 users, 2 users... or 0 users. If it doesn't send any emails, try reloading your

fixtures by running:

php bin/console doctrine:fixtures:load

If you are so lucky that it's sending more than 2 emails, you'll get an error from Mailtrap,

because it limits sending 2 emails per 10 seconds on the free plan. You can ignore the error or

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 $pdf = $this->pdf->getOutputFromHtml($html);

 $email = (new TemplatedEmail())

 ->context([

])

 ->attach($pdf, sprintf('weekly-report-%s.pdf', date('Y-m-

d')));

 $this->mailer->send($email);

 }

 }

}

reload the fixtures.

In my case, in Mailtrap... yea! This sent 2 emails. If I click on the first one... it looks good... and it

has an attachment! Let's open it up!

Oh... ok... I guess it technically worked... but it looks terrible. This definitely did not have

Bootstrap CSS applied to it. The question is: why not?

Next, let's put on our debugging hats, get to the bottom of this mystery, and crush this bug.

Chapter 17: Styling PDFs with CSS

Our PDF attachment looks terrible. I don't know why, but the CSS is definitely not working.

Debugging this can be tricky because, even though this was originally generated from an HTML

page, we can't exactly "Inspect Element" on a PDF to see what went wrong.

So... let's... think about what's happening. The encore_entry_link_tags() function

creates one or more link tags to CSS files, which live in the public/build/ directory. But the

paths it generates are relative - like href="/build/app.css" .

We also know that the getOutputFromHtml() method works by taking the HTML, saving it

to a temporary file and then effectively loading that file in a browser... and creating a PDF from

what it looks like. If you load a random HTML file on your computer into a browser... and that

HTML file has a CSS link tag to /build/app.css , what would happen? Well, it would look for

that file on the filesystem - like literally a /build/ directory at the root of your drive.

That is what's happening behind the scenes. So, the CSS never loads... and the PDF looks like

it was designed... well... by me. We can do better.

Making Absolute CSS Paths

Once you understand what's going on, the fix is pretty simple. Replace

{{ encore_entry_link_tags() }} with

{% for path in encore_entry_css_files('app') %} .

templates/email/author-weekly-report-pdf.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... line 11

12

13

 // ... lines 14 - 26

<head>

 {% for path in encore_entry_css_files('app') %}

 {% endfor %}

</head>

Instead of printing all the link tags for all the CSS files we need, this allows us to loop over them.

Inside, add <link rel="stylesheet" href=""> and then make the path absolute with

absolute_url(path) .

templates/email/author-weekly-report-pdf.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

12

13

 // ... lines 14 - 26

We saw this earlier: we used it to make sure the path to our logo - before we embedded it -

contained the hostname. Now when wkhtmltopdf , more or less, opens the temporary HTML

file in a browser, it will download the CSS from our public site and all should be happy with the

world.

Let's try it! Run the console command:

php bin/console app:author-weekly-report:send

Move back over and... I'll refresh Mailtrap... great! 2 new emails. Check the attachment on the

first one. It looks perfect! I mean, hopefully you're better at styling than I am... and can make this

look even better, maybe with a hot-pink background and unicorn Emojis? I'm still working on my

vision. The point is: the CSS is being loaded.

Let's check the other email to be sure. What? This one looks terrible! The first PDF is good...

and the second one... which was generated the exact same way... has no styling!? What

madness is this!?

Encore: Missing CSS after First PDF?

This is a little gotcha that's specific to Encore. For reasons that are... not that interesting right

now - you can ask me in the comments - when you call an Encore Twig function the first time, it

returns all the CSS files that you need for the app entrypoint. But when we go through the loop

the second time, render a second template and call encore_entry_css_files() for a

<head>

 {% for path in encore_entry_css_files('app') %}

 <link rel="stylesheet" href="{{ absolute_url(path) }}">

 {% endfor %}

</head>

second time, Encore returns an empty array. Basically, you can only call an Encore function for

an entrypoint once per request... or once per console command execution. Every time after, the

method will return nothing.

There's a good reason for this... but it's totally messing us up! No worries, once you know what's

going on, the fix is pretty simple. Find the constructor and add one more argument - I know, it's

getting a bit crowded. It's EntrypointLookupInterface $entrypointLookup . I'll do my

normal Alt + Enter and select "Initialize fields" to create that property and set it.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 16

17

 // ... lines 18 - 19

20

21

 // ... lines 22 - 28

29

30

31

32

 // ... lines 33 - 39

40

41

 // ... lines 42 - 88

89

Down below, right before we render... or right after... it won't matter, say

$this->entrypointLookup->reset() . This tells Encore to forget that it rendered anything

and forces it to return the same array of CSS files on each call.

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

class AuthorWeeklyReportSendCommand extends Command

{

 private $entrypointLookup;

 public function __construct(UserRepository $userRepository,

ArticleRepository $articleRepository, MailerInterface $mailer, Environment

$twig, Pdf $pdf, EntrypointLookupInterface $entrypointLookup)

 {

 $this->entrypointLookup = $entrypointLookup;

 }

}

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 49

50

51

 // ... lines 52 - 56

57

 // ... lines 58 - 62

63

64

65

66

67

 // ... lines 68 - 83

84

 // ... lines 85 - 87

88

89

This should make our PDF wonderful. Run the command one more time:

php bin/console app:author-weekly-report:send

Fly over to Mailtrap and... I'll refresh. Ok, two emails - let's check the second: that's the one

what was broken before. The attachment... looks perfect.

Next, I like to keep my email logic close together and organized - it helps me to keep emails

consistent and, honestly, remember what emails we're sending. Let's refactor the emails into a

service... and eventually, use that to write a unit test.

class AuthorWeeklyReportSendCommand extends Command

{

 protected function execute(InputInterface $input, OutputInterface

$output)

 {

 foreach ($authors as $author) {

 if (count($articles) === 0) {

 continue;

 }

 $this->entrypointLookup->reset();

 }

 }

}

Chapter 18: Organizing Emails Logic into a Service

We're sending two emails: one from a command and the other from

src/Controller/SecurityController.php . The logic for creating and sending these

emails is fairly simple. But even still, I prefer to put all my email logic into one or more services.

The real reason for this is that I like to have all my emails in one spot. That helps me remember

which emails we're sending and what they contain. After all, emails are a strange part of your

site: you send a lot of them... but rarely or never see them! Like, how often do you do a

"password reset" on your own site to check out what that content looks like? Keeping things in

one spot... at least helps with this.

Creating a Mailer Service

So what we're going to do is, in the Service/ directory, create a new class called

FileThatWillSendAllTheEmails ... ah, or, maybe just Mailer ... it's shorter.

src/Service/Mailer.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 14

15

The idea is that this class will have one method for each email that our app sends. Now, if your

app sends a lot of emails, instead of having just one Mailer class, you could instead create a

Mailer/ directory with a bunch of service classes inside - like one per email. In both cases,

you're either organizing your email logic into a single service or multiple services in one

directory.

Start by adding an __construct() method. The one service that we know we're going to

need is MailerInterface $mailer ... because we're going to send emails. I'll hit Alt + Enter

and go to "Initialize fields" to create that property and set it.

namespace App\Service;

class Mailer

{

}

src/Service/Mailer.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ok, let's start with the registration email inside of SecurityController . Ok... to send this

email, the only info we need is the User object. Create a new public function

sendWelcomeMessage() with a User $user argument.

src/Service/Mailer.php

 // ... lines 1 - 4

5

 // ... lines 6 - 12

13

14

 // ... lines 15 - 27

28

29

 // ... lines 30 - 40

41

 // ... lines 42 - 63

64

Then, grab the logic from the controller... everything from $email = to the sending part... and

paste that here. It looks like this class is missing a few use statements... so I'll re-type the "L"

on TemplatedEmail and hit tab, then re-type the S on NamedAddress and hit tab once

more... to add those use statements to the top of this file. Then change $mailer to

$this->mailer .

namespace App\Service;

use Symfony\Component\Mailer\MailerInterface;

class Mailer

{

 private $mailer;

 public function __construct(MailerInterface $mailer)

 {

 $this->mailer = $mailer;

 }

}

use App\Entity\User;

class Mailer

{

 public function sendWelcomeMessage(User $user)

 {

 }

}

 Tip

In Symfony 4.4 and higher, use new Address() - it works the same way as the old

NamedAddress .

src/Service/Mailer.php

 // ... lines 1 - 6

7

 // ... line 8

9

 // ... lines 10 - 12

13

14

 // ... lines 15 - 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 // ... lines 42 - 63

64

I love it! This will simplify life dramatically in SecurityController . Delete all the logic and

then above... replace the MailerInterface argument with our shiny new Mailer class.

use Symfony\Bridge\Twig\Mime\TemplatedEmail;

use Symfony\Component\Mime\NamedAddress;

class Mailer

{

 public function sendWelcomeMessage(User $user)

 {

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com', 'The

Space Bar'))

 ->to(new NamedAddress($user->getEmail(), $user-

>getFirstName()))

 ->subject('Welcome to the Space Bar!')

 ->htmlTemplate('email/welcome.html.twig')

 ->context([

 // You can pass whatever data you want

 //'user' => $user,

]);

 $this->mailer->send($email);

 }

}

src/Controller/SecurityController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 20

21

22

 // ... lines 23 - 50

51

52

 // ... lines 53 - 89

90

91

Below, it's as simple as $mailer->sendWelcomeMessage($user) .

src/Controller/SecurityController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 20

21

22

 // ... lines 23 - 50

51

52

 // ... lines 53 - 55

56

 // ... lines 57 - 74

75

76

77

 // ... lines 78 - 84

85

 // ... lines 86 - 89

90

91

That looks really nice! Our controller is now more readable.

Let's repeat the same thing for our weekly report email. In this case, the two things we need are

the $author that we're going to send to - which is a User object - and the array of articles.

Ok, over in our new Mailer class, add a public function

use App\Service\Mailer;

class SecurityController extends AbstractController

{

 public function register(Mailer $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 }

}

use App\Service\Mailer;

class SecurityController extends AbstractController

{

 public function register(Mailer $mailer, Request $request,

UserPasswordEncoderInterface $passwordEncoder, GuardAuthenticatorHandler

$guardHandler, LoginFormAuthenticator $formAuthenticator)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $em->flush();

 $mailer->sendWelcomeMessage($user);

 }

 }

}

sendAuthorWeeklyReportMessage() with a User object argument called $author and

an array of Article objects.

src/Service/Mailer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 42

43

44

 // ... lines 45 - 62

63

64

Time to steal some code! Back in the command, copy everything related to sending the email...

which in this case includes the entrypoint reset, Twig render, PDF code and the actual email

logic. Paste that into Mailer .

class Mailer

{

 public function sendAuthorWeeklyReportMessage(User $author, array

$articles)

 {

 }

}

src/Service/Mailer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

This time, we need to inject a few more services - for entrypointLookup , twig and pdf .

Let's add those on top: Environment $twig , Pdf $pdf and

EntrypointLookupInterface $entrypointLookup . I'll do my Alt + Enter shortcut and

go to "Initialize fields" to create those three properties and set them.

class Mailer

{

 public function sendAuthorWeeklyReportMessage(User $author, array

$articles)

 {

 $this->entrypointLookup->reset();

 $html = $this->twig->render('email/author-weekly-report-

pdf.html.twig', [

 'articles' => $articles,

]);

 $pdf = $this->pdf->getOutputFromHtml($html);

 $email = (new TemplatedEmail())

 ->from(new NamedAddress('alienmailcarrier@example.com', 'The

Space Bar'))

 ->to(new NamedAddress($author->getEmail(), $author-

>getFirstName()))

 ->subject('Your weekly report on the Space Bar!')

 ->htmlTemplate('email/author-weekly-report.html.twig')

 ->context([

 'author' => $author,

 'articles' => $articles,

])

 ->attach($pdf, sprintf('weekly-report-%s.pdf', date('Y-m-

d')));

 $this->mailer->send($email);

 }

}

src/Service/Mailer.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... line 12

13

14

 // ... line 15

16

17

18

19

20

21

22

23

24

25

26

 // ... lines 27 - 63

64

Back in the method... oh... that's it! We're already using the properties... and everything looks

happy! Oh, and it's minor, but I'm going to move the "entrypoint reset" code below the render.

This is subtle... but it makes sure that the Encore stuff is reset after we render our template. If

some other part of our app calls this methods and then renders its own template, Encore will

now be ready to do work correctly for them.

use Knp\Snappy\Pdf;

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

use Twig\Environment;

class Mailer

{

 private $twig;

 private $pdf;

 private $entrypointLookup;

 public function __construct(MailerInterface $mailer, Environment

$twig, Pdf $pdf, EntrypointLookupInterface $entrypointLookup)

 {

 $this->mailer = $mailer;

 $this->twig = $twig;

 $this->pdf = $pdf;

 $this->entrypointLookup = $entrypointLookup;

 }

}

src/Service/Mailer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 42

43

44

45

46

47

48

 // ... lines 49 - 62

63

64

Anyways, let's use this in the command. Delete all of this logic and... in the constructor, change

the $mailer argument to Mailer $mailer . Now we get to delete stuff! Take off the $twig ,

$pdf and $entrypointLookup arguments, clear them from the constructor and remove

their properties. If you really want to make things squeaky-clean, we now have a bunch of

"unused" use statements that are totally useless.

src/Command/AuthorWeeklyReportSendCommand.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

16

 // ... lines 17 - 20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 61

62

class Mailer

{

 public function sendAuthorWeeklyReportMessage(User $author, array

$articles)

 {

 $html = $this->twig->render('email/author-weekly-report-

pdf.html.twig', [

 'articles' => $articles,

]);

 $this->entrypointLookup->reset();

 }

}

use App\Service\Mailer;

class AuthorWeeklyReportSendCommand extends Command

{

 private $mailer;

 public function __construct(UserRepository $userRepository,

ArticleRepository $articleRepository, Mailer $mailer)

 {

 parent::__construct(null);

 $this->userRepository = $userRepository;

 $this->articleRepository = $articleRepository;

 $this->mailer = $mailer;

 }

}

Back down, call the method with $this->mailer->sendWeeklyReportMessage()

passing $author and $articles .

tests/MailerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

Phew! This really simplifies the controller & command... and now I know exactly where to look

for all email-related code. Let's... just make sure I didn't break anything. Run:

php bin/console app:author-weekly-report:send

No errors... and in Mailtrap... yep! 2 emails... with an attachment!

Next, sending emails is scary! So let's add some tests. We'll start by adding a unit test and later,

an integration test, functional test... and a final exam that will be worth 50% of your grade for the

semester. Ok... no final exam - but we will do that other stuff.

namespace App\Tests;

use PHPUnit\Framework\TestCase;

class MailerTest extends TestCase

{

 public function testSomething()

 {

 $this->assertTrue(true);

 }

}

Chapter 19: Unit Testing our Emails

Other than code organization, one of the benefits of putting logic into a service is that we can

unit test it. Ok, to be fully honest, this chapter doesn't have a lot to do with Mailer. Unit tests

pretty much look the same no matter what you're testing. But unit testing is a great practice...

and I hate when code does weird things... especially code that sends emails.

make:unit-test

Let's use MakerBundle to bootstrap a test for us. At your terminal, run:

php bin/console make:unit-test

Answer MailerTest . This generates a super simple unit test file: tests/MailerTest.php .

tests/MailerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

The idea is that this will test the Mailer class, which lives in the Service/ directory. Inside

tests/ , create a new Service/ directory to match that and move MailerTest inside. You

typically want your test directory structure to match your src/ structure. Inside the file, don't

forget to add \Service to the namespace to match the new location.

namespace App\Tests;

use PHPUnit\Framework\TestCase;

class MailerTest extends TestCase

{

 public function testSomething()

 {

 $this->assertTrue(true);

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 12

13

Running the Tests

Ok! Our test asserts that true is true! I'm not so easily convinced... we better run PHPUnit to be

sure. At your terminal, run it with:

php bin/phpunit

This script is a small wrapper around PHPUnit... and it will install PHPUnit the first time you run

it. Then... it passes!

Oh! But it did print out a deprecation notice. One of the superpowers of this wrapper around

PHPUnit - called the phpunit-bridge - is that it prints out warnings about any deprecated code

that the code in your tests hit. This is a great tool when you're getting ready to upgrade your app

to the next major Symfony version. But more on that in a future tutorial. We'll just ignore these.

 Go Deeper!

If PHPUnit is new for you - or you just want to go deeper - check out our dedicated PHPUnit

Tutorial.

Writing the Unit Test

Let's get to work! So... what are we going to test? Well, we probably want to test that the mail

was actually sent... and maybe we'll assert a few things about the Email object itself. Unit tests

always start the same way: by instantiating the class you want to test.

Back in MailerTest , rename the method to testSendWelcomeMessage() .

namespace App\Tests\Service;

class MailerTest extends TestCase

{

}

https://symfonycasts.com/screencast/phpunit
https://symfonycasts.com/screencast/phpunit

tests/Service/MailerTest.php

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 30

31

32

Then add $mailer = new Mailer() . For this to work, we need to pass the 4 dependencies:

objects of the types MailerInterface , Twig , Pdf and EntrypointLookupInterface .

In a unit test, instead of using real objects that really do send emails... or render Twig templates,

we use mocks.

For the first, say $symfonyMailer = this->createMock() ... and because the first

argument needs to be an instance of MailerInterface , that's what we'll mock:

MailerInterface::class .

tests/Service/MailerTest.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

14

15

16

17

 // ... lines 18 - 30

31

32

To make sure we don't forget to actually send the email, we can add an assertion to this mock:

we can tell PHPUnit that the send method must be called exactly one time. Do that with

$symfonyMailer->expects($this->once()) that the ->method('send') is called.

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 }

}

use Symfony\Component\Mailer\MailerInterface;

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 $symfonyMailer = $this->createMock(MailerInterface::class);

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 8

9

 // ... lines 10 - 12

13

14

15

16

17

18

19

 // ... lines 20 - 30

31

32

Let's create the 3 other mocks: $pdf = this->createMock(Pdf::class) ... and the other

two are for Environment and EntrypointLookupInterface :

$twig = $this->createMock(Environment::class) and

$entrypointLookup = $this->createMock(EntrypointLookupInterface::class) .

tests/Service/MailerTest.php

 // ... lines 1 - 6

7

 // ... line 8

9

10

11

 // ... line 12

13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 30

31

32

use Symfony\Component\Mailer\MailerInterface;

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 $symfonyMailer = $this->createMock(MailerInterface::class);

 $symfonyMailer->expects($this->once())

 ->method('send');

 }

}

use Knp\Snappy\Pdf;

use Symfony\Component\Mailer\MailerInterface;

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

use Twig\Environment;

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 $symfonyMailer = $this->createMock(MailerInterface::class);

 $symfonyMailer->expects($this->once())

 ->method('send');

 $pdf = $this->createMock(Pdf::class);

 $twig = $this->createMock(Environment::class);

 $entrypointLookup = $this-

>createMock(EntrypointLookupInterface::class);

 }

}

These three objects aren't even used in this method... so we don't need to add any assertions to

them or configure any behavior. Finish the new Mailer() line by passing $symfonyMailer ,

$twig , $pdf and $entrypointLookup . Then, call the method:

$mailer->sendWelcomeMessage() . Oh, to do this, we need a User object.

tests/Service/MailerTest.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 28

29

30

31

32

Should we mock the User object? We could, but as a general rule, I like to mock services but

manually instantiate simple "data" objects, like Doctrine entities. The reason is that these

classes don't have dependencies and it's usually dead-simple to put whatever data you need on

them. Basically, it's easier to create the real object, than create a mock.

Start with $user = new User() . And... let's see... the only information that we use from

User is the email and first name. For $user->setFirstName() , let's pass the name of my

brave co-author for this tutorial: Victor ! And for $user->setEmail() , him again

victor@symfonycasts.com . Give this $user variable to the sendWelcomeMessage()

method.

use App\Service\Mailer;

use Knp\Snappy\Pdf;

use PHPUnit\Framework\TestCase;

use Symfony\Component\Mailer\MailerInterface;

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

use Twig\Environment;

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 $symfonyMailer = $this->createMock(MailerInterface::class);

 $symfonyMailer->expects($this->once())

 ->method('send');

 $pdf = $this->createMock(Pdf::class);

 $twig = $this->createMock(Environment::class);

 $entrypointLookup = $this-

>createMock(EntrypointLookupInterface::class);

 $mailer = new Mailer($symfonyMailer, $twig, $pdf,

$entrypointLookup);

 $mailer->sendWelcomeMessage($user);

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

By the way, if you're enjoying this tutorial, you can thank Victor personally by emailing him

photos of your cat or by sending tuna directly to his cat Ponka.

And... done! We're not asserting anything down here... but we do have one built-in assert

above: our test will fail unless the send() method is called exactly once.

Let's try this! Fly over to your terminal, I'll clear my screen, then run:

php bin/phpunit

use App\Entity\User;

use App\Service\Mailer;

use Knp\Snappy\Pdf;

use PHPUnit\Framework\TestCase;

use Symfony\Component\Mailer\MailerInterface;

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

use Twig\Environment;

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 $symfonyMailer = $this->createMock(MailerInterface::class);

 $symfonyMailer->expects($this->once())

 ->method('send');

 $pdf = $this->createMock(Pdf::class);

 $twig = $this->createMock(Environment::class);

 $entrypointLookup = $this-

>createMock(EntrypointLookupInterface::class);

 $user = new User();

 $user->setFirstName('Victor');

 $user->setEmail('victor@symfonycasts.com');

 $mailer = new Mailer($symfonyMailer, $twig, $pdf,

$entrypointLookup);

 $mailer->sendWelcomeMessage($user);

 }

}

It passes! The power!

Asserting Info on the Email

The tricky thing is that the majority of this method is about creating the Email ... and we're not

testing what that object looks like at all. And... maybe we don't need to? I tend to unit test logic

that scares me and manually test other things - like the wording inside an email. But let's at

least assert a few basic things.

How? An easy way is to return the email from each method: return $email and then

advertise that this method returns a TemplatedEmail . I'll do the same for the other method:

return $email and add the TemplatedEmail return type.

src/Service/Mailer.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 27

28

29

 // ... lines 30 - 41

42

43

 // ... line 44

45

46

 // ... lines 47 - 65

66

67

68

You don't have to do this, but it'll make our unit test more useful and keep it simple. Now we can

say $email = $mailer->sendWelcomeMessage() and we can check pretty much

anything on that email.

I'll paste in some asserts:

class Mailer

{

 public function sendWelcomeMessage(User $user): TemplatedEmail

 {

 return $email;

 }

 public function sendAuthorWeeklyReportMessage(User $author, array

$articles): TemplatedEmail

 {

 return $email;

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 13

14

15

16

17

 // ... lines 18 - 29

30

31

32

33

34

35

36

37

38

39

40

41

 Tip

In Symfony 4.4 and higher, use new Address() - it works the same way as the

NamedAddress we use here.

These check the subject, that the email is sent to exactly one person and checks to make sure

that the "to" has the right info.

Let's give this a try! Move over and run:

php bin/phpunit

All green! Next, let's do this same thing for the author weekly report email. Actually... the "email"

part of this method is, once again, pretty simple. The complex part is the PDF-generation logic.

Want to test to make sure the template actually renders correctly and the PDF is truly created?

We can't do that with a pure unit test... but we can with an integration test. That's next.

class MailerTest extends TestCase

{

 public function testSendWelcomeMessage()

 {

 $mailer = new Mailer($symfonyMailer, $twig, $pdf,

$entrypointLookup);

 $email = $mailer->sendWelcomeMessage($user);

 $this->assertSame('Welcome to the Space Bar!', $email-

>getSubject());

 $this->assertCount(1, $email->getTo());

 /** @var NamedAddress[] $namedAddresses */

 $namedAddresses = $email->getTo();

 $this->assertInstanceOf(NamedAddress::class, $namedAddresses[0]);

 $this->assertSame('Victor', $namedAddresses[0]->getName());

 $this->assertSame('victor@symfonycasts.com', $namedAddresses[0]-

>getAddress());

 }

}

Chapter 20: Integration Testing Emails

I also want to test the method that sends the weekly update email. But because the real

complexity of this method is centered around generating the PDF, instead of a unit test, let's

write an integration test.

In MailerTest , add a second method:

testIntegrationSendAuthorWeeklyReportMessage() .

tests/Service/MailerTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 42

43

44

 // ... lines 45 - 58

59

60

Let's start the same way as the first method: copy all of its code except for the asserts, paste

them down here and change the method to sendAuthorWeeklyReportMessage() .

class MailerTest extends TestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This needs a User object... but it also needs an array of articles. Let's create one:

$article = new Article() . These articles are passed to the template where we print

their title. So let's at least populate that property: $article->setTitle() :

“Black Holes: Ultimate Party Pooper”

class MailerTest extends TestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 $symfonyMailer = $this->createMock(MailerInterface::class);

 $symfonyMailer->expects($this->once())

 ->method('send');

 $pdf = $this->createMock(Pdf::class);

 $twig = $this->createMock(Environment::class);

 $entrypointLookup = $this-

>createMock(EntrypointLookupInterface::class);

 $user = new User();

 $user->setFirstName('Victor');

 $user->setEmail('victor@symfonycasts.com');

 $mailer = new Mailer($symfonyMailer, $twig, $pdf,

$entrypointLookup);

 $email = $mailer->sendWelcomeMessage($user);

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 4

5

 // ... lines 6 - 14

15

16

 // ... lines 17 - 42

43

44

 // ... lines 45 - 52

53

54

55

56

57

 // ... lines 58 - 60

61

62

Use this for the 2nd argument of sendAuthorWeeklyReportMessage() : an array with just

this inside.

tests/Service/MailerTest.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 42

43

44

 // ... lines 45 - 52

53

54

55

56

57

58

59

60

61

62

Unit Versus Integration Test

use App\Entity\Article;

class MailerTest extends TestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 $user = new User();

 $user->setFirstName('Victor');

 $user->setEmail('victor@symfonycasts.com');

 $article = new Article();

 $article->setTitle('Black Holes: Ultimate Party Pooper');

 }

}

class MailerTest extends TestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 $user = new User();

 $user->setFirstName('Victor');

 $user->setEmail('victor@symfonycasts.com');

 $article = new Article();

 $article->setTitle('Black Holes: Ultimate Party Pooper');

 $mailer = new Mailer($symfonyMailer, $twig, $pdf,

$entrypointLookup);

 $email = $mailer->sendAuthorWeeklyReportMessage($user,

[$article]);

 }

}

It's time to think strategically about our mocks. Right now, every dependency is mocked, which

means it's a pure unit test. If we kept doing this, we could probably make sure that whatever

render() returns is passed to the PDF function... and even assert that whatever that returns

is passed to the attach() method. It's not bad, but because the logic in this method isn't

terribly complex, its usefulness is limited.

What really scares me is the PDF generation: does my Twig template render correctly? Does

the PDF generation process work... and do I really get back PDF content? To test this, instead

of mocking $twig and $pdf , we could use the real objects. That would make this an

integration test. These are often more useful than unit tests... but are also much slower to run,

and it will mean that I really do need to have wkhtmltopdf installed on this machine,

otherwise my tests will fail. Tradeoffs!

So here's the plan: use the real $twig and $pdf objects but keep mocking

$symfonyMailer and $entrypointLookup ... because I don't really want to send emails...

and the $entrypointLookup doesn't matter unless I want to test that it does reset things

correctly between rendering 2 PDFs.

Become an Integration Test!

To make this test able to use real objects, we need to change extends from TestCase to

KernelTestCase .

tests/Service/MailerTest.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

 // ... lines 18 - 62

63

That class extends the normal TestCase but gives us the ability to boot Symfony's service

container in the background. Specifically, it gives us the ability, down in the method, to say:

self::bootKernel() .

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class MailerTest extends KernelTestCase

{

}

tests/Service/MailerTest.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

 // ... lines 18 - 43

44

45

46

47

 // ... lines 48 - 61

62

63

That will give us the ability to fetch real service objects and use them.

Fetching out Services

So we'll leave $symfonyMailer mocked, leave the $entrypointLookup mocked, but for

the Pdf , get the real Pdf service. How? In the test environment, we can fetch things out of the

container using the same type-hints as normal. So, $pdf = self::$container -

bootKernel() set that property - ->get() passing this Pdf::class . Do the same for

Twig: self::$container->get(Environment::class) .

 Tip

Starting in Symfony 5.3, instead of self::$container , use

static::getContainer() to get the container from inside a test. Also, calling

bootKernel() is no longer needed.

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class MailerTest extends KernelTestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 self::bootKernel();

 $symfonyMailer = $this->createMock(MailerInterface::class);

 }

}

tests/Service/MailerTest.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

 // ... lines 18 - 43

44

45

46

 // ... lines 47 - 49

50

51

 // ... lines 52 - 61

62

63

I love that! Again, the downside is that you really do need to have wkhtmltopdf installed

correctly anywhere you run your tests. That's the cost of doing this.

Before we try it, at the bottom, we don't have any asserts yet. Let's add at least one:

$this->assertCount() that 1 is the count of $email->getAttachments() .

tests/Service/MailerTest.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 43

44

45

 // ... lines 46 - 60

61

62

63

64

We could go further and look closer at the attachment... maybe make sure that it looks like it's in

a PDF format... but this is a good start.

Now let's try this. Find your terminal and run our normal:

php bin/phpunit

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class MailerTest extends KernelTestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 self::bootKernel();

 $pdf = self::$container->get(Pdf::class);

 $twig = self::$container->get(Environment::class);

 }

}

class MailerTest extends KernelTestCase

{

 public function testIntegrationSendAuthorWeeklyReportMessage()

 {

 $email = $mailer->sendAuthorWeeklyReportMessage($user,

[$article]);

 $this->assertCount(1, $email->getAttachments());

 }

}

It is slower this time... and then.. ah! What just happened? Two things. First, because this

booted up a lot more code, we're seeing a ton of deprecation warnings. These are annoying...

but we can ignore them.

Caching Driver in the test Environment

The second thing is that... the test failed! But... weird - not how I expected: something about

APCu is not enabled. Huh? Why is it suddenly trying to use APCu?

The cause of this is specific to our app... but it's an interesting situation. Open up

config/packages/cache.yaml .

config/packages/cache.yaml

1

2

 // ... lines 3 - 14

15

 // ... lines 16 - 21

See this app key? This is where you can tell Symfony where it should store things that need to

be added to cache at runtime - like the filesystem, redis or APCu. In an earlier tutorial, we set

this to a parameter that we invented: %cache_adapter% .

This allows us to do something cool. Open config/services.yaml .

config/services.yaml

 // ... lines 1 - 5

6

7

 // ... lines 8 - 53

Here, we set cache_adapter to cache.adapter.apcu : we told Symfony to store cache in

APCu. And... apparently, I don't have that extension installed on my local machine.

Ok... fine... but then... how the heck is the website working? Shouldn't we be getting this error

everywhere? Yep... except that we override this value in services_dev.yaml - a file that is

only loaded in the dev environment. Here we tell it to use cache.adapter.filesystem .

config/services_dev.yaml

1

2

framework:

 cache:

 app: '%cache_adapter%'

parameters:

 cache_adapter: cache.adapter.apcu

parameters:

 cache_adapter: 'cache.adapter.filesystem'

This is great! It means that we don't need any special extension for the cache system while

developing... but on production, we use the superior APCu.

The problem now is that, when we run our tests, those are run in the test environment... and

since the test environment doesn't load services_dev.yaml , it's using the default APCu

adapter! By the way, there is a services_test.yaml file... but it has nothing in it. In fact, you

can delete this: it's for a feature that's not needed anymore.

So, honestly... I should have set this all up better. And now, I will. Change the default cache

adapter to cache.adapter.filesystem .

config/services.yaml

 // ... lines 1 - 5

6

7

 // ... lines 8 - 53

Then, only in the prod environment, let's change this to apcu . To do that, rename

services_dev.yaml to services_prod.yaml ... and change the parameter inside to

cache.adapter.apcu .

config/services_prod.yaml

1

2

Now the test environment should use the filesystem. Let's try it!

php bin/phpunit

And... if you ignore the deprecations... it worked! It actually generated the PDF inside the test!

To totally prove it, real quick, in the test, var_dump($email->getAttachments()) ... and

run the test again:

php bin/phpunit

Yea! It's so ugly. The attachment is some DataPart object and you can see the crazy PDF

content inside. Go take off that dump.

parameters:

 cache_adapter: cache.adapter.filesystem

parameters:

 cache_adapter: 'cache.adapter.apcu'

Ok, the last type of test is a functional test. And this is where things get more interesting...

especially in relation to Mailer. If we want to make a functional test for the registration form... do

we expect our test to send a real email? Or should we disable email delivery somehow while

testing? And, in both cases, is it possible to submit the registration form in a functional test and

then assert that an email was in fact sent? Ooo. This is good stuff!

Chapter 21: Functional Testing with Emails

When we originally added our Mailtrap config... I was a bit lazy. I put the value into .env . But

because that file is committed... we really shouldn't put any sensitive values into it. Well, you

could argue that Mailtrap credentials aren't that sensitive, but let's fix this properly. Copy the

MAILER_DSN and open .env.local .

If you don't have a .env.local file yet, just create it. I already have one so that I can

customize my local database config. The values in this file override the ones in .env . And

because this file is ignored by .gitignore , these values won't be committed.

Back in .env , let's set MAILER_DSN back to the original value, which was

smtp://localhost .

.env

 // ... lines 1 - 37

38

39

40

 // ... lines 41 - 46

And yes, this does mean that when a developer clones the project, unless they customize

MAILER_DSN in their own .env.local file, they'll get an error if they try to register... or do

anything that sends an email. We'll talk more about that in a few minutes.

Creating a Functional Test

Back to my real goal: writing a functional test for the registration page. Because a successful

registration causes an email to be sent... I'm curious how that will work. Will an email actually be

sent to Mailtrap? Do we want that?

To create the test, be lazy and run:

###> symfony/mailer ###

MAILER_DSN=smtp://localhost

###

php bin/console make:functional-test

And... we immediately get an error: we're missing some packages. I'll copy the

composer require browser-kit part. Panther isn't technically needed to write functional

tests... and this error message is fixed in a newer version of this bundle. But, Panther is an

awesome way to write functional tests that rely on JavaScript.

Anyways, run

composer require browser-kit --dev

... and we'll wait for that to install. Once it finishes, I'll clear the screen and try

make:functional-test again:

php bin/console make:functional-test

Access granted! I want to test SecurityController - specifically the

SecurityController::register() method. I'll follow the same convention we used for

the unit test: call the class SecurityControllerTest .

Done! This creates a simple functional test class directly inside of tests/ .

tests/SecurityControllerTest.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

We don't have to, but to make this match the src/Controller directory structure, create a

new Controller/ folder inside of tests/ ... and move the test file there. Don't forget to add

\Controller to the end of its namespace.

tests/Controller/SecurityControllerTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 16

17

And, again, to stay somewhat conventional, let's rename the method to testRegister() .

tests/Controller/SecurityControllerTest.php

 // ... lines 1 - 6

7

8

9

10

 // ... lines 11 - 24

25

26

Writing the Registration Functional Test

namespace App\Tests;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class SecurityControllerTest extends WebTestCase

{

 public function testSomething()

 {

 $client = static::createClient();

 $crawler = $client->request('GET', '/');

 $this->assertResponseIsSuccessful();

 $this->assertSelectorTextContains('h1', 'Hello World');

 }

}

namespace App\Tests\Controller;

class SecurityControllerTest extends WebTestCase

{

}

class SecurityControllerTest extends WebTestCase

{

 public function testRegister()

 {

 }

}

We won't go too deep into the details of how to write functional tests, but it's a pretty simple

idea. First, we create a $client object - which is almost like a "browser": it helps us make

requests to our app. In this case, we want to make a GET request to /register to load the

form.

tests/Controller/SecurityControllerTest.php

 // ... lines 1 - 6

7

8

9

10

11

12

 // ... lines 13 - 24

25

26

The assertResponseIsSuccessful() method is a helper assertion from Symfony that will

make sure the response wasn't an error or a redirect.

tests/Controller/SecurityControllerTest.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

 // ... lines 15 - 24

25

26

Now... I'll remove the assertSelectorTextContains() ... and paste in the rest of the test.

class SecurityControllerTest extends WebTestCase

{

 public function testRegister()

 {

 $client = static::createClient();

 $crawler = $client->request('GET', '/register');

 }

}

class SecurityControllerTest extends WebTestCase

{

 public function testRegister()

 {

 $client = static::createClient();

 $crawler = $client->request('GET', '/register');

 $this->assertResponseIsSuccessful();

 }

}

tests/Controller/SecurityControllerTest.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Let's see: this goes to /register , finds the Register button by its text, and then fills out all

the form fields. These funny-looking values are literally the name attributes of each element if

you looked at the source HTML. After submitting the form, we assert that the response is a

redirect... which is an easy way to assert that the form submit was successful. If there's a

validation error, it re-renders without redirecting.

We've used the registration form on this site... about 100 times. So we know it works... and so

this test should pass. Whenever you say that something "should" work in programming... do you

ever get the sinking feeling that you're about to eat your words? Ah, I'm sure nothing bad will

happen in this case. Let's try it!

At your terminal, run just this test with:

php bin/phpunit tests/Controller/SecurityControllerTest.php

class SecurityControllerTest extends WebTestCase

{

 public function testRegister()

 {

 $client = static::createClient();

 $crawler = $client->request('GET', '/register');

 $this->assertResponseIsSuccessful();

 $button = $crawler->selectButton('Register');

 $form = $button->form();

 $form['user_registration_form[firstName]']->setValue('Ryan');

 $form['user_registration_form[email]']-

>setValue(sprintf('foo%s@example.com', rand()));

 $form['user_registration_form[plainPassword]']-

>setValue('space_rocks');

 $form['user_registration_form[agreeTerms]']->tick();

 $client->submit($form);

 $this->assertResponseRedirects();

 }

}

Deprecation notices of course... and... woh! It failed! And dumped some giant HTML... which is

impossible to read... unless you go all the way to the top. Ah!

“Failed asserting that the Response is redirected: 500 internal server error.”

And down in the HTML:

“Connection could not be established with host tcp://localhost:25”

The test Environment Doesn't Read .env.local

Huh. That's coming from sending the email... but why is it trying to connect to localhost? Our

config in .env.local is set up to talk to Mailtrap.

Well... there's a little gotcha about the .env system. I mean... it's a feature! When you're in the

test environment, the .env.local file is not loaded. In every other situation - like the prod

or the dev environments - it is loaded. But in test , it's not. It's madness!

Well, it definitely is surprising the first time you see this, but there is a good reason for it. In

theory, your committed .env.test file should contain all the configuration needed for the

test environment to work... on any machine. And so, you actually don't want your local values

from .env.local to override the stuff in .env.test - that might break how the tests are

supposed to behave.

The point is, since the .env.local file is not being loaded in our tests, it's using the .env

settings for MAILER_DSN ... which is connecting to localhost .

How can we fix this? The simplest answer is to copy the MAILER_DSN from .env.local into

.env.test . This isn't a great solution because .env.test is committed... and so we would

once again be committing our Mailtrap credentials to the repository. You can get around this by

creating a .env.test.local file - that's a file that's loaded in the test environment but not

committed - but let's just do this for now and see if we can get things working. Later, we'll talk

about a better option.

Ok, go tests go!

php bin/phpunit tests/Controller/SecurityControllerTest.php

This time... it passes! Spin back over and inside Mailtrap... there it is! The test actually sent an

email! Wait... is that what we want? Let's improve this next by preventing emails from our test

from actually being delivered. Then, we'll talk about how we can add assertions to guarantee

that the right email was sent.

Chapter 22: Email Delivery & Assertions in Tests

We just got our registration functional test to pass. But to do it, we had to configure the test

environment with our Mailtrap credentials. And that means that each time we run our tests, an

email is actually being delivered to Mailtrap!

Ok, in reality, because we're using Mailtrap... we're not really sending test emails to real people.

But delivering emails inside our tests is a bummer for a few reasons: it adds a lot of garbage

emails to Mailtrap, it slows down our tests and it means that we need to worry about configuring

real Mailtrap credentials just to check if our registration test passes.

The truth is, we don't really need emails to be sent in the test environment. We do want the

Email objects to be created and processed by Mailer... but if at the last second Mailer... just...

didn't actually deliver them... that would be cool! We could try to do this by, maybe adding an if

statement around $this->mailer->send() if we're in the test environment... but that

would be a pain... and ugly.

The Null Transport

Way earlier in the tutorial, I mentioned that the way an email is delivered is called a "transport".

In .env , we're using the smtp transport to talk to the localhost server. In .env.local ,

this is also using the smtp transport to talk to the Mailtrap server. So far, smtp is the only

transport we've seen.

Well, prepare to be amazed! Introducing the laziest, do-nothing... but mysteriously useful

transport ever: the null transport! When you deliver an email via the null transport... your

email goes... nowhere.

Hey! That's exactly what we want to do in the test environment! Inside .env.test , change

MAILER_DSN to smtp://null .

.env.test

 // ... lines 1 - 5

6

 // ... lines 7 - 9

MAILER_DSN=smtp://null

Side note! This syntax changed in Symfony 4.4 to null://default - where the start of the

string defines the transport type. We'll talk more about transports in a few minutes when we

start using SendGrid.

.env.test

 // ... lines 1 - 5

6

7

8

Anyways, let's try the test now:

php bin/phpunit tests/Controller/SecurityControllerTest.php

It passes and... yea! There were no email sent to Mailtrap. The test also ran about twice as fast.

Using the Null Transport by Default?

But wait, there's more! The null transport is perfect for the test environment. And... it might

also be a good candidate as the default transport.

Hear me out. If a new developer cloned this project, they would not have a .env.local file.

And so, out-of-the-box, mailer would use the smtp://localhost setting. What if this

developer was really a designer that wanted to work on styling the registration process. Well...

surprise! The moment they submit the form successfully, they'll be congratulated with a lovely

500 error. And they'll be off to find you to figure out how to fix it. That's no good for anyone.

That's why using the null transport in .env might be a perfect default. Then, if someone

actually wants to test how the emails look, then they can take some time to configure their

.env.local file to use Mailtrap.

Let's do this: change MAILER_DSN to smtp://null . Use null://default on Symfony 4.4

or higher.

MAILER_DSN=smtp://null

in Symfony 4.4 and higher, the syntax is

MAILER_DSN=null://default

.env

 // ... lines 1 - 37

38

39

40

41

42

 // ... lines 43 - 48

Over in .env.test , we don't need to override anything. So, remove MAILER_DSN .

Asserting Emails were Sent

We can now use the site and run our tests without needing to manually configure mailer. Cool!

But we can still make our functional test a little bit more fun.

In SecurityControllerTest , we are testing that the registration form works. But we are not

asserting that an email was in fact sent or... that the email has the right details.

And, while that might not be a huge deal, we can add these types of assertions. Well, actually I

can't add them... because this project uses Symfony 4.3. Symfony 4.4 adds a number of new

features that make this a pleasure.

Google for "Symfony 4.4 mailer testing" to find a blog post about this fancy new stuff. It's... just...

awesome. The setup is the same, but after each request, you can choose from a bunch of

assertions to check that the correct number of emails were sent, that it was sent to the right

person, the subject... anything!

In our test class, after submitting the form, I'll paste in some assertions that I will use... once I

upgrade this app to Symfony 4.4. This checks that one email was sent and then fetches the

Email object itself, which you can then use to make sure any part of it is correct.

I'll comment these out for now.

###> symfony/mailer ###

MAILER_DSN=smtp://null

in Symfony 4.4 and higher, the syntax is

MAILER_DSN=null://default

###

tests/Controller/SecurityControllerTest.php

 // ... lines 1 - 6

7

8

9

10

 // ... lines 11 - 23

24

25

26

27

28

29

30

31

32

Next, it's time to send some real emails people! It's time to get ready for production! Let's

register with a cloud email sender and get it working in our app. We're also going to learn more

about Mailer's "transport" system.

class SecurityControllerTest extends WebTestCase

{

 public function testRegister()

 {

 $this->assertResponseRedirects();

 /* Symfony 4.4:

 $this->assertEmailCount(1);

 $email = $this->getMailerMessage(0);

 $this->assertEmailHeaderSame($email, 'To', 'fabien@symfony.com');

 */

 }

}

Chapter 23: SendGrid & All About Transports

In .env , we're using the null transport. In .env.local , we're overriding that to send to

Mailtrap. This is great for development, but it's time for our app to grow up, get a job, and join

the real world. It's time for our app to send real emails through a real email server.

To do that, I recommend using a cloud-based email service... and Symfony Mailer can send to

any service that supports the SMTP protocol... which is all of them. We did this for Mailtrap

using the {username}:{password}@{server}:{port} syntax.

But to make life even nicer, Mailer has special support for the most common email services, like

SendGrid, Postmark, Mailgun, Amazon SES and a few others. Let's use SendGrid.

Before we even create an account on SendGrid, we can jump in and start configuring it. In

.env.local , comment-out the Mailtrap MAILER_DSN and replace it with

MAILER_DSN=smtp://sendgrid . In Symfony 4.4, the syntax changed to

sendgrid://default .

#MAILER_DSN=smtp://USERNAME:PASSWORD@smtp.mailtrap.io:2525

MAILER_DSN=smtp://sendgrid

Symfony 4.4+ syntax

#MAILER_DSN=sendgrid://default

All About Transports

So far, we've seen two transports - two ways of delivering emails: the smtp transport and the

null transport. Symfony also has a sendgrid transport, as well as a mailgun transport

amazonses transport and many others.

In Symfony 4.3, you choose which transport you want by saying smtp:// and then the name

of one of those transports, like null or sendgrid . In Symfony 4.4 and higher, this is different.

The syntax is the transport name, like null or sendgrid then :// and whatever other

options that transport needs. The word default is a dummy placeholder that's used when you

don't need to configure a "server", like for the null transport or for sendgrid , because that

transport already knows internally what the address is to the SendGrid servers.

Anyways, whether you're in Symfony 4.3 with the old syntax or Symfony 4.4 with the new one,

this is how you say: "I want to deliver emails via the SendGrid transport".

At this point, some of you might be screaming

“Wait! That can't possibly be all the config we need to send emails!”

And you're 1000% percent correct. This doesn't contain any SendGrid username, or API key.

Heck, we haven't even created a SendGrid account yet! All true, all true. But let's... try it

anyways. Because, Symfony is going to guide us through the process. How nice!

Let Symfony Guide You to Configure the Transport

Head over to the browser and refresh. Woh! An immediate error:

“Unable to send emails via Sendgrid as the bridge is not installed.”

This is another example of Symfony making it easy to do something... but without bloating our

project with stuff we don't need. Now that we do want to use Sendgrid, it helps us install the

required library. Copy the composer require line, spin over to your terminal and paste:

composer require symfony/sendgrid-mailer

Ooh, this package came with a recipe! Let's see what it did:

git status

In addition to the normal stuff, this also modified our .env file. Let's see how:

git diff .env

Cool! The recipe added a new section to the bottom! Back in our editor, let's see what's going

on in .env :

.env

 // ... lines 1 - 48

49

50

51

52

Yea... this makes sense. We know that mailer is configured via a MAILER_DSN environment

variable... and so when we installed the SendGrid mailer package, its recipe added a

suggestion of how that variable should look in order to work with SendGrid.

SendGrid Symfony 4.4 Config Format

Now, two important notes about this. First, when you install this package in Symfony 4.4, the

config added by the recipe will look a bit different: it will add just one line:

MAILER_DSN=sendgrid://KEY@default

Like we just talked about, this is because Symfony 4.4 changed the config format: the "transport

type" is now at the beginning. The KEY is a placeholder: we'll replace with a real API key in a

few minutes. And the @default part just tells the SendGrid transport to send the message to

whatever the actual SendGrid hostname is.... we don't need to worry about configuring that.

A Note about Environment Variables inside Environment
Variables

Now, if you look at the config that Symfony 4.3 uses, you'll notice the second important thing:

this defines two environment variables. Gasp! It defines SENDGRID_KEY and then

MAILER_DSN . This... is just a config trick. See how the MAILER_DSN value contains

$SENDGRID_KEY? It's using that variable: it's environment variables inside environment

variables! With this setup, you could commit this MAILER_DSN value to .env and then only

need to override SENDGRID_KEY in .env.local .

###> symfony/sendgrid-mailer ###

SENDGRID_KEY=

MAILER_DSN=smtp://$SENDGRID_KEY@sendgrid

###

This idea - the idea of using environment variables inside environment variables totally works in

Symfony 4.4. But to keep the config a bit simpler, in Symfony 4.4 - you won't see this two-

variable system in the recipe. Instead, we'll configure the entire MAILER_DSN value. After all,

it's a pretty short string.

Next... let's actually do that configuration! It's time to create a SendGrid account and start using

it.

Chapter 24: Production Settings with SendGrid

If we're going to send emails with SendGrid... we... probably need an account! Head to

sendgrid.com and click to register. I'll create a shiny new symfonycasts username, a

thought-provoking password, my email and I am hopefully not a robot... and if I am... I'm at least

a self-aware robot. Does that count? And... create account! Oh man! Registration step 2! Let's

fill these out and... done!

SendGrid just sent us an email to verify my account. I've already got my inbox open and ready.

There it is! I'll click to confirm my email and... we're good!

Creating the SendGrid API Key

Back on the SendGrid "guide" page, on a high-level, we need some sort of API key or username

& password that we can use to send through our new account. Click "Start" and then "Choose"

the SMTP Relay option.

Yea, I know, I know: SendGrid says that the Web API method is recommended. Most Cloud

providers give you these two options: send through the traditional SMTP relay or use some

custom API endpoints that they expose. They recommend the API way because, if you're

creating all of your emails by hand, it's probably easier: just POST your subject, to, from, body,

etc to an API endpoint and it takes care of creating the email behind-the-scenes. The API

probably also has a few extra, SendGrid-specific features if you need to do something really

custom.

But because Mailer - and really the Mime component - are handling all of the complexity of

creating the email for us, it's much easier to use the SMTP relay.

Finally, it's time to create an API key that will authenticate us over SMTP. Give the key a name -

just so you can recognize what it's for 1 year from now when we've completely forgotten. And hit

"Create Key".

Check out our beautiful new SendGrid API key. Hmm, actually, down here, it's called a

"Password". In reality, this is a SendGrid API key - you could use it to send emails through their

RESTful API. But because SMTP authentication works via a username and password,

SendGrid tells us to use apikey as the username and this as the password. It also tells us

exactly what server and port to use. This is everything we need. Copy the password.

Configuring the SMTP Way vs the SendGrid Transport Way

In .env.local , we could use all that info to fill in the normal

smtp://username:password@server:port format. That would totally work.

Or, we could use the SendGrid transport to make life easier: just smtp:// - the long API key -

then @sendgrid .

MAILER_DSN=smtp://API_KEY@sendgrid

The sendgrid transport is just a small wrapper around the SMTP transport to make life easier:

because it knows that the username is always apikey ... and that the server is always

smtp.sendgrid.net , we don't need to fill those in.

In Symfony 4.4, the new syntax will look like this:

sendgrid://KEY@default

By the way, the SendGrid transport can use SMTP behind the scenes or make API requests to

the SendGrid API. In fact, most transports are like this. Symfony chooses the best one by

default - usually smtp - but you could force it to use the API by saying sendgrid+api:// .

Sending an Email!

 Tip

SendGrid now requires that you "authenticate" your from address before you can send any

emails. We'll talk more about "sender authentication" in the next chapter, but to send your

first email, you will need to do a few extra steps:

1) Follow https://sendgrid.com/docs/ui/sending-email/sender-verification/ to verify a real

email address. For development, you can use your personal email.

2) In src/Service/Mailer.php , update the setFrom() line to use the email you just

configured, instead of alienmailcarrier@example.com .

Ok team - let's try this! Back in the browser, tell SendGrid that we have updated our settings and

click "Next".

At this point, unless we've made a mistake, it should work: SendGrid is waiting for us to try it.

So... let's do that! Back on our site, hit enter on the registration page. This time, because we're

going to send a real email - yay! - I'll register with a real address: ryan@symfonycasts.com .

Type in a fun password, agree to terms and... go!

No errors!? Ho, ho! Because it probably worked. Tell SendGrid to "Verify Integration" - that

makes it look for the email we just sent.

Our Message is Spammy

While we're waiting... ah! I see a new message in my inbox! And it looks perfect. If you don't see

anything, double-check your spam folder. Because... the email we sent is actually super

spammy. Why? See how we're sending from alienmailer@example.com? Do we own the

example.com domain? No! And even if we did, we have not proven that our SendGrid account

is allowed to send emails on behalf of that domain. This is the biggest mistake you can make

when sending emails and we'll talk more about how to fix it in a few minutes.

But first, back on SendGrid... hmm. It didn't see my email? It definitely sent. Hit to verify again -

sometimes this works quickly... but I've also had to hit this button 3-4 times before. So... keep

trying.

Finally, it works. Next, our great new email system... will probably result in pretty much every

email we send going straight to Spam. Wah, wah. We need to prove that we are allowed to

send from whatever domain our "from" address is set to. Let's tackle "Sender authentication".

https://sendgrid.com/docs/ui/sending-email/sender-verification/

Chapter 25: Sender Authentication: SPF & DKIM

Just configuring your app to use a cloud email sender - like SendGrid - isn't enough. That would

be too simple! In my Gmail inbox, the message was delivered... but I think we got lucky. This

email smells like spam. The reason is that we're claiming that the email is coming from

alienmailer@example.com . We can see that in our Mailer class: every email is coming

from this address.

In a real app, we would replace this with an email address from our real domain - like

droid@thespacebar.com . But that doesn't fix things. The question still remains: how does

Gmail know that SendGrid - or really, our account on SendGrid - is authorized to send emails

from this domain? How does it know that we're not some random spammer or phisher that's

trying to trick users into thinking this email is legitimately from this domain?

To get our emails past spam blockers, we need to add extra config to our domain's DNS that

proves our SendGrid account is authorized to send emails from example.com ... or whatever

your domain actually is.

This is both a simple thing to do... and maybe confusing? Fortunately, every email provider will

guide you through the process and... I'll do my best to... explain what the heck is going on.

The Domain Authentication Process

On the left, find Settings and click "Sender Authentication". We want "Domain Authentication" -

click to get started. Ultimately, all we will need to do is add a few new records to our domain's

DNS. To help make that easier, we can select where we host our DNS settings so that SendGrid

can give us instructions customized to that service.

In reality, we haven't deployed our site yet - so we'll walk through this process... for pretend.

Let's pretend our DNS is hosted on CloudFlare - I love CloudFlare. I'll skip the "link branding"

thing - that's something else entirely. Click Next.

Now it wants to know which domain we'll send from. Right now, we're sending from

@example.com . Let's change that to @thespacebar.com and pretend that this is our

production domain. In the box, use thespacebar.com and hit "Next".

Here is the important stuff! If you don't care about what's going on, you can simply add these 3

DNS records and skip ahead to where we talk about DMARC. These are enough to prove that

our SendGrid account is allowed to send emails on behalf of our domain.

But I think this stuff is neat! When it comes to this whole "domain authentication" thing, there are

three fancy acronyms that you'll hear: SPF, DKIM and DMARC. Here's the 60 second

explanation of the first two.

The DNS Settings: SPF & DKIM

Both SFP and DKIM are security mechanisms where you can set specific DNS records that will

say exactly who is allowed to send emails from your domain. SPF works by whitelisting IP

addresses that are allowed to send emails. DKIM works by using a public key to prove that the

sender is authorized to send emails. They do similar jobs, but you typically want to have both.

Here's what the SPF and DKIM records look like for SymfonyCasts.com:

TXT symfonycasts.com v=spf1 include:spf.mailjet.com include:

TXT mailjet._domainkey.symfonycasts.com k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNAD

The first is the SPF - the sender policy framework. Our framework allows emails to be sent by

Mailjet - that's what our site uses for emails - and Helpscout, which is our ticketing system. The

second is for DKIM: it lists a public key that can be used to verify that the email was really sent

by an authorized sender. Your DNS records might looks a bit different, but this is the general

idea.

But, wow - the DNS records that SendGrid is telling us to use are way different! This is because

of a nice "Automated Security" feature they have. The short story is this: by setting these

CNAME records, it will set up the SPF and DKIM settings for you... which is nice... because

they're kinda long, complex strings. If you do need more control, on the previous screen we

could have selected an option to turn "automated security" off. In that case, this step would tell

us a couple of TXT records we need to set - very similar to the TXT records we use for

SymfonyCasts.com.

So... DMARC?

The point is: set these DNS records and you're good. But, there is one more, newer part of

email security that is often not handled by your cloud email system. It's called DMARC and it's

totally optional. Here's what the DMARC DNS record looks like for SymfonyCasts:

TXT _dmarc v=DMARC1; p=none; pct=100; rua=mailto:re+eymg4cd5p5c@dmarc.postmarka

In a nutshell, DMARC adds even a bit more confidence to your emails. This crazy string tells

email inboxes a few things. For example, it specifically says what should happen if an email fails

SPF or DKIM. Technically, just because an email fails DKIM, for example, it doesn't mean that

the email will definitely go to spam: it's just one thing that counts against the email's spam

score. But, if you want, you could create a DMARC that clarifies this: for example, instructing

that all emails that fail SPF or DKIM should be rejected.

It also has one other fascinating super power, and this is the part I love. SPF and DKIM are

scary... because what if you set them up wrong? Or you set them up right today, but then you

tweak some DNS settings and accidentally break them? Many of your emails might start going

to spam without you even realizing it.

DMARC can solve this, and this is how we use it. By setting the rua key to an email, you can

request that all major ISP's send you reports about how many emails they are receiving from

your domain and whether or not SPF and DKIM are aligned. Yep, you'll get a report if something

is suddenly misconfigured... and you can even see who is trying to send fake emails from your

domain!

But, instead of getting these low-level messages into your personal inbox, we use a free service

from PostMarkApp. The reports are sent to them, and we get a neat, weekly update.

Unfortunately, SendGrid doesn't help you set up DMARC. But fortunately, by going to

https://dmarc.postmarkapp.com/, you can answer a few short questions and get the exact

DMARC record you need.

Phew! Enough email, authentication nerdiness! I'll leave you to update your own DNS records

and... I'll change the email from back to @example.com .

And hey! About this from address. Every email from our app will probably be from the same

address. Can we set this globally? Yes! Let's talk about that and events next.

https://dmarc.postmarkapp.com/

Chapter 26: Events & Overriding "Recipients"

I want to propose two cool ideas.

First, while we're developing, if we decide to use Mailtrap, great: all of our emails will go there.

But if we decide that we want to use SendGrid to send real emails while developing... it's a little

trickier. For example, whenever you register, you would need to use a real email address.

Otherwise, the email would never make it to your inbox.

So here's idea number 1: what if, in the dev environment only, we globally override the "to" of

every email and send to ourselves. So even if we registered as space_cadet@example.com

- the email would actually be delivered to our real address: ryan@symfonycasts.com for me.

That would be cool!

My second idea is similar: instead of manually setting the from() on every email object... what

if we hook into mailer and set this globally. That's less duplication and more consistency.

Hooking into Mailer: MessageEvent

The way to accomplish both of these is by leveraging an event. Whenever an email is sent

through Mailer, internally, it dispatches one event called MessageEvent . Mailer itself comes

with a couple of classes that can "listen" to this event. The most interesting one is called

EnvelopeListener .

Built-in Listener: EnvelopeListener

I'll hit Shift+Shift and look for EnvelopeListener so we can see inside. Start by looking for

getSubscribedEvents() . Yep! This is listening on MessageEvent . Here's the idea: if you

used this class, you could instantiate it and pass a custom sender or a custom array of

recipients. Then, whenever an email is sent, the onMessage() method would be called and it

would override that stuff on the email.

I love it! Even though this class lives inside Mailer, Symfony doesn't activate it by default: it's not

currently being used. In Symfony 4.4, some new config options were been added so you can

activate & configure it easily:

config/packages/mailer.yaml

or config/packages/dev/mailer.yaml for only the dev environment

framework:

 mailer:

 envelope:

 sender: 'sender@example.org'

 recipients: ['redirected@example.org']

But in Symfony 4.3, if we want to use this class, we need to activate it manually... which is kinda

fun anyways.

So here's the plan: to start, in the development environment only, I want all emails to actually be

sent to ryan@symfonycasts.com , regardless of the to() address on the email.

Setting up the Dev Email

To do this, in .env , let's create a brand new, shiny environment variable:

DEV_MAIL_RECIPIENT set to, how about, someone@example.com .

.env

 // ... lines 1 - 53

54

That's not a real email, because each developer should need to copy this variable, open their

own .env.local file, and customize it to whatever they want.

Registering EnvelopeListener in dev Only

Next, we need to register EnvelopeListener as a service... but only in the dev

environment: I don't want to change the recipients on production. To do that, in the config/

directory, create a new file called services_dev.yaml . Thanks to that _dev part, this will

only be loaded in the dev environment. At the top, start with the same _defaults code that

we have on top of our main services file: services: , then the magic _defaults: to set up

DEV_MAIL_RECIPIENT=someone@example.com

some default options that we want to apply to every service registered in this file. The default

config we want is autowire: true and autoconfigure: true .

config/services_dev.yaml

1

2

3

4

 // ... lines 5 - 10

Now, let's register EnvelopeListener as a service. Copy its namespace, paste, add a \

then go copy the class name and put that here too.

config/services_dev.yaml

1

 // ... lines 2 - 5

6

 // ... lines 7 - 10

For arguments, the class has two: $sender and an array of $recipients . We'll focus on

setting the "sender" globally in a few minutes... but for right now, I don't want to use that

feature... so we can set the argument to null . Under arguments, use - null for sender and,

for recipients, - [] with one email inside. To reference the environment variable we created,

say %env()% , then copy the variable name - DEV_MAIL_RECIPIENT - and paste it in the

middle.

config/services_dev.yaml

1

 // ... lines 2 - 5

6

7

8

9

That should be it! This will register the service and, thanks to autoconfigure , Symfony will

configure it as an event subscriber.

Testing time! Move over, refresh and... ah! I have a typo! The key should be _defaults with

an "s". Try it again. This time register with a fake email:

thetruthisoutthere13@example.com , any password, agree to the terms and register!

services:

 _defaults:

 autowire: true

 autoconfigure: true

services:

 Symfony\Component\Mailer\EventListener\EnvelopeListener:

services:

 Symfony\Component\Mailer\EventListener\EnvelopeListener:

 arguments:

 - null

 - ['%env(DEV_MAIL_RECIPIENT)%']

Because our app is configured to use SendGrid... that should have sent a real email. Check the

inbox - we have a new one! That's the original email from a minute ago on top... and here's the

new one.

Recipients Versus To

But! This is even cooler. If you were watching really closely, you may have noticed that, in

EnvelopeListener , what we're setting is something called "recipients". But when we create

an email... we use a method call ->to() . It turns out, those are two different concepts. Gasp!

Back over in gmail, I'll click to view the "original" message. Check this out: this email is to

thetruthisoutthere13@example.com . Search for ryan@symfonycasts . Hmm, it says

Delivered-To: ryan@symfonycasts.com .

Envelope Versus Message

Here's what's going on. Just like how, in the real world, you put a "message" into an "envelope"

and then send it through the real-world mail, an email is also these same two parts: the

message itself and an envelope that goes around it. The To of an email is what's written on top

of the "message". But the envelope around that message could have a totally different address

on it. That is known as the "recipient". The envelope is how the email is delivered. And the

message is basically what you're looking at inside your inbox.

So by setting the recipients, we changed the address on the envelope, which caused the email

to be delivered to ryan@symfonycasts.com . But the To on the message inside is still

thetruthisoutthere13@example.com .

This... for the most part... is just fun mail trivia. Most of the time, the "To" and the "recipients" will

be the same. And... that's exactly what happens if you set the To but don't set the recipients:

mailer sets the recipients for you... to match the To .

This idea becomes even more important when we talk about setting the from address globally

so we don't need to set it on every email. Because... yep, from is different than "sender".

That's next.

Chapter 27: Setting "From" Globally

I don't like to have this ->from() on every single email that I create. This will probably always

be the same, so let's set it globally.

We know that Mailer dispatches an event each time it sends an email. So, we could probably

create a listener for that event and set the from address from there!

But wait. A minute ago, we configured EnvelopeListener as a service in the dev

environment and used it to globally override the recipients. This class also allows us to pass a

"sender" as the first argument. If we did, it would override the sender on this "envelope" thing.

So, is setting the from globally as easy as passing a value to the first argument of

EnvelopeListener? Is this video about 10 seconds from being over?

From Versus Sender

Sadly... no. Remember when I mentioned that an email is two parts: a message and then an

envelope around that message? When you set the ->to() on an Email, that goes into the

message. The recipients is what goes on the envelope... which totally impacts where the email

is delivered, but does not impact who the email appears to be addressed to when reading the

email.

The same is true when it comes to from() versus "sender". But this... is even more subtle.

The "sender" is the address that's written on the envelope and the from is what actually goes

into the message - this is the part that the user will see when reading the email. It's a weird

distinction: it's like if someone mailed a letter on your behalf: they would be the sender - with

their address on the envelope. But when you opened the envelope, the message inside would

be signed from you.

The point is, setting the "sender" is not enough. When we set the from() , Mailer does

automatically use that to set the "sender" on the envelope... unless it was set explicitly. But it

does not do it the other way around: if we removed the ->from() line and only set the sender,

Mailer would give us a huge error because the message would have no from.

So what does this all mean? It means EnvelopeListener can't help us: we need to override

the "from", not the "sender". No problem: let's create our own event listener.

Creating the Event Subscriber

In the src/ directory, create a new directory called EventListener . And inside, a new PHP

class called SetFromListener . Make this implement EventSubscriberInterface : the

interface for all subscribers. I'll go to the "Code -> Generate" menu - or Command + N on a Mac

- and hit "Implement Methods" to add the one method required by this interface:

getSubscribedEvents() .

src/EventListener/SetFromListener.php

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 9

10

11

12

13

 // ... lines 14 - 16

17

 // ... lines 18 - 27

28

Inside, return an array: we want to listen to MessageEvent . So:

MessageEvent::class => 'onMessage' . When this event occurs, call the onMessage

method... which we need to create!

namespace App\EventListener;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class SetFromListener implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 }

}

src/EventListener/SetFromListener.php

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

 // ... lines 18 - 27

28

On top, add public function onMessage() . Because we're listening to MessageEvent ,

that will be the first argument: MessageEvent $event .

src/EventListener/SetFromListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

 // ... lines 21 - 26

27

28

So... what's inside of this event object anyways? Surprise! The original Email! Ok, maybe that's

not too surprising. Add $email = $event->getMessage() .

src/EventListener/SetFromListener.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 18

19

20

21

 // ... lines 22 - 26

27

28

namespace App\EventListener;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

use Symfony\Component\Mailer\Event\MessageEvent;

class SetFromListener implements EventSubscriberInterface

{

 public static function getSubscribedEvents()

 {

 return [

 MessageEvent::class => 'onMessage',

];

 }

}

class SetFromListener implements EventSubscriberInterface

{

 public function onMessage(MessageEvent $event)

 {

 }

}

class SetFromListener implements EventSubscriberInterface

{

 public function onMessage(MessageEvent $event)

 {

 $email = $event->getMessage();

 }

}

But... is that... truly our original Email object... or is it something else? Hold Command or Ctrl

and click the getMessage() method to jump inside. Hmm, this returns something called a

RawMessage . What's that?

We have been working with Email objects or TemplatedEmail objects. Open up

TemplatedEmail and... let's dig! TemplatedEmail extends Email ... Email extends

Message ... and Message extends... ah ha! RawMessage !

Oooook. We typically work with TemplatedEmail or Email , but on a really, really low level,

all Mailer really needs is an instance of RawMessage . Let's... close a few files. The point is:

when we call $event->getMessage() , this will return whatever object was actually passed

to the send() method... which in our case is always going to be a TemplatedEmail object.

But just to be safe, let's add if !$email instanceof Email - make sure you get the one

from the Mime component - just return. This shouldn't happen... but could in theory if a third-

party bundle sends emails. If you want to be safe, you could also throw an exception here so

you know if this happens.

src/EventListener/SetFromListener.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 18

19

20

21

22

23

24

 // ... lines 25 - 26

27

28

Anyways, now that we're sure this is an Email object, we can say $email->from() ... go

steal the from() inside Mailer ... and paste here. Re-type the "S" on NamedAddress and hit

tab to add its use statement on top.

use Symfony\Component\Mime\Email;

class SetFromListener implements EventSubscriberInterface

{

 public function onMessage(MessageEvent $event)

 {

 $email = $event->getMessage();

 if (!$email instanceof Email) {

 return;

 }

 }

}

src/EventListener/SetFromListener.php

 // ... lines 1 - 6

7

8

 // ... line 9

10

11

 // ... lines 12 - 18

19

20

21

22

23

24

25

26

27

28

 Tip

In Symfony 4.4 and higher, use new Address() - it works the same way as the old

NamedAddress .

That's it! We just globally set the from! Back in Mailer , delete it from

sendWelcomeMessage() ... and also from the weekly report email.

Testing time! Register with any email - because we know that all emails are being delivered to

ryan@symfonycasts.com in the development environment - any password, hit register and...

run over to the inbox!

There it is! Welcome to The Space Bar from alienmailer@example.com .

Next, sending an email requires a network call... so it's a heavy operation. We can speed up the

user experience by sending emails asynchronously via Messenger.

use Symfony\Component\Mime\Email;

use Symfony\Component\Mime\NamedAddress;

class SetFromListener implements EventSubscriberInterface

{

 public function onMessage(MessageEvent $event)

 {

 $email = $event->getMessage();

 if (!$email instanceof Email) {

 return;

 }

 $email->from(new NamedAddress('alienmailcarrier@example.com', 'The

Space Bar'));

 }

}

Chapter 28: Async Emails with Messenger

Sending an email - like after we complete registration - takes a little bit of time because it

involves making a network request to SendGrid. Yep, sending emails is always going to be a

"heavy" operation. And whenever you're doing something heavy... it means your user is waiting

for the response. That's... not the end of the world... but it's not ideal.

So... when a user registers, instead of sending the email immediately, could we send it... later

and return the response faster? Of course! Thanks to Symfony's Messenger component, which

has first-class integration with Mailer.

Installing & Configuring Messenger

First: in our editor, open .env.local and, for simplicity. let's change the MAILER_DSN back

to use Mailtrap. To install Messenger... you can kinda guess the command. In your terminal, run:

composer require messenger

Messenger is super cool and we have an entire tutorial about it. But, it's also simple to get set

up and running. Let's see how.

The recipe for Messenger just did a few things: it created a new messenger.yaml

configuration file and also added a section in .env . Let's go find that.

.env

 // ... lines 1 - 55

56

57

58

59

60

61

###> symfony/messenger ###

Choose one of the transports below

MESSENGER_TRANSPORT_DSN=amqp://guest:guest@localhost:5672/%2f/messages

MESSENGER_TRANSPORT_DSN=doctrine://default

MESSENGER_TRANSPORT_DSN=redis://localhost:6379/messages

###

https://symfonycasts.com/screencast/messenger

Here's the 30 second description of how to get Messenger set up. In order to do some work

"later" - like sending an email - you need to configure a "queueing" system where details about

that work - called "messages" - will be sent. Messenger calls these transports. Because we're

already using Doctrine, the easiest "queueing" system is a database table. Uncomment that

MESSENGER_TRANSPORT_DSN to use it.

Next, open config/packages/messenger.yaml - that's the new config file:

config/packages/messenger.yaml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

and uncomment the transport called async .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 5

6

 // ... line 7

8

 // ... lines 9 - 16

Making Emails Async

Great. As soon as you install Messenger, when Mailer sends an email, internally, it will

automatically start doing that by dispatching a message through Messenger. Hit Shift + Shift to

open a class called SendEmailMessage .

framework:

 messenger:

 # Uncomment this (and the failed transport below) to send failed

messages to this transport for later handling.

 # failure_transport: failed

 transports:

 # https://symfony.com/doc/current/messenger.html#transport-

configuration

 # async: '%env(MESSENGER_TRANSPORT_DSN)%'

 # failed: 'doctrine://default?queue_name=failed'

 # sync: 'sync://'

 routing:

 # Route your messages to the transports

 # 'App\Message\YourMessage': async

framework:

 messenger:

 transports:

 async: '%env(MESSENGER_TRANSPORT_DSN)%'

Specifically, Mailer will create this object, put our Email message inside, and dispatch it

through Messenger.

Now, if we only installed messenger, the fact that this is being dispatched through the message

bus would make... absolutely no difference. The emails would still be handled immediately - or

synchronously.

But now we can tell Messenger to "send" instances of SendEmailMessage to our async

transport instead of "handling" them - meaning delivering the email - right now. We do that via

the routing section. Go copy the namespace of the SendEmailMessage class and, under

routing , I'll clear out the comments and say Symfony\Component\Mailer\Messenger\ ,

copy the class name, and paste: SendEmailMessage . Set this to async .

config/packages/messenger.yaml

1

2

 // ... lines 3 - 11

12

13

14

15

Hey! We just made all emails async! Woo! Let's try it: find the registration page.... register as

"Fox", email thetruthisoutthere15@example.com , any password, agree to the terms and

register!

You may not have noticed, but if you compared the response times of submitting the form

before and after that change... this was way, way faster.

Checking out the Queue

Over in Mailtrap... there are no new messages. I can refresh and... nothing. The email was not

delivered. Yay! Where is it? Sitting & waiting inside our queue... which is a database table. You

can see it by running:

php bin/console doctrine:query:sql 'SELECT * FROM messenger_messages'

framework:

 messenger:

 routing:

 # Route your messages to the transports

 # 'App\Message\YourMessage': async

 'Symfony\Component\Mailer\Messenger\SendEmailMessage': async

That table was automatically created when we sent our first message. It has one row with our

one Email inside. If you look closely... you can see the details: the subject, and the email

template that will be rendered when it's delivered.

Running the Worker

How do we actually send the email? In Messenger, you process any waiting messages in the

queue by running:

php bin/console messenger:consume -vv

The -vv adds extra debugging info... it's more fun. This process is called a "worker" - and you'll

have at least one of these commands running at all times on production. Check out our

Messenger tutorial for details about that.

Cool! The message was "received" from the queue and "handled"... which is a fancy way in this

case to say that the email was actually delivered! Go check out Mailtrap! Ah! There it is! The full

correct email... in all its glory.

By the way, in order for your emails to be rendered correctly when being sent via Messenger,

you need to make sure that you have the route context parameters set up correctly. That's a

topic we covered earlier in this tutorial.

So... congrats on your new shiny async emails! Next, let's make sure that the "author weekly

report" email still works... because... honestly... there's going to be a gotcha. Also, how does

sending to a transport affect our functional tests?

https://symfonycasts.com/screencast/mailer/route-context

Chapter 29: Attachments with Async Messenger
Emails

Our registration email is being sent asynchronously via Messenger. And actually, every email

our app sends will now be async. Let's double-check that the weekly report emails are still

working.

Hit Ctrl+C to stop the worker process and, just to make sure our database if full of fresh data,

reload the fixtures:

php bin/console doctrine:fixtures:load

Now run:

php bin/console app:author-weekly-report:send

Problems with Binary Attachments

Ah! Explosion! Incorrect string value? Wow. Okay. What we're seeing is a real-world limitation of

the doctrine transport: it can't handle binary data. This may change in Symfony 4.4 - there's a

pull request for it - but it may not be merged in time.

Why does our email contain binary data? Remember: the method that creates the author

weekly report email also generates a PDF and attaches it. That PDF is binary... so when

Messenger tries to put it into a column that doesn't support binary data... boom! Weird

explosion.

If this is a problem for you, there are two fixes. First, instead of Doctrine, use another transport -

like AMQP. Second, if you need to use doctrine and you do send binary attachments, instead of

saying ->attach() you can say ->attachFromPath() and pass this a path on the

filesystem to the file. By doing this, the path to the file is what is stored in the queue. The only

caveat is that the worker needs to have access to the file at that path.

Messenger and Tests

There's one other thing I want to show with messenger. Run the tests!

php bin/phpunit

Awesome! There are a bunch of deprecation notices, but the tests do pass. However, run that

Doctrine query again to see the queue:

php bin/console doctrine:query:sql 'SELECT * FROM messenger_messages'

Uh oh... the email - the one from our functional test to the registration page - was added to the

queue! Why is that a problem? Well, it's not a huge problem... but if we run the

messenger:consume command...

php bin/console messenger:consume -vv

That would actually send that email! Again, that's not the end of the world... it's just a little odd -

the test environment doesn't need to send real emails.

If you've configured your test environment to use a different database than normal, you're

good: your test database queue table will fill up with messages, but you'll never run the

messenger:consume command from that environment anyways.

Overriding the Transport in the test Environment

But there's also a way to solve this directly in Messenger. In .env , copy

MESSENGER_TRANSPORT_DSN and open up .env.test . Paste this but replace doctrine

with in-memory . So: in-memory://

.env.test

 // ... lines 1 - 4

5

This transport... is useless! And I love it. When Messenger sends something to an "in-memory"

transport, the message... actually goes nowhere - it's just discarded.

Run the tests again:

php bin/phpunit

And... check the database:

php bin/console doctrine:query:sql 'SELECT * FROM messenger_messages'

No messages! Next, lets finish our grand journey through Mailer by integrating our Email styling

with Webpack Encore.

MESSENGER_TRANSPORT_DSN=in-memory://default

Chapter 30: Styling Emails with Encore & Sass
Part 1

Our app uses Webpack Encore to manage its frontend assets. It's not something we talked

much about because, if you downloaded the course code from this page, it already included the

final build/ directory. I did this so we didn't need to worry about setting up Encore just to get

the site working.

But if you are using Encore, we can make a few improvements to how we're styling our emails.

Specifically, we took two shortcuts. First, the assets/css/foundation-emails.css file is

something we downloaded from the Foundation website. That's not how we would normally do

things with Encore. If we need to use a third-party library, we typically install it with yarn

instead of committing it directly.

The other shortcut was with this emails.css file. I'd rather use Sass... but to do that, I need to

process it through Encore.

Installing Foundation Emails via Yarn

Let's get to work! Over in the terminal, start by installing all the current Encore dependencies

with:

yarn install

When that finishes, install Foundation for Emails with:

yarn add foundation-emails --dev

The end result is that we now have a giant node_modules/ directory and... somewhere way

down in this giant directory... we'll find a foundation-emails directory with a

foundation-emails.css file inside. They also have a Sass file if you want to import that

and control things further... but the CSS file is good enough for us.

Before we make any real changes, make sure Encore can build by running:

yarn dev --watch

And... excellent! Everything is working.

Using Sass & Importing Foundation Emails

Now that we've installed Foundation for Emails properly, let's delete the committed file: I'll right

click and go to "Refactor -> Delete". Next, because I want to use Sass for our custom email

styling, right click on email.css , go to "Refactor -> Rename" and call it email.scss .

Because this file will be processed through Encore, we can import the

foundation-email.css file from right here with @import , a ~ - that tells Webpack to look

in the node_modules/ directory - then

foundation-emails/dist/foundation-emails.css .

assets/css/email.scss

1

2

 // ... lines 3 - 39

This feels good! I'll close up node_modules/ ... cause it's giant.

Creating the Email Entry

Now open up the email layout file: templates/email/emailBase.html.twig . When we

used inline_css() , we pointed it at the foundation-emails.css file and the

email.css file. But now... we only really need to point it at email.scss ... because, in theory,

that will include the styles from both files.

@import "~foundation-emails/dist/foundation-emails.css";

templates/email/emailBase.html.twig

1

 // ... lines 2 - 30

31

The problem is that this is now a Sass file... and inline_css only works with CSS files: we

can't point it at a Sass file and expect it transform the Sass into CSS. And even if it were a CSS

file, the @import won't work unless we process this through Encore.

So here's the plan: we're going to pretend that email.scss is just an ordinary CSS file that we

want to include on some page on our site. Open up webpack.config.js . Whenever we have

some page-specific CSS or JS, we add a new entry for it. In this case, because we don't need

any JavaScript, we can add a "style" entry. Say .addStyleEntry() - call the entry, how

about, email , and point it at the file: ./assets/css/email.scss .

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 24

25

26

 // ... lines 27 - 77

78

 // ... lines 79 - 80

To get Webpack to see the updated config, in the terminal, press Ctrl+C to stop Encore and

restart it:

yarn dev --watch

And... it builds! Interesting: the email entrypoint dumped two CSS files. Let's look at the

public/build directory. Yep: email.css and also this vendors~email.css .

This is thanks to an optimization that Wepback Encore makes when you use

splitEntryChunks() ... which you can learn all about in our Encore tutorial. But the basic

point is that if we want all of the CSS from the built email.scss file, we need to include both

email.css and vendor~email.css .

{% apply inky_to_html|inline_css(source('@styles/foundation-emails.css'),

source('@styles/email.css')) %}

{% endapply %}

Encore

 .addStyleEntry('email', './assets/css/email.scss')

 //.addEntry('page1', './assets/js/page1.js')

;

https://symfonycasts.com/screencast/webpack-encore

Ok, easy, right? In the template, we could load the source of vendor~email.css and

email.css . The problem is that Webpack splits the files in a very dynamic fashion: if it finds a

more efficient way to split the files tomorrow - maybe into three files - it will! Plus, when we do

our production build, the files will include a dynamic hash in their filename - like

email.123abc.css .

So... we need to do a bit more work to reliably load this stuff through inline_css() . Let's do

that next with a custom Twig function.

Chapter 31: Processing Encore Files through
inline_css()

We just used Encore to build an email.scss file that we want to process through

inline_css() to style our emails. The problem is that, instead of building just one

email.css file in public/build , it split it into two for performance reasons. That wouldn't

be a problem, except that the way Webpack splits the files might change over time - we can't

guarantee that it will always be these two files. To make matters worse, an Encore production

build will add a dynamic "hash" to every file - like email.123abc.css .

Basically... pointing inline_css() directly at these two files... isn't going to work.

How Dynamic Files are Normally Rendered

This is why, in base.html.twig we simply use encore_entry_link_tags() and it takes

care of everything. How? Behind the scenes, it looks in the public/build/ directory for an

entrypoints.json file that Encore builds. This is the key: it tells us exactly which CSS and

JS files are needed for each entrypoint - like app . Or, for email , yep! It contains the two CSS

files.

The problem is that we don't want to just output link tags. We actually need to read the

source of those files and pass that to inline_css() .

Let's create a new Twig Function!

Since there's no built-in way to do that, let's make our own Twig function where we can say

encore_entry_css_source() , pass it email , and it will figure out all the CSS files it

needs, load their contents, and return it as one big, giant, beautiful string.

templates/email/emailBase.html.twig

1

 // ... lines 2 - 30

31

{% apply inky_to_html|inline_css(encore_entry_css_source('email')) %}

{% endapply %}

To create the function, our app already has a Twig extension called AppExtension . Inside,

say new TwigFunction() , call it encore_entry_css_source and when this function is

used, Twig should call a getEncoreEntryCssSource method.

src/Twig/AppExtension.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 24

25

26

27

 // ... line 28

29

30

31

 // ... lines 32 - 75

76

Copy that name and create it below: public function getEncoreEntryCssSource()

with a string $entryName argument. This will return the string CSS source.

src/Twig/AppExtension.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 53

54

55

 // ... lines 56 - 65

66

 // ... lines 67 - 75

76

Inside, we need to look into the entrypoints.json file to find the CSS filenames needed for

this $entryName . Fortunately, Symfony has a service that already does that. We can get it by

using the EntrypointLookupInterface type-hint.

For reasons I don't want to get into in this tutorial, instead of using normal constructor injection -

where we add an argument type-hinted with EntrypointLookupInterface - we're using a

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getFunctions(): array

 {

 return [

 new TwigFunction('encore_entry_css_source', [$this,

'getEncoreEntryCssSource']),

];

 }

}

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getEncoreEntryCssSource(string $entryName): string

 {

 }

}

"service subscriber". You can learn about this in, oddly-enough, our tutorial about Symfony &

Doctrine.

To fetch the service, go down to getSubscribedServices() and add

EntrypointLookupInterface::class .

src/Twig/AppExtension.php

 // ... lines 1 - 8

9

 // ... lines 10 - 13

14

15

 // ... lines 16 - 67

68

69

70

 // ... lines 71 - 72

73

74

75

76

Back up in getEncoreEntryCssSource() , we can say

$files = $this->container->get(EntrypointLookupInterface::class) - that's

how you access the service using a service subscriber - then

->getCssFiles($entryName) .

src/Twig/AppExtension.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 53

54

55

56

57

58

 // ... lines 59 - 65

66

 // ... lines 67 - 75

76

use Symfony\WebpackEncoreBundle\Asset\EntrypointLookupInterface;

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public static function getSubscribedServices()

 {

 return [

 EntrypointLookupInterface::class,

];

 }

}

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getEncoreEntryCssSource(string $entryName): string

 {

 $files = $this->container

 ->get(EntrypointLookupInterface::class)

 ->getCssFiles($entryName);

 }

}

https://symfonycasts.com/screencast/symfony-doctrine/service-subscriber
https://symfonycasts.com/screencast/symfony-doctrine/service-subscriber

This will return an array with something like these two paths. Next, foreach over

$files as $file and, above create a new $source variable set to an empty string. All we

need to do now is look for each file inside the public/ directory and fetch its contents.

src/Twig/AppExtension.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 53

54

55

56

57

58

59

60

61

 // ... line 62

63

 // ... lines 64 - 65

66

 // ... lines 67 - 75

76

Adding a publicDir Binding

We could hardcode the path to the public/ directory right here. But instead, let's set up a new

"binding" that we can pass through the constructor. Open up config/services.yaml . In our

Symfony Fundamentals Course, we talk about how the global bind below _defaults can be

used to allow scalar arguments to be autowired into our services. Add a new one:

string $publicDir set to %kernel.project_dir% - that's a built-in parameter -

/public .

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getEncoreEntryCssSource(string $entryName): string

 {

 $files = $this->container

 ->get(EntrypointLookupInterface::class)

 ->getCssFiles($entryName);

 $source = '';

 foreach ($files as $file) {

 }

 }

}

https://symfonycasts.com/screencast/symfony-fundamentals/services-config-bind

config/services.yaml

 // ... lines 1 - 12

13

 // ... line 14

15

 // ... lines 16 - 22

23

 // ... lines 24 - 27

28

 // ... lines 29 - 54

This string part before $publicDir is optional. But by adding it, we're literally saying that

this value should be passed if an argument is exactly string $publicDir . Being able to add

the type-hint to a bind is a new feature in Symfony 4.2. We didn't use it on the earlier binds... but

we could have.

Back in AppExtension , add the string $publicDir argument. I'll hit "Alt + Enter" and go

to "Initialize fields" to create that property and set it.

src/Twig/AppExtension.php

 // ... lines 1 - 13

14

15

 // ... line 16

17

 // ... line 18

19

20

 // ... line 21

22

23

 // ... lines 24 - 75

76

Down in the method, we can say

$source .= file_get_contents($this->publicDir.$file) - each $file path

should already have a / at the beginning. Finish the method with return $source .

services:

 _defaults:

 bind:

 string $publicDir: '%kernel.project_dir%/public'

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 private $publicDir;

 public function __construct(ContainerInterface $container, string

$publicDir)

 {

 $this->publicDir = $publicDir;

 }

}

 Tip

To avoid missing CSS if you send your emails via Messenger (or if you send multiple emails

during the same request), "reset" Encore's internal cache before calling getCssFiles() :

// replace the first 3 lines with these

$entryPointLookupInterface = $this->container->get(EntrypointLookupInterface

$entryPointLookupInterface->reset();

$files = $entryPointLookupInterface->getCssFiles($entryName);

$source = '';

// ...

src/Twig/AppExtension.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 53

54

55

56

57

58

59

60

61

62

63

64

65

66

 // ... lines 67 - 75

76

Whew! Let's try this! We're already running Encore... so it already dumped the email.css and

vendors~email.css files. Ok, let's go send an email. I'll hit back to get to the registration

page, bump the email, type any password, hit register and... wow! No errors! Over in Mailtrap...

nothing here... Of course! We refactored to use Messenger... so emails are not sent

immediately!

By the way, if that annoys you in development, there is a way to handle async messages

immediately while coding. Check out the Messenger tutorial.

class AppExtension extends AbstractExtension implements

ServiceSubscriberInterface

{

 public function getEncoreEntryCssSource(string $entryName): string

 {

 $files = $this->container

 ->get(EntrypointLookupInterface::class)

 ->getCssFiles($entryName);

 $source = '';

 foreach ($files as $file) {

 $source .= file_get_contents($this->publicDir.'/'.$file);

 }

 return $source;

 }

}

Let's start the worker and send the email. I'll open another tab in my terminal and run:

php bin/console messenger:consume -vv

Message received... and... message handled. Go check it out! The styling look great: they're

inlined and coming from a proper Sass file.

And... we've made it to the end! You are now an email expert... I mean, not just a Mailer

expert... we really dove deep. Congrats!

Go forth and use your great power responsibly. Let us know what cool emails you're sending...

heck... you could even send them to us... and, as always, we're here to help down in the

comments section.

Alright friends, seeya next time!

With <3 from SymfonyCasts

