
Symfony UX: Turbo

Chapter 1: Turbo: Drive, Frames & Streams!

Hey friends! Welcome back for part two of our Symfony UX series. The whole point of this

series is to take a traditional web app - so an app with Twig templates that return HTML - and

learn to do two things with it.

First, how to write truly professional JavaScript that... always works... even if some HTML is

loaded via Ajax. We covered this in the first tutorial about Stimulus.

The second goal of this series is all about how we can make our app feel like a single page

application. What I mean is: how we can make our site lightning fast by never having any full

page refreshes. That is what Turbo gives us.

The 3 Parts of Turbo

To be more precise, Turbo is actually three different parts.

The first is "Turbo Drive". It's what turns clicks and form submits into Ajax calls. This is what

gives you that single page app experience.

The second part is "Turbo Frames", which allows you to separate your page into small sections

that can load and navigate independently.

And the third part is "Turbo Streams", which allows you to update any HTML element that's

currently showing on the page... from inside your Symfony app. Crazy, right? When you use

Turbo Streams along with Mercure, this can even give you the ability to make a real time chat

app... while writing zero JavaScript.

And you're free to use all three parts... or just one or two: they operate independently.

Is Turbo New?

Now Turbo itself is... sort of brand new. If you check out its GitHub page, it's version 7.0.0-

beta.5 at the time of recording. So... why is it version 7 if it's so new? Because one part of turbo

- Turbo Drive, the part that turns link clicks and form submits into Ajax calls - has been around

for years. It was previously called "Turbolinks" and you can still find helpful blog posts and

StackOverflow answers if you search using that term.

But the other two parts - Turbo Frames and Turbo Streams are brand new. These are mostly

already very good, but we will see a few rough edges and missing features along the way. But

we won't let that stop us: Turbo's event system will give us the power to do almost anything.

Before we dive in, I also need to mention that Stimulus and Turbo were both affected by a

serious situation at the company Basecamp. This has left both libraries without their lead

developers. Am I worried? It's not ideal... but I'm not too worried. The community is large and

some big companies use this technology. And at the very least, I'm confident that Turbo - or

something very similar to Turbo - will be around for a long time to come. You can't stop a great

idea. We're actively integrating Turbo into SymfonyCasts right now.

Project Setup

So let's do this! To "turbocharge" your learning experience you should code along with me! Hey

- the puns probably won't get any better, so, settle in. Download the course code from this page.

When you unzip it, you'll have a start/ directory with the same code that you see here.

Check out the, README.md file for all the setup details.

I'll go through just the last few steps. Open a terminal and move into the project. I'll use the

Symfony binary to start a local web server with:

symfony serve -d

Before we go check that out, let's also make sure to run Webpack. Install the Node

dependencies with:

yarn install

And... when that finishes, run Webpack with:

yarn watch

As soon as this builds... perfect - spin over to your browser and head to https://127.0.0.1:8000

to see... MVP Office Supplies! Our store for selling minimally viable office products to trendy

startups. This is the same project as the first tutorial, though I did make some changes, like

adding a review system below each product... and upgrading some libraries.

Now that we have this running, let's install Turbo and activate Turbo Drive to instantly eliminate

full page refreshes. Woh.

https://127.0.0.1:8000/

Chapter 2: Installing Turbo

Wouldn't it be cool if when we click on a link or even submit a form, instead of that triggering a

full page reload, it made an Ajax call... then updated the page with the new HTML? Well, that's

exactly what Turbo Drive does. And it's a huge step towards making our app feel like a single

page application.

Turbo itself is... just a JavaScript library! It has nothing to do with Symfony. But Symfony does

have a package that makes it easier to use. Let's go get that package installed.

Head back to your terminal, open a new tab and run:

composer require "symfony/ux-turbo:^1.3"

After this finishes... run: git status to see what its recipe did:

git status

Ok: it looks like it installed a new bundle... called TurboBundle . It also changed our

package.json file... let's go find that. It added two new packages including turbo itself. The

recipe also updated our controllers.json file, which we learned about in the Stimulus

tutorial. This adds a new Stimulus controller to our app. More on what that controller does a bit

later.

assets/controllers.json

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

But... you probably noticed that we have an error from yarn:

“The file @symfony/ux-turbo/package.json could not be found. Try running

yarn install --force .”

That makes sense! As we learned about in the first tutorial, we need to re-install our yarn

dependencies so it can copy the new @symfony/ux-turbo package from our vendor/

sdirectory into the node_modules/ directory. Let's do it:

yarn install --force

When that finishes... run yarn watch again and... it's happy!

yarn watch

Hello Turbo Drive

{

 "controllers": {

 "@symfony/ux-chartjs": {

 "chart": {

 "enabled": true,

 "fetch": "lazy"

 }

 },

 "@symfony/ux-turbo": {

 "turbo-core": {

 "enabled": true,

 "fetch": "eager"

 }

 }

 },

 "entrypoints": []

}

Cool! So the @hotwired/turbo JavaScript package is now installed. Now... what do we need

to do to activate Turbo Drive?

The answer is... nothing! It's already working!

Head back to your browser and refresh the page. Start clicking around. Woh! It's alive! And it

feels fast!

Open up your browser tools... and then go to network tools and watch for XHR requests - or

Ajax request. Yep! Every single click is now an Ajax request. There are zero full page reloads!

We now have... dare I say... a single page app! Tutorial finished! Good luck!

Okay, okay... of course the tutorial isn't finished yet. Turbo Drive feels like black magic... and

that's never a great feeling. So next, let's discover how Turbo Drive works behind the scenes.

We'll also see how Turbo was magically activated simply by installing it and I'll introduce you to

a few subtle features of Turbo Drive that are already making the experience feel extra quick.

Chapter 3: How Turbo Drive Works

This is Turbo Drive. And yes, it feels like absolute magic. So let's break down how this works.

How Was Turbo Activated? The Magic Stimulus Controller

To start... we never wrote any JavaScript that said:

“Hey Turbo! Please activate your Drive functionality.”

So... how would did this automatically start working? That is thanks to the magic of the

assets/controllers.json file. This is normally a mechanism in Symfony UX for third party

libraries to add new Stimulus controllers to our app. And in this case, that's true... but it's kind of

a trick.

Let's go find the file that's being referenced. It lives in node_modules/@symfony/ux-turbo

then src/turbo_controller.js . If you're wondering how I knew to open this exact file...

this turbo-core string here matches up with a special key inside of the package.json file

of this library. So turbo-core points to dist/turbo_controller.js . So, technically the

file in the dist/ folder is loaded... but I'm opening the original in src/ because it's a bit easier

to read.

And... there's not much here! This exposes an empty controller. And really, the whole point of

this file is to import Turbo and set it onto the window variable. This accomplishes two things.

First, when you import Turbo , it automatically activates Turbo Drive across your entire site.

We'll talk about how to disable it globally or selectively a bit later. And second, Turbo is set onto

the window variable, which makes it a global variable. You may or may not need this. It's useful

if you need to programmatically visit a link, but from outside a JavaScript file. We'll see that

later.

So we now know who activated Turbo. But... how the heck does Turbo Drive work? It's a pretty

simple idea. Turbo watches link clicks - and also form submits like this add to cart form submit -

and intercepts them. It then performs those requests in the background via an Ajax call, which

we can see here. When that finishes, it updates the HTML of the page from the HTML in the

response... all without a full refresh. But, it does modify the URL, which gives us normal browser

behavior, like clicking back and forward.

Snapshots & Previews

Speaking of back and forward, Turbo Drive has a feature called "snapshots". Let me refresh the

page real quick. As you navigate to a new page, it stores a "snapshot" of the page you're

leaving. Then, if you click back in your browser, it instantly loads that snapshot with no network

request. It does the same if you go forward. And if you revisit a page that you've already been

to, so, a page whose snapshot has been stored, Turbo will give you an instant "preview" of that

page while it waits for the Ajax call for that page to finish. You can see how super fast the pages

are that we've already gone to versus ones that we have not gone to yet. By the way, this

snapshot cache isn't persistent: it clears when you refresh the page.

Some of this preview & snapshot stuff is kind of hard to see because things are so fast. So in

your editor, open up public/index.php and add a sleep() for two seconds.

public/index.php

1

2

3

4

5

6

 // ... lines 7 - 10

Now head back to your browser and refresh the page... which takes 2 seconds. Click back to

the homepage. Oh! This shows off the progress bar! If an Ajax call takes longer than 500

milliseconds, the progress bar shows up, which you can customize with CSS if you want.

Because our site is slow, we see it each time we click to a new page.

But now, let's click back to "Office Supplies", which we visited before. When I do, watch closely:

the page will show up instantly. Boom! Then it finishes loading the Ajax call. This is the preview

feature. When you navigate to a page you've already been to, Turbo loads the page from cache

for an instant experience. But it still makes an Ajax call for the page. And when that finishes, it

takes the new HTML and renders it onto the page. Most of the time - like right now - we don't

really notice that Ajax call finishing... because the new HTML is identical to the preview.

<?php

use App\Kernel;

sleep(2);

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

And if we click backward and forward, as we mentioned earlier, those pages load instantly with

no Ajax request. Let's go take out that sleep .

Merging of the <head> Tag

Okay... but how does this all really work? What is Turbo doing behind the scenes to make it all

happen? Let's go a step deeper. This is important because, to get Drive working happily on your

site, as the saying goes, the devil is in the details. We'll spend the first part of this tutorial talking

about potential problems that Turbo Drive can cause and how to fix them.

Let me refresh the page again to clear the snapshot cache.

Okay: when we click a link, Turbo intercepts that and makes an Ajax call instead. Oh, by the

way, these extra Ajax requests are for the web debug toolbar.

Anyways, the Ajax request that Turbo makes when we click returns a full HTML page. When

Turbo gets that full HTML response, it merges the new head tag into the existing head tag and

then replaces the body with the new body .

The way it merges the old and new head is smart. Go over to the Elements part of the

debugging tools and open up the head tag.

When the Ajax request finishes, Turbo first finds anything in the head other than JavaScript

and CSS elements and removes those. Then it looks in the new head for any non JavaScript

and non CSS elements and adds those.

We can actually see this. Reload the page and look back at the head . I see two non-JavaScript

and non-CSS tags: a meta tag with the charset and the title element. When I click to go

to another page, these will be removed. Then, any elements from the new page's head will be

added to the bottom. And... boom! The new page happens to have the same two tags, but you

can see that the original ones were removed and the new ones added. I was lazy and didn't

give each page a unique title, but if the next page did have a new title, it would show up.

How JavaScript & CSS is Handled

Let's talk about how JavaScript and CSS is handled. If the new head tag contains JavaScript or

CSS tags - and it probably will, since we're returning full HTML pages - Turbo checks to see if

these elements already exist in the current head . If they do - like the next page we click also

has a script tag for build/runtime.js - then Turbo ignores it. There's no reason to add the

same script or CSS multiple times. But if the CSS or JavaScript element does not exist on

the current page, it will add it. This is actually a big reason why Turbo Drive feels so fast: each

time you navigate, your browser does not need to re-parse all of your JavaScript and CSS like it

normally would with a traditional full page reload.

The result of all of this is... exactly what we see as we click around! The title changes on each

page - the login page has a different title - and if a page contained new JavaScript or CSS, that

would be added automatically.

So... this is amazing! Well, yes, it is amazing. But to get this amazingness to work perfectly,

there is a little bit of work that we need to do. The first bit involves making your JavaScript

Turbo-friendly. Let's dive into that topic next.

Chapter 4: Turbo-Friendly JavaScript

The biggest gotcha with Turbo Drive is JavaScript. And that's for one simple reason: suddenly

there are no full page refreshes! And... a lot of JavaScript is written to expect that behavior.

How JavaScript in head Is Parsed

Let's see how some classic JavaScript behaves with Turbo. Open assets/app.js : this file is

loaded on every page. Let's use jQuery to run some code after the page finishes loading. You

might recognize this code.

Import $ from jquery - I already have that installed. Then use $(document).ready() and

pass a function that should be called once the page is fully loaded with

console.log('page is ready') . After this block, also

console.log('script is done') .

assets/app.js

 // ... lines 1 - 14

15

16

17

18

19

Cool. Go refresh... and check out the console. Yep! We see both logs: script is done first, then

"page is ready" shortly after. But when we click to another page, we see nothing! And that

makes sense! app.js is not re-executed... and the page does not become "ready" again. This

is a big difference compared to a traditional web app. But, it's also what makes Turbo so fast:

re-parsing all that JavaScript over and over again on each page load takes time!

The Problem of JavaScript in body

However, if you put JavaScript into the body of your page, then it does work like normal. Open

up templates/base.html.twig and - anywhere in the body , I'll go to the bottom - add a

$(document).ready(() => {

 console.log('page is ready!');

})

console.log('script is done!');

script tag and console.log('body executing!') .

templates/base.html.twig

 // ... lines 1 - 80

81

82

83

84

85

86

87

Refresh now. We see all three logs. Click to another page. Hey! The new log is there! And... this

also makes sense. Turbo replaces the old body with the new body. And so, any script tags in the

new body are parsed & executed.

But... this is not necessarily a good thing... for two reasons! First, re-parsing the same

JavaScript on every page is wasteful and can slow down your page. That's what Turbo Drive

helps us avoid.

Second, putting JavaScript into your body can... sometimes cause weird things to happen.

Watch closely: I'm going to clear my console.... then click back to a page that I just visited a

minute ago. Woh! There are two logs!

This logged once when the page preview was shown from cache and a second time when the

fresh HTML was rendered. This... might be okay? Logging two messages doesn't hurt anything.

But this might cause some big problems in other situations, like double-counting page views in

an analytics system. The topic of external JavaScript is something we'll dive into a bit later.

Here's another issue. Suppose you - or some third-party JavaScript library - adds an event

listener to the entire document. Go back to base.html.twig . Use the document variable.

document basically represents the html tag, which unlike the body , is never replaced by

Turbo. Well, technically, document is sort of like the owner of the html element... but that's

not important here.

Anyways, add an event listener to this: document.addEventListener() to listen to the

click event. On click, console.log('document clicked') .

 </div>

 <script>

 console.log('body executing!');

 </script>

 </body>

</html>

templates/base.html.twig

 // ... lines 1 - 80

81

82

83

84

85

86

87

88

89

We should be able to click anywhere to see this message. Refresh, go to the console and...

click. There it is! Click again and another log! Easy peasy.

Now clear the console and click to another page. Oh, let's clear the console again. And...

click. Ah! Two logs! That is definitely not what we want!

This happens because, each time we execute the script, it adds another listener to the

document . After 10 clicks, our function would be called 10 times!

Go remove the script tag and the jQuery loading code.

templates/base.html.twig

 // ... lines 1 - 76

77

78

79

80

81

82

83

assets/app.js

 // ... lines 1 - 7

8

9

10

11

12

Writing JavaScript that you (and Turbo) will Love

 </div>

 <script>

 document.addEventListener('click', () => {

 console.log('body clicked!');

 })

 </script>

 </body>

</html>

 <div

 class="footer mb-0"

 {{ stimulus_controller('made-with-love') }}

 >

 </div>

 </body>

</html>

// any CSS you import will output into a single css file (app.css in this

case)

import './styles/app.css';

// start the Stimulus application

import './bootstrap';

So... what is the best way to write JavaScript so it works nicely with Turbo Drive? Well...

Stimulus of course!

We already know from the first tutorial in this series that if a new data-controller element

appears on the page - like data-controller="counter" , which powers this contest area

up here, its Stimulus controller will always work perfectly, even if that HTML is loaded via Ajax.

That is the most powerful part of Stimulus and it works brilliantly with Turbo.

One other lesson is that you should probably remove any JavaScript that you have inside your

body element... even though it mostly works. That's because of the potential for the bad

behavior that we saw a minute ago. In a little while, we'll talk about external JavaScript - like

widgets or analytics - which are often supposed to be added to your body.

But let me be clear about one thing: I do not want you to think about all of this like:

“Hey! Turbo is forcing me to write my JavaScript a certain way!”

Nope: Turbo is forcing you to write better JavaScript: JavaScript that only needs to be loaded

and executed once... and then keeps on working forever, even as new content is loaded onto

the page.

So this whole JavaScript topic is definitely the biggest hurdle to using Turbo Drive. Until you

have all the JavaScript on your site written properly, things won't work well. But you can fix the

JavaScript for just some pages on your site and activate Turbo Drive only for those. Let's see

how next and also learn how we're able to put all of our script tags into the head element

without hurting page-load performance.

Chapter 5: The "defer" Attribute & Conditionally
Activating Turbo

Inspect element and go check out the head tag. Notice that all of our script elements live up

here in the head with a defer attribute. That's on purpose. And this defer attribute comes

from our configuration: config/packages/webpack_encore.yaml :

script_attributes , defer

config/packages/webpack_encore.yaml

 // ... lines 1 - 6

7

8

9

10

 // ... lines 11 - 31

The defer Attribute

The reason we placed our script tags up in the head element is... well, we learned why in

the last chapter! By adding them here, they won't be re-executed on every Turbo visit.

But normally, adding script tags to the head is bad for performance. When your browser

sees a script tag, it freezes the page rendering while it downloads the file and executes it.

But by adding defer , the file is downloaded in the background and the page continues loading

without waiting. Once the page finishes loading, then the JavaScript is executed. If you want to

learn more about the defer attribute, we have a blog post about it on symfony.com:

https://symfony.com/blog/moving-script-inside-head-and-the-defer-attribute

Anyways, here's the big takeaway about using Turbo Drive and JavaScript: to get it to work

reliably, all of your JavaScript needs to be written in Stimulus. But that does not mean that you

need to completely rewrite it. If you have a big block of JavaScript that works on an element,

you can copy that code into the connect() method of a Stimulus controller, which is called

each time a matching data-controller element is found. Often, the only change you need

 # Set attributes that will be rendered on all script and link tags

 script_attributes:

 defer: true

 # link_attributes:

https://symfony.com/blog/moving-script-inside-head-and-the-defer-attribute

to make is to remove any document.ready() code and tweak your JavaScript to target

this.element .

And... if you can't or don't want to use Stimulus, you can also tweak your code so that it's

executed on each "Turbo page load", like by wrapping that code in a Turbo event, that's fired on

each visit instead of using jQuery's document.ready() method. We'll talk about Turbo events

later.

Completely Disabling Turbo

By the way, if you did need to disable Turbo for a specific link... or even for an entire section of

the page, you can do that with a special data-turbo attribute. For example, to completely

disable Turbo drive on your entire site, head over to base.html.twig . Find the body tag and

add data-turbo="false" .

templates/base.html.twig

 // ... lines 1 - 11

12

13

14

15

16

 // ... lines 17 - 84

Now, any link clicks or form submits inside of this element - which is everything - will not use

Turbo drive. Check it out: refresh the page and click around. We are back to boring full page

reloads. Boo.

To reenable Turbo Drive on a link or section, you can set the same attribute to true. For

example, let's activate Drive for just the links up in the navbar . Find that element... it's this ul ,

and add data-turbo="true"

 {% endblock %}

 </head>

 <body data-turbo="false">

 <div class="page-top">

 <header class="header px-2">

templates/base.html.twig

 // ... lines 1 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 84

Refresh again. When we click a category, it still triggers a full page reload. But if we click to go

to the cart... that loaded with Drive! You can use this strategy to activate Turbo Drive on only

some parts of your site that are ready.

Let's remove both of these to fully get Turbo Drive again.

templates/base.html.twig

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 27

28

29

30

31

32

33

34

 // ... lines 35 - 84

Next: we've activated Turbo Drive and gotten the no-page-reload goodness with zero changes

to our Symfony code! That's... amazing! But... there is one tiny change that we will need to

make to any pages that have a form.

 <ul class="navbar-nav" data-turbo="true">

 <li class="nav-item">

 <a class="nav-link" href="{{ path('app_cart')

}}">

 Shopping Cart ({{ count_cart_items() }})

 </head>

 <body>

 <div class="page-top">

 <header class="header px-2">

 <ul class="navbar-nav">

 <li class="nav-item">

 <a class="nav-link" href="{{ path('app_cart')

}}">

 Shopping Cart ({{ count_cart_items() }})

Chapter 6: Form 422 Status & renderForm()

We already know that Turbo Drive also works for form submits. To prove it, head to the login

page and log in as shopper@example.com password buy ... using these handy cheating

links that are powered by a Stimulus controller.

Submit and... yep! That loaded via Turbo! Now head to the admin area. This is a generated

CRUD for creating, editing and deleting products. Click to edit a product and... make it look a bit

more exciting with some exclamation points. Hit enter to submit and... that worked too! It

submitted via Ajax and redirected back to the list page. There are my exclamation points!

Failing Validation... Doesn't Work?

But now, let's make a change that will fail validation: clear out the name field and... hit Update.

Uh... nothing happened? Check out the console. Ooh.

“Form responses must redirect to another location.”

Okay. Part of what makes Turbo so cool is that you get the single page app experience without

making any changes to your server code. But the one big exception to that rule is forms. Don't

worry: the change we need is minor... it's really an improvement on our code. And the change is

especially easy in Symfony 5.3.

The 422 Status Code

Let's go find the controller for this page: it's in

src/Controller/ProductAdminController.php ... and edit action. Here we go. In

short, if the form has a validation error, we need to return a 422 status code instead of a 200

status code.

src/Controller/ProductAdminController.php

 // ... lines 1 - 63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

 // ... lines 83 - 98

Right now, both when the page originally loads and when we have a validation error, we return

$this->render() , which sets a 200 status code. Using a 422 status code when there's a

validation error is actually more correct. And it tells Turbo that the form submit failed and it

should re-render the page with the new HTML.

So how can we set the status code on the response that $this->render() creates? The

easiest way is by passing the little-known third argument: a Response object that the render

function will put the template content into. Say new Response() - get the one from

HttpFoundation and pass null for the content, because that will be replaced by the

template HTML. For the status code, we can't use 422 all the time because we don't want that

status code when we simply navigate to this page. So use the ternary syntax: if

$form->isSubmitted() and $form->isValid() , I mean if not $form->isValid() ,

then use 422. Else use 200.

 /**

 * @Route("/{id}/edit", name="product_admin_edit", methods=

{"GET","POST"})

 */

 public function edit(Request $request, Product $product): Response

 {

 $form = $this->createForm(ProductType::class, $product);

 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {

 $this->getDoctrine()->getManager()->flush();

 return $this->redirectToRoute('product_admin_index');

 }

 return $this->render('product_admin/edit.html.twig', [

 'product' => $product,

 'form' => $form->createView(),

], new Response(null, $form->isSubmitted() && !$form->isValid() ?

422 : 200));

 }

src/Controller/ProductAdminController.php

 // ... lines 1 - 76

77

78

79

80

81

82

83

 // ... lines 84 - 98

That's it! Back over at the browser, we don't even need to refresh. Hit update and... voilà! We

see the validation error! Let's put the content back...remove my exclamation points, hit enter

again and... it works.

Turbo Handles Redirects too

By the way, on success, in our controller, we are redirecting with a 302 status code, which is

perfect! That is what you should do after a successful form submit.

The interesting thing is that... Turbo correctly handled this!

Check out your network tools. Let's look closely at what happened when we submitted the form.

This request is the POST request from the submit. It returned a 302 redirect. When an Ajax

request returns a redirect, your browser automatically follows it. What I mean is: in this case,

our browser made a second Ajax request to the redirect URL - which is the product list page.

At this point, Turbo did something really smart: it detected that this 2nd Ajax request happened

due to a redirect. It then used the HTML from that Ajax call to update the page like normal and it

changed the URL in our browser to match the redirected URL. In other words, redirects work

perfectly with Turbo Drive out of the box.

Now if you look at the Turbo documentation, they will tell you to return a 303 status code instead

of 302 when redirecting after a form submit. But both work exactly the same. 303 is... technically

a little bit more correct... and so more hipster... but it really doesn't matter.

Symfony 5.3's renderForm() Shortcut

 return $this->render('product_admin/edit.html.twig', [

 'product' => $product,

 'form' => $form->createView(),

], new Response(null, $form->isSubmitted() && !$form->isValid() ?

422 : 200));

 }

Okay, back to this 422 status code fix. If you're using Symfony 5.3 - and I am - then fixing this is

even easier thanks to a new renderForm() controller shortcut. Here's how it works: change

render() to renderForm() . Then, remove the Response object.

That's it! Well, that's almost it. Also remove the createView() call on the form.

src/Controller/ProductAdminController.php

 // ... lines 1 - 76

77

78

79

80

81

82

 // ... lines 83 - 98

Let's break this down. The renderForm() method is identical to $this->render() except

that it loops over all of the variables that we pass into the template. If any of them are a Form

object, it does two things. First, it calls createView() , which is just a really kind thing for it to

do: we don't have to call that ourselves anymore. Second, if the Form has been submitted and

it's invalid, it changes the status code to 422.

So all we need to do now is repeat this change everywhere else in our app... which is kind of

boring, but simple! Copy renderForm() and scroll up to the new action. You can actually see

that we did the 422 logic in the first tutorial because we wrote some custom JavaScript that -

like Turbo - needed to know if a form was simply rendering or if it had a validation error.

Change this to renderForm() , we don't need createView() ... and we don't need the third

argument at all. Much nicer.

src/Controller/ProductAdminController.php

 // ... lines 1 - 53

54

55

56

57

58

59

 // ... lines 60 - 95

Let's clear the tabs and go to CartController . There are two spots inside here. I'll search for

createView() .

 return $this->renderForm('product_admin/edit.html.twig', [

 'product' => $product,

 'form' => $form,

]);

 }

 return $this->renderForm('product_admin/' . $template, [

 'product' => $product,

 'form' => $form,

]);

 }

src/Controller/CartController.php

 // ... lines 1 - 29

30

31

32

33

34

35

36

 // ... lines 37 - 68

69

70

71

72

73

74

75

 // ... lines 76 - 107

Cool: renderForm() , then take off createView() . For the next one... it's exactly the same.

I'll take a big sip of coffee... and speed through the rest of the controllers:

CheckoutController has one spot, ProductController has two spots, one of which

renders two forms including a conditional reviewForm that can be simplified,

RegistrationController has one spot... and ReviewAdminController has two spots.

src/Controller/CheckoutController.php

 // ... lines 1 - 45

46

47

48

49

50

51

52

 // ... lines 53 - 71

 return $this->renderForm('cart/cart.html.twig', [

 'cart' => $cartStorage->getOrCreateCart(),

 'featuredProduct' => $featuredProduct,

 'addToCartForm' => $addToCartForm,

]);

 }

 return $this->renderForm('product/show.html.twig', [

 'product' => $product,

 'categories' => $categoryRepository->findAll(),

 'addToCartForm' => $addToCartForm,

]);

 }

 return $this->renderForm('checkout/checkout.html.twig', [

 'checkoutForm' => $checkoutForm,

 'featuredProduct' => $featuredProduct,

 'addToCartForm' => $addToCartForm,

]);

 }

src/Controller/ProductController.php

 // ... lines 1 - 58

59

60

61

62

63

64

65

66

67

 // ... lines 68 - 91

92

93

94

95

96

97

98

99

 // ... lines 100 - 109

src/Controller/RegistrationController.php

 // ... lines 1 - 47

48

49

50

51

52

53

54

 return $this->renderForm('product/show.html.twig', [

 'product' => $product,

 'currentCategory' => $product->getCategory(),

 'categories' => $categoryRepository->findAll(),

 'addToCartForm' => $addToCartForm,

 'reviewForm' => $reviewForm ?: null,

]);

 }

 return $this->renderForm('product/reviews.html.twig', [

 'product' => $product,

 'currentCategory' => $product->getCategory(),

 'categories' => $categoryRepository->findAll(),

 'reviewForm' => $reviewForm?: null,

]);

 }

 return $this->renderForm('registration/register.html.twig', [

 'registrationForm' => $form,

 'featuredProduct' => $productRepository->findFeatured(),

]);

 }

}

src/Controller/ReviewAdminController.php

 // ... lines 1 - 43

44

45

46

47

48

49

 // ... lines 50 - 63

64

65

66

67

68

69

 // ... lines 70 - 85

Phew! Good, straightforward, boring work. The only form we didn't need to change was the

login form. That's because the login form works a bit differently than other forms on our site. On

failure, it redirects and stores the error in the session. So if we put some bad info and submit... it

already works fine.

Hey! With a few small changes to our code, our site now has fully-functional Ajax submitted

forms! That's just... incredible.

Next, let's talk more about that snapshot functionality: the feature that instantly shows you a

page from cache when hitting the back button or when navigating to a page that we've already

been to. As awesome as that feature is - and it really makes the site feel fast - sometimes it can

take a snapshot when the page is in a "state" that we don't want.

 return $this->renderForm('review_admin/new.html.twig', [

 'review' => $review,

 'form' => $form,

]);

 }

 return $this->renderForm('review_admin/edit.html.twig', [

 'review' => $review,

 'form' => $form,

]);

 }

Chapter 7: Form Submits & The Preview Feature

One of the cooler features of Turbo Drive is its snapshot feature, which we know about already.

When we visit a page that we've already been to, like Office Supplies or Furniture, it instantly

shows the snapshot while it waits for the new Ajax call to finish in the background. And when we

hit back, it instantly shows the snapshot with no Ajax call.

This feature, which is great for making your site feel really snappy - is, I'll admit, one of the most

problematic when it comes to perfecting your site with Turbo Drive.

Snapshots and Form Submits

Let's see one problem. Head over to the registration page and fill out the form incorrectly: I'll use

a bogus email address and hit enter. Cool. The form submitted via Ajax and we see the errors.

Now click back to the homepage. I'm going to revisit the registration page. But watch closely

when I do. Woh! For just a moment, we saw the form with the values filled in and the validation

errors!

Here's what happened. When we were originally on the registration page with the validation

errors showing, we clicked to leave the page to go to the homepage. At that moment - just

before we were navigated away, Turbo saved the snapshot for the registration page. That

means the snapshot was for a page that had filled-in form fields and validation errors.

Then, when we clicked back to the registration page, that snapshot was restored with errors and

all. A moment later, when the Ajax call finished, the fresh content - with an empty form -

replaced the snapshot.

This is a known issue with submitted forms. And... well... maybe it's not really an issue. It's...

tricky. And maybe you don't really care that this shows up for a moment before it clears. In that

case, just ignore it and move on with your life! Go grab a baguette!

How to Handle Problematic Snapshots

But let's say that we do want to avoid this. One option is that we could disable the snapshot

from being taken on this page completely. But when I fill out the form... and get the errors... and

go to the homepage... and then hit the "back" button in my browser, it is nice that, thanks to the

snapshot, we see the form with the fields still filled-in. So... you kind of want the snapshot cache

to be used when hitting the back button... but not for the preview.

There are two main ways to fix the problem of a "bad snapshot". The first involves preparing a

page before its snapshot is taken. We could clear the form errors and empty the fields so that

the snapshot is clean. The code to do this would work for any form on your site... so it would

kind of take care of everything all at once. The only downside is that clicking the back button

would show an empty form. We're not going to use this solution in this case, but we will

leverage this soon for a different preview problem.

Disabling the Preview on a Page

A second solution is to simply disable the preview feature for this page. And, that's one of the

nice things about Turbo. Don't like something? Just disable it.

How? By adding a special meta tag to the head element. Head over to the code and open up

templates/base.html.twig . We don't want to remove the preview functionality for every

page. So instead of adding the meta tag right here, add a block so that a child template can

add new meta elements: {% block metas %} {% endblock %} .

templates/base.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 85

 <head>

 <meta charset="UTF-8">

 {% block metas %}{% endblock %}

 <title>{% block title %}MVP Office Supplies{% endblock %}</title>

 {% block stylesheets %}

 {{ encore_entry_link_tags('app') }}

 {% endblock %}

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </head>

Now open up templates/registration/register.html.twig and override that block:

{% block metas %} , {% endblock %} and inside add <meta>

name="turbo-cache-control" with content="no-preview" .

templates/registration/register.html.twig

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 36

The no-preview means: don't show a preview for this page. The other possible value is

no-cache , which tells Turbo to not do any snapshotting: not even for the back button.

Let's see how this feels! Refresh the registration page, fill out the form with errors and click

away from this page. Now, click back to it. Beautiful! Instead of instantly showing the preview, it

stayed on the previous page until the new Ajax call finished loading, just like a normal

navigation. You can repeat this for any pages that have a public-facing form where you care

enough to avoid this problem.

Dimming the Opacity of a Preview

Speaking of the preview feature, you can also change what a preview looks like... in case you

want to make it more obvious that a preview is being shown or give it a "loading" feel. How?

Open your Elements inspector. It's quick, but watch this html element. Whenever you navigate

and a preview is rendered, Turbo will add a data-turbo-preview attribute to the html

element.

Boom! It was fast, but I saw it! Let's use that to see if we can lower the opacity on previews.

Head over to assets/styles/app.css . Target that attribute using the lesser-known attribute

syntax: [data-turbo-preview] then body to apply some body styling. Set the opacity to

.2 so it's really obvious.

assets/styles/app.css

 // ... lines 1 - 7

8

9

10

 // ... lines 11 - 167

{% block metas %}

 <meta name="turbo-cache-control" content="no-preview">

{% endblock %}

[data-turbo-preview] body {

 opacity: .2;

}

Let's go check it! Refresh. As we click to new pages, we don't see anything. But if we click to a

page that we've been to... yes! The whole page was nearly invisible while the preview was

being shown. This is also kind of a fun way, while you're developing, to get a feel for when a

preview is shown.

But... since this looks a bit extreme, let's go back to app.css and comment it out.

assets/styles/app.css

 // ... lines 1 - 7

8

9

10

11

12

 // ... lines 13 - 169

Next: in addition to the form situation we just saw, there's one other common time when the

preview feature will do something that... we don't want. Let's talk about what happens when

something like a modal is open at the moment a snapshot is taken.

/*

[data-turbo-preview] body {

 opacity: .2;

}

*/

Chapter 8: The Problem of Snapshots & JavaScript
Popups

Let's go log in so we can access the product admin page. I'll click the cheating links to fill in the

fields and hit sign in. Now click "Admin" and then click the "New" button.

Snapshotting Pages with an Open Modal

This opens a Bootstrap 5 modal. Oh, and usually there is a dark gray backdrop... behind this...

which is missing right now. Refresh... then hit this button again. There is the backdrop. Why was

it missing the first time? It's actually a bug in Bootstrap 5.0.1 when using Turbo. But don't worry,

it's already fixed and will be available in 5.0.2.

Anyways, now that I have this modal open with my backdrop, click the back button in your

browser and then revisit the admin page. Woh! The modal was still open for just a moment and

then closed. This is very similar to what happened with our submitted form. The snapshot was

taken when the modal was open. And so, when the preview is rendered... it... still has a modal!

Do this flow again: click the button then hit "back" in your browser. But this time hit the "forward"

button in your browser. Whoa. The modal stays open! Which I guess is okay: that is an accurate

representation of the page's state. The only problem is that... well... the modal is completely

nonfunctional. I can click the "Cancel" button until Symfony 10 comes out... and nothing will

ever happen.

Snapshotting: Event Listeners are Lost

There are a few important things we need to understand. As we talked about a few minutes ago,

the snapshot for a page is taken the moment you navigate away from that page. And so, if a

modal or a dropdown or anything else is currently visible at that moment, well... it gets cached!

Also when Turbo takes a snapshot, it clones the body element using a method called

cloneNode() . That's important because it means that any JavaScript listeners - like an "on

click" listener for this cancel button - are not included in that clone. When we're looking at a

snapshot, it's not really the same body from before: it's a clone with no JavaScript listeners

attached.

That is why the modal doesn't work: it's the same HTML, but without any JavaScript listeners.

This was an intentional design decision inside Turbo. Cloning the body element, which

removes all of the listeners, helps keep Turbo fast by avoiding memory leaks.

If you write all of your JavaScript with Stimulus, this is no problem. When the snapshot is

restored, a new Stimulus controller instance will be created automatically and everyone is

happy. But in this case, this is Bootstrap's modal... so we can't exactly tell them to use Stimulus.

And, besides, even if this modal was functional, it would still show up and then disappear when

we navigate back to the admin page... which isn't a huge deal, but it's not perfect.

Listening to the turbo:before-cache Event

So what's the solution? Clean up the page before the snapshot is taken. Head over to the Turbo

documentation, click on Reference and go to Events. Turbo dispatches a bunch of events when

it does different things, like when we visit a page or submit a form. Learning how to leverage

these will be the difference between a "nice" Turbo experience and an awesome one. Check out

this turbo:before-cache event:

“Fires before Turbo saves the current page to cache.”

That sounds perfect! We could run code to close the modal! Copy that event name.

How do we use this? Open up assets/app.js . Usually when we want to add some

JavaScript, we write a Stimulus controller. But for Turbo events, we actually don't need that.

Instead, say document.addEventListener() - which is how you add an event listener in

normal JavaScript - then paste the event name. Pass an arrow function with an event

argument and, inside, console.log(event) .

assets/app.js

 // ... lines 1 - 12

13

14

15

16

document.addEventListener('turbo:before-cache', (event) => {

 console.log(event);

});

Turbo dispatches most of its events on the html tag itself. And, remember, as we navigate

around, the html element is never removed: this one html element sticks around forever.

That's nice because it means we can attach an event listener to it just one time and it will

always be there. And since app.js is only executed once - on initial page load - the listener

won't be added over and over again as we navigate to new pages.

Oh, and like we talked about earlier, the document variable is kind of the "parent" of the html

element. You can attach the event to it - like we're doing - or to the actual html element itself...

which is document.documentElement . It doesn't matter.

Anyways, let's see this in action. Go refresh the page and open the console. Now, click to

another page. There it is! The moment we navigated away from the product admin page, a

snapshot was taken. If you expand the event object that we logged, often this detail key

here will contain extra information that's relevant to this event. There's nothing in this case... but

we will see this with other events later.

Let's Hide the Modal!

So here's my thinking: we're using Bootstrap 5's modal system, and it has a built-in method to

hide a modal. So, in this function, if a modal is open, we'll call that hide() method and... done!

The page will cache with a hidden modal and we can all take a snapshot of a group high-five.

To do that, import { Modal } from bootstrap . Remove the event argument - we won't

need it - and the log. Now, if document.body - that's an easy way to get the body element -

.classList.contains('modal-open') , then we know that there is a modal currently

open.

assets/app.js

 // ... lines 1 - 13

14

15

16

17

18

19

20

21

import { Modal } from 'bootstrap';

document.addEventListener('turbo:before-cache', () => {

 if (document.body.classList.contains('modal-open')) {

 const modal = Modal.getInstance(document.querySelector('.modal'));

 modal.hide();

 }

});

I'm using a bit of Bootstrap-specific knowledge here. Click over to the product admin page and

open the modal. Yup! When the modal is open, the body element gets a modal-open class.

We're using that as an easy way to check if the modal is open.

Inside of the if, now that we know that the modal is open, we can say const modal = and

use a nice method from Bootstrap to get that the modal instance that's connected to our

element: Modal.getInstance() and pass it the Element that the modal is attached to. If you

inspect element, it's always going to be this element here: the one with the modal class. We

can find that with document.querySelector('.modal') .

If you're not very familiar with using native JavaScript without jQuery, that's fine. You can use

jQuery instead of native JavaScript if you want to. But this is about as complicated as it gets.

We're using classList to see if an element has a class and then using the

querySelector() method to find an element with a certain class on it. Now that we have the

Bootstrap modal instance, we can call its hide() method: modal.hide() .

That's it! Testing time! Find your browser, refresh, open the modal, hit back, then hit forward.

Ummmm. It... kind of worked? The modal isn't there... but this gray backdrop is there?

What happened? The problem is that Bootstrap's hide() method is asynchronous. To say that

a less-fancy way, when you hide a Bootstrap modal, it doesn't instantly hide: it fades out over

time with an animation. After that animation finishes, it does the rest of its cleanup, like

removing this backdrop. Unfortunately, the snapshot is taken immediately, before the modal has

finished doing all of its cleanup.

This is one of the trickiest things with the preview feature: how to clean up and play nice with

third-party JavaScript. So next, let's find a way to solve this both for Bootstrap's modal and also

a Sweetalert modal that we have on a different page. That will give us clean preview

functionality across our entire site whenever either of these are used.

Chapter 9: Cleanup Before Snapshotting (e.g.
Modals)

Refresh the page, open a modal, click back, then click forward again. Say hello to a very

strange-looking page. The modal did not completely hide itself. The problem is that hiding a

modal is asynchronous: Bootstrap waits for the transition to finish before finally removing all of

the elements, like its backdrop.

But the snapshot does not wait: Turbo takes the snapshot immediately, which is when the modal

has only started to be removed and its backdrop is still visible. Worse, because the modal

element is technically removed from the page, it's CSS transition is canceled. That's... a very

low-level detail... but it means that Bootstrap's modal system is never notified that the animation

finished, and so it never does its final cleanup.

Forcing Bootstrap's Modal to Close Immediately

The solution is to force both the modal and the backdrop to hide synchronously in this situation:

to not use the animation that you normally see on close.

Telling a modal that you want it to work without an animation is something you can configure.

But I don't want to remove the animation entirely: I only want to remove it when I'm hiding it right

before the snapshot is taken. Unfortunately, changing whether or not you want a modal to have

an animation after you create it is... well... not something that's really supported.

So... it's a bit ugly to get this working. I'll paste in the code.

assets/app.js

 // ... lines 1 - 13

14

15

16

17

18

19

20

21

22

23

24

25

This does the same thing as before: it finds the element, gets the modal instance and calls

hide() on it. But it also does some extra stuff. Most importantly, before it hides, we remove

the fade class from the modal. We also reach into this ugly internal backdrop object's config to

set an isAnimated flag to false.

The results is that bootstrap will now know that both the modal and the backdrop should not use

an animation: both should hide instantly.

The precise fix for this type of problem will be different each time you run into it. And usually,

you'll need to dig around in the third-party code a bit to find out the best option. Figuring this out,

I admit, was tricky. But ultimately don't over-think it: your goal is to basically clear out any

elements that you don't want visible in the snapshot. Often, you can just find the problematic

element and remove it.

The good news about what we have here is that this will fix the problem for the entire site. Let's

see it. Refresh the page, open the modal, click back, click forward and... yes! It's gone. If we

click to add a new product, the modal still works! You might notice that the backdrop is

missing... but that's only due to the bug in Bootstrap 5.0.1 that I mentioned earlier. That will not

be a problem in 5.0.2.

Dynamically Disabling Snapshot Caches

By the way, if you're having trouble figuring out how to clean up some third party code before

the page is snapshotted, there is one other, less-elegant, but simpler solution. Instead of trying

import { Modal } from 'bootstrap';

document.addEventListener('turbo:before-cache', () => {

 if (document.body.classList.contains('modal-open')) {

 const modalEl = document.querySelector('.modal');

 const modal = Modal.getInstance(modalEl);

 modalEl.classList.remove('fade');

 modal._backdrop._config.isAnimated = false;

 modal.hide();

 modal.dispose();

 }

});

to remove the problematic element, you could disable the snapshot cache only when that

element is open.

I won't actually try this live in the video, but let's see how this might work. Bootstrap's modal

system dispatches an event both when a modal is opened and when it's hidden. We can use

that to add and remove the turbo-cache-control meta tag that we saw earlier.

For example, check out this code:

// assets/app.js

const findCacheControlMeta = () => {

 return document.querySelector('meta[name="turbo-cache-control"]');

}

document.addEventListener('show.bs.modal', () => {

 if (findCacheControlMeta()) {

 // don't modify an existing one

 return;

 }

 const meta = document.createElement('meta');

 meta.name = 'turbo-cache-control';

 meta.content = 'no-cache';

 meta.dataset.removable = true;

 document.querySelector('head').appendChild(meta);

});

This listens to the show.bs.modal event, which is dispatched every time any modal is

opened. Inside, if there is already a turbo-cache-control meta tag, we do nothing: we

don't want to change any cache behavior. But if there is not one, we add a

turbo-cache-control set to no-cache .

Thanks to this, if we leave the page when the modal is open, Turbo will see that this page

should not be cached. Hitting back or revisiting the page will result in a normal navigation visit

where no snapshot is used.

Notice that I added an extra removable key to the meta tag's dataset . That's useful when

removing this meta tag when the modal closes. Check out the other half of this code:

// assets/app.js

const findCacheControlMeta = () => {

 return document.querySelector('meta[name="turbo-cache-control"]');

}

// ...

document.addEventListener('hidden.bs.modal', () => {

 const meta = findCacheControlMeta();

 // only remove it if we added it

 if (!meta || !meta.dataset.removable) {

 return;

 }

 meta.remove();

});

The hidden.bs.modal event is dispatched after a modal has been fully removed from the

page. If we find a turbo-cache-control meta tag and it has the removable data key -

which means we added it - we know it can now be safely removed. Thanks to this, if we

navigate away from the page, Turbo will create a snapshot like normal.

This solution is, maybe less-elegant than the one I'm using... but in practice, it works really well,

and could be repeated for any other problematic JavaScript elements on your site.

Next: now that we've crushed the Bootstrap modal, let's see one other example with a

Sweetalert modal. I'll also show you a Webpack trick where we can import Sweetalert to help us

hide the element... but without causing SweetAlert's JavaScript to be downloaded on every

page.

Chapter 10: Fixing the Sweetalert Modal

So... we've crushed the Bootstrap modal problem! But we have the same issue in one other

spot. Go back to the homepage, add an item to your cart and go to the cart. Try to remove the

item. This cute little dialog is powered by a library called Sweetalert. Once again, if we click

back and then forward, it pops up again, which might be ok... if it actually worked! But... it

doesn't... because all of its event listeners are gone.

Okay: let's try using Sweetalert's close functionality to tell it to close before the page is

snapshotted. To do that, import Swal from 'sweetalert2' .

Then, down inside of the function, if Swal.isVisible() - they have a nice function to check

if Sweetalert is visible - then Swal.close() .

assets/app.js

 // ... lines 1 - 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

It's that simple! Or at least... it might be. Let's go try this. Refresh the cart page, hit remove, go

back, go forward and... it worked! Wait, I can't scroll... and nothing is clickable! Inspect element

anywhere. Uh oh: a Sweetalert backdrop element is still there! It's invisible, but it's blocking the

page!

import { Modal } from 'bootstrap';

import Swal from 'sweetalert2';

document.addEventListener('turbo:before-cache', () => {

 if (document.body.classList.contains('modal-open')) {

 const modalEl = document.querySelector('.modal');

 const modal = Modal.getInstance(modalEl);

 modalEl.classList.remove('fade');

 modal._backdrop._config.isAnimated = false;

 modal.hide();

 modal.dispose();

 }

 if (Swal.isVisible()) {

 Swal.close();

 }

});

This is the exact same problem we just saw with Bootstrap's modal: the close animation never

finishes, so cleanup never happens. The solution is to, once again, tell Sweetalert to close... but

without an animation.

This is easier than Bootstrap... but it still tool some digging to figure out how to do it. In this

case, right before we close, we can say Swal.getPopup() - which gives you the Element

associated with the dialog - .style.animationDuration = 0ms .

assets/app.js

 // ... lines 1 - 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

How could I possibly know that this is the code we need? If you look internally at Sweetalert,

you'll notice that it looks at its popup element and checks to see if the popup element has an

animationDuration declared on its style. If it does, then it waits for the animation to finish

before cleaning up. By changing the animationDuration to zero, Sweetalert will now see

that it does not need to wait... and will clean up everything immediately.

Let's try it! Refresh, click remove, click back and click forward. Everything looks fine! When I

hover over the checkout button, it is not being blocked by a backdrop and I can click "remove"

again. All good!

Lazily Importing Sweetalert

import { Modal } from 'bootstrap';

import Swal from 'sweetalert2';

document.addEventListener('turbo:before-cache', () => {

 if (document.body.classList.contains('modal-open')) {

 const modalEl = document.querySelector('.modal');

 const modal = Modal.getInstance(modalEl);

 modalEl.classList.remove('fade');

 modal._backdrop._config.isAnimated = false;

 modal.hide();

 modal.dispose();

 }

 if (Swal.isVisible()) {

 Swal.getPopup().style.animationDuration = '0ms'

 Swal.close();

 }

});

One tiny problem with this approach is that both Bootstrap's modal and the sweetalert2

library will now be downloaded on every page since we're importing them from our main

app.js file.

You might not care... and you probably shouldn't care... at least not until you investigate

optimizing your CSS and JS file sizes later.

But, this is interesting. Sweetalert is only used on this one page. So, it's kind of wasteful to force

the user to download it on every page load... even though they will rarely need it.

Open assets/controllers/submit-confirm_controller.js . This is the controller

that handles the Sweetalert confirmation on this page. Notice that it has

stimulusFetch: lazy above it.

assets/controllers/submit-confirm_controller.js

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 54

This is something that we added in our Stimulus tutorial. Thanks to this, before we started

adding all of this new code in app.js - so pretend this isn't there - the sweetalert2

JavaScript was not downloaded on every page. It was only downloaded when an element that

uses this controller first appeared on the page... which is pretty cool! The code for this controller

& its dependencies literally waits until its needed and then downloads itself.

But now that we're importing sweetalert2 directly in app.js , it is being downloaded on

every page. If you care enough about this, you can fix it using a very specific Webpack trick. It's

a little nuts actually. I'll paste in the first half of the code, indent, then close things.

/* stimulusFetch: 'lazy' */

export default class extends Controller {

 static values = {

 title: String,

 text: String,

 icon: String,

 confirmButtonText: String,

 submitAsync: Boolean,

 }

assets/app.js

 // ... lines 1 - 25

26

27

28

29

30

31

32

33

34

35

 // ... lines 36 - 37

Let's walk through this. The __webpack_modules__ thing is an internal way - along with

require.resolveWeak - to check to see if sweetalert2 has already been downloaded

and is available. But it does this without causing it to become packaged with app.js . If it has

already been downloaded, then we can use this import to grab it. Because we know it's already

available, this executes instantly. Then, we run our normal code down here. The only thing we

need to change - due to the way that the import() function works - is that every Swal needs

a .default to access that module's default export.

If this isn't making much sense to you, don't worry. This is a complex performance optimization.

I thought I'd mention it for the performance and Webpack geeks out there.

Oh, and before we try this, scroll up and remove the now-unused import.

To see the result of this, go back to the homepage and then do a full page refresh. Over on the

network tools, view the JS tab. It's not super obvious yet, but if you look closely at the names

here... you won't see any that mention sweetalert2. It has not been downloaded yet.

Let me clear this and let's watch what happens when we click to the cart page. Yes! Check it

out. One of the files that was downloaded - this one - has sweetalert2 in the middle of its

name! That contains Sweetalert and proves that it wasn't downloaded until it was actually

needed... even though we have some code in app.js that takes advantage of it.

So now that we've tackled some of the most annoying problems with Turbo, which is cleaning

up the snapshot, let's organize all of the new event code to make room for more turbo event

listeners later. That will put us in a great position to discuss the last tricky thing with Turbo drive:

handling third-party JavaScript like JavaScript widgets and analytics code.

 // internal way to see if sweetalert2 has been imported yet

 if (__webpack_modules__[require.resolveWeak('sweetalert2')]) {

 // because we know it's been imported, this will run synchronously

 import('sweetalert2').then((Swal) => {

 if (Swal.default.isVisible()) {

 Swal.default.getPopup().style.animationDuration = '0ms'

 Swal.default.close();

 }

 })

 }

Chapter 11: Organizing our Turbo Events Code

To get Turbo Drive to work super nicely, we're going to need to hook into a few events, like

turbo:before-cache . Before we're done, we'll listen into even more of these to help us

properly load JavaScript widgets, add transitions, and do more craziness when we talk about

Turbo Frames.

Isolating the Turbo Logic

So instead of putting all that logic right here in app.js , let's organize a bit. There's no right or

wrong way to do this, but let's create a class that holds all of the special Turbo logic. In the

assets/ directory, add a sub-directory called turbo/ and, inside, a new file:

turbo-helper.js . Start with const TurboHelper = class {} with a

constructor() {} inside.

Now, head back to app.js , copy all of this code, and paste! When we did that, PhpStorm

helpfully added the import { Modal } for us. At the bottom of this file,

export default new TurboHelper() .

assets/turbo/turbo-helper.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

This is kind of cool: it instantiates a new instance of our object and exports it. It won't really

matter for us... but thanks to this, each time we import this module, we will get the same one

instance of this object.

In app.js , delete all the original code and then import './turbo/turbo-helper' . We

don't need to set that to a variable... and just by importing it, the object will be instantiated and

the listeners will be registered. So... this should be enough to get things working!

import { Modal } from 'bootstrap';

const TurboHelper = class {

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 if (document.body.classList.contains('modal-open')) {

 const modalEl = document.querySelector('.modal');

 const modal = Modal.getInstance(modalEl);

 modalEl.classList.remove('fade');

 modal._backdrop._config.isAnimated = false;

 modal.hide();

 modal.dispose();

 }

 // internal way to see if sweetalert2 has been imported yet

 if (__webpack_modules__[require.resolveWeak('sweetalert2')]) {

 // because we know it's been imported, this will run

synchronously

 import(/* webpackMode: 'weak' */'sweetalert2').then((Swal)

=> {

 if (Swal.default.isVisible()) {

 Swal.default.getPopup().style.animationDuration =

'0ms'

 Swal.default.close();

 }

 })

 }

 });

 }

}

export default new TurboHelper();

assets/app.js

 // ... lines 1 - 10

11

12

13

14

Let's try! Refresh, click to remove an item, go back and go forward. Yep! All good.

Organizing the Class

Now that we have a class, we can organize a bit more. Copy the modal code, remove it, create

a new method below called closeModal() and paste. Then, back up inside the

turbo:before-cache callback, say this.closeModal() .

Repeat this for Sweetalert: copy all of the Sweetalert code, create a new method called

closeSweetalert() , paste... and... then back in the callback, use it:

this.closeSweetalert() .

// start the Stimulus application

import './bootstrap';

import './turbo/turbo-helper';

assets/turbo/turbo-helper.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

That looks better! Let's... make sure we didn't mess anything up. Do the same dance as before:

refresh, click remove, go back and go forward. All good!

Next: let's learn what types of things can go wrong when including third-party hosted JavaScript,

like a JavaScript widget or analytics code. This type of JavaScript is usually supposed to be

import { Modal } from 'bootstrap';

const TurboHelper = class {

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 }

 closeModal() {

 if (document.body.classList.contains('modal-open')) {

 const modalEl = document.querySelector('.modal');

 const modal = Modal.getInstance(modalEl);

 modalEl.classList.remove('fade');

 modal._backdrop._config.isAnimated = false;

 modal.hide();

 modal.dispose();

 }

 }

 closeSweetalert() {

 // internal way to see if sweetalert2 has been imported yet

 if (__webpack_modules__[require.resolveWeak('sweetalert2')]) {

 // because we know it's been imported, this will run

synchronously

 import(/* webpackMode: 'weak' */'sweetalert2').then((Swal) =>

{

 if (Swal.default.isVisible()) {

 Swal.default.getPopup().style.animationDuration =

'0ms'

 Swal.default.close();

 }

 })

 }

 }

}

export default new TurboHelper();

included in the body of the page... and often it expects full page refreshes.

Chapter 12: 3rd Party JavaScript Widgets

In a perfect world, all your JavaScript would be written in Stimulus and you would have zero

script elements in your body tag. With that ideal setup, your JavaScript would always work -

regardless of how or when new HTML was loaded - and it would only be parsed and executed

one time, on initial page load.

But what about externally-hosted JavaScript? I'm talking about a third party service that you

sign up for... then you're supposed to copy some JavaScript from their site, paste it onto your

site... and suddenly you get a "feedback" button or a "share on Twitter" button... or maybe it's

analytics JavaScript. These bits of JavaScript will definitely not be written in Stimulus and, often,

funny things start to happen when you use them. Not, like "funny haha", more funny weird...

Adding an External Weather Widget

Let's see an example. Let's integrate a third-party weather widget onto our site. Head over to

weatherwidget.io, which, as its name suggests, allows us to embed a handy weather widget

onto our site.

Click this "get code" button. So this is pretty common: you sign up for some service and then

they give you some JavaScript that you're supposed to paste onto your site.

Let's do it: copy this... then go open templates/base.html.twig . Head to the bottom and

paste this in the footer: right before the closing body tag... though you could put this anywhere.

templates/base.html.twig

 // ... lines 1 - 75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Cool: this gives us an a tag... which just says "New York weather". Then, my guess is that this

JavaScript will execute and transform that a tag into the cool weather widget that you see down

here.

Let's find out! Do a whole page refresh, scroll all the way down and yes! We have a weather

widget! Now, navigate to another page and... it's broken! It's just the original anchor tag. Where

did our cool little widget go?

What Happens When External JavaScript Executes

The JavaScript code that we pasted is pretty impossible to read. To help, select it and then go to

Code -> Reformat code. There we go! It's still a little hard to read, but it's doable.

 {% block body %}{% endblock %}

 <div

 class="footer mb-0"

 {{ stimulus_controller('made-with-love') }}

 >

 </div>

 <a class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 <script>

 !function(d,s,id){var js,fjs=d.getElementsByTagName(s)

[0];if(!d.getElementById(id))

{js=d.createElement(s);js.id=id;js.src='https://weatherwidget.io/js/widget.m

(document,'script','weatherwidget-io-js');

 </script>

 </body>

</html>

templates/base.html.twig

 // ... lines 1 - 83

84

85

86

87

88

89

90

91

92

93

94

95

 // ... lines 96 - 98

This is a function that calls itself and passes in these three arguments. Basically, when this

JavaScript is executed, it adds a new script tag to the head element of our page that points

to this widget.min.js script on their site. But this function is smart: it gives the script tag

an id set to weatherwidget-io-js . And before it adds the script tag, it checks to see if

it's already on the page. If the script tag does already exist, it avoids adding it twice.

Back over at our browser, find and expand the head tag. Yup! There's the script tag with

id="weatherwidget-io-js that points to widget.min.js .

So here's what's going wrong in our case. When the page first loads, like right now, this

JavaScript function executes and the new widget.min.js script tag is added to our page.

Our browser downloads that file and then, my guess is that, when that JavaScript executes, it

looks for elements with a weatherwidget-io class on it and transforms them into the fancy

weather widget.

Inspect element on this. Yup! There's the anchor tag... but now with a big iframe inside.

But then, when we navigate to another page, the entire body tag is replaced by a new body

tag. The weather widget that lives inside the original anchor tag is now gone from the page,

replaced by a new anchor tag that's just the original boring one that says "New York weather".

However, Turbo does see the script tag that's inside of the new body - the script tag that we

have down at the bottom of base.html.twig - and it does re-execute these lines. But this

time, since the script with id weatherwidget-io-js already exists up here in the head tag,

 <a class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 <script>

 !function (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }(document, 'script', 'weatherwidget-io-js');

 </script>

it does not re-add it to our page. And so, no JavaScript ever runs that re-initializes the widget

into our new anchor tag.

Add the script Element on Each Visit?

Okay, so now that we understand what's going on, shouldn't we just, you know, tweak the

JavaScript so that it always inserts the script tag? Let's try it. I'll cheat and temporarily add

|| true to the if statement so that it always executes and adds that element.

All right. Refresh. On page one, the weather widget works. Click over to the cart and... yea! The

weather widget still works! Problem solved! And don't worry, the script tag isn't downloaded

multiple times: your browser is smart enough to pull it from cache after it downloads it the first

time.

Having Many Duplicate script Tags on your Page

But... this might not be the best solution for two reasons. Look at the head element of our

page. Woh! We have two script tag!. And each time we navigate, we would get yet another one.

That... might be ok? But it seems a bit crazy: eventually a user might have 50 identical script

elements on their page.

And actually, that's precisely how some external JavaScript works. Some external JavaScript

snippets do not have this if statement here. And so, one of the problems is that it does add more

and more and more script tags when you using Turbo.

The second problem is that... whether or not executing this script file over and over again is a

good idea... sort of depends on what that script tag does! If it simply reinitialize the weather

widget, cool! That sounds safe. But if it, for example, adds an event listener to the document

each time it's executed, then each time we load that script tag, we're going to add a second,

third, fourth, or fifth listener. Then, suddenly when you, for example, click the page, that

JavaScript widget's listener will execute 5 times and... do whatever it normally does way more

times than normal.

My point is: you need to be careful with third-party JavaScript. Let's put back the if statement the

way we found it.

So in this case, re-executing the widget.min.js script tag after each visit is probably okay: it

does seem to simply reinitialize the weather widget on this element. But I would love to do that

without duplicating the script tag and ending up with 50 of them in my head . How can we do

that? By removing the previous script tag right before the page renders. And how can we do

that? Via a new event listener. Let's talk about that next and discuss the proper way to handle

analytics code so that you don't under-count or over count your visits.

Chapter 13: Fixing External JS + Analytics Code

Head back to the Turbo docs, specifically to Reference and then Events. We saw this list of

events earlier. Now we're going to hook into a new one: turbo:before-render .

The turbo:before-render Event

Here it is. This event triggers before Turbo renders a page, but not counting the initial page

load. In other words, it triggers when Turbo is specifically responsible for rendering the page.

We can use this to help our third party weather widget get working right before the page

renders.

Head over to assets/turbo/turbo-helper.js and, up here in the constructor ... say

document.addEventListener() to listen to turbo:before-render . Pass this an arrow

function and then log "before render" so we can see exactly when this does and doesn't

execute.

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 41

Cool. Let's test it!

Find your browser, refresh, and open the console. Okay. So nothing on initial page load. But

then, when we click to another page, there it is! Click to another page... there's a second one.

Click to the homepage, a third one. Awesome.

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:before-render', () => {

 console.log('before render!');

 });

 }

Now, clear out the console... and go back to a page we went to a second ago. It logs twice! This

is an important detail about this event. It fired twice because first the preview was rendered and

then the final page was rendered. Just keep that fact in mind.

Removing the Weather Script Tag Before Render

So here's the plan: right before the page is rendered, so inside of our new listener, we're going

to find and remove this weatherwidget-io-js script tag. Then, with any luck, when the new

page is loaded, the JavaScript from our base template will execute, it will re-add that script tag

and everything will work!

Let's check it! Replace the log with document.querySelector() and look for

#weatherwidget-io-js . Then say, .remove() . You can also code defensively to make

sure the element exists first before trying to call remove() ... not a bad idea.

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 41

Ok: refresh. It works and... navigate to a different page. Yea! It still works! If you look inside the

head element, it accomplishes this without duplicating the script tag.

Calling the External Script Directly on Navigation

I like this solution. But if you're willing to do some digging, there might be an alternate solution.

Copy the widget.min.js URL and open it in your browser. It's minified... so pretty

unreadable. Copy the source, close it, spin over to your editor and create a new file anywhere,

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:before-render', () => {

 document.querySelector('#weatherwidget-io-js').remove();

 });

 }

like pizza.js ... we're not going to actually use this. Paste the code, select it, then go back up

to Code -> Reformat Code so we can at least, kind of read it.

It's still not super clear, but... let's see. Ah! There's a function called

__weatherwidget_init ... and it looks like this might be the key to re-initializing the weather

widget! In other words, instead of removing and re-adding the script tag on each render, we

might be able to just... call this function!

The turbo:render Event

Let's do some experimenting! Start by changing the event from turbo:before-render to

turbo:render ... that's another new event. Why are we switching to it? In order for the

__weatherwidget_init function to work, the new weatherwidget-io anchor tag needs

to actually live on the page.

But turbo:before-render is triggered too early: it's triggered before the new body is on the

page. Fortunately, turbo:render is called after it's on the page. This means that, inside of

the callback, we know that the new body will be on the page. And so, we can call that

__weatherwidget_init function. Let me steal that name from the other file... and paste it

here.

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 41

Testing time! Refresh! The first page works: no surprise. And when we go to a second page...

yes! It still works! No matter how many pages we go to, it keeps working. I like this solution

better, though, I also realize that we're sort of using an "internal" function from that widget

script... and it's possible they could change their JavaScript some time in the future.

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:render', () => {

 __weatherwidget_init();

 });

 }

Now that we have this working, let's refactor this logic into a method for clarity. Copy the

__weatherwidget_init function, go to the bottom of the class and create a new method,

how about initializeWeatherWidget . Paste, then call that from up here in our listener:

this.initializeWeatherWidget() .

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 38

39

40

41

 // ... lines 42 - 45

Solving External Widgets with Stimulus?

By the way, there is a third way to solve this problem, and we'll talk about it later. It's especially

appropriate if you need to load an external widget - like our weather widget - but that widget

might be loaded onto the page at any time, even via a custom, non-Turbo Drive Ajax call. This

solution basically involves running the same code that we have here, but leveraging a Stimulus

controller.

Handling Analytics Code

Before we move on, we do need to talk about one last type of external JavaScript: analytics

code. As an example, here's what Google analytics code looks like: this is what you're

supposed to paste into the head tag of your page.

It turns out that the key line that triggers the visit is this last one: gtag('config') . If we

pasted all of this onto our site, guess what would happen? It would register the first visit... then

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:render', () => {

 this.initializeWeatherWidget();

 });

 }

 initializeWeatherWidget() {

 __weatherwidget_init();

 }

the code would never execute again, no matter how many pages the user visited. That's not

great. Fortunately, single page applications - like those written in Vue or React - have the same

problem.... and you can often find docs that talk about how to integrate with those.

In this case, the solution would be to paste all this code - except for the gtag('config') line

- into your head like normal. For this last line, we need to execute it on initial page load and

then every Turbo "visit" after.

The turbo:load Event & Analytics

Let me open a GitHub issue that talks about this with a really nice solution. As you can see

here, henrik is using a turbo:load event. That's yet another event that we haven't talked

about yet. turbo:load is nice because it's executed on initial page load and one time for

every visit: it avoids the "double dispatch" that happens with the turbo:before-render and

turbo:render events when you visit a page that shows a preview. In other words,

turbo:load is triggered exactly when you would want your analytics code to trigger a visit.

Inside the callback, henrik calls gtag('config') to trigger that visit. This

googleAnalyticsIDForScript thing is just their way of referencing whatever your Google

Analytics ID is. The one special thing that you need to do with this function is pass a little bit of

extra data to make sure analytics knows what the actual URL is that it should use.

Next: we already know that, with Turbo Drive, we download each CSS and JavaScript file just

one time. Then, as we navigate around, if Turbo sees a CSS or JS file in the new page's head

tag that already exists on the current page, it ignores it.

But what happens if we deploy a new version of our site and the content of these files has

changed? How can we force the user to download the newest version of our assets? That's an

important question.... and one where the answer is refreshingly simple.

https://github.com/turbolinks/turbolinks/issues/73#issuecomment-812484452

Chapter 14: Reloading When JS/CSS Changes

How does Turbo handle when a JavaScript or CSS file that's downloaded onto our page

changes? When we navigate, it's smart enough to merge any new CSS or JS into our head

element without duplicating anything that's already there.

But what about a CSS or JavaScript file whose contents just updated because we deployed?

This is really a problem specific to production because locally, if we change a CSS or JS file in

our editor, we just come back and trigger a full page reload manually. But how is this handled on

production?

Well... if you do nothing, it's pretty simple: your users will continue to surf around with the old

CSS and JavaScript... which is not something we want... especially since they will be getting the

newest HTML from our site... which may only work with the newest CSS and JavaScript.

Activating Asset Versioning

But a slightly different thing happens if we enable versioning on our assets. Head to your editor

and open up webpack.config.js . About halfway down this file... you'll find

enableVersioning() .

This tells Encore that, if we are doing a production build, each filename should contain a hash

that's unique to its contents. It's a great strategy to make sure that when you deploy updates,

each file gets a new file name... which forces users - in a non Turbo universe - to download the

latest version.

To see what happens with Turbo, let's activate this for dev builds also by removing the

Encore.isProduction() argument.

webpack.config.js

 // ... lines 1 - 44

45

46

 // ... lines 47 - 76

 // enables hashed filenames (e.g. app.abc123.css)

 .enableVersioning()

To make this take effect, find your terminal, go to the tab that's running Encore, hit Control+C

and then rerun:

yarn watch

When that finishes... move over, refresh, and navigate around. If you check out the head tag,

we have versioned filenames! The app.css file is now app.blahblah.css , and the

app.js file also has a hash.

Let's go modify the app.js file - that's over at assets/app.js . At the bottom,

console.log('new code') .

assets/app.js

 // ... lines 1 - 14

15

16

Now, without refreshing your browser, navigate to a new page.. and look at the console.

Interesting... no log! And we have two app.js script tags on the page... which is probably not

what we want.

First, the new file wasn't executed because Webpack was smart enough to realize that the app

entry script has already been loaded. So even though the script tag was added... and

downloaded, Webpack prevented it from running: it knows that something weird is going on.

And even if it did load, it would probably mean that we would have things like event listeners

registered twice on the page... which is also not what we want.

What we see in the head tag at least does make sense based on what we know about Turbo.

Because the app.js has a new filename, it looks like a new script file. And so, Turbo added it

to the head .

Refreshing the Page with data-turbo-track="reload"

So... how do we fix this mess? Well, let's think. One of the huge benefits of Turbo is that your

JavaScript and CSS are downloaded and executed just once on initial page load... and then are

reused for every navigation after. It's a big reason why Turbo is so fast. But if one of these files

console.log('new code!');

changes... we sort of do need to hit the "reset" button. In other words, this is one case when the

page should do a full page reload so that our browser can download everything new.

Fortunately, there's an easy way to do this: by adding a special data-turbo-track attribute

to every CSS and JS tag. And, it turns out, adding that attribute is super easy!

Open config/packages/webpack_encore.yaml . The script_attributes key allows

us to add an attribute to every script tag that Encore outputs. Add data-turbo-track and

set it to reload . We'll talk about what this does in a second. Also uncomment

link_attributes and set the same thing here.

config/packages/webpack_encore.yaml

 // ... lines 1 - 6

7

8

9

10

11

12

 // ... lines 13 - 33

With this simple change, every script and link tag that Encore renders will now have that

data-turbo-track="reload" attribute on it.

So here's how this works... it's pretty simple. When we navigate, Turbo finds all of the elements

with data-turbo-track on the current page and compares their filenames to the

data-turbo-track elements on the new page. If the total collection of filenames on the old

page does not exactly match the total collection of filenames on the new page, Turbo will trigger

a full page reload.

Watch: if we click around, we see a lot of nice, boring Turbo-powered visits. But now go back to

assets/app.js and remove that console.log() .

Behind the scenes, a new app.js file with a new filename was just output. You can see it in

the Encore terminal: before the filename was this, now the filename is different.

Back at our browser, let's visit a new page. Watch carefully. Yes! That was a full page reload!

Turbo saw that the new page's "tracked" script and link tag filenames did not exactly

match the old page's tracked filenames, and so, it triggered a normal, full-page-reload

navigation. Problem solved!

 # Set attributes that will be rendered on all script and link tags

 script_attributes:

 defer: true

 'data-turbo-track': reload

 link_attributes:

 'data-turbo-track': reload

Next: sometimes you may need to navigate to another page via custom JavaScript code. Like,

maybe you have some custom JavaScript... where, after an Ajax call, you want to redirect to

another URL. Could we use Turbo to do that visit instead of triggering a full page reload?

Absolutely.

Chapter 15: Manual Visits with Turbo

Sometimes you need to trigger a Turbo visit programmatically... like after running some custom

JavaScript, you want to send the user to another page.

Head over to your code and open assets/controllers/counter_controller.js . This

very advanced Stimulus controller powers this high-tech "click for a chance to win" area. Each

time I click the button, the counter goes up. Amazing!

Let's pretend that, after 10 clicks, the user wins and we want to redirect them to a "you won!"

page. Let's first do this with normal JavaScript. Inside of the increment() method - which is

called each time we click - say, if this.count equals 10 , then redirect using raw JavaScript:

window.location.href equals /you-won , which is a page I already created.

assets/controllers/counter_controller.js

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

 // ... lines 15 - 16

Let's make sure this works. Refresh the homepage... click a bunch of times and... eureka! We're

winners! But... that worked via a full page refresh, not via Turbo.

Navigating with Turbo

Could we navigate with Turbo? Totally! Start by importing Turbo into this file. This is the most

complicated part because... the syntax looks a little funny. It's import * as Turbo from

and then the name of the library, which is @hotwired/turbo . The * as Turbo is needed

due to how that library exports things.

 increment() {

 this.count++;

 this.countTarget.innerText = this.count;

 if (this.count === 10) {

 window.location.href = '/you-won';

 }

 }

Down in the method, instead of window.location.href , we can say Turbo.visit() and

pass in the URL.

assets/controllers/counter_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Let's try it again! Go back to the homepage and do a full page refresh. Actually... it did a full

page refresh automatically because of the asset tracking we created in the last chapter. Cool!

Time to click! Watch when we get to 10. Beautiful! That navigated with Turbo. We can see the

Ajax call right here. And... yea! It's just that easy.

But if you want to be more hipster, you can use de-structuring to just import the visit function.

It looks like this import { visit } from '@hotwired/turbo' . Then below, literally call

visit() as a function.

import { Controller } from 'stimulus';

import * as Turbo from '@hotwired/turbo';

export default class extends Controller {

 count = 0;

 static targets = ['count'];

 increment() {

 this.count++;

 this.countTarget.innerText = this.count;

 if (this.count === 10) {

 Turbo.visit('/you-won');

 }

 }

}

assets/controllers/counter_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

This will work exactly the same as before.

What if Turbo isn't Available?

There's one other tricky situation that you might run into when it comes to navigating with Turbo:

if you're writing JavaScript... but you are not in a file that's parsed by Webpack. In other words,

you're somewhere where you can't use the import keyword.

This is probably not very common and, really, in a perfect world, 100% of our JavaScript will be

written in a Webpack-parsed file.

But just in case, let's see how we can navigate with Turbo from inside some inline JavaScript on

our page. Open up templates/base.html.twig and head to the bottom. Right before the

closing </body> , add a <script> tag. We're going to pretend that when we click the logo...

which has id="logo-img" ... that we want to go to the cart page.

Do that by saying document.getElementById() , pass it, logo-img ,

.addEventListener('click') and pass an arrow function with an event argument.

Inside, say event.preventDefault() so that it doesn't follow the link that the image is

inside of. Oh... yikes! I forgot my comma. That's better.

How can we fetch the Turbo object to trigger the visit? It turns out... it's already available as a

global variable! So we can immediately say: Turbo.visit('/cart')

import { Controller } from 'stimulus';

import { visit } from '@hotwired/turbo';

export default class extends Controller {

 count = 0;

 static targets = ['count'];

 increment() {

 this.count++;

 this.countTarget.innerText = this.count;

 if (this.count === 10) {

 visit('/you-won');

 }

 }

}

templates/base.html.twig

 // ... lines 1 - 96

97

98

99

100

101

102

 // ... lines 103 - 105

That's it! But... who set Turbo as a global object? I don't remember doing that! Starting in Turbo

7 beta 6, when you import the @hotwired/turbo library, it automatically sets itself as a global

variable. So if you have Turbo working on your site, there is a Turbo global variable, which is

done to help with this exact situation.

Anyways, if we go and do a full page refresh... then click the logo image, instead of going to the

homepage like it normally would, it navigates us - via Turbo - to the cart page.

Next, we are now done with all the Turbo Drive tricky parts! Before we move onto Turbo frames,

let's try doing a few fun things. The first will be to experiment with adding CSS transitions as we

navigate between pages with Drive.

 <script>

 document.getElementById('logo-img').addEventListener('click',

(event) => {

 event.preventDefault();

 Turbo.visit('/cart');

 })

 </script>

Chapter 16: CSS Page Transitions

What about CSS transitions between pages as we click around? This is something that a

competing library called Swup does very well. But in Turbo, it's not so easy. Well, it will be

easier once a PR is merged into Turbo.

Here's the basic problem: when you click, Turbo makes an Ajax call for the new HTML. Then,

when that Ajax call finishes, it immediately puts the new body onto the page. To be able to have

a CSS transition between visits, we need a way to pause that process. When the Turbo Ajax call

finishes, we need to be able to tell Turbo to not immediately render the new page so that we can

instead start a CSS transition - like fading out the old page. Then, once that transition finishes,

we tell Turbo to finally finish its job of putting in the new body.

The missing piece right now, which the pull request addresses, and which has gotten a thumbs

up from the maintainers, is that there's no ability to pause that process. If you're interested in

complex CSS transitions, keep an eye on this issue.

Does this mean that we can't add any transitions? Actually, no! It just means we can't create

super-precise animations. For example, imagine that we want to slide the old content up, wait

for that transition to finish, then immediately slide the new content down. That's not going to

work until we have more control over the process.

But if we just want to fade out the old page and fade in the new page, that will work. Why?

Because if the fade out doesn't quite finish before the fade in starts... that's probably not a huge

deal. It's a little imprecise, but it will still look good. So even though we can't add perfect CSS

transitions yet, let's learn how to do this. It's a fascinating example of the power of Turbo events.

So here's the plan: at various times while the old page is leaving and the new page is entering,

we're going to add some CSS classes that allow us to cause those to fade out and fade in.

Adding the Transition CSS

Let's actually start with the CSS. Open up assets/styles/app.css . Right on top inside

body , add transition: opacity 1000ms .

Two things about this. First, 1000 milliseconds is way too long for a transition, but it'll make this

easy for us to see while we're developing. Second, if you're new to CSS transitions, this line

doesn't cause a transition. It just says that if the opacity of the body ever changes, I want it to

change gradually over one second, instead of immediately.

Below this, add body.turbo-loading . Inside, set the opacity to .2 ... which is probably too

low of an opacity for a nice effect... but again, it'll make it easy for us to see.

This turbo-loading class is not something that's part of Turbo: it's something that we are

going to add to cause the transition.

assets/styles/app.css

 // ... lines 1 - 4

5

6

7

8

9

10

11

 // ... lines 12 - 173

Triggering the Fade Out Transition

Let's do it. Go back to assets/turbo/turbo-helper.js and, in the constructor, here we

are, add a new event listener at the bottom. Step one is, when we click a link, we want to add

the turbo-loading class to the <body> . That will cause the old body to fade out.

Do that with document.addEventListener() and, this time, listen to an event called

turbo:visit . This is yet another event that we haven't seen before. This is triggered

immediately after a visit starts. Inside, say document.body - that's an easy way to get the

body element - then .classList.add('turbo-loading') . I'll add a comment that

explains what this does.

body {

 font-family: 'Montserrat', sans-serif;

 transition: opacity 1000ms;

}

body.turbo-loading, body.turbo-loaded {

 opacity: .2;

}

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 61

To make it easy to see if this is working, go to public/index.php ... and add a 1 second

sleep() temporarily.

public/index.php

1

2

3

4

5

6

7

8

9

10

Ok: let's go refresh the page... this will be kind of slow. Ready? Click! Nice! The page faded out.

But then the new content shows up immediately. We haven't added the fade in effect yet.

Triggering the Fade In Transition

Let's do that. Head back to turbo-helper.js . I'm going to paste in two more listener

functions. Let's walk through this: we've seen both of these events before.

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:render', () => {

 this.initializeWeatherWidget();

 });

 document.addEventListener('turbo:visit', () => {

 // fade out the old body

 document.body.classList.add('turbo-loading');

 });

<?php

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

sleep(1);

return function (array $context) {

 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

};

assets/turbo/turbo-helper.js

 // ... lines 1 - 17

18

19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 61

turbo:before-render fires right before the new body is added to the page. This allows us

to add the turbo-loading class to the new body before it's added to the page. This will set

its opacity to .2 to start: we want it to start faded out.

Then the turbo:render event is triggered right after that new body is added to the page.

Here, we want to remove the turbo-loading class. That will set the opacity back to 1... and

thanks to the transition, it should happen slowly over 1 second.

But we can't remove the class immediately... we can't just put this line directly here in the

listener. Why not? We need the new body to be rendered for at least 1 "frame" with the lower

opacity... so with the turbo-loading class. If we remove it immediately - by just putting the

line right here - the element will actually start at full opacity with no transition... because it never

got the chance to render with the low opacity.

This is why we have this requestAnimationFrame() function. This is a built-in browser

function that says:

“Hey, once you do render the next frame, please call this function.”

This allows the element to be rendered for one frame with the low capacity... and then we

remove the class to transition to full opacity. Pretty freaking cool.

Let's try it. Refresh, and... click. Yes! The fade out and fade in transition looks perfect! Yay!

Until... we visit a page we've already been to. Woh. That was weird. It... sort of faded in and...

then faded in again?

 document.addEventListener('turbo:before-render', (event) => {

 // when we are *about* to render, start us faded out

 event.detail.newBody.classList.add('turbo-loading');

 });

 document.addEventListener('turbo:render', () => {

 // after rendering, we first allow the turbo-loading class to

set the low opacity

 // THEN, one frame later, we remove the turbo-loading class,

which allows the fade in

 requestAnimationFrame(() => {

 document.body.classList.remove('turbo-loading');

 });

 });

Let's find out what's going on next and use more Turbo smartness to fix it. By the end, we are

going to have perfect fade transitions.

Chapter 17: Polished CSS Transitions

The fade-out and fade-in transition works... until you visit a page that you've already been to...

then things get weird. Instead of fading out, it, sort of, fades in... then fades in again?

This happens because, back over in turbo-helper.js , both turbo:before-render and

turbo:render happen when both a real page renders and when a preview renders.

assets/turbo/turbo-helper.js

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 61

const TurboHelper = class {

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:render', () => {

 this.initializeWeatherWidget();

 });

 document.addEventListener('turbo:visit', () => {

 // fade out the old body

 document.body.classList.add('turbo-loading');

 });

 document.addEventListener('turbo:before-render', (event) => {

 // when we are *about* to render, start us faded out

 event.detail.newBody.classList.add('turbo-loading');

 });

 document.addEventListener('turbo:render', () => {

 // after rendering, we first allow the .turbo-loaded to set

the low opacity

 // THEN, 10ms later, we remove the turbo-loaded class, which

allows the fade in

 setTimeout(() => {

 document.body.classList.remove('turbo-loading');

 }, 10);

 });

 }

That means that, when a preview is shown, it gets the same transition effect as a real page.

When we click a page we've previously been to, the preview instantly shows - starting faded out

- and then fades in. When the Ajax call finishes for the real page, that also starts faded out and

then fades in.

Tricky, eh? The solution is to detect if what's rendering is a preview and then do something

different. Specifically, if we are rendering a preview, we want to start with full opacity and then

fade out, so that we get the same effect as a normal visit.

Detecting if a Preview is Rendering

How do we detect if what's rendering is a preview? By looking for the data-turbo-preview

attribute on the html element. Watch, if we go to back to a previous page, watch the html

tag. Yup! It has a data-turbo-preview attribute while it's showing.

Back in turbo-helper , start by going all the way to the bottom and creating a new method

called isPreviewRendered() . Inside, return document.documentElement - that's how

you get the HTML tag - .hasAttribute('data-turbo-preview') .

assets/turbo/turbo-helper.js

 // ... lines 1 - 73

74

75

76

77

78

 // ... lines 79 - 81

We're using hasAttribute instead of dataset because we don't care what the value is - it

would be an empty string - we just care whether or not it exists.

Copy that method name and head back up to our listeners. Start with before:render : if

this.isPreviewRendered() ... then do nothing for the moment... but in the else, do the

normal logic.

Before we add the preview logic, I need to mention that this can be confusing. Because we're

inside of before:render , if a preview is being rendered, then it hasn't actually been rendered

onto the page yet. Even though that's true, the current page will already have the

 isPreviewRendered() {

 return document.documentElement.hasAttribute('data-turbo-

preview');

 }

}

data-turbo-preview attribute on it, which means we can use our isPreviewRendered()

function to figure out if what we're about to render is a preview.

Anyways, if this is a preview, we want to remove the turbo-loading class so that the

preview starts at full opacity. Then, one frame later, we want to re-add that class to cause the

preview to fade out... because, once the new Ajax call finishes, the real page will fade in.

Copy the code from below, paste, but remove the class. Then, steal the

requestAnimationFrame() code, paste that... and grab the classList.add() from

below and use that exactly.

assets/turbo/turbo-helper.js

 // ... lines 1 - 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 81

Perfect! So this will remove turbo-loading from the new body, then, one frame later, re-add

it to cause the fade out.

Now, in turbo:render , we only want to remove the turbo-loading class if this is not a

preview. So if not this.isPreviewRendered() , then remove that turbo-loading class.

 document.addEventListener('turbo:before-render', (event) => {

 if (this.isPreviewRendered()) {

 // this is a preview that has been instantly swapped

 // remove .turbo-loading so the preview starts fully

opaque

 event.detail.newBody.classList.remove('turbo-loading');

 // start fading out 1 frame later after opacity starts

full

 requestAnimationFrame(() => {

 document.body.classList.add('turbo-loading');

 });

 } else {

 // when we are *about* to render a fresh page

 // we should already be faded out, so start us faded out

 event.detail.newBody.classList.add('turbo-loading');

 }

 });

assets/turbo/turbo-helper.js

 // ... lines 1 - 33

34

35

36

37

38

39

40

41

42

43

44

 // ... lines 45 - 81

Yes, I know, it's pretty complex. Let's take it for a test drive. Do a full page refresh. If we click to

new pages... this all still looks fine. And if we click to a previous page... yes! That did it! The

preview instantly shows, fades out, then the new page fades in.

Restore Visits: No Transitions

But... there's one last edge case. Click the "back" button in your browser. Hmm. It instantly goes

to low opacity and then fades in. Not terrible... but a little odd. This happens because the

snapshot of every page is taken right before the new page is "swapped in". Thanks to our new

fade out functionality... it means that snapshots are taken when the page has the

turbo-loading class! In other words, snapshots are taken when the page has low opacity!

Thanks to this, when the snapshot is restored, it has low opacity. Once the class is removed by

our listener code, it fades in.

For me, since clicking back and forward loads instantly, I'd prefer to not have any CSS

transition.

How can we do that? When you click back or forward like this, even though it's pulling the page

from the snapshot cache, it is not considered a "preview". And so the isPreviewRendered()

returns false. That means that we're down in this case. Here, if this is a "restoration" visit - that's

what it's called when you click the back or forward buttons in your browser - then we want the

new page to start with full opacity and not have a transition.

 document.addEventListener('turbo:render', () => {

 if (!this.isPreviewRendered()) {

 // if this is a preview, then we do nothing: stay faded

out

 // after rendering the REAL page, we first allow the

.turbo-loading to

 // instantly start the page at lower opacity. THEN remove

the class

 // one frame later, which allows the fade in

 requestAnimationFrame(() => {

 document.body.classList.remove('turbo-loading');

 });

 }

 });

Check it out: say const isRestoration equals

event.detail.newBody.classList.contains('turbo-loading') .

That... probably looks a bit confusing. Because of the transition system we just built, every page

snapshot will have a turbo-loading class. Since we know this is not a preview, if the body

has the turbo-loading class, then this must be a snapshot that's being used for a

restoration visit. And if it's a restoration visit, say

event.detail.newBody.classList.remove('turbo-loading') . I'll add a note above

explaining this. Oh, duh, sorry - this probably looks super confusing because I forgot to wrap

this in an if isRestoration . If this is a restoration, remove that class and return.

assets/turbo/turbo-helper.js

 // ... lines 1 - 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 // ... lines 44 - 91

 document.addEventListener('turbo:before-render', (event) => {

 if (this.isPreviewRendered()) {

 // this is a preview that has been instantly swapped

 // remove .turbo-loading so the preview starts fully

opaque

 event.detail.newBody.classList.remove('turbo-loading');

 // start fading out 1 frame later after opacity starts

full

 requestAnimationFrame(() => {

 document.body.classList.add('turbo-loading');

 });

 } else {

 const isRestoration =

event.detail.newBody.classList.contains('turbo-loading');

 if (isRestoration) {

 // this is a restoration (back button). Remove the

class

 // so it simply starts with full opacity

 event.detail.newBody.classList.remove('turbo-

loading');

 return;

 }

 // when we are *about* to render a fresh page

 // we should already be faded out, so start us faded out

 event.detail.newBody.classList.add('turbo-loading');

 }

 });

This will cause the page to start with full capacity and never change.

Phew! Okay, let's make sure this helps. Head back, refresh, click around to a new page, another

new page, click to a previous page, and now hit back. Got it! Back and forth show instantly.

Yup, this is tricky. My hope is that CSS transitions will be easier in the future with Turbo. It is

doable now, but you do need to keep track of several things.

Organizing our Logic

Before we keep going, let's isolate all of this logic - which is getting kind of big - into its own

method. Copy both document.addEventListener() sections, remove them, go down to

the bottom, and create a new method called initializeTransitions() . Paste all that logic

there, head back up to the constructor and call it: this.initializeTransitions() .

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:render', () => {

 this.initializeWeatherWidget();

 });

 this.initializeTransitions();

 }

 initializeTransitions() {

 document.addEventListener('turbo:visit', () => {

 // fade out the old body

 document.body.classList.add('turbo-loading');

 });

 document.addEventListener('turbo:before-render', (event) => {

 if (this.isPreviewRendered()) {

 // this is a preview that has been instantly swapped

 // remove .turbo-loading so the preview starts fully

opaque

 event.detail.newBody.classList.remove('turbo-loading');

 // start fading out 1 frame later after opacity starts

full

 requestAnimationFrame(() => {

 document.body.classList.add('turbo-loading');

 });

 } else {

 const isRestoration =

event.detail.newBody.classList.contains('turbo-loading');

 if (isRestoration) {

 // this is a restoration (back button). Remove the

class

 // so it simply starts with full opacity

 event.detail.newBody.classList.remove('turbo-

loading');

 return;

 }

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

 // ... lines 92 - 95

This at least gives all this code down here a name so that future "us" can better remember what

it does.

Oh, and while we're cleaning things up, don't forget to take the sleep out of

public/index.php ... and inside of styles/app.css , change the transition to something

more realistic, like 200 milliseconds. Also change the opacity to something less extreme, like .8.

Let's see what this - more "real-world" - setup looks like. The reload is faster and the transition

is... a nice, subtle effect! If we click to a preview page, that's good... and hitting back also works.

Next: let's try something kind of crazy. What if, when a user hovers over a link, we prefetch that

URL so that Turbo can display it even faster. This little trick - which is super fun with Turbo - can

actually be used to speed up any site.

 // when we are *about* to render a fresh page

 // we should already be faded out, so start us faded out

 event.detail.newBody.classList.add('turbo-loading');

 }

 });

 document.addEventListener('turbo:render', () => {

 if (!this.isPreviewRendered()) {

 // if this is a preview, then we do nothing: stay faded

out

 // after rendering the REAL page, we first allow the

.turbo-loading to

 // instantly start the page at lower opacity. THEN remove

the class

 // one frame later, which allows the fade in

 requestAnimationFrame(() => {

 document.body.classList.remove('turbo-loading');

 });

 }

 });

 }

Chapter 18: Prefetching the Next Page

I have a crazy idea. What if, when the user hovers over a link, we prefetch that page via Ajax

and saved it to the snapshot cache? Then, assuming the user does click that link, Turbo would

show the page instantly via its preview system.

Is that possible? Well, not officially. But thanks to some clever people on the Internet, it is! Let's

learn two different ways that can we can make the performance of our site even faster... and the

caveats that go with both - neither is perfect out-of-the box. But both are super interesting.

Prefetching on Hover

If you downloaded the course code, you should have a tutorial/ directory with a

prefetch.js file inside. Copy that and paste it into assets/turbo/ .

assets/turbo/prefetch.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 153

Ok: this is not my script: it comes from a gist that I attributed on top. This script automatically

makes an Ajax call whenever a user hovers over an anchor tag and saves the response as a

Turbo snapshot. Then, if the user does click that link, the page will be displayed instantly thanks

to the preview. To avoid totally spamming the server with requests, this code waits for the user

to hover for 65 milliseconds before sending the Ajax request. The idea is to take advantage of

the brief pause between when a user starts to hover over a link and when they actually click that

link. This approach does have some downsides, but let's see it in action before we chat about

them.

// https://gist.github.com/vitobotta/8ac3c6f65633b5edb2949aeff0dec69b

// This code is to be used with https://turbo.hotwire.dev. By default

Turbo keeps visited pages in its cache

// so that when you visit one of those pages again, Turbo will fetch the

copy from cache first and present that to the user, then

// it will fetch the updated page from the server and replace the preview.

This makes for a much more responsive navigation

// between pages. We can improve this further with the code in this file.

It enables automatic prefetching of a page when you

// hover with the mouse on a link or touch it on a mobile device. There is

a delay between the mouseover event and the click

// event, so with this trick the page is already being fetched before the

click happens, speeding up also the first

// view of a page not yet in cache. When the page has been prefetched it

is then added to Turbo's cache so it's available for

// the next visit during the same session. Turbo's default behavior plus

this trick make for much more responsive UIs (non SPA).

import * as Turbo from '@hotwired/turbo';

let lastTouchTimestamp

let delayOnHover = 65

let mouseoverTimer

const pendingPrefetches = new Set()

const eventListenersOptions = {

 capture: true,

 passive: true,

}

class Snapshot extends Turbo.navigator.view.snapshot.constructor {

}

Open up app.js and import this: import './turbo/prefetch' . That's enough to activate

the new behavior.

assets/app.js

 // ... lines 1 - 12

13

14

15

Also open up styles/app.css and comment-out the opacity transition that we added

before. The pages are going to be so fast that this won't be needed.

assets/styles/app.css

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 175

Moment of truth. At your browser, refresh. I'm going "casually" click on the Furniture category.

Woh - that was fast! All these pages are now loading as if we've already visited them...

because... we actually have! The perceived performance of our site just took another huge step

forward.

The Downsides of the Hover Prefetch

But that was too easy! So what are the downsides? There are a few. The first is that your site is

going to get hit by a lot more requests. If you hover over a link but never click it, that's an extra,

unnecessary request! But worse, even if you do click the link, two requests are made! Watch, I'll

refresh, then clear my network tools. Hover over "Office Supplies", then click. Check it out: two

requests were made for the same page! The prefetch script made the first request to store the

page as a snapshot for the preview. But then, like normal preview functionality, after showing

the preview, Turbo made a second request to load a "fresh" version of the page. That's a

bummer.

import './turbo/turbo-helper';

import './turbo/prefetch';

/*

body.turbo-loading {

 opacity: .8;

}

*/

/*

[data-turbo-preview] body {

 opacity: .2;

}

*/

Another downside is that, if your page doesn't load fast enough, this won't make any difference!

For example, let me clear the network tools again. I'm going to hover and then click

"Breakroom" really fast. Watch: that time, the page did not load instantly because the first

prefetch request had not finished by the time I clicked.

In fact, when you look at the second request that Turbo made, it "stalled": the second request

waited for the first. To be fully honest, I'm not actually sure why my browser waits like this... but

it means that if the user clicks before the prefetch request finishes, it may actually be slowing

down the experience.

The last problem is that the prefetch script will also try to prefetch links that we don't want it to -

like a "log out" link. Yup, right now, if we hovered briefly over a log out link, that... would log us

out.

In the script, search for dataset . You can add a data-prefetch="false" attribute to any

link to disable the behavior for that link. Or, by customizing this line a little, you could disable the

prefetch behavior by default and only enable it if the link has data-prefetch=true . That

would be a safe way to enable this only on links that make sense to you.

assets/turbo/prefetch.js

 // ... lines 1 - 91

92

93

94

95

96

97

 // ... lines 98 - 153

The "prefetch" link Hint

There's also another way to use this script, which you can see at the bottom. If you add a

data-prefetch-with-link="true" attribute, instead of making an Ajax call, it will add a

<link rel="prefetch"> element to your head tag.

function isPreloadable(linkElement) {

 if (!linkElement || !linkElement.getAttribute("href") ||

linkElement.dataset.turbo == "false" || linkElement.dataset.prefetch ==

"false") {

 return

 }

assets/turbo/prefetch.js

 // ... lines 1 - 133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

What does that do? It enables a really neat feature that's native to your browser. Let's learn

about it next.

function preload(link) {

 const url = link.getAttribute("href")

 const loc = new URL(url, location.protocol + "//" + location.host)

 const absoluteUrl = loc.toString()

 if (link.dataset.prefetchWithLink == "true") {

 const prefetcher = document.createElement('link')

 prefetcher.rel = 'prefetch'

 prefetcher.href = url

 document.head.appendChild(prefetcher)

 pendingPrefetches.delete(absoluteUrl)

 } else if (!Turbo.navigator.view.snapshotCache.has(loc)) {

 fetchPage(url, responseText => {

 const snapshot = Snapshot.fromHTMLString(responseText)

 Turbo.navigator.view.snapshotCache.put(loc, snapshot)

 pendingPrefetches.delete(absoluteUrl)

 })

 }

}

Chapter 19: <link rel="prefetch">

Looking at the code of this prefetch script, there is another way this can be used. If you add

a data-prefetch-with-link="true" attribute to a link, instead of making an Ajax call, it

will add a <link rel="prefetch"> element to the head tag of the page.

assets/turbo/prefetch.js

 // ... lines 1 - 133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

Hello

What does that do? Great question! To explain, let's back up a little. So far, this whole prefetch

script has been pure Turbo magic: it makes an Ajax call and stores it into Turbo's snapshot

cache. But actually, your browser has a "prefetch" feature built into it! And that is what this

data-prefetch-with-link code is leveraging.

To see how it works, close the prefetch script and comment out its import in app.js . I want to

see how true prefetching works without any Turbo magic... because prefetching can be used on

any site - even if it doesn't use Turbo.

function preload(link) {

 const url = link.getAttribute("href")

 const loc = new URL(url, location.protocol + "//" + location.host)

 const absoluteUrl = loc.toString()

 if (link.dataset.prefetchWithLink == "true") {

 const prefetcher = document.createElement('link')

 prefetcher.rel = 'prefetch'

 prefetcher.href = url

 document.head.appendChild(prefetcher)

 pendingPrefetches.delete(absoluteUrl)

 } else if (!Turbo.navigator.view.snapshotCache.has(loc)) {

 fetchPage(url, responseText => {

 const snapshot = Snapshot.fromHTMLString(responseText)

 Turbo.navigator.view.snapshotCache.put(loc, snapshot)

 pendingPrefetches.delete(absoluteUrl)

 })

 }

}

assets/app.js

 // ... lines 1 - 10

11

12

13

14

15

Here's the deal: imagine that, when a user goes to a specific page on our site, we're fairly sure

that you know what the next page - or pages - will be that the user will go to. In that case, we

can hint to the user's browser that, if it has some extra time, it can prefetch that URL so that if

the user does navigate to it, it will load instantly from cache.

Let's try this. Add an item to your cart and then head to the cart page. It might be obvious that,

once a user visits this page, they often click the "Check out" link next. So let's add a hint that the

browser should "prefetch" that page.

Adding a prefetch link

How? Open the template for this page: templates/cart/cart.html.twig . On top,

override a block called metas . This is not a standard Symfony block. But earlier in the tutorial,

in base.html.twig , we added this.

Inside the block, add link - but instead of rel="stylesheet" , use rel="prefetch" .

Then set the href to the checkout URL: {{ path() }} then name of that route, which is

app_checkout .

templates/cart/cart.html.twig

1

2

3

4

5

6

7

 // ... lines 8 - 32

That's it! By the way, Symfony has a web-link component that can help with this and can even

help your server push resources - including CSS and JS files - via a server push. However,

when it comes to prefetching another page, I recommend avoiding it and adding the link

// start the Stimulus application

import './bootstrap';

import './turbo/turbo-helper';

//import './turbo/prefetch';

{% extends 'base.html.twig' %}

{% block metas %}

 {{ parent() }}

 <link rel="prefetch" href="{{ path('app_checkout') }}">

{% endblock %}

manually... because pages that are prefetched via the web-link component won't have access to

the session cookie.

Anyways, let's go see what happens. Refresh the page and, on the network tools, click to see

all types of requests... and scroll to the top. The top request, of course, is for /cart . But now...

scroll down... there it is! A request for /checkout that took 360 milliseconds! This happens

thanks to the prefetch link we just added. And even though you don't see it here, your

browser knows to fetch this with the lowest priority: requests for other things - like CSS and JS

files - have a higher priority.

So what happens now when we go to the checkout page? Let's find out: click "Check out"...

then scroll back up to the top of the requests. Cool. Turbo - which doesn't know or care that

we're doing this prefetch stuff - made its Ajax call like normal. But when it did, our browser

was smart enough to instantly pull that from the prefetch cache: no second request was actually

made! Instead of waiting 360 milliseconds for the Ajax request to finish and then rendering,

Turbo started rendering, effectively, immediately.

Best of Both Worlds?

So this method of manually adding a link tag isn't as fancy as the hover technique we saw

earlier. But it also avoids making two requests whenever we click a link. On the negative side,

when we go to the cart page, a request will be made for the checkout page regardless of

whether or not the user even gets close to clicking the checkout link.

So... neither approach is perfect. Could we... combine the two ideas? Yep! And that's exactly

what the data-prefetch-with-link attribute attempts to do: it waits until you hover, and

then adds the prefetch link. There are other tiny libraries that do something similar - like

"instant.page" and "quicklink" - which makes sense... since adding a prefetch link tag has

nothing to do with Turbo.

But... the devil is in the details. Suppose that we use this prefetch script - or one of those

other libraries - to dynamically inject a <link rel="prefetch"> into our head element

whenever we hover over a link. That will work great. But when we navigate to a new page with

Turbo, that <link> tag will not be included on the next page.

Watch: if we click to the cart page, and look in the head... actually, let me refresh to avoid any

surprises. Here's the <link rel="prefetch" . But now click to another page... then look in

the <head> . Uh, duh, I'm still on the cart page - click to the homepage. Now the prefetch

link is gone! This is just how Turbo works: when we navigate, the JavaScript and CSS tags

inside the head element do persist across pages. But everything else is removed and replaced

with whatever is on the new page only.

This has a big impact on prefetch . Our browser did prefetch the checkout page a minute

ago when we were on /cart . But because the link tag is gone, our browser basically

"forgets" that it did that. In a perfect world, as we navigate with Turbo, any prefetch links that

were dynamically added would remain in your head element. That's probably possible by

keeping track of all the links that you've prefetched and leveraging a Turbo event listener, but I

haven't experimented with it yet. If you do play around with this and get some nice results, I

would love to hear about it.

Here's the takeaway: even though these prefetch options are really cool and they can make

your site mega fast, none of these are perfect yet. So use them wisely. In the real-world, I would

probably use a link-by-link "opt-in" approach with the hover logic that leverages native

prefetch links.

Okay: we are done with Turbo Drive! So let's turn to Turbo Frames: a feature that allows us to

separate our site into little pieces that can navigate independently.

Chapter 20: Turbo Frames: Lazy Frames

Time to move on to part two of Turbo: Turbo frames. This is a brand new feature - it did not exist

in the old Turbolinks library. To put it simply, Turbo frames allow you to treat part of your page,

well, basically like an iframe ! If you've never worked with iframes or IE6, I'm jealous. Turbo

frames are a native, non-weird way to get the goodness of iframes... without actually using

iframes, which are a pain in the butt.

Imagine that this category sidebar were inside a Turbo frame. If it were, you could click these

links or even submit forms and only the frame's content would change: the rest of the page

would be unaffected.

Frames are super cool, but I do want us to keep something in mind: they're an "extra" feature.

Turbo Drive gives us the single page app experience. Frames give us the ability to make the

user experience even better. But using frames does mean that you'll need to write some extra

code. Frames are form of progressive enhancement... which basically means that you should

get your site working first, then come back to see where a tool like Turbo frames can enhance it

further.

The 2 Use Cases for Frames

Ok, so there are basically 2 use-cases for Turbo frames. The first is what we just talked about:

you want navigation in just one area of your page to happen inside that area without affecting

the rest of your page.

The second use-case is when you want a part of your page to load lazily. Literally, an area of

your site would be empty on page load... then that Turbo frame would make an Ajax call to

populate itself.

Upgrading to the Latest Turbo

Before we jump into an example, I'm going to find my terminal and run:

yarn upgrade @hotwired/turbo

As a reminder @hotwired/turbo , is a normal library and you can find it in the

package.json file.

package.json

 // ... line 1

2

3

4

5

6

7

 // ... lines 8 - 34

This line was added automatically when we installed the symfony/ux-turbo PHP package,

but we have complete control over managing its version. When I originally downloaded it, I got

version beta.5 . The latest version at the time of recording, which you can see over here, is

beta.7 . Not a lot has changed between the two versions, but there was one tweak to how

JavaScript works in frames that I want to get.

Setting up a Lazy Frame

Okay, at your browser, head to the cart page. We're going to talk about the second use-case for

Turbo frames first: lazy frames. See this featured product sidebar? Let's pretend that rendering

this is kind of a heavy. If we could load it lazily - so via an Ajax call - then the rest of the cart

page could load faster because it wouldn't need to do the work of preparing and rendering that

section.

To lazily load this, we first need a route and controller that renders the sidebar. Open the

template for this page: templates/cart/cart.html.twig . Let's see... this is where we

render the featured sidebar. And you can see that it's already isolated into its own template. So

all we need to do is create a route & controller that render this template.

 "devDependencies": {

 "@babel/preset-react": "^7.0.0",

 "@fortawesome/fontawesome-free": "^5.15.3",

 "@hotwired/turbo": "^7.0.0-beta.5",

 "@popperjs/core": "^2.9.1",

 "@symfony/stimulus-bridge": "^2.0.0",

templates/cart/cart.html.twig

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

 // ... lines 16 - 32

Let's do that in src/Controller/CartController.php . This top method is the cart page

itself. Copy that, paste below, rename it to _cartFeaturedProduct() and change the URL

to /cart/_featured . I like to use that _ prefix when something only renders part of a page.

Below, instead of rendering cart.html.twig , render _featuredSidebar.html.twig .

And... we don't need to pass the cart variable... and so we don't need this CartStorage .

Oh, and the route needs a unique name, like _app_cart_product_featured .

src/Controller/CartController.php

 // ... lines 1 - 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 // ... lines 52 - 121

Cool. Now, up in the cart action, this will load faster because we can do less work... because we

don't need to prepare the addToCartForm or fetch the featuredProduct anymore. We can

{% block body %}

 <div class="container-fluid container-xl mt-4">

 <div class="row">

 <aside class="col-12 col-md-4 order-2 order-md-1">

 {% if featuredProduct %}

 {{ include('cart/_featuredSidebar.html.twig') }}

 {% endif %}

 </aside>

 /**

 * @Route("/cart/_featured", name="_app_cart_product_featured")

 */

 public function _cartFeaturedProduct(ProductRepository

$productRepository): Response

 {

 $featuredProduct = $productRepository->findFeatured();

 $addToCartForm = $this->createForm(AddItemToCartFormType::class,

null, [

 'product' => $featuredProduct,

]);

 return $this->renderForm('cart/_featuredSidebar.html.twig', [

 'featuredProduct' => $featuredProduct,

 'addToCartForm' => $addToCartForm,

]);

 }

even remove this argument.

The Custom <turbo-frame> Element

We can do all of this because, in the template for this action - cart.html.twig - we're not

going to include this sidebar anymore. Instead, we're going to add a Turbo Frame... which is...

just a custom HTML element - <turbo-frame> - which always has at least an id attribute

that identifies it, like id="cart-sidebar" .

templates/cart/cart.html.twig

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 32

PhpStorm highlights this as an unknown tag, but the Turbo library does register it as a custom

element.

If we stopped here, this would render an empty <turbo-frame> element on the page... and

would do nothing. To make this a "lazy" frame, add a src attribute set to the URL that it should

request to get its contents. In this case, that's {{ path() }} then

_app_cart_product_featured . Inside the turbo-frame , we can put some loading text:

this will show on page load while the Ajax call is being made.

That's it! With any luck, Turbo will see the frame, initiate the Ajax call and pop the response

inside. Let's try it! Refresh and watch closely. Woh: the "Loading..." was there for just a second,

then it disappeared! Check the console. Error!

“Response has no matching <turbo-frame id="cart-sidebar"> element.”

Interesting: it made the Ajax call and then looked for a turbo-frame element in the response

with the same id as our frame. Why? The answer goes to the core of how Turbo frames work.

Let's dive into that next and get this thing working.

 <aside class="col-12 col-md-4 order-2 order-md-1">

 <turbo-frame id="cart-sidebar" src="{{

path('_app_cart_product_featured') }}">

 Loading...

 </turbo-frame>

 </aside>

Chapter 21: Turbo Frames Look for & Load the
Matching Frame

On page load, Turbo did notice our new <turbo-frame> element and it did make an Ajax

request to fetch the contents. But then, for some reason, it gave us this error. Why?

This is a super important detail of Turbo frames. When a frame makes an Ajax call, it looks in

the response for a <turbo-frame> element that has the same id as itself and uses its content

only. If it does not find a matching <turbo-frame> , in the response, then you get this error.

Ok, but... why? If you look in the network tools, the response from the Ajax call contains the

exact HTML we want. Why doesn't it just take the entire HTML from the response and put it into

the frame?

Well, we're not leveraging it in this example, but one of the super powers of the frame system is

that you can point a frame at a URL that returns an entire, full HTML page. So if you pretend

that this returns a full HTML page, the frame system is smart enough to only find and use the

matching frame. This allows you to create full, normal pages and then reuse those full normal

pages to power your frames.. avoiding the need to create extra endpoints for your frames like

we did. If this doesn't make sense yet, don't worry. Our next example will illustrate this.

Adding the turbo-frame in the Response

Anyways, what we need to do is make sure that the response contains a <turbo-frame>

element with id="cart-sidebar" . I'll copy that from cart.html.twig , open

_featuredSidebar.html.twig , add that... and indent everything.

templates/cart/_featuredSidebar.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Notice that we don't have a src="" on this frame: this is not a lazy frame... it's just a normal

frame that already has its final content.

Ok: let's try it again. Refresh and... yes! It works! It looked in the response for the

<turbo-frame> with the id, found it and used its HTML. If you inspect element and find the

turbo-frame , you can see the src="" attribute is still there, but now it's filled with content.

At this point, if you click any links or submit the form on the sidebar... it might not work like you

expect because the frame will keep any navigation inside the frame. That's the first use-case for

Turbo Frames - and we'll come back in a few minutes to address this.

Using fragment_uri()

Oh, and by the way, if you're using Symfony 5.3 and you create a controller - like this one - that

just renders part of a page, you don't have to give this a route. There's another option. Remove

this route.

<turbo-frame id="cart-sidebar">

 <div class="component-light product-show p-3 mb-5">

 <h5 class="text-center">Featured Product!</h5>

 <img

 alt="{{ featuredProduct.name }}"

 src="{{

asset('/uploads/products/'~featuredProduct.imageFilename) }}"

 class="d-block"

 >

 <div class="pt-3">

 <h6 class="d-flex justify-content-between mb-3">

 {{ featuredProduct.name }}

 {{ featuredProduct.priceString|format_currency('USD') }}

 </h6>

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

 </div>

</turbo-frame>

src/Controller/CartController.php

 // ... lines 1 - 29

30

31

32

33

34

35

36

37

38

39

40

41

42

 // ... lines 43 - 113

Now, in cart.html.twig , instead of {{ path() }} , use {{ fragment_uri() }} and

then controller() and then the name of the controller:

App\\Controller\\CartController:: and then the method name... which is

_featuredProduct .

templates/cart/cart.html.twig

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 32

This is a bit longer - and those double slashes are ugly and needed because backslash is an

escape character. Behind the scenes, this will generate a signed URL - called a fragment URL -

that renders our controller. To get this to work, make sure that you have the fragment system

activated: that's in config/packages/framework.yaml . Uncomment fragments: true .

 public function _cartFeaturedProduct(ProductRepository

$productRepository): Response

 {

 $featuredProduct = $productRepository->findFeatured();

 $addToCartForm = $this->createForm(AddItemToCartFormType::class,

null, [

 'product' => $featuredProduct,

]);

 return $this->renderForm('cart/_featuredSidebar.html.twig', [

 'featuredProduct' => $featuredProduct,

 'addToCartForm' => $addToCartForm,

]);

 }

 <aside class="col-12 col-md-4 order-2 order-md-1">

 <turbo-frame id="cart-sidebar" src="{{

fragment_uri(controller('App\\Controller\\CartController::_cartFeaturedProdu

}}">

 Loading...

 </turbo-frame>

 </aside>

config/packages/framework.yaml

 // ... lines 1 - 14

15

16

17

18

 // ... lines 19 - 25

Let's try this. Move over, refresh the page and cool! It still works! If you look at the

turbo-frame , the src="" is now set to a long, weird looking _fragments URL.

Next: let's look at a second lazy frame example. But this time, instead of creating a controller

that renders just the frame, we're going to populate a frame by reusing an existing, full HTML

page.

 #esi: true

 fragments: true

 php_errors:

 log: true

Chapter 22: Using a Full HTML Page to Populate a
Frame

I want to show one more lazy frame example. But before we do, I'm going to find my terminal

and, yes, once again, run:

yarn upgrade @hotwired/turbo

This time I get beta version 8, which is actually the release I was waiting for. This changes how

JavaScript is handled inside frames, which will be important for what we're about to do.

But for a minute, I want you to completely forget about frames. Let's pretend that we, being the

nerds that we are, want to add a weather page to our site! Sure, we have this weather footer on

the bottom of every page, but we also want people to be able to go to /weather and see the

weather report front and center.

Creating a Normal Weather Page

Over in src/Controller/ , create a new class called WeatherController . Make it extend

AbstractController and add a public function weather() with a route above it:

@Route('/weather') , name="app_weather" . Inside, return

$this->render('weather/index.html.twig') .

src/Controller/WeatherController.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Cool! Let's go make that template! Down in templates/ , create a new directory called

weather/ , and, inside, the new file: index.html.twig . Give this the basic structure

{% extends 'base.html.twig' %} , {% block body %} , {% endblock %} and an

<h1> .

Now go into base.html.twig and... at the bottom, steal all of the weather stuff: the anchor

tag and the script element. In index.html.twig , paste.

<?php

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\Routing\Annotation\Route;

class WeatherController extends AbstractController

{

 /**

 * @Route("/weather", name="app_weather")

 */

 public function weather()

 {

 return $this->render('weather/index.html.twig');

 }

}

templates/weather/index.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Done! Oh, but in base.html.twig , let's add a link to this... find the cart link - there it is - copy

it, paste, change the route to app_weather and... for the text, I'll use a FontAwesome icon:

fas fa-sun .

templates/base.html.twig

 // ... lines 1 - 29

30

31

32

33

34

35

36

37

38

39

40

 // ... lines 41 - 110

Let's go check it out! Move over, refresh and... there's our sunshine! When we click the icon, we

have a weather page. Amazing!

{% extends 'base.html.twig' %}

{% block body %}

 <h1>The Weather!</h1>

 <a class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 <script>

 !function (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }(document, 'script', 'weatherwidget-io-js');

 </script>

{% endblock %}

 <ul class="navbar-nav">

 <li class="nav-item">

 <a class="nav-link" href="{{

path('app_weather') }}">

 <li class="nav-item">

 <a class="nav-link" href="{{ path('app_cart')

}}">

 Shopping Cart ({{ count_cart_items() }})

Though... having two weather widgets on the page does look weird. Let's remove the one in the

footer for just this page. In base.html.twig , scroll back down to that area. Surround this in a

new {% block weather_widget %} and, on the other side, {% endblock %} .

templates/base.html.twig

 // ... lines 1 - 88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

 // ... lines 103 - 112

Back in index.html.twig , anywhere, override that block... but make it empty.

templates/weather/index.html.twig

 // ... lines 1 - 18

19

20

Ok, refresh again and... cool!

At this point, we do have some code duplication between index.html.twig , and

base.html.twig . We could easily fix that by isolating the weather widget code into its own

template... and then using the Twig {{ include() }} function in both templates to bring that

in.

Creating the Lazy Turbo Frame

But like we did with the featured product sidebar, I want you to pretend that it takes a lot of work

to generate this HTML... maybe we make some database calls or API calls to generate it. And

 {% block weather_widget %}

 <a class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 <script>

 !function (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }(document, 'script', 'weatherwidget-io-js');

 </script>

 {% endblock %}

{% block weather_widget %}{% endblock %}

so, if we could convert the weather widget that's on the footer of every page into a lazy turbo

frame, well, that would make every page load faster!

When we created a lazy turbo frame for the featured product sidebar, we started by making a

route and a controller that rendered just that part of the page: just the featured product itself -

without the layout. But this time, we're not going to do that.

Why not? Because we already have a page that contains the HTML we need! The weather

page! Sure, it contains a lot of extra stuff that we don't want... like the HTML layout and the

<h1> tag... but the turbo-frame system can ignore all that. Yup, we can jump straight to adding

the turbo frame with zero extra work.

In base.html.twig , remove all the duplicated code and instead say,

<turbo-frame id=""> , how about, weather_widget . Then, because we want this to be a

lazy frame, add src="" and point this at the full HTML page that we want to target: the

weather page.

templates/base.html.twig

 // ... lines 1 - 87

88

89

90

91

92

 // ... lines 93 - 101

If we try this... I'll go to the homepage... it's not going to work. In the console, we see a familiar

error!

“Response has no matching <turbo-frame id="weather_widget"> element.”

Of course! We need to tell the Turbo frame system which part of the weather page to use for

this frame. Over in index.html.twig - the template for the full weather page - wrap the

entire weather section in a <turbo-frame> that has id="weather_widget" . I'll put the

closing tag down here... and indent.

 {% block weather_widget %}

 <turbo-frame id="weather_widget" src="{{ path('app_weather')

}}"></turbo-frame>

 {% endblock %}

templates/weather/index.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 23

Testing time! Refresh again and... it works! That's amazing! We're now able to reuse just parts

of existing pages simply by wrapping those parts inside a <turbo-frame> . If you look at the

network tools... and find the Ajax call for the weather page, there's no magic here: the Ajax call

for the frame did return the full HTML.

And this is really how frames are meant to be used. You have an existing page like the weather

page, and then you're able to reuse parts of that page inside a frame instead of needing to build

an extra endpoint that returns only the part you want.

Truly Lazy Frames: Load only when Visible

Ok, ready to be more amazed? Check out the homepage: this is a long page. Don't you think it's

kind of a wasteful to load the weather widget in the footer... even if the user never scrolls down

that far? It is wasteful! And we can fix that!

In base.html.twig , on the turbo-frame , add a new attribute: loading="lazy" ,

{% block body %}

 <h1>The Weather!</h1>

 <turbo-frame id="weather_widget">

 <a class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 <script>

 !function (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }(document, 'script', 'weatherwidget-io-js');

 </script>

 </turbo-frame>

{% endblock %}

templates/base.html.twig

 // ... lines 1 - 87

88

89

90

91

92

 // ... lines 93 - 101

Let's see what that did. Scroll to the top of the homepage, refresh and make sure you're looking

at the Ajax calls in the network tools. Notice that Turbo has not, yet, made an Ajax request for

the weather page. But keep an eye on this. If we scroll down... there it is! Yup, when you add

loading="lazy" , the request isn't made until the frame becomes visible. That's super cool.

But... there's a lingering bug in our code. It's more about the JavaScript for the weather widget

than about the turbo-frame we created. Let's find out what the bug is next and create a Stimulus

controller that will make the weather JavaScript finally, fully functional, no matter how we load it.

 {% block weather_widget %}

 <turbo-frame id="weather_widget" src="{{ path('app_weather')

}}" loading="lazy"></turbo-frame>

 {% endblock %}

Chapter 23: Reliably Load External JS with
Stimulus

Thanks to the turbo-frame system, we're now lazily-loading just part of the weather page down

in the footer. And... notice that this is working... which actually proves something: script tags

inside frames are executed.

script Tags in Frames Are Executed

Let me find that frame... here it is. Ok, so no surprise: if you have a <script> tag that's

included in a turbo-frame , Turbo does execute that... exactly like how Turbo Drive executes

any script tags found inside the body element.

That's great! But... we have a bug that's hiding. Well, sort of two bugs. Yikes! To see the first,

scroll to the top of the page, refresh but don't scroll down. Now click to the weather page... and

check out the console. Error!

“Uncaught reference error: __weatherwidget_init() is not a function”

And it's coming from turbo-helper . Go open that file - turbo/turbo-helper.js and

scroll down to line 71. Here we are: initializeWeatherWidget() .

assets/turbo/turbo-helper.js

 // ... line 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 39

40

41

42

43

44

 // ... lines 45 - 95

If you scroll back up, this initializeWeatherWidget() function is called when the

turbo:render event is dispatched. Its job is to reinitialize the weather widget on the next

page. The problem is that, in this case, the weather widget JavaScript hasn't quite yet been

loaded onto the page... because it didn't load at all on the first page. And the real problem is

that... well... I didn't code defensively.

Fix this by adding an if: if typeof __weatherwidget_init === 'function' , then call

this. Otherwise, it means the JavaScript hasn't been loaded... so no reason to do anything.

assets/turbo/turbo-helper.js

 // ... lines 1 - 39

40

41

42

43

44

45

46

 // ... lines 47 - 97

const TurboHelper = class {

 constructor() {

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 });

 document.addEventListener('turbo:render', () => {

 this.initializeWeatherWidget();

 });

 this.initializeTransitions();

 }

 initializeWeatherWidget() {

 __weatherwidget_init();

 }

 initializeWeatherWidget() {

 if (typeof __weatherwidget_init === 'function') {

 __weatherwidget_init();

 }

 }

The Weather Widget JavaScript is not Always Reinitialized

So... this would fix one problem... but not our bigger problem. To see that one, over on the

product page, below the sidebar, I want to add a second weather widget. Open the template for

this page: templates/product/index.html.twig . Oh, but actually, the sidebar is in

productBase.html.twig .

Cool: right here, I'm going to add <turbo-frame> with id="weather_widget" - to match

the id that we've been using so far - and src="{{ path('app_weather') }}" .

Try it! Refresh and... bah! It works - but I put it in the wrong spot! I meant to put it in the

<aside> . Let's try that again. Refresh now and... beautiful.

templates/product/productBase.html.twig

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 19

Now scroll to the footer. It's busted! Hmm... the turbo frame did its job - the HTML is here - but

the JavaScript didn't initialize! What happened?

Let's remember how this is supposed to work... because it's getting kind of complicated. On

page load, or really, anytime that the weather JavaScript is first executed, it adds a <script>

tag to the page, which downloads an external JavaScript file. That JavaScript finds any

elements on the page with a weatherwidget-io class and initializes the weather widget

inside of them.

But... when we surf to another page, this external JavaScript file is not re-executed... because

this function is smart enough to not add the same script tag multiple times. We hit this problem

earlier. To fix it, back in turbo-helper.js , we added this __weatherwidget_init()

 <div class="row">

 <aside class="col-12 col-md-3 order-2 order-md-1">

 {{ include('product/_categoriesSidebar.html.twig') }}

 <turbo-frame id="weather_widget" src="{{

path('app_weather') }}"></turbo-frame>

 </aside>

 <div class="col-12 col-md-9 product-show order-1 order-md-2">

 {% block productBody %}{% endblock %}

 </div>

 </div>

code, which is executed on turbo:render . So basically, each time Turbo renders the page,

we call __weatherwidget_init() and that reinitializes the weather widget for that page.

assets/turbo/turbo-helper.js

 // ... lines 1 - 39

40

41

42

43

44

45

46

 // ... lines 47 - 97

This worked great when the only way that a weather widget tag could be added to a page was

as a result of a Turbo Drive navigation. But now, this tag is sometimes loaded onto the page via

Ajax by a Turbo Frame... and that does not trigger the turbo:render event... because we're

not rendering a full page. In other words, when a Turbo frame loads, nothing is calling the

__weatherwidget_init() function!

If you're watching really closely, you might be wondering how the weather widget in this lazy

frame was ever working... since we were never calling the __weatherwidget_init()

function after it loaded. It worked simply thanks to some smart code that lives inside that

function. If you looked at the external JavaScript in detail - which we did a bit earlier - you would

see that when you call the __weatherwidget_init() function, if it does not find any

weatherwidget-io elements on the page, it automatically recalls itself every 1.5 seconds

until it finds one. This... almost accidentally... made sure that once our lazy frame in the footer

loaded, the JavaScript was initialized within 1.5 seconds. But... it wasn't a very robust solution,

and it stopped working as soon as there was a second widget on the page that loaded earlier.

So let's fix all of this and simplify our code a bunch... because it took way too long to explain

how this has been barely working.

How can we improve this? By creating a Stimulus controller! I know, this tutorial is about

Turbo... but since Turbo really works best when you have no inline script tags, let's see how

Stimulus could help us manage this external JavaScript.

Creating the Stimulus Controller

 initializeWeatherWidget() {

 if (typeof __weatherwidget_init === 'function') {

 __weatherwidget_init();

 }

 }

Here's the idea: let's attach a Stimulus controller to the weatherwidget-io anchor tag. By

doing that, whenever this element appears on the page... no matter how or when it appears, we

can run some code... like __weatherwidget_init() .

In assets/controllers/ , create a new file called, how about,

weather-widget_controller.js . I'm going to cheat... as usual... and steal the code from

another controller, paste... then clear everything out. Start with a connect() function and

console.log('🌦') .

assets/controllers/weather-widget_controller.js

1

2

3

4

5

6

7

Next, over in weather/index.html.twig , find the anchor tag and add

data-controller="" and the name of our new controller: weather-widget .

templates/weather/index.html.twig

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

 // ... lines 20 - 23

Okay! Let's make sure that's connected. Head over, scroll up... refresh the homepage and

check the console. Perfect! This log is coming from the weather widget on the sidebar. Now

watch what happens when we scroll down... a second emoji!

import { Controller } from 'stimulus';

export default class extends Controller {

 connect() {

 console.log('?');

 }

}

 <turbo-frame id="weather_widget">

 <a data-controller="weather-widget" class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 <script>

 !function (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }(document, 'script', 'weatherwidget-io-js');

 </script>

 </turbo-frame>

The next step is to move all of this JavaScript into our Stimulus controller. Copy everything and

delete the <script> tag entirely.

templates/weather/index.html.twig

 // ... lines 1 - 5

6

7

8

 // ... lines 9 - 12

In the controller, after connect() , paste! That is totally invalid JavaScript... and my build

system and editor are freaking out.

assets/controllers/weather-widget_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Let's turn this into a function called initializeScriptTag() . Copy these three arguments

and remove them. Cool.

Up in connect() , instead of logging a cloud, say this.initializeScriptTag() and

pass those three arguments.

 <turbo-frame id="weather_widget">

 <a data-controller="weather-widget" class="weatherwidget-io"

href="https://forecast7.com/en/40d71n74d01/new-york/" data-label_1="NEW

YORK" data-label_2="WEATHER" data-theme="original" >NEW YORK WEATHER

 </turbo-frame>

import { Controller } from 'stimulus';

export default class extends Controller {

 connect() {

 console.log('?');

 }

 !function (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }(document, 'script', 'weatherwidget-io-js');

}

assets/controllers/weather-widget_controller.js

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

So... this isn't perfect yet... but it's closer: each time Stimulus sees a matching anchor tag, it's

going to run this.

Let's try it. Scroll back up to the top, refresh and... awesome! The fact that this loads means that

our Stimulus controller did just execute and add the script tag. If you look in the head of our

page... there it is!

But... if we scroll to the bottom of the page... that still doesn't work. It's ok, we expected that: we

still need to move the __weatherwidget_init() code into Stimulus.

Copy the entire if statement, delete the initializeWeatherWidget() function, scroll up

and remove the event listener entirely. Over in the weather-widget controller, up in

connect() , paste that and then move the initializeScriptTag() call, which I totally

misspelled... let me fix that - move that into the else .

export default class extends Controller {

 connect() {

 this.initializeScriptTag(document, 'script', 'weatherwidget-io-

js');

 }

 initializeScriptTag (d, s, id) {

 var js, fjs = d.getElementsByTagName(s)[0];

 if (!d.getElementById(id)) {

 js = d.createElement(s);

 js.id = id;

 js.src = 'https://weatherwidget.io/js/widget.min.js';

 fjs.parentNode.insertBefore(js, fjs);

 }

 }

}

assets/controllers/weather-widget_controller.js

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

 // ... lines 11 - 22

So if the __weatherwidget_init() function already exists, just call it! Else, run the code to

add the original script tag to the page.

I think we're ready! Scroll back up to the top of page and refresh. The sidebar works... the footer

works... and, if we go to the weather page, that works too!

I love this approach. Even though our external JavaScript is not written in Stimulus, we can still

use Stimulus to activate this JavaScript exactly when we want to. At this point, we can add this

anchor tag anywhere on our site, and it will instantly do the work to initialize itself.

Next: let's investigate the second-use case for Turbo Frames... and really the main use case:

the ability to keep navigation isolated to one section of the page.

export default class extends Controller {

 connect() {

 if (typeof __weatherwidget_init === 'function') {

 __weatherwidget_init();

 } else {

 this.initializeScriptTag(document, 'script', 'weatherwidget-

io-js');

 }

 }

Chapter 24: Targeting Links in or out of the Frame

Head to the cart page and click the feature product to go to its page. Whoa. It disappeared!

And... we're still on the cart page. Head to the console. Ah, that's a familiar error!

Response has no matching <turbo-frame id="cart-sidebar"> . This shows off the true

main property of a <turbo-frame> : any navigation inside of a frame - whether you click a link

or fill out a form - will stay inside that frame.

Refresh. When we click this link, it does make an Ajax request to the "inflatable sofa" product

page: you can see it down here in the network tools. It then looked for a cart-sidebar turbo

frame on that page because it wants to find which part of this page it should render inside of the

cart-sidebar frame.

But... in this case, that is not what we wanted! We wanted to leverage the nice, lazy-loading

coolness of the turbo frame... but after that... we kind of want all its links and forms to navigate

like normal.

target="_top" For "Normal" Navigation

No problem. Open the template for the cart page: templates/cart/cart.html.twig . On

the <turbo-frame> , add target="_top" .

templates/cart/cart.html.twig

 // ... lines 1 - 10

11

12

13

14

15

16

 // ... lines 17 - 32

That's it! The _top means that any links or forms inside of this frame should target the main

page. You can also change the target on just a specific link or form instead of the entire frame...

 <aside class="col-12 col-md-4 order-2 order-md-1">

 <turbo-frame id="cart-sidebar" src="{{

fragment_uri(controller('App\\Controller\\CartController::_cartFeaturedProdu

}}" target="_top">

 Loading...

 </turbo-frame>

 </aside>

and we'll see how later.

Anyways, if we refresh now... and click. It's back to normal. If you go back to the shopping cart

and click to add the item to your cart, this also works. That just submitted a form... which was

also broken a minute ago before we added target="_top" .

Adding Attributes on the Initial Frame or Ajax-Loaded Frame?

But... wait a second. We just added target="_top" to the turbo frame in cart.html.twig .

But what about the turbo-frame over here in _featuredSidebar.html.twig? This is

the frame that's actually loaded via Ajax.

Let's talk about a small - but important - detail about turbo frames. When we initially load the

cart page, all its HTML comes from cart.html.twig . This means that what we're originally

loading on the page is a turbo-frame with a src attribute and a target attribute.

But what happens after it makes the Ajax request? Does the turbo-frame from the Ajax

request replace the existing one that loaded on the page originally? Or... does it keep the

original turbo-frame tag and only use the new frames inner HTML?

The answer is that a turbo frame only uses the inner HTML. So whatever attributes your frame

starts with - like src and target - it will keep those, regardless of the attributes on any

turbo-frame that it loads later via Ajax. Well, the the src attribute changes to the new URL,

but that's it.

We can see this over in our browser. Inspect this frame: this turbo-frame has src and

target="_top" . So, when the new frame loaded via Ajax, that frame didn't replace this one:

we know that because only the original frame has target="_top" .

Anyways, this is why we added target="_top" to the frame in cart.html.twig : our

original frame.

But... in _featuredSidebar.html.twig , I'm also going to add target="_top" here.

templates/cart/_featuredSidebar.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Why? Well, functionally-speaking, it makes no difference. But conceptually, if you look at this

frame in isolation, its links - like this link and the form down here - are not designed to navigate

in the frame. Both are really meant to target the main page. Adding target="_top" here

makes that clear.

And also, if we ever simply use Twig's include() function to include this template directly on

a page, the frame would already have the target="_top" that it needs. Though, an even

better way to guarantee that a link has the right target is to add it to the link itself - which we'll

see soon.

So now that we've made this turbo frame not to keep its navigation inside of itself, let's see a

real example of when keeping the normal turbo-frame behavior is awesome.

<turbo-frame id="cart-sidebar" target="_top">

 <div class="component-light product-show p-3 mb-5">

 <h5 class="text-center">Featured Product!</h5>

 <img

 alt="{{ featuredProduct.name }}"

 src="{{

asset('/uploads/products/'~featuredProduct.imageFilename) }}"

 class="d-block"

 >

 <div class="pt-3">

 <h6 class="d-flex justify-content-between mb-3">

 {{ featuredProduct.name }}

 {{ featuredProduct.priceString|format_currency('USD') }}

 </h6>

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

 </div>

</turbo-frame>

Chapter 25: Adding a "Read More" Ajax Frame

On the cart page, let's make this feature product sidebar a bit more useful by adding the

product's description. Except... we probably don't want to add the whole description because it's

kind of long. So we'll just show a preview.

Using & Installing twig/string-extra

Head over to templates/cart/_featuredSidebar.html.twig and, down here, right

before the cart controls, add {{ featuredProduct.description }} . To show only part of

the description, pipe this to a special |u filter and say .truncate(25) . I'm also going to add

|trim on the end.

templates/cart/_featuredSidebar.html.twig

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 24

This u filter comes from a Twig extension library, which... we don't actually have installed yet.

But, pff, let's try it anyways. When we refresh.... nothing happens! But down on the web debug

toolbar, you can see that an Ajax call failed!

So... we all know that - despite our awesomeness - errors happen. When you work with turbo

frames, these errors are harder to see since everything happens in a background Ajax call. To

see it, you can go to the network tab, find the request, right click and hit "open in new tab".

There it is. Or you can go use the web debug toolbar to open the profiler for that request...

which opens straight to the exception.

 <div class="pt-3">

 <h6 class="d-flex justify-content-between mb-3">

 {{ featuredProduct.name }}

 {{ featuredProduct.priceString|format_currency('USD') }}

 </h6>

 {{ featuredProduct.description|u.truncate(25)|trim }}...

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

Either way, once we can see the error, it's really clear! It says run

composer require twig/string-extra . Ok! Copy that, find your terminal and paste:

composer require twig/string-extra

Once this finishes... move back over, close the profiler, refresh and nice! Wait, hmm... I meant to

put a little ... at the end of the shortened description. And... yea: that looks better.

Replacing our Featured Sidebar Route

But now, let's make this way cooler by adding a "read more" link after the description that, on

click, will show the entire description. We're going to do that with zero JavaScript thanks to

Turbo frames.

But before we implement that, head over to src/Controller/CartController.php . On

_cartFeaturedProduct() , I'm going to re-add the route that we had earlier:

@Route("/cart/_featured", name="_app_cart_product_featured") .

src/Controller/CartController.php

 // ... lines 1 - 30

31

32

33

34

35

 // ... lines 36 - 116

Copy the route name then, over in the cart template - so cart.html.twig - instead of using

the fragment_uri() function, go back to using {{ path() }} and then

_app_cart_product_featured .

 /**

 * @Route("/cart/_featured", name="_app_cart_product_featured")

 */

 public function _cartFeaturedProduct(ProductRepository

$productRepository): Response

 {

templates/cart/cart.html.twig

 // ... lines 1 - 10

11

12

13

14

15

 // ... lines 16 - 32

Doing this is totally unnecessary to accomplish our new goal. The reason I'm doing this is

because, in a few minutes, it'll make it easier to play with the frame's URL.

Setting up the Target Endpoint

Now let's get to work. Back over in CartController , here's the idea: if someone requests

this URL - but with a ?description=1 on the end of that URL - then we'll render the full

description. Otherwise, we'll render the truncated description like we are now.

To do that, add a Request argument - the one from HttpFoundation - and then pass a new

variable into the template called showDescription set to

$request->query->get('description') .

 <aside class="col-12 col-md-4 order-2 order-md-1">

 <turbo-frame id="cart-sidebar" src="{{

path('_app_cart_product_featured') }}" target="_top">

 Loading...

 </turbo-frame>

 </aside>

src/Controller/CartController.php

 // ... lines 1 - 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

 // ... lines 47 - 117

Next, in _featuredSidebar.html.twig , if showDescription , then render the full

description: featuredProduct.description . Else, render the preview.

Now here's the big question: how do we create that "read more" link? Remember that we're

inside of a turbo-frame... and one of the properties of a turbo frame is that navigation stays

inside that frame. So if we create a link to a page, or page partial, that renders this frame, Turbo

will handle all the heavy lifting of making the Ajax request, finding the frame and putting its

content right here.

In other words, all we need to do is create a boring, normal link to {{ path() }}

_app_cart_product_featured with description: true .

Hmm... PhpStorm is confused, so I'll delete and re-add this quote to reset the highlighting.

Inside the link, say "(read more)".

 /**

 * @Route("/cart/_featured", name="_app_cart_product_featured")

 */

 public function _cartFeaturedProduct(ProductRepository

$productRepository, Request $request): Response

 {

 $featuredProduct = $productRepository->findFeatured();

 $addToCartForm = $this->createForm(AddItemToCartFormType::class,

null, [

 'product' => $featuredProduct,

]);

 return $this->renderForm('cart/_featuredSidebar.html.twig', [

 'featuredProduct' => $featuredProduct,

 'addToCartForm' => $addToCartForm,

 'showDescription' => $request->query->get('description'),

]);

 }

templates/cart/_featuredSidebar.html.twig

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 32

Done... or done-ish. If we refresh the page... we have a link! But when we click it... the whole

page navigates as if we were not in a turbo frame! Click back.

This happened because, in cart.html.twig , our turbo frame has target="_top" . That

makes it behave, kind of not like a frame: all link clicks and form submits apply to the whole

page. But we now want this one link - this read more link - to "yes" behave like a normal turbo

frame: we want it to keep its navigation inside the frame.

templates/cart/cart.html.twig

 // ... lines 1 - 11

12

13

14

 // ... lines 15 - 32

To override the target="_top" , find the link in _featuredSidebar . Let's put this onto

multiple lines. Add data-turbo-frame="" and then the name of our frame:

cart-sidebar .

 {% if showDescription %}

 {{ featuredProduct.description }}

 {% else %}

 {{ featuredProduct.description|u.truncate(25)|trim }}...

 <a href="{{ path('_app_cart_product_featured', {

 description: true,

 }) }}">(read more)

 {% endif %}

 <turbo-frame id="cart-sidebar" src="{{

path('_app_cart_product_featured') }}" target="_top">

 Loading...

 </turbo-frame>

templates/cart/_featuredSidebar.html.twig

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 34

That's it! We also could have done the opposite... which in some ways would have been more

natural. We could have left off the target="_top" - so that our entire frame behaves like

normal - and then added data-turbo-frame="_top" to the link and form that should

navigate the whole page.

Either way, the result would be the same. Refresh now... and click. Beautiful! Let's try that again.

Oh, that's nice and simple: an Ajax system entirely powered by small changes in PHP and Twig

only.

Manually Changing the src Attribute

Ooh, and now that this is working, I want to show you something cool. Inspect the turbo-frame.

Notice that when you click a link, it changes the src= attribute to the new URL.

This is actually the way that turbo frames work. Each turbo frame watches its src attribute.

When it changes, it notices that and makes an Ajax call to that new URL. In a normal situation,

you click a link inside a frame, that changes the src attribute and that triggers the Ajax call.

But you can also change this by hand... it's kind of fun. Take out the ?description=1 and...

cool! It made an Ajax request for the URL and rendered it! Our "read more" link is back! If we

click that link, it makes another Ajax call and loads back.

That's a really neat, conceptual, thing to realize about turbo frames: they really do work like

iframes.

 {% if showDescription %}

 {{ featuredProduct.description }}

 {% else %}

 {{ featuredProduct.description|u.truncate(25)|trim }}...

 <a

 data-turbo-frame="cart-sidebar"

 href="{{ path('_app_cart_product_featured', {

 description: true,

 }) }}">(read more)

 {% endif %}

Next: let's make this frame a little bit smoother by adding a loading animation between the time

that we click the link and when the description actually renders.

Chapter 26: Frame Loading Animations

With Turbo Drive, when we click a link or submit a form, and that takes longer than 500

milliseconds to load, we get a loading animation on the top of the page... which we don't see

here because this is all loading fast, but we saw it earlier. It's a built-in, global loading indicator

that we don't even need to think about.

But the same thing does not happen for Turbo frames. When you click the read more link, that

loads pretty fast, but there is a slight delay when nothing happens. And if clicking this loaded a

heavier page.... it might not load so fast. It's pretty normal to add a loading indicator in situations

like this. Can we add one with Turbo frames?

The "busy" Attribute

Sure! And we already have what we need. Head over to

src/Controller/CartController.php . In _cartFeaturedProduct() , let's sleep for

three seconds to fake a slow page.

Back at the browser, inspect this turbo-frame and make sure it's highlighted. Watch the

element closely when I refresh. Look! It has a busy attribute! Yup, whenever a turbo-frame

is loading, it gets this attribute. If we click the "read more" link, we'll see it again.

This simple attribute makes it possible to add all sorts of loading indicators. For example, we

could create two classes to help us hide or show an element during loading.

Hiding / Showing Elements During Loading

Open up templates/cart/_featuredSidebar.html.twig . Ok, let's pretend that we

want to hide the "read more" link once we click it. Add class="" and let's invent a new class

called frame-loading-hide . We'll add the CSS for this in a minute. After this, add a

 and give it a different, new, class - frame-loading-show - that will cause this

element to only show when loading. Also give this fas fa-spinner fa-spin to render a

FontAwesome loading animation.

templates/cart/_featuredSidebar.html.twig

 // ... lines 1 - 17

18

19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 36

To add styling for these, open up assets/styles/app.css . Target the busy attribute with

turbo-frame[busy] . So if there's a turbo-frame element that has a busy attribute, then for

any elements inside with a frame-loading-hide class, display: none .

For the other class - the frame-loading-show - we want this to hide by default and then only

show when loading. First, to hide it, copy the CSS selector, paste, make it apply to all turbo-

frame elements, and look for the frame-loading-show class. So, hide these by default.

And, whoops! That jumped a bit. Anyways, below this, override that: inside a

turbo-frame[busy] element, if you have a frame-loading-show class,

display: inline-block .

assets/styles/app.css

 // ... lines 1 - 18

19

20

21

22

23

24

 // ... lines 25 - 180

It's a little complicated, but that should get the job done and give us two classes that we can

reuse across our site. Let's try it! Find your browser, refresh and... perfect! You can already see

 {% if showDescription %}

 {{ featuredProduct.description }}

 {% else %}

 {{ featuredProduct.description|u.truncate(25)|trim }}...

 <a

 data-turbo-frame="cart-sidebar"

 class="frame-loading-hide"

 href="{{ path('_app_cart_product_featured', {

 description: true,

 }) }}">(read more)

 {% endif %}

turbo-frame[busy] .frame-loading-hide, turbo-frame .frame-loading-show {

 display: none;

}

turbo-frame[busy] .frame-loading-show {

 display: inline-block;

}

that my FontAwesome icon is not showing up because it's hidden by default. Now click this link.

Beautiful!

Loading Opacity

And... that's it! You can leverage this busy attribute to do whatever you want. For example, we

can give every frame on our site loading behavior by lowering their opacity. This is pretty easy.

Copy the turbo-frame from above to say that any turbo-frame with a busy attribute should

have opacity set to .2. That's an extreme level - but it'll be easy to see.

assets/styles/app.css

 // ... lines 1 - 18

19

20

21

 // ... lines 22 - 183

When we refresh now, we should even see this during the initial load. And... we do! When we

click the "read more" link... uh... hmm. I did not see the lower opacity. That's weird. Inspect the

element... and hack a busy attribute on the end of this.

turbo-frame is an Inline Element by Default

Hmm. When I do this, our browser does see the correct opacity CSS... it just doesn't seem to be

doing anything! Hover over the element... let me scroll up a bit. Check it out: it has no height! I

see the arrow in the upper left... but it's not highlighting the element. You'd expect it to go

around the element like this... but it's not!

So this is interesting. The problem is that <turbo-frame> is a custom HTML element. And by

default, your browser renders it as an inline element. You can see this over in the computed

CSS: it has display: inline . And so, when you put block elements inside of it, it just...

doesn't expand in the way you'd expect it to. That's why it appears to have no height. And that's

why nothing gets the lower opacity.

To fix this, we can make this element display: block . As soon as I hack this in, the opacity

does take effect. To make this work everywhere, we can make our turbo-frames

display: block by default with turbo-frame , display: block .

turbo-frame[busy] {

 opacity: .2;

}

assets/styles/app.css

 // ... lines 1 - 18

19

20

21

 // ... lines 22 - 186

Try it now. The opacity on loading still works and when we click... that works too!

So now that this looks spectacular, let's go and make the opacity a little less @dramatic... and

over in CartController , take out the sleep.

assets/styles/app.css

 // ... lines 1 - 18

19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 186

Let's go play with the page. That feels much more natural.

Fixing the Checkout Page

Before we keep going and doing other cool Turbo frame stuff, we accidentally broke the

checkout page! It... was my fault.

“Variable showDescription does not exist”

Coming from _featuredSidebar.html.twig . The template for this page lives at

templates/checkout/checkout.html.twig .

turbo-frame {

 display: block;

}

turbo-frame {

 display: block;

}

turbo-frame[busy] {

 opacity: .7;

}

turbo-frame[busy] .frame-loading-hide, turbo-frame .frame-loading-show {

 display: none;

}

turbo-frame[busy] .frame-loading-show {

 display: inline-block;

}

templates/checkout/checkout.html.twig

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 66

Ooooh. This page also has a featured product sidebar... and it is still using the include

directly. When we added our new showDescription variable, I didn't realize this was being

included directly and... well... now things are mad.

We could fix this by passing in the variable... or even coding defensively inside

_featuredSidebar.html.twig . But, pfff. We have a working, lazy Turbo Frame! So let's

just use that! In cart.html.twig , steal the lazy frame and paste it inside

checkout.html.twig .

templates/checkout/checkout.html.twig

 // ... lines 1 - 10

11

12

13

14

15

16

17

 // ... lines 18 - 66

Celebrate by opening up the controller for this page, which is CheckoutController , and

removing some variables that we don't need anymore: addToCartForm and

featuredProduct ... which means we can delete both variables... and we don't need to inject

this argument.

 <div class="row">

 <aside class="col-12 col-lg-4">

 {% if featuredProduct %}

 {{ include('cart/_featuredSidebar.html.twig') }}

 {% endif %}

 </aside>

 <div class="row">

 <aside class="col-12 col-lg-4">

 <turbo-frame id="cart-sidebar" src="{{

path('_app_cart_product_featured') }}" target="_top">

 Loading...

 </turbo-frame>

 </aside>

src/Controller/CheckoutController.php

 // ... lines 1 - 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

 // ... lines 47 - 65

Cool! Refresh now and... all good. The "read more", of course, even works here because Turbo

& Stimulus are awesome.

Next: below each product, if you're logged in, users can post a review. We can make this a bit

more awesome by leveraging a turbo frame.

 /**

 * @Route("/checkout", name="app_checkout")

 */

 public function checkout(Request $request, CartStorage $cartStorage,

EntityManagerInterface $entityManager, SessionInterface $session):

Response

 {

 $checkoutForm = $this->createForm(CheckoutFormType::class);

 $checkoutForm->handleRequest($request);

 if ($checkoutForm->isSubmitted() && $checkoutForm->isValid()) {

 /** @var Purchase $purchase */

 $purchase = $checkoutForm->getData();

 $purchase->addItemsFromCart($cartStorage->getCart());

 $entityManager->persist($purchase);

 $entityManager->flush();

 $session->set('purchase_id', $purchase->getId());

 $cartStorage->clearCart();

 return $this->redirectToRoute('app_confirmation');

 }

 return $this->renderForm('checkout/checkout.html.twig', [

 'checkoutForm' => $checkoutForm,

]);

 }

Chapter 27: Review this Product... in a turbo-
frame!

We have a new mission. But before we jump in, we need to log in. Use the delightful cheating

links... then head over to a product page and scroll down.

Okay: every product has reviews and we can even post a review from right here. There is

nothing fancy about this: this is a normal HTML form with no custom JavaScript and no turbo

frame. And, mostly, it works great! Fill out the form... and submit. Ooh, that's smooth... just

because Turbo Drive is awesome.

But notice that we are taken to a different page, a /reviews page. This is on purpose:

management wants to show the reviews below each product... but they also want a dedicated

"reviews" page for each product. And so, we decided to make the review form submit to this

page.

This is working great... but it could be even better if, when we submit a review from the product

page, we stayed on the product page. This is a type of progressive enhancement: everything is

cool right now, but we're going to choose to enhance things to a higher "coolness level". Doing

this is going to require two lines of code.

Adding the Frame

The template for this page is templates/product/show.html.twig . At the bottom, the

reviews are rendered via this _reviews.html.twig template partial. Open that and scroll

down to the form. The reason all of this lives in its own partial is that this is also included from

the reviews page template - reviews.html.twig . That lets us show the same list of reviews

and form on both pages without duplication.

So let's think: when the "new review" form submits, we want the page to not navigate away: we

want everything to happen in this reviews area. Isn't that... exactly what Turbo Frames are for?

If we wrapped this entire template in a <turbo-frame> ... wouldn't that do it? I think it would!

At the top of the template, add <turbo-frame id=""> , how about, product-review . Take

the closing tag and put it on the bottom.

templates/product/_reviews.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Those are the 2 lines! Testing time. Refresh, scroll to the bottom of the product show page and

submit the form empty. Yes! That was perfect! We see the validation errors but we are still on

the product show page. This is my favorite example yet of the power of turbo frames. With two

lines of code, the entire review system is now self-contained.

Behind the scenes, when we submit this form, it does submit to the /reviews page. You can

see this down in the network tools under the Ajax calls. Here it is: this was a POST request to

/reviews .

<turbo-frame id="product-review">

{% for review in product.reviews %}

 <div class="component-light my-3 p-3">

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }}

<i class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

 </div>

{% else %}

 <p>This product has not been reviewed yet!</p>

{% endfor %}

<hr>

{% if reviewForm|default(false) %}

 <h4>Post your own review</h4>

 {{ form_start(reviewForm, {

 'action': path('app_product_reviews', { id: product.id })

 }) }}

 {{ form_row(reviewForm.stars) }}

 {{ form_row(reviewForm.content) }}

 <button class="btn btn-primary" formnovalidate>Add Review</button>

 {{ form_end(reviewForm) }}

{% elseif not is_granted('ROLE_USER') %}

 <p>Log in to post your

review</p>

{% endif %}

</turbo-frame>

If you look closely at the "preview" for this, it did render the full reviews page - with header,

footer and all. But our turbo-frame is smart enough to find just the product-review frame

inside this response, grab it and use it.

I love this product so much that I think we should publish another another 5 star review. When

we submit... gorgeous! Our new review even popped up right above the form!

Changing The Flash Message to Render In the Frame

Though, hmm. There's no success message anywhere on the page. There was one before...

but now it's gone! What happened?

Look back at the network tools. There are two new requests.

The first is a POST request to /reviews . That processed our form, was successful, and

returned a 302 redirect back to the same URL. This caused a second Ajax request to be made

to /reviews and this is what was used to fill in the turbo-frame .

Look at the preview for this request closely. Near the top - here! The page does have a success

message! Then, way below, we see the reviews. Can you spot the problem? The success

message is being printed outside of the turbo-frame. And so, we never see it.

Fortunately, we can fix this pretty easily. Open up the controller that handles the review form

submit and renders the reviews page: src/Controller/ProductController.php . Here it

is: productReviews() .

src/Controller/ProductController.php

 // ... lines 1 - 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

 // ... lines 104 - 113

Let's see: if this is a POST request and it's successful, then we set a success flash message.

Over in templates/base.html.twig , we already have code that renders any success

flash messages near the top of the page.

 /**

 * @Route("/product/{id}/reviews", name="app_product_reviews")

 */

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager)

 {

 $reviewForm = null;

 if ($this->getUser()) {

 $reviewForm = $this->createForm(ReviewForm::class, new

Review($this->getUser(), $product));

 }

 if ($request->isMethod('POST')) {

 $this->denyAccessUnlessGranted('ROLE_USER');

 $reviewForm->handleRequest($request);

 if ($reviewForm->isSubmitted() && $reviewForm->isValid()) {

 $entityManager->persist($reviewForm->getData());

 $entityManager->flush();

 $this->addFlash('success', 'Thanks for your review! I like

you!');

 return $this->redirectToRoute('app_product_reviews', [

 'id' => $product->getId(),

]);

 }

 }

 return $this->renderForm('product/reviews.html.twig', [

 'product' => $product,

 'currentCategory' => $product->getCategory(),

 'categories' => $categoryRepository->findAll(),

 'reviewForm' => $reviewForm?: null,

]);

 }

Now that we're leveraging a frame, what we really want to do is render the success message

inside that frame. Back in the controller, change the flash type from success to, how about,

review_success .

src/Controller/ProductController.php

 // ... lines 1 - 84

85

86

87

88

89

90

91

92

93

94

 // ... lines 95 - 113

Right now, nothing is rendering review_success flash messages. But go into the template -

_reviews.html.twig - and, above the form, render it: for flash in

app.flashes('review_success') . Inside, and an alert div with alert-success and

print the flash variable.

templates/product/_reviews.html.twig

 // ... lines 1 - 13

14

15

16

17

18

 // ... lines 19 - 33

If you want to be fancier, you could isolate the flash logic from base.html.twig into its own

template and include it from both the base layout and _reviews.html.twig . That'd be pretty

sweet!

Let's go review our product one more time. Do a full page refresh just to be safe, recommend

this product to all your friends, submit and... that's lovely.

Making One Link target="_top"

 if ($reviewForm->isSubmitted() && $reviewForm->isValid()) {

 $entityManager->persist($reviewForm->getData());

 $entityManager->flush();

 $this->addFlash('review_success', 'Thanks for your review!

I like you!');

 return $this->redirectToRoute('app_product_reviews', [

 'id' => $product->getId(),

]);

 }

{% for flash in app.flashes('review_success') %}

 <div class="alert alert-success">{{ flash }}</div>

{% endfor %}

Back at the top of the page, click to log out... because there is one tiny little detail left. Go back

to the product and scroll down to the reviews. You need to be logged in to post a review. But

when we click the "log in" link... it's busted!

Check out the console, it's a familiar error:

“Response has no matching <turbo-frame id="product-review"> element.”

Of course. Refresh the page to reset things. When we click the "log in" link, it's now inside of a

turbo frame. And so, Turbo makes an Ajax call to the login page and looks for a

product-review frame on that page. That is... not what we want. We want this link to target

the whole page. And we know how to do that!

Over in _reviews.html.twig , all the way on the bottom, find the link and add

data-turbo-frame="_top" .

templates/product/_reviews.html.twig

 // ... lines 1 - 28

29

30

31

 // ... lines 32 - 33

Now when we refresh... and click... we're good!

Next: let's add a bonus feature to our site! Whenever any form is submitted on our site for any

reason, let's automatically disable the submit button to avoid double submits.

{% elseif not is_granted('ROLE_USER') %}

 <p>Log

in to post your review</p>

{% endif %}

Chapter 28: Globally Disable Buttons on Form
Submit

Log back in... and head to any product page. Thanks to the work that we did earlier, when we

submit the review form, the opacity does go lower while the frame is loading. You can see this

fairly well on the button... but it is still a bit subtle. So here's an idea: what if we also disabled

this submit button while the frame was loading? That would give us an even better loading

indicator and, as a bonus, it would help prevent double submits. The best part? We can make

this happen for every form on our site by leveraging an event that Turbo dispatches.

Listening to turbo:before-submit

In your editor, open up assets/turbo/turbo-helper.js . Anywhere in the constructor,

listen to a new event: document.addEventListener('turbo:submit-start') . Pass

this an arrow function with an event argument. Inside, let's console.log() the string

submit-start and also the event object.

assets/turbo/turbo-helper.js

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 91

Turbo triggers this turbo:submit-start event whenever any form is submitted with turbo,

whether it's inside of a Turbo frame or just a normal form that Turbo Drive is handling.

Let's go see if this works. Move over, refresh, submit, and go check the console. There it is!

Now some Turbo events have a detail key inside them with extra info. And this is one of

those events. This formSubmission key holds all kinds of information about the form submit

that's about to start. Most importantly, for us, it has a submitter key set to the button that

triggered the submit. That's this button right here!

 document.addEventListener('turbo:submit-start', (event) => {

 console.log('submit-start', event);

 })

This is awesome because we can use that to add a disabled attribute! The path to this is

detail.formSubmission.submitter .

Disabling the Submitter Button

Head back to our code and replace the log with

event.detail.formSubmission.submitter . Add the disabled attribute with

.toggleAttribute('disabled', true) .

assets/turbo/turbo-helper.js

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 91

When you use toggleAttribute with a second argument of true , it means:

“I want you to add this attribute... but I don't need it to be disabled="something" . I just

need the disabled attribute.”

Let's try that. Refresh the page... and then inspect the button element. Watch it when I click.

Yes! Perfect! For just a moment, it had a disabled attribute, which made it even more obvious

that it was loading. And, we can't click to submit it twice.

Behind the scenes, our code added the disabled attribute. Then, when the frame finished

loading, the entire contents of the frame were replaced with a new, non-disabled form to give us

the exact effect we want.

Fixing Disabled Forms in Turbo Snapshots

Scroll up, log out, then go to the registration form. This form does not live in a Turbo frame. But

it still gets the new submit behavior! Yup, with just a few lines of code, every form on our site

just got a little fancier.

 document.addEventListener('turbo:submit-start', (event) => {

event.detail.formSubmission.submitter.toggleAttribute('disabled', true);

 })

But... there is one... super edge case. If you submitted the form and navigated away from the

page while the form was still submitting, that would cause Turbo to take a snapshot of the page

with the disabled button. If the user then clicked back on their browser, the button would still be

disabled.

This is probably such a rare edge case that... maybe we don't care. But let's code for it.

Back in turbo-helper.js , create a new variable: const submitter = . Copy the

event.detail line from below, paste here, and just use submitter below.

We're doing this so we can also give this button a new class:

submitter.classList.add('turbo-submit-disabled') .

assets/turbo/turbo-helper.js

 // ... lines 1 - 9

10

11

12

13

14

15

16

 // ... lines 17 - 101

This class doesn't do anything and doesn't have any CSS attached to it. I just invented it as a

way to mark that this button was disabled because of our loading logic.

Why is that helpful? Above this, we're listening to turbo:before-cache . This is called right

before Turbo takes a snapshot of the page. We can use the turbo-submit-disabled class

to find the disabled button and remove that attribute.

But let's not put the logic here: let's call a new function: this.reenableSubmitButtons() .

Copy that method name, scroll all the way to the bottom and paste to create it. Inside, use

document.querySelectorAll() to find any element with the turbo-submit-disabled

class that we added. Foreach over this, pass a callback with a button argument, and then

say: button.toggleAttribute('disabled', false) . Fully clean things up by removing

the class: button.classList.remove('turbo-submit-disabled') .

 document.addEventListener('turbo:submit-start', (event) => {

 const submitter = event.detail.formSubmission.submitter;

 submitter.toggleAttribute('disabled', true);

 submitter.classList.add('turbo-submit-disabled');

 })

assets/turbo/turbo-helper.js

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 90

91

92

93

94

95

96

97

 // ... lines 98 - 101

It's pretty hard to actually repeat the edge case we just fixed... but let's at least make sure we

didn't break anything. Submit the form. Yup! That still looks great!

Next: there's another place that we can leverage a Turbo Frame to do something cool. While

viewing a product, if we're an admin, it would be awesome to be able to click an "edit" button

that would Ajax load the "product form" right into this space. So... let's do it!

 document.addEventListener('turbo:before-cache', () => {

 this.closeModal();

 this.closeSweetalert();

 this.reenableSubmitButtons();

 });

 reenableSubmitButtons() {

 document.querySelectorAll('.turbo-submit-

disabled').forEach((button) => {

 button.toggleAttribute('disabled', false);

 button.classList.remove('turbo-submit-disabled');

 });

 }

Chapter 29: Frame-Powered Inline Editing

Make sure you're logged in... and then head over to any product page. We already have a

product admin section. And since we are an admin - lucky us - we can use it to edit any product.

To make life cooler for admin users, let's add an edit link right on the public show page.

Easy enough: open the template for this page - templates/product/show.html.twig -

find the h1 and move it onto multiple lines. Then add if is_granted('ROLE_ADMIN') and

endif . Inside, we can create a boring anchor tag that points to the edit page:

path('product_admin_edit') with id set to product.id .

Oh, but I'm going to put this onto multiple lines in a slightly different way... so that we can

cleanly give this a few classes. For the text, say "Edit".

templates/product/show.html.twig

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 52

Nothing magic yet. When we refresh, there's our link... a fantastically boring edit link. Thanks to

Turbo Drive, clicking it feels pretty good. And with a bit more work, we could add a link back to

the public show page. Heck, we could even attach a query parameter when we click this edit

button - like ?from= - and use that on the admin page to dynamically link back to the admin

index page - like it is now - or back to the product show page if that's where we originally came

from. We could even go further and also make the form redirect back to that page after success.

My point is, thanks to the smoothness of Turbo Drive, there are many ways that we could make

this process even smoother simply by writing a little Twig & PHP code.

 <h1>

 {{ product.name }}

 {% if is_granted('ROLE_ADMIN') %}

 <a

 href="{{ path('product_admin_edit', {

 id: product.id

 }) }}"

 class="btn btn-sm btn-secondary"

 >Edit

 {% endif %}

 </h1>

But instead of doing any of those, let's progressively enhance this in a different way: by making

the edit link load the form right onto the public show page. That sounds like a job for a turbo

frame!

Adding the turbo-frame

Head back to the template and scroll to the top. Okay: we have a col-4 and a col-8 - that's

the left and right sides of this page. Our new mission is to wrap that entire area in a

turbo-frame so that it can be replaced by the edit form. So basically, we need a frame right

inside of this "row" div.

Say <turbo-frame id="" and call it, how about product-info . I'm also going to add a

target="_top" so that everything inside, at least for now, will behave completely normally:

as if there were no frame.

Take the turbo-frame closing tag and... put it all the way down here: I think this is the right

spot.

templates/product/show.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

{% block productBody %}

 <div class="row pt-3 product-show">

 <turbo-frame id="product-info" target="_top">

 <div class="col-4">

 <img

 alt="{{ product.name }}"

 src="{{ asset('/uploads/products/'~product.imageFilename)

}}"

 class="d-block"

 >

 <div class="p-2">

 <small>brought to you by </small>

 <small class="d-inline">{{ product.brand }}</small>

 </div>

 </div>

 <div class="col-8 px-3">

 <h1>

 {{ product.name }}

 {% if is_granted('ROLE_ADMIN') %}

 <a

 href="{{ path('product_admin_edit', {

 id: product.id

 }) }}"

 class="btn btn-sm btn-secondary"

 >Edit

 {% endif %}

 </h1>

 <div>

 {{ product.description }}

 </div>

 <div class="p-3 mt-4 d-flex justify-content-between flex-wrap

flex-lg-nowrap">

 <div>

 {{ product.priceString|format_currency('USD')

}}

 {{ product.reviews|length }} Reviews

 {{ product.averageStars }}/5<i

class="fas fa-star ms-2"></i>

 </div>

 <div>

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

 </div>

44

45

46

 // ... lines 47 - 54

Let's see how things look so far. Refresh and... whoa! That completely messed up our styling!

Why? Inspect element on this area. The problem is that we added an element between the row

and the columns... and with CSS Flexbox, sometimes the direct relationship between elements

is important. By putting this turbo-frame in the middle, we angered the Flexbox gods!

Using turbo-frame as a Normal Element

So what can we do? One obvious idea is to move the turbo-frame around the row div so

that we don't interrupt the row-column relationship. That would work.

But... turbo-frame is just a normal HTML element... so we could also change the row

element from a div to a turbo-frame !

Check it out: delete the turbo-frame closing tag. Then, on top, copy the guts from the

turbo-frame , change the div to a turbo-frame and re-add id and target . Down on

the closing tag, ah nice! PhpStorm already changed that for me.

 </div>

 </turbo-frame>

 </div>

templates/product/show.html.twig

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

 <turbo-frame id="product-info" target="_top" class="row pt-3 product-

show">

 <div class="col-4">

 <img

 alt="{{ product.name }}"

 src="{{ asset('/uploads/products/'~product.imageFilename)

}}"

 class="d-block"

 >

 <div class="p-2">

 <small>brought to you by </small>

 <small class="d-inline">{{ product.brand }}</small>

 </div>

 </div>

 <div class="col-8 px-3">

 <h1>

 {{ product.name }}

 {% if is_granted('ROLE_ADMIN') %}

 <a

 href="{{ path('product_admin_edit', {

 id: product.id

 }) }}"

 class="btn btn-sm btn-secondary"

 >Edit

 {% endif %}

 </h1>

 <div>

 {{ product.description }}

 </div>

 <div class="p-3 mt-4 d-flex justify-content-between flex-wrap

flex-lg-nowrap">

 <div>

 {{ product.priceString|format_currency('USD')

}}

 {{ product.reviews|length }} Reviews

 {{ product.averageStars }}/5<i

class="fas fa-star ms-2"></i>

 </div>

 <div>

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

 </div>

 </div>

44

 // ... lines 45 - 52

When we refresh now... it looks good again! But because our frame has target="_top" ... the

frame doesn't do anything yet: the edit link still navigates the entire page.

To fix that, find the link... which is down here... and make it target the frame:

data-turbo-frame="product-info" .

templates/product/show.html.twig

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 53

Will this work? Not quite... and you may remember why. Refresh and click Edit. The whole area

disappeared! And we see our favorite error in the console:

“Response has no matching <turbo-frame id="product-info"> element.”

Of course! The page that that we're navigating to - the product admin edit page - must also have

a product-info frame.

The template for that product admin edit page lives at

templates/product_admin/edit.html.twig . The actual form lives inside

_form.html.twig . So we could add the turbo-frame here around the form. But I kind of

do want the "edit product" h1 and the "delete form" button to also be loaded when we click

"edit". So let's add the turbo-frame right here.

After the back button - because we don't want to include that - add

<turbo-frame id="product-info"> . I'm also going to add target="_top" here to

 </turbo-frame>

 <h1>

 {{ product.name }}

 {% if is_granted('ROLE_ADMIN') %}

 <a

 href="{{ path('product_admin_edit', {

 id: product.id

 }) }}"

 class="btn btn-sm btn-secondary"

 data-turbo-frame="product-info"

 >Edit

 {% endif %}

 </h1>

guarantee that, by default, any links or forms inside here continue to behave like normal when

we navigate directly to the product admin page.

Add the closing frame tag and indent everything.

templates/product_admin/edit.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

That should do it! Refresh the page... and click edit. Sweet! We see the form but we're still on

the product show page!

So far, this has been pretty easy: a perfect use-case for Turbo Frames. Let's take a victory lap!

Except... something isn't quite right. If we change the title and submit the form... woh! That

looked like a full page refresh! Let's find out what's going on next, fix it, and complete our inline

editing destiny!

{% block body %}

<div class="container mt-4">

 <i class="fas fa-caret-

left"></i> Back to list

 <turbo-frame id="product-info" target="_top">

 <div class="d-flex justify-content-between">

 <h1 class="mt-3">Edit Product</h1>

 {{ include('product_admin/_delete_form.html.twig') }}

 </div>

 {{ include('product_admin/_form.html.twig', {'button_label':

'Update'}) }}

 </turbo-frame>

</div>

{% endblock %}

Chapter 30: Frames & Form "action" Attributes

Something isn't right. We can click this "edit" link to inline-load the product form into the Turbo

Frame. But when we save, something weird happens. Watch the console closely down here.

Whoa! It was fast, but it looked the Ajax request failed! And then, the whole page reloaded?

Time to put on our detective hats! Let's start by getting more information about why the form

submit failed. Click any link on the web debug toolbar to jump into the profiler... and then click

the "last 10" link to see the last 10 requests.

Ah, here! A 405 error. Open the profiler for that page:

“No route found for POST /product/1: Method not allowed”

Wait: look at the URL. That is not the right URL! The form should submit to the product admin

area, which... if you navigate there, looks like this: /admin/product/12/edit . But the form

actually submitted to the public product show page. Why?

Close this tab and hit edit again. Actually, refresh, hit edit and inspect element on the form. Ah

ha! The form element does not have an action attribute. Normally this is fine! If you go to the

product admin page and click to edit a product, the form doesn't have an action attribute here

either. That's ok because when a form doesn't have an action attribute, it tells your browser to

submit to the URL that it's currently on. For this page, that's perfect.

But when we're on the public product show page... and we load the same form, having that

missing action attribute is not okay: our browser incorrectly thinks it should submit to

/product/1 .

Here's the takeaway: if you're planning to load a form into a turbo-frame , that form does

need an action attribute. We can't be lazy like we normally are.

Setting the Form action

We can set the action attribute in a few places, but I like to do it in the controller where we

create the form. Open the controller for the product admin area:

src/Controller/ProductAdminController.php . Right now we're only dealing with the

edit page, but I'll set the action on both the new and edit actions to be safe. Add a third

argument to createForm() and pass an option called action set to the URL to this action:

$this->generateUrl('product_admin_new') .

Now scroll down to the one that we really care about: the edit action. Same thing here: pass a

third argument with action set to $this->generateUrl('product_admin_edit') ... but

this needs an id wildcard set to $product->getId() .

src/Controller/ProductAdminController.php

 // ... lines 1 - 31

32

33

34

35

36

37

38

39

40

41

42

 // ... lines 43 - 62

63

64

65

66

67

68

69

70

71

72

73

 // ... lines 74 - 101

Time to give this a try! Refresh the page, click edit, change the title and submit the form. Very

nice... kind of. If you scroll down to find this product... yes! It did update the title!

But, as we can see, it redirected to the product admin list page, not the product show page.

When we click this "edit" button, that does load the form into the Turbo frame. But then,

 /**

 * @Route("/new", name="product_admin_new", methods={"GET","POST"})

 */

 public function new(Request $request): Response

 {

 $product = new Product();

 $form = $this->createForm(ProductType::class, $product, [

 'action' => $this->generateUrl('product_admin_new'),

]);

 $form->handleRequest($request);

 /**

 * @Route("/{id}/edit", name="product_admin_edit", methods=

{"GET","POST"})

 */

 public function edit(Request $request, Product $product): Response

 {

 $form = $this->createForm(ProductType::class, $product, [

 'action' => $this->generateUrl('product_admin_edit', [

 'id' => $product->getId(),

]),

]);

 $form->handleRequest($request);

because the frame has target="_top" , when we submit the form, it submits to the whole

page and navigates the whole page. That's why hitting save redirects us to a totally different

page.

Redirecting to the Product Show Page

And that's maybe okay: this is already a better experience than when we started. But we could

make it a bit more awesome by redirecting back to the public product show page. Let's try that:

I'll do it in just the edit action. On success, change the index route to app_product - the route

for the show page - and pass this the id wildcard that it needs.

src/Controller/ProductAdminController.php

 // ... lines 1 - 73

74

75

76

77

78

79

80

81

 // ... lines 82 - 103

Let's see how this feels. Open up the floppy disk public show page, hit edit, change the title and

submit. That's very nice!

Edit the product again, but empty the title so that we fail validation. When we submit now, this

navigate us away from the show page and puts us in the admin section. That makes complete

sense: we know that the form is still submitting to the full page, not to the frame. And so, again,

this is probably okay! We should probably stop and say "good enough!".

Submitting the Form in the Frame

Or... we could also make the form submit in the frame.

To do this, we have two options. Over in show.html.twig , we have target="_top" on the

turbo-frame . The first way that we could make the form submit to the frame would be to

remove this target so that everything navigates inside the frame. Of course, if we did that, we

 if ($form->isSubmitted() && $form->isValid()) {

 $this->getDoctrine()->getManager()->flush();

 return $this->redirectToRoute('app_product', [

 'id' => $product->getId(),

]);

 }

would need to make sure to add data-turbo-frame="_top" to any links or forms that

should target the full page.

The other option is to leave the target="_top" and then, on just the product form, add

data-turbo-frame="product-info" .

For me, the best option is still... not totally clear. Is it better to add target="_top" on the

frame and then target the frame on individual links and forms? Or should we leave

target="_top" off the frame and add target="_top" to the individual links and forms that

need it?

I don't have a perfect answer. But my rule of thumb is to determine this based on the main

purpose of a frame. In this case, I would expect most links to navigate the whole page, so the

target="_top" on the frame feels safer.

So let's go change the target of just the form. The edit page template is edit.html.twig , but

the form lives in _form.html.twig . Pass a second argument to form_start with an attr

variable set to an object. Inside that, set data-turbo-frame to product-info .

templates/product_admin/_form.html.twig

1

2

3

4

5

6

Let's try the flow! Refresh. We have a turbo-frame with target="_top" ... but inside, an

edit link that specifically targets the frame. When we click this, the new form is still in the frame

with target="_top" ... but it also targets the product-info frame.

Thanks to this, if we empty the title and submit... woohoo! That keeps us on the page! That

submitted into the frame. And if we put the title back, change it and submit. Beautiful!

Next: when we submit a form inside a frame... and that request redirects to another page, what

happens? Does that redirect the entire page and change the URL in the address bar? Or does it

only update the frame? Let's find out and fix a related bug with our new inline edit frame system.

{{ form_start(form, {

 attr: { 'data-turbo-frame': 'product-info' }

}) }}

 {{ form_widget(form) }}

 <button class="btn btn-primary" formnovalidate>{{

button_label|default('Save') }}</button>

{{ form_end(form) }}

Chapter 31: Frame Redirecting & Dynamic Frame
Targets

It was subtle, but we just saw one important property of Turbo frames. When we submitted this

form successfully, it submitted to the edit action inside of ProductAdminController . This

code handled the form submit and, because it was successful, it redirected to the public product

show page.

It turns out, if you submit a form in a frame and that Ajax request redirects to another page,

Turbo does not follow the redirect and navigate the entire page. Well, let me be more clear.

Redirects Do Not Move the Entire Page

Check out the network tools. This POST request was for the unsuccessful form submit we did a

minute ago: the one that failed validation. This second request was for our successful form

submit. And you can see that it returned a 302 redirect. When Turbo sees a redirect, it does

follow it in a sense... it makes a second Ajax call to the redirected URL: the product show page.

This is also how Turbo Drive works... but with one key difference: after making the second Ajax

request, a Turbo frame does not navigate the entire page and update the URL in our browser to

match the redirected URL.

Nope, because we submitted to a turbo frame, it reads the HTML of this redirected page, finds

the product-info frame and loads just that into the frame.

This is... kind of hard to see in this case, because it's redirecting back to the URL that is already

in our address bar. But this is the behavior: if you submit a form inside a frame, even if that

request redirects, all navigation will stay inside the frame.

Actually, there is a super obvious place where we can see this. Go to the product admin area

and edit a product. Like with the show page, the frame is targeting _top but the form is

targeting product-info . If we clear out the title and submit, it submits to the frame and looks

fine.

But if we put the title back, change it and submit, watch what happens. Ah! Frankenstein page!

Half of the public product page just exploded onto this admin page!

Unfortunately... the turbo frame is doing exactly what we're asking it to do. Look at the network

tools... and scroll up a bit. We submitted successfully to the edit page and that redirected to the

public show page. Then, because we're submitting in a turbo-frame, the frame found the

product-info frame on that page - which is all this product info - grabbed it, and popped it

right here.

In the admin area... this is not what we want. And things are getting a bit complicated as a result

of us really pushing for the best possible user experience.

So let's stop and think. When we load the form from the product show page and hit edit, we do

want this form to submit into the frame. But when we load that same form in the product admin

area, we kind of just want this to behave like normal, by submitting to the entire page. Could we

do that? Could we make the same form behave differently based on the situation? Totally!

The Turbo-Frame Request Header

Head to ProductAdminController 's edit action. Whenever turbo is navigating inside a

frame, it sends an extra header called Turbo-Frame with the name of the frame. So when we

click the edit link from the product show page, that Ajax request will add a Turbo-Frame

header. You can see it all the way down here under request headers... there it is:

Turbo-Frame: product-info .

But when navigate directly to the product admin area and look at that Ajax request, down here,

there is no Turbo-Frame header. This means we can detect whether a request is being

loaded inside a turbo frame from inside of Symfony!

Back in the controller, when we render the template, pass in a new variable called

formTarget set to $request->headers->get('Turbo-Frame') . If that header was not

sent, add a second argument to default this to _top .

src/Controller/ProductAdminController.php

 // ... lines 1 - 61

62

63

64

65

66

67

 // ... lines 68 - 82

83

84

85

86

87

88

 // ... lines 89 - 104

Now in _form.html.twig , instead of setting the target to product-info , use the

formTarget variable. And because this template is also included on the new product page...

and we're not setting this variable there, code defensively by defaulting it to _top .

templates/product_admin/_form.html.twig

1

2

3

4

5

6

I think that's going to do it! Refresh the product admin page and hit save. Beautiful! That

submitted to the entire page and redirected the entire page. Now click edit, empty the title and

hit enter. Yes: this still navigates inside the frame. If you inspect element on the form, you can

see that it does have the extra data-turbo-frame attribute set to product-info .

So, inline product admin form done! I included this example both because it's really cool to load

the form inline... but also because it shows a situation where turbo frames can get a bit

complex. It's up to you to balance the added complexity with the user experience that you want.

Next: what about using a turbo frame inside of a modal? After all, you often want navigation -

like links and form submits inside of a modal - to stay inside of that modal... which is what turbo

frames are really good at. So let's transform this modal into a turbo-frame powered modal.

 /**

 * @Route("/{id}/edit", name="product_admin_edit", methods=

{"GET","POST"})

 */

 public function edit(Request $request, Product $product): Response

 {

 return $this->renderForm('product_admin/edit.html.twig', [

 'product' => $product,

 'form' => $form,

 'formTarget' => $request->headers->get('Turbo-Frame', '_top')

]);

 }

{{ form_start(form, {

 attr: { 'data-turbo-frame': formTarget|default('_top') }

}) }}

 {{ form_widget(form) }}

 <button class="btn btn-primary" formnovalidate>{{

button_label|default('Save') }}</button>

{{ form_end(form) }}

Chapter 32: turbo-frame inside a Modal

Let's do one more big thing with the frame system. Go to the product admin page and click to

add a new product. In the last tutorial, we used Stimulus to open this in a modal, make this form

submit via Ajax inside the modal, make the modal close on success and then reload the list with

Ajax. An entire experience with no full page refreshes.

The stimulus controller for this lives at

assets/controllers/modal-form_controller.js . This openModal() is called when

we click to add a new product: it opens the modal and makes an Ajax call to populate that

modal with the form HTML. The submitForm() is called when the form is submitted and its

job is to Ajax-submit the form and close the modal on success.

We're revisiting this example because, by leveraging Turbo frames, I think we can simplify this...

like, a lot. And you can probably guess how: we can use a turbo frame to load the initial

contents of the modal and to make the form submit stay in the modal.

Refactoring to a turbo-frame

The modal's markup lives in templates/_modal.html.twig and this is meant to be

reusaable in multiple places. This modal-body element holds the actual content.

Let's transform this into a <turbo-frame> . To keep things usable, set the frame's src="" to

a new modalSrc variable that we will pass into this template.

templates/_modal.html.twig

1

2

3

4

5

6

 // ... lines 7 - 14

15

16

17

18

19

20

21

22

 // ... lines 23 - 32

33

Now open the template for the product admin list page:

templates/product_admin/index.html.twig . There's a lot going on here: we activate

the modal-form Stimulus controller here. We also have a Stimulus controller for

reload-content . It's job was to reload the product list after the modal closed successfully.

We're going to be removing a lot of this stuff soon.

What I want to focus on right now is down here where we include that modal. Pass in that new

modalSrc variable set to path('product_admin_new) because that's the page that holds

the "new product form" that we want.

<div

 class="modal fade"

 tabindex="-1"

 aria-hidden="true"

 data-modal-form-target="modal"

>

 <turbo-frame

 class="modal-body"

 data-modal-form-target="modalBody"

 data-action="submit->modal-form#submitForm"

 src="{{ modalSrc }}"

 >

 {{ modalContent|default('Loading...') }}

 </turbo-frame>

</div>

templates/product_admin/index.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

 // ... lines 13 - 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 37

38

39

Before we try this, let's delete some code in modal-form_controller.js . In

openModal() , we don't need to set the innerHTML to "Loading" - that can live directly in the

frame - and... we don't need to manually make an Ajax call at all! That's going to happen

automatically just because we're setting the src attribute on the <turbo-frame> .

Also submitForm() ... yea, we're not going to need this at all. The turbo frame will handle the

form submit all on its own. And thanks to these changes, one of the targets up on top -

modalBody - is no longer used. So we can remove that too.

{% extends 'base.html.twig' %}

{% block title %}Product index{% endblock %}

{% block body %}

<div

 class="container-fluid container-xl mt-4"

 {{ stimulus_controller('reload-content', {

 url: path('product_admin_index', { ajax: 1 })

 }) }}

 data-action="modal-form:success->reload-content#refreshContent"

>

 <div

 {{ stimulus_controller('modal-form', {

 formUrl: path('product_admin_new')

 }) }}

 >

 <button

 class="btn btn-primary btn-sm"

 data-action="modal-form#openModal"

 >+ Add new product</button>

 {{ include('_modal.html.twig', {

 modalTitle: 'Add a new Product',

 modalSrc: path('product_admin_new'),

 }) }}

 </div>

</div>

{% endblock %}

assets/controllers/modal-form_controller.js

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Yup, the job of this controller is getting... pretty simple!

Back in _modal.html.twig , to finish our cleanup, we don't need the modalBody target...

and we also don't need the data-action that called the submitForm method that we just

deleted.

templates/_modal.html.twig

 // ... lines 1 - 14

15

16

17

18

19

20

 // ... lines 21 - 32

Forgetting the id Attribute

Ok team: let's try this! Refresh the page. Hmm, nothing happened. In the console, whoa!

“Failed to execute querySelector on element: turbo-frame# is not a valid selector.”

export default class extends Controller {

 static targets = ['modal'];

 static values = {

 formUrl: String,

 }

 modal = null;

 connect() {

 useDispatch(this);

 }

 async openModal(event) {

 this.modal = new Modal(this.modalTarget);

 this.modal.show();

 }

}

 <turbo-frame

 class="modal-body"

 src="{{ modalSrc }}"

 >

 {{ modalContent|default('Loading...') }}

 </turbo-frame>

What is that? Well, it's not a great error, but something is looking for a turbo-frame with a

certain id - that's this # part. But oh! I forgot to give our frame an id! Whoops.

Head back to _modal.html.twig . I want to keep this dynamic because different modals may

need different frame ids. So say id="{{ id }}" .

templates/_modal.html.twig

 // ... lines 1 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 33

Over in index.html.twig , pass in the new id variable set to product-info . That's the

id we've been using... and it really could be anything, as long as it matches a frame on the

new product page.

templates/product_admin/index.html.twig

 // ... lines 1 - 24

25

26

27

28

29

30

 // ... lines 31 - 41

Ok: let's keep trying. Refresh and add a new product. Error!

“Response has no matching <turbo-frame id="product-info"> element.”

Ah, I remember. In edit.html.twig , we added a <turbo-frame> there... but we never

added the <turbo-frame> in new.html.twig . We could just move the turbo-frame into

_form.html.twig because that's included on both pages. The disadvantage is that we

added the frame in edit.html.twig on purpose so that our inline editing feature would

include the "edit product" h1 tag and the delete button. So instead, let's just add the same

<turbo-frame> over here in new.html.twig .

 <turbo-frame

 class="modal-body"

 src="{{ modalSrc }}"

 id="{{ id }}"

 >

 {{ modalContent|default('Loading...') }}

 </turbo-frame>

 {{ include('_modal.html.twig', {

 modalTitle: 'Add a new Product',

 modalSrc: path('product_admin_new'),

 id: 'product-info',

 }) }}

templates/product_admin/new.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

Attempt number 3! Refresh and click. Got it!

Using Real Buttons vs Modal Footer

But if we try to submit this... error!

“Error invoking action click->modal-form#submitForm .”

Ok, so something is still trying to call the submitForm() method that we deleted a few

minutes ago. In _modal.html.twig , this is coming from the modal-footer . In this last

tutorial, we added a button down here to submit the form. But this button is actually outside of

the form, which lives in the turbo-frame . What we need to do, yet again, is simplify. Remove

the modal-footer entirely.

{% block body %}

<div class="container mt-4">

 <i class="fas fa-caret-

left"></i> Back to list

 <h1 class="mt-3">Create new Product</h1>

 <turbo-frame id="product-info" target="_top">

 {{ include('product_admin/_form.html.twig') }}

 </turbo-frame>

</div>

{% endblock %}

templates/_modal.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

If you refresh and open the form... the footer buttons are gone... but there is now no submit

button on the form! Well, there is one, but it's hiding: you can see it if you inspect element and

do some digging. Yup, we hid this button in the last tutorial when it's inside a modal via CSS so

that the modal-footer buttons could take precedence. Now, we're going to undo that so that our

form is perfectly boring and normal: a form... with a button.

Open assets/styles/app.css and search for modal-body . Delete this section.

Try the modal again... and... it works! And it's so boring, I absolutely love it. Try to submit the

form. Um, well... that did work, but it submitted the whole page! Next, let's fix this, make the

modal load lazily and delete even more code from the modal system.

<div

 class="modal fade"

 tabindex="-1"

 aria-hidden="true"

 data-modal-form-target="modal"

>

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <h5 class="modal-title">{{ modalTitle }}</h5>

 <button type="button" class="btn-close"

 data-bs-dismiss="modal"

 aria-label="Close"></button>

 </div>

 <turbo-frame

 class="modal-body"

 src="{{ modalSrc }}"

 id="{{ id }}"

 >

 {{ modalContent|default('Loading...') }}

 </turbo-frame>

 </div>

 </div>

</div>

Chapter 33: Lazy Modal & Big Cleanup

Our modal is now powered by a turbo-frame : the form was Ajax loaded by the frame system.

But when we submit, wah, wah. It submits to the whole page.

Let's see what's going on. Reopen the modal and inspect it. Hmm. Ah, look at the form . It has

data-turbo-frame="_top" ! That's coming from _form.html.twig .

templates/product_admin/_form.html.twig

1

2

3

4

5

6

Remember: a few minutes ago, we set the data-turbo-frame attribute to a dynamic

formTarget variable. The point of this was so that if the form is being loaded into a frame,

then we target that frame. Else, if the form is being loaded via a normal page load, target _top .

The problem is that... we only set the variable for the edit page. Open

src/Controller/ProductAdminController.php . Right here - this is the edit() action

- we did pass in the formTarget variable that's set to the Turbo-Frame request header. Go

us! But... I did not do that for the new action. And since that does not pass a formTarget

variable, it defaulted to _top .

src/Controller/ProductAdminController.php

 // ... lines 1 - 81

82

83

84

85

86

87

88

 // ... lines 89 - 104

{{ form_start(form, {

 attr: { 'data-turbo-frame': formTarget|default('_top') }

}) }}

 {{ form_widget(form) }}

 <button class="btn btn-primary" formnovalidate>{{

button_label|default('Save') }}</button>

{{ form_end(form) }}

 return $this->renderForm('product_admin/edit.html.twig', [

 'product' => $product,

 'form' => $form,

 'formTarget' => $request->headers->get('Turbo-Frame', '_top')

]);

 }

So let's pass that variable in for the new page as well. This is yet another spot where, to get this

turbo-frame-powered modal working, we're making things simpler and more consistent.

src/Controller/ProductAdminController.php

 // ... lines 1 - 31

32

33

34

35

36

 // ... lines 37 - 55

56

57

58

59

60

61

62

 // ... lines 63 - 105

Ok: refresh again, open the modal, submit and... oh, that is positively heart-warming.

Lazy Modal Loading

We still need to work on what happens when we submit the form successfully... but before we

do, let's do something cool. Refresh the page and inspect element on the button. Dig a little to

find the turbo-frame that contains the modal. Here it is. If you expand this, you'll notice that

Turbo has already made the Ajax request for the form and put the HTML here. That happens as

soon as the page loads.

But we don't really need to make that Ajax call until the modal opens. Could we somehow delay

that? Totally! And we did this earlier.

In _modal.html.twig , on the turbo-frame , add loading="lazy" .

 /**

 * @Route("/new", name="product_admin_new", methods={"GET","POST"})

 */

 public function new(Request $request): Response

 {

 return $this->renderForm('product_admin/' . $template, [

 'product' => $product,

 'form' => $form,

 'formTarget' => $request->headers->get('Turbo-Frame', '_top')

]);

 }

templates/_modal.html.twig

 // ... lines 1 - 14

15

16

17

18

19

20

21

22

 // ... lines 23 - 26

Let's see how this looks. Refresh and inspect the frame. It still says "Loading": it has not made

the Ajax request yet. Open your network tools and watch the Ajax requests. Click to open the

modal! There's the Ajax call!

Remember: with loading="lazy" , the frame system won't make the Ajax request until the

frame becomes visible in the viewport. And... that works pretty awesomely with modals which

don't become visible until you open them.

Big Ol' Cleanup

At this point, if you look at the modal-form controller, its only job is to... open the modal! The

turbo-frame inside handles the rest... and that's pretty cool. Let's cleanup a few more things:

we don't need useDispatch anymore: we're not dispatching any events... whoops. And... we

don't need to import useDispatch or jQuery ... and we can also delete the formUrl value.

 <turbo-frame

 class="modal-body"

 src="{{ modalSrc }}"

 id="{{ id }}"

 loading="lazy"

 >

 {{ modalContent|default('Loading...') }}

 </turbo-frame>

assets/controllers/modal-form_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Cool. In the template for the product index page, we still do need the modal-form controller

but we do not need to pass in the formUrl variable.

Above this, we have some fanciness with the reload-content controller. That helped us

reload the product list via Ajax after the modal closed. We're going to completely replace that

with something simpler in a few minutes. So delete all of that stuff.

Finally, near the bottom, remove this target, which was for the reload-content controller.

Honestly, I'm wondering if it might have been easier to start this feature from scratch! Because

most of the work we just did was deleting and simplifying.

import { Controller } from 'stimulus';

import { Modal } from 'bootstrap';

import $ from 'jquery';

import { useDispatch } from 'stimulus-use';

export default class extends Controller {

 static targets = ['modal'];

 static values = {

 formUrl: String,

 }

 modal = null;

 connect() {

 useDispatch(this);

 }

 async openModal(event) {

 this.modal = new Modal(this.modalTarget);

 this.modal.show();

 }

}

templates/product_admin/index.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 25

26

27

28

29

30

31

32

33

34

Let's make sure we didn't break anything. Refresh, open the modal and submit the form empty.

That feels great!

But what happens on a successful form submit? Fill in a title, price and... go! Woh. That's...

interesting. It says "loading". Next, let's figure out what just happened. And then, we'll code up

the real solution: after a successful form submit, we want to close the modal and reload the list

behind us. We're about to bend the frame system to our will!

{% block body %}

<div

 class="container-fluid container-xl mt-4"

>

 <div class="d-flex flex-row">

 <h1 class="me-3 mb-4">Product index</h1>

 <div

 {{ stimulus_controller('modal-form') }}

 >

 </div>

 <div class="table-responsive">

 {{ include('product_admin/_list.html.twig') }}

 </div>

 Add a new product

</div>

{% endblock %}

Chapter 34: Close the Modal after turbo-frame
Success

We just submitted the form in the modal successfully and... well, this happened. Weird. If you

refresh, the submit did work: this is our new product on top. Inspect element on the frame so we

can see what's going on... it's interesting and... subtle. Dig a little to find the frame.

Ok, the src starts set to /admin/product/new , which means that when we open the modal,

we see the contents of the turbo-frame from that page. Fill in some data and then submit.

Hmm, the src changed to /admin/product/ . Well, that does make sense: if you look in

ProductAdminController , after success, the controller redirects to /admin/product -

this is inside of the new action.

So we submit to /admin/product/new and it redirects to /admin/product/ . When that

happens, the frame system does two things. First, it makes a second request to the redirected

URL - /admin/product . We've seen that before. And second, it updates the src attribute to

match the redirected URL.

This is all perfectly expected. Open the network tab. The second to last request is the POST

request to /admin/product/new . That's the form submit. And the last request is Turbo

following the redirect to /admin/product/ .

Look at the response for that request... let's actually look at the raw HTML. Let's see if we can

dig and find the turbo-frame . There it is! Yup, it contains nothing more than "Loading...". That

is what we're seeing in the modal.

Remember: when the frame system finds a matching turbo-frame , it only takes the frames

HTML: it does not also use the new frame's src attribute or anything else. So even though this

frame has src="/admin/product/new , that is not used. It grabs the "Loading..." text and...

that's it!

So once again, Turbo is behaving exactly like it should... but not necessarily how we want!

Speaking of that... how do we want this to work? If we wanted the modal to stay open but show

a new, empty form, we could simply change the controller to redirect back to the new product

page. Done.

Doing Something After a Form Submit

But I want to do something different: after a successful form submit, I want to close the modal.

How can we do something after a turbo frame navigates?

 Tip

Starting in Turbo 7.0 RC2, there are two frame-specific events: turbo:frame-render

and turbo:frame-load .

We already know that Turbo triggers a bunch of events... but there aren't any events specific to

turbo frames. There's no, turbo:frame-start or anything like that. However, Turbo does

trigger an event right before and after a form submits.

In modal-form_controller.js , add a connect() method. Until now, we've listened to all

of our turbo events inside of assets/turbo/turbo-helper.js . The reason is that all of this

code represents global behaviors: stuff that we we're adding to the entire page.

turbo:submit-end in Stimulus

But in this case, we want to listen to an event only when a specific controller is active... so we

can run some custom code that affect just that controller. Say

this.element.addEventListener() and listen to an event called turbo:submit-end .

Pass this an arrow function with an event argument.

Earlier we listened to turbo:submit-start . As you can see, there is also a

turbo:submit-end event, which happens after the submit Ajax call has finished. Let's

console.log(event) to see what it looks like.

assets/controllers/modal-form_controller.js

 // ... lines 1 - 3

4

 // ... lines 5 - 7

8

9

10

11

12

 // ... lines 13 - 17

18

Oh, and you probably noticed one big difference between this event and the other events that

we've listened to. Most Turbo events are dispatched directly on document . But the form events

- like turbo:submit-start and turbo:submit-end - are actually dispatched on the

form element. Then, they bubble up.

This means that you can attach a listener to document ... or any element that contains the

form, including the form itself. By attaching the event listener to this.element , our callback

will only be executed when a form is submitted inside of this: so inside of the modal. That's...

pretty awesome.

Ok, let's see what this event looks like. Move over, refresh the page, open the modal and

submit. Go check the console. There it is! Like other events, this has a detail key with a

formSubmission inside. Oh, but there's also a success key set to false ! That would be

true if this was a successful form submit. That's handy: we can use it to know if the submit was

successful and then close the modal.

Let's go do it! If event.detail.success , then this.modal.hide() .

export default class extends Controller {

 connect() {

 this.element.addEventListener('turbo:submit-end', (event) => {

 console.log(event);

 });

 }

}

assets/controllers/modal-form_controller.js

 // ... lines 1 - 3

4

 // ... lines 5 - 7

8

9

10

11

12

13

14

15

 // ... lines 16 - 20

21

Cool. Refresh, open the modal, fill in some details and submit. Go team!

Next: even though we closed the modal, the frame system still followed the redirect and

updated the HTML in the modal. In this case, that's not a problem. In other cases, it could cause

an error. Let's find out when and dive even deeper into the event system to fix it.

export default class extends Controller {

 connect() {

 this.element.addEventListener('turbo:submit-end', (event) => {

 console.log(event);

 if (event.detail.success) {

 this.modal.hide();

 }

 });

 }

}

Chapter 35: Prevent a turbo-frame from Rendering

As usual, I'm going to complicate things! But I have a good reason: I really want us to get the

most out of frames... and we have a bug hiding.

Head over to ProductAdminController . As we just talked about, this redirects to the

product_admin_index page. Let's pretend that we want to redirect this to the "reviews"

page for the new product. Change this to app_product_reviews and pass the id wildcard

set to the new id: $product->getId() .

src/Controller/ProductAdminController.php

 // ... lines 1 - 31

32

33

34

35

36

 // ... lines 37 - 51

52

53

54

55

 // ... lines 56 - 107

Cool. But this change won't affect our modal. When the modal submit is successful, we're

simply closing the modal, staying on the page and completely ignoring the frame that lives in the

now-closed modal. This new redirect would only affect us if we went directly to the /new admin

page where the form targets the full page.

So, since this won't affect us, it shouldn't break anything! Famous last words. Refresh, open the

modal, add some details and submit. Oh! The modal did close... but we have an error in the

console!

“Response has no matching <turbo-frame id="product-info"> element.”

Ah, the problem is that, even though we closed the modal, the turbo-frame still followed the

redirect to the product review page. Then, like it always does, it looked for a <turbo-frame>

 /**

 * @Route("/new", name="product_admin_new", methods={"GET","POST"})

 */

 public function new(Request $request): Response

 {

 return $this->redirectToRoute('app_product_reviews', [

 'id' => $product->getId(),

]);

 }

with id="product-info" ... which that page doesn't have.

So what we really want to do is just... close the modal and tell turbo to not follow the redirect.

Unfortunately, the turbo:submit-end event is too late to tell Turbo to do that!

We could ignore this error... or hack an empty turbo-frame onto the reviews page... but let's fix

this properly. It's a good challenge.

Order of Turbo Events

When we submit this form, four events are triggered in this order:

turbo:before-fetch-request , turbo:submit-start ,

turbo:before-fetch-response and finally turbo:submit-end . Then the frame is

rendered.

But, wait a second. If the frame isn't rendered until after turbo:submit-end , why is it too late

to tell Turbo to not render the frame? The truth is that turbo:submit-end isn't actually too

late. The real problem is that Turbo doesn't give us a way to cancel rendering from this event.

But it does give us this power from the event right before this:

turbo:before-fetch-response .

turbo:before-fetch-response

This event is triggered right after the Ajax call finishes, actually after both Ajax calls have

finished: the form submit POST and the second request to the redirected page. But at this point,

the frame has not been re-rendered.

 Tip

Starting in Turbo 7 RC4 (and so also in the stable Turbo 7), the

turbo:before-fetch-response event is now triggered from whatever element

triggered the Ajax call. This means that you can now use

this.element.addEventListener instead of attaching it to document . Nice!

This time, we do need to attach the event to document because this event is dispatched

directly there - not on the form. For now, I'm going to not hide the modal.

assets/controllers/modal-form_controller.js

 // ... lines 1 - 3

4

 // ... lines 5 - 7

8

9

10

11

12

13

14

15

 // ... lines 16 - 20

21

Refresh, open the modal and fill out the form so we can see what the event looks like for a

successful form submit. Cool. In the console, we see two of these events. The first happened

when we opened the modal: that's the GET request to load the form. The second is from the

form submit.

Open this up and look at the detail property: it has a fetchResponse object and inside of it

that... awesome! A succeeded key and a redirected key! So it tells us if the request was

successful and also if it was redirected.

So here's the plan: when this event happens, if a modal is open and the Ajax call was

successful and the Ajax call was a redirect, we'll assume that a form was just submitted and

hide the modal.

Back in the listener function, delete the code. Then, if not this.modal - so if the modal has

never opened - or if not this.modal._isShown - an internal way to detect whether a modal

is visible - then we don't need to do anything. Just return .

But if the modal is open, set const fetchResponse to event.detail.fetchResponse :

that's the object we were just looking at. If fetchResponse.succeeded and

fetchResponse.redirected , then we're going to assume this was a successful form

submit and hide the modal.

Cancelling the Frame Render

export default class extends Controller {

 connect() {

 document.addEventListener('turbo:before-fetch-response', (event)

=> {

 console.log(event);

 if (event.detail.success) {

 //this.modal.hide();

 }

 });

 }

}

If we stopped now, this would do the exact same thing as before... just with more code. It would

hide the modal... but then the frame would still try to render and give us that annoying error. But

there's a key difference between this event and turbo:submit-end : this event is cancellable.

In this event we're allowed to say event.preventDefault() .

assets/controllers/modal-form_controller.js

 // ... lines 1 - 3

4

 // ... lines 5 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 26

27

Normally, we use event.preventDefault() to prevent form submits or link clicks. Some

custom events - like this one - also allow you to call this method... and it could mean anything

based on the event. In this case, it communicates to Turbo that we would like to prevent this

response from rendering.

Let's try it. Refresh, open, fill out the form and submit. Yes! The modal closed... this time with no

error!

We're amazing! Oh, except... hmm... this still isn't quite what we want. The modal closed... but

the page didn't reload or refresh... so we don't see the new product in the list immediately. Let's

fix that next and finish our Turbo-powered modal system.

export default class extends Controller {

 connect() {

 document.addEventListener('turbo:before-fetch-response', (event)

=> {

 console.log(event);

 if (!this.modal || !this.modal._isShown) {

 return;

 }

 const fetchResponse = event.detail.fetchResponse;

 if (fetchResponse.succeeded && fetchResponse.redirected) {

 event.preventDefault();

 this.modal.hide();

 }

 });

 }

}

Chapter 36: Full Page Redirect from a Frame

Our Turbo-frame-powered modal is now almost perfect. When we submit successfully, it closes

the modal. But... dang! That's all it did. The product list did not update... so it's not super obvious

that this worked!

Look at the console log of the event for the successful form submit. Let's see. Inside

response , ooh! We can see what URL the frame was redirected to! You can also get this from

fetchResponse : this fetchResponse.location is an object that points to the final,

redirected URL.

So the reason we're looking at this is that what we really want to do is, after the form submits

successfully, read this URL and navigate the entire page to it with Turbo! We want a frame

that's, sort of a "hybrid". We want the form submit to stay in the frame... but then once the

submit is successful, we want to navigate the whole page to the redirected URL as if we were

not in a frame.

Navigating the Redirect with Turbo

And... yea! We can do that! At the top of the controller, import Turbo:

import * as Turbo from '@hotwired/turbo' .

Below, remove the console.log , then Turbo.visit(fetchResponse.location) .

assets/controllers/modal-form_controller.js

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 27

28

Let's do this! Refresh, open the modal, typy, typy, submit and... cool! The whole page navigated

to the reviews page! Oh, and back in our code, we can remove this.modal.hide() . We

don't need that anymore: we're navigating the entire page, so that will naturally replace the

modal.

import * as Turbo from '@hotwired/turbo';

export default class extends Controller {

 connect() {

 document.addEventListener('turbo:before-fetch-response', (event)

=> {

 if (!this.modal || !this.modal._isShown) {

 return;

 }

 const fetchResponse = event.detail.fetchResponse;

 if (fetchResponse.succeeded && fetchResponse.redirected) {

 event.preventDefault();

 Turbo.visit(fetchResponse.location);

 this.modal.hide();

 }

 });

 }

}

assets/controllers/modal-form_controller.js

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 27

"Binding" this for a Listener Method

I'm pretty happy with this, but let's clean things up a bit. Copy the code inside the arrow

function, scroll down, and create a new method called beforeFetchResponse() with an

event argument. I'm doing this for readability.

In connect() , call that. We don't even need an arrow function: just reference

this.beforeFetchResponse .

export default class extends Controller {

 connect() {

 document.addEventListener('turbo:before-fetch-response', (event)

=> {

 if (!this.modal || !this.modal._isShown) {

 return;

 }

 const fetchResponse = event.detail.fetchResponse;

 if (fetchResponse.succeeded && fetchResponse.redirected) {

 event.preventDefault();

 Turbo.visit(fetchResponse.location);

 }

 });

 }

assets/controllers/modal-form_controller.js

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

 // ... lines 12 - 17

18

19

20

21

22

23

24

25

26

27

28

29

There is a problem with this... but let's try it! Refresh, go back to the admin page, open up the

modal and fill this out with real data. Submit!

It didn't redirect! And we have that error back in the console. What happened? It's not super

obvious at first, but in our new method, the this variable is no longer referencing the

controller object. This is the classic problem with callback functions, and we normally work

around "this" by passing an arrow function. But if you do want to point directly to the method,

you can by binding the method.

Check it out: say this.boundBeforeFetchResponse - I'm actually creating a new property

= this.beforeFetchResponse.bind(this) . Then, below, point to the bound method.

assets/controllers/modal-form_controller.js

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

11

12

 // ... lines 13 - 31

export default class extends Controller {

 connect() {

 document.addEventListener('turbo:before-fetch-response',

this.beforeFetchResponse);

 }

 beforeFetchResponse(event) {

 if (!this.modal || !this.modal._isShown) {

 return;

 }

 const fetchResponse = event.detail.fetchResponse;

 if (fetchResponse.succeeded && fetchResponse.redirected) {

 event.preventDefault();

 Turbo.visit(fetchResponse.location);

 }

 }

}

export default class extends Controller {

 connect() {

 this.boundBeforeFetchResponse =

this.beforeFetchResponse.bind(this);

 document.addEventListener('turbo:before-fetch-response',

this.boundBeforeFetchResponse);

 }

This creates a new property that points to the method.... but where we have guaranteed that the

this variable in that method will point to this object. That's the job of bind . And this isn't a

Stimulus problem, it's a problem you run into whenever you combine JavaScript, callbacks and

objects.

It looks weird at first... but when we submit the form... it does solve our issue: back to the good

behavior!

Disconnecting the Event Listener

Oh, but I do want to handle one small detail. Over in the controller, add a disconnect()

method. Then copy the document.addEventListener() line, paste, and change it to

document.removeEventListener() .

assets/controllers/modal-form_controller.js

 // ... lines 1 - 4

5

 // ... lines 6 - 13

14

15

16

 // ... lines 17 - 33

34

Why are we doing this? If we add an event listener to a controller's element, like

this.element , then if that element is removed from the page, it's no big deal that our listener

is still technically attached to it. Nothing can interact or trigger events on that element anymore.

And your browser will probably garbage collect that element - and the listener - anyways.

But if we add an event listener to the document , then every time a new

data-controller="modal-form" appears on the page, our connect method will be called

and we'll attach yet another listener. Even after a controller's element is removed from the page,

its beforeFetchResponse() would still be called!

So, to be the responsible developers that we are, we remove the listener in disconnect() ,

which is called when the element attached to this controller is removed from the page.

Changing the Redirect Back to the List Page

export default class extends Controller {

 disconnect() {

 document.removeEventListener('turbo:before-fetch-response',

this.boundBeforeFetchResponse);

 }

}

Anyways, to put the cherry on top of our new feature, head back to

ProductAdminController . Change the redirect back to product_admin_index , which

just makes more sense.

src/Controller/ProductAdminController.php

 // ... lines 1 - 31

32

33

34

35

36

 // ... lines 37 - 42

43

44

45

46

47

48

49

50

51

52

53

 // ... lines 54 - 61

62

 // ... lines 63 - 105

Time to try the entire process. Go to the admin area and do a full refresh. Click to open the

modal - that loaded via the frame - hit save - that submitted via the frame - and if fill in some real

data. This is going to submit - like normal - to the frame. Then, we'll detect that it was successful

and... boom! The new product shows up! That's because we just navigated to this page with

Turbo. That's smooth.

Next: we just did something pretty custom. We submitted a form into a turbo frame... but then

navigated the entire page on success. This is not something a turbo frame does natively... but

it's kind of handy. So let's add a reusable way to do this whenever we want.

 /**

 * @Route("/new", name="product_admin_new", methods={"GET","POST"})

 */

 public function new(Request $request): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $entityManager = $this->getDoctrine()->getManager();

 $entityManager->persist($product);

 $entityManager->flush();

 if ($request->isXmlHttpRequest()) {

 return new Response(null, 204);

 }

 return $this->redirectToRoute('product_admin_index');

 }

 }

Chapter 37: Redirecting the Full Page from a
Frame

We just did something pretty custom. Normally, if you submit a form into a frame, if that frame

redirects, the new content will be loaded into the frame only. The URL in the address bar won't

change and the rest of the page won't be affected. That's usually what you want!

But sometimes, we do want to navigate the entire page, like in a modal. Or, imagine that you

have a sidebar with a form. When you submit and fail validation, you do want that to show in the

sidebar. But once the form is successful, you want to navigate the entire window to a

confirmation page.

So let's make our frame-redirecting system something that we can use anywhere. Here's the

plan: if a turbo-frame - like the turbo-frame in _modal.html.twig - has a

data-turbo-form-redirect="true" attribute - which I totally just invented - then we will

redirect the whole page if we detect a redirect in that frame.

templates/_modal.html.twig

1

2

3

4

5

6

7

8

 // ... lines 9 - 14

15

16

17

18

19

20

21

22

23

24

25

26

<div

 class="modal fade"

 tabindex="-1"

 aria-hidden="true"

 data-modal-form-target="modal"

>

 <div class="modal-dialog">

 <div class="modal-content">

 <turbo-frame

 class="modal-body"

 src="{{ modalSrc }}"

 id="{{ id }}"

 loading="lazy"

 data-turbo-form-redirect="true"

 >

 {{ modalContent|default('Loading...') }}

 </turbo-frame>

 </div>

 </div>

</div>

Moving Code to turbo-helper

Because this new redirect behavior will be something that will work anywhere on our site, we

need to move the logic out of our modal-form controller and into turbo-helper where the

rest of our global Turbo stuff lives.

Copy the beforeFetchResponse() method and delete it. Then, in turbo-helper , paste

this at the bottom. Cool.

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 103

104

105

106

107

108

109

110

111

112

113

114

115

 // ... lines 116 - 118

Back in modal-form_controller , we don't need the disconnect() method anymore.

We're going to register this listener just once inside of turbo-helper . Copy part of

connect() , delete the rest... and we can also remove the Turbo import.

assets/controllers/modal-form_controller.js

 // ... lines 1 - 3

4

5

6

7

8

9

10

11

12

const TurboHelper = class {

 beforeFetchResponse(event) {

 if (!this.modal || !this.modal._isShown) {

 return;

 }

 const fetchResponse = event.detail.fetchResponse;

 if (fetchResponse.succeeded && fetchResponse.redirected) {

 event.preventDefault();

 Turbo.visit(fetchResponse.location);

 }

 }

}

export default class extends Controller {

 static targets = ['modal'];

 modal = null;

 async openModal(event) {

 this.modal = new Modal(this.modalTarget);

 this.modal.show();

 }

}

Over in turbo-helper , go up to the constructor - here it is - and paste. To call the method,

pass an arrow function with an event argument and call

this.beforeFetchResponse(event) .

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 16

17

18

19

20

21

 // ... line 22

23

 // ... lines 24 - 114

115

 // ... lines 116 - 118

Finding the "Active" Frame, if any, for a Request

Ok - go back down to that method. This is not going to work yet... because it's still coded to

work with a modal. To bring this to life, we need determine three things. One: was the Ajax call

redirected? Two: did this navigation happen inside of a Turbo frame? And three: does that frame

have the data-turbo-form-redirect attribute?

 Tip

Starting in Turbo 7 RC4 (and so also in the stable Turbo 7), the

turbo:before-fetch-response event is now passed which element the Ajax call was

triggered on, as event.target . You could use this to find the "current turbo-frame" via

event.target.closest('turbo-frame') .

The trickiest of these three is actually figuring out if this Ajax call is happening inside of a turbo

frame. This event doesn't give us any indication of what initiated the Ajax call - like which link

was clicked or which form was submitted. But, we can use a trick. Remember: whenever a

frame is loading, turbo gives that frame a busy attribute. We can use that.

const TurboHelper = class {

 constructor() {

 document.addEventListener('turbo:before-fetch-response', (event)

=> {

 this.beforeFetchResponse(event);

 });

 }

}

Create a new convenience method called getCurrentFrame() . This is going to return the

turbo-frame Element that is currently loading or null. And it's as simple as return

document.querySelector() looking for turbo-frame[busy] .

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 115

116

117

118

119

 // ... lines 120 - 122

It is theoretically possible that two frames could be loading at the same time. But other than on

initial page load if you had multiple lazy frames, I think that's pretty unlikely.

Above, let's use this. Remove all of this modal stuff... and then move the

event.preventDefault() and Turbo.visit() to the end of the method... because we're

going to reverse the if logic to keep things clean. If the fetchResponse did not succeed or

it's not a redirect, then return and do nothing.

But if the response was successful and was a redirect, we need to see if we are inside of a

frame and make sure that the frame has our data attribute. If not this.getCurrentFrame() ,

then return and do nothing. And if the current frame does not have

.dataset.turboFormRedirect , also do nothing.

const TurboHelper = class {

 getCurrentFrame() {

 return document.querySelector('turbo-frame[busy]');

 }

}

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 103

104

105

106

107

108

109

110

111

112

113

114

115

116

 // ... lines 117 - 120

121

 // ... lines 122 - 124

At this point, we know that the Ajax call did happen inside of a frame with our data attribute

and that the Ajax call did redirect to another page. And so, we prevent the frame from rendering

and navigate the entire page.

Let's try it! Refresh, open the modal, fill in some info, submit and... got it! I know that worked

because the new product showed up thanks to the Turbo visit.

Yay! But... was that too easy? It... kind of was. There are two annoying bugs that are hiding

inside of our new system. Let's add one more turbo frame next that will expose both of them.

Don't worry, by the end, we're going to have a beautiful bug-free way to force a frame to

navigate the whole page.

const TurboHelper = class {

 beforeFetchResponse(event) {

 const fetchResponse = event.detail.fetchResponse;

 if (!fetchResponse.succeeded || !fetchResponse.redirected) {

 return;

 }

 if (!this.getCurrentFrame() ||

!this.getCurrentFrame().dataset.turboFormRedirect) {

 return;

 }

 event.preventDefault();

 Turbo.visit(fetchResponse.location);

 }

}

Chapter 38: Frame Redirecting and Clearing the
Snapshot Cache

Where else could we use our new turbo frame redirect system? Go to the cart. On the featured

product sidebar, we could leverage a frame around the cart controls. Right now, this form

submits to the whole page. And so, on success, the entire page is redirected to that product with

a nice flash message. I love it! That's exactly the behavior I want.

But go back to the cart. This time, let's change the color... and be annoying: try to buy a

negative quantity. Hit add. It still changed the entire page... which isn't as smooth as I'd like. It

would be way cooler if the error showed up in the sidebar on the cart page.

Adding the turbo-frame

Time to add a frame! The template for this "add to cart" section lives at

templates/product/_cart_add_controls.html.twig . This template is included on

two pages: the product show page and also over on the sidebar. When we submit the form, as

we just saw, it's handled by the product show page. This means that if we added a frame

around this entire template, when we submit, the response will contain a matching

turbo-frame ... since the product show page renders this template.

In other words... adding a frame here should... just work. On top, add <turbo-frame> with

id="add-to-cart-controls" . Add the closing frame at the bottom.

templates/product/_cart_add_controls.html.twig

1

2

3

4

5

 // ... lines 6 - 25

26

 // ... lines 27 - 34

35

36

37

38

39

40

41

42

43

44

Just with that, refresh the page and go to the cart. Submit with a negative quantity. That is so

much nicer. Now change to red change, set the quantity to 5 and hit add.

Um, did that work? The color changed back and the quantity reset... and I don't see any errors.

But that wasn't very obvious. I also don't see the item in the cart until I refresh.

As usual, this behavior makes sense if you think about it. When we submit the form, it redirects

to the product show page. And that renders a success message - which we don't see - and a

"reset" add to cart form. Ya know, this would all work much better if we could go back to the

original success behavior where we navigate the entire page after adding an item.

Activating data-turbo-form-redirect

Fortunately, that's exactly what our new frame system does! Let's add the attribute that we

invented to this frame. I'll move it onto multiple lines to keep my sanity, then add

data-turbo-form-redirect="true" .

<turbo-frame id="add-to-cart-controls">

{{ form_start(addToCartForm, {

 attr: { class: 'cart-add-controls d-flex align-items-center justify-

content-baseline' }

}) }}

 {% if addToCartForm.color is defined %}

 {% endif %}

{{ form_end(addToCartForm) }}

<div>

 {{ form_errors(addToCartForm) }}

 {% if addToCartForm.color is defined %}

 {{ form_errors(addToCartForm.color) }}

 {% endif %}

 {{ form_errors(addToCartForm.quantity) }}

</div>

</turbo-frame>

templates/product/_cart_add_controls.html.twig

1

2

3

4

 // ... lines 5 - 46

47

Testing time! Refresh the cart page. If we submit the form with errors, everything stays right

here. But if we submit it successfully... yes! That redirected to the product show page!

We Preventing the Snapshot Cache From Clearing!

Though... dang! There are two weird things going on. First, we're missing our flash message!

We'll talk about that later.

To see the second, watch the shopping cart header as we add more and more items. Yikes! It

jumps backwards and forwards!

This is a result of the preview system. When we submit this form, for just a moment, it shows

the cached preview of this page. For example, at this moment, the cached version - which

comes from the last time we navigated away from this page - still holds the value 14. So when

we hit add, it jumps back to 14 and ahead to 16. Now, a page with 15 sits in the cache.

This is not normally a problem. If you submit a POST request with Turbo and the response is

successful, Turbo automatically clears its internal snapshot cache. It does that precisely to avoid

this problem: a successful form submit typically means that something has changed on the

server. So, to be safe, Turbo decides that it shouldn't use any of its old, cached pages.

Manually Clearing the Cache

So... if that's true, why are we seeing this problem? In turbo-helper , we're calling

event.preventDefault() in the turbo:before-fetch-response listener. This tells

Turbo to prevent rendering this response. But... it has a side effect: it also prevents it from

clearing its snapshot cache!

But now that we know that, it's no problem: we can clear it manually by saying

Turbo.clearCache() .

<turbo-frame

 id="add-to-cart-controls"

 data-turbo-form-redirect="true"

>

</turbo-frame>

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 103

104

 // ... lines 105 - 113

114

115

116

117

 // ... lines 118 - 121

122

 // ... lines 123 - 125

Refresh and watch the cart header. Much better.

Bug with Not Clearing the Current Page

By the way, there is still one spot where this jumpy cart thingy happens. Go to the cart page and

add an item. Watch the number when I click back to the shopping cart... it's 21 right now. See

that? It temporarily jumped back to 20.

This happens due to, what I think is, a fairly straightforward bug in Turbo that I hope will be fixed

in the future. Here's the scoop. As we just talked about, when you successfully submit a POST

form, Turbo clears its snapshot cache. And we even manually did that a minute ago. But right

after it clears the snapshot cache, as we're navigating away, it re-caches the page that we just

submitted!

This means that, when we hit add, it clears the snapshot cache but then re-caches this page

with a shopping cart number set to 21.

This is pretty rare situation. To trigger this, you need a form that submits to another page. And

then the problem only happens if you navigate back to that form later. I'm going to ignore this.

Next: the bigger weird issue with our new system is that, when we add an item, it redirects... but

there's no success flash message. This page actually does have a flash message... we saw it a

few minutes ago: it should be showing right here. But something unexpected is happening

behind the scenes that's hiding it.

Let's find out what next and improve our system to prevent it.

const TurboHelper = class {

 beforeFetchResponse(event) {

 event.preventDefault();

 Turbo.clearCache();

 Turbo.visit(fetchResponse.location);

 }

}

Chapter 39: Manual "Restore" Visit

Refresh, go to the cart page and add another item from the sidebar. A few minutes ago, after

doing this, we saw a nice green success flash message on the top of the page. Where did it go?

Look at the network tools and scroll up. Ah, here's the problem. When we submitted the add to

cart form into the frame, our controller redirected and the turbo frame followed that redirect. This

request is the POST to /cart ... and this is the Ajax request for the redirect. That response

does contain a success flash message: "Item added!".

But remember: flash messages are only rendered one time. Or, to be more precise, as soon as

we render a flash message, Symfony removes it so that it's never rendered again.

The problem is that... we never actually see this response on the page. Nope. We detect that

this redirect happened, cancel the render - which only would have rendered inside the frame

anyways - and then use Turbo to navigate to this URL. That's the second identical request.

Unfortunately, once we get there, the flash message is gone... because it was already

rendered... even though we never saw it.

Yep, our system works great except that the redirected page is requested twice... and we only

render the second one.

Ajax Calls and Redirects: A Conundrum

This is actually tough to fix... and it's mostly not Turbo's fault. We could try to work around this

by adding some code to our flash logic. Like, if the request is for a turbo frame, don't render the

flash message. That way, it won't get used and will render on the next full request.

But... that feels hacky to me. The real solution is harder, but more correct: avoid the second,

duplicate request!

Internally Turbo uses the fetch() function to make its Ajax calls. When we return a redirect,

fetch automatically follows that and makes a second Ajax request, which we see down here.

So, this "follow the redirect" behavior does not come from Turbo... it's just how fetch works.

The ideal solution would be for fetch() to... not follow the redirect: to make only the first

request, stop, then tell us the redirect URL so that we can visit it with Turbo.

Unfortunately... that's literally not possible. For complex reasons that might change someday,

you can tell fetch() to not follow a redirect. But if you do, fetch() purposely hides the URL

that it would have redirected to... which means we have no idea what URL to make Turbo

navigate to! Yup, our ideal solution is entirely not possible in browsers as of today. What a

mess!

Fortunately, there are still two ways to solve this correctly, and I'll show you both. The first is

quick, easy and... involves using an internal option in Turbo that the documentation specifically

tells you not to use. Exciting! The second solution involves some work in our Symfony app, but

avoids using that option.

Upgrading Turbo... Again

So let's start with the pure Turbo solution. It's beautifully simple and... it all starts with a

question: if the turbo-frame already makes the Ajax request to the redirected page, could we

simply tell Turbo to navigate to that page and use that HTML... without making a second

request? Think about it: over in turbo-helper.js , this fetchResponse already contains

the HTML we want! We just need Turbo to put that onto the page and update the address bar.

Doing this is possible... mostly. Start by finding your terminal and, once again, running:

yarn upgrade @hotwired/turbo

The Internal "restore" Option

This upgrades Turbo to RC-1. Turbo seems to always release a new feature just before I need

it. In this case, it's a PageSnapshot class we'll use later.

Now, over in turbo-helper.js , add a second argument to Turbo.visit() - an options

argument. One option here is called action and one of the values you can set it to is

restore .

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 103

104

 // ... lines 105 - 115

116

117

118

119

120

 // ... lines 121 - 124

125

 // ... lines 126 - 128

The action restore tells Turbo to visit this URL, but with the same behavior as if you clicked

the back or forward buttons in your browser. Specifically, if the page is already in the snapshot

cache, use that snapshot and make no network request. If it's not already in the snapshot

cache, then it will make a network request.

This is the part where we're breaking the rules. "Restoration visits" are reserved for clicking the

back and forward buttons. Setting this action to restore will work... but the documentation

says that this is "internal" and that we should not use this action directly.

But... let's ignore that for now. Refresh the page, head back to the cart and add another item.

Hmm, we still don't see the flash message. Oh, that's because even though Turbo has made a

request for this URL - via the redirect - that response was never put into the snapshot cache.

Remember: a snapshot of a page is normally taken the moment you navigate away from that

page. We're going to need to put the HTML into the snapshot cache manually.

Here's how... and some of this is pretty deep in Turbo. Say

const snapshot = Turbo.PageSnapshot.fromHTMLString() and pass it the

response HTML, which we can get by saying fetchResponse.responseHTML . Except...

responseHTML returns a Promise... so we need to await that. And as soon as we await that,

we need to make the method async .

This gives us a Snapshot object from that HTML. To put this into the cache, say

Turbo.navigator.view.snapshotCache.put() and pass this the URL - or "location" - of

the page - fetchResponse.location - and then the snapshot object.

const TurboHelper = class {

 beforeFetchResponse(event) {

 Turbo.visit(fetchResponse.location, {

 action: 'restore'

 });

 }

}

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 103

104

 // ... lines 105 - 113

114

115

116

117

118

119

120

121

122

 // ... lines 123 - 126

127

 // ... lines 128 - 130

This is... pretty low-level, but that is how you can manually add a page to the cache. Let's try it!

Do the whole flow again: refresh the page, go to the cart, submit, and... we got it! The flash

message shows up and, down in the network tools, we see only one request for this page.

That's awesome!

Is this Internal Option Safe?

So... maybe we just stick with this solution and hope it won't break in the future. Even though

the action restore is meant as an internal flag, I couldn't find any conversation about why it's

internal or what risks there are: the note in the documentation was added years ago when the

feature was first introduced.

But... if you want to play it safe, we have another solution. Change this back to a normal visit...

and also take off the async .

Next: let's solve this problem again by doing some fancy communication between Turbo and

Symfony.

const TurboHelper = class {

 async beforeFetchResponse(event) {

 event.preventDefault();

 Turbo.clearCache();

 const snapshot = Turbo.PageSnapshot.fromHTMLString(await

fetchResponse.responseHTML);

 Turbo.navigator.view.snapshotCache.put(fetchResponse.location,

snapshot)

 Turbo.visit(fetchResponse.location, {

 action: 'restore'

 });

 }

}

Chapter 40: Adding a Custom Request Header
Based on the Frame

Okay, so if we don't want to cheat and use the internal restore action with a Turbo visit, how

else can we solve our problem? Well, there's really only one option. Let me reopen my network

tools. Right now, when we successfully submit into a <turbo-frame> , like this modal, the

frame follows the redirect, meaning it makes a request to the redirected URL. Then we navigate

to that same URL, which causes a second request to it. Somehow, we need to avoid having

these two requests.

So if we can't force Turbo to directly use the response from this first Ajax call, because we don't

want to use the internal restore action, then our only choice is to somehow prevent that first

Ajax call from happening at all. But since the JavaScript fetch() function always follows

redirects, the only real way to do this is to make Symfony not return a real redirect after a

successful form submit.

So here's the idea... it's kind of crazy. In Symfony, we're going to detect if a request is being

sent via a turbo-frame and if that frame has the data-turbo-form-redirect attribute. If

both of these are true and if the Response from the controller is a redirect, we will change the

Response to... not be a redirect! We'll return a normal 200 status code but store the URL that

we want to redirect to as header on the response. Then, we'll prevent Turbo from rendering that

response, like we already are, read the URL from the header, navigate with Turbo and voilà! We

redirect the page without the duplicate request.

Sending data-turbo-form-redirect to the Server

So where do we start? Turbo already adds a Turbo-Frame header to any Ajax request that

happen inside a frame. We can see this, for example, down on the POST request. All the way

near the bottom... there it is: turbo-frame: product-info . We can read that in Symfony.

But what we can't yet read in Symfony is whether or not this frame has the

data-turbo-form-redirect attribute. To make that possible, let's hook into Turbo and add

that information as a new request header.

In turbo-helper.js , we need to listen to another event. Head up to the constructor() ...

and say document. . Actually, cheat. Steal the event listener code from below... and change

the event to turbo:before-fetch-request .

Remember: Turbo dispatches this event right before it makes any Ajax request. Inside, call a

new method - this.beforeFetchRequest() - and pass the event .

Copy that method name, head down to the methods... and add that with the event argument.

Inside, console.log(event) so we can see what it looks like.

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 17

18

19

20

 // ... lines 21 - 26

27

 // ... lines 28 - 106

107

108

109

110

 // ... lines 111 - 130

131

 // ... lines 132 - 134

Back at our browser, refresh. This logs every time Turbo makes an Ajax request, like when we

navigate... or a frame loads. This is from the weather frame. And I think if we go down to the

bottom... yep! It fires again when the second weather frame loads.

Head over to the cart page, clear the console, then add an item to the cart. Ooh, the event

triggered three times. One was for the submit, one for the navigation to the next page and the

last was for the weather widget that loaded on this page.

Detecting if the Frame Request has data-turbo-form-redirect

const TurboHelper = class {

 constructor() {

 document.addEventListener('turbo:before-fetch-request', (event) =>

{

 this.beforeFetchRequest(event);

 });

 }

 beforeFetchRequest(event) {

 console.log(event);

 }

}

Check out the first log, which is from the POST request when we submit the form into the frame.

Ah, event.detail has a fetchOptions key! This is the collection of options that are about

to be passed to the fetch() function. And it has a headers key with Turbo-Frame inside.

That's no surprise... but we can use that in JavaScript to figure out if this frame has the special

data-turbo-form-redirect attribute.

Check it out: say const frameId = and read that header:

event.detail.fetchOptions.headers ... and we're looking Turbo-Frame . We need to

use square brackets instead of . because the key has a dash in it.

Now, if there is not a frameId , then this request is not happening inside a frame. In that case,

do nothing.

But if we do have a frameId , we can use that to find this element:

const frame = document.querySelector() ... and then use ticks so we can look for #

then ${frameId} .

Yep, we're literally finding that <turbo-frame> element on the page! If we can't find the frame

for some reason - which shouldn't happen - or if the frame does not have the dataset of

turboFormRedirect , then do nothing. Whoops - make sure that's turboFormRedirect .

Go back to the cart page and inspect element on the frame. As a reminder, this does have the

data-turbo-form-redirect="true" attribute. That's what we're looking for.

At this point, we know that the request is happening in a frame and that the frame does have

the data-turbo-form-redirect attribute. And so, we're going to add a new header. Use

event.detail.fetchOptions.headers again to invent a new header called, how about,

Turbo-Frame-Redirect . Set it to 1 .

assets/turbo/turbo-helper.js

 // ... lines 1 - 107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

 // ... lines 122 - 145

Cool! Let's go check it! At your browser, any normal request - even a request inside a frame like

for the weather widget - will not have the new header. Check the weather frame request. All the

way down... yep! It does have a turbo-frame header... but not turbo-frame-redirect .

But now go back to the cart and clear the requests. Submit the form... scroll up to that request...

and scroll down. There it is! turbo-frame-redirect ! We can now detect - from Symfony -

when a request is going through this type of a frame. Oh yes, we're dangerous.

Next, let's turn to the Symfony side of things where we'll use this header to magically transform

redirect responses into something that we can better handle in JavaScript.

 beforeFetchRequest(event) {

 const frameId = event.detail.fetchOptions.headers['Turbo-Frame'];

 if (!frameId) {

 return;

 }

 const frame = document.querySelector(`#${frameId}`);

 if (!frame || !frame.dataset.turboFormRedirect) {

 return;

 }

 event.detail.fetchOptions.headers['Turbo-Frame-Redirect'] = 1;

 }

Chapter 41: Smart Frame Redirecting with the
Server

When an Ajax request happens via a <turbo-frame> and that frame has our

data-turbo-form-redirect attribute, we're now communicating that to Symfony by

sending a new header on the request called Turbo-Frame-Redirect . We're now going to

use that to change any redirect responses to, sort of, "fake redirects" so that the fetch()

function in JavaScript doesn't automatically follow them.

Creating the Event Subscriber

We're going to add this magic with an event subscriber. In the src/ directory, let's create a new

EventSubscriber/ directory... and inside, a new PHP class called, how about,

TurboFrameRedirectSubscriber . Make this implement

EventSubscriberInterface ... and then go to the "Code -> Generate" menu - or

"Command + N" a Mac - and select "Implement Methods" to generate the one method we need:

getSubscribedEvents() . Inside, return one event - ResponseEvent::class - set to

onKernelResponse .

ResponseEvent is one of the last events that happens during the request-response process.

It happens after our controller has been called... so the Response object has already been

created.

Above this, add the public function onKernelResponse() method with a

ResponseEvent $event argument.

src/EventSubscriber/TurboFrameRedirectSubscriber.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Cool. So the logic inside of here will be fairly simple: if the request has the

Turbo-Frame-Redirect header and the response is a redirect, then we're going to change

the response to something else.

Replacing the Response

To keep things organized, add a new private method called shouldWrapRedirect() . This

will need the Request object - so we can read the header - and the Response object that the

controller created. This will return a bool .

Before we work on that method, back in onKernelResponse() , call this: if not

$this->shouldWrapRedirect() ... passing $event->getRequest() and

$event->getResponse() . If we should not wrap the redirect, return and do nothing.

In a minute we'll add the logic down here to change the response.

But let's finish shouldWrapRedirect() . Start by checking to see if the $response is not a

redirection. If it's not, return false. The only responses we need to change are redirects: we

<?php

namespace App\EventSubscriber;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

use Symfony\Component\HttpKernel\Event\ResponseEvent;

class TurboFrameRedirectSubscriber implements EventSubscriberInterface

{

 public function onKernelResponse(ResponseEvent $event)

 {

 }

 public static function getSubscribedEvents()

 {

 return [

 ResponseEvent::class => 'onKernelResponse',

];

 }

}

don't want to change normal frame loads or frame form submits that are returning with validation

errors.

src/EventSubscriber/TurboFrameRedirectSubscriber.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

 // ... lines 18 - 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

The only other check we need is for the header. Copy the header name from

turbo-helper.js . Then

return $request->headers->get('Turbo-Frame-Redirect') . So if the header

exists and is set to something "truthy" like 1, this method will return true. Else, it will return false.

Actually, I'm missing a tiny detail, but I'll fix it in a minute.

Finally, back in onKernelResponse() , at this point, we know that this request was made

inside of a frame that has our data-turbo-form-redirect attribute and we know that the

controller returned a redirect.

class TurboFrameRedirectSubscriber implements EventSubscriberInterface

{

 public function onKernelResponse(ResponseEvent $event)

 {

 if (!$this->shouldWrapRedirect($event->getRequest(), $event-

>getResponse())) {

 return;

 }

 }

 private function shouldWrapRedirect(Request $request, Response

$response): bool

 {

 if (!$response->isRedirection()) {

 return false;

 }

 if (!$request->headers->has('Turbo-Frame')) {

 return false;

 }

 if ($request->headers->get('Turbo-Frame-Redirect')) {

 return true;

 }

 return false;

 }

}

And so, create a new response object: new Response() , passing null for the content - we

don't need to return anything - a 200 status code - so not a redirect - and then an array of

headers. Invent a new header called Turbo-Location set to the URL that we want to redirect

to. We can get that from the original response:

$event->getResponse()->headers->get('Location') .

Finally, to use this response instead of the original, say

$event->setResponse($response) .

src/EventSubscriber/TurboFrameRedirectSubscriber.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 30

31

32

33

34

35

36

37

38

39

Ok! That's all we need to do in Symfony: we're now replacing the redirect response in this

situation with something different.

Reading the Response Header and Navigating

class TurboFrameRedirectSubscriber implements EventSubscriberInterface

{

 public function onKernelResponse(ResponseEvent $event)

 {

 if (!$this->shouldWrapRedirect($event->getRequest(), $event-

>getResponse())) {

 return;

 }

 $response = new Response(null, 200, [

 'Turbo-Location' => $event->getResponse()->headers-

>get('Location'),

]);

 $event->setResponse($response);

 }

 private function shouldWrapRedirect(Request $request, Response

$response): bool

 {

 if (!$response->isRedirection()) {

 return false;

 }

 return (bool) $request->headers->get('Turbo-Frame-Redirect');

 }

}

The last little piece of work is back in JavaScript. We already have a

beforeFetchResponse() method, which is currently looking to see if a request was

successful and redirected... and checking for the turboFormRedirect data attribute.

We can simplify this a lot. All we need to do now is check to see if the response has this

Turbo-Location header. If it does, then we know that we should read that header and

navigate.

Remove most of the code on top and add const redirectLocation = set to

fetchResponse.response.headers.get('Turbo-Location') .

Then, if we do not have a redirectLocation , we know this is not a situation where we need

to do anything fancy. So, just return.

Then, the rest is perfect, except instead of fetchResponse.location . use

redirectLocation .

assets/turbo/turbo-helper.js

 // ... lines 1 - 3

4

 // ... lines 5 - 122

123

124

125

126

127

128

129

130

131

132

133

134

 // ... lines 135 - 137

That's it. We don't even need our getCurrentFrame() method anymore. It took more work

inside of Symfony, but the JavaScript side of things is nice!

Oh, but before we try this, back in our subscriber, before the return statement, add a (bool)

type-cast. This will guarantee the method returns a boolean.

const TurboHelper = class {

 beforeFetchResponse(event) {

 const fetchResponse = event.detail.fetchResponse;

 const redirectLocation =

fetchResponse.response.headers.get('Turbo-Location');

 if (!redirectLocation) {

 return;

 }

 event.preventDefault();

 Turbo.clearCache();

 Turbo.visit(redirectLocation);

 }

}

src/EventSubscriber/TurboFrameRedirectSubscriber.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 30

31

32

33

34

35

36

37

38

39

Ok, now let's try it: Go back to the cart page and refresh. Remember: the whole goal is to be

able to submit this form and have it not make duplicate requests to the redirected page. If we

accomplish that, we'll be rewarded by seeing the success flash message. And... yes! There it is!

Look up here on the Ajax requests. We submitted the cart form here... and then there was only

one request for the product show page, not two. Mission accomplished!

Thanks to our new fancy system, we can also - easily - solve an annoying problem. What

happens if the user tries to open something in a <turbo-frame> - like a modal - but they got

logged out in the background... maybe after taking a really long coffee break. Instead of just

having this load broken, let's write about 10 lines of code to gracefully handle this everywhere.

class TurboFrameRedirectSubscriber implements EventSubscriberInterface

{

 private function shouldWrapRedirect(Request $request, Response

$response): bool

 {

 if (!$response->isRedirection()) {

 return false;

 }

 return (bool) $request->headers->get('Turbo-Frame-Redirect');

 }

}

Chapter 42: Automatically Redirect Ajax Calls to
/login

All sites that loads things via Ajax have one annoying problem: what happens if the user gets

logged out due to inactivity? Obviously if the user gets logged out and clicks a link to navigate

the whole page, that's no problem. They'll get redirected to the login page.

But go to a product page and scroll down to the review section. Pretend that I stop right here, go

home for the day, eat a delicious dinner, watch Mystery Science Theater 3000 and come back

to my computer tomorrow. During that time, my session has timed out. What would happen if I

tried to submit this form - which submits into a turbo-frame - without refreshing first?

Well... let's try it! I'm going to imitate this situation by opening the site in a new tab... and logging

out. Back over in the first tab, clear the network requests and submit. Uh, that was weird.

In the network tools, you can see that it did submit to the reviews page. But then, because I'm

not logged in, it redirected to the login page. In the console, we see our favorite error:

“response has no matching <turbo-frame id="product-review"> element.”

That makes sense! The Ajax request redirected to the login page. And so, the frame system

followed that redirect and then looked for a product-review <turbo-frame> on that

page... which it obviously doesn't have.

So the user experience here is... not so great. But for any frames that have our

data-turbo-form-redirect attribute, this problem is already fixed thanks to the system we

just built!

Check it out. Refresh... log back in and head to the admin section. Remember: this modal does

have that attribute on it. So I'm going to repeat our experiment. In the other tab, refresh, then log

out. Back on the first tab, when we open the modal, the <turbo-frame> will try to make a

request to a page that requires authentication. When we try it... awesome! It redirected the

entire page to /login ! That's perfect!

Wrapping the Redirect Response to /login

So this problem is fixed in some places... but not everywhere. But we can make this work

everywhere.

In TurboFrameRedirectSubscriber , look at shouldWrapRedirect() . Let's think: if this

response is a redirect to the login page and if the request is happening inside a

<turbo-frame> , then we definitely know that we want to wrap the redirect so that our

JavaScript redirects the whole page.

Start by checking to see if not $request->headers->get('Turbo-Frame') . In this case,

return false . Adding this check was redundant before... because if you have the

Turbo-Frame-Redirect header then you definitely have this one. But now it's going to help

us detect if we're in a frame and if the response is redirecting to the login page.

Grab the redirect location by saying

$location = $response->headers->get('Location') . Instead of checking to see if

this equals /login , let's be fancier and use the URL generator.

At the top of the class, add a __construct() function with a UrlGeneratorInterface

argument... which is just a more hipster way to get the router service. I'll hit Alt + Enter and go to

"Initialize properties" to create that property and set it.

Back down in the method, if $location is equal to $this->urlGenerator->generate() ,

passing this the name of our login route - app_login - then return true .

That's it! If the response is a redirect... and the request is happening inside of a frame... and

we're redirecting to the login page... then that's a problem. That's going to break the frame. And

so, we'll wrap the redirect with our fake redirect so that our JavaScript can navigate things.

src/EventSubscriber/TurboFrameRedirectSubscriber.php

 // ... lines 1 - 10

11

12

13

14

15

16

17

18

19

 // ... lines 20 - 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Testing time! Log back in... go back to a product page, scroll down to the reviews, and then, in

the other tab, refresh and log out.

Back in tab number 1, try to submit the review form. Beautiful! We are smoothly redirected to

the login page! This problem just got solved for any <turbo-frame> on our site.

Okay team! Enough with turbo frames! It's time to dive into part 3 of Turbo: Turbo Streams. This

feature is probably the smallest of the three, but also the most fun to work with.

class TurboFrameRedirectSubscriber implements EventSubscriberInterface

{

 private UrlGeneratorInterface $urlGenerator;

 public function __construct(UrlGeneratorInterface $urlGenerator)

 {

 $this->urlGenerator = $urlGenerator;

 }

 private function shouldWrapRedirect(Request $request, Response

$response): bool

 {

 if (!$response->isRedirection()) {

 return false;

 }

 $location = $response->headers->get('Location');

 if ($location === $this->urlGenerator->generate('app_login')) {

 return true;

 }

 return (bool) $request->headers->get('Turbo-Frame-Redirect');

 }

}

Chapter 43: Turbo Streams

The third and final part of Turbo is Turbo Streams. These are fun!

Hello Streams

Turbo Streams are a way to return instructions on updating any element on the page. And there

are two main use cases. First: you're submitting a form inside a frame and, on success, you

want to update an element that lives outside of that frame. Second: you need a way to update

something on your page asynchronously but without "polling" - where you make an Ajax call

every few seconds to constantly check for updates. For example, if you were building a chat

app where you want a new message to render as soon as the other person sends it, Turbo

Streams can help.

Streams are another way to enhance your page. So they're an extra feature - like frames - that

you can choose to add whenever you want to do something special.

For example, go to a product page and scroll down. See this review form? It lives in a frame and

it works awesome. The frame surrounds both the form and the list of reviews above it... we can

see that if we inspect the element.

This means that, when we submit, both the form and the review list updates. That gives us a

fresh form and we see the new review. Awesome!

But scroll up to the product details where we show the number of reviews and the average

review. These details did not update when we submitted the review. Watch: if I refresh the page,

the 8 reviews... becomes 9.

This area lives outside of the product-review turbo frame. So we can't update it via the

frame. But we can update it using Turbo Streams... because... that's their whole purpose! To

update any element on the page from the server.

Creating & Returning our First Stream

Here's how it works. Step one: find the area on the page that you want to update and give it a

unique ID. The template for this page lives in templates/product/show.html.twig . Let's

see... here are the details. On the <div> around this, add, how about,

id="product-quick-stats" .

templates/product/show.html.twig

1

2

3

4

 // ... lines 5 - 31

32

33

34

35

36

37

38

39

40

41

42

43

 // ... line 44

45

 // ... lines 46 - 48

49

50

51

52

Now open Controller/ProductController.php and find the reviews action. This is the

page that we submit to when we post a new review. Down here, instead of redirecting on

success, let's do something different, let's render a new template.

I'll leave the old logic for now. But above this, return $this->render() to render a template

called product/reviews.stream.html.twig . We don't need to pass any variables yet,

but I'm going to pass an empty second argument because we do need to pass a third argument:

a new TurboStreamResponse() .

{% extends 'product/productBase.html.twig' %}

{% block productBody %}

 <turbo-frame id="product-info" target="_top" class="row pt-3 product-

show">

 <div class="p-3 mt-4 d-flex justify-content-between flex-wrap

flex-lg-nowrap">

 <div id="product-quick-stats">

 {{ product.priceString|format_currency('USD')

}}

 {{ product.reviews|length }} Reviews

 {{ product.averageStars }}/5<i

class="fas fa-star ms-2"></i>

 </div>

 <div>

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

 </div>

 </turbo-frame>

 <h3>Reviews</h3>

 {{ include('product/_reviews.html.twig') }}

{% endblock %}

 Tip

In symfony/ux-turbo 2.1 and higher, this code has changed. The

TurboStreamResponse is no longer needed, but a setRequestFormat() call is:

$request->setRequestFormat(TurboBundle::STREAM_FORMAT);

return $this->render('product/reviews.stream.html.twig');

src/Controller/ProductController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 69

70

71

72

73

74

 // ... lines 75 - 85

86

 // ... lines 87 - 89

90

91

 // ... lines 92 - 97

98

99

 // ... lines 100 - 106

107

 // ... lines 108 - 115

116

Okay first: see the .stream in the template name? Yep. That has no technical effect. It's just a

naming convention because this template will have a special format. Second, by passing a

TurboStreamResponse as the third argument, we're telling Symfony to render the template

like normal, but to put the HTML into this response object instead of a normal response object.

I'll show you what that does in a minute.

Alright: let's go create the template. In product/ , create the file:

reviews.stream.html.twig . These stream templates contain HTML, but... in a special

class ProductController extends AbstractController

{

 /**

 * @Route("/product/{id}/reviews", name="app_product_reviews")

 */

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager)

 {

 if ($reviewForm->isSubmitted() && $reviewForm->isValid()) {

 return $this->render('product/reviews.stream.html.twig', [

], new TurboStreamResponse());

 }

 }

 }

}

format that describes the element on the page that you want to change, how you want to

change it and the HTML to use.

It always starts with a <turbo-stream> element. This needs two attributes, the first is

action="" set to, in this case, update . We'll talk more about this in a minute. The second is

target="" set to the id of the element on the page that should be updated. I'll copy

product-quick-stats and paste that here.

Inside of the <turbo-stream> , we always have a <template> element. This... doesn't

really mean anything... you just always need it. Inside of that, put the HTML. Start by

hardcoding something.

templates/product/reviews.stream.html.twig

1

2

3

4

5

Ok, let's see this in action! Find your browser, refresh and scroll down. Add a review and...

submit!

Hmm. Nothing happened? It looks like the form is kind of stuck submitting. But scroll up to the

quick stats area. Woh! There's our new HTML!

How a Turbo-Stream Works Under the Hood

This is a turbo stream in action. Check out the network tools and find the POST Ajax request for

the form submit - this one on the bottom. As expected, when we submit the form, it now returns

this special <turbo-stream> HTML. But check out the headers on the response. There it is:

the response has a Content-Type header set to text/vnd.turbo-stream.html . That's

important.

Here's the whole flow of what just happened. In our controller, we render the

reviews.stream.html.twig template and put it into a special TurboStreamResponse .

That response object causes a special Content-Type header to be set on the response:

text/vnd.turbo-stream.html .

<turbo-stream action="update" target="product-quick-stats">

 <template>

 Will this really work???

 </template>

</turbo-stream>

That's important because, as soon as we set up Turbo on our site, like the first thing we did at

the very beginning of this tutorial, turbo added an event listener to the

turbo:before-fetch-response event. In turbo-helper.js , we have our own listener

for this event, which is dispatched after any Ajax call that Turbo makes has finished.

Anyways, the moment you install Turbo, it adds a listener to this event that looks at the

response for every Ajax call and checks to see if the Content-Type starts with

text/vnd.turbo-stream.html . If it does, instead of handling the response normally - like

rendering it into the turbo-frame - the response is passed to the Turbo Stream system...

which reads this and updates the product-quick-stats element.

But... that's all it did. The reviews frame, down here, did not update. We'll talk about that in a

minute.

Other Stream "Actions"

In addition to the update action, there are a bunch of other actions that you can use to update

the page. In the Turbo docs, go to the Reference section and select Streams. So you can

append an element to the end of an existing element, prepend , replace an entire element,

update the HTML inside an element, which is what we're doing, remove an element or even

place an element before or after another element.

You can also target using a CSS selector - like a class name - instead of an id .

Next: let's improve our stream so that it updates the quick stats area with the real new

information. And after submitting a new review, we still need the reviews area - the form and list

- to update. We can also handle that inside the same stream.

Chapter 44: Streams: Reusing Templates

When we submit the product review form, instead of redirecting like we were before, we're now

returning this TurboStreamResponse . When the Ajax call finishes, Turbo notices that we're

returning this type of response... instead of a real HTML page. And so, instead of handling the

HTML like a frame normally would, it passes it to the Turbo Stream system.

Right now, we're using it to update the quick stats area of the page with this random HTML. If

you refresh, the real goal is to update the review count and review average as soon as the new

review is submitted.

Reusing Templates in a Stream

To do that, without repeating ourselves, over in show.html.twig - the template for the

product show page - copy the quick stats code... and create a new template in

templates/product/ called, how about _quickStats.html.twig . Paste the code here.

templates/product/_quickStats.html.twig

1

2

3

4

5

We can now reuse this in two places. In show.html.twig include it:

product/_quickStats.html.twig

{{ product.priceString|format_currency('USD') }}

{{ product.reviews|length }} Reviews

{{ product.averageStars }}/5<i class="fas fa-star ms-2">

</i>

templates/product/show.html.twig

1

2

3

4

 // ... lines 5 - 31

32

33

34

35

36

37

38

39

 // ... line 40

41

 // ... lines 42 - 46

47

48

Then, in the stream template, do the same thing!

templates/product/reviews.stream.html.twig

1

2

3

4

5

Pretty cool, right?

Let's try that. Refresh. This still works and shows 10 reviews. Scroll down and add review

number 11. Submit and... oh! The entire reviews section is gone! My web debug toolbar is

angry: that Ajax call returned a 500 error.

Open up its profiler.

“Variable product does not exist”

Coming from _quickStats.html.twig . Of course, the problem is that we're including

_quickStats.html.twig from reviews.stream.html.twig . In ProductController ,

we're not passing any variables to that template... but in quick stats, we need a product !

{% extends 'product/productBase.html.twig' %}

{% block productBody %}

 <turbo-frame id="product-info" target="_top" class="row pt-3 product-

show">

 <div class="p-3 mt-4 d-flex justify-content-between flex-wrap

flex-lg-nowrap">

 <div id="product-quick-stats">

 {{ include('product/_quickStats.html.twig') }}

 </div>

 <div>

 {{ include('product/_cart_add_controls.html.twig') }}

 </div>

 </div>

 </turbo-frame>

 {{ include('product/_reviews.html.twig') }}

{% endblock %}

<turbo-stream action="update" target="product-quick-stats">

 <template>

 {{ include('product/_quickStats.html.twig') }}

 </template>

</turbo-stream>

No problem: pass product set to $product , which will make it available all the way into the

quick stats template.

src/Controller/ProductController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 69

70

71

72

73

74

 // ... lines 75 - 85

86

 // ... lines 87 - 89

90

91

92

 // ... lines 93 - 98

99

 // ... lines 100 - 107

108

 // ... lines 109 - 116

117

Okay: take two. Refresh again. We now have 11 reviews... so let's go add number 12. Submit.

The reviews section is still weird - but that's ok. Scroll up. Yes! Our Turbo Stream updated the

area with the real data! That is so cool!

Return a Stream or HTML, not both (yet)

Now we need to fix the reviews area... because showing a filled-in form with a disabled button...

doesn't exactly scream "the review was successfully saved".

The entire reviews area lives in templates/product/_reviews.html.twig ... and all of it

is surrounded by the product-review frame. So both the list of reviews and the form are in

this frame.

class ProductController extends AbstractController

{

 /**

 * @Route("/product/{id}/reviews", name="app_product_reviews")

 */

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager)

 {

 if ($reviewForm->isSubmitted() && $reviewForm->isValid()) {

 return $this->render('product/reviews.stream.html.twig', [

 'product' => $product,

], new TurboStreamResponse());

 }

 }

}

Thanks to this, before we started messing around with turbo streams, after submit, we

redirected to the reviews page. That page includes this template with this frame. And so, the

entire frame updated, including the new review and a fresh, empty form.

At this point, we have two choices. First, we could redirect on success like we were doing

before and let the normal turbo frame logic do its magic. Or we can return a turbo stream and

update whatever elements we want. But, we can't do both. Our controller can only return one

thing, so we need to choose between returning a redirect or returning a stream.

Well, actually we can do both... but let's keep that a secret between you and I for now. It's a

topic for later... and requires one extra piece of technology.

So... what can we do? Well, if we want to be able to update the quick stats area and the reviews

area, the answer is to return a stream that contains multiple instructions. Let's see how next.

Chapter 45: Multiple Updates in one Stream

Our goal is to be able to update the quick stats area and the reviews area all at once. We can't

do that by redirecting or returning a normal HTML page... because that would only affect the

reviews frame. So let's continue to return a stream... but a stream where we update the quick

stats area and the reviews.

The entire content of _reviews.html.twig lives inside of an element with a

product-review id. So, in reviews.stream.html.twig , add a second

<turbo-stream> . Yup, we can include as many instructions as we want in a stream. Set the

action="" to replace and the target to product-review , the id of the element that

surrounds the reviews area. Inside, include the reviews template. Oh, but don't forget to include

the <template> element - I'll remember that in a minute.

templates/product/reviews.stream.html.twig

1

2

3

4

5

6

7

8

9

10

11

We're using replace instead of update because _reviews.html.twig contains the

target. So we want to replace the existing product-review element with the new one...

instead of just updating its innerHTML .

Before we try this, I'll go back to reviews.stream.html.twig and add the <template>

element. If you do forget this, you'll get a clear error that says that a template element was

expected.

Ok: move over and refresh. Let's add another glowing review... and submit. Yes! It worked! I see

my new review! But... the form is gone.

<turbo-stream action="update" target="product-quick-stats">

 <template>

 {{ include('product/_quickStats.html.twig') }}

 </template>

</turbo-stream>

<turbo-stream action="replace" target="product-review">

 <template>

 {{ include('product/_reviews.html.twig') }}

 </template>

</turbo-stream>

Adding a Success Message

As so often happens... this makes total sense. Before, the frame was being redirected to the

reviews page. So it was being redirected to this page here... and this page contains a fresh

form. So, naturally, the fresh form showed up at the bottom of the reviews frame after

successfully submitting a review.

But now, over in reviews.stream.html.twig , when we render _reviews.html.twig , if

you look at that template, we are not passing in a reviewForm variable. And I already have

logic here that checks to see if that variable exists and conditionally renders the form. So, in our

case, it renders nothing.

We could create a reviewForm object in the controller and pass it into here. But, I kind of like

this... except that having a success message would help a lot.

So let's see: we check for reviewForm and we also check to see if the user is not logged in.

Add an else on the bottom with a success alert. In our situation, the only way to get here is if the

form was just submitted successfully. But you could also pass a success variable to the

template to be more explicit.

templates/product/_reviews.html.twig

1

 // ... lines 2 - 18

19

 // ... lines 20 - 28

29

30

31

32

33

34

35

36

Anyways, let's test this thing out with another glowing review. When we submit... that's lovely.

A Link to Reload the Form

<turbo-frame id="product-review">

{% if reviewForm|default(false) %}

{% elseif not is_granted('ROLE_USER') %}

 <p>Log

in to post your review</p>

{% else %}

 <div class="alert alert-success">

 Thanks for your "real" review you "human" ?!

 </div>

{% endif %}

</turbo-frame>

I'm having too much fun so here's a challenge. Imagine we want to add a link below this

success message to "Add another review". When we click it, it should load a fresh form right

into the frame. How could we do that?

Well... that's almost disappointingly easy! Remember: we're inside of a turbo-frame ... so all

we need to do is add a link in the frame that navigates us to the review page... because the

review page renders this frame with a fresh form!

Check it out: right after the success message, add an anchor tag with {{ path() }} to

generate a URL to the app_product_reviews route. This needs an id wildcard set to

product.id . Put some text inside.

templates/product/_reviews.html.twig

1

 // ... lines 2 - 18

19

 // ... lines 20 - 28

29

30

31

32

33

34

35

36

37

38

39

40

Move back over, refresh... and, once again, profess your love - or maybe disgust - for this

product: your call. Submit. There's our success message. When we click this normal link... yes!

That was awesome! Go team streams and frames!

Checking for the Stream "Accept" Request Header

Finally, there's one last detail I want to handle... and it's minor. Imagine if, for some reason, this

review form were submitted without JavaScript. And so it performs a normal full page submit,

not a submit through Turbo.

<turbo-frame id="product-review">

{% if reviewForm|default(false) %}

{% elseif not is_granted('ROLE_USER') %}

 <p>Log

in to post your review</p>

{% else %}

 <div class="alert alert-success">

 Thanks for your "real" review you "human" ?!

 </div>

 <a href="{{ path('app_product_reviews', {

 id: product.id

 }) }}">Love the product *that* much? Add another review!

{% endif %}

</turbo-frame>

Until now, that was totally okay! Our controller saves the new review and then redirected to a

legitimate page. But now we're returning this bizarre stream HTML... which our browser wouldn't

know what to do with... it would probably just render it onto the page... which is not great!

Fortunately, whenever Turbo makes an Ajax request, it adds an Accept header to the request

that advertises that it supports Turbo streams. We can check for that in the controller.

Here's how it looks: wrap our stream render with if

TurboStreamResponse::STREAM_FORMAT equals

$request->getPreferredFormat() .

 Tip

In symfony/ux-turbo 2.1 and higher, this code has changed:

if (TurboBundle::STREAM_FORMAT === $request->getPreferredFormat()) {

 $request->setRequestFormat(TurboBundle::STREAM_FORMAT);

 return $this->render('product/reviews.stream.html.twig', [

 'product' => $product,

]);

}

src/Controller/ProductController.php

 // ... lines 1 - 18

19

 // ... lines 20 - 69

70

71

72

73

74

 // ... lines 75 - 80

81

 // ... lines 82 - 85

86

 // ... lines 87 - 89

90

91

92

93

94

95

96

97

98

99

100

101

102

 // ... lines 103 - 109

110

 // ... lines 111 - 120

That's it. This preferred format thing basically looks at the Accept request header to see if the

request supports turbo streams. All Ajax requests made through Turbo send this header.

If the request does support streams, then... we return a stream! If it doesn't, we do our normal

behavior: redirect the page. So once again, this will work fine without JavaScript. Also, even

though I've not done any work with it yet, Turbo can also be used to build Native iOS or Android

apps: you can read about it in their docs. Streams don't really make sense in that context, so

coding like this also makes sure your code supports native apps... if you ever choose to go in

that direction.

class ProductController extends AbstractController

 /**

 * @Route("/product/{id}/reviews", name="app_product_reviews")

 */

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager)

 {

 if ($request->isMethod('POST')) {

 if ($reviewForm->isSubmitted() && $reviewForm->isValid()) {

 if (TurboStreamResponse::STREAM_FORMAT === $request-

>getPreferredFormat()) {

 return $this-

>render('product/reviews.stream.html.twig', [

 'product' => $product,

], new TurboStreamResponse());

 }

 $this->addFlash('review_success', 'Thanks for your review!

I like you!');

 return $this->redirectToRoute('app_product_reviews', [

 'id' => $product->getId(),

]);

 }

 }

 }

Next: let's have some fun with Turbo Streams! I want to see if we can create and process them

manually in JavaScript. Apart from being cool, this will give us a better understanding of how

streams work and a better appreciation for the next big part of streams that we'll discuss after.

Chapter 46: Processing Streams by Hand for Fun
& Profit

As we've learned, each time Turbo makes an Ajax call, it listens to see if the response has a

content type of text/vnd.turbo-stream.html . If it does, then the HTML is passed to the

Turbo Stream system... and it works its magic. But in theory, you could grab some Turbo Stream

HTML from anywhere and tell the Stream system to process it. And... it's kind of fun!

Head to the homepage. This counter area is fueled by a Stimulus controller: the one at

assets/controllers/counter_controller.js . It's pretty simple: click it and then it

increments a variable and updates the text with the new number. In addition to doing this, I want

to invent a Turbo Stream that adds a flash message to the top of the page.

Adding the Stream Target to the Page

First, we need to be able to target the flash area so that we can put stuff into it. In

templates/base.html.twig , find the section - I'll search for flash - and surround it: a

<div> with id set to, how about, flash-container . Pop the closing tag on the other side.

templates/base.html.twig

1

2

3

 // ... lines 4 - 13

14

15

 // ... lines 16 - 69

70

71

72

73

74

75

76

77

78

79

80

 // ... lines 81 - 100

101

102

Manually Creating a Stream

Back in counter_controller.js , right after we update the count on the page, let's add a

new variable: const streamMessage set to some ticks so we can easily create a multi-line

string. Inside, we're literally going to invent a new <turbo-stream> with action="update"

and target="flash-container" . Add the template element and, inside of that, an alert

success div:

“thanks for clicking ${this.count} times.”

This variable is a plain, boring string... but a string that has the <turbo-stream> format.

So... could we tell the Turbo Stream system to read this and follow its instructions? And if so,

how?

At the top of this file, we're already importing the visit function from @hotwired/turbo .

This library exports a bunch of other things, including a function called

<!DOCTYPE html>

<html lang="en-US">

 <head>

 </head>

 <body>

 <div id="flash-container">

 {% for flash in app.session.flashBag.get('success') %}

 <div class="alert alert-success alert-dismissible fade

show" role="alert">

 {{ flash }}

 <button type="button" class="btn-close" data-bs-

dismiss="alert" aria-label="Close">

 </button>

 </div>

 {% endfor %}

 </div>

 </body>

</html>

renderStreamMessage .

Copy that. Down below, it's as simple as this: renderStreamMessage() passing

streamMessage .

assets/controllers/counter_controller.js

 // ... line 1

2

 // ... line 3

4

 // ... lines 5 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Done! Let's try this thing. Head back over, refresh and click. Oh! That's so cool. We now have a

dead-simple way to mutate different elements on your page from JavaScript. And more

importantly, this shows off the fact that stream handling is a standalone system inside of Turbo.

And so, in theory, we could get this stream HTML from any source, not just from an Ajax call.

That will be important in the next chapter.

Removing an Element from the Snapshot Cache

Go back to the page and click this 10 times. Woo! The Stimulus controller navigates us to the

winning page! Click back to the homepage... but watch closely. Did you see the flash message?

import { visit, renderStreamMessage } from '@hotwired/turbo';

export default class extends Controller {

 increment() {

 this.count++;

 this.countTarget.innerText = this.count;

 const streamMessage = `

<turbo-stream action="update" target="flash-container">

 <template>

 <div class="alert alert-success">

 Thanks for clicking ${this.count} times!

 </div>

 </template>

</turbo-stream>

 `;

 renderStreamMessage(streamMessage);

 if (this.count === 10) {

 visit('/you-won');

 }

 }

}

It was there for just a moment and then disappeared.

That is totally unrelated to streams. This would happen with any flash message in Turbo Drive,

thanks to its preview system. But even though this has nothing to do with streams, while we're

here, let's fix it... and learn something new along the way!

One solution to this would be to go into assets/turbo/turbo-helper.js and remove any

flash messages before the snapshot is taken. We already have logic for that: we listen to

turbo:before-cache and clean up several elements.

But starting in Turbo 7 Beta 8, there's a new attribute that you can add to any HTML element

that you do not want to include in your snapshot. If you think about it, we never want a flash

message to be in a snapshot: we want the flash message to show once... but not be there if we

navigate away and then back again.

So, in base.html.twig , it's really simple: on flash-container - which will contain all

flash messages - add a new data-turbo-cache="false" .

templates/base.html.twig

1

2

3

 // ... lines 4 - 13

14

15

 // ... lines 16 - 69

70

71

72

73

74

75

76

77

78

79

80

 // ... lines 81 - 100

101

102

<!DOCTYPE html>

<html lang="en-US">

 <head>

 </head>

 <body>

 <div id="flash-container" data-turbo-cache="false">

 {% for flash in app.session.flashBag.get('success') %}

 <div class="alert alert-success alert-dismissible fade

show" role="alert">

 {{ flash }}

 <button type="button" class="btn-close" data-bs-

dismiss="alert" aria-label="Close">

 </button>

 </div>

 {% endfor %}

 </div>

 </body>

</html>

That's it! Thanks to this, the entire element - and anything inside - will not be included in the

snapshot. Check it out: refresh the homepage... click 10 times and go back. Beautiful! No flash

message.

Next: we know we can return Turbo Streams as the response from a controller. That's what

we've been doing so far in the reviews action. But there's also another - more powerful - way to

send streams to your users.

Chapter 47: Mercure: Pushing Stream Updates
Async

Turbo streams would be much more interesting if we could subscribe to something that could

send us stream updates in real time.

The Use-Case: Pushing Streams Directly to Users

Like, imagine we're viewing a page... and generally minding our own business. At the same

moment, someone else - on the other side of the world - adds a new review to this same

product. What if that review instantly popped onto our page and the quick stats updated? That

would be... incredible!

Or imagine if, in ProductController , inside of the reviews action, after a successful form

submit, we could still return a redirect like we were doing before... but we could also push a

stream to the user that updates some other parts of the page, like the quick stats area. I said

earlier that returning a redirect and a stream isn't possible. But... that's not entirely true.

The truthiest truth is that both of these scenarios are totally possible. How? Turbo Streams

comes with built-in support to listen to a web socket the returns Turbo Stream HTML. It also

supports doing that same thing with server-sent events, which are kind of a modern web socket:

it's a way for a web server to push information to a browser without us needing to make an Ajax

call to ask for it.

Hello Mercure!

And fortunately, in the Symfony world, we have great support for a technology that enables

server-sent events: Mercure. Mercure could... probably be its own tutorial, so we'll just cover the

basics.

Mercure is a "service" that you run, kind of like your database service, Elasticsearch or Redis. It

allows, in JavaScript for example, to subscribe to messages. Then, in PHP, we can publish

messages to Mercure. Anything that has subscribed will instantly receive those messages and

can do something with them. If you're familiar with WebSockets, it has a similar feel.

Installing the Mercure Libraries

We're going to get Mercure rocking... and it's going to really make things fun. To start, install a

package that makes it easy to work with Mercure and Turbo. At the command line, run:

composer require "symfony/ux-turbo-mercure:^1.3"

 Tip

The symfony/ux-turbo-mercure is deprecated in favor of symfony/ux-turbo which

already contains the cool Mercure stuff. Just install symfony/mercure-bundle to get it

working:

composer require symfony/mercure-bundle

Or to get the version used in the tutorial, continue with:

composer require "symfony/ux-turbo-mercure:^1.3"

This installs several things. First, a PHP library called mercure that helps talk to the Mercure

service in PHP. Second, a MercureBundle that makes that even easier in Symfony. And third, a

symfony/ux-turbo-mercure library that gives us a special Stimulus controller that helps

Mercure and Turbo Streams work together. Go team!

This executed a recipe... so run git status to see what it did.

git status

Ok cool. Let's look at .env first. At the bottom, we have three new environment variables that

will help us talk to Mercure. More about these in a few minutes. The recipe also modified

controllers.json . Remember: this means that a new Stimulus controller is now available

that lives inside this bundle. We'll use that 2 chapters from now.

 Tip

Instead of a new section in this file, find the existing

`@symfony/ux-turbo section. It will have a key called mercure-turbo-

stream. Change its enabled key to true` to activate the Stimulus controller we'll be

using.

This also enabled a bundle... and added a new library to our package.json file. We've seen

this several times before with UX packages: this adds a new package to our project... but

instead of downloading the code, it already lives in the vendor/ directory.

To get that part properly set up, near the bottom of the terminal output, it tells us to stop Encore

and run yarn install --force .

In the other tab, hit Ctrl+C to stop Encore and run:

yarn install --force

When that finishes, restart Encore:

yarn watch

Ok, we just installed some PHP and JavaScript code that's going to help us communicate with

Mercure. But... we don't actually have a Mercure service running yet! That's like installing

Doctrine... but without MySQL or Postgresql running!

So next, let's get the Mercure service running. There are a bunch of ways to do this. But if

you're using the Symfony binary web server like we are... then... it's already done!

Chapter 48: Running the Mercure Service in the
symfony Binary

Mercure itself is a "service" or "server" - kind of like MySQL or Elasticsearch. The Mercure

server is called the "hub"... and there are several good ways to get it running. First, they have a

managed version where they handle it all for you. This is great for production: it keeps things

simple and you can help support the project.

Or, you can download Mercure and set it up locally. Or you can set up Mercure with Docker -

that's totally supported. Or the final or is... if you're using the Symfony binary as your local web

server then... well... it's already running!

The Embedded Mercure Hub

Head to your open terminal tab, clear the screen and run:

symfony server:status

As a reminder, way back at the start of this tutorial, we used the Symfony binary to run a local

web server for us. Back at the browser, open a new tab and go to https://127.0.0.1:8000 - the

URL to our site - then /.well-known/mercure .

https://127.0.0.1:8000/

 Tip

The latest symfony binary no longer embeds Mercure. But it's still easy to set up. First, add

a mercure service to your docker-compose.yaml file:

docker-compose.yaml

 // ... line 1

2

 // ... lines 3 - 13

14

15

16

17

18

19

20

21

You can also copy the code block from the script below the video. Start the container by

running:

docker-compose up -d

That's it! But instead of being accessible at the URL you see in the tutorial, the Mercure hub

will be exposed on a random port. To find it, run:

symfony var:export --multiline

And look for the MERCURE_URL value - it should equal something similar to

http://127.0.0.1:64150/.well-known/mercure . Put this into your address bar to

see your Mercure Hub (you'll see the same error as in the video).

If everything is working... yes! You should see this error:

“Missing "topic" parameter.”

This is a Mercure hub. Yup, the Symfony binary comes with Mercure already running at this

URL. We get that for free.

The Environment Variables

services:

 mercure:

 image: dunglas/mercure

 command: caddy run -config /etc/caddy/Caddyfile.dev

 ports: ['80']

 environment:

 SERVER_NAME: ':80'

 MERCURE_PUBLISHER_JWT_KEY: '!ChangeMe!'

 MERCURE_SUBSCRIBER_JWT_KEY: '!ChangeMe!'

To communicate with this, head back over to your editor and open the .env file.

.env

 // ... lines 1 - 29

30

31

32

33

34

35

36

37

38

These three environment variables define values that are used in a new config file:

config/packages/mercure.yaml . MERCURE_PUBLIC_URL is the public URL to the

Mercure hub that our JavaScript will use to subscribe to messages and MERCURE_URL is the

URL that our PHP code will use to publish messages. These are usually the same.

MERCURE_SECRET is basically a password that will allow us to publish: more on that later.

config/packages/mercure.yaml

1

2

3

4

5

6

7

8

In our case, both URL variables already, by chance, point to the correct URL! Yay! But actually,

if you're using the latest version of the Symfony binary... we don't even need these variables in

this file! Why? Well, in addition to setting up Mercure for us, the Symfony binary also sets these

environment variables automatically to their correct values.

Check it out. Back over in our editor, open public/index.php . Let me close a few things...

then open it. Cool. Right after the runtime load, I'll paste in some code.

###> symfony/mercure-bundle ###

See https://symfony.com/doc/current/mercure.html#configuration

The URL of the Mercure hub, used by the app to publish updates (can be a

local URL)

MERCURE_URL=https://127.0.0.1:8000/.well-known/mercure

The public URL of the Mercure hub, used by the browser to connect

MERCURE_PUBLIC_URL=https://127.0.0.1:8000/.well-known/mercure

The secret used to sign the JWTs

MERCURE_JWT_SECRET="!ChangeMe!"

###

mercure:

 hubs:

 default:

 url: '%env(MERCURE_URL)%'

 public_url: '%env(MERCURE_PUBLIC_URL)%'

 jwt:

 secret: '%env(MERCURE_JWT_SECRET)%'

 publish: '*'

public/index.php

1

2

3

4

5

6

7

8

9

10

11

12

13

This looks fancy, but I'm basically dumping the $_SERVER variable... except only the keys that

contain MERCURE . The $_SERVER variable - among other things - will contain all environment

variables. I'm filtering for MERCURE basically... because I don't want to accidentally publish any

secret keys from my computer to the internet... as much fun as that would be.

Anyways, this will run before the .env file is loaded, so it will only print real environment

variables. Back over on our site, refresh!

 Tip

If you're using the docker-compose.yaml setup described earlier, you will only see 2

environment variables here... which are the only 2 you need anyways.

Yay! We see 4 environment variables including 2 we need! The first one is just a flag that tells

us that the Symfony binary is running Mercure... and that last one is there for legacy reasons:

we don't need it.

This means that our app is already configured and ready to talk to our Mercure Hub! In

production, you'll need to run a real Mercure Hub and set these environment variables manually,

however you do that in your hosting environment.

So... we have a Mercure hub running! What does that... mean? Well, it's a central place where

some things can listen for messages and other things can publish messages. Next, let's do both

of these things: listen to a Mercure "topic" in JavaScript and publish messages to it, both from

the command line - just to see how it works - and from PHP, which is our real goal.

<?php

use App\Kernel;

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

dd(array_filter($_SERVER, function($item) {

 return str_contains($item, 'MERCURE');

}, ARRAY_FILTER_USE_KEY));

return function (array $context) {

 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

};

Chapter 49: Listening & Publishing

The purpose of Mercure is to have a hub where we can subscribe - or listen - to messages and

also publish messages.

Here's our high-level goal, it's three steps. First, set up some JavaScript that listens to a "topic"

in Mercure - a topic is like a message key or category. Second, in PHP, publish a message to

that topic containing Turbo Stream HTML. And finally, when our JavaScript receives a message,

make it pass the Turbo Stream HTML to the stream-processing system. The result? The power

to update any part of anyone's page whenever we want to right from PHP. If this doesn't make

sense yet, don't worry: we're going to put this into action right now.

But before we jump in, open index.php and remove the dump... so that our site is no longer

dead. Excellent.

Listening in JavaScript via the Stimulus Controller

Ok, step 1: open templates/product/reviews.html.twig , which is the template that

holds the entire reviews turbo frame. At the top, or really anywhere, add a div . Where its

attributes live, render a new Twig function from the UX library we installed a few minutes ago -

turbo_stream_listen() - and pass this the name of a "topic"... which could be anything.

How about product-reviews . Then, close the div .

templates/product/_reviews.html.twig

1

 // ... lines 2 - 43

I know, that looks kind of weird. To see what it does, go refresh a product page... and inspect

the reviews area to find this div . Here it is.

Ok: this div is a dummy element. What I mean is: it won't ever contain content or be visible to

the user in any way. Its real job is to activate a Stimulus controller that listens for messages in

the product-reviews topic. You can see the data-controller attribute pointing to the

controller we installed earlier as well as an attribute for the product-reviews topic and the

public URL to our Mercure hub.

<div {{ turbo_stream_listen('product-reviews') }}></div>

Viewing a Mercure Topic in your Browser

Go to your network tools and make sure you're viewing fetch or XHR requests. Scroll up. Woh!

There was a request to our Mercure hub with ?topic=product-reviews . The Stimulus

controller did this.

But the really interesting thing about this request is the "type": it's not fetch or XHR, it's

eventsource . Right Click and open this URL in a new tab. Yup, it just spins forever. But not

because it's broken: this is working perfectly. Our browser is waiting for messages to be

published to this topic.

Publishing Messages via curl

We are now listening to the product-reviews topic both in this browser tab and, apparently,

from some JavaScript on this page thanks to the Stimulus controller we just activated. So... how

can we publish messages to that topic?

 Tip

A cooler way to debug with Mercure is to go to

http://127.0.0.1:<random_port>/.well-known/mercure/ui/ to see an

interactive, debugging Mercure dashboard where you can listen and publish messages.

Basically... by sending a POST request to our Mercure hub. Over in its documentation, go to the

"Get Started" page and scroll down a bit down. Here we go: publishing. This shows an example

of how you can publish a basic message to Mercure. Copy the curl command version. Then,

over my editor, I'll go to File -> "New Scratch File" to create a plaintext scratch file. I'm doing this

so we have a convenient spot to play with this long command.

In fact, it's so long that I'll add a few \ so that I can organize it onto multiple lines. This makes it

a bit easier to read... but I know, it's still pretty ugly.

Before we try this, change the topic: the example is a URL, but a topic can be any string. Use

product-reviews . And at the end, update the URL that we're POSTing to so that it matches

our server: 127.0.0.1:8000.

We'll talk about the other parts of this request in minute. For now, copy this, find your terminal,

paste and... hit enter! Okay: we got a response... some uuid thing. Did that work?

Spin back over to your browser tab. Holy cats, Batman! It showed up! Our message contained

this JSON data... which also appears in our tab.

The Parts of a Publish Request

Even if you're not super comfortable using curl at the command line - honestly, I do this pretty

rarely - most of what's happening is pretty simple. First: we're sending a topic POST

parameter set to product-reviews and a data POST parameter set to... well, whatever we

want! For the moment, we're sending some JSON data, which is passed to anyone listening to

this topic.

At the end of the command, we're making this a POST request to our Mercure Hub URL. But

what about this Authorization: Bearer part... with this super long key? What's that? It's a

JSON web token. Let's learn more about what it is, how it works and where it came from next.

It's the key to convincing the Mercure Hub that we're allowed to publish messages to this topic.

Chapter 50: Mercure Hub's JWT Authorization

Can anyone publish a message to any topic on a Mercure hub? Definitely not. So how does the

Mercure Hub know that we are allowed to publish this message? It's entirely thanks to this long

string that we're passing to the Authorization header.

Where does this come from? It turns out, it's a JSON web token. Copy that huge string... then

head over to jwt.io: a lovely site for working with JSON web tokens - or JWT's. If you're familiar

with how JWT's work, awesome. If not, here's a little primer.

A JWT + Mercure Primer

Scroll down a bit to find a JWT editor. Paste in the encoded token. So this weird string here can

actually be decoded to this JSON. And... you don't need a secret key to do it: the long string is

basically just a base64 encoded version of this JSON. Anyone can turn this string into this

JSON.

So when we send this long string to the server, what we're really sending is this JSON data. For

us, the subscribe part isn't important... and neither is the payload . But the publish part is

important. This basically says:

“Hi Mercure Hub! Guess what! I have permission to publish to any topic. Cool, huh?”

Ok... but why does the Mercure server trust this? Can't anyone create a JSON web token that

claims that they can publish to all topics? Yea! But those wouldn't be signed correctly unless

they have the "secret".

When you run a Mercure Hub, you give it a "secret" value... which, by default - and for our

Mercure Hub - is !ChangeMe! . This is the value that you see in our .env file.

Back over on jwt.io , look at the bottom. It says "invalid signature". When a JWT is created,

it's signed by a secret key. When someone uses a JWT, after decoding it - which anyone can do

- they are then supposed to verify the signature of the token. Right now, it's trying to verify the

signature of our JWT... but using the wrong secret. If we paste in our real secret instead... it's

verified!

This can... be a bit technical. The point is this: in order to generate a JWT that will have a valid

signature, you need the secret. And while anyone can read a JWT, if you mess around with its

contents, the signature will fail. That's why the Mercure Hub trusts us when we send a JWT that

says we can publish to any topic: the signature of our message is valid. That means it was

generated by someone who has the secret key.

Check this out: let's regenerate this JWT using the same "payload" but signed using the wrong

secret... something a bad user might try to do. Copy the new JWT... update the curl command

in our scratchpad... copy the whole command... and paste it into the terminal. Hit enter.

Unauthorized! The Mercure Hub can totally read the JSON in this message, but it sees that the

signature failed and does not publish the message.

Change back to our old key in the scratch pad. And at the browser, use the correct secret:

!ChangeMe! .

Simplifying the Payload

To simplify things, change the payload to just the part we need. So remove the subscribe

part - we're not trying to get access to subscribe to anything - and also remove payload . This

is all we really need: some JSON that claims that we can publish to any topic signed with the

correct secret. If you ever need to create a JWT by hand, this is how you do it: create the JSON

you want and have something - like this site - sign it with your secret.

Copy the new, shorter JWT... and paste it in our scratchpad. Copy the entire command, paste it

at your terminal and... yes! It works! In our browser, the listening tab shows a second message.

Publishing a Turbo Stream

Enough about authorization & JWT. In the real world, as long as we have the correct

MERCURE_SECRET configured in our app, all of this will be handled automatically thanks to the

Mercure PHP library. Internally, it will use the secret to generate the signed JWT for us.

But before we start publishing messages from our code, let's look closer at the data POST

parameter. So far, we've been sending JSON. And, in theory, we could write some JavaScript

that listens to this topic and does something with that JSON. But remember: the

turbo_stream_listen() function activates a Stimulus controller that is already listening to

this topic. It's listening and waiting for a message whose data isn't JSON, but

<turbo-stream> HTML.

Check it out: over in our scratch pad, instead of setting the data to JSON, I'll paste in a turbo

stream. It's a little ugly because it's all on one line, but it's valid: action="update ,

target="product-quick-stats" with some dummy content inside.

Let's first see if this message shows up inside our browser tab. Oh! It actually stopped listening.

It probably hit a listening timeout - that's something you can configure or disable in Mercure. I'll

refresh.

Now, go copy the command... find your terminal, paste, hit enter... and head back to the

browser. No surprise: here's our message with the Turbo Stream HTML. But the really cool thing

is back on our site. Scroll up. Yes! It updated the quick stats area! As soon as we published the

message, the JavaScript from the Stimulus controller saw the message and passed the turbo-

stream HTML to the stream-processing system. That's so cool.

Of course, we aren't normally going to publish via the command line & curl: we're going to

publish messages via PHP... which is way easier. Let's do that next.

Chapter 51: Publishing Mercure Updates in PHP

We now know that we can easily subscribe to a Mercure topic in JavaScript. And, if we publish

a message to that topic with <turbo-stream> HTML in it, our JavaScript will instantly notice

& process it. Sweet!

So far, we've published messages to Mercure via curl at the command line... but that was just to

get a feel for how it works. In reality, we're going to publish message from PHP... which is a

heck of a lot simpler anyways.

Copy the <turbo-stream> ... then go find ProductController ... and the reviews action.

Publishing a Message from PHP

To publish updates to a Mercure Hub, we need to autowire a new service. Use HubInterface

and I'll call it $mercureHub .

Down below, to start, let's publish an update when we submit the form... but not necessarily

when it's successful. I'm lazy: this will let us test without filling out the form successfully. Add a

variable - $update - set to new Update() - a handy class for creating messages. We need

to pass this two arguments. The first is the topic or topics that we want to publish to. Use

product-reviews . The second is the data that we want to send. Paste in the

<turbo-stream> string.

Below, to publish this, all we need is $mercureHub->publish($update) .

src/Controller/ProductController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 71

72

73

74

75

76

 // ... lines 77 - 82

83

 // ... lines 84 - 85

86

87

88

89

90

 // ... lines 91 - 109

110

 // ... lines 111 - 117

118

 // ... lines 119 - 126

127

Kind of... beautiful, isn't it?

Let's try this! Find your browser and refresh so the quick stats area is restored. Scroll down and

submit the form empty. Uh... 500 error? Open the profiler for that request. Hmm:

“Failed to send an update”

Setting verify_peer to False in dev for Macs

Not... very explanatory. But notice that there were four exceptions. When this happens, it's often

one of the other exceptions that has more details. Ah:

“SSL peer certificate or SSH remote key was not okay”

class ProductController extends AbstractController

{

 /**

 * @Route("/product/{id}/reviews", name="app_product_reviews")

 */

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager, HubInterface $mercureHub)

 {

 if ($request->isMethod('POST')) {

 $update = new Update(

 'product-reviews',

 '<turbo-stream action="update" target="product-quick-

stats"><template>QUICK STATS CHANGED!</template></turbo-stream>'

);

 $mercureHub->publish($update);

 }

 }

}

This... is a problem specific to the Symfony binary web server, https and... Macs. You can learn

more about it on this issue for the Symfony CLI. If you're not using a Mac, good for you! That

hopefully just worked.

If you are, the easiest way to fix this is to disable "peer verification" in the dev environment.

To do this, open config/packages/framework.yaml . At the bottom, use when@dev to set

config specific to the dev environment - that's a feature that's new to Symfony 5.3. Under this,

set framework , http_client , default_options then verify_peer: false .

config/packages/framework.yaml

 // ... lines 1 - 25

26

27

28

29

30

That's not something you want to set in production... and it's a bummer we need to set it in the

dev environment. But it should fix our issue.

Close this... then refresh the page again. Scroll down... and submit the review form. Ok! We get

the normal validation error - that's expected. But scroll up. Yes! We just updated the page with

our stream through Mercure! That's awesome!

So next: let's use this new superpower to simplify our reviews action. We can now redirect on

success like we originally were... and publish a stream to update the quick stats area.

when@dev:

 framework:

 http_client:

 default_options:

 verify_peer: false

Chapter 52: Turbo Stream for Instant Review
Update

When we submit a new review, we update two different parts of the page. First, the review list

and review form. And second, the quick stats area up here.

Over in ProductController , in the reviews action, we do this by returning a turbo stream:

reviews.stream.html.twig is responsible for updating both spots.

Cool, but remember that the reviews list and review form live inside of a turbo frame. And so,

before we started messing around and doing crazy stuff with Turbo Streams, we updated that

section simply by returning a redirect to the reviews page on success. The Turbo Frame

followed that redirect, grabbed the matching <turbo-frame> from that page and updated it

here.

Unfortunately... as soon as we wanted to also update the quick stats area, we had to change

completely to rely on turbo streams. The problem is that we can't return a turbo stream and a

redirect from the controller.... so we chose to return a stream... which means that the stream

needs to update both sections of the page.

Returning a Redirect And Publishing a Stream

Okay. So why are we talking about all of this again? Because now that we have Mercure

running, we can, in a sense, return two things from our controller. Check it out: copy this dummy

Mercure update code, remove it... and paste it down in the success area.

We're updating the product-reviews stream, which is the stream that we're listening to

thanks to our code in _reviews.html.twig . Back in the controller, instead of returning a

stream, copy the render line, delete that section, paste inside the update... and fix the

formatting. Oh, also change this to renderView() : render() returns a Response object...

but all we need is the string from this template. That's what renderView() gives us.

src/Controller/ProductController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 71

72

73

74

75

76

 // ... lines 77 - 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

 // ... lines 107 - 113

114

 // ... lines 115 - 122

123

Thanks to this, our controller will now redirect like it did before... but it will also publish a stream

to Mercure along the way.

class ProductController extends AbstractController

{

 /**

 * @Route("/product/{id}/reviews", name="app_product_reviews")

 */

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager, HubInterface $mercureHub)

 {

 if ($request->isMethod('POST')) {

 $this->denyAccessUnlessGranted('ROLE_USER');

 $reviewForm->handleRequest($request);

 if ($reviewForm->isSubmitted() && $reviewForm->isValid()) {

 $entityManager->persist($reviewForm->getData());

 $entityManager->flush();

 $update = new Update(

 'product-reviews',

 $this->renderView('product/reviews.stream.html.twig',

[

 'product' => $product,

]),

);

 $mercureHub->publish($update);

 $this->addFlash('review_success', 'Thanks for your review!

I like you!');

 return $this->redirectToRoute('app_product_reviews', [

 'id' => $product->getId(),

]);

 }

 }

 }

}

Let's try it. Refresh the page... and scroll all the way down to the bottom. I want to trigger the

weather widget Ajax call just so that we can cleanly see what happens with the network

requests when we submit. Clear out the Ajax requests... then add a new review.

Cool! It looks like that worked! Check out the network requests. The first is the POST form

submit. This returned a redirect, the frame system followed that redirect, found the frame on the

next page, and updated this area. The normal Turbo Frames behavior. Then our stream caused

the quick stats area to update... and it also re-updated the reviews area... because, right now,

our stream template is still updating both things.

Only Streaming the Quick Stats

So probably we could stop streaming the _reviews.html.twig template... since the turbo-

frame is taking care of that part of the page. We only need to focus on updating the quick stats.

templates/product/reviews.stream.html.twig

1

2

3

4

5

Let's try this again. Right now we have 16 reviews. Head down and add the 17th. Ah! Silly

validation! Type a bit more and submit. Yes! It still works! The behavior is slightly different than

before: it renders a new review form... because that's what's rendered inside the

<turbo-frame> on the redirected page. And... up above, the quick stats area did update.

So this is a really pure example of a turbo-stream in action. Inside of our

ProductController , we can just redirect like normal, which powers the turbo-frame. Then,

the minute that we realize that we need to update a different part of the page - something

outside of the frame - we can do that through Mercure.

Updating the Page of Every User

But this is even cooler than it looks at first. In reviews.stream.html.twig , temporarily put

back the product-review stream.

<turbo-stream action="update" target="product-quick-stats">

 <template>

 {{ include('product/_quickStats.html.twig') }}

 </template>

</turbo-stream>

templates/product/reviews.stream.html.twig

1

2

3

4

5

6

7

8

9

10

11

Back at your browser, copy the URL and open this page in a second tab. Make sure both pages

are refreshed. Ok: both show 17 reviews. In the original tab, scroll down and submit review

number 18. It does show up here: no surprises.

Now check out the other tab. The quick stats also update here! And, down below, yup! There's

review number 18! That's amazing! Sure, I'm sitting on one computer with two tabs open. But if

two people - on opposite sides of the planet - were both viewing this page at the same time, the

same thing would happen. When we post a new review, everyone's page is updated!

This opens up a new possibility for turbo streams. We already know that we can use streams to

update any part of our page, like something that's outside of the frame that we're currently

working in. But we can also use streams to update any part of any user's page... so that when a

user in Belgium adds a new review, a different user in Japan - who was already on that page -

will instantly see it.

Making Update Ids Specific to the Product

But now, in the second tab, navigate to a different product. Back in the first, post review number

19. When I submit, this, of course, works. But check out the second tab. Woh! This product

should not have 19 reviews... and all of these reviews are for the other product, not this one!

Refresh. Yup! This product has way less reviews. Our stream update is affecting every product

page!

And... this makes sense. If you're on a product page - any product page - then you're listening

to the product-reviews Mercure topic. When we publish an update, we target the

product-quick-stats and product-review elements... both of which exist on every

product page!

<turbo-stream action="update" target="product-quick-stats">

 <template>

 {{ include('product/_quickStats.html.twig') }}

 </template>

</turbo-stream>

<turbo-stream action="replace" target="product-review">

 <template>

 {{ include('product/_reviews.html.twig') }}

 </template>

</turbo-stream>

Fortunately, this is simple to fix. In _reviews.html.twig , we need to make sure that every

element that we target with a turbo stream has a dynamic part in it so that it's specific to that

product. In the id attribute, change it to product-{{ product.id }}-review .

templates/product/_reviews.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 41

42

In reviews.stream.html.twig , do the same thing so they match. Repeat this for the quick

stats, which lives in show.html.twig ... here it is. Add {{ product.id }} inside the id.

Copy that... and in the stream template, add it here too.

templates/product/show.html.twig

 // ... lines 1 - 32

33

 // ... line 34

35

 // ... lines 36 - 49

templates/product/reviews.stream.html.twig

1

 // ... lines 2 - 4

5

 // ... line 6

7

 // ... lines 8 - 10

11

Perfect. If two users are viewing two different products, they will still both be listening to the

same Mercure topic. When a review is posted to the first product, the second user will receive

the update... but they won't have any elements matching those ids on their page. So, it will do

nothing.

Click to post another review. Ah! That killed the frame! Of course: we just changed the id of the

frame... so we need to refresh. Post one more review. It shows up here... but it did not affect the

other page.

Ok: thanks to the new system, we can simplify our turbo stream even more to deliver exactly the

updates we want to every user. That's next.

<turbo-frame id="product-{{ product.id }}-review">

</turbo-frame>

 <div id="product-{{ product.id }}-quick-stats">

 </div>

<turbo-stream action="update" target="product-{{ product.id }}-quick-

stats">

</turbo-stream>

<turbo-stream action="replace" target="product-{{ product.id }}-review">

</turbo-stream>

Chapter 53: Smartly Updating Elements for all
Users

With the power to return a normal redirect from our controller and publish a Mercure update to

modify any part of any user's page, we can now really clean up our review system. After a

successful form submit, we redirect to a page that renders _reviews.html.twig ... which

includes the reviews list on top and also the review form down here. Then... we send this same

thing to the user via the stream update. The only reason we're doing this is so that the review

list updates for all users, not just the user that submitted the form.

So... you can see that there's some duplicated work going on. But worse, there's a bug! Copy

the URL and open this same page in an incognito window. Notice that we are not logged in.

Let's pretend that this tab represents a user in Argentina... and the other tab is a user in

Ukraine.

Let's refresh and have our Ukrainian friend submit a new review... this will be review number 21.

When we submit, it looks good here. On the other user's page, the review shows up... but oh! It

also shows a success message! So when our Ukrainian user submitted a new review, our

Argentinian friend suddenly saw a success message!

That's... ya know... not what we want. But I can already see the problem: in the turbo stream,

we're sending the entire _reviews.html.twig template to all users... which includes the

reviews list... but also the flash message and the form.

Splitting the Reviews Frame and Stream

No worries: we just need to be a bit more careful. The entire _reviews.html.twig template

is surrounded by a <turbo-frame> . But we really only need the frame to surround the form...

because we can update the reviews list via the stream.

Check it out: at the bottom of the reviews list, close that <turbo-frame> . Now, create a new

<turbo-frame> with id="" , how about, product-reviews-form . We don't need a

closing tag... because we already have one.

templates/product/_reviews.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 13

14

15

16

17

18

 // ... lines 19 - 44

45

Oh, and in this case, we don't need to make the id dynamic for each product because we're

not going to update this with a Turbo Stream. So there's no risk of affecting the wrong page.

With just this change, the form now lives in a different frame. And so, if we were to refresh the

page and submit the form... it now only affects this part of the page.

The next step is to make sure that our stream update sends back the list, not the list and the

form. To do that, we need to isolate the list into its own template. Copy that turbo frame and,

inside templates/product/ , create a new file called, how about,

_reviews_list.html.twig . Paste the frame here.

templates/product/_reviews_list.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

Back in the other template, include this.

<turbo-frame id="product-{{ product.id }}-review">

</turbo-frame>

<hr>

<turbo-frame id="product-reviews-form">

</turbo-frame>

<turbo-frame id="product-{{ product.id }}-review">

{% for review in product.reviews %}

 <div class="component-light my-3 p-3">

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }}

<i class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

 </div>

{% else %}

 <p>This product has not been reviewed yet!</p>

{% endfor %}

</turbo-frame>

templates/product/_reviews.html.twig

1

2

3

 // ... lines 4 - 6

7

 // ... lines 8 - 33

34

Nice. Oh, but in the new template, we don't actually need this to be a Turbo frame anymore.

Change this to be a div . Think about it: we're not using any Turbo frame features with this...

we just need an element that we can target from our turbo stream. A turbo-frame would

have worked... it just wasn't necessary.

templates/product/_reviews_list.html.twig

1

 // ... lines 2 - 11

12

Anyways, stream this template instead: _reviews_list.html.twig .

Sweet! Testing time! Refresh both tabs... and let's post review number 22.

When I submit here... perfect! The review form area updated thanks to the frame. Then the

stream took care of adding the review here and updating the quick stats area. In the other

browser, the quick stats updated, we see the new review, but it did not mess with the form area.

Appending the New Review

Look back at reviews.stream.html.twig . Right now we're streaming and replacing the

entire reviews list. That's probably fine... but because we know that a single new review was just

added, we could, instead, send only the new review in the stream instead of everything. We

don't have to do this, but let's try it.

First, over in _reviews.html.twig , on the id , I'm going to add a -list to the end. I'm

doing this just to make its meaning more obvious: it's a list, not a single review. Repeat this in

the stream template.

<div {{ turbo_stream_listen('product-reviews') }}></div>

{{ include('product/_reviews_list.html.twig') }}

<turbo-frame id="product-reviews-form">

</turbo-frame>

<div id="product-{{ product.id }}-review">

</div>

templates/product/_reviews_list.html.twig

1

 // ... lines 2 - 11

12

templates/product/reviews.stream.html.twig

 // ... lines 1 - 6

7

8

9

10

11

Now over in _reviews_list.html.twig , copy the div for a single review and isolate it into

its own template: _review.html.twig . Back in the list, include that.

templates/product/_review.html.twig

1

2

3

4

5

6

templates/product/_reviews_list.html.twig

1

2

3

4

5

6

7

So no changes yet, just some reorganization. But now, in the stream, change the action to

append ... and include the single review template.

That's nice! In _review.html.twig , this needs a review variable. In

ProductController ... let's see: we're only passing a product variable right now. Also pass

a newReview variable set to the review... which is $form->getData() .

Back in the stream, pass in a review variable set to newReview .

<div id="product-{{ product.id }}-review-list">

</div>

<turbo-stream action="replace" target="product-{{ product.id }}-review-

list">

 <template>

 {{ include('product/_reviews_list.html.twig') }}

 </template>

</turbo-stream>

<div class="component-light my-3 p-3">

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }} <i

class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

</div>

<div id="product-{{ product.id }}-review-list">

{% for review in product.reviews %}

 {{ include('product/_review.html.twig') }}

{% else %}

 <p>This product has not been reviewed yet!</p>

{% endfor %}

</div>

src/Controller/ProductController.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 74

75

76

 // ... lines 77 - 91

92

93

94

95

96

97

98

 // ... lines 99 - 114

115

 // ... lines 116 - 123

124

templates/product/reviews.stream.html.twig

 // ... lines 1 - 6

7

8

9

10

11

12

13

Let's try the whole flow. Refresh both tabs. We're filling in review number 23. Submit and...

sweet! Three things just happened. First the form area updated thanks to the Turbo frame

system. Second, the new review was appended to the list thanks to the stream. And finally, the

quick stats area was updated also thanks to the stream.

Over in the incognito tab, it's almost the same. The reviews list has the new review and the

quick stats area updated... all without affecting the form area.

Next: let's celebrate by visually highlighting the new review the moment it pops onto the page.

class ProductController extends AbstractController

{

 public function productReviews(Product $product, CategoryRepository

$categoryRepository, Request $request, EntityManagerInterface

$entityManager, HubInterface $mercureHub)

 {

 $update = new Update(

 'product-reviews',

 $this->renderView('product/reviews.stream.html.twig',

[

 'product' => $product,

 'newReview' => $reviewForm->getData(),

]),

);

 }

}

<turbo-stream action="append" target="product-{{ product.id }}-review-

list">

 <template>

 {{ include('product/_review.html.twig', {

 review: newReview,

 }) }}

 </template>

</turbo-stream>

Chapter 54: Visually Highlighting new Items that
Pop onto the Page

Our review system is super cool: if any user submits a review, that review will pop onto the page

of anyone else that's currently viewing this product.

To make this a bit more obvious, I want to highlight the new review as soon as it appears. And

this is pretty easy. Start over in assets/styles/app.css . Add a .streamed-new-item

style with a background-color set to lightgreen .

assets/styles/app.css

 // ... lines 1 - 181

182

183

184

Adding a Green Background to New Items

Let's add this class to a new review if it's added via a stream. We can do this in

reviews.stream.html.twig : pass a new variable into the template called isNew set to

true .

templates/product/reviews.stream.html.twig

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

Now, over in that template - _review.html.twig - at the end of the class list, use the ternary

syntax: if isNew - and default this to false if the variable is not passed in - then print

.streamed-new-item {

 background-color: lightgreen;

}

<turbo-stream action="append" target="product-{{ product.id }}-review-

list">

 <template>

 {{ include('product/_review.html.twig', {

 review: newReview,

 isNew: true

 }) }}

 </template>

</turbo-stream>

streamed-new-item .

templates/product/_review.html.twig

1

2

3

4

5

6

That's it. The "else" is automatic: if isNew is false, this will print nothing.

Let's check it out! Refresh both of the pages to get the new CSS... and then submit a new

review. Yay! The green background shows up here... and on the page of everyone on the planet

that happens to be viewing this page.

So... this is cool. But... we need more fancy! What if we show this background for only five

seconds and then fade it out. Start again in app.css to set up the fading out part: we need a

new class that describes this transition. Add a fade-background class that declares that we

want any background-color changes to happen gradually over 2000 milliseconds.

assets/styles/app.css

 // ... lines 1 - 181

182

183

184

185

186

187

A Stimulus Controller to Fade Out

Before we try to use this somewhere directly, let's stop and think. If the goal is to remove this

background after 5 seconds, then the only way to accomplish that is by writing some custom

JavaScript. In other words, we need a Stimulus controller! In the assets/controllers/

directory, create a new file called, how about, streamed-item_controller.js . I'll paste in

the normal structure, which imports turbo, exports the controller and creates a connect()

method.

<div class="component-light my-3 p-3{{ isNew|default(false) ? ' streamed-

new-item' }}">

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }} <i

class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

</div>

.streamed-new-item {

 background-color: lightgreen;

}

.fade-background {

 transition: background-color 2000ms;

}

assets/controllers/streamed-item_controller.js

1

2

3

 // ... lines 4 - 6

7

8

 // ... line 9

10

11

Before we fill this in, go over to _review.html.twig and use this. I'll break this onto multiple

lines.. cause it's getting kind of ugly. Copy the class name, but delete the custom logic. Replace

it with a normal if statement: if isNew|default(false) , then we want to activate that new

Stimulus controller. Do that with {{ stimulus_controller('streamed-item') }} . Oh,

and pass a second argument, I want to pass a variable into the controller called className

set to streamed-new-item .

templates/product/_review.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

I'm doing this for two reasons. First, it will now be the responsibility of the controller to add this

class to the element. We'll do that in a minute. And second, while we don't need it now, making

this class name dynamic will help us reuse this controller later.

Anyways, head back to the controller and define the value: static values = {} an object

with className which will be a String .

Cool. Down in connect() , add that class to the element:

this.element.classList.add() and pass this.classNameValue .

import { Controller } from 'stimulus';

export default class extends Controller {

 connect() {

 }

}

<div

 class="component-light my-3 p-3"

 {% if isNew|default(false) %}

 {{ stimulus_controller('streamed-item', {

 className: 'streamed-new-item'

 }) }}

 {% endif %}

>

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }} <i

class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

</div>

assets/controllers/streamed-item_controller.js

1

2

3

4

5

6

7

8

9

10

11

If we stopped right now... this would just be a really fancy way to add the

streamed-new-item class to the element as soon as it pops onto the page.

So let's do our real work. Use setTimeout() to wait 5 seconds... and then... if I steal some

code... remove this.classNameValue .

If we just did this, after five seconds, the green background would suddenly disappear. To

activate the transition when the background is removed, add another class:

fade-background .

assets/controllers/streamed-item_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

If you wanted to be really fancy, you could wait until the transition finishes and then remove this

class to clean things up. But this will work fine.

import { Controller } from 'stimulus';

export default class extends Controller {

 static values = {

 className: String

 }

 connect() {

 this.element.classList.add(this.classNameValue);

 }

}

import { Controller } from 'stimulus';

export default class extends Controller {

 static values = {

 className: String

 }

 connect() {

 this.element.classList.add(this.classNameValue);

 setTimeout(() => {

 this.element.classList.add('fade-background');

 this.element.classList.remove(this.classNameValue);

 }, 5000);

 }

}

Let's try it! Refresh both tabs so that we get that new CSS... then go fill in another review. When

we submit... good! A green background here... and in the other browser. If we wait... beautiful! It

faded out! How nice is that?

Ok team, we're currently publishing updates to Mercure from inside of our controller. But the

Mercure Turbo UX package that we installed earlier makes it possible to publish updates

automatically whenever an entity is updated, added or removed. It's pretty incredible, and it's

our next topic.

Chapter 55: Entity Broadcast

There's one super cool feature of the Turbo Mercure UX package that we installed earlier that

we have not talked about. And it's this: the ability to publish a Mercure update automatically

whenever an entity is created, updated or removed. It's a powerful idea.

For example, instead of publishing this update from inside of our controller, what if we published

this update whenever a review is added to the system, regardless of how or where it's added?

Or what if we could publish a Mercure update whenever a review is changed... like if we

changed a review in an admin area, that review would automatically re-render on anyone's page

that was currently viewing it!

The Broadcast Attribute/Annotation

That is totally possible. Go into the entity where you want to activate this behavior. For us that's

src/Entity/Review.php . Above the class, add @Broadcast .

src/Entity/Review.php

1

 // ... line 2

3

 // ... lines 4 - 9

10

11

12

13

14

15

 // ... lines 16 - 109

110

If you're using PHP 8, you can also use Broadcast as an attribute. Next, open

templates/products/_reviews.html.twig . This is where we originally used

turbo_stream_listen() to listen to the product-reviews Mercure topic.

Copy that and, temporarily, also listen to a topic called App\Entity\Review . We need the

double slashes to avoid escaping problems. Oh, and not reviews, just Review : the name of the

<?php

namespace App\Entity;

/**

 * @ORM\Entity(repositoryClass=ReviewRepository::class)

 * @Broadcast()

 */

class Review

{

}

class.

templates/product/_reviews.html.twig

1

2

 // ... lines 3 - 36

Okay: whenever a Review is created, change or removed, an update will be sent to the

App\Entity\Review topic on our Mercure hub. And now we're listening to that topic.

If this doesn't all make sense yet, don't worry: we're missing one important piece. To find out

what it is, let's fearlessly forge ahead and try this! Refresh the page and check out the network

tools. Let's see... here it is! We're listening to a new stream URL. Open this in a new tab. Like

with the other topic, our browser spins and waits for updates.

The Broadcast Template

Ok! Try to submit a new Review . And oh! A 500 error. Open the profiler for that request to see

what happened:

“Unable to find template broadcast/Review.stream.html.twig .”

Okay. So here's the whole flow that we activated by adding the @Broadcast annotation above

the entity. First, we create, change or remove a Review from the database. Second, the Turbo

Mercure library notices this and tries to render a template called

Review.stream.html.twig . We will create this in a moment. And third, whatever this

template renders is published to Mercure... in a specific way.

Let's go create that template. In the templates directory, add the broadcast directory... and

inside, the new file: Review.stream.html.twig .

These "broadcast" templates always look the same, and I'm going to paste in a skeleton to

show you. It's... kind of a cool use of blocks. If a Review is created, the content in the create

block is sent to Mercure. If a Review is updated, the update block is used. And if we delete a

Review , the contents of the remove block are published to Mercure as an update.

<div {{ turbo_stream_listen('product-reviews') }}></div>

<div {{ turbo_stream_listen('App\\Entity\\Review') }}></div>

templates/broadcast/Review.stream.html.twig

1

2

3

4

5

6

7

8

9

10

11

We can see this immediately. Close the profiler tab, refresh this page... and add another review.

When we submit, nothing looks different here yet. But check out the tab that's listening to

Mercure. Yes! There it is! This published an update and passed the contents from our create

block as that update's data!

Publishing turbo-stream Updates

Now we're dangerous. Go into the original reviews.stream.html.twig template, copy

both streams and paste them into our create block.

templates/broadcast/Review.stream.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 25

{% block create %}

 CREATE!

{% endblock %}

{% block update %}

 UPDATE!

{% endblock %}

{% block remove %}

 REMOVE!

{% endblock %}

{% block create %}

 <turbo-stream action="update" target="product-{{ product.id }}-quick-

stats">

 <template>

 {{ include('product/_quickStats.html.twig') }}

 </template>

 </turbo-stream>

 <turbo-stream action="append" target="product-{{ product.id }}-review-

list">

 <template>

 {{ include('product/_review.html.twig', {

 review: newReview,

 isNew: true

 }) }}

 </template>

 </turbo-stream>

{% endblock %}

Boom, done! We can now completely delete reviews.stream.html.twig . And inside of

ProductController , we don't need to dispatch this update at all anymore. It will happen

automatically when we create the Review . So I'll delete the Update , the $mercureHub

argument... and if you want to get really crazy, you can clean up the unused use statements on

top.

Finally, in _reviews.html.twig , we no longer need to listen to our original

product-reviews topic.

The "entity" Variable

Testing time! go back, refresh... and publish a new review. Ah! Another 500 error? Let's check

out what happened:

“Variable product does not exist coming from Review.stream.html.twig .”

Ah! So Apparently there is not a product variable that's passed to this template... which begs the

question: what variables are passed to this template? When the Mercure Turbo library renders

this template, it passes several variables. The most important - by far - is a variable called

entity ... which in this case will be set to the Review object. We can use that to fix our

template.

So instead of product.id , we need entity.product.id . Do that in both places. And this

template also needs a product variable... so pass that in set to entity.product . And down

here, review is now entity .

templates/broadcast/Review.stream.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 // ... lines 19 - 27

Hopefully that's everything. Close the error, refresh the page... and add a new review. If all goes

well, this will have the same behavior as before. Submit. We got it! The new review loaded onto

the page thanks to the stream! The quick stats area also updated. In the other tab, yup! The

new review streamed here too!

The big difference now is that the stream update will be published no matter how a review was

created.

Next, let's also instantly update every user's page whenever a review is changed or removed. I'll

show you a review admin area that's been hiding on our site where we can watch this in real

time.

{% block create %}

 <turbo-stream action="update" target="product-{{ entity.product.id }}-

quick-stats">

 <template>

 {{ include('product/_quickStats.html.twig', {

 product: entity.product

 }) }}

 </template>

 </turbo-stream>

 <turbo-stream action="append" target="product-{{ entity.product.id }}-

review-list">

 <template>

 {{ include('product/_review.html.twig', {

 review: entity,

 isNew: true

 }) }}

 </template>

 </turbo-stream>

{% endblock %}

Chapter 56: Broadcasting Frontend Changes on
Entity Update/Remove

In Review.stream.html.twig , we have the ability to publish turbo streams automatically

whenever a review is created, updated or removed. That's pretty cool. Unrelated to this, I

haven't mentioned it yet, but our site has a review admin area! You can get it by going to

/admin/review . Here we can create, update or delete reviews. Do you... see where this is

going? Sometimes an admin user will "tweak" a review to make it... um... more encouraging.

Wouldn't it be cool if, when an admin user did this, that review was instantly updated on the

frontend for all users?

Uh, yea! That would be cool! So let's do it.

Publishing an "update" Update

Start in _review.html.twig . This is the template that renders a single Review . Give this

element an id so that we can target it from a turbo stream, how about

id="product-review-{{ review.id }}" .

templates/product/_review.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

<div

 id="product-review-{{ review.id }}"

 class="component-light my-3 p-3"

 {% if isNew|default(false) %}

 {{ stimulus_controller('streamed-item', {

 className: 'streamed-new-item'

 }) }}

 {% endif %}

>

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }} <i

class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

</div>

Copy that value and, in Review.stream.html.twig , when the review is updated, let's add a

new turbo stream: <turbo-stream> with action="replace" and target="" set to

product-review-{{ review.id }} . Except that in this template, the variable is called

entity .

Inside, add the boring - but required - template element and inside of that, include

product/_review.html.twig . This template needs a review variable... so make sure to

pass that in: review set to entity .

templates/broadcast/Review.stream.html.twig

 // ... lines 1 - 19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 33

That's it! When a review is updated, it will replace this review element with the updated content.

Let's see it in action! Refresh the frontend. This is the review we'll update. Over in the admin

area, add a very important dinosaur emoji... and save. Okay. I think that worked. Let me double

check. Yep! Review updated.

Now check out the front end. That's amazing! This review just updated for every user in the

world that is currently viewing a page where this is rendered. We could also update the quick

stats area... but I'll leave that to you.

Removing a Review on Delete

What about removing a review? In the admin area, we can actually delete a review. Could we

automatically remove this element from the frontend when that happens? Absolutely!

Inside the remove block, create a <turbo-stream> . This will have a new action -

action="remove" - and will target the same element as our update. Now, you might

{% block update %}

 <turbo-stream action="replace" target="product-review-{{ entity.id

}}">

 <template>

 {{ include('product/_review.html.twig', {

 review: entity

 }) }}

 </template>

 </turbo-stream>

{% endblock %}

expect me to say entity.id . But... by the time this template is rendered, the entity has

already been deleted from the database. And so, entity.id is empty.

Fortunately, the library also passes us an id variable that we can use instead. Oh, and

because we have action="remove" , the turbo-stream element won't have anything

inside: it's just an instruction to find this element and remove it.

templates/broadcast/Review.stream.html.twig

 // ... lines 1 - 29

30

31

32

Ok: refresh the frontend just to be safe... and in the admin area, delete this. Now... deep

breath... switch to the frontend. It's gone! Ok, this is getting fun.

Fading out on Remove

So let's get fancier. What if, when a review is deleted, instead of instantly disappearing, the

element turned red, then faded out. OoooOOOoo.

Start in styles/app.css . Add a new streamed-removed-item class that sets the

background-color to coral .

assets/styles/app.css

 // ... lines 1 - 184

185

186

187

 // ... lines 188 - 191

Back in Review.stream.html.twig , this will be a bit trickier. We don't actually want to

remove the element anymore... we want to keep it... but trigger some JavaScript that will fade it

out.

To do this, change the action to replace ... and then copy the entire template from update .

But this time, pass in a new variable: isRemoved set to true . We can use that in the template

to do something special.

{% block remove %}

 <turbo-stream action="remove" target="product-review-{{ id }}">

</turbo-stream>

{% endblock %}

.streamed-removed-item {

 background-color: lightcoral;

}

templates/broadcast/Review.stream.html.twig

 // ... lines 1 - 29

30

31

32

33

34

35

36

37

38

39

Go open it up: _review.html.twig . If we pass in an isNew variable, we already have code

to activate a Stimulus controller that causes the item to get a green background that fades out.

We're going to do something similar.

If isRemoved , then initialize that same Stimulus controller. But this time pass className set

to streamed-removed-item . This is why we made that controller dynamic. Also pass in

another value called removeElement set to true .

templates/product/_review.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

This will signal to the controller that we want to fade out the element entirely.

{% block remove %}

 <turbo-stream action="replace" target="product-review-{{ id }}">

 <template>

 {{ include('product/_review.html.twig', {

 review: entity,

 isRemoved: true

 }) }}

 </template>

 </turbo-stream>

{% endblock %}

<div

 id="product-review-{{ review.id }}"

 class="component-light my-3 p-3"

 {% if isNew|default(false) %}

 {{ stimulus_controller('streamed-item', {

 className: 'streamed-new-item'

 }) }}

 {% endif %}

 {% if isRemoved|default(false) %}

 {{ stimulus_controller('streamed-item', {

 className: 'streamed-removed-item',

 removeElement: true

 }) }}

 {% endif %}

>

 <p><i class="fas fa-user-circle me-2"></i>{{ review.owner.email }} <i

class="fas fa-star ms-4"></i> {{ review.stars }}/5</p>

 <div>

 {{ review.content }}

 </div>

</div>

Let's get to work in that file: streamed-item_controller.js .

Start by setting up the removeElement value, which will be a Boolean .

Then, import a helper function called addFadeTransition . This is a utility that we created in

the first tutorial to help us fade in or fade out an element.

To activate it, inside connect() , call addFadeTransition() and pass it this object,

this.element - the element that we're going to fade - and also an options object with

transitioned set to true . That's needed because our element will start visible and then we

want it to fade out. If you want to know more about how this all works, check out our Stimulus

tutorial.

Inside setTimeout() , check to see if this.removeElementValue is true . If it is not,

then keep the original code: this is where we fade out the background color. But if it is true, call

this.leave() . That will trigger the entire element to fade out.

assets/controllers/streamed-item_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

import { Controller } from 'stimulus';

import { addFadeTransition } from '../util/add-transition';

export default class extends Controller {

 static values = {

 className: String,

 removeElement: Boolean

 }

 connect() {

 addFadeTransition(this, this.element, {

 transitioned: true

 });

 this.element.classList.add(this.classNameValue);

 setTimeout(() => {

 if (this.removeElementValue) {

 this.leave();

 } else {

 this.element.classList.add('fade-background');

 this.element.classList.remove(this.classNameValue);

 }

 }, 5000);

 }

}

Phew! Let's see this thing in action! Go back and find this review... here it is. Refresh the

frontend to get the fresh CSS... delete the review... and go to the frontend! Yes! It's there but

with a red background! And then... woohoo! It faded out!

The big takeaway here? By combining Turbo Streams with Stimulus, you can do much more

than simply "update the HTML of an element". You can do... anything.

Okay team: there's just one more thing that I want to try: using Turbo Streams to pop up "toast"

notifications on the frontend, like after we do something awesome. That's next.

Chapter 57: Toast Notifications

We've made it to the last topic of the tutorial... so let's do something fun, like making it super

easy to open "toast" notifications.

Toast notifications are those little messages that "pop up" like toast on the bottom - or top - of

your screen. And Bootstrap has support for them. Our goal is simple but bold! I want to be able

to trigger a toast notification from any template or from a Turbo Stream.

Creating the toast.html.twig Template

Start by creating a new template partial: _toast.html.twig . I'll paste in a structure that's

from Bootstrap's documentation. Then let's make a few parts of this dynamic like

{{ title }} - that's a variable we'll pass in... {{ when }} that defaults to just now

and... for the body, {{ body }} .

templates/_toast.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

Next, open up product/_reviews.html.twig . After submitting a new review, we render a

flash message. Now I want this to be a toast notification! Cool! Include that template instead...

and pass in a couple of variables like title set to Success and body set to the actual flash

message content.

<div class="toast" role="alert" aria-live="assertive" aria-atomic="true">

 <div class="toast-header">

 <svg class="rounded me-2" width="20" height="20"

xmlns="http://www.w3.org/2000/svg" aria-hidden="true"

preserveAspectRatio="xMidYMid slice" focusable="false"><rect width="100%"

height="100%" fill="#007aff"></rect></svg>

 <strong class="me-auto">Bootstrap

 <small>11 mins ago</small>

 <button type="button" class="btn-close" data-bs-dismiss="toast"

 aria-label="Close"></button>

 </div>

 <div class="toast-body">

 Hello, world! This is a toast message.

 </div>

</div>

templates/product/_reviews.html.twig

 // ... lines 1 - 6

7

 // ... line 8

9

10

11

12

13

14

 // ... lines 15 - 36

37

The Toast Stimulus Controller

If we stopped now... congratulations! Absolutely nothing would happen. These toast elements

are invisible until you execute some JavaScript that opens them on the page. To do that, we

need a Stimulus controller!

Up in the assets/controllers/ directory, create a new file called, how about,

toast_controller.js . Inside, give this the normal structure where we import Controller

from stimulus , export our controller... and have a connect() method that, of course, logs a

loaf of bread.

assets/controllers/toast_controller.js

1

2

3

4

5

6

7

Over in _toast.html.twig , I want to activate this controller whenever this toast element

appears on the page. No problemo: on the outer element, add

{{ stimulus_controller('toast') }} .

templates/_toast.html.twig

1

 // ... lines 2 - 11

12

<turbo-frame id="product-reviews-form">

{% for flash in app.flashes('review_success') %}

 {{ include('_toast.html.twig', {

 title: 'Success!',

 body: flash

 }) }}

{% endfor %}

</turbo-frame>

import { Controller } from 'stimulus';

export default class extends Controller {

 connect() {

 console.log('?');

 }

}

<div class="toast" role="alert" aria-live="assertive" aria-atomic="true"

{{ stimulus_controller('toast') }}>

</div>

Our controller doesn't do anything yet, but let's at least make sure that it's connected. Head over

to our site, refresh the page... make sure that your console is open... and then go fill out a new

review. When we submit... got it! As soon as the toast HTML was rendered onto the page, our

controller was initialized. Though... like I mentioned, you can't actually see the toast element

yet. It's taking up some space... but it's invisible.

Let's fix that! Back in the controller, import Toast from bootstrap . Below add

const toast = new Toast() and pass it this.element . To open the toast, say

toast.show() .

assets/controllers/toast_controller.js

1

2

3

4

5

6

7

8

9

That's it! Refresh again and add another review. This time... that's super cool! And it means that

we can, from anywhere, render the _toast.html.twig template and it will activate this

behavior.

Grouping all the Toasts into One Container

Though... the positioning isn't what I was imagining. Before it disappeared, it was open... right in

the middle of the page. I was hoping to put it in the top right corner of the screen.

To do that, we just need to add a few classes to the toast element. Except... there's one other

minor problem. If you think about it, it's possible that a user could see multiple toast notifications

at the same time. The toast system totally supports this.... it stacks them on top of each other.

But for that to work, we need to have a single global "toast container" element on our page that

all individual toasts live inside of.

This might be easier to show. Open up templates/base.html.twig . Really, anywhere, but

I'll go to the bottom, add a <div> with id="toast-container . That could be anything: we'll

use this id to find this element in JavaScript.

import { Controller } from 'stimulus';

import { Toast } from 'bootstrap';

export default class extends Controller {

 connect() {

 const toast = new Toast(this.element);

 toast.show();

 }

}

Also add class="toast-container" and a few other classes. toast-container helps

Bootstrap stack any toasts inside of this... and everything else puts the toast in the upper right

corner of the screen.

templates/base.html.twig

1

2

 // ... lines 3 - 14

15

 // ... lines 16 - 101

102

103

104

105

106

107

Now, in order for this to work, we need all the toast notifications to physically live inside of this

toast-container element. So basically, we need to render _toast.html.twig ... and

somehow get that HTML inside of the container.

But... I don't want to do that! I want to keep the flexibility of being able to render

_toast.html.twig from... wherever and have it work. And we can still have this with a little

help from our Stimulus controller.

Check it out: at the top of connect() , add const toastContainer =

document.getElementById() and pass it toast-container to find the element that

lives at the bottom of the page. Then... let's move ourselves into that:

toastContainer.appendChild(this.element) .

And now that it lives inside the container, we open it like normal!

Though... there is one subtle "catch". When the toast HTML initially loads, it will live here in the

middle of the page. Naturally, Stimulus notices this element, instantiates a new controller

instance and calls connect() . Yay! But when we move this.element into

toast-container , Stimulus destroys the original controller instance, creates a new one, and

calls connect() a second time.

In other words, the connect() method will be called twice: once when we originally render our

toast element onto the page and again after we move into toast-container . Right now,

that's going to cause an infinite loop where we call appendChild() over and over again.

<!DOCTYPE html>

<html lang="en-US">

 <body>

 <div

 id="toast-container"

 class="toast-container position-fixed top-0 end-0 p-3"

 ></div>

 </body>

</html>

To avoid that, add, if this.element.parentNode does not equal toastContainer . So

only if the element has not been moved yet, move it... and then return. The first time this

executes, it will move the element and exit. The second time it executes, it will skip all of this

and pop open the toast.

assets/controllers/toast_controller.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Let's try this thing! Refresh the page, add another review and... beautiful! If you quickly inspect

the toast element... yup! It lives down inside of toast-container .

Publishing a Toast through Mercure to All Users

Ok, I have one last micro-challenge: whenever a new review is added to a product, I want to

open a toast notification on every user's screen that's currently viewing the product. Something

that says:

“Hey! This product has a new review!”

Over in Review.stream.html.twig , in the create block, add another turbo stream with

action="append" and target="" ... well... leave that empty for a minute. Give this the

template element, include _toast.html.twig and pass in a few variables: title set to

New Review and body set to

“A new review was just posted for this product.”

import { Controller } from 'stimulus';

import { Toast } from 'bootstrap';

export default class extends Controller {

 connect() {

 const toastContainer = document.getElementById('toast-container');

 if (this.element.parentNode !== toastContainer) {

 toastContainer.appendChild(this.element);

 return;

 }

 const toast = new Toast(this.element);

 toast.show();

 }

}

templates/broadcast/Review.stream.html.twig

1

 // ... lines 2 - 18

19

20

21

22

23

24

25

26

27

 // ... lines 28 - 49

Very nice! But... what should the target be? We could use toast-container . That would

append it to this element. But... then the message would show up on every page. We only want

this message to show up if you're viewing this specific product.

To do that, we need to target an element that only exists on this specific product's page. Open

show.html.twig . Right inside of the product_body block, let's add an empty div with

id="product-{{ product.id }}-toasts"

templates/product/show.html.twig

1

 // ... line 2

3

4

 // ... lines 5 - 49

50

A little empty element just for our toasts to go into. Copy this and, in

Review.stream.html.twig , target it. Except that we need entity.product.id .

Let's check it out! Refresh the page... and then open the same product in another tab to "mimic"

what a different user would see. Scroll down, fill in a review and... submit. Awesome! We have

two toasts over here and... the other user sees the one toast! The two toast notifications in our

first tab is a bit weird, but I'll leave it for now.

And... we're done! Woh! Congrats to you! You deserve a nice crisp high five... and maybe a

short vacation for making it through this huge tutorial. It was huge because... well... Turbo has a

lot to offer. I hope you're as excited about the possibilities of Stimulus and Turbo as I am.

{% block create %}

 <turbo-stream action="append" target="product-{{ entity.product.id }}-

toasts">

 <template>

 {{ include('_toast.html.twig', {

 title: 'New Review!',

 body: 'A new review was just posted for this product'

 }) }}

 </template>

 </turbo-stream>

{% endblock %}

{% extends 'product/productBase.html.twig' %}

{% block productBody %}

 <div id="product-{{ product.id }}-toasts"></div>

{% endblock %}

Let us know what you're building. And, as always, if you have any questions, we're here for you

down in the comments section.

All right, friends. See you next time!

With <3 from SymfonyCasts

