
Upgrade to Symfony4 and Flex!

Chapter 1: Upgrade to Symfony 3.4

Symfony 4: it's a game changer. It's my favorite thing since chocolate milk. Honestly, I've never

been so excited to start writing tutorials: you are going to love it!

But first, we need to talk about how you can upgrade to Symfony 4 so that all your projects can

enjoy the goodness!

There are two big steps. First, well, of course, we need to actually upgrade our app to Symfony

4! And second, we need to update our project to support Symfony Flex. That is where things get

interesting.

Upgrading does take some work. But don't worry: we'll walk through it together and learn a ton

on the way.

Download the Course Code

As always, if you really want to get a handle on upgrading... or you just like chocolate milk, you

should download the course code from this page and code along. Full disclosure: the download

does not contain chocolate milk.

But, after you unzip it, it does contain a start/ directory with the same code you see here.

Follow the README.md file for the steps needed to get your project running.

The last step will be to find your terminal and run:

./bin/console server:run

to start the built-in web server. Check it out at http://localhost:8000 . Hello AquaNote!

This is the Symfony 3.3 project that we've been building in our Symfony series.

Upgrading to Symfony 4

So: what's the first step to upgrading to Symfony 4? It's upgrading to 3.4! And that's delighyfully

simple: Open composer.json , change the version of symfony/symfony to ^3.4 , find your

terminal and run:

composer.json

 // ... lines 1 - 15

16

 // ... line 17

18

 // ... lines 19 - 30

31

 // ... lines 32 - 68

composer update

And celebrate! So easy! By the way, you could just update symfony/symfony . But, honestly,

it's just easier to upgrade everything. And since I keep responsible version constraints in

composer.json , ahem, no dev-master or * versions, this is pretty safe and also means I

get bug fixes, security fixes and new features.

And... hello Symfony 3.4! The best part? Ah, you guys already know it: thanks to Symfony's

backwards-compatibility promise, our project will just work... immediately. Refresh! Yep!

Welcome to Symfony 3.4.

Symfony 3.4 Versus Symfony 4.0

So why did we do this? Why not just skip directly to Symfony 4? Well, Symfony 3.4 and

Symfony 4.0 are identical: they have the exact same features. The only difference is that all

deprecated code paths are removed in 4.0.

On the web debug toolbar, you can see that this page contains 9 deprecated code calls. By

upgrading to Symfony 3.4 first, we can hunt around and fix these. As soon as they're all gone...

well, we'll be ready for Symfony 4!

Deprecation: Kernel::loadClassCache()

 "require": {

 "symfony/symfony": "^3.4",

 },

Click the icon to go see the full list of deprecations. Check out the first one:

Kernel::loadClassCache() is deprecated since version 3.3. You can click "Show Trace" to

see where this is coming from, but I already know!

Open web/app.php and web/app_dev.php . There it is! On line 28, remove the

$kernel->loadClassCache() line. Do the same thing in app.php . Why is this

deprecated? This originally gave your app a performance boost. But thanks to optimizations in

PHP 7, it's not needed anymore. Less code, more speed, woo!

Deprecation: GuardAuthenticator::supports()

Close those files. What's next? Hmm, something about

AbstractGuardAuthenticator::supports() is deprecated. Oh, and a recommendation!

We should implement supports() inside our LoginFormAuthenticator .

Because I obsess over Symfony's development, I know what this is talking about. If you have

more of a life than I do and are not already aware of every single little change, you should go to

github.com/symfony/symfony and find the UPGRADE-4.0.md file. It's not perfect, but it contains

explanations behind a lot of the changes and deprecations you'll see.

Go find the LoginFormAuthenticator in src/AppBundle/Security . We need to add a

new method: public function supports() with a Request argument.

Copy the logic from getCredentials() that checks the URL, and just return it. Here's the

deal: in Symfony 3, getCredentials() was called on every request. If it returned null , the

authenticator was done: no other methods were called on it.

https://github.com/symfony/symfony

src/AppBundle/Security/LoginFormAuthenticator.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 30

31

32

33

34

 // ... line 35

36

37

 // ... lines 38 - 47

48

 // ... lines 49 - 77

78

In Symfony 4, supports() is now called on every request instead. If it returns false, the

authenticator is done like before. But if it returns true , then getCredentials() is called.

We split the work of getCredentials() into two methods.

So, remove the logic at the top of it: we know this will only be called when the URL is /login

and it's a POST request.

Deprecation: Quoting % in YAML

Most of the other deprecations are pretty easy, like the next one:

“Not quoting the scalar %cache_type% starting with the "%" indicator character is

deprecated since Symfony 3.1.”

This, and the next deprecation are in config.yml - and it even tells us the exact lines!

Open up app/config/config.yml and find line 71. Yep! Put quotes around

%cache_type% . To more closely follow the official YAML spec, if a value starts with % , it needs

to have quotes around it. Do the same around the directory value.

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function supports(Request $request)

 {

 return $request->getPathInfo() == '/login' && $request-

>isMethod('POST');

 }

 public function getCredentials(Request $request)

 {

 }

}

app/config/config.yml

 // ... lines 1 - 67

68

69

70

71

72

73

 // ... lines 74 - 80

Deprecation: logout_on_user_change

Back on the list, there is one more easy deprecation!

“Not setting logout_on_user_change to true on firewall "main" is deprecated as of 3.4.”

Copy that key. Then, open app/config/security.yml . Under the main firewall, paste this

and set it to true .

app/config/security.yml

 // ... lines 1 - 14

15

 // ... lines 16 - 20

21

 // ... lines 22 - 29

30

 // ... lines 31 - 41

So, what the heck is this? Check it out: suppose you change your password while on your work

computer. Previously, doing that did not cause you to be logged out on any other computers,

like on your home computer. This was a security flaw, and the behavior was changed in

Symfony 4. By turning this on, you can test to make sure your app doesn't have any surprises

with that behavior.

Phew! Before we talk about the last deprecations, go back to the homepage and refresh. Yes! In

5 minutes our 9 deprecations are down to 2! Open up the list again. Interesting: it says:

“Relying on service auto-registration for Genus is deprecated. Create a service named

AppBundle\Entity\Genus instead.”

That's weird... and involves changes to autowiring. Let's talk about those next!

doctrine_cache:

 providers:

 my_markdown_cache:

 type: '%cache_type%'

 file_system:

 directory: '%kernel.cache_dir%/markdown_cache'

 firewalls:

 main:

 logout_on_user_change: true

Chapter 2: Autowiring & Service Deprecations

Woo! There are only two deprecations left on the homepage... but they're weird! And actually,

they're not real! These are false deprecation warnings!

Upgrade to the Symfony 3.3 services.yml Config!

In our Symfony 3.3 Tutorial, we talked a lot about all the new service autowiring & auto-

registration stuff. We also upgraded our old services.yml file to use the new fancy config. It

turns out that doing this is one of the biggest steps in upgrading to Symfony 4 and Flex. If you

have not already upgraded your services.yml file to use autowiring & service auto-

registration, stop and go through the Symfony 3.3 tutorial now.

Strict Autowiring Mode

The way that autowiring works changed in Symfony 4. In Symfony 3, when Symfony saw a

type-hint - like EntityManager - it would first look to see if there was a service or alias in the

container with that exact id: so Doctrine\ORM\EntityManager . If there was not, it would

then scan every service looking to see if any were an instance of this class. That magic is gone.

In Symfony 4, it's simpler: autowiring only does the first part: if there is not a service whose id is

Doctrine\ORM\EntityManager , it throws an exception. This is a great change: the system

is simpler and more predictable.

So, of course, if any of your autowiring depends on the old, deprecated logic, you'll see a

deprecation message. And yea, that's where these messages are coming from!

But, there's a better way to find this deprecated logic. Open app/config/config.yml .

Under parameters , add container.autowiring.strict_mode: true .

https://knpuniversity.com/screencast/symfony-3.3

app/config/config.yml

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

 // ... lines 12 - 81

This tells Symfony to use the simpler, Symfony 4-style autowiring logic right now. Instead of

deprecations, you'll see great big, beautiful errors when you try to refresh.

So... try it! Refresh the homepage. Woh! No errors! That's because we already fixed all our old

autowiring logic in the Symfony 3.3 tutorial. And... the 2 deprecation messages are gone! Those

were not real issues: it's a rare situation where the deprecation system is misreporting.

Services are now Private

So yes! This means that... drumroll... our homepage is ready for Symfony 4.0! But the rest of

the site might not be. Surf around to see what other deprecations we can find. The login page

looks ok: login with weaverryan+1@gmail.com , password iliketurtles . Go to

/genus ... still no issues and then... ah! Finally, 1 deprecation on the genus show page.

Check it out. Interesting:

“The "logger" service is private, getting it from the container is deprecated since Symfony 3.2.

You should either make this service public or stop using the container directly.”

Wow! This is coming from GenusController line 84. Go find it! Close a few files, then open

this one. Scroll down to 84. Ah!

This is really important. Open services.yml . These days, all of our services are private by

default: public: false . This allows Symfony to optimize the container and all it really means

is that we cannot fetch these services directly from the container. So $container->get()

will not work.

In Symfony 4, this is even more important because a lot of previously public services, like

logger , are now private. Here's the point: you need to stop fetching services directly form the

container... everywhere. It's just not needed anymore.

parameters:

 container.autowiring.strict_mode: true

Fixing $container->get()

What's the solution? Since we're in a controller, add a LoggerInterface $logger

argument. Then, just $logger->info() .

src/AppBundle/Controller/GenusController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 78

79

80

 // ... lines 81 - 84

85

 // ... lines 86 - 94

95

 // ... lines 96 - 140

141

Isn't that better anyways? As soon as we refresh the page... deprecation gone!

Where else are we using $container->get()? Let's find out! In your terminal, run:

git grep '\->get('

Ah, just two more! We may not need to change all of these... some services are still public. But

let's clean it all up!

Start in SecurityController . Ah, here it is. So: what type-hint should we use to replace

this? Well, you could just guess! Honestly, that works a lot. Or try the brand new console

command:

./bin/console debug:autowiring

Sweet! This is a full list of all type-hints you can use for autowiring. Search for "authentication"

and... there it is! This type-hint is an alias to the service we want.

class GenusController extends Controller

{

 public function showAction(Genus $genus, MarkdownTransformer

$markdownTransformer, LoggerInterface $logger)

 {

 $logger->info('Showing genus: '.$genus->getName());

 }

}

That means, back in SecurityController , delete this line and add a new

AuthenticationUtils $authenticationUtils argument. Done.

src/AppBundle/Controller/SecurityController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 33

34

 // ... lines 35 - 42

43

The last spot is in UserController : we're using

security.authentication.guard_handler . This time, let's guess the type-hint! Add a

new argument: Guard... GuardAuthenticationHandler . That's probably it! And if we're

wrong, Symfony will tell us. Use that value below.

src/AppBundle/Controller/UserController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 32

33

 // ... lines 34 - 39

40

 // ... lines 41 - 44

45

 // ... lines 46 - 81

82

And yep, you can see the GuardAuthenticationHandler class in the

debug:autowiring list. But... what if it weren't there? What if we were trying to autowire a

service that was not in this list?

Well... you would get a huge error. And maybe you should ask yourself: is this not a service I'm

supposed to be using?

class SecurityController extends Controller

{

 public function loginAction(AuthenticationUtils $authenticationUtils)

 {

 }

}

class UserController extends Controller

{

 public function registerAction(Request $request,

LoginFormAuthenticator $authenticator, GuardAuthenticatorHandler

$guardHandler)

 {

 return $guardHandler

 }

 }

}

But anyways, if it's not in the list, there's a simple solution: go to services.yml and add your

own alias. At the bottom, paste the class you want to use as the type-hint, then copy the service

id, and say @ and paste.

app/config/services.yml

 // ... lines 1 - 5

6

 // ... lines 7 - 50

51

52

Yep, that is all you need to do in order to define your own autowiring rules. Since we don't need

it in this case, comment it out.

Ok, refresh! At this point, our goal is to hunt for deprecations until we're pretty confident they're

gone: it's not an exact science. If you have a test suite, you can use the symfony/phpunit-bridge

to get a report of deprecated code paths that are hit in your tests.

Adding $form->isSubmitted()

There is one more deprecation on the registration page. Look at the details:

“Call Form::isValid() on an unsubmitted form is deprecated. Use Form::isSubmitted() before

Form::isValid().”

This comes from UserController . Open that class and search for isValid() . Before

$form->isValid() , add $form->isSubmitted() . Find again and fix the other spot. This

isn't very important... you just need both in Symfony 4.

services:

 # example of adding aliases, if one does not exist

 # Symfony\Component\Security\Guard\GuardAuthenticatorHandler:

'@security.authentication.guard_handler'

https://symfony.com/doc/current/components/phpunit_bridge.html

src/AppBundle/Controller/UserController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 23

24

 // ... lines 25 - 44

45

 // ... lines 46 - 59

60

61

 // ... lines 62 - 64

65

 // ... lines 66 - 80

81

82

And now... I think we're done! All the deprecations I could find are gone.

It's time to upgrade to Symfony 4. Which, by the way, is the fastest Symfony version ever!

Zoom!

class UserController extends Controller

{

 public function registerAction(Request $request,

LoginFormAuthenticator $authenticator, GuardAuthenticatorHandler

$guardHandler)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 }

 public function editAction(User $user, Request $request)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 }

}

Chapter 3: Upgrade to Symfony 4.0

With the deprecations gone... yeah! It's time to upgrade to Symfony 4! If you were hoping this

was going to be really cool and difficult... sorry. It's super easy... well... mostly easy.

Open composer.json and change symfony/symfony to ^4.0 . There are a few other

libraries that start with symfony/ , but they're independent and follow different release cycles.

Oh, except for symfony/phpunit-bridge : change that to ^4.0 also.

composer.json

 // ... lines 1 - 15

16

 // ... line 17

18

 // ... lines 19 - 30

31

32

 // ... line 33

34

 // ... lines 35 - 36

37

 // ... lines 38 - 68

Let's do this! Find your terminal and run:

composer update

Yep, upgrading is just that easy! Except... there are almost definitely some libraries in our

composer.json file that are not yet compatible with Symfony 4. The best way to find out is

just to try it! And then wait for an explosion!

Removing Alice

Ah! Here is our first! Look closely... this is coming from nelmio/alice : the version in our

project is not compatible with Symfony 4. If we did some digging, we would find out that there is

 "require": {

 "symfony/symfony": "^4.0",

 },

 "require-dev": {

 "symfony/phpunit-bridge": "^4.0",

 },

a new version of Alice that is compatible. But, that version also contains a lot of changes to

Alice... and I don't like the library's new version very much. At least, not at this moment.

So, instead of upgrading, remove alice from composer.json . This will break our fixtures: we'll

fix them later.

Update again!

composer update

Removing Outdated Libraries

Our next explosion! This comes from incenteev/composer-parameter-handler . This

library helps you manage your parameters.yml file and... guess what? When we finish

upgrading, that file will be gone! Yep, we do not need this library anymore.

Remove it from composer.json . Oh, also remove the distribution bundle: it helps support the

current directory structure, and isn't needed with Flex. And below, remove the generator bundle.

We'll install the new MakerBundle later.

Ok, update again!

composer update

When a Library is not Ready: StofDoctrineExtensionsBundle

It works! I'm just kidding - it totally exploded again. This time the culprit is

StofDoctrineExtensionsBundle: the version in our project is not compatible with Symfony

1. Now... we become detectives! Maybe the library supports it in a new version? Let's find out.

Google for StofDoctrineExtensionsBundle to find its GitHub page. Check out the composer.json

file. It does support Symfony 4! Great! Maybe there's a new version that has this! Check out the

releases. Oof! No releases for a long, long time.

https://github.com/stof/StofDoctrineExtensionsBundle
https://github.com/stof/StofDoctrineExtensionsBundle/blob/4619e9d8190f19aac7c9e44f78d13710b7f2966a/composer.json#L16
https://github.com/stof/StofDoctrineExtensionsBundle/blob/4619e9d8190f19aac7c9e44f78d13710b7f2966a/composer.json#L16

This means that Symfony 4 support was added, but there is not yet a release that contains that

code. Honestly, by the time you're watching this, the bundle probably will have a new release.

But this is likely to happen with other libraries.

Actually, another common problem is when a library does not have Symfony 4 support, but

there is an open pull request that adds it. In both situations, we have a problem, and you have a

choice to make.

First... you can wait. This is the most responsible decision... but the least fun. I hate waiting!

Second, if there is a pull request, you can use that fork as a custom composer repository and

temporarily use that until the library merges the pull request and tags a release. For example,

imagine this pull request was not merged. We could add this as a vcs repository in

composer.json , and then update the version constraint to dev-master , because the

branch on the fork is master .

And third, since the pull request is merged, but there is no tag, we can simply change our

version to dev-master . Believe me: I am not happy about this. But I'll update it later when

there is a release.

composer.json

 // ... lines 1 - 15

16

 // ... lines 17 - 27

28

29

 // ... lines 30 - 70

Try to update again:

composer update

Ha! Look! It's actually working! Say hello to our new Symfony 4 app! Woohoo!

Upgrading old Packages

Oh, but check out that warning: the symfony/swiftmailer-bridge is abandoned. I don't

like that! Hmm, I don't see that package in our composer.json file. Run:

 "require": {

 "stof/doctrine-extensions-bundle": "dev-master"

 },

composer why symfony/swiftmailer-bridge

Ah! It's required by symfony/swiftmailer-bundle . We're using version 2.3.8 , which is

apparently compatible with Symfony 4. But I wonder if there's a newer version?

 Tip

Actually, version 2.3.8 is not compatible with Symfony 4. But due to an old issue with its

composer.json file, it appears compatible. Be careful with old libraries!

Google for the package to find its GitHub page. Click releases.

Woh! There is a new version 3 of the bundle. And I bet it fixes that abandoned packages issue.

Change our version to ^3.1 .

composer.json

 // ... lines 1 - 15

16

 // ... lines 17 - 21

22

 // ... lines 23 - 28

29

 // ... lines 30 - 70

And now, update!

composer update

Because we're upgrading to a new major version, you'll want to check out the CHANGELOG on

the project to make sure there aren't any major, breaking changes.

Yes! Abandoned package warning gone! And our project is on Symfony 4. Not bad!

But... get ready... because now the real work starts. And the fun! It's time to migrate our project

to the Flex project structure!

 "require": {

 "symfony/swiftmailer-bundle": "^3.1",

 },

https://github.com/symfony/swiftmailer-bundle

Chapter 4: Installing Flex

Our project is now on Symfony 4.0, and it still works! Well, it almost works: we would just need

to remove a few references to SensioDistributionBundle and

SensioGeneratorBundle .

The point is this: if you want, you can upgrade to Symfony 4, but not migrate to the new Flex

project structure. That's fine.

But... since Flex is awesome... let's do it!

Flex: Composer Plugin & New BFF

Flex is a Composer plugin, and, it's pretty simple: when you install a package, it checks to see if

there is a recipe for that package. A recipe can add configuration files, auto-enable the bundle,

add paths to your .gitignore file and more. But, for Flex to work, you need to use the Flex

directory structure.

Upgrade to Flex: The Plan

So here's the plan: we're going to bootstrap a new Flex application right inside our existing

project. Then, little-by-little, we'll move our code and configuration into it. It's going to be pretty

freakin' cool.

Upgrade Composer. For Real

Before we start, make sure that your Composer is at the latest version:

composer self-update

Seriously, do this. Composer recently released a bug fix that helps Flex.

Installing Flex

Ok, so... let's install Flex!

composer require symfony/flex

As soon as this is in our project, it will find and install recipes each time we add a new library to

our project. In fact, check it out!

“Configuring symfony/flex”

Ha! Flex even installed a recipe for itself! What an over-achiever! Let's find out what it did:

git status

Of course, it modified composer.json and composer.lock . But there are two new files:

.env.dist and symfony.lock . Open the first.

How did this get here? It was added by the symfony/flex recipe! More about this file later.

Next, look at symfony.lock . This file is managed by Flex: it keeps track of which recipes

were installed. You should commit it, but not think about it.

Installing Missing Recipes

Because this is an existing project, our app already contains a bunch of vendor libraries... and a

lot of these might have recipes that were never installed because Flex wasn't in our project yet!

Lame! No problem! Empty the vendor/ directory and run composer install

rm -rf vendor

composer install

Normally, Flex only installs a recipe when you first composer require a library. But Flex

knows that the recipes for these libraries were never installed. So it runs them now.

Yea! 11 recipes! Woh! And one of them is from the "contrib" repository. There are two

repositories for recipes. The official one is heavily guarded for quality. The "contrib" one also has

some checks, but the quality is not guaranteed. That's why you see this question. I'll type "p" to

permanently allow recipes from contrib.

Run git status to see what changed:

git status

Woh! We have a new config/ directory and a lot more! Starting with nothing, Flex is

scaffolding the new project around us! It's even auto-enabling all the bundles in a new

bundles.php file.

Sweet!

The Flex composer.json

When you start a new Flex project, you actually clone this symfony/skeleton repository... which

is literally one file: composer.json . This has a few really important things in it, including the

fact that it requires symfony/framework-bundle but not symfony/symfony .

Let's work on that next!

https://github.com/symfony/skeleton

Chapter 5: The Flex composer.json File

We need to make our composer.json file look like the one from symfony/skeleton .

Actually, go to "Releases", find the latest release, and then click to browse the files. Now we can

see the stable composer.json contents.

So... yea, this one file is all you need to start a new project. That's crazy! Flex builds the project

structure around it.

 Tip

Before copying the composer.json, make sure to change the branch on GitHub to the latest

released version you want to upgrade to (e.g. 4.1)

Bye Bye symfony/symfony

Anyways, the most important change is that, with Flex, you stop requiring symfony/symfony .

Yep, you require only the specific packages that you need. Copy all of the require lines, find

our composer.json file, and paste over the php and symfony/symfony lines. Oh, and

remove symfony/flex from the bottom: it's up here now.

composer.json

1

 // ... lines 2 - 17

18

19

20

21

22

23

24

 // ... lines 25 - 34

35

 // ... lines 36 - 72

73

{

 "require": {

 "php": "^7.1.3",

 "symfony/console": "^4.0",

 "symfony/flex": "^1.0",

 "symfony/framework-bundle": "^4.0",

 "symfony/lts": "^4@dev",

 "symfony/yaml": "^4.0",

 },

}

The symfony/framework-bundle package is the most important: this is the core of

Symfony: it's really the only required package for a Symfony app.

Go back and also copy the dotenv package from require-dev and put it in our

composer.json file. This package is responsible for reading the new .env file.

composer.json

1

 // ... lines 2 - 35

36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 72

73

Synchronizing the rest of Composer.json

Go back and also copy the config line and paste that here too.

composer.json

1

 // ... lines 2 - 40

41

42

43

44

45

46

 // ... lines 47 - 72

73

Skip the autoload sections for now, but copy the rest of the file. Replace the existing

scripts and extras sections with this new, shiny stuff.

{

 "require-dev": {

 "symfony/dotenv": "^4.0",

 },

}

{

 "config": {

 "preferred-install": {

 "*": "dist"

 },

 "sort-packages": true

 },

}

composer.json

1

 // ... lines 2 - 46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

 // ... lines 67 - 72

73

Brilliant!

Autoloading src/ & src/AppBundle

Let's talk about autoload . In Symfony 3, everything lived in src/AppBundle and had an

AppBundle namespace. But in Symfony 4, as you can see, everything should live directly in

src/ . And even though we don't have any examples yet, the namespace will start with App\ ,

even though there's no App/ directory.

Eventually, we are going to move all of our files into src/ and refactor all of the namespaces.

With PhpStorm, that won't be as scary as you think. But, it is a big change, and you may not be

able to do that all at once in a real project.

So, I'm going to show you a more "gentle", gradual way to upgrade to Flex. Yep, for now, we're

going to leave our files in AppBundle and make them work. But new files will live directly in

{

 "scripts": {

 "auto-scripts": {

 "cache:clear": "symfony-cmd",

 "assets:install --symlink --relative %PUBLIC_DIR%": "symfony-

cmd"

 },

 "post-install-cmd": [

 "@auto-scripts"

],

 "post-update-cmd": [

 "@auto-scripts"

]

 },

 "conflict": {

 "symfony/symfony": "*"

 },

 "extra": {

 "symfony": {

 "allow-contrib": true

 }

 },

}

src/ .

Right now, the autoload key in composer.json says to look for all namespaces in src/ .

Make this more specific: the AppBundle\\ namespace prefix should live in src/AppBundle .

Do the same in autoload-dev : Tests\\AppBundle\\ will live in tests/AppBundle .

composer.json

1

 // ... lines 2 - 4

5

6

7

 // ... line 8

9

 // ... line 10

11

12

13

14

 // ... line 15

16

17

 // ... lines 18 - 72

73

Why are we doing this? Because now we can go copy the autoload entry from the official

composer.json file and add it below our AppBundle\\ line. Copy the new autoload-dev

line also.

{

 "autoload": {

 "psr-4": {

 "AppBundle\\": "src/AppBundle",

 },

 },

 "autoload-dev": {

 "psr-4": {

 "Tests\\AppBundle\\": "tests/AppBundle",

 }

 },

}

composer.json

1

 // ... lines 2 - 4

5

6

 // ... line 7

8

9

 // ... line 10

11

12

13

 // ... line 14

15

16

17

 // ... lines 18 - 72

73

Thanks to this, Composer can autoload our old classes and any new classes!

Scaffold the Full Structure

Ok, that was a huge step. Run composer update :

composer update

The biggest change is that we're not relying on symfony/symfony anymore. And, yep! You

can see it remove symfony/symfony and start adding individual libraries.

Ah, it explodes! Don't worry about that yet: Composer did finish and Flex configured 3 new

recipes!

At this point, the new Flex project is fully built... and it already works! I'll prove it to you next.

{

 "autoload": {

 "psr-4": {

 "App\\": "src/"

 },

 },

 "autoload-dev": {

 "psr-4": {

 "App\\Tests\\": "tests/"

 }

 },

}

Chapter 6: Your Flex Project is Alive!

Thanks to the Flex recipe for symfony/framework-bundle , we now have a fully-functional

Symfony Flex app living right inside our directory! public. is the new document root,

config/ has all of the configuration, and our PHP code lives in src/ , including the new

Kernel class.

Yep, we have our old app with all our stuff, and a new, Flex, app, which is basically empty and

waiting for us to move our code into it.

Re-Order .env

Open up .env.dist . Woh! This has more stuff now! That's thanks to the recipes from

DoctrineBundle, SwiftmailerBundle and FrameworkBundle. Copy the FrameworkBundle section

and move that to the top. Do the same thing to .env .

.env.dist

1

2

3

4

5

6

7

8

9

10

 // ... lines 11 - 25

We don't need to do this, but APP_ENV is so important, I want to see it first. If you start a new

Flex app, it's on top.

This file is a "template" of which env vars need to be defined for your

application

Copy this file to .env file for development, create environment

variables when deploying to production

https://symfony.com/doc/current/best_practices/configuration.html#infrastruc

related-configuration

###> symfony/framework-bundle ###

APP_ENV=dev

APP_SECRET=12c008ecf65c043dc2b14b5eb9a115ef

#TRUSTED_PROXIES=127.0.0.1,127.0.0.2

#TRUSTED_HOSTS=localhost,example.com

###

Re-Ordering the Libs

Next, this will sound weird, but run:

composer require symfony/flex

We already have this library. I know. So... why are we doing this? It's a little trick: one of the new

keys in our composer.json is sort-packages , which is set to true. Thanks to this,

whenever you run composer require , it orders the packages alphabetically. By requiring a

package we already have, Composer just re-ordered my packages.

Thanks Jordi!

Fixing the console

But... we still have this giant error: attempted to load SecurityBundle from AppKernel .

Bummer! This happens because bin/console is still trying to boot the old app.

When you start a new Flex project, the symfony/console recipe creates the bin/console

file. But, since our project already had this file, the recipe couldn't do its job.

No worries! Let's go find the new file! Go to github.com/symfony/recipes. Welcome to the official

recipes repository!

Navigate to symfony , console , then bin . There it is! Copy its contents. Then, completely

replace our version.

https://github.com/symfony/recipes

bin/console

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 40

This will boot the new application! So... does it work? Run:

./bin/console

No! But that's a new error: we are closer! This says that the autoloader expects

App\AppBundle\AppBundle to be defined in AppBundle.php , but it wasn't found. That's

strange... that is not the correct namespace for that class! If you look closer, it says the error is

coming from a new config/services.yaml file.

Our old code - the stuff in src/AppBundle - should not be used at all by the new app yet.

Open that new config/services.yaml file. It has the same auto-registration code that

we're familiar with. And, ah ha! Here's the problem: it is auto-registering everything in src/ as

a service, but it's telling Symfony that the namespace of each class will start with App\ . But,

our stuff starts with AppBundle !

For now, completely ignore AppBundle : let's get the new project working and then migrate our

code.

#!/usr/bin/env php

use App\Kernel;

use Symfony\Bundle\FrameworkBundle\Console\Application;

use Symfony\Component\Console\Input\ArgvInput;

use Symfony\Component\Debug\Debug;

use Symfony\Component\Dotenv\Dotenv;

set_time_limit(0);

require __DIR__.'/../vendor/autoload.php';

if (!class_exists(Application::class)) {

 throw new \RuntimeException('You need to add "symfony/framework-

bundle" as a Composer dependency.');

}

config/services.yaml

 // ... lines 1 - 4

5

 // ... lines 6 - 15

16

 // ... line 17

18

 // ... lines 19 - 28

Ok, try bin/console again:

bin/console

It's alive! We just hacked a fully-functional Flex app into our project! Now let's move our code!

services:

 App\:

 exclude: '../src/{Entity,Migrations,Tests,AppBundle}'

Chapter 7: Migrating framework Config

Most of our old code lives in app/config , and also src/AppBundle . We'll talk about that

directory later - it's easier.

Yep, most of the work of migrating our code to the new app involves moving each piece of

config into the new location. Honestly, it's tedious and slow. But you're going to learn a lot, and

the end result is totally worth it.

Moving Parameters

Start in config.yml . Ignore imports: we'll look at each file one-by-one. The first key is

parameters. Copy those, delete them, and open config/services.yaml . This is where your

parameters and services will live. Paste them here. Oh, but remove the strict_mode

line: autowiring always works in "strict mode" in Symfony 4.

config/services.yaml

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 30

Environment Variables

Keep going! Back to config.yml . The keys under framework will be the most work to

migrate... by far. In Flex, this configuration will live in config/packages/framework.yaml :

each package has its own config file.

Remove the esi line from the old file: it's also commented out in the new one: nothing to

migrate.

Check out the secret config: it's set to %env(APP_SECRET)% . That's a relatively new syntax

that reads from environment variables. In the dev environment, Symfony loads the .env file,

parameters:

 locale: en

 cache_type: file_system

which sets all these keys as environment variables, including APP_SECRET .

Delete the old secret key. The way this value is set is a bit different, but, the point is, it's

handled.

Requiring translator

The next key is translator . Are you ready? Because this is where things get fun! You might

think that all we need to do is copy this line into framework.yaml . But no!

Many of the keys under framework represent components. In Symfony 3, by adding the

translator key, you activated that component.

But with Flex, the Translator component isn't even installed yet. Yep, if you want a translator,

you need to install it. In your terminal, run:

composer require translator

If that package name looks funny... it should! There is no package called translator ! But

look! It added a new symfony/translator key to composer.json .

This is another superpower of Flex. Go to https://symfony.sh/. This is a list of all of the packages

that have a recipe. Search for "translation" to find symfony/translation . See those

Aliases? Yep, we can reference translation , translations or translator and Flex

will, um, translate that into symfony/translator automatically.

The translator Recipe

Back to the terminal! Before I started recording, I committed all of our changes so far. That was

no accident: Flex just installed a recipe and I want to see exactly what it did! Run:

git status

https://symfony.sh/

Cool! It created a new translation.yaml file and a translation/ directory.

config/packages/translation.yaml

1

2

3

4

5

6

7

That is where translation files should live in Symfony 4. And even though the translator

config lives under framework , in Flex, it has its own configuration file. Oh, and this is one of

my favorite things about Flex. Why should my translation files live in a translations/

directory? Is that hardcoded somewhere deep in core? Nope: it's right here in your configuration

file. Want to put them somewhere else? Just update that line or add a second path.

So, do we need to move the translator config from our old project? Actually, no! It's already

in the new file. Delete it.

And since we now know that translations should live in this new translations/ directory,

let's move our existing files... well file. In app/Resources/translations , move

validators.en.yml down into translations/ .

Migrating router Config

We're on a roll! What about the router config? It told Symfony to load routing.yml . All of

that is taken care of in the new app: it loads a routes.yaml file and anything in the routes/

directory, like annotations.yaml .

There's also a config/packages/routing.yaml file, and even another one in dev/ to

tweak that strict_requirements setting.

The point is this: routing is handled. Delete that stuff!

Migrating Forms and Validator

framework:

 default_locale: '%locale%'

 translator:

 paths:

 - '%kernel.project_dir%/translations'

 fallbacks:

 - '%locale%'

Next, forms! Like with translations, this activates a component that is not installed yet. We do

have forms in our app, so we need this and validation. Let's get them installed:

composer require form validator

Yep! More aliases! Perfect! This time, it did not install any recipes. That's cool: not all packages

need a recipe.

So, do we need to move these 2 lines of config into framework.yaml? Actually, no!

Go back to your terminal and run:

./bin/console debug:config framework

This prints out the current framework configuration. Search for form . Nice! It's already

enabled, even without any config! This is really common with Flex: as soon as a component is

installed, FrameworkBundle automatically enables it. No configuration is needed unless you

want to change something. Delete the form line.

Search for "validation" next: it's even more interesting! It's also enabled, and

enable_annotations is set to true . Great! Delete the validation line! What's really

interesting is that enable_annotations is set to true because it detected that we have the

Doctrine annotations package installed. This is the flow with Flex: install a package and you're

done.

Ok! It might not look like it, but we're almost done with the framework stuff. Let's finish it next!

Chapter 8: Finishing framework Config

Let's finish this! Back on debug:config , search for default_locale . Apparently, it's

already set to en . Cool! Let's remove that from config.yml . You can move it if you want: the

translator did add a locale parameter. I'll delete it.

Migrating csrf_protection

Close a few files: I want to keep comparing config.yml and framework.yaml . In

config.yml , we have csrf_protection activated. Ok, so uncomment it in

framework.yaml . Then, remove it from config.yml . Let's also remove serializer : I

wasn't using it before. If you are, run composer require serializer to activate it. No

config is needed.

config/packages/framework.yaml

1

 // ... lines 2 - 3

4

 // ... lines 5 - 16

Ok, let's see if we broke anything! Run:

./bin/console

Woh! We're busted!

“CSRF support cannot be enabled as the Security CSRF component is not installed.”

Ohhhh. Like translation and form , csrf_protection activates a component that we

don't have installed! No problem! Go back to symfony.sh and search for "csrf". There it is!

Run:

framework:

 csrf_protection: ~

composer require security-csrf

By the way, once this is installed, the csrf_protection key in framework.yaml should

not be needed... well, starting in Symfony 4.0.2... there was a small bug. Since I'm using 4.0.1,

I'll keep it.

Let's go check on Composer. It downloads the package and... explodes!

“CSRF protection needs sessions to be enabled”

Enabling Sessions

Ah, sessions. They are off by default. Uncomment this config to activate them. Sessions are a

bit weird, because, unlike translator or csrf_protection , you can't activate them simply

by requiring a package. You need to manually change this config. It's no big deal, but it's the

one part of framework config that isn't super smooth.

config/packages/framework.yaml

1

 // ... lines 2 - 7

8

9

10

 // ... lines 11 - 16

Oh, and notice that this config is a bit different than before. In Symfony 3, we stored sessions in

var/sessions . And you can still totally do this. But the new default tells PHP to store it on the

filesystem wherever it wants. It's just one less thing to worry about: PHP will handle all the file

permissions.

 Tip

Just remember: when you change your session storage location, your users will lose their

current session data when you first deploy!

Remove the old session configuration. Let's see if the app works!

framework:

 session:

 # With this config, PHP's native session handling is used

 handler_id: ~

./bin/console

Yes!

Migrate Twig

We're getting close! Next is templating . This component still exists, but isn't recommended

anymore. Instead, you should use twig directly. So, delete it.

 Tip

If your app references the templating service, you'll need to change that to twig .

But our app does use Twig. So find your terminal. Oh, let's commit first: I want to see what the

Twig recipe does. Create a calm and sophisticated commit message. Now run:

composer require twig

Yay aliases! This added TwigBundle, and Flex installed its Recipe. Run:

git status

Ah, this made some cool changes! First, in config/bundles.php , it automatically enabled

the bundle. Flex does this for every bundle. I love that!

It also added a config/packages/twig.yaml file. Where do templates live in a Flex app?

You can see it right here! In templates/ at the root of our project. And hey! It even created

that directory for us with base.html.twig inside.

The config in twig.yaml is almost the same as our old app. Copy the extra form_themes

and number_format keys, delete the old config, and paste them at the bottom of

twig.yaml .

config/packages/twig.yaml

1

2

3

4

5

6

7

8

9

Oh, and the recipe gave us something else for free! Any routes in config/routes/dev are

automatically loaded, but only in the dev environment. The recipe added a twig.yaml file

there with a route import. This helps you debug and design your error pages. All of this stuff is

handled automatically.

config/routes/dev/twig.yaml

1

2

3

Now that we know that template files should live in templates/ , let's move them there! Open

app/Resources/views . Copy all of the files and paste them. And yes, we do want to

override the default base.html.twig .

Perfect! Now, celebrate: completely remove app/Resources/views . Actually, woh! We can

delete all of Resources/ ! Our app/ directory is getting really small!

Migrating trusted_hosts, fragments & http_method_override

We're now down to the final parts of framework . So what about trusted_hosts ,

fragments and http_method_override? Remove all of those. And in framework.yaml ,

uncomment fragments .

config/packages/framework.yaml

1

 // ... lines 2 - 12

13

 // ... lines 14 - 16

If you run:

twig:

 paths: ['%kernel.project_dir%/templates']

 debug: '%kernel.debug%'

 strict_variables: '%kernel.debug%'

 number_format:

 thousands_separator: ','

 form_themes:

 - bootstrap_3_layout.html.twig

 - _formTheme.html.twig

_errors:

 resource: '@TwigBundle/Resources/config/routing/errors.xml'

 prefix: /_error

framework:

 fragments: ~

bin/console debug:config framework

you'll see that the other keys already default to the old values. Yep, http_method_override

is still true and trusted_hosts is already empty.

Migrating assets

This leaves us with one last key: assets . And guess what? This enables a component. And

right now, in debug:config , you can see that assets is enabled: false .

Install it:

composer require asset

It installs the component, but this time, there is no recipe. But run debug:config again:

./bin/console debug:config framework

Search for "asset". Ha, yes! It enabled itself.

Ok: delete the framework key. This is huge! I know I know, it feels like we still have a lot of

work to do. But that's not true! With framework out of the way, we are in the home stretch!

Chapter 9: Migrating Services & Security

Ok, remember our goal: to move our code - which mostly lives in config/ - into the new

directory structure.

Migrating the doctrine Config

The next section is doctrine ... and there's nothing special here: this is the default config from

Symfony 3. Compare this with config/packages/doctrine.yaml . If you look closely,

they're almost the same - but with a few improvements!

Instead of having multiple config entries for the database host, username and password, it's all

combined into one url . The DATABASE_URL environment variable is waiting to be configured

in the .env file.

But there is one important difference: mappings . In a Flex project, we expect your entities to

live in src/Entity . But currently, our classes live in src/AppBundle/Entity .

And yes yes, we are going to move them... eventually. But let's pretend like moving them is too

big of a change right now: I want to make my files work where they are. How can we do that?

Add a second mapping! This one will look in the src/AppBundle/Entity directory for

classes that start with AppBundle\Entity . Update the alias to AppBundle - that's what lets

you say AppBundle:Genus .

config/packages/doctrine.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 16

17

 // ... lines 18 - 20

21

 // ... lines 22 - 27

28

29

30

31

32

33

Simple & explicit. I love it! Go delete the old doctrine config!

Migrating doctrine_cache and stof_doctrine_extensions

The last two sections are for doctrine_cache and stof_doctrine_extensions . Both

bundles are installed, so we just need to move the config. Huh, but the DoctrineCacheBundle

did not create a config file. That's normal: some bundles don't need configuration, so their

recipes don't add a file. Create it manually: doctrine_cache.yaml . And move all the config

into it.

config/packages/doctrine_cache.yaml

1

2

3

4

5

6

All of the files in this directory are automatically loaded, so we don't need to do anything else.

Then, for stof_doctrine_extensions , it does have a config file, but we need to paste our

custom config at the bottom.

doctrine:

 orm:

 mappings:

 AppBundle:

 is_bundle: false

 type: annotation

 dir: '%kernel.project_dir%/src/AppBundle/Entity'

 prefix: 'AppBundle\Entity'

 alias: AppBundle

doctrine_cache:

 providers:

 my_markdown_cache:

 type: '%cache_type%'

 file_system:

 directory: '%kernel.cache_dir%/markdown_cache'

config/packages/stof_doctrine_extensions.yaml

 // ... lines 1 - 2

3

 // ... line 4

5

6

7

And... that's it! Delete config.yml . Victory!

Migrating Services

Close a few files, but keep the new services.yaml open... because this is our next target!

Open the old services.yml file. This has the normal autowiring and auto-registration stuff, as

well as some aliases and custom service wiring.

Because we're not going to move our classes out of AppBundle yet, we need to continue to

register those classes as services. But in the new file, to get things working, we explicitly

excluded the AppBundle directory, because those classes do not have the App\ namespace.

No problem! Copy the 2 auto-registration sections from services.yml and paste them into

the new file. And I'll add a comment: when we eventually move everything out of AppBundle, we

can delete this. Change the paths: we're now one level less deep.

config/services.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 27

28

29

30

31

32

33

34

35

36

37

38

 // ... lines 39 - 68

Next, copy the existing aliases and services and paste them into the new file.

stof_doctrine_extensions:

 orm:

 default:

 sluggable: true

services:

 # REMOVE when AppBundle is removed

 AppBundle\:

 resource: '../src/AppBundle/*'

 # you can exclude directories or files

 # but if a service is unused, it's removed anyway

 exclude: '../src/AppBundle/{Entity,Repository}'

 AppBundle\Controller\:

 resource: '../src/AppBundle/Controller'

 public: true

 tags: ['controller.service_arguments']

 # END REMOVE

config/services.yaml

 // ... lines 1 - 6

7

 // ... lines 8 - 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

And... ready? Delete services.yml ! That was a big step! Suddenly, almost all of our existing

code is being used: we just hooked our old code into the new app.

But, does it work! Maybe....? Try it!

./bin/console

services:

 # add more service definitions when explicit configuration is needed

 # please note that last definitions always *replace* previous ones

 Knp\Bundle\MarkdownBundle\MarkdownParserInterface: '@markdown.parser'

 Doctrine\ORM\EntityManager: '@doctrine.orm.default_entity_manager'

 AppBundle\Service\MarkdownTransformer:

 arguments:

 $cacheDriver: '@doctrine_cache.providers.my_markdown_cache'

 AppBundle\Doctrine\HashPasswordListener:

 tags: [doctrine.event_subscriber]

 AppBundle\Form\TypeExtension\HelpFormExtension:

 tags:

 - { name: form.type_extension, extended_type:

Symfony\Component\Form\Extension\Core\Type\FormType }

 AppBundle\Service\MessageManager:

 arguments:

 - ['You can do it!', 'Dude, sweet!', 'Woot!']

 - ['We are *never* going to figure this out', 'Why even try

again?', 'Facepalm']

 AppBundle\EventSubscriber\AddNiceHeaderEventSubscriber:

 arguments:

 $showDiscouragingMessage: true

 # example of adding aliases, if one does not exist

 # Symfony\Component\Security\Guard\GuardAuthenticatorHandler:

'@security.authentication.guard_handler'

Migrating Security

Ah! Not quite: a class not found error from Symfony's Guard security component. Why?

Because we haven't installed security yet! Let's do it:

composer require security

It downloads and then... another error! Interesting:

“LoginFormAuthenticator contains 1 abstract method”

Ah! I think we missed a deprecation warning, and now we're seeing a fatal error. Open

AppBundle/Security/LoginFormAuthenticator.php .

PhpStorm agrees: class must implement method onAuthenticationSuccess . Let's walk

through this change together. First, remove getDefaultSuccessRedirectUrl() : that's not

used anymore. Then, go to the Code->Generate menu - or Command+N on a Mac - select

"Implement methods" and choose onAuthenticationSuccess .

Previously, this method was handled by the base class for you. But now, it's your responsibility.

No worries: it's pretty simple. To help, at the top, use a trait called TargetPathTrait .

src/AppBundle/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

22

 // ... lines 23 - 74

75

76

 // ... lines 77 - 81

82

 // ... lines 83 - 87

88

Back down in onAuthenticationSuccess , this allows us to say if

$targetPath = $this->getTargetPath() with $request->getSession() and

main .

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 use TargetPathTrait;

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, $providerKey)

 {

 }

}

src/AppBundle/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 74

75

76

77

 // ... line 78

79

80

 // ... line 81

82

 // ... lines 83 - 87

88

Let's break this down. First, the main string is just the name of our firewall. In both the old and

new security config, that's its key.

Second, what does getTargetPath() do? Well, suppose the user originally tried to go to

/admin , and then they were redirected to the login page. After they login, we should probably

send them back to /admin , right? The getTargetPath() method returns the URL that the

user originally tried to access, if any.

So if there is a target path, return new RedirectResponse($targetPath) . Else, return new

RedirectResponse and generate a URL to the homepage.

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, $providerKey)

 {

 if ($targetPath = $this->getTargetPath($request->getSession(),

'main')) {

 }

 }

}

src/AppBundle/Security/LoginFormAuthenticator.php

 // ... lines 1 - 19

20

21

 // ... lines 22 - 74

75

76

77

78

79

80

81

82

 // ... lines 83 - 87

88

PhpStorm thinks this isn't a real route, but it is!

Problem solved! Is that enough to make our app happy? Find out!

./bin/console

It is! But before we move on, we need to migrate the security config. Copy all of the old

security.yml , and completely replace the new security.yaml . To celebrate, delete the

old file!

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function onAuthenticationSuccess(Request $request,

TokenInterface $token, $providerKey)

 {

 if ($targetPath = $this->getTargetPath($request->getSession(),

'main')) {

 return new RedirectResponse($targetPath);

 }

 return new RedirectResponse($this->router->generate('homepage'));

 }

}

config/packages/security.yaml

 // ... lines 1 - 2

3

4

5

6

7

8

 // ... lines 9 - 14

15

 // ... lines 16 - 20

21

22

23

24

25

26

27

28

29

30

 // ... lines 31 - 38

39

40

And... ah! We're super close. Only a few more files to deal with! By the end of the next chapter,

our app/config/ directory will be gone!

security:

 encoders:

 AppBundle\Entity\User: bcrypt

 role_hierarchy:

 ROLE_ADMIN: [ROLE_MANAGE_GENUS, ROLE_ALLOWED_TO_SWITCH]

 firewalls:

 main:

 anonymous: ~

 guard:

 authenticators:

 - AppBundle\Security\LoginFormAuthenticator

 logout:

 path: /logout

 switch_user: ~

 logout_on_user_change: true

 access_control:

 # - { path: ^/admin, roles: ROLE_ADMIN }

Chapter 10: Final config/ Migration

We are in the Flex home stretch! These last config/ files are the easiest. Start with

config_dev.yml .

Dev Environment Parameters

Ok, we have a cache_type parameter. This is meant to override the value that lives in

services.yaml whenever we're in the dev environment.

How can we have dev-specific parameters or services in Flex? By creating a new

services_dev.yaml file. Copy the parameter, remove it and paste it here.

config/services_dev.yaml

1

2

Symfony will automatically load this file in the dev environment only.

Migrating config_dev.yml

For the rest of this file... we haven't really changed anything: these are the original default

values. So there's a good chance that we can just use the new files without doing anything.

And yea! If you investigated, you would find that the framework config is already represented

in the new files. And the profiler ... well actually... that's not even installed yet. Let's fix that:

composer require profiler

Go back and remove the framework and web_profiler sections. When Composer

finishes... yes! This installed a recipe. The new web_profiler.yaml file contains exactly

parameters:

 cache_type: array

what we just removed. It even added config for the test environment and loaded the routes it

needs. Thanks profiler!

config/packages/dev/web_profiler.yaml

1

2

3

4

5

6

config/packages/test/web_profiler.yaml

1

2

3

4

5

6

config/routes/dev/web_profiler.yaml

1

2

3

4

5

6

7

The last key in config_dev.yml is monolog . Monolog is installed... and its recipe added

config for the dev and prod environments.

I haven't made any changes to my monolog config that I really care about - just this firephp

section, which I could re-add if I want. So I'll use the new default config and just... delete

config_dev.yml ! We can also delete config_prod.yml .

doctrine Config in config_prod.yml

Oh, by the way, if you have some doctrine caching config in config_prod.yml , I would

recommend not migrating it. The DoctrineBundle recipe gives you prod configuration that is

great for production out-of-the-box. Booya!

web_profiler:

 toolbar: true

 intercept_redirects: false

framework:

 profiler: { only_exceptions: false }

web_profiler:

 toolbar: false

 intercept_redirects: false

framework:

 profiler: { collect: false }

web_profiler_wdt:

 resource: '@WebProfilerBundle/Resources/config/routing/wdt.xml'

 prefix: /_wdt

web_profiler_profiler:

 resource: '@WebProfilerBundle/Resources/config/routing/profiler.xml'

 prefix: /_profiler

Migrating config_test.yml

Next: config_test.yml . And yea... this is still just default config. But there is one gotcha: in

config/packages/test/framework.yaml , uncomment the session config.

config/packages/test/framework.yaml

1

 // ... line 2

3

4

I mentioned earlier that the session config is not perfect smooth: if you need sessions, you need

to uncomment some config in the main framework.yaml and here too.

Ok, delete config_test.yml !

Migrating paramters.yml?

What about parameters.yml? In Flex, this file does not exist. Instead of referencing

parameters, we reference environment variables. And in the dev environment, we set these in

the .env file.

We also had a parameters.yml.dist file, which kept track of all the parameters we need. In

Flex, yea, we've got the same: .env.dist .

The parameters.yml file in this project only holds database config and secret ... and both

of these are already inside .env and .env.dist .

The only difference between the files is how you reference the config. In doctrine.yaml ,

instead of using %DATABASE_URL% to reference a paramter, you reference environment

variables with a strange config: %env(DATABASE_URL)% .

But other than that, it's the same idea. Oh, the resolve: part is optional: it allows you to put

parameters inside of your environment variable values.

So... we're good! Delete parameters.yml and parameters.yml.dist . If you have other

keys in parameters.yml , add them to .env and .env.dist and then go update where

they're referenced to use the new syntax. Easy peasy.

framework:

 session:

 storage_id: session.storage.mock_file

While we're on the topic, in .env , update your database config: I'll use root with no password

and call the database symfony4_tutorial .

Copy that and repeat it in .env.dist : I want this to be my default value.

.env.dist

 // ... lines 1 - 15

16

 // ... lines 17 - 25

Migrating routing Files

Back to the mission! What about routing.yml? Copy its contents. I'll close a few directories...

then open config/routes.yaml . Paste here!

config/routes.yaml

1

2

3

4

5

6

7

8

We already have a config/routes/dev/annotations.yaml file that loads annotation

routes from src/Controller . But for now, we still need our import because it loads routes

from AppBundle.

But we do need to make two small changes. Even though we'll keep the AppBundle directory

for now, we are not going to actually register it as a bundle anymore. Yep, AppBundle.php

can be deleted: we just don't need bundles anymore.

But to make this work, we need to replace @AppBundle with a normal path:

../src/AppBundle/Controller .

And for the homepage route, remove the weird three-part colon syntax and just use the full

class name: AppBundle\Controller\MainController::homepageAction .

DATABASE_URL=mysql://root:@127.0.0.1:3306/symfony4_tutorial

app:

 resource: "@AppBundle/Controller/"

 type: annotation

homepage:

 path: /

 defaults:

 _controller: AppBundle:Main:homepage

config/routes.yaml

1

2

 // ... lines 3 - 4

5

 // ... line 6

7

8

I am so happy to be done with those two Symfony-specific syntaxes! Delete routing.yml .

And... routing_dev.yml? Yep, delete it too! The Flex recipes handle this stuff too.

In fact, delete the config/ directory!

Does our app work? Try to list the routes:

./bin/console debug:router

Ha! Yes! We have our routes back!

Next, let's delete some files - that's always fun - and then welcome our new Flex app!

app:

 resource: "../src/AppBundle/Controller/"

homepage:

 defaults:

 _controller: AppBundle\Controller\MainController::homepageAction

Chapter 11: Hello Flex: Moving Final Files

We're on a mission to remove the last parts of our Symfony 3 structure!

Moving DoctrineMigrations

So what about the DoctrineMigrations directory? Look in src/ . Interesting... the

DoctrineMigrationsBundle recipe added a Migrations/ directory. So, I guess that's where

they go!

Copy all of the migration files and paste them there. I guess that worked? Let's find out:

./bin/console doctrine:migrations:status

Ah! I guess not! It says that my migration class wasn't found: Is it placed in a

DoctrineMigrations namespace? Bah! I don't know!

Our files have an Application\Migrations namespace. What's going on? Open the

config/packages/doctrine_migrations.yaml file.

Ah ha! The recipe installed config that told the bundle to expect a DoctrineMigrations

namespace. Easy fix! Copy the current namespace, and paste it here.

config/packages/doctrine_migrations.yaml

1

 // ... lines 2 - 4

5

Try the command again:

./bin/console doctrine:migrations:status

doctrine_migrations:

 namespace: 'Application\Migrations'

Life is good! Well, we don't have a database - but life is still pretty good.

Removing the app/ Directory

At this point, app/ only has 3 files left: AppKernel , AppCache and autoload.php . And

unless you made some crazy customizations to these, you don't need any of them. Yes, I'm

telling you to delete the app/ directory!

And in composer.json , remove the classmap line: those files are gone!

Moving & Delete Files

Let's reset our files and look at each directory one by one. We need bin/ , config/ and

public/ is the new document root. src/ holds our code, and templates/ , tests/ and

translations/ are all valid Flex directories. Oh, and tutorial/? Ignore that: I added that

for this course - it has a file we'll use later.

But expand var/ . Delete everything except for cache and log : the default logs directory was

renamed in Flex. And that bootstrap file is a relic of the past!

And finally.... web/ ! This directory should not exist. Select the files we need: css/ , images/ ,

js/ and vendor/ : move these into public/ . Let's also move robots.txt .

And that's it! The favicon is from Symfony and we don't need the app files anymore. What

about .htaccess? You only need that if you use Apache. And if you do, Flex can add this file

for you! Just run composer require symfony/apache-pack . The recipe will add this

inside public .

Anyways, delete web/ ! This is it! Our app is fully in Flex! And we didn't even need to move all

our files from src/AppBundle ... though we will do that soon. And as far as bin/console is

concerned, the app works!

But to really prove it's alive, let's try this in a browser and handle a few last details. That's next!

Chapter 12: The Server & New IsGranted

Time to try our app! First, in .env , change the database name to symfony3_tutorial , or

whatever the database name was called when you first setup the project. Now when we run

doctrine:migrations:status ... yes! We have a full database!

Installing the Server

Let's start the built-in web server:

./bin/console server:run

Surprise!

“There are no commands defined in the "server" namespace.”

Remember: with Flex, you opt in to features. Run:

composer require server

When it finishes, run:

./bin/console server:run

Interesting - it started on localhost:8001 . Ah, that's because the old server is still running

and hogging port 8000! And woh! It's super broken: we've removed a ton of files it was using.

Hit Ctrl+C to stop the server. Ah! It's so broken it doesn't want to stop! It's taking over! Close that

terminal!

Start the server again:

./bin/console server:run

It still starts on port 8001, but that's fine! Go back to your browser and load

http://localhost:8001 . Ha! It works! Check it out: Symfony 4.0.1.

Surf around to see if everything works: go to /genus . Looks great! Now /admin/genus . Ah!

Looks terrible!

“To use the @Security tag, you need to use the Security component and the

ExpressionLanguage component.”

The New @IsGranted

Hmm. Let's do some digging! Open

src/AppBundle/Controller/Admin/GenusAdminController.php . Yep! Here is the

@Security annotation from FrameworkExtraBundle. The string we're passing to it is an

expression, so we need to install the ExpressionLanguage.

But wait! I have a better idea. Google for SensioFrameworkExtraBundle and find its GitHub

page. Click on releases: the latest is 5.1.3. What version do we have? Open composer.json :

woh! We're using version 3! Ancient!

Let's update this to ^5.0 .

composer.json

1

 // ... lines 2 - 16

17

 // ... lines 18 - 23

24

 // ... lines 25 - 42

43

 // ... lines 44 - 80

81

Then, run:

{

 "require": {

 "sensio/framework-extra-bundle": "^5.0",

 },

}

https://github.com/sensiolabs/SensioFrameworkExtraBundle
https://github.com/sensiolabs/SensioFrameworkExtraBundle

composer update sensio/framework-extra-bundle

to update just this library. Like with any major upgrade, look for a CHANGELOG to make sure

there aren't any insane changes that will break your app.

So... why are we upgrading? So glad you asked: because the new version has a feature I really

like! As soon as Composer finishes, go back to GenusAdminController . Instead of using

@Security , use @IsGranted .

src/AppBundle/Controller/Admin/GenusAdminController.php

 // ... lines 1 - 12

13

14

 // ... line 15

16

17

 // ... lines 18 - 97

This is similar, but simpler. For the value, you only need to say: ROLE_MANAGE_GENUS .

Try it - refresh! Yes! We're sent to the login page - that's good! Sign in with password

iliketurtles .

At this point... we're done! Unless... you want to move all of your classes from AppBundle

directly into src/ . I do! And it's much easier than you might think.

/**

 * @IsGranted("ROLE_MANAGE_GENUS")

 */

class GenusAdminController extends Controller

Chapter 13: Bye Bye AppBundle

If you want to stop now, you can! Your old code lives in src/AppBundle , but it works! Over

time, you can slowly migrate it directly into src/ .

Or! We can keep going: take this final challenge head-on and move all our files at once! If you're

not using PhpStorm... this will be a nightmare. Yep, this is one of those rare times when you

really need to use it.

Moving your Files

Open AppBundle.php . Then, right click on the AppBundle namespace and go to Refactor ->

Move. The new namespace will be App . And below... yea! The target destination should be

src/ .

This says: change all AppBundle namespaces to App and move things into the src/

directory. Try it! On the big summary, click OK!

src/AppBundle.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

In addition to changing the namespace at the top of each file, PhpStorm is also searching for

references to the namespaces and changing those too. Will it be perfect? Of course not! But

that last pieces are pretty easy.

Woh! Yes! Everything is directly in src/ . AppBundle is now empty, except for a

fixtures.yml file. We're going to replace that file soon anyways.

Delete AppBundle! That felt amazing!

namespace App;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AppBundle extends Bundle

{

}

Refactoring tests/

Let's do the same thing for the tests/ directory... even though we only have one file. Open

DefaultControllerTest.php and Refactor -> Move its namespace. In Flex, the

namespace should start with App\Tests . Then, press F2 to change the directory to

tests/Controller .

tests/Controller/DefaultControllerTest.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 17

18

Ok, Refactor! Nice! Now delete that AppBundle.

Cleaning up AppBundle

With those directories gone, open composer.json and find the autoload section. Remove

both AppBundle parts.

So... will it work? Probably not - but let's try! Refresh! Ah!

“The file ../src/AppBundle does not exist in config/services.yaml”

Ah, that makes sense. Open that file: we're still trying to import services from the old directory.

Delete those two sections. And, even though it doesn't matter, remove AppBundle from the

exclude above.

In routes.yaml , we also have an import. Remove it! Why? Annotations are already being

loaded from src/Controller . And now, that's where our controllers live!

Oh, and change AppBundle to App for the homepage route - I can now even Command+Click

into that class. Love it!

namespace App\Tests\Controller;

class DefaultControllerTest extends WebTestCase

{

}

config/routes.yaml

1

2

3

4

Back in services.yaml , we still have a lot of AppBundle classes in here: PhpStorm is not

smart enough to refactor YAML strings. But, the fix is easy: Find all AppBundle and replace

with App .

config/services.yaml

 // ... lines 1 - 17

18

 // ... lines 19 - 23

24

 // ... lines 25 - 33

34

 // ... lines 35 - 37

38

 // ... lines 39 - 40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 49

50

 // ... lines 51 - 56

Done! There is one last thing we need to undo: in config/packages/doctrine.yaml .

Remove the AppBundle mapping we added.

So, what other AppBundle things haven't been updated yet? It's pretty easy to find out. At your

terminal, run:

git grep AppBundle

Hey! Not too bad. And most of these are the same: calls to getRepository() . Start in

security.yaml and do the same find and replace. You could do this for your entire project,

but I'll play it safe.

homepage:

 path: /

 defaults:

 _controller: App\Controller\MainController::homepageAction

 App\:

 App\Controller\:

 App\Service\MarkdownTransformer:

 App\Doctrine\HashPasswordListener:

 App\Form\TypeExtension\HelpFormExtension:

 App\Service\MessageManager:

 App\EventSubscriber\AddNiceHeaderEventSubscriber:

config/packages/security.yaml

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 10

11

12

13

 // ... line 14

15

 // ... lines 16 - 20

21

 // ... line 22

23

24

25

 // ... lines 26 - 41

Now, completely delete the AppBundle.php file: we're already not using that. Next is

GenusAdminController . Open that class. But instead of replacing everything, which would

work, search for AppBundle. Ah! It's a getRepository() call!

Our project has a lot of these... and... well... if you're lazy, there's a secret way to fix it! Just

change the alias in doctrine.yaml from App to AppBundle . Cool... but let's do it the

right way! Use Genus::class .

src/Controller/Admin/GenusAdminController.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 21

22

23

24

25

 // ... lines 26 - 30

31

 // ... lines 32 - 96

97

We have a few more in GenusController . Use SubFamily::class , User::class ,

Genus::class , GenusNote::class and GenusScientist::class .

security:

 encoders:

 App\Entity\User: bcrypt

 providers:

 our_users:

 entity: { class: App\Entity\User, property: email }

 firewalls:

 main:

 guard:

 authenticators:

 - App\Security\LoginFormAuthenticator

class GenusAdminController extends Controller

{

 public function indexAction()

 {

 $genuses = $this->getDoctrine()

 ->getRepository(Genus::class)

 }

}

src/Controller/GenusController.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 22

23

24

 // ... lines 25 - 26

27

 // ... lines 28 - 42

43

 // ... lines 44 - 60

61

 // ... lines 62 - 65

66

67

 // ... lines 68 - 69

70

 // ... lines 71 - 75

76

 // ... lines 77 - 80

81

82

 // ... lines 83 - 88

89

 // ... lines 90 - 96

97

 // ... lines 98 - 127

128

129

 // ... lines 130 - 131

132

 // ... lines 133 - 141

142

143

Ok, back to the list! Ah, a few entities still have AppBundle . Start with Genus . The

repositoryClass , of course! Change AppBundle to App . There's another reference down

below on a relationship. Since all the entities live in the same directory, this can be shortened to

just SubFamily .

class GenusController extends Controller

{

 public function newAction()

 {

 $subFamily = $em->getRepository(SubFamily::class)

 $user = $em->getRepository(User::class)

 }

 public function listAction()

 {

 $genuses = $em->getRepository(Genus::class)

 }

 public function showAction(Genus $genus, MarkdownTransformer

$markdownTransformer, LoggerInterface $logger)

 {

 $recentNotes = $em->getRepository(GenusNote::class)

 }

 public function removeGenusScientistAction($genusId, $userId)

 {

 $genusScientist = $em->getRepository(GenusScientist::class)

 }

}

src/Entity/Genus.php

 // ... lines 1 - 12

13

14

 // ... line 15

16

17

18

 // ... lines 19 - 37

38

 // ... line 39

40

 // ... line 41

42

43

 // ... lines 44 - 221

222

Make the same change in GenusNote , SubFamily and User .

src/Entity/GenusNote.php

 // ... lines 1 - 6

7

8

 // ... line 9

10

11

 // ... lines 12 - 101

src/Entity/SubFamily.php

 // ... lines 1 - 6

7

8

 // ... line 9

10

11

 // ... lines 12 - 45

src/Entity/User.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 15

16

17

 // ... lines 18 - 223

/**

 * @ORM\Entity(repositoryClass="App\Repository\GenusRepository")

 */

class Genus

{

 /**

 * @ORM\ManyToOne(targetEntity="App\Entity\SubFamily")

 */

 private $subFamily;

}

/**

 * @ORM\Entity(repositoryClass="App\Repository\GenusNoteRepository")

 */

class GenusNote

/**

 * @ORM\Entity(repositoryClass="App\Repository\SubFamilyRepository")

 */

class SubFamily

/**

 * @ORM\Entity(repositoryClass="App\Repository\UserRepository")

 */

class User implements UserInterface

Almost done! Next is GenusFormType : open that and change the data_class to

Genus::class .

src/Form/GenusFormType.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 60

61

62

63

64

65

66

 // ... lines 67 - 107

108

Then, finally, LoginFormAuthenticator . Update AppBundle:User to User::class .

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 20

21

22

 // ... lines 23 - 56

57

58

 // ... lines 59 - 60

61

 // ... line 62

63

 // ... lines 64 - 88

89

Phew! Search for AppBundle again:

git grep AppBundle

They're gone! So... ahh... let's try it! Refresh! Woh! An "Incomplete Class" error? Fix it by

manually going to /logout . What was that? Well, because we changed the User class, the

User object in the session couldn't be deserialized. On production, your users shouldn't get an

error, but they will likely be logged out when you first deploy.

class GenusFormType extends AbstractType

{

 public function configureOptions(OptionsResolver $resolver)

 {

 $resolver->setDefaults([

 'data_class' => Genus::class

]);

 }

}

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

 public function getUser($credentials, UserProviderInterface

$userProvider)

 {

 return $this->em->getRepository(User::class)

 }

}

Go back to /admin/genus , then login with weaverryan+1@gmail.com , password

iliketurtles . Guys, we're done! We have a Symfony 4 app, built on the Flex directory

structure, and with no references to AppBundle! And it was all done in a safe, gradual way.

To celebrate, I've added one last video with a few reasons to be thrilled that you've made it this

far.

Chapter 14: Flex Extras

Now that we're on Symfony 4 with Flex, I have three cool things to show you.

Repositories as a Service

Start by opening GenusController : find listAction . Ah yes: this is a very classic setup:

get the entity manager, get the repository, then call a method on it.

One of the annoying things is that - unless you add a bunch of extra config - repositories are not

services and can not be autowired. Boo!

Well... that's not true anymore! Want your repository to be a service? Just make two changes.

First, extend a new base class: ServiceEntityRepository .

src/Repository/GenusRepository.php

 // ... lines 1 - 5

6

 // ... lines 7 - 10

11

12

 // ... lines 13 - 50

51

And second, override the __construct() function. But remove the $entityClass

argument.

 Tip

Make sure the type-hint for the first argument is RegistryInterface not ManagerRegistry.

In the parent call, use Genus::class .

use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;

class GenusRepository extends ServiceEntityRepository

{

}

src/Repository/GenusRepository.php

 // ... lines 1 - 12

13

14

15

16

 // ... lines 17 - 52

That might look weird at first... but with those two small changes, your repository is already

being auto-registered as a service! Yep, back in listAction , add a new argument:

GenusRepository $genusRepository . Use that below instead of fetching the

EntityManager .

src/Controller/GenusController.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 66

67

68

69

70

 // ... lines 71 - 74

75

 // ... lines 76 - 141

142

And that's it! Go to that page in your browser: /genus . Beautiful! Make that same change to

your other repository classes when you want to.

Fixtures as Services

Ok, cool thing #2: our fixtures are broken. Well... that's not the cool part. They're broken

because we removed Alice, so everything explodes:

But, there's even more going on. Find your composer.json file and make sure the version

constraint is ^3.0 .

 public function __construct(ManagerRegistry $registry)

 {

 parent::__construct($registry, Genus::class);

 }

class GenusController extends Controller

{

 public function listAction(GenusRepository $genusRepository)

 {

 $genuses = $genusRepository

 ->findAllPublishedOrderedByRecentlyActive();

 }

}

composer.json

1

 // ... lines 2 - 42

43

 // ... lines 44 - 45

46

47

 // ... lines 48 - 79

80

Then, run:

composer update doctrine/doctrine-fixtures-bundle

Version 3 of this bundle is all new... but not in a "broke everything" kind of way. Before, fixture

classes were loaded because they lived in an exact directory: usually DataFixtures\ORM in

your bundle. And if you needed to access services, you extended ContainerAwareFixture

and fetched them directly from the container.

Well, no more! In the new version, your fixtures are services, and so they act like everything

else. You can even put them anywhere.

When Composer finishes, download one more package:

composer require fzaninotto/faker

 Tip

Even better would be composer require fzaninotto/faker --dev !

This isn't needed by DoctrineFixturesBundle, but we are going to use it. In fact, if you

downloaded the course code, you should have a tutorial/ directory with an

AllFixtures.php file inside. Copy that and put it directly into DataFixtures .

{

 "require-dev": {

 "doctrine/doctrine-fixtures-bundle": "^3.0"

 },

}

src/DataFixtures/AllFixtures.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 22

23

24

25

26

27

28

29

30

31

32

33

 // ... lines 34 - 140

141

Then, delete the old ORM directory. This is our new fixture class: all we need to do is extend

Fixture from the bundle, and the command instantly recognizes it. If you need services, just

add a constructor and use autowiring!

Let's go check on Faker. Ah, it's done! Inside the class, Faker allows me to generate really nice,

random values. Does it work? Reload the fixtures:

./bin/console doctrine:fixtures:load

It sees our class immediately and... it works! Fixtures are services... and they work great.

MakerBundle

Ready for one last cool thing? Run:

composer require maker --dev

This installs the MakerBundle: Symfony's new code generator. Code generation is of course

optional. But with this bundle, you'll be able to develop new features faster than ever. Need a

class AllFixtures extends Fixture

{

 public function load(ObjectManager $manager)

 {

 $this->faker = Factory::create();

 $this->addSubFamily($manager);

 $this->addGenus($manager);

 $this->addGenusNote($manager);

 $this->addUser($manager);

 $this->addGenusScientist($manager);

 $manager->flush();

 }

}

console command, an event subscriber or a Twig extension? Yep, there's a command for that.

What's everything it can do? Run:

./bin/console list make

Right now, it has about 10 commands - but there are a lot more planned: this bundle is only

about 1 month old!

Let's try one of these commands!

./bin/console make:voter

Call it RandomAccessVoter : we'll create a voter that randomly gives us access. Fun! Open

the new class in src/Security/Voter . This comes pre-generated with real-world example

code. In supports() , return $attribute === 'RANDOM_ACCESS' . Our voter will vote

when someone calls isGranted() with RANDOM_ACCESS .

src/Security/Voter/RandomAccessVoter.php

 // ... lines 1 - 8

9

10

11

12

13

14

 // ... lines 15 - 19

20

Then, for voteOnAttribute() , return random_int(0, 10) > 5 .

src/Security/Voter/RandomAccessVoter.php

 // ... lines 1 - 15

16

17

18

19

 // ... lines 20 - 21

class RandomAccessVoter extends Voter

{

 protected function supports($attribute, $subject)

 {

 return $attribute === 'RANDOM_ACCESS';

 }

}

 protected function voteOnAttribute($attribute, $subject,

TokenInterface $token)

 {

 return random_int(0, 10) > 5;

 }

Now we need to go and update some configuration, right? No! This class is already being used!

Open GenusController and... above newAction() , add

@IsGranted("RANDOM_ACCESS") .

src/Controller/GenusController.php

 // ... lines 1 - 19

20

21

22

 // ... line 23

24

25

26

 // ... lines 27 - 143

144

Done! Try it: go to /genus/new . Ha! It sent us to the login page - that proves its working. Login

with iliketurtles and... access granted! Refresh - granted! Refresh - denied!

All that by running 1 command and changing about 3 lines. Welcome to Symfony 4.

Let's go Symfony 4!

Hey, we're done! Upgrading to the Flex structure is work, but I hope you're as happy as I am

about the result! To go further with Flex and Symfony 4, check out our Symfony Track: we're

going to start a project with Flex and really do things right.

All right guys. Seeya next time!

class GenusController extends Controller

{

 /**

 * @IsGranted("RANDOM_ACCESS")

 */

 public function newAction()

}

https://knpuniversity.com/tracks/symfony

With <3 from SymfonyCasts

