
Upgrading & What's New in Symfony 6!

Chapter 1: Project Setup & The Plan

Hey friends! If you're like me, you probably have a Symfony 5 project - or 10 - lying around just waiting to get upgraded to

Symfony 6. Well... you've come to the right place! That's exactly what we're going to do in this tutorial! But more than that!

This is a particularly interesting upgrade, because it also involves updating our code to use PHP 8. And that includes a

transformation from using annotations to PHP 8 attributes. I need to find my monocle, because we're getting fancy. It also

includes several other PHP 8 features, which you're really going to like. Plus, for the first time, we're going to use a tool

called "Rector" to automate as much of this as possible. And... because I just can't help myself, we'll discover nice new

Symfony 6 features along the way.

Getting the Project Running

All right! To get this upgrade party started, you should definitely code along with me. Download the course code from this

page and unzip it to find a start/ directory with the same code you see here. Follow this README.md file for all the

setup goodies. I've already followed most of these steps... but I still need to build my Webpack Encore assets and start a

web server. So let's do that!

Over in my terminal (this is already inside the project), run

yarn install

or

npm install

to download the Node packages. I want to get this running properly because we're going to upgrade some of our

JavaScript tools a bit later.

Then run:

yarn watch

or

npm run watch

to build the frontend assets... and then watch for changes.

For the last step: open a new terminal tab and get a local web server started. I'm going to use the Symfony server like

normal by running:

symfony serve -d

And... awesome! That starts a new web server at https://127.0.0.1:8000. I'll click that and say... "Hello" to Cauldron

Overflow! My old friend! This is the site we've been building throughout our Symfony 5 series. And if you check its

composer.json file... and look down here for Symfony stuff... whoa.. it is old. All of the main Symfony libraries are

version "5.0". That was ages ago. I was so young then!

The Plan

Here's our upgrade strategy. Step one: we're going to upgrade our project to Symfony 5.4. That's safe to do because

Symfony doesn't include any backwards compatibility breaks on minor version upgrade. So anytime you upgrade just this

middle number - called the "minor" number, like 5.0 to 5.4 - that's always going to be safe.

Step two: once we're on Symfony 5.4, to prepare our code for Symfony 6, all we need to do is hunt down and fix all of the

deprecations in our code. Once we've fixed those, it will be safe to go to Symfony 6. To find those deprecations, we're

going to use a few tools, like "Rector" to upgrade parts of our code, the new recipes update system and the tried-and-true

Symfony "deprecations reporting".

After all of that, once we have a Symfony 5.4 project with no deprecations... we can just "flip the switch" and upgrade to

Symfony 6. Easy peasy!

And at the very end, we'll cover a few more new features that you might like. Are you ready? Great! Let's upgrade our site

to Symfony 5.4 next.

https://127.0.0.1:8000/

Chapter 2: Upgrading to Symfony 5.4

Step one to upgrading our app to Symfony 6 is to upgrade all of the Symfony libraries to 5.4. And... that's pretty easy: it's

just a composer thing.

Tweaking the Composer Version Constraints

In composer.json , we have quite a few libraries that start with symfony/ . Most of these are part of the "main"

Symfony project and they follow Symfony's familiar versioning, with versions like 5.0, 5.1, up to 5.4 and then 6.0. Those

are the packages that we're going to focus on upgrading.

But a few of these, like symfony/maker-bundle , follow their own versioning scheme. What a diva! We're not going to

worry about upgrading those right now, but we will make sure that, by the end, we've upgraded everything.

Okay, what we need to do is change all of these 5.0.* to 5.4.* . I'm going to do a "Find & Replace" to replace 5.0.*

with 5.4.* . Hit "Replace All".

composer.json

1

 // ... lines 2 - 5

6

 // ... lines 7 - 21

22

23

24

 // ... line 25

26

27

 // ... line 28

29

30

31

32

33

34

35

36

 // ... line 37

38

 // ... lines 39 - 44

45

46

 // ... line 47

48

 // ... lines 49 - 51

52

 // ... line 53

54

 // ... lines 55 - 100

101

102

103

104

105

106

107

Nice! And notice that, in addition to the packages themselves, we also needed to change the extra.symfony.require

key. This is a performance optimization from Flex: it basically makes sure that Flex only considers Symfony packages that

match this version. Just make sure that you don't forget to update it.

Ok... let's see. This updated a lot of libraries. To make sure we didn't miss anything, search for symfony/ ... and scroll

down a bit. The monolog-bundle has its own versioning, so that's ok. But, ooh... I did miss one: symfony/routing .

For some reason, this was already at Symfony 5.1. So let's change that to 5.4.* as well.

And... everything else looks okay: each is changed to 5.4.* or it has its own versioning strategy... and we're not going to

worry about it right now.

Updating the Dependencies

To actually update these, over at your terminal, we could try to upgrade just the Symfony packages with:

{

 "require": {

 "symfony/asset": "5.4.*",

 "symfony/console": "5.4.*",

 "symfony/dotenv": "5.4.*",

 "symfony/form": "5.4.*",

 "symfony/framework-bundle": "5.4.*",

 "symfony/property-access": "5.4.*",

 "symfony/property-info": "5.4.*",

 "symfony/proxy-manager-bridge": "5.4.*",

 "symfony/routing": "5.4.*",

 "symfony/security-bundle": "5.4.*",

 "symfony/serializer": "5.4.*",

 "symfony/stopwatch": "5.4.*",

 "symfony/twig-bundle": "5.4.*",

 "symfony/validator": "5.4.*",

 },

 "require-dev": {

 "symfony/debug-bundle": "5.4.*",

 "symfony/web-profiler-bundle": "5.4.*",

 },

 "extra": {

 "symfony": {

 "allow-contrib": false,

 "require": "5.4.*"

 }

 }

}

composer up 'symfony/*'

There's a good chance that's going to fail... because in order to upgrade all of the Symfony packages, some other

package will need to be upgraded, like symfony/proxy-manager-bridge . If you wanted to, you could add that to the

composer up command... or add the -W flag, which tells Composer to upgrade all of the symfony/ libraries and their

dependencies.

But... I'm going to upgrade everything with:

composer up

Look: in our composer.json file, the version constraints on all of the packages (Symfony and other libraries) are really

good! They allow minor version updates, like 4.0 to 4.1, but they don't allow major version updates. So if there were a new

version 5 of this library, running composer up would not upgrade to that new major version.

In other words, updating should only upgrade minor versions... and those, in theory, won't contain any breaks. So let's do

this:

composer up

And... hello upgrades! Wow! Look at that huge list! Lots of Symfony stuff... but plenty of other libraries too.

Ok, so that was a big upgrade. Does the site still work? I don't know! Head over, refresh and... it does! Symfony is

amazing!

Checking out the Deprecations

Now that we're on Symfony 5.4, we can see the full list of deprecated code paths that we hit when rendering this page.

Your number will vary... and the number might even change when you refresh the page... that's due to some pages using

cache. It looks like I have about 71 deprecations.

If you click into this, so cool. We can see what all of those are.

So at this point, our job is simple... but not necessarily easy. We need to hunt down every single one of these

deprecations, figure out what code needs to change, and then make that change. Some of these will be pretty obvious...

and some of them won't.

So before we even attempt to hunt them down manually, let's... do something more automatic. We're programmers right!

Let's use a tool called Rector to automate as many changes to our code as possible. That's next.

Chapter 3: Automating Upgrades with Rector

Now that we're on Symfony 5.4, our job is simple: hunt down and update all of our deprecated code. As soon as we do

that, it will be safe to upgrade to Symfony 6. That's because the only difference between Symfony 5.4 and 6.0 is that all

the deprecated code paths are removed.

Fortunately, Symfony is amazing and tells us - via the web debug toolbar - exactly what code is deprecated. But

understanding what all of these mean... isn't always easy. So before we even try, we're going to automate as much of this

as possible. And we're going to do that with a tool called Rector.

Installing Rector

Head to https://github.com/rectorphp/rector. This is an awesome command-line tool with one job: to automate all sorts of

upgrades to your code, like upgrading your code from Symfony 5.0 compatible code to Symfony 5.4 compatible code. Or

upgrading your code to be PHP 8 compatible. It's a powerful tool... and if you want to learn more about it, they even

released a book where you can go deeper... and also help support the project.

All right, let's get this thing installed! Head over to your terminal and run:

composer require rector/rector --dev

Beautiful! In order for Rector to work, it needs a config file. And we can bootstrap one by running rector with:

 Tip

In newer versions of Rector, instead of ./vendor/bin/rector init , just run ./vendor/bin/rector to do the

same thing.

./vendor/bin/rector init

Awesome! That creates the rector.php file... which we can see over at the root of our project.

 Tip

The latest version of Rector will generate config that looks a bit different than this. But don't worry, it still works exactly

the same.

Inside of this callback function, our job is to configure which types of upgrades we want to apply. These are called "rules"

or sometimes "set lists" or rules. We're going to start with a set of Symfony upgrades.

https://github.com/rectorphp/rector

rector.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Configuring Rector for the Symfony Upgrade

If you look back at the documentation, you'll see a link to a Symfony repository where it tells you about a bunch of

Symfony "rules" - fancy word for "upgrades" - that they've already prepared! That was nice of them!

 Tip

The config on this page will now look different than in the video. But, it still works the same. Copy the latest version

into your app.

Below, copy the inside of their callback function... and paste it over what we have.

rector.php

 // ... lines 1 - 7

8

9

 // ... line 10

11

12

13

14

15

16

17

18

19

20

21

22

23

This points Rector to a cache file that helps it do its job... and most importantly, it tells Rector that we want to upgrade our

code to be Symfony 5.2 compatible, as well as upgrade our code to some Symfony code quality standards and

"constructor" injection. If you want to know more about what these do, you could follow the constants to check out the

code.

return static function (ContainerConfigurator $containerConfigurator): void {

 // get parameters

 $parameters = $containerConfigurator->parameters();

 $parameters->set(Option::PATHS, [

 __DIR__ . '/src'

]);

 // Define what rule sets will be applied

 $containerConfigurator->import(LevelSetList::UP_TO_PHP_74);

 // get services (needed for register a single rule)

 // $services = $containerConfigurator->services();

 // register a single rule

 // $services->set(TypedPropertyRector::class);

};

use Rector\Symfony\Set\SymfonySetList;

use Symfony\Component\DependencyInjection\Loader\Configurator\ContainerConfigurator;

return static function (ContainerConfigurator $containerConfigurator): void {

 // region Symfony Container

 $parameters = $containerConfigurator->parameters();

 $parameters->set(

 Option::SYMFONY_CONTAINER_XML_PATH_PARAMETER,

 __DIR__ . '/var/cache/dev/App_KernelDevDebugContainer.xml'

);

 // endregion

 $containerConfigurator->import(SymfonySetList::SYMFONY_52);

 $containerConfigurator->import(SymfonySetList::SYMFONY_CODE_QUALITY);

 $containerConfigurator->import(SymfonySetList::SYMFONY_CONSTRUCTOR_INJECTION);

};

https://github.com/rectorphp/rector-symfony

But, wait, we don't want to upgrade our code to Symfony 5.2! We want to upgrade it all the way to Symfony 5.4. You might

expect me to just put "54" here. And we could do that. But instead, I'm going to use

SymfonyLevelSetList::UP_TO_SYMFONY_54 . Oh... it looks like I also need to add a use statement for

SymfonySetList:: . Let me retype that, hit "tab" and... great!

rector.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 11

12

 // ... lines 13 - 20

21

 // ... lines 22 - 23

24

Anyways. We need to upgrade our code from 5.0 to 5.1... then 5.1 to 5.2.. and so on up to Symfony 5.4. That's what

UP_TO_SYMFONY_54 means: it will include all of the "rules" for upgrading our code to 5.1, 5.2, 5.3 and finally 5.4.

And... that's it! We're ready to run this. But before we do, I'm curious what changes this will make. So let's add all of the

changes to git... and commit. Perfect!

Running Rector

To run Rector, say ./vendor/bin/rector process src/ . We could also point this at the config/ or

templates/ directories... but the vast majority of the changes it will make apply to our classes in src/ :

vendor/bin/rector process src/

And... it's working! Awesome! Eight files were changed by Rector. Let's scroll to the top. This is cool: it shows you the file

that was changed, the actual change and, below, which rules caused that change.

One modificiation it made is UserPasswordEncoderInterface to UserPasswordHasherInterface . That's a good

change: the old interface is deprecated in favor of the new one. It also changed UsernameNotFoundException to

UserNotFoundException . Another good, low-level update to some deprecated code.

There was also a change to a class in Kernel ... and a few other similar things. Near the bottom, the Symfony code

quality set list added a Response return type to every controller. That's optional... but nice!

So it didn't make a ton of changes, but it did fix a few deprecations without us needing to do anything.

Though... it's not perfect. One problem is that, sometimes, Rector will mess with your coding style. That's because Rector

doesn't really understand what your coding style is... and so it doesn't even try. But that's by design and will be easy to fix.

Second, while it did change the interface from UserPasswordEncoderInterface to

UserPasswordHasherInterface , it inlined the whole class name... instead of adding a use statement.

use Rector\Symfony\Set\SymfonyLevelSetList;

use Rector\Symfony\Set\SymfonySetList;

return static function (ContainerConfigurator $containerConfigurator): void {

 $containerConfigurator->import(SymfonyLevelSetList::UP_TO_SYMFONY_54);

};

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 11

12

 // ... lines 13 - 24

25

26

 // ... lines 27 - 36

37

38

 // ... lines 39 - 43

44

 // ... lines 45 - 119

120

And third, it didn't change any variable names. So even though it changed this argument to

UserPasswordHasherInterface , the argument is still called $passwordEncoder ... along with the property. Worse,

the UserPasswordHasherInterface has a different method on it... and it didn't update the code down here to use that

new method name.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 34

35

 // ... line 36

37

38

 // ... lines 39 - 42

43

44

 // ... lines 45 - 119

120

So Rector is a great starting point to catch a bunch of changes. But we're going to need to take what we've found and

finish the job. Let's do that next. We'll do part of that by hand... but a lot of it automatically with PHP CS Fixer.

use Symfony\Component\Security\Core\Encoder\UserPasswordEncoderInterface;

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

PasswordAuthenticatedInterface

{

 public function __construct(SessionInterface $session, EntityManagerInterface

$entityManager, UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface

$csrfTokenManager, \Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface

$passwordEncoder)

 {

 }

}

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

PasswordAuthenticatedInterface

{

 private $passwordEncoder;

 public function __construct(SessionInterface $session, EntityManagerInterface

$entityManager, UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface

$csrfTokenManager, \Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface

$passwordEncoder)

 {

 $this->passwordEncoder = $passwordEncoder;

 }

}

Chapter 4: Post-Rector Cleanups & Tweaks

Rector just automated several changes to our app that are needed to remove deprecations on Symfony 5.4. Plus it did

some bonus refactoring, like adding the optional Response return type on our controllers.

But as nice as that is, it's not perfect. All the class names are inlined, instead of having a use statement. And even though

it renamed some interfaces, it didn't rename the methods that we call on those objects to reflect the change. No need to

worry, though. Rector gave us a great start and helped highlight several changes that we need to make. Now, let's finish

the job.

Installing php-cs-fixer

First, for these long class names with no use statement and, in general for coding styles, Rector doesn't know what

coding style we prefer, so it doesn't even try to format things correctly. The official recommendation is to use a tool in your

project like PHP CS Fixer to reformat the code after running Rector. PHP CS Fixer is a great tool anyway... so let's get it

installed so it can help us along our journey.

You can install PHP CS Fixer a few different ways, but oddly enough, the recommended way - and the way that I like - is

to install it via Composer into its own directory. Run:

mkdir -p tools/php-cs-fixer

There's nothing special here: just a new tools/ directory with php-cs-fixer/ inside. Now install it into that directory

by running composer require --working-dir=tools/php-cs-fixer - that tells Composer to behave like I'm

running it from inside of tools/php-cs-fixer - and then friendsofphp/php-cs-fixer .

If you're wondering why we're not just installing this directly into our main composer.json dependencies, well... that's a

bit tricky. PHP CS Fixer is a standalone executable tool. If I install it into our app's dependencies, then it could cause

problems if some of its dependencies don't match versions that we have already in our app. Well, really, this is a potential

problem whenever you install any library. But since all we need is a standalone binary... there's no reason to mix it into our

app. We could have done the same thing with Rector.

This gives us, in that directory, composer.json and composer.lock files. And in its vendor/bin directory... yes:

php-cs-fixer . That's the executable.

And because we have a new vendor/ directory, open up the root .gitignore file and, at the bottom, ignore that:

/tools/php-cs-fixer/vendor . And while we're here, let's also ignore /.php-cs-fixer.cache . That's a cache

file that PHP CS Fixer will create when it does its work.

.gitignore

 // ... lines 1 - 23

24

25

/tools/php-cs-fixer/vendor/

/.php-cs-fixer.cache

Adding php-cs-fixer Config

The last thing we need to do is add a config file. Up here, create a new file called .php-cs-fixer.php . Inside, I'm

going to paste about 10 lines of code. This is pretty simple. It tells PHP CS Fixer where to find our src/ files... then,

below, which rules to apply. I'm using a pretty standard Symfony set of rules.

.php-cs-fixer.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

And... we're ready to run this! To see what it does, over at the command line, add all the changes to git with:

git add .

Then check on them:

git status

But don't commit them yet. I still want to be able to review the changes that Rector made before we finally commit. But at

least, now, we'll be able to see what PHP CS Fixer does.

Let's run it:

./tools/php-cs-fixer/vendor/bin/php-cs-fixer fix

And... nice! It modified 6 files. Let's check them out!

git diff

Awesome! It removed the long class names for Response across our entire codebase! It also deleted a few old use

statements that we don't need. So the code from Rector still isn't perfect, but that was a nice step towards making it better!

Fixing the Password Hasher Code

$finder = PhpCsFixer\Finder::create()

 ->in(__DIR__.'/src')

;

$config = new PhpCsFixer\Config();

return $config->setRules([

 '@Symfony' => true,

 'yoda_style' => false,

])

 ->setFinder($finder)

;

For the final fixes, we'll do them manually by digging into the changes that Rector made, one by one. I'll help out by

zooming us into the places that need updates.

The first is RegistrationController : src/Controller/RegistrationController.php . This is one of the

places where it changed UserPasswordEncoderInterface to UserPasswordHasherInterface . Notice that PHP

CS Fixer did fix a lot of the long, inlined class names... but not all of them. It depends on if there was already a use

statement for that class or not.

So let's fix this by hand. Hover over the class, hit "alt" + "enter" and then go to "Simplify FQN". That shortens it and adds

the use statement on top.

src/Controller/RegistrationController.php

 // ... lines 1 - 11

12

 // ... lines 13 - 16

17

18

 // ... lines 19 - 21

22

 // ... lines 23 - 99

100

But there's another problem. If we trace down to where this is used, previously we were calling ->encodePassword() .

But... that method doesn't exist on the new interface! We need to call ->hashPassword() .

I'm also going to rename the argument. Go to "Refactor" then "Rename" and call it $userPasswordHasher ... just

because that's a more fitting name.

src/Controller/RegistrationController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 27

28

 // ... line 29

30

31

 // ... lines 32 - 34

35

 // ... lines 36 - 55

56

 // ... lines 57 - 60

61

 // ... lines 62 - 101

Next up is src/Factory/UserFactory.php for the same change. Scroll down and... once again, we have a long

class name. Hit "alt" + "enter" and go to "Simplify FQN" to add that use statement. Then... let's "Refactor" and "Rename"

the argument to $passwordHasher ... good... and "Refactor", "Rename" the property also to $passwordHasher .

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface $userPasswordHasher,

VerifyEmailHelperInterface $verifyEmailHelper): Response

}

 public function register(Request $request, UserPasswordHasherInterface $userPasswordHasher,

VerifyEmailHelperInterface $verifyEmailHelper): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $user->setPassword(

 $userPasswordHasher->hashPassword(

);

 }

 }

src/Factory/UserFactory.php

 // ... lines 1 - 6

7

 // ... lines 8 - 29

30

31

32

33

34

35

 // ... lines 36 - 37

38

39

 // ... lines 40 - 68

69

Finally, below, we need to call ->hashPassword() instead of ->encodePassword() .

src/Factory/UserFactory.php

 // ... lines 1 - 50

51

52

 // ... line 53

54

55

56

57

58

59

60

61

62

63

 // ... lines 64 - 70

Done!

Just one more spot where we need this same change: src/Security/LoginFormAuthenticator.php . We're going

to refactor this class later to use the new security system... but let's at least get it working. Find the

UserPasswordHasherInterface argument, shorten that with "Simplify FQN"... then rename the argument to

$passwordHasher ... and rename the property to $passwordHasher .

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

final class UserFactory extends ModelFactory

{

 private UserPasswordHasherInterface $userPasswordHasher;

 public function __construct(UserPasswordHasherInterface $userPasswordHasher)

 {

 $this->userPasswordHasher = $userPasswordHasher;

 }

}

 protected function initialize(): self

 {

 return $this

 ->afterInstantiate(function (User $user) {

 if ($user->getPlainPassword()) {

 $user->setPassword(

 $this->userPasswordHasher->hashPassword($user, $user-

>getPlainPassword())

);

 }

 })

 ;

 }

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 8

9

 // ... lines 10 - 24

25

26

 // ... lines 27 - 34

35

36

37

38

 // ... lines 39 - 42

43

44

 // ... lines 45 - 119

120

Then we check to see where this is used... I'll search for "hasher"... there we go! Down on line 84, the

->isPasswordValid() actually does exist on the new interface, so this is one case where we don't need to change

anything else.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 14

15

 // ... lines 16 - 24

25

26

 // ... lines 27 - 66

67

68

 // ... lines 69 - 75

76

77

78

 // ... lines 79 - 80

81

 // ... lines 82 - 119

120

Oh, but while we're in here, the UserNotFoundException is another long class name. Hit "Simplify FQN" again.

Beautiful! That should be everything.

The big question now is: does our app work? If we go back to the Homepage... it doesn't. We're back on the Welcome to

Symfony page? That's weird...

Spin back over to your terminal and run:

php bin/console debug:router

use Symfony\Component\PasswordHasher\Hasher\UserPasswordHasherInterface;

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

PasswordAuthenticatedInterface

{

 private $userPasswordHasher;

 public function __construct(SessionInterface $session, EntityManagerInterface

$entityManager, UrlGeneratorInterface $urlGenerator, CsrfTokenManagerInterface

$csrfTokenManager, UserPasswordHasherInterface $userPasswordHasher)

 {

 $this->userPasswordHasher = $userPasswordHasher;

 }

}

use Symfony\Component\Security\Core\Exception\UserNotFoundException;

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator implements

PasswordAuthenticatedInterface

{

 public function getUser($credentials, UserProviderInterface $userProvider)

 {

 if (!$user) {

 throw new UserNotFoundException('Email could not be found.');

 }

 }

}

Wow. In fact, all of our routes are gone. This is due to one other change that Rector made that we need to pay close

attention to. It's inside of our Kernel class. We're going to talk more about this class later when we upgrade our recipes.

Rector changed the argument to RoutingConfigurator , but it didn't update the code below.

src/Kernel.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 44

45

46

47

48

49

50

51

52

53

So again, Rector is really good for finding some of these changes, but you should always double-check the final result.

Fortunately, the entire configureRoutes() method has been moved into this MicroKernelTrait - a fact I'll talk

about more soon. So we don't need this method in our class at all anymore. As soon as we delete it, the correct version

from the trait is used... our routes are back.... and the page works! Woohoo!

And hopefully we have a few less deprecations than before. I now see 58. Progress!

So what's next? We've upgraded our dependencies and automated some of the changes we need with Rector. Well,

there's still one more thing we can do before we start going through each deprecation manually: updating our recipes. And

this has gotten a whole heck of a lot easier than the last time you upgraded. Let's find out how next.

class Kernel extends BaseKernel

{

 protected function

configureRoutes(\Symfony\Component\Routing\Loader\Configurator\RoutingConfigurator $routes):

void

 {

 $confDir = $this->getProjectDir().'/config';

 $routes->import($confDir.'/{routes}/'.$this->environment.'/*'.self::CONFIG_EXTS, '/',

'glob');

 $routes->import($confDir.'/{routes}/*'.self::CONFIG_EXTS, '/', 'glob');

 $routes->import($confDir.'/{routes}'.self::CONFIG_EXTS, '/', 'glob');

 }

}

Chapter 5: Updating the All-Important FrameworkBundle Recipe

At your terminal, run:

composer recipes

As you probably know, whenever we install a new package, that package may come with a recipe that does things like

add configuration files, modify certain files like .env , or add other files. Over time, Symfony makes updates to these

recipes. Sometimes these are minor... like the addition of a comment in a config file. But other times, they're bigger, like

renaming config keys to match changes in Symfony itself. And while you don't have to update your recipes, it's a great

way to keep your app feeling like a standard Symfony app. It's also a free way to update deprecated code!

Hello recipes:update

Until recently, updating recipes was a pain. If you're not familiar, just check our "Upgrade to Symfony 5" tutorial! Yikes. But

no more! Starting with Symfony Flex 1.18 or 2.1, Composer has a proper recipes:update command. It literally patches

your files to the latest version... and it's awesome. Let's try it!

Run:

composer recipes:update

Oh! Before we run this, it tells us to commit everything that we've been working on. Great idea! I'll say that we are:

“upgrading some code to Symfony 5.4 with Rector”

git add .

git commit -m "upgrading some code to Symfony 5.4 with Rector"

Perfect! Try the recipes:update command again. The reason it wants our working copy to be clean is because it's

about to patch some files... which might involve conflicts.

Let's start with symfony/framework-bundle , because this is the big one. The most important files in our project come

from this recipe. I'll hit 4 , clear the screen, and go!

Behind the scenes, this checks to see what the recipe looked like when we originally installed it, compares it to what the

recipe looks like now, and generates a diff that it then applies to our project. In some cases, like this one, that can cause

some conflicts, which is pretty cool. The best part might be that it generates a changelog containing all the pull requests

that contributed to these updates. If you need to figure out why something changed, this will be your friend.

Oh, but creating the changelog requires making a bunch of API calls to GitHub. So it's possible that composer will ask you

for a personal access token, like it just did for me. In some rare cases with a giant recipe like framework-bundle , if

your recipe is really, really old, you might get this message even if you have given an access token to Composer. If that

happens, just wait for 1 minute... then re-enter your access token. Congratulations, you just hit GitHub's per-minute API

limit.

Anyways, there's the CHANGELOG. It's not usually that long, but this recipe is the most important and... well... it was

horribly out-of-date. Oh, and if you have a trendy terminal like me - this is iTerm - you can click these links to jump directly

into the pull request, which will live at https://github.com/symfony/recipes.

Changes to .env

Alright, let's walk through the changes this made. This is the biggest and most important recipe, so I want to cover

everything.

Since I've already done my homework, I'll clear the changelog and run:

git status

Woh. It made a bunch of changes, including three conflicts. Fun! Let's go through those first. Move over and start inside

.env . Let's see: apparently the recipe removed these #TRUSTED_PROXIES and #TRUSTED_HOSTS lines.

.env

 // ... lines 1 - 15

16

 // ... lines 17 - 18

19

20

21

 // ... lines 22 - 32

Both of these are now set in a config file. And while you could still set an environment variable and reference it from that

config file, the recipe no longer ships with these comments. I'm not sure why this caused a conflict, but let's delete them.

Changes to services.yaml

The next conflict is up in config/services.yaml . This one is pretty simple. This is our config and below, the new

config. The recipe removed the App\Controller\ entry. This... was never needed unless you make super-fancy

controllers that do not extend AbstractController . It was removed from the recipe for simplicity. It also looks like the

updated recipe reformats the exclude onto multiple lines, which is nice. So let's take their version entirely.

###> symfony/framework-bundle ###

#TRUSTED_PROXIES=127.0.0.0/8,10.0.0.0/8,172.16.0.0/12,192.168.0.0/16

#TRUSTED_HOSTS='^(localhost|example\.com)$'

###

https://github.com/symfony/recipes

config/services.yaml

 // ... lines 1 - 8

9

 // ... lines 10 - 18

19

20

21

22

23

24

 // ... lines 25 - 30

Changes to src/Kernel.php

The final conflict is in src/Kernel.php ... where you can see that our side has a bunch of code in it... and their side has

nothing.

Remember how I mentioned that configureRoutes() was moved into MicroKernelTrait? Well it turns out that all

of these methods were moved into MicroKernelTrait . So unless you have some custom logic - which is pretty rare -

you can delete everything.

src/Kernel.php

 // ... lines 1 - 7

8

9

10

11

Ok, back at the terminal, let's add those three files:

git add .env config/services.yaml src/Kernel.php

And then run

git status

to see what else the recipe update did.

Updated public/index.php, deleted bootstrap.php!

Interesting. It deleted config/bootstrap.php and modified public/index.php . Those are related. Look at the diff

of index.php :

git diff --cached public/index.php

services:

 App\:

 resource: '../src/'

 exclude:

 - '../src/DependencyInjection/'

 - '../src/Entity/'

 - '../src/Kernel.php'

class Kernel extends BaseKernel

{

 use MicroKernelTrait;

}

This file used to require config/bootstrap.php . And that file's job was to read and set up all the environment

variables:

git diff --cached config/

Let's go check out the new public/index.php . Here it is. Now this requires some

vendor/autoload_runtime.php . And the file is much shorter than before. What we're seeing is Symfony's new

Runtime component in action.

public/index.php

 // ... lines 1 - 4

5

6

7

8

9

You can check out its introduction blog post to learn more about it.

Basically, the job of booting up Symfony and loading all of the environment variables was extracted into the runtime

component. But... we don't actually have that component installed yet... which is why, if we try to refresh the page, we're

gonna have a bad time:

“Failed to open autoload_runtime.php .”

To fix this, head over to your terminal and run:

composer require symfony/runtime

This package includes a Composer plugin... so it's going to ask us if we trust it. Say "yes". Then it installs... and promptly

explodes when it tries to clear the cache! Ignore that for now: we'll fix it in a few minutes. It involves updating another

recipe.

But if we try our site... it works!

New Environment-Specific Configuration

Ok, we're almost done! Back at the terminal, let's see what else changed:

git status

Notice that it deleted config/packages/test/framework.yaml , but modified

config/packages/framework.yaml . This is probably the most common change that you'll see when you update your

recipes today.

require_once dirname(__DIR__).'/vendor/autoload_runtime.php';

return function (array $context) {

 return new Kernel($context['APP_ENV'], (bool) $context['APP_DEBUG']);

};

https://symfony.com/blog/new-in-symfony-5-3-runtime-component

Open config/packages/framework.yaml . At the bottom... there's a new when@test section.

config/packages/framework.yaml

 // ... lines 1 - 19

20

21

22

23

24

Starting in Symfony 5.3, you can now add environment-specific config using this syntax. This configuration used to live

inside of config/packages/test/framework.yaml . But for simplicity, the recipe deleted that file and just moved that

config to the bottom of this file.

Back at the terminal, diff that file... it's hiding two other changes:

git diff --cached config/packages/framework.yaml

The recipe also changed http_method_override to false . That disables, by default, a feature that you probably

weren't using anyways. It also set storage_factory_id to session.storage.factory.native . This has to do

with how your session is stored. Internally, the key changed from storage_id to storage_factory_id , and it should

now be configured.

Environment-Specific Routing Config

Back at the terminal, let's look at the final changes:

git status

Speaking of environment-specific config, you can do that same trick with routing files. See how it deleted

config/routes/dev/framework.yaml , but added config/routes/framework.yaml? If we open up

config/routes/framework.yaml , yup! It has when@dev and it imports the routes that allow us to test our error

pages.

config/routes/framework.yaml

1

2

3

4

This is yet another example of the recipe moving configuration out of the environment directory and into the main

configuration file... just for simplicity.

The new preload.php File

when@test:

 framework:

 test: true

 session:

 storage_factory_id: session.storage.factory.mock_file

when@dev:

 _errors:

 resource: '@FrameworkBundle/Resources/config/routing/errors.xml'

 prefix: /_error

Finally, the recipe added a config/preload.php file. This one is pretty simple, and it leverages PHP's preloading

functionality.

config/preload.php

 // ... lines 1 - 2

3

4

5

Essentially, on production, if you point your php.ini , opcache.preload at this file, you'll get a free performance

boost! It's that simple. Well... mostly that simple. The only other thing you need to do is restart your web server on every

deploy... or PHP-FPM if you're using that. We leverage this at SymfonyCasts for a little extra performance boost.

And... phew! The biggest recipe update is done. So let's add everything and commit. Because next, more recipe updates!

But with FrameworkBundle behind us, the rest will be easier and faster.

if (file_exists(dirname(__DIR__).'/var/cache/prod/App_KernelProdContainer.preload.php')) {

 require dirname(__DIR__).'/var/cache/prod/App_KernelProdContainer.preload.php';

}

Chapter 6: Recipe Upgrades with recipes:update

Let's keep upgrading recipes! There are a bunch of them to do, but most of these will be easy. We'll move quickly, but I'll

highlight any important changes as we go.

symfony/console Recipe Update

For the next update, let's skip down to symfony/console since that's another important one.

composer recipes:update symfony/console

This updated just one file: bin/console . Check out the changes with:

git diff --cached bin/console

Hmm. It changed from being kind of long to... pretty darn short! This is, once again, the Symfony Runtime component in

action. The code to boot up Symfony for the console has moved into symfony/runtime . And... this fixed our

bin/console command, which had been broken since we upgraded the FrameworkBundle recipe.

Let's commit this change... and keep going:

composer recipes:update

symfony/twig-bundle Recipe

Skip down to symfony/twig-bundle . That's number 7 . I'll clear the screen and... okay! We have conflicts. Exciting! I'll

clear the changelog since I've already looked at it. Ok, this deleted an environment-specific config file... and then we have

two conflicts. Let's go check out config/packages/twig.yaml .

Once again, we're seeing the new environment-specific config feature. This when@test stuff used to live in

config/packages/test/twig.yaml , but it's now been moved here. And because I have a custom form_themes

config, it conflicted. We want to keep both things.

config/packages/twig.yaml

1

 // ... line 2

3

4

5

6

7

The second conflict is in templates/base.html.twig . Our base.html.twig is pretty customized, so we likely don't

need to worry about any new changes. The recipe added a new favicon by default. You probably won't use this since

you'll have your own. To fix this conflict, since my project doesn't have a favicon yet, I'll copy the new stuff, use our

code, but paste the favicon .

templates/base.html.twig

 // ... lines 1 - 2

3

 // ... line 4

5

6

 // ... lines 7 - 14

15

 // ... lines 16 - 95

Perfect! Now we can commit everything.

doctrine/doctrine-bundle Recipe Update

Let's keep going!

composer recipes:update

We'll work on the rest from top to bottom. Next is doctrine/doctrine-bundle . This is a cool update. Once again, I'll

clear the screen and run:

git status

It conflicted inside the .env file... which is probably the least interesting change. Recently, DoctrineBundle's recipe

started shipping with PostgreSQL as the default database. You can totally change that to be whatever you want, but

PostgreSQL is such a good database engine that we started shipping with it as the default suggestion.

But I'm using MySQL in this project, so I'm going to keep that. But to be super cool, I'll at least take their new example

config... which looks a little different... and update my comments on top with it. Then I'll use my version of the conflict. The

end-result is a few tweaks to the comments, but nothing else.

twig:

 form_themes: ['bootstrap_4_layout.html.twig']

when@test:

 twig:

 strict_variables: true

 <head>

 <title>{% block title %}Welcome!{% endblock %}</title>

 <link rel="icon" href="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22

viewBox=%220 0 128 128%22><text y=%221.2em%22 font-size=%2296%22>â�«ï¸�</text></svg>">

 </head>

.env

 // ... lines 1 - 24

25

26

27

28

 // ... lines 29 - 30

The other changes from the recipe relate to the config files, and I bet you can see what's happening. It deleted two

environment-specific config files and updated the main one. Hmm.

Open config/packages/doctrine.yaml . Sure enough, at the bottom, we see when@test and when@prod . That's

nice! Everything is now in one file. Just make sure that if you had any custom config in the old deleted, files, that you

move it over to this file.

config/packages/doctrine.yaml

 // ... lines 1 - 18

19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 43

One other change that's new is this dbname_suffix under when@test . This is cool. When you're running tests, this

will automatically reuse the same database connection configuration, but with a different database name: your normal

name followed by _test . And this fancy part on the end makes it really easy to run parallel tests with Paratest. This will

ensure that each parallel process will use a different database name. You get that all, for free, thanks to the updated

recipe.

There's one other change in this file, and it's important. In PHPStorm, I can see that the recipe update deleted the

type: annotation line. Right now, we are still using annotations in our project for entity configuration. We're going to

change that in a few minutes to use PHP 8 attributes, which is going to be amazing. But anyways, in the DoctrineBundle

configuration, you no longer need this type: annotation line. If you don't have it, the correct format will be detected

automatically. If Doctrine sees annotations, it'll load annotations! If it sees PHP 8 attributes, it will load those. So the best

config is no config... which tells Doctrine to figure out things for us.

Once again, add all these changes, commit, and... let's keep going! Well, let's keep going in the next chapter, where we

upgrade DoctrineExtensionsBundle, some debug recipes, routing, security and more!

DATABASE_URL="sqlite:///%kernel.project_dir%/var/data.db"

DATABASE_URL="mysql://db_user:db_password@127.0.0.1:3306/db_name?

serverVersion=5.7&charset=utf8mb4"

DATABASE_URL="postgresql://symfony:ChangeMe@127.0.0.1:5432/app?serverVersion=13&charset=utf8"

DATABASE_URL="mysql://root@127.0.0.1:3306/symfony6_upgrade?serverVersion=5.7"

when@test:

 doctrine:

 dbal:

 # "TEST_TOKEN" is typically set by ParaTest

 dbname_suffix: '_test%env(default::TEST_TOKEN)%'

when@prod:

 doctrine:

 orm:

 auto_generate_proxy_classes: false

Chapter 7: Recipe Upgrades: Part 2!

Run:

composer recipes:update

Next up is doctrine-extensions-bundle . This one... when we look... just modified a comment! Easy!. So commit

that... and then move onto debug-bundle .

symfony/debug-bundle Recipe

composer recipes:update

I'll clear the screen and run that. This made two changes. Run:

git status

The first change was that it deleted an environment-specific file... and moved it into the main file. The second change,

which isn't very common in recipe updates, is that in config/bundles.php , it previously loaded DebugBundle in the

dev environment and test environment. We now recommend only loading it in the dev environment. You can load it in

test environment, but it tends to slow things down, so it's been removed by default.

config/bundles.php

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 24

25

Easy! Commit those changes... and keep going!

symfony/monolog-bundle Recipe

composer recipes:update

return [

 Symfony\Bundle\DebugBundle\DebugBundle::class => ['dev' => true],

];

Next up is symfony/monolog-bundle . This one does have a conflict, but it's fairly simple. Previously, we had

environment-specific files in the dev/ , prod/ , and test/ directories. These have all been moved into the central

config/packages/monolog.yaml file. The only reason it conflicted on my project is because I had previously created

this file in a tutorial to add a new markdown channel. I'll move my markdown channel down here... and keep the new

stuff.

config/packages/monolog.yaml

1

2

3

 // ... lines 4 - 63

Below this, you can see the dev configuration for logging, the test config, and prod config. Again, if you had custom

config in your old files, make sure you bring that over to the new file so it doesn't get lost.

config/packages/monolog.yaml

 // ... lines 1 - 5

6

7

8

9

10

 // ... lines 11 - 26

27

28

29

30

31

 // ... lines 32 - 40

41

42

43

44

45

 // ... lines 46 - 63

Add these changes... and... commit.

symfony/routing Recipe

Then right back to:

composer recipes:update

We're getting closer! Update symfony/routing . Let's see. This deleted another environment-specific config file. Yay!

Less files! It also highlights a new default_uri config that you set if you ever need to generate absolute URLs from

inside a command.

Previously, you accomplished this by setting router.request_context parameters. It's easier now, and this

advertises that.

monolog:

 channels:

 - markdown

when@dev:

 monolog:

 handlers:

 main:

 type: stream

when@test:

 monolog:

 handlers:

 main:

 type: fingers_crossed

when@prod:

 monolog:

 handlers:

 main:

 type: fingers_crossed

config/packages/routing.yaml

1

2

3

4

5

6

7

8

9

10

11

12

Commit this stuff... and let's keep going!

symfony/security-bundle Recipe

composer recipes:update

We've made it to symfony/security-bundle . This one has a conflict... and it's inside

config/packages/security.yaml . There are a few important things happening. The recipe update added

enable_authenticator_manager: true . This enables the new security system. We're going to talk about that later.

For now, set this to false so that we're still using the old security system.

config/packages/security.yaml

1

 // ... lines 2 - 9

10

 // ... lines 11 - 64

It also added something called password_hashers , which replaces encoders . We're also going to talk about that

later. For right now, I want you to keep both things.

config/packages/security.yaml

1

2

3

4

 // ... lines 5 - 11

12

13

 // ... lines 14 - 64

There's also a conflict down on the firewall. The important change is that the new recipe has lazy: true . That replaces

anonymous: lazy , so we can go ahead and keep that change... but use the rest of our firewall.

framework:

 router:

 utf8: true

 # Configure how to generate URLs in non-HTTP contexts, such as CLI commands.

 # See https://symfony.com/doc/current/routing.html#generating-urls-in-commands

 #default_uri: http://localhost

when@prod:

 framework:

 router:

 strict_requirements: null

security:

 enable_authenticator_manager: false

security:

 encoders:

 App\Entity\User:

 algorithm: auto

 password_hashers:

 Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface: 'auto'

config/packages/security.yaml

1

 // ... lines 2 - 20

21

 // ... lines 22 - 24

25

26

27

28

29

30

31

32

 // ... lines 33 - 64

Oh, and at the bottom, we get one shiny new when@test section, which sets a custom password hasher. You can read

the comment. This accelerates your tests by making it much faster to hash passwords in the test environment, where we

don't care how secure our hashing algorithm is.

config/packages/security.yaml

 // ... lines 1 - 51

52

53

54

55

56

57

58

59

60

61

62

63

Let's add the files... then keep going.

symfony/translation Recipe

Next up is symfony/translation . This isn't important... it just shows off some new config options. Those are all

commented out, so... they're cool to see, but not important.

config/packages/translation.yaml

1

 // ... line 2

3

 // ... lines 4 - 6

7

8

9

10

11

12

13

Commit and... keep going!

security:

 firewalls:

 main:

 lazy: true

 provider: app_user_provider

 guard:

 authenticators:

 - App\Security\LoginFormAuthenticator

 logout:

 path: app_logout

when@test:

 security:

 password_hashers:

 # By default, password hashers are resource intensive and take time. This is

 # important to generate secure password hashes. In tests however, secure hashes

 # are not important, waste resources and increase test times. The following

 # reduces the work factor to the lowest possible values.

 Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface:

 algorithm: auto

 cost: 4 # Lowest possible value for bcrypt

 time_cost: 3 # Lowest possible value for argon

 memory_cost: 10 # Lowest possible value for argon

framework:

 translator:

providers:

crowdin:

dsn: '%env(CROWDIN_DSN)%'

loco:

dsn: '%env(LOCO_DSN)%'

lokalise:

dsn: '%env(LOKALISE_DSN)%'

symfony/validator Recipe

Next is symfony/validator . Simple! This moved the config from config/test/validator.yaml into the main

validator.yaml .

Commit that!

symfony/web-profiler-bundle Recipe

Let's update one more recipe right now: web-profiler-bundle . Can you guess what it did? It added more

environment-specific config. So the config from dev/web_profiler.yaml and test/web_profiler.yaml was

moved into the main web_profiler.yaml . The same thing happened for routes. The config from dev was moved into

a new config/routes/web_profiler.yaml . Let's commit that and... phew! We've almost done it! Just two recipes

left!

Let's update those next. The WebpackEncoreBundle recipe will also give us a chance to upgrade our JavaScript to the

new Stimulus 3 version.

Chapter 8: Upgrading Encore and your assets/ Setup

Just two recipes left to update! Let's do webpack-encore-bundle next. This recipe changed quite a bit over the past

year and a half, so depending on how old your version is, this might be easy.... or maybe not so easy. Hmm, let's say that

it might be "interesting".

To see what we're working with, run:

git status

Ok: we have a number of modified and deleted files and some conflicts. Let's go through those first, starting with

assets/app.js . As you can see, I enabled some custom Collapse functionality from bootstrap. I'm not sure why this

conflicted, but it's an easy fix.

assets/app.js

 // ... lines 1 - 13

14

15

Next is bootstrap.js . This might actually be a new file for you, depending on how old your recipe was. The job of this

file is to initialize the Stimulus JavaScript library and load all of the files in the controllers/ directory as Stimulus

controllers. In this case, I already had this file, but apparently the expression for how it finds the files changed slightly. The

new version is probably better, so let's use that.

assets/bootstrap.js

 // ... lines 1 - 3

4

 // ... lines 5 - 6

7

8

 // ... lines 9 - 12

Next up is controllers.json . I'm not sure why this is conflicting either... I have a feeling that I may have added these

files manually in the past... and now the recipe upgrade is re-adding them. I want to keep my custom version.

assets/controllers.json

1

2

3

 // ... lines 4 - 7

8

9

10

11

Next up is styles/app.css . The same thing happened here. The recipe added this file... all the way at the bottom...

with just a body background-color. I must have added this file manually... so conflict! Keep all of our custom stuff and...

// activates collapse functionality

import { Collapse } from 'bootstrap';

export const app = startStimulusApp(require.context(

 /\.(j|t)sx?$/

));

{

 "controllers": {

 "@symfony/ux-chartjs": {

 }

 },

 "entrypoints": []

}

good!

assets/styles/app.css

1

2

3

4

5

6

 // ... lines 7 - 138

Hello @hotwired/Stimulus v3

The last conflict is down here in package.json . This one is a bit more interesting. My project was already using

Stimulus: I have stimulus down here and also Symfony's stimulus-bridge . The updated recipe now has

@hotwired/stimulus , and instead of "@symfony/stimulus-bridge": "^2.0.0" , it has

"@symfony/stimulus-bridge": "^3.0.0" .

So what's going on? First, Stimulus version 3 was released. Yay! But... the only real difference between version 2 and 3 is

that they renamed the library from stimulus to @hotwired/stimulus . And in order to get version 3 to work, we also

need version 3 of stimulus-bridge ... instead of 2.

So let's take this as a golden opportunity to upgrade from Stimulus 2 to Stimulus 3. As a bonus, after upgrading, you'll get

cool new debugging messages in your browser's console when working with Stimulus locally.

Anyways, keep @hotwired/stimulus ... but move it up so it's in alphabetical order. Use version 3 of

stimulus-bridge ... and even though it doesn't really matter since this version constraint allows any version 1 , I'll also

use the new webpack-encore version... and then fix the conflict. Oh, and be sure to delete stimulus . We don't want

version 2 of stimulus hanging around and confusing things.

package.json

1

2

3

 // ... line 4

5

 // ... line 6

7

 // ... lines 8 - 13

14

 // ... lines 15 - 22

23

Fantastic! Because we just changed some files in package.json , find your terminal tab that's rocking Encore, hit "ctrl" +

"C", and then run:

yarn install

or

@import "~bootstrap";

body {

 font-family: spartan;

 color: #444;

}

{

 "devDependencies": {

 "@hotwired/stimulus": "^3.0.0",

 "@symfony/stimulus-bridge": "^3.0.0",

 "@symfony/webpack-encore": "^1.7.0",

 },

}

npm install

Perfect! Now restart Encore:

yarn watch

And... it fails!? That's a long error message... but it eventually says:

“assets/controllers/answer-vote_controller.js contains a reference to the file "stimulus" .”

The most important, but boring part of upgrading from Stimulus 2 to 3 is that you need to go into all of your controllers and

change import { Controller } from 'stimulus' to

import { Controller } from '@hotwired/stimulus' .

assets/controllers/answer-vote_controller.js

1

 // ... lines 2 - 22

But it's that simple. I'm also going to delete hello_controller.js ... this is just an example controller that the recipe

gave us. In the last controller, change to @hotwired/stimulus .

assets/controllers/user-api_controller.js

1

 // ... lines 2 - 15

Awesome! Stop yarn watch again.. and re-run it:

yarn watch

Dang! We still get an error! This is coming from @symfony/ux-chartjs/dist/controller.js .

Upgrading UX Libraries

In my project, I've installed one of the Symfony UX packages, which are PHP packages that also give you some

JavaScript. Apparently, the JavaScript for that package is still referencing stimulus instead of the new

@hotwired/stimulus . What this tells me is that I probably need to upgrade that PHP package. So, in

composer.json , down here on symfony/ux-chartjs , if you do some research, you'll find out that there's a new

version 2 out that supports Stimulus 3.

import { Controller } from '@hotwired/stimulus';

import { Controller } from '@hotwired/stimulus';

composer.json

1

 // ... lines 2 - 5

6

 // ... lines 7 - 37

38

 // ... lines 39 - 45

46

 // ... lines 47 - 109

110

After changing that, find your main terminal tab and run:

composer up symfony/ux-chartjs

to upgrade that one package. And... nice! We've upgraded to version 2.1.0. Now it wants us to run:

npm install --force

or

yarn install --force

That re-initializes the JavaScript from the package. One thing I want to highlight for this particular package is that when we

upgraded to version 2 in our composer.json file, Flex then updated our chart.js dependency from version 2.9 to

3.4. That's because the JavaScript in this new version is meant to work with chart.js 3 instead of chart.js 2. Flex

made that change for us. We don't need to do anything here, but it's good to be aware of that.

At last! We should be ready to go. Run

yarn watch

and... got it! Successful build! Over in the main terminal tab, let's add everything... since we fixed all of the conflicts... and

commit!

Upgrading Foundry's Recipe

Now, dear friends, we are on the last update. It's zenstruck/foundry . This is an easy one. Run:

git status

{

 "require": {

 "symfony/ux-chartjs": "^2.0",

 },

}

It is, once again, environment configuration going into a main file. So let's commit that.

config/packages/zenstruck_foundry.yaml

1

2

3

4

5

6

7

And... we're done! All of our recipes are updated! And remember, part of the reason we did all of this is because some of

those recipes replaced old deprecated code with new shiny code. Hopefully, when we refresh the page, our site will not

only still work, but will have less deprecations. On my project, if I refresh a few times, it looks like I'm settling in at about

22. Progress!

We do need to squash those deprecations. But next, one other thing we need to do is... upgrade our code to PHP 8! This

is another spot where Rector can help!

when@dev: &dev

 # See full configuration:

https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#full-default-bundle-

configuration

 zenstruck_foundry:

 # Whether to auto-refresh proxies by default

(https://symfony.com/bundles/ZenstruckFoundryBundle/current/index.html#auto-refresh)

 auto_refresh_proxies: true

when@test: *dev

Chapter 9: Upgrading to PHP 8

Let's keep track of our goal. Now that we've upgraded to Symfony 5.4, as soon as we remove all of these deprecations,

we can safely upgrade to Symfony 6. But Symfony 6 requires PHP 8, and I've been building this project in PHP 7. So the

next step is to update our code to be PHP 8 compatible. In practice, that means updating parts of our code to use some

cool new PHP 8 features. Woo! And this is another spot where Rector can help us.

Rector Upgrading To PHP 8!

Start by opening up rector.php and removing the three Symfony upgrade lines. Replace these with

LevelSetList::UP_TO_PHP_80 . Just like with Symfony, you can upgrade specifically to PHP 7.3 or 7.4, but they have

these nice UP_TO_[...] statements that will upgrade our code across all versions of PHP up to PHP 8.0.

rector.php

 // ... lines 1 - 12

13

 // ... lines 14 - 22

23

 // ... lines 24 - 29

30

And... that's all we need!

Over at your terminal, I've committed all of my changes, except for the one we just made. So now we can run:

vendor/bin/rector process src

Cool! Let's walk through some of these changes. If you want to go deeper, search for a getrector.org blog post, which

shows you how to do what we just did... but also gives you more information about what Rector did and why.

For example, one of the changes that it makes is replacing switch() statements with a new PHP 8 match() function.

This explains that... and many other changes. Oh, and the vast majority of these changes aren't required: you don't have

to do them to upgrade to PHP 8. They're just nice.

PHP 8 Property Promotion

The most important change, which is coincidentally the most common, is something called "Promoted Properties". This is

one of my favorite features in PHP 8, and you can see it right here. In PHP 8, you can add a private , public , or

protected keyword right before an argument in the constructor... and that will both create that property and set it to this

value. So you no longer need to add a property manually or set it below. Just add private and... done!

return static function (ContainerConfigurator $containerConfigurator): void {

 $containerConfigurator->import(LevelSetList::UP_TO_PHP_80);

};

https://getrector.org/blog/2020/11/30/smooth-upgrade-to-php-8-in-diffs

src/Twig/MarkdownExtension.php

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 28

29

The vast majority of the changes in this file are exactly that... here's another example in MarkdownHelper . Most of the

other changes are minor. It altered some callback functions to use the new short => syntax, which is actually from PHP

7.4.

src/Service/MarkdownHelper.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 14

15

16

 // ... lines 17 - 24

25

26

27

You can also see, down here, an example of refactoring switch() statements to use the new match() function.

src/Security/Voter/QuestionVoter.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 24

25

26

 // ... lines 27 - 40

41

42

43

44

45

46

All of this is optional, but it's nice that our code has been updated to use some of the new features. If I scroll down just a

little more, you'll see more of these.

Entity Property Types?

Oh, and inside of our entities, notice that, in some cases, it added property types! For $roles , this property is initialized

to an array. Rector realized that... so it added the array type.

class MarkdownExtension extends AbstractExtension

{

 public function __construct(private MarkdownHelper $markdownHelper)

 {

 }

}

class MarkdownHelper

{

 public function parse(string $source): string

 {

 return $this->cache->get('markdown_'.md5($source), fn() => $this->markdownParser-

>transformMarkdown($source));

 }

}

class QuestionVoter extends Voter

{

 protected function voteOnAttribute(string $attribute, $subject, TokenInterface $token): bool

 {

 return match ($attribute) {

 'EDIT' => $user === $subject->getOwner(),

 default => false,

 };

 }

}

src/Entity/User.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 29

30

31

32

33

 // ... lines 34 - 226

227

In other cases, like $password , it saw that we have PHPDoc above it, so it added the type there as well.

src/Entity/User.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 34

35

36

37

38

39

 // ... lines 40 - 226

227

Though, this is a little questionable. The $password could also be null.

Open up src/Entity/User.php and scroll down to $password . Rector gave this a string type... but that's wrong!

If you look at the constructor down here, we don't initialize $password to any value... which means it will start null . So

the correct type for this is a nullable ?string . The reason Rector did this wrong is... well.. because I had a bug in my

documentation!. This should be string|null

src/Entity/User.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 34

35

36

37

38

39

 // ... lines 40 - 226

227

One of the biggest changes that I've been doing in my code over the past year or so since PHP 7.3 was released, has

been adding property types like this, both in my entity classes and also my service classes. If this was a little confusing,

don't worry. We're going to talk more about property types inside of entities in a few minutes. You can see that Rector

added some, but a lot of our properties are still missing them.

Setting PHP 8 in composer.json

class User implements UserInterface

{

 /**

 * @ORM\Column(type="json")

 */

 private array $roles = [];

}

class User implements UserInterface

{

 /**

 * @var string The hashed password

 * @ORM\Column(type="string")

 */

 private string $password;

}

class User implements UserInterface

{

 /**

 * @var string|null The hashed password

 * @ORM\Column(type="string")

 */

 private ?string $password = null;

}

Okay, our code should now be ready for PHP 8. Yay! So let's go upgrade our dependencies for PHP 8. In

composer.json , under the require key, it currently says that my project works with PHP 7.4 or 8. I'm going to change

that to just say "php": "^8.0.2" , which is the minimum version for Symfony 6.0.

composer.json

1

 // ... lines 2 - 5

6

7

 // ... lines 8 - 45

46

 // ... lines 47 - 109

110

By the way, Symfony 6.1 requires PHP 8.1. So if you're going to upgrade to that pretty soon, you could jump straight to

8.1.

There's one other thing I have down here near the bottom. Let's see... here we go. On config , platform , I have PHP

set to 7.4. That ensures that if someone is using PHP 8, Composer will still make sure it downloads dependencies

compatible with PHP 7.4. Change this to 8.0.2 .

composer.json

1

 // ... lines 2 - 56

57

 // ... lines 58 - 61

62

63

64

 // ... lines 65 - 68

69

 // ... lines 70 - 109

110

Sweet! And now, because we're using PHP 8 in our project, there's a good chance some dependencies will be eligible for

updates. Run:

composer up

And... yeah! There are several. It looks like psr/cache , psr/log , and symfony/event-dispatcher-contracts

all upgraded. Most likely all of these new versions require PHP 8. We couldn't upgrade before, but now we can. If we go

over to our page and reload... everything still works!

Updating Symfony Flex

One other thing in composer.json is Symfony Flex itself. Flex uses its own version scheme, and the latest version is

2.1. At this moment, Flex version 2 and Flex version 1 are identical... except that Flex 2 requires PHP 8. Since we're using

that, let's upgrade! Change the version to ^2.1 ... then head back to your terminal and run:

{

 "require": {

 "php": "^8.0.2",

 },

}

{

 "config": {

 "platform": {

 "php": "8.0.2"

 },

 },

}

composer up

one more time. Beautiful!

All right, team! Our project is now using PHP 8. To celebrate, let's refactor from using annotations to PHP 8 native

attributes. OOOoo. I love this change... in part because Rector makes it super easy.

Chapter 10: Annotations to Attributes

Now that we're on PHP 8, let's convert our PHP annotations to the more hip and happening PHP 8 attributes. Refactoring

annotations to attributes is basically just... busy work. You can do it by hand: attributes and annotations work exactly the

same and use the same classes. Even the syntax is only a little different: you use colons to separate arguments...

because you're actually leveraging PHP named arguments. Neato.

Configuring Rector to Upgrade Annotations

So, converting is simple... but oof, I am not excited to do all of that manually. Fortunately, Rector comes back to the

rescue!! Search for "rector annotations to attributes" to find a blog post that tells you the exact import configuration we

need in rector.php . Copy these three things. Oh, and starting in Rector 0.12, there's a new, simpler RectorConfig

object that you'll see on this page. If you have that version, feel free to use that code.

Oh, and before we paste this in, find your terminal, add everything... and then commit. Perfect!

Back over in rector.php , replace the one line with these four lines... except we don't need the NetteSetList ... and

we need to add a few use statements. I'll retype the "t" in DoctrineSetList , hit "tab", and do the same for

SensiolabsSetList .

rector.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

 // ... lines 11 - 14

15

 // ... lines 16 - 24

25

26

27

 // ... lines 28 - 33

34

Now, you know the drill. Run

vendor/bin/rector process src

and see what happens. Whoa... this is awesome! Look! It beautifully refactored this annotation to an attribute and... it did

this all over the place! We have routes up here. And all of our entity annotations, like the Answer entity have also been

converted. That was a ton of work... all automatic!

use Rector\Doctrine\Set\DoctrineSetList;

use Rector\Symfony\Set\SensiolabsSetList;

return static function (ContainerConfigurator $containerConfigurator): void {

 $containerConfigurator->import(DoctrineSetList::ANNOTATIONS_TO_ATTRIBUTES);

 $containerConfigurator->import(SymfonySetList::ANNOTATIONS_TO_ATTRIBUTES);

 $containerConfigurator->import(SensiolabsSetList::FRAMEWORK_EXTRA_61);

};

src/Controller/UserController.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

 // ... lines 14 - 16

17

18

src/Entity/User.php

 // ... lines 1 - 11

12

13

14

15

16

17

18

19

 // ... lines 20 - 203

204

Fixing PHP CS

Though it did, as Rector sometimes does, mess up some of our coding standards. For example, all the way at the bottom,

it did refactor this Route annotation to an attribute... but then it added a little extra space before the Response return

type. That's no problem. After you run Rector, it's always a good idea to run PHP CS Fixer. Do it:

tools/php-cs-fixer/vendor/bin/php-cs-fixer fix

Love it. A bunch of fixes to bring our code back in line. Run

git diff

to see how things look now. The Route annotation changed into an attribute... and PHP CS Fixer put the Response

return type back the way it was before. Rector even refactored IsGranted from SensioFrameworkExtraBundle into an

attribute.

But if you keep scrolling down until you find an entity... here we go... uh oh! It killed the line breaks between our properties!

It's not super obvious on the diff, but if you open any entity... yikes! This looks... cramped. I like the line breaks between

my entity properties.

use Sensio\Bundle\FrameworkExtraBundle\Configuration\IsGranted;

use Symfony\Component\Routing\Annotation\Route;

class UserController extends BaseController

{

 #[Route(path: '/api/me', name: 'app_user_api_me')]

 #[IsGranted('IS_AUTHENTICATED_REMEMBERED')]

 public function apiMe(): \Symfony\Component\HttpFoundation\Response

 {

 }

}

#[ORM\Entity(repositoryClass: UserRepository::class)]

#[ORM\Table(name: '`user`')]

class User implements UserInterface

{

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column(type: 'integer')]

 private $id;

}

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 48

49

 // ... lines 50 - 113

114

We could fix this by hand... but I'm wondering if we can teach PHP CS Fixer to do this for us.

Open php-cs-fixer.php . The rule that controls these line breaks is called class_attributes_separation with

an "s" - I'll fix that in a minute. Set this to an array that describes all of the different parts of our class and how each should

behave. For example, we can say ['method' => 'one'] to say that we want one empty line between each method.

We can also say ['property' => 'one'] to have one line break between our properties. There's also another called

trait_import . Set that to one too. That gives us an empty line between our trait imports, which is something that we

have on top of Answer .

.php-cs-fixer.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

13

14

 // ... line 15

16

Now try php-cs-fixer again:

tools/php-cs-fixer/vendor/bin/php-cs-fixer fix

Whoops!

“The rules contain unknown fixers: "class_attribute_separation"”

I meant to say class_attributes_separation with an "s". What a great error though. Let's try that again and... cool!

It changed five files, and if you check those... they're back!

class Answer

{

 use TimestampableEntity;

 public const STATUS_NEEDS_APPROVAL = 'needs_approval';

 public const STATUS_SPAM = 'spam';

 public const STATUS_APPROVED = 'approved';

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column(type: 'integer')]

 private $id;

 #[ORM\Column(type: 'text')]

 private $content;

 public function getUsername(): ?string

}

return $config->setRules([

 'class_attributes_separation' => [

 'elements' => ['method' => 'one', 'property' => 'one', 'trait_import' => 'one']

]

])

;

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 120

121

With just a few commands we've converted our entire site from annotations to attributes. Woo!

Next, let's add property types to our entities. That's going to allow us to have less entity config thanks to a new feature in

Doctrine.

class Answer

{

 use TimestampableEntity;

 public const STATUS_NEEDS_APPROVAL = 'needs_approval';

 public const STATUS_SPAM = 'spam';

 public const STATUS_APPROVED = 'approved';

 #[ORM\Id]

 #[ORM\GeneratedValue]

 #[ORM\Column(type: 'integer')]

 private $id;

 #[ORM\Column(type: 'text')]

 private $content;

}

Chapter 11: Adding Property Types to Entities

A new feature snuck into Doctrine a while back, and it's super cool. Doctrine can now guess some configuration about a

property via its type. We'll start with the relationship properties. But first, I want to make sure that my database is in sync

with my entities. Run:

symfony console doctrine:schema:update --dump-sql

And... yep! My database does look like my entities. We'll run this command again later after we make a bunch of

changes... because our goal isn't actually to change any of our database config: just to simplify it. Oh, and yes, this

dumped out a bunch of deprecations... we will fix those... eventually... I promise!

Removing targetEntity

So here's change number one. This question property holds a Question object. So let's add a Question type. But

we have to be careful. It needs to be a nullable Question . Even though this is required in the database, after we

instantiate the object, the property won't instantly be populated: it will, at least temporarily, not be set. You'll see me do this

with all of my entity property types. If it's possible for a property to be null - even for a moment - we need to reflect that.

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 33

34

 // ... lines 35 - 120

121

I'm also going to initialize this with = null . If you're new to property types, here's the deal. If you add a type to a

property... then try to access it before that property has been set to some value, you'll get an error, like

“Typed property Answer::$question must not be accessed before initialization.”

Without a property type, the = null isn't needed, but now it is. Thanks to this, if we instantiate an Answer and then call

getQuestion() before that property is set, things won't explode.

Ok, so adding property types is nice: it makes our code cleaner and tighter. But, there's another big advantage: we don't

need the targetEntity anymore! Doctrine is now able to figure that out for us. So delete this... and celebrate!

class Answer

{

 private ?Question $question = null;

}

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 31

32

 // ... line 33

34

 // ... lines 35 - 120

121

Then... keep going to Question . I'm looking specifically for relationship fields. This one is a OneToMany , which holds a

collection of $answers . We are going to add a type here... but in a minute. Let's focus on the ManyToOne relationships

first.

Down here, for owner , add ?User , $owner = null , then get rid of targetEntity .

src/Entity/Question.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 47

48

 // ... line 49

50

 // ... lines 51 - 219

220

And then in QuestionTag , do the same thing: ?Question $question = null ... and do your victory lap by removing

targetEntity .

src/Entity/QuestionTag.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

 // ... line 17

18

 // ... lines 19 - 71

72

And... down here... one more time! ?Tag $tag = null ... and say bye bye to targetEntity .

src/Entity/QuestionTag.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 19

20

 // ... line 21

22

 // ... lines 23 - 71

72

Sweet! To make sure we didn't mess anything up, re-run the schema:update command from earlier:

class Answer

{

 #[ORM\ManyToOne(inversedBy: 'answers')]

 private ?Question $question = null;

}

class Question

{

 #[ORM\ManyToOne(inversedBy: 'questions')]

 private ?User $owner = null;

}

class QuestionTag

{

 #[ORM\ManyToOne(inversedBy: 'questionTags')]

 private ?Question $question = null;

}

class QuestionTag

{

 #[ORM\ManyToOne()]

 private ?Tag $tag = null;

}

symfony console doctrine:schema:update --dump-sql

And... we're still good!

Adding Types to All Properties

Ok, let's go further and add types to every property. This will be more work, but the result is worth it. For $id , this will be a

nullable int ... and initialize it to null . Thanks to that, we don't need type: 'integer' : Doctrine can now figure that

out.

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 19

20

21

 // ... lines 22 - 120

121

For $content , a nullable string... with = null . But in this case, we do need to keep type: 'text' . When Doctrine

sees the string type, it guesses type: 'string' ... which holds a maximum of 255 characters. Since this field holds

a lot of text, override the guess with type: 'text' .

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 22

23

24

 // ... lines 25 - 120

121

Initialize string Field to null or ''?

By the way, some of you might be wondering why I don't use $content = '' instead. Heck, then we could remove the

nullable ? on the type! That's a good question! The reason is that this field is required in the database. If we initialize the

property to empty quotes... and I had a bug in my code where I forgot to set the $content property, it would successfully

save to the database with content set to an empty string. By initializing it to null , if we forget to set this field, it will

explode before it enters the database. Then, we can fix that bug... instead of it just silently saving the empty string. It may

be sneaky, but we're sneakier.

Okay, let's keep going! A lot of this will be busy work... so let's move as quickly as we can. Add the type to username ...

and remove the Doctrine type option. We can also delete length ... since the default has always been 255 . The

$votes property looks good, but we can get rid of type: 'integer' . And down here for $status , this already has

the type, so delete type: 'string' . But we do need to keep the length if we want it to be shorter than 255.

class Answer

{

 #[ORM\Column()]

 private ?int $id = null;

}

class Answer

{

 #[ORM\Column(type: 'text')]

 private ?string $content = null;

}

src/Entity/Answer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 25

26

27

28

29

30

 // ... lines 31 - 35

36

37

 // ... lines 38 - 120

121

Moving on to the Question entity. Give $id the type... remove its type Doctrine option, update $name ... delete all of

its options.... and repeat this for $slug . Notice that $slug still uses an annotation from @Gedmo\Slug . We'll fix that in a

minute.

Update $question ... then $askedAt . This is a type: 'datetime' , so that's going to hold a ?\DateTime instance.

I'll also initialize it to null. Oh, and I forgot to do it, but we could now remove type: 'datetime' .

src/Entity/Question.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 // ... lines 37 - 219

220

Typing Collection Properties

And now we're back to the OneToMany relationship. If you look down, this is initialized in the constructor to an

ArrayCollection . So you might think we should use ArrayCollection for the type. But instead, say Collection .

That's an interface from Doctrine that ArrayCollection implements. We need to use Collection here because,

when we query for a Question from the database and then fetch the $answers property, Doctrine will set that to a

class Answer

{

 #[ORM\Column()]

 private ?string $username = null;

 #[ORM\Column()]

 private int $votes = 0;

 #[ORM\Column(length: 15)]

 private string $status = self::STATUS_NEEDS_APPROVAL;

}

class Question

{

 #[ORM\Column()]

 private ?int $id = null;

 #[ORM\Column()]

 private ?string $name = null;

 /**

 * @Gedmo\Slug(fields={"name"})

 */

 #[ORM\Column(length: 100, unique: true)]

 private ?string $slug = null;

 #[ORM\Column(type: 'text')]

 private ?string $question = null;

 #[ORM\Column(nullable: true)]

 private ?\DateTime $askedAt = null;

}

different object: a PersistentCollection . So this property might be an ArrayCollection , or a

PersistentCollection ... but in all cases, it will implement this Collection interface. And this does not need to be

nullable because it's initialized inside the constructor. Do the same thing for $questionTags .

src/Entity/Question.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 42

43

 // ... lines 44 - 45

46

 // ... lines 47 - 219

220

Believe it our not, we're in the home stretch! In QuestionTag ... make our usual $id changes... then head down to

$taggedAt . This is a datetime_immutable type, so use \DateTimeImmutable . Notice that I did not make this

nullable and I'm not initializing it to null. That's simply because we're setting this in the constructor. So we're guaranteed

that it will always hold a \DateTimeImmutable instance: it will never be null.

src/Entity/QuestionTag.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

14

 // ... lines 15 - 23

24

25

 // ... lines 26 - 71

72

Ok, now to Tag . Do our usual $id dance. But wait... back in QuestionTag , I forgot to remove the type: 'integer' .

It doesn't hurt anything... it's just not needed. And... same for type: 'datetime_immutable .

Back over in Tag , let's keep going with the $name property... this is all normal...

src/Entity/Tag.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 15

16

17

18

19

20

 // ... lines 21 - 37

38

Then jump to our last class: User . I'll speed through the boring changes to $id and $email ... and $password . Let's

also remove the @var PHP Doc above this: that's now totally redundant. Do that same thing for $plainPassword .

Heck, this @var wasn't even right - it should have been string|null !

class Question

{

 private Collection $answers;

 private Collection $questionTags;

}

class QuestionTag

{

 #[ORM\Column()]

 private ?int $id = null;

 #[ORM\Column()]

 private \DateTimeImmutable $taggedAt;

}

class Tag

{

 #[ORM\Column()]

 private ?int $id = null;

 #[ORM\Column()]

 private ?string $name = null;

}

Let's zoom through the last changes: $firstName , add Collection to $questions ... and no type needed for

$isVerified .

src/Entity/User.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 17

18

19

20

21

22

 // ... lines 23 - 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 // ... lines 46 - 210

211

And... we're done! This was a chore. But going forward, using property types will mean tighter code... and less Doctrine

config.

But... let's see if we messed anything up. Run doctrine:schema:update one last time:

symfony console doctrine:schema:update --dump-sql

It's clean! We changed a ton of config, but that didn't actually change how any of our entities are mapped. Mission

accomplished.

Updating Gedmo\Slug Annotation

Oh, and as promised, there's one last annotation that we need to change: it's in the Question entity above the $slug

field. This comes from the Doctrine extensions library. Rector didn't update it... but it's super easy. As long as you have

Doctrine Extensions 3.6 or higher, you can use this as an attribute. So #[Gedmo\Slug()] with a fields option that we

need to set to an array. The cool thing about PHP attributes are... they're just PHP code! So writing an array in attributes...

is the same as writing an array in PHP. Inside, pass 'name' ... using single quotes, just like we usually do in PHP.

class User implements UserInterface

{

 #[ORM\Column()]

 private ?int $id = null;

 #[ORM\Column(length: 180, unique: true)]

 private ?string $email = null;

 #[ORM\Column(type: 'string')]

 private ?string $password = null;

 /**

 * Non-mapped field

 */

 private ?string $plainPassword = null;

 #[ORM\Column()]

 private ?string $firstName = null;

 #[ORM\OneToMany(targetEntity: Question::class, mappedBy: 'owner')]

 private Collection $questions;

 #[ORM\Column(type: 'boolean')]

 private bool $isVerified = false;

}

src/Entity/Question.php

 // ... lines 1 - 9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 25

26

27

28

 // ... lines 29 - 217

218

Ok team: we just took our codebase a huge step forward. Next, let's dial in on these remaining deprecations and work on

squashing them. We're going to start with the elephant in the room: converting to the new security system. But don't worry!

It's easier than you might think!

use Gedmo\Mapping\Annotation as Gedmo;

class Question

{

 #[Gedmo\Slug(fields: ['name'])]

 #[ORM\Column(length: 100, unique: true)]

 private ?string $slug = null;

}

Chapter 12: Security Upgrades

It's time to fix these deprecations so that we can finally upgrade to Symfony 6. Go to any page on the site and click the

deprecations down on the web debug toolbar to see the list. This is a big list... but a lot of these relate to the same thing:

security.

The biggest - and perhaps most wonderful - change in Symfony 5.4 and Symfony 6, is the new security system. But don't

worry. It's not that much different from the old one... and the upgrade path is surprisingly easy.

UserInterface, getPassword & PasswordAuthenticatedUserInterface

For the first change, open up the User entity. In addition to UserInterface , add a second

PasswordAuthenticatedUserInterface . Until recently, UserInterface had a lot of methods on it, including

getPassword() .

src/Entity/User.php

 // ... lines 1 - 8

9

 // ... lines 10 - 14

15

16

 // ... lines 17 - 211

212

But... this didn't always make sense. For example, some security systems have users that don't have passwords. For

example, if your users log in via a single sign-on system, then there are no passwords to handle. Well, the user might

enter their password into that system... but as far as our app is concerned, there are no passwords.

To make this cleaner, in Symfony 6, getPassword() was removed from UserInterface . So you still always need to

implement UserInterface ... but then the getPassword() method and its

PasswordAuthenticatedUserInterface are optional.

UserInterface: getUsername() -> getUserIdentifier()

Another change relates to getUsername() . This method lives on UserInterface ... but its name was always

confusing. It made it seem like you needed to have a username... when really, this method is supposed to return any

unique user identifier - not necessarily a username. Because of that, in Symfony 6, this has been renamed from

getUsername() to getUserIdentifier() . Copy this, paste, change getUsername to getUserIdentifier() ...

and that's it.

use Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

}

src/Entity/User.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 69

70

71

72

73

74

75

76

77

78

 // ... lines 79 - 221

222

We do need to keep getUsername() for now because we're still on Symfony 5.4... but once we upgrade to Symfony 6,

we can safely remove it.

New Security System: enable_authenticator_manager

But the biggest change in Symfony's security system can be found in config/packages/security.yaml . It's this

enable_authenticator_manager . When we upgraded the recipe, it gave us this config... but it was set to true .

config/packages/security.yaml

1

 // ... lines 2 - 9

10

 // ... lines 11 - 64

This teenie, tiny, innocent-looking line allows us to switch from the old security system to the new one. And what that

means, in practice, is that all of the ways you authenticate - like a custom authenticator or form_login or http_basic

- will suddenly start using an entirely new system under the hood.

For the most part, if you're using one of the built-in authentication systems, like form_login or http_basic ... you

probably won't notice any changes. You can activate the new system by setting this to true... and everything will work

exactly like before.... even though the code behind form_login will suddenly be very different. In a lot of ways, the new

security system is an internal refactoring to make the core code more readable and to give us more flexibility, when we

need it.

Guard -> Custom Authenticator Conversion

However, if you have any custom guard authenticators... like we do, you'll need to convert these to the new authenticator

system... which is super fun anyways... so let's do it!

Open up our custom authenticator: src/Security/LoginFormAuthenticator.php . We can already see that

AbstractFormLoginAuthenticator from the old system is deprecated. Change this to

AbstractLoginFormAuthenticator .

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * A visual identifier that represents this user.

 *

 * @see UserInterface

 */

 public function getUserIdentifier(): string

 {

 return (string) $this->email;

 }

}

security:

 enable_authenticator_manager: false

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 20

21

 // ... lines 22 - 23

24

25

 // ... lines 26 - 107

108

I know, it's almost the exact same name: we just swapped "Form" and "Login" around. If your custom authenticator is not

for a login form, then change your class to AbstractAuthenticator .

Oh, and we don't need to implement PasswordAuthenticatedInterface anymore: that was something for the old

system.

Adding the New Authenticator Methods

The old Guard system and new authenticator system do the same thing: they figure out who's trying to log in, check the

password, and decide what to do on success and failure. But the new authenticator style will feel quite a bit different. For

example, you can immediately see that PhpStorm is furious because we now need to implement a new method called

authenticate() .

Ok! I'll go down below supports() , go to "Code Generate" - or "cmd" + "N" on a Mac - and implement that new

authenticate() method. This is the core of the new authenticator system... and we're going to talk about it in a few

minutes.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 40

41

42

43

44

 // ... lines 45 - 113

114

Oh, but the old and new systems do share several methods. Like, they both have a method called supports() ... but the

new system has a bool return type. As soon as we add that, PhpStorm is happy.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 35

36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 114

115

use Symfony\Component\Security\Http\Authenticator\AbstractLoginFormAuthenticator;

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

}

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function authenticate(Request $request)

 {

 // TODO: Implement authenticate() method.

 }

}

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function supports(Request $request): bool

 {

 }

}

Below, on onAuthenticationSuccess() , it looks like we need to add a return type here as well. At the end, add the

Response type from HttpFoundation. Nice! And while we're working on this method, rename the $providerKey

argument to $firewallName .

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 90

91

92

 // ... lines 93 - 97

98

 // ... lines 99 - 114

115

You don't have to do this, that's just the new name of the argument... and it's more clear.

Next, down on onAuthenticationFailure() , add the Response return type there as well. Oh, and for

onAuthenticationSuccess() , I just remembered that this can return a nullable Response . In some systems - like

API token authentication - you will not return a response.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 99

100

101

 // ... lines 102 - 108

109

 // ... lines 110 - 114

115

Finally, we still need a getLoginUrl() method, but in the new system, this accepts a Request $request argument

and returns a string .

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 110

111

112

113

114

115

Alright! we still need to fill in the "guts", but we at least have all the methods we need.

Removing supports() for "form login" authenticators

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function onAuthenticationSuccess(Request $request, TokenInterface $token, string

$firewallName): Response

 {

 }

}

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function onAuthenticationFailure(Request $request, AuthenticationException

$exception): Response

 {

 }

}

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 protected function getLoginUrl(Request $request): string

 {

 return $this->urlGenerator->generate(self::LOGIN_ROUTE);

 }

}

And actually, we can remove one of these! Delete the supports() method.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 25

26

27

 // ... lines 28 - 35

36

37

38

39

40

 // ... lines 41 - 114

115

Ok, this method is still needed by custom authenticators and its job is the same as before. But, if you jump into the base

class, in the new system, the supports() method is implemented for you. It checks to make sure that the current

request is a POST and that the current URL is the same as the login URL. Basically, it says

“I support authenticating this request if this is a POST request to the login form.”

We wrote our logic a bit differently before, but that's exactly what we were checking.

Ok, it's time to get to the meat of our custom authenticator: the authenticate() method. Let's do that next.

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function supports(Request $request): bool

 {

 return self::LOGIN_ROUTE === $request->attributes->get('_route')

 && $request->isMethod('POST');

 }

}

Chapter 13: Custom Authenticator authenticate() Method

We're currently converting our old Guard authenticator to the new authenticator system. And, nicely, these two systems do

share some methods, like supports() , onAuthenticationSuccess() and onAuthenticationFailure() .

The big difference is down inside the new authenticate() method. In the old Guard system, we split up authentication

into a few methods. We had getCredentials() , where we grab some information, getUser() , where we found the

User object, and checkCredentials() , where we checked the password. All three of these things are now combined

into the authenticate() method... with a few nice bonuses. For example, as you'll see in a second, it's no longer our

responsibility to check the password. That now happens automatically.

The Passport Object

Our job in authenticate() is simple: to return a Passport . Go ahead and add a Passport return type. That's

actually needed in Symfony 6. It wasn't added automatically due to a deprecation layer and the fact that the return type

changed from PassportInterface to Passport in Symfony 5.4.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 26

27

 // ... lines 28 - 29

30

31

 // ... lines 32 - 39

40

41

 // ... lines 42 - 66

67

 // ... lines 68 - 136

137

Anyways, this method returns a Passport ... so do it: return new Passport() . By the way, if you're new to the

custom authenticator system and want to learn more, check out our Symfony 5 Security tutorial where we talk all about

this. I'll go through the basics now, but the details live there.

Before we fill in the Passport , grab all the info from the Request that we need... paste... then set each of these as

variables: $email = , $password = ... and let's worry about the CSRF token later.

use Symfony\Component\Security\Http\Authenticator\Passport\Passport;

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function authenticate(Request $request): Passport

 {

 }

}

https://symfonycasts.com/screencast/symfony5-security

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 39

40

41

42

43

44

45

 // ... lines 46 - 65

66

67

 // ... lines 68 - 138

The first argument to the Passport is a new UserBadge() . What you pass here is the user identifier. In our system,

we're logging in via the email, so pass $email !

And... if you want, you can stop right here. If you only pass one argument to UserBadge , Symfony will use the "user

provider" from security.yaml to find that user. We're using an entity provider, which tells Symfony to try to query for

the User object in the database via the email property.

Optional Custom User Query

In the old system, we did this all manually by querying the UserRepository . That is not needed anymore. But

sometimes... if you have custom logic, you might still need to find the user manually.

If you have this use-case, pass a function() to the second argument that accepts a $userIdentifier argument.

Now, when the authentication system needs the User object, it will call our function and pass us the "user identifier"...

which will be whatever we passed to the first argument. So, the email.

Our job is to use that to return the user. Start with

$user = $this->entityManager->getRepository(User::class)

And yea, I could have injected the UserRepository instead of the entity manager... that would be better... but this is

fine. Then ->findOneBy(['email' => $userIdentifier]) .

If we did not find a user, we need to throw a new UserNotFoundException() . Then, return $user .

 public function authenticate(Request $request): Passport

 {

 $email = $request->request->get('email');

 $password = $request->request->get('password');

 return new Passport(

);

 }

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 39

40

41

 // ... lines 42 - 44

45

46

47

48

49

50

51

52

53

54

55

56

57

 // ... lines 58 - 65

66

67

 // ... lines 68 - 138

First Passport argument is done!

PasswordCredentials

For the second argument, down here, change my bad semicolon to a comma - then say

new PasswordCredentials() and pass this the submitted $password .

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 39

40

41

 // ... lines 42 - 44

45

46

 // ... lines 47 - 56

57

58

 // ... lines 59 - 65

66

67

 // ... lines 68 - 138

That's all we need! That's right: we do not need to actually check the password! We pass a PasswordCredentials() ...

and then another system is responsible for checking the submitted password against the hashed password in the

database! How cool is that?

Extra Badges

Finally, the Passport accepts an optional array of "badges", which are extra "stuff" that you want to add... usually to

activate other features.

 public function authenticate(Request $request): Passport

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 // optionally pass a callback to load the User manually

 $user = $this->entityManager

 ->getRepository(User::class)

 ->findOneBy(['email' => $userIdentifier]);

 if (!$user) {

 throw new UserNotFoundException();

 }

 return $user;

 }),

);

 }

 public function authenticate(Request $request): Passport

 {

 return new Passport(

 new UserBadge($email, function($userIdentifier) {

 }),

 new PasswordCredentials($password),

);

 }

We only need to pass one: a new CsrfTokenBadge() . This is because our login form is protected by a CSRF token.

Previously, we checked that manually. Lame!

But no more! Pass the string authenticate to the first argument... which just needs to match the string used when we

generate the token in the template: login.html.twig . If I search for csrf_token ... there it is!

For the second argument, pass the submitted CSRF token: $request->request->get('_csrf_token') , which you

can also see in the login form.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 57

58

59

60

61

62

63

 // ... line 64

65

66

67

 // ... lines 68 - 138

And... done! Just by passing the badge, the CSRF token will be validated.

Oh, and while we don't need to do this, I'm also going to pass a new RememberMeBadge() . If you use the "Remember

Me" system, then you need to pass this badge. It tells the system that you opt "into" having a remember me cookie set if

the user logs in using this authenticator. But you still need to have a "Remember Me" checkbox here... for it to work. Or, to

always enable it, add ->enable() on the badge.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 39

40

41

 // ... lines 42 - 44

45

 // ... lines 46 - 57

58

59

 // ... lines 60 - 63

64

65

66

67

 // ... lines 68 - 138

And, of course, none of this will work unless you activate the remember_me system under your firewall, which I don't

actually have yet. It's still safe to add that badge... but there won't be any system to process it and add the cookie. So, the

badge will be ignored.

 public function authenticate(Request $request): Passport

 {

 return new Passport(

 new PasswordCredentials($password),

 [

 new CsrfTokenBadge(

 'authenticate',

 $request->request->get('_csrf_token')

),

]

);

 }

 public function authenticate(Request $request): Passport

 {

 return new Passport(

 new PasswordCredentials($password),

 [

 (new RememberMeBadge())->enable(),

]

);

 }

Deleting Old Methods!

Anyways, we're done! If that felt overwhelming, back up and watch our Symfony Security tutorial to get more context.

The cool thing is that we don't need getCredentials() , getUser() , checkCredentials() , or getPassword()

anymore. All we need is authenticate() , onAuthenticationSuccess() , onAuthenticationFailure() , and

getLoginUrl() . We can even celebrate up here by removing a bunch of old use statements. Yay!

Oh, and look at the constructor. We no longer need CsrfTokenManagerInterface or

UserPasswordHasherInterface : both of those checks are now done somewhere else. And... that gives us two more

use statements to delete.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 28

29

30

31

 // ... lines 32 - 87

Activating the New Security System

At this point, our one custom authenticator has been moved to the new authenticator system. This mean that, in

security.yaml , we are ready to switch to the new system! Say enable_authenticator_manager: true .

config/packages/security.yaml

1

 // ... lines 2 - 9

10

 // ... lines 11 - 64

And these custom authenticators aren't under a guard key anymore. Instead, add custom_authenticator and add

this directly below that.

config/packages/security.yaml

1

 // ... lines 2 - 20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 27

28

29

 // ... lines 30 - 63

Okay, moment of truth! We just completely switched to the new system. Will it work? Head back to the homepage, reload

and... it does! And check out those deprecations! It went from around 45 to 4. Woh!

Some of those relate to one more security change. Next: let's update to the new password_hasher & check out a new

command for debugging security firewalls.

 public function __construct(private SessionInterface $session, private

EntityManagerInterface $entityManager, private UrlGeneratorInterface $urlGenerator)

 {

 }

security:

 enable_authenticator_manager: true

security:

 firewalls:

 main:

 custom_authenticator:

 - App\Security\LoginFormAuthenticator

Chapter 14: Password encoders -> password_hashers &
debug:firewall

By converting to the new security system, our deprecations just went way down. If you look at what's left, one of them

says:

“The child node "encoders" at path "security" is deprecated, use "password_hashers" instead.”

This is another change that we saw when upgrading the security-bundle recipe. Originally, we had encoders . This

tells Symfony which algorithm to use to hash passwords. This has been renamed to password_hashers . And instead of

needing our custom class, we can always just use this config. This says:

“Any class that that implements PasswordAuthenticatedUserInterface should use the auto algorithm.”

config/packages/security.yaml

1

 // ... lines 2 - 11

12

13

 // ... lines 14 - 63

And since... every user class with a password needs to implement this - including our class - that covers us.

Oh, but if you had a different algorithm before, move that down to this line. We don't want to change the algorithm: we just

want to delete encoders in favor of password_hashers .

Now, on the homepage... we have even less deprecations! Two left! Let's try to log in. Ah! I think I missed some conflicts in

my base layout earlier.

Let's swing over and fix these. In templates/base.html.twig ... yep. When we upgraded the twig-bundle recipe,

this conflicted and I didn't even notice! Shame on me!

Now... much better. Let's log in: we have a user called abraca_admin@example.com with password tada . Sign in

and... it's alive!

The debug:firewall Command

Speaking of "security" and "firewalls" and other nerdery, Symfony ships with a new command to help debug and visualize

your firewall. It's called, appropriately, debug:firewall . If you run it with no arguments:

php bin/console debug:firewall

It'll tell you your firewall names: dev and main . Re-run this with main :

security:

 password_hashers:

 Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface: 'auto'

php bin/console debug:firewall main

Here we go! This tells us what authenticators this firewall has, which user provider it's using - though our app usually only

has one - and also the entry point, which is something we talk about in our Security tutorial.

Ok, put a big ol' check mark next to "Upgrade Security". Next, let's crush the last few deprecations and learn how we can

be sure that we didn't miss any.

Chapter 15: Hunting Down the Final Deprecations

All right team! Let's fix these last few deprecations. One of the trickiest things about these is that, sometimes, they come

from third-party bundles. I don't have any examples here, but sometimes you'll get a deprecation and... if you look into it,

you'll realize it's not your fault. It's coming from a library or a bundle you're using. When this happens, you need to

upgrade that bundle, and hope there's a new version without any deprecations. We actually did have some examples of

this way back at the beginning of the tutorial. But... we've already run composer update a few times, and have,

apparently, upgraded all of our dependencies to versions without deprecations. Yay, efficiency!

ROLE_PREVIOUS_ADMIN -> IS_IMPERSONATOR

Ok, let's take a look at this list. It says that, in Symfony 5.1, ROLE_PREVIOUS_ADMIN is deprecated and we should use

IS_IMPERSONATOR instead. You can show the context or trace to try to get more info, like where this is coming from. It

isn't always obvious... and that's one of the trickiest things about deprecations. But this one is coming from

base.html.twig .

Great! Open templates/base.html.twig and search for "previous_admin". In an earlier tutorial, we used this to

check if we are currently impersonating a user with Symfony's switch_user feature. If we are, we changed the

background to red to make it really obvious.

To fix the deprecation, very simply, change this to IS_IMPERSONATOR . Copy that... because there's one other spot on

this page where we need to do the same thing: IS_IMPERSONATOR . Done! One less deprecation!

templates/base.html.twig

 // ... lines 1 - 21

22

 // ... line 23

24

25

 // ... lines 26 - 60

61

62

 // ... lines 63 - 67

68

 // ... lines 69 - 71

72

 // ... lines 73 - 79

80

 // ... lines 81 - 95

IS_AUTHENTICATED_ANONYMOUSLY -> PUBLIC_ACCESS

While we're talking security, open up config/packages/security.yaml and head down to access_control . I

have a few entries - /logout , /admin/login - that I want to make absolutely sure are accessible by everyone, even

users that are not logged in. To do, we added these rules on top and, previously used

 <nav

 {{ is_granted('IS_IMPERSONATOR') ? 'style="background-color: red !important"' }}

 >

 <ul class="dropdown-menu dropdown-menu-end" aria-labelledby="user-

dropdown">

 {% if is_granted('IS_IMPERSONATOR') %}

 {% endif %}

 </nav>

IS_AUTHENTICATED_ANONYMOUSLY . So if I go to /logout , only this access_control is matched... and since the

role is IS_AUTHENTICATED_ANONYMOUSLY access is always granted.

In Symfony 6, IS_AUTHENTICATED_ANONYMOUSLY has changed to PUBLIC_ACCESS . So use that in both places.

config/packages/security.yaml

1

 // ... lines 2 - 38

39

 // ... lines 40 - 41

42

43

 // ... lines 44 - 59

If you're wondering why we didn't have a deprecation for this... well... it's a rare case where Symfony is unable to catch

that deprecated path and show it to us. This doesn't happen very often, but it's a situation where a tool like SymfonyInsight

can help catch this.... even when Symfony itself can't.

The Deprecated Session Service

Okay, the last deprecation on the list says:

“SessionInterface aliases are deprecated, use $requestStack->getSession() instead. It's being referenced

by the LoginFormAuthenticator service.”

Let's go check that out! Open src/Security/LoginFormAuthenticator.php . Ahh. I'm autowiring the

SessionInterface service. In Symfony 6, that service no longer exists. There are some technical reasons for this...

but long story short, the session wasn't ever, really a true service. What you're supposed to do now is get it from the

Request .

So, no big deal. Remove the SessionInterface constructor argument... and we don't need this use statement

anymore either.

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 27

28

29

30

 // ... lines 31 - 84

85

Now search for "session". We're using it down in onAuthenticationSuccess() . Fortunately, this already passes us

the$request object! So we can just say $request->getSession() .

security:

 access_control:

 - { path: ^/logout, role: PUBLIC_ACCESS }

 - { path: ^/admin/login, roles: PUBLIC_ACCESS }

class LoginFormAuthenticator extends AbstractLoginFormAuthenticator

{

 public function __construct(private EntityManagerInterface $entityManager, private

UrlGeneratorInterface $urlGenerator)

 {

 }

}

src/Security/LoginFormAuthenticator.php

 // ... lines 1 - 60

61

62

63

 // ... line 64

65

 // ... lines 66 - 67

68

 // ... lines 69 - 86

Hunting Down the Final Deprecations

Done! So... did we do it? Have we achieved zero deprecations and spiritual enlightenment? Go back to the homepage,

refresh and... we did! Well, at least that first part... no deprecations! And if we surf around our site a bit... I'm not seeing

any deprecations on any of these pages!

Does this mean we're done? Well, we've manually tested all of the pages that we can click on. But what about POST

requests... like submitting the login or registration forms? And what about API endpoints? We have one called /api/me ...

which doesn't work because I'm not logged in. Log back in as "abraca_admin@example.com" with password "tada" and

then... yea, /api/me works.

We can't see the web debug toolbar for this request, but I bet you already know the trick. Go to /_profiler to see the

last ten requests. Here's the POST request to /login . Go down to Logs. Great! That had no deprecations. Go back and

also check the API endpoint. If we look at Logs again, it also had no deprecations. We're on a roll!

Another option, instead of checking the profiler all the time, is to go over to your terminal and tail the log file:

tail -f var/log/dev.log

This will constantly stream any new logs. Actually, hit "ctrl" + "C" and run that again, but grep for deprecation :

tail -f var/log/dev.log | grep deprecation

Perfect. Now, if any logs come through that contain the word "deprecation", we'll see them. And since deprecated code

paths trigger a log in the dev environment, this is a powerful tool.

Deprecated $this->getDoctrine() Method

For example, let's go register as a new user. I'll log out, then "Sign up". It asks me for my name, email, and a password.

Click to "Agree" to some made-up terms and submit. Oh, my password is too short: my own validation rules coming back

to haunt me! Fix that, hit "Register" again and... it works!

But if we go back to our terminal... rut roo!

 public function onAuthenticationSuccess(Request $request, TokenInterface $token, string

$firewallName): Response

 {

 if ($targetPath = $this->getTargetPath($request->getSession(), $firewallName)) {

 }

 }

“Since symfony/framework-bundle 5.4, method AbstractController::getDoctrine() is deprecated. Inject an

instance of ManagerRegistry in your controller instead.”

It's not easy to see where this is coming from in our code, but we did just register... so let's open up

RegistrationController . Ah, it's complaining about this right here: the getDoctrine() method is deprecated.

Instead of using this, we can inject the $entityManager . At the end of the argument list, autowire

EntityManagerInterface $entityManager . And... then down here, delete this line because $entityManager is

now being injected. Another deprecation gone!

src/Controller/RegistrationController.php

 // ... lines 1 - 7

8

 // ... lines 9 - 16

17

18

 // ... line 19

20

21

 // ... lines 22 - 56

57

 // ... lines 58 - 88

89

Logging Deprecations on Production

Are we done now? Probably. Our project is pretty small, so checking all the pages manually isn't that big of a deal. But for

bigger projects, it might be... a huge deal to check everything manually! And you really want to be sure that you didn't miss

anything before you upgrade.

One great option to make sure you didn't miss anything is to log your deprecations on production. Open

config/packages/monolog.yaml and go down to when@prod . This has a number of handlers that will log all errors

to php://stderr . There's also a deprecation section. With this config, Symfony will log any deprecation messages

(that's what this channels: [deprecation] means) to php://stderr .

config/packages/monolog.yaml

 // ... lines 1 - 40

41

42

43

 // ... lines 44 - 58

59

60

61

62

This means that you can deploy, wait for an hour, day or week, then... just check the log! If you want to log to a file

instead, change the path to something like %kernel.logs_dir%/deprecations.log .

So that's my favorite thing to do: deploy it, and then see - in the real world - whether or not anyone is still hitting

deprecated code paths.

use Doctrine\ORM\EntityManagerInterface;

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface $userPasswordHasher,

VerifyEmailHelperInterface $verifyEmailHelper, EntityManagerInterface $entityManager): Response

 {

 }

}

when@prod:

 monolog:

 handlers:

 deprecation:

 type: stream

 channels: [deprecation]

 path: php://stderr

At this point, I'm not seeing any more deprecations on our web debug toolbar, so I think we're done! And that means we're

ready for Symfony 6! Let's do the upgrade next!

Chapter 16: Upgrading to Symfony 6.0

Finally, it's time to upgrade to Symfony 6! Woo!

Rector Upgrades to 6.0

But first, just in case, let's run Rector one more time. Go back to Rector's repository, click the Symfony link, and... steal the

same code that we had earlier. Paste that into our rector.php file. Then, just like we did for Symfony 5.4, change

SymfonySetList to SymfonyLevelSetList , and this time, say UP_TO_SYMFONY_60 .

rector.php

 // ... lines 1 - 14

15

 // ... lines 16 - 23

24

25

26

27

In theory, there shouldn't be any code differences needed between Symfony 5.4 and 6.0... though sometimes there are

minor cleanups you can do once you have upgraded.

Let's run this and see what happens. Say:

vendor/bin/rector process src/

And... okay. It made one change. This is to our event subscriber: it added an array return type. This was done because,

in the future, this interface may add an array return type. So now our code is future compatible.

src/EventSubscriber/CheckVerifiedUserSubscriber.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 24

25

26

 // ... lines 27 - 29

30

31

Upgrading via Composer

With that done, let's upgrade! In composer.json , we need to find the main Symfony libraries and change their version

from 5.4.* to 6.0.* . Let's take the lazy way out and do that with a "Find & Replace".

return static function (ContainerConfigurator $containerConfigurator): void {

 $containerConfigurator->import(SymfonyLevelSetList::UP_TO_SYMFONY_60);

 $containerConfigurator->import(SymfonySetList::SYMFONY_CODE_QUALITY);

 $containerConfigurator->import(SymfonySetList::SYMFONY_CONSTRUCTOR_INJECTION);

};

class CheckVerifiedUserSubscriber implements EventSubscriberInterface

{

 public static function getSubscribedEvents(): array

 {

 }

}

composer.json

1

 // ... lines 2 - 5

6

 // ... lines 7 - 21

22

23

24

 // ... line 25

26

27

 // ... line 28

29

30

31

32

33

34

35

36

37

 // ... line 38

39

 // ... line 40

41

 // ... lines 42 - 45

46

47

 // ... lines 48 - 50

51

 // ... line 52

53

54

 // ... line 55

56

 // ... lines 57 - 103

104

105

 // ... line 106

107

108

109

110

Awesome! Like before, we're not touching any Symfony libraries that are not part of the main package and which follow

their own versioning scheme. Oh, and at the bottom, this did also change extra.symfony.require to 6.0.* .

So, we're ready! Just like before, we could say:

composer up 'symfony/*'

But... I'm not going to bother with that. Let's update everything with just:

{

 "require": {

 "symfony/asset": "6.0.*",

 "symfony/console": "6.0.*",

 "symfony/dotenv": "6.0.*",

 "symfony/form": "6.0.*",

 "symfony/framework-bundle": "6.0.*",

 "symfony/property-access": "6.0.*",

 "symfony/property-info": "6.0.*",

 "symfony/proxy-manager-bridge": "6.0.*",

 "symfony/routing": "6.0.*",

 "symfony/runtime": "6.0.*",

 "symfony/security-bundle": "6.0.*",

 "symfony/serializer": "6.0.*",

 "symfony/stopwatch": "6.0.*",

 "symfony/twig-bundle": "6.0.*",

 "symfony/validator": "6.0.*",

 "symfony/yaml": "6.0.*",

 },

 "require-dev": {

 "symfony/debug-bundle": "6.0.*",

 "symfony/var-dumper": "6.0.*",

 "symfony/web-profiler-bundle": "6.0.*",

 },

 "extra": {

 "symfony": {

 "require": "6.0.*"

 }

 }

}

composer up

And... it fails! Hmm. One of the libraries I'm using is babdev/pagerfanta-bundle ... and apparently it requires PHP

7.2... but we're using PHP 8. If you look further, there are some errors about pagerfanta-bundle[v2.8.0] requiring

symfony/config ^3.4 || ^4.4 || ^5.1 , but not Symfony 6. So what's happening here? It turns out that

pagerfanta-bundle[v2.8.0] does not support Symfony 6. Gasp!

Run

composer outdated

to see a list of outdated packages. Oooh! babdev/pagerfanta-bundle has a new version 3.6.1 . Go into

composer.json and find that... here it is! Change its version to ^3.6 .

composer.json

1

 // ... lines 2 - 5

6

 // ... lines 7 - 9

10

 // ... lines 11 - 45

46

 // ... lines 47 - 109

110

This is a major version upgrade. So it may contain some backwards compatibility breaks. We'll check into that in a minute.

Try:

composer up

again and... it's doing it! Everything just upgraded to Symfony 6!

Fixing PasswordUpgraderInterface::upgradePassword()

And then... to celebrate... it immediately exploded while clearing the cache. Uh oh... I think we may have missed a

deprecation:

“In UserRepository , upgradePassword([...]): void must be compatible with

PasswordUpgraderInterface .”

If you want to see this in color, you can refresh the homepage to see the same thing.

By the way, in Symfony 5.4, we can now click this icon to copy the file path to our clipboard. Now, if I go back over to my

editor, hit "shift" + "shift" and paste, I jump directly to the file - and even the line - where the problem is.

{

 "require": {

 "babdev/pagerfanta-bundle": "^3.6",

 },

}

And... phew! PhpStorm is not happy. That's because the upgradePassword() method changed from requiring a

UserInterface to requiring a PasswordAuthenticatedUserInterface . So we just need to change that and...

done!

src/Repository/UserRepository.php

 // ... lines 1 - 8

9

 // ... lines 10 - 18

19

20

 // ... lines 21 - 28

29

30

 // ... lines 31 - 37

38

39

Back at our terminal, if we run:

php bin/console cache:clear

Now it's happy. We're still getting some deprecations down here from a different library... but I'm going to ignore those.

These come from a deprecated package that... I really just need to remove from this project entirely.

PagerFanta Updates

Let's go make sure the homepage works. It... doesn't!? We get

“Attempted the load class QueryAdapter from namespace "Pagerfanta\Doctrine\ORM .”

This shouldn't be a surprise... since we did upgrade pagerfanta-bundle from 2.8 to 3.6.

This is a situation where you need to find the GitHub page for the library and hope that they have an upgrade document.

This one actually does. If you read this closely, you'd discover that a bunch of classes that were previously part of

Pagerfanta have now been broken into independent libraries. So if we want to use this QueryAdapter , we need to

install a separate package. Do that with:

composer require pagerfanta/doctrine-orm-adapter

Cool... and if we refresh now... another error? This one's even better:

“Unknown function pagerfanta . Did you forget to run composer require pagerfanta/twig in

question/homepage.html.twig?.”

The Twig integration was also moved to its own package... so we need to run that command too:

use Symfony\Component\Security\Core\User\PasswordAuthenticatedUserInterface;

class UserRepository extends ServiceEntityRepository implements PasswordUpgraderInterface

{

 public function upgradePassword(PasswordAuthenticatedUserInterface $user, string

$newHashedPassword): void

 {

 }

}

composer require pagerfanta/twig

And... after that's done... it's alive! We have a Symfony 6 project! Woohoo! If we click around, things seem to be working

just fine. We did it!

Checking for Outdated Packages

Over at our command line, run

composer outdated

to see all of the outdated packages we have left. The list is now very short. One package is

knplabs/knp-markdown-bundle , which is fully upgraded... but it's been abandoned. If you have this in a real project,

refactor it to use twig/markdown-extra . I'm not going to bother, but that's why it's on this list.

The biggest thing here is that doctrine/dbal has a new major version! So hey! While we're here upgrading things, let's

upgrade it too! That's next, along with some final cleanups.

Chapter 17: Final Upgrades & Cleanups

While we're doing all of these major upgrades, we might as well make sure everything is upgraded. When we run

composer outdated

it gives us a list of all of the things we still need to update. As I mentioned, we're going to ignore

knplabs/knp-markdown-bundle . But if you have that in a real project, refactor it to use twig/markdown-extra .

Upgrading doctrine/dbal to v3

What I'm interested in is doctrine/dbal , which has a new major version we can upgrade to. But... this begs the

question: Why didn't this upgrade automatically when we did composer up? Run

composer why-not doctrine/dbal 3

to find out what is preventing us from upgrading to version 3 of this package. Of course! We're holding it back. It says that

our project requires doctrine/dbal (^2.13) . Whoops...

Head over to composer.json and... sure enough: ^2.13 . Change that to the latest ^3.3 . Moment of truth. Run

composer.json

1

 // ... lines 2 - 5

6

 // ... lines 7 - 12

13

 // ... lines 14 - 47

48

 // ... lines 49 - 111

112

composer up

And... woo! It updated! Do

composer outdated

again. Alright! Other than knp-markdown-bundle , this is empty.

{

 "require": {

 "doctrine/dbal": "^3.3",

 },

}

We did just perform a major version upgrade. So the new version does contain backwards-compatibility breaks. You'll

want to look into the library's CHANGELOG a bit deeper to make sure you're not affected. But, I can tell you that most of

the changes relate to if you're using doctrine/dbal directly, for example to make queries direclty in DBAL. Typically,

when you're working with the Doctrine ORM & entities - even if you're making custom queries - you're not doing that. On

our site... we seem to be just fine.

Final Recipe Upgrades

Now that we've upgraded from Symfony 5.4 to 6.0, it's possible that some recipes have new versions we can update to.

Run:

composer recipes:update

Oh, whoops! I need to commit my changes:

git commit -m 'upgrading doctrine/dbal from 2 to 3'

Perfect! Now run

composer recipes:update

and... cool! There are two. Start with symfony/routing . And... we have conflicts! Run:

git status

Moving Route Attribute Loading

The problem is in config/routes.yaml . Let's check that out. Ok, so previously, I commented out this route.

config/routes.yaml

1

2

3

The recipe update added the controllers and kernel imports. Let's keep their changes. These are actually importing

our route annotations or attributes from the ../src/Controller directory... and also allowing you to add routes and

controllers directly to your Kernel.php file.

#index:

path: /

controller: App\Controller\QuestionController::homepage

config/routes.yaml

1

2

3

4

5

6

7

It says type: annotation ... but that importer is able to load annotations or PHP 8 attributes. One of the nice things

about Symfony 6 is that you can load route attributes without any external library. It's just... part of the routing system. For

that reason, these route imports were added to our main config/routes.yaml file when we install

symfony/routing .

Go ahead and commit that. This change will make even more sense after we upgrade the final recipe.

Run

composer recipes:update

again and, this time, let's update the doctrine/annotations recipe. Interesting. It deleted

config/routes/annotations.yaml . If you look closely, that actually contained the two lines that were added by the

previous recipe update!

Here's the deal. Back before PHP 8 - when we only had annotation routes - the doctrine/annotations library was

required to import route annotations. So we only gave you these imports lines once you installed that library.

But now that we use attribute routes, that's no longer true! We do not need the doctrine/annotations package

anymore. For that reason, we now immediately give you these attribute route import lines as soon as you install the

routing component.

If we look over here, nothing changes on our front end. All of our routes still work.

Removing Un-needed Code

Finally, now that we're on Symfony 6, we can remove some code that was only needed to keep things working on

Symfony 5. There's not much of this that I know of... the only I can think of is in User.php .

As I mentioned earlier, in Symfony 6, UserInterface ... I'll click into that... renamed getUsername() to

getUserIdentifier() . In Symfony 5.4, to remove the deprecations but keep your code working, we need to have

both of these methods. But as soon as you upgrade to Symfony 6, you don't need the old one anymore! Just make sure

that you're not calling this directly from your code.

controllers:

 resource: ../src/Controller/

 type: annotation

kernel:

 resource: ../src/Kernel.php

 type: annotation

src/Entity/User.php

 // ... lines 1 - 14

15

16

 // ... lines 17 - 79

80

81

82

83

84

85

86

87

88

 // ... lines 89 - 221

222

Another spot down here... is getSalt() . This is an old method related to how you hash passwords, and it's no longer

needed in Symfony 6. Modern password hashing algorithms take care of the salting themselves, so this is completely

useless.

And... that's it team! We're done! Our Symfony 6 app is fully upgraded! We upgraded recipes, updated to PHP 8 code, are

using PHP 8 attributes instead of annotations and more. That was a ton of stuff... and we just modernized our codebase

big time.

I think this deserves a whole pizza to celebrate. Then come right back, because I want to take a quick test drive of a few

more new features that we haven't talked about. Those are next.

class User implements UserInterface, PasswordAuthenticatedUserInterface

{

 /**

 * A visual identifier that represents this user.

 *

 * @see UserInterface

 */

 public function getUsername(): string

 {

 return (string) $this->email;

 }

}

Chapter 18: Form Improvements for Symfony 6

Let's explore some new features! There are tons of them, and we've already seen a bunch. I don't have time to show

everything but fortunately, I don't need to! If you go to https://symfony.com/blog, the new stuff is really well-documented.

Click on "Living on the Edge". Here, you can see blog posts that are categorized by each version. This is a collection of

blog posts about what's new in Symfony 5.1, like the new security system. And... here are posts about what's new in

Symfony 5.3, or 5.4 through 6.0. So if you want to go deeper and see all the new stuff, it's been beautifully documented in

these posts.

The new features I want to show right now have to do with the form component.

Form Field Sorting

Since Symfony 5.3, we have a nice new feature called Form Field Sorting. If you go to the registration page, this renders

four fields. Let's open the template for that: templates/registration/register.html.twig . I'm rendering all the

fields by hand. Let's replace this with the very lazy {{ form_widget(registrationForm) }} ... which just dumps

out all of the fields in whatever order they're added.

templates/registration/register.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... line 13

14

 // ... lines 15 - 17

18

Unfortunately... now the form... looks weird. To fix this, open the form type class for this, which is

src/Form/RegistrationFormType.php . Every single field now has an option called priority . Let's add that.

Starting with firstName , pass null for the type so Symfony keeps guessing. Then, set priority to 4 , because I

want this to be the first field. email should be the second field, so pass null again and set its priority to 3 . Then

give plainPassword a priority of 2 ... and finally set agreeTerms to priority 1 .

{% block body %}

 {{ form_start(registrationForm) }}

 {{ form_widget(registrationForm) }}

 {{ form_end(registrationForm) }}

{% endblock %}

https://symfony.com/blog

src/Form/RegistrationFormType.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

 // ... lines 25 - 30

31

32

33

34

35

36

 // ... lines 37 - 52

53

54

55

 // ... lines 56 - 62

63

And now... it looks great! So if you want to lazily render your fields, you can do that... and not have to worry about them

being in a strange order.

Hello renderForm()

While we're on the topic of forms, open up the controller for this page:

src/Controller/RegistrationController.php . In Symfony 5.3, when you render a template and pass in a form,

there's a new shortcut! Instead of render() say renderForm() . The only other difference is that you get to remove

the ->createView() call.

src/Controller/RegistrationController.php

 // ... lines 1 - 16

17

18

 // ... line 19

20

21

 // ... lines 22 - 53

54

55

56

57

 // ... lines 58 - 88

89

That's it! this renderForm() method is just like render() . It still renders this template, and it still passes any of these

variables into the template. But if any of the variables we're passing are a "form" object, it calls the createView()

method for us... which is nice!

 public function buildForm(FormBuilderInterface $builder, array $options): void

 {

 $builder

 ->add('email', null, [

 'priority' => 3,

])

 ->add('agreeTerms', CheckboxType::class, [

 'priority' => 1,

])

 ->add('firstName', null, [

 'priority' => 4,

])

 ->add('plainPassword', PasswordType::class, [

 'priority' => 2,

])

 ;

 }

}

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface $userPasswordHasher,

VerifyEmailHelperInterface $verifyEmailHelper, EntityManagerInterface $entityManager): Response

 {

 return $this->renderForm('registration/register.html.twig', [

 'registrationForm' => $form,

]);

 }

}

This also makes one other change, which isn't very noticeable. If you have a validation error, your controller will now

return a response with its status code set to 422. But that won't look any different in your browser. If I submit a password

that's too short, it all looks the same... though the status code is now 422.

Symfony made this change for two reasons. First... it's just technically more correct to have an error status code if there is

a validation error. And second, if you're using Turbo, this is needed so that Turbo knows that your form validation failed.

You get that for free just by using the new shortcut method.

Next, Symfony comes with some nice and optional Docker integration for local development. Some parts of this

integration have recently changed. Let's see how we can use Docker to get a cool email catching system added to our

app that will help us test emails.

Chapter 19: Enhanced Docker Integration & Testing Emails

Symfony has had Docker support for a while, in particular, to help with local web development. For example, I have PHP

installed locally. So I'm not using Docker to get PHP itself. But my project has a docker-compose.yml file that defines a

database service. Remember that the local web server we're using comes from the Symfony binary... and it's smart. It

automatically detects that I have docker-compose running with a database service... and so it reads the connection

parameters from this container and exposes them as a DATABASE_URL environment variable.

Check this out! On any page, click into the web debug toolbar. Make sure you're on "Request/ Response", then go to

"Server Parameters". Scroll down to find DATABASE_URL set to (in my case) 127.0.0.1 on port 56239 . The way my

docker-compose.yml is set up, it will create a new random port each time it starts.

docker-compose.yml

 // ... line 1

2

3

4

5

6

7

8

9

10

11

12

The Symfony binary will then figure out which random port it is and create the environment variable accordingly. Finally,

just like normal, thanks to our config/packages/doctrine.yaml configuration, the DATABASE_URL environment

variable is used to talk to the database. So the Symfony binary plus Docker is a nice way to quickly and easily boot up

external services like a database, elastic search, or more.

New Docker Integration with Flex Recipes

Recently, Symfony took this to the next level. On Symfony.com, you'll find a blog post called Introducing Docker support.

The idea is pretty simple. When you install a new package - Doctrine, for example - that package's recipe may ship with

some Docker configuration. And so, just by installing the package, you get Docker configuration automatically.

Let's see this in action! Since we already have Doctrine installed, let's install Mailer, which will come with

docker-compose config for a service called MailCatcher. At your terminal, run:

composer require mailer

Awesome! It stops us and asks:

services:

 database:

 image: 'mysql:8.0'

 environment:

 MYSQL_ROOT_PASSWORD: password

 ports:

 # To allow the host machine to access the ports below, modify the lines below.

 # For example, to allow the host to connect to port 3306 on the container, you would

change

 # "3306" to "3306:3306". Where the first port is exposed to the host and the second

is the container port.

 # See https://docs.docker.com/compose/compose-file/#ports for more information.

 - '3306'

https://symfony.com/blog/introducing-docker-support

“The recipe for this package contains some Docker configuration. Do you want to include Docker configuration from

recipes?”

I'm going to say p for "Yes permanently". If you don't want the Docker stuff, no worries! Answer no or "No permanently"

and it will never ask you again.

And... done! Now we can run

git status

to see that it updated the normal stuff, but also gave us a new docker-compose.override.yml . If you're not familiar,

Docker will first read docker-compose.yml and then will read docker-compose.override.yml . The purpose of

the override file is to change configuration that is specific to your machine. In this case, our local machine.

docker-compose.override.yml

 // ... lines 1 - 2

3

4

5

6

7

8

The new file adds a service called mailer ... which boots up something called MailCatcher. MailCatcher is a local

debugging tool that starts an SMTP server that you can send emails to. And then it gives you a web GUI where you can

review those emails... inside a pretend inbox.

This service lives inside of docker-compose.override.yml because we only want this service to be running locally

when we're doing local development. If you're using Docker to deploy your site, you'll have a different local configuration

for production. If you're not deploying with Docker, all of this config could live in your main docker-compose.yml file if

you want.

Testing MailCatcher

Anyways, before we even start using this service, let's get set up to send an email. Open up

src/Controller/RegistrationController.php . We're already using

symfonycasts/verify-email-bundle ... but instead of actually sending the verification email, we're just putting the

verification URL directly into a flash message. It was a shortcut I made during the Security tutorial.

services:

###> symfony/mailer ###

 mailer:

 image: schickling/mailcatcher

 ports: [1025, 1080]

###< symfony/mailer ###

src/Controller/RegistrationController.php

 // ... lines 1 - 16

17

18

 // ... line 19

20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 43

44

45

46

47

48

49

 // ... lines 50 - 51

52

 // ... lines 53 - 56

57

 // ... lines 58 - 88

89

But now, let's send a real email. I'll go to the bottom of the class and paste a new private function, which you can get from

the code blocks on this page. Retype the "e" on MailerInterface and hit "tab" to add that use statement... and do the

same with the "l" on Email . Select the one from Symfony\Component\Mime .

src/Controller/RegistrationController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 19

20

21

 // ... lines 22 - 92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Perfect! This will send a very simple verification email that just contains the verification link.

Now, all the way up on the register() method, add a new argument at the end: MailerInterface $mailer . Then,

down here, remove the TODO ... and replace it with $this->sendVerificationEmail() passing $mailer , $user ,

class RegistrationController extends AbstractController

{

 public function register(Request $request, UserPasswordHasherInterface $userPasswordHasher,

VerifyEmailHelperInterface $verifyEmailHelper, EntityManagerInterface $entityManager): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 // TODO: in a real app, send this as an email!

 $signedUrl = $signatureComponents->getSignedUrl();

 $this->addFlash('success', sprintf(

 'Confirm your email at: %s',

 $signedUrl

));

 }

 }

}

use Symfony\Component\Mailer\MailerInterface;

use Symfony\Component\Mime\Email;

class RegistrationController extends AbstractController

{

 private function sendVerificationEmail(MailerInterface $mailer, User $user, string

$signedUrl)

 {

 $email = (new Email())

 ->from('hello@example.com')

 ->to($user->getEmail())

 //->cc('cc@example.com')

 //->bcc('bcc@example.com')

 //->replyTo('fabien@example.com')

 //->priority(Email::PRIORITY_HIGH)

 ->subject('Verify your email on Cauldron Overflow!')

 ->text('Please, follow the link to verify your email!')

 ->html(sprintf('%s', $signedUrl, $signedUrl));

 $mailer->send($email);

 }

}

and $signedUrl . Finally, in the success flash, change the message to tell the user that they should check their email.

src/Controller/RegistrationController.php

 // ... lines 1 - 22

23

24

 // ... lines 25 - 27

28

 // ... lines 29 - 47

48

49

50

51

52

 // ... lines 53 - 54

55

 // ... lines 56 - 59

60

 // ... lines 61 - 109

Okay, so we have this new docker-compose.override.yml file with MailCatcher. However, that container isn't

actually running yet. But, ignore that for a minute... and let's see if we can get the email working.

Click back to the Register page... whoops! We get an error:

“Environment variable not found: "MAILER_DSN".”

Of course! The mailer service needs this environment variable to tell it where to send emails. You can find this inside

.env : the mailer recipe gave us the MAILER_DSN env var, but it's commented-out. Un-comment that.

.env

 // ... lines 1 - 30

31

32

33

By default, it sends emails to what's called the "null transport"... which means that when we send emails... they go

absolutely nowhere. They're not actually delivered... which is a nice setting for development.

Refresh, add a fake email address, register, and... it worked! Of course, it didn't send the email anywhere... but we can still

see, more or less, what the email would look like.

How? Click any link to go into the Profiler, click "Last 10", find the POST request for /register and click into that. Down

here, go to the "E-mails" section and... voilà! It shows our email including an HTML preview. And wow is it ugly... but that's

my fault. Btw, the HTML preview is a new feature in Symfony 5.4.

Starting up the MailCatcher Service

Ok that's cool. But let's see how MailCatcher can also help us debug emails. First, if you do not already have a

docker-compose.yml file, create one. All you need is the version line on top. That way we have a

 public function register(Request $request, UserPasswordHasherInterface $userPasswordHasher,

VerifyEmailHelperInterface $verifyEmailHelper, EntityManagerInterface $entityManager,

MailerInterface $mailer): Response

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $this->sendVerificationEmail($mailer, $user, $signedUrl);

 $this->addFlash('success', sprintf(

 'Confirm your email - the verify link was sent to %s',

 $user->getEmail()

));

 }

 }

###> symfony/mailer ###

MAILER_DSN=null://null

###

docker-compose.yml file and a docker-compose.override.yml file.

Now, find your terminal and run:

docker-compose up -d

I already have docker-compose running for my database container, but this will now start the mailer container, which

will initialize a new mailcatcher SMTP server.

Ok... so how do we configure mailer to deliver to this smpt server from MailCatcher? What port is that SMTP server

running on anyways? The answer is... we don't know! And we don't care.

Watch this. Go back to any page, refresh... and then click into the Profiler. Once again, make sure you're on the

"Request/Response" section then go to "Server Parameters". Scroll down to MAILER_URL .

Woh! MAILER_URL is suddenly set to smtp://127.0.0.1:65320 !

Here's what happened. When we started the mailer service, Docker exposed port 1025 of that container - which is the

SMTP server - to a random port on my host machine. The Symfony binary saw that, read the random port, and then, just

like with the database, exposed a MAILER_URL environment variable that points to it. In other words, our emails will

already send to MailCatcher!

Let's try it! I'll sign up again with some other email address, agree to the terms and... cool! No error! To see the email, we

could go back into the Profiler like we did a minute ago. But in theory, if that sent to MailCatcher, we should be able to go

to the MailCatcher UI and review the message there. The question is, where is the MailCatcher UI? What port is that

running on? Because that's also running on a random port.

To help with this, hover over the "Server" section of the web debug toolbar. You can see that it detects that

docker-compose is running, it is exposing some environment variables from Docker, and it even detected Webmail!

Click "Open" to head into MailCatcher... and there's our email!

If you send more emails, they'll show up here like a little inbox.

And... that's it! Congrats! You've just upgraded your app to Symfony 6! And PHP 8! And PHP attributes! Such cool stuff!

If you have any questions or run into any problems during your upgrade that we didn't talk about, we're here for you down

in the comments. All right, friends, seeya next time!

With <3 from SymfonyCasts

