
Upgrading & What's in Symfony
7

Chapter 1: Upgrading to Symfony 6.4

Hey everyone! Symfony 7 is out! Woo! Well, of course I'm excited - I love all things Symfony,

Twig, related. But what does it really mean that Symfony 7 is out?

Symfony's Delightfully Predictable Release Schedule

Honestly... not much! Thanks to Symfony's release schedule, a new major version isn't much of

a big deal... though we try to pretend it is for marketing.

Every 6 months - in May & November - a new minor version is released, like 6.1 or 6.2. Those

are the versions that contain new features. So it totally makes sense to get excited about

Symfony 6.3 or fantastically amazing new features in Symfony 6.4. Then, each ".4" version, like

6.4, is released on the same day as the .0 version of the next major: 7.0. Yea, 6.4 and 7.0 were

released on the exact same day and are, effectively, identical! They're twins!

The only difference is that, in 7.0, all the deprecated code paths are removed. And this is the

core of what makes Symfony special. The release schedule and the deprecation policy mean

that as users, we can upgrade our apps forever across major versions... without it being a big

deal or breaking our apps. And that's exactly what we're going to do in this tutorial... followed by

a tour of some of my favorite new features.

Project Set Up

As always, to get the most out of this tutorial, code along with me by downloading the course

code from this page. After you unzip the file, you'll find a start/ directory with the same code

that you see here. The README.md file tells an inspiring tale of how to get the application up

and running. I've already done most of the steps, including running yarn install and

yarn watch in this tab.

The final step is to use the symfony binary to run:

symfony serve -d

to start a development web server. I'll click the link. Say hello to Mixed Vinyl: The app from

several of our Symfony 6 tutorials, which is currently on 6.1.2.

Using a Newer PHP Version

Open up composer.json . Near the top, our app requires php 8.1 or greater. In my apps,

down under config.platform.php , I also like to set the specific PHP version that we're

using on production:

composer.json

1

 // ... lines 2 - 4

5

6

 // ... lines 7 - 32

33

34

 // ... lines 35 - 44

45

46

47

48

 // ... lines 49 - 96

97

This guarantees that Composer only gives me dependencies compatible with that version.

Locally, if I run php -v , I already have PHP 8.3 installed. I also have a second php binary

installed for version 8.1. And thanks to the 8.1 in composer.json , when I started the

symfony web server, it used that older version.

Change this to, just PHP 8.3 . Then run:

composer up

{

 "require": {

 "php": ">=8.1",

 },

 "config": {

 "platform": {

 "php": "8.1.0"

 }

 },

}

In composer.json , all my dependencies - whether they're Symfony or something else - are

written in a way that only allows the last number or the second to last number to change.

Assuming the package maintainers are doing their job, those updates won't contain backwards-

compatibility breaks. We should be able to upgrade from 6.1 to 6.4... or 2.0 to 2.4 and our app

should keep rocking like normal!

So running composer up to get these updates, in theory, is totally safe.

Encore & Minor Changes

Over in my yarn tab, the update triggered an error: something about a controller does not

exist. This is special to Symfony UX & Encore. When you update your PHP dependencies, you

may need to reinstall your node dependencies. Hit Ctrl+C, then run:

yarn install --force

Or npm install --force if you're using npm . Then

yarn watch

again. It's happy! In the main tab, run:

git status

Alongside the usual suspects, there's a new controller in controllers.json ... which came

from an update to ux-turbo . We won't use it, but it's fine there. In package.json , it added a

new entry for stimulus bundle. This is a relatively new bundle that got installed during the

upgrade, and we'll talk more about it soon.

Upgrading to 6.4

So we are now using PHP 8.3 and we've upgraded our dependencies a bit. But we're still using

Symfony 6.1. To upgrade to 7, we first need to upgrade to 6.4. That'll give us a chance to prep

for 7.0 by finding - and fixing - all the deprecations.

And... upgrading is easy! Find 6.1.* , replace with 6.4.* and replace all.

composer.json

1

 // ... lines 2 - 4

5

 // ... lines 6 - 17

18

19

20

 // ... line 21

22

23

 // ... line 24

25

26

27

 // ... lines 28 - 29

30

 // ... lines 31 - 32

33

 // ... lines 34 - 81

82

83

 // ... line 84

85

 // ... line 86

87

88

89

 // ... line 90

91

 // ... line 92

93

94

 // ... line 95

96

97

Though, be careful. Most of the time, the Symfony version constraints look like this. However,

they could look like ^6.1 . So don't miss those: the goal is to upgrade every symfony package

{

 "require": {

 "symfony/asset": "6.4.*",

 "symfony/console": "6.4.*",

 "symfony/dotenv": "6.4.*",

 "symfony/framework-bundle": "6.4.*",

 "symfony/http-client": "6.4.*",

 "symfony/proxy-manager-bridge": "6.4.*",

 "symfony/runtime": "6.4.*",

 "symfony/twig-bundle": "6.4.*",

 "symfony/yaml": "6.4.*",

 },

 "extra": {

 "symfony": {

 "require": "6.4.*",

 }

 },

 "require-dev": {

 "symfony/debug-bundle": "6.4.*",

 "symfony/stopwatch": "6.4.*",

 "symfony/web-profiler-bundle": "6.4.*",

 }

}

that comes from the main repository. That... can be confusing because, mixed in with the

packages that we do want to upgrade are other packages that live under symfony , but are

independent and follow their own release timeline & versioning. Ignore those for now - but we

will make sure every package is upgraded by the end.

Also, near the bottom, under extra.symfony.require , make sure this is also updated to

6.4.* . That's a composer optimization that tells it to only worry about 6.4 Symfony versions.

Back over at the terminal, let's do this!

composer up

Look at those beautiful upgrades from 6.1 to 6.4! And... when we try the site, the stinkin' thing

still works!

Oh, but check out the PHP version: 8.1.27. When we started the symfony web server, it read

the PHP 8.1 version from composer.json , found that version installed on my machine and

used it. We changed this to 8.3, but we need to restart the server to use it. Run:

symfony server:stop

Then:

symfony serve -d

Yup: it found the PHP 8.3.1 version on my system. And on the site... got it!

Ok, this is working on Symfony 6.4. Our job now is to find every deprecation and fix them. On

the web debug toolbar, we apparently hit 22 deprecated code paths on this page! To start fixing

these, we'll... cheat... take a shortcut, by upgrading our Flex recipes.

Chapter 2: Flex Recipe Updates

When we install packages, many of them have Flex recipes. These add new files and

sometimes modify existing files. They do everything needed so the package works immediately.

I love that!

And, over time, these recipes tend to change. Maybe they decide to add a new line to a config

file or change a default value.

Fortunately, Flex has a fancy recipe update system. And while you don't need to update your

recipes, it's a great way to keep your app looking and feeling modern. The updates will also help

fix some of the deprecation warnings we saw at the end of the previous chapter.

Before you start, make sure you've committed any changes to git - I already have - because

the recipe update system works via Git.

To see the recipes, run:

composer recipes

Cool! It looks like we have about 8 updates. So let's get to work:

composer recipes:update

Updating recipes? Yea, it's one of my favorite things to do: it gives us a chance to peek into

what's been changing in these packages... while we've been busy, you know, doing our real job.

I'll hit enter to go down the list one-by-one.

doctrine/doctrine-bundle Recipe Update

First up is Doctrine Bundle: and it's a complex update. It even caused a conflict!

Sometimes we might see that a recipe update changes something - like updating a line in a

config file - but we don't really understand why. To help, the command lists every pull request

behind these changes. For example, this lazy ghosts thing... we can click the link to see the PR

and the explanation behind it.

Back in my editor, woh! I guess the conflict was in doctrine.yaml ! Specifically,

server_version changed. The original recipe gave us config to work with Postgres 13. It

now ships with code for Postgres 16.

You don't need to keep the new changes. If your production database is using Postgres 13,

keep it! But I'll update to 16.

At the terminal, run:

git status

Add that file to git to resolve it. Then see all the changes with:

git diff --cached

Most of these are version changes: MySQL from 5.7 to 8 and Postgres from 13 to 16. The

doctrine.yaml config does have a few new lines. These are flags where we're opting into

some low-level change in the system. And there's a good chance that not having this config

would trigger a deprecation. I'll let you dig deeper into these if you care, but they probably won't

affect anything.

docker-compose.yaml contains more changes that go from Postgres 13 to 16. So again,

you can keep these or get rid of them.

And then, lurking at the bottom, symfony.lock keeps track of which version of the recipe we

have installed. So, we're good! Commit these changes... and use a better commit message than

I am.

To use the new version of Postgres from docker-compose.yaml , run:

docker compose down

Then

docker compose up -d

We now have Postgres 16 running. Watch: the homepage still works because it doesn't talk to

the database. But when we click "browse mixes", broken! An undefined table because we're

using a fresh database. Fix that by running:

symfony console doctrine:migrations:migrate

Cool. And:

symfony console doctrine:fixtures:load

Double cool. Now... we're good!

doctrine/doctrine-migrations-bundle Recipe Update

Back to the terminal... and back to work:

composer recipes:update

On deck is doctrine-migrations-bundle . This is minor. The bundle comes with a profiler

integration: it's this little icon on the web debug toolbar. It's not super useful... and so it's

changed to be not enabled by default. Let's commit that... and update the next one.

composer recipes:update

symfony/framework-bundle Recipe Update

Framework bundle! The core of Symfony! Run git diff --cached to see the changes. Like

Doctrine, most of these are low level where we opt into a new behavior. For example,

annotations are deprecated, so we're turning them off. handle_all_throwables means that

Symfony will transform exceptions into error pages but also other types of errors. And

storage_factory_id was removed because that's the default value.

Easy! Commit that... then keep going:

composer recipes:update

symfony/monolog-bundle Recipe Update

Next up is monolog-bundle. The only change is a new formatter key at the end of

monolog.yaml . This is a consistency change. Down here in the prod config, the main log

handler already has this formatter key. It was added under deprecations so that

everything is formatted the same. Minor, but nice! We'll talk more about this deprecation log

soon.

So, commit! And...

composer recipes:update

symfony/routing Recipe Update

Routing. Dead simple. The code that imports the #[Route] attributes, apparently, needs a

namespace key. Whatever.

symfony/translation Recipe update

Commit... and onto

composer recipes:update

symfony/translation. Another easy one: translation.yaml used to have some commented-

out providers as an example... and now they're gone. But if you install one of these provider

packages, its recipe will re-add the line.

Commit that... and we're down to the final 2 recipes! These are both related to changes with

Webpack Encore and a new StimulusBundle. That deserves its own chapter, so let's do it next!

Chapter 3: Encore, StimulusBundle & their Recipe
Changes

Let's keep upgrading recipes.

symfony/twig-bundle Recipe Update

Next up is TwigBundle. This has a conflict in the one file it updated:

templates/base.html.twig .

And... it's odd. You can see our custom content here.... then the default title with the default

favicon down below. Keep our custom stuff, and delete this comment. We don't need that.

Run:

git add templates

Then:

git diff --cached

This shows symfony.lock of course, but there was a change to base.html.twig : it

removed encore_entry_link_tags() and encore_entry_script_tags() . Why?

The Rearranging of Recipes

One big recent addition to the Symfony frontend world was StimulusBundle. On its own, that's

no big deal. But, when it was introduced, various recipes were rearranged. A few changes that

used to live in the recipe for one package packed up and moved to another.

For example, these lines used to be part of TwigBundle's recipe, but they moved to the recipe

for WebpackEncoreBundle. So when we update the TwigBundle recipe, it looks like these lines

should be removed.

Of course, we do still need these, but accept this change temporarily. We'll see these get added

back later when we upgrade the WebpackEncoreBundle recipe.

symfony/webpack-encore-bundle Recipe Update

Ok, commit this and... let's do our last recipe update: WebpackEncoreBundle!

And... more conflicts. We can't catch a break. Run:

git status

Ok, in package.json , we have a number of changes. The recipe is trying to upgrade us from

Encore version 3 to 4. The biggest difference between 3 and 4 is that it's now your responsibility

to have a few packages in your package.json , like webpack itself... or the babel packages.

Let's keep version 4... and keep everything else. This is a mixture of custom packages that

we've added and the new ones needed for Encore 4.

Run:

git add package.json

Then check out what else changed with git diff . Some meaningless config,

package.json and symfony.lock . webpack.config.js holds some low-level changes:

using a newer version of core.js and the plugin-proposal-class-properties isn't

needed anymore.

So, boring, but all good stuff! Commit that recipe. And because we just updated

package.json , in the other tab, hit Control+C to stop yarn . Then run

yarn install

to get the latest node dependencies... and

yarn watch

to restart the process. Hey, we're now building with Encore 4! Go team!

Upgrading WebpackEncoreBundle to v2

The biggest change in the Encore world was really the introduction of StimulusBundle. Related

to this, in composer.json , symfony/webpack-encore-bundle has a new major version.

Change this to ^2.0 .

Then spin over and, on your main terminal tab, run:

composer up

By the way, this will fail at the bottom with something related to SensioFrameworkExtraBundle.

We... kinda broke our app in the previous chapter while upgrading the framework bundle recipe.

We'll fix this in the next chapter, but it's not hurting anything right now.

So what changed between version 1 and 2 of WebpackEncoreBundle? Just one thing: the Twig

stimulus_ helper functions - like stimulus_controller() - were removed and moved

into the new StimulusBundle. No big deal.

The real tricky part is what I mentioned earlier: as a result of the new bundle, a bunch of recipe

parts were rearranged between packages. In addition to the encore_entry() Twig functions

moving to WebpackEncoreBundle's recipe, certain files - like assets/controllers.json -

were moved from WebpackEncoreBundle's recipe to StimulusBundle's recipe.

This is all good: the new situation is cleaner with Stimulus-related files living in that bundle's

recipe. But... it makes for a bit of a mess when upgrading the recipes.

So let's walk through that. Run:

git status

Commit these changes... then run

composer recipes

again. Surprise! There are two new updates! Where did those come from? Well, we just

upgraded StimulusBundle and WebpackEncoreBundle and those new versions have new recipe

versions.

symfony/stimulus-bundle Recipe Update

Update symfony/stimulus-bundle . This... is where the weird starts. Run:

git status

We have a conflict in assets/controllers.json . This file already existed and the recipe

tried to add it. That's because StimulusBundle is now responsible for adding this file... and it's

confused because it's already here. Fix this by keeping our controllers.json file exactly

how it was.

Add that, then git diff to see the other changes. Ok, it added an import line to app.js .

That's also not something we want because... we already have it down here! It's another

example of the recipe doing something that's already done. Remove that from the top... then

git add that file.

And... everything else is fine. It gave us a new hello_controller.js , which you can keep

or remove, and symfony.lock . All good.

symfony/webpack-encore-bundle V2 Recipe Update

Commit that... then onto our final update for WebpackEncoreBundle. This one is particularly

strange. Run:

git status

Two conflicts. Many of the files here used to live in WebpackEncoreBundle's recipe, but were

moved out of it. So when we upgrade the recipe, it looks like a bunch of stuff should be deleted.

In assets/app.js , this file wasn't deleted, but it's trying to remove its guts. Keep it how it was

before. Then add it to git .

Next up is package.json . It's... kind of the same thing: it's trying to delete stuff. Don't let it get

away with that! Keep our code... then add this file to git too.

Ok, let's see how things look. It wants to delete assets/bootstrap.js - we don't want that -

and it also wants to delete controllers.json . We also don't want that. We don't want any of

these changes... especially not the letter "G" that I apparently just typed into package.json !

There's really only one change we care about: in base.html.twig . Tada! It's adding back

encore_entry_link_tags() and encore_entry_script_tags() .

That is a good change. For the final file - webpack.config.js - it wants to remove

enableStimulusBridge() . Because we are using Stimulus, we do still want that. Run

git reset HEAD

to move everything out of the staging area of git, then

git checkout assets webpack.config.js

to undo those changes. Perfect. We're left with symfony.lock and base.html.twig .

Commit those.

And we are good! We're rocking the latest version of WebpackEncoreBundle with the latest

version of WebpackEncore and we've gone through that weird, one-time recipe update.

Unfortunately, earlier, we busted our app. So next up: remove SensioFrameworkExtraBundle.

Chapter 4: Goodbye
SensioFrameworkExtraBundle

Our app is busted: something about SensioFrameworkExtraBundle. This happened while we

were upgrading recipes. In framework.yaml , it's the annotations: false .

config/packages/framework.yaml

 // ... line 1

2

 // ... lines 3 - 4

5

 // ... lines 6 - 33

SensioFrameworkExtraBundle gave us all kinds of features like the @Route annotation,

security annotation, and something called the param converter. These all relied on the

annotation system, which has been replaced by core PHP attributes. When we flipped them to

false... the bundle didn't like it.

But hey, that's fine! All those nifty features found a new home in the core of Symfony. So it's

time to say a fond farewell to SensioFrameworkExtraBundle.

Uninstalling it

At your terminal run:

composer remove sensio/framework-extra-bundle

So long, and thanks for all the annotated fish. When it finishes... and we refresh, the site works

again!

Checking for SensioFrameworkExtraBundle Features

framework:

 annotations: false

But... were we using any of its features? I don't know! An easy way to check is by running:

git grep FrameworkExtra

Nope! It doesn't look like we're referencing any use statements directly. If you are, it's just a

matter of figuring out what new attribute from Symfony replaces that feature.

To help, Symfony has a great documentation page called Symfony Attributes Overview. This

shows every PHP attribute from Symfony. For example, SensioFrameworkExtraBundle had a

Security annotation. Now Symfony has an IsGranted attribute that you can use instead.

So if you are using something from the old system, find the new way and update.

The New "Param Converter"

Though... there is one feature of SensioFrameworkExtraBundle that didn't require an

annotation... so you may have been using it without realizing. Click into one of the mixes. Notice

the URL has a slug . The controller for this is src/Controller/MixController.php .

Down here, the route does have a {slug} wildcard... but then a $mix argument, which is a

Doctrine entity.

src/Controller/MixController.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 35

36

37

38

 // ... lines 39 - 41

42

 // ... lines 43 - 60

61

Behind the scenes, the param converter would automatically query for a VinylMix where

slug equals the {slug} in the URL. No annotation needed: it just worked.

class MixController extends AbstractController

{

 #[Route('/mix/{slug}', name: 'app_mix_show')]

 public function show(VinylMix $mix): Response

 {

 }

}

https://symfony.com/doc/current/reference/attributes.html

The good news is that, as you can see, this magic still works! The feature now lives in core. And

in most cases, it will silently keep doing its thing, just like before.

If you add an extra letter to the end of the slug to get a 404, we see that the system behind this

is EntityValueResolver . If you do need some extra control, you can configure this with the

#[MapEntity] attribute.

Next up: I want to upgrade to Symfony 7! But to do that, we need to remove all these

deprecations.

Chapter 5: Finding & Eliminating Deprecations

Symfony's deprecation system is a unicorn on the Internet: there's nothing I know of that

matches it. It's one of the things that makes Symfony so special and a lot of work goes into!

How Symfony Changes / Deprecates Features

Suppose we, in Symfony, want to change something: like the name of a method. We can't just

rename the method, because that would break your code. Instead, we add the new method

name, keep the old one, but add a little deprecation code function in that old method. We

release that on a minor version, like 6.3 or 6.4. Then, you upgrade to that version and, since

your code is calling the old method, it hits that deprecation, which triggers a deprecation

warning. These warnings are collected, and we can see them in various ways - like on the Web

Debug Toolbar.

Your job is to read these and update your code to call the new method name. Once all the

deprecations are gone, you can safely upgrade to Symfony 7.0. Because, remember, the only

difference between Symfony 6.4 and Symfony 7.0 is that the deprecated code paths are gone.

In our example, it means that the old method name is finally removed in 7.0.

I love this process. It means that Symfony can change things and keep modernizing, and we

can update our apps in a safe and predictable way. It's the best.

Hunting Down Deprecations

So today, we're deprecation detectives: on a mission to hunt these down and eliminate them. To

get started, I'll manually clear my cache directory

rm -rf var/cache/*

so that when we go over and refresh the homepage, this will build the cache. Some deprecation

warnings only happen while your cache is being built. Ok, it looks like we have three warnings

left after updating our recipes. Nice!

Removing symfony/templating

Open those up. The first is related to some templating helper class being deprecated. That's not

something I remember using in my code. Look at the trace. Not super helpful. Here's the helper

class... called by a class loader.

This tells me that something is trying to use this class... and the class is entirely deprecated. In

fact, this entire symfony/templating component is deprecated: it doesn't exist at all in

Symfony 7.0! There's a pretty good chance you never used it anyway... and I'm not using it in

my app. So then, who is?

To find out, go to the command line and run:

composer why symfony/templating

Ah! This is required by knplabs/knp-time-bundle . Click the link to jump to our installed

version: 1.20.0. But that's not the latest version: it now has a version 2.2. We're way behind!

The major version 2.0 modernizes the code... and there's a good chance that included removing

the templating dependency. In fact, we see it down here.

This is a new major version of the package, so we do need to check the changelog or release

notes for any backwards compatibility breaks that might affect us.

So the interesting thing about this first deprecation is that... it wasn't something that we were

calling directly. It's an indirect deprecation: caused by a library we're using. And that's pretty

common. To be ready for Symfony 7, we need to upgrade this bundle.

In composer.json, search for "time"... then change this to the latest ^2.2 . Spin over and run:

composer up

It upgrades the package... and removes symfony/templating !

DoctrineFixturesBundle False Deprecation

Ok, clear the cache again, close some tabs, and let's go to the "browse mixes" page because

that connects to the database. This time, we see two deprecations. Open those up and dive in.

The first has something to do with data fixtures. If we look at the trace, it's not super obvious,

but it's coming from DoctrineFixturesBundle. This is a tricky one: I had to dive into the

DoctrineFixturesBundle GitHub repository to find a conversation. This time, the deprecation is a

false warning! The deprecation layer that was added to the bundle wasn't done quite correctly.

The maintainer confirms that it's fine... so when we upgrade to Symfony 7, things won't break.

This is an odd situation, but it shows that hunting deprecations can be tricky!

Deprecations from Doctrine

The final deprecation is longer and follows a different format. So far, each message has

included the package the deprecation lives in and the version it was deprecated in. But we don't

see that down here. And, at the end, it references an issue from the doctrine/orm repository.

Ah! This deprecation isn't coming from Symfony: it's coming from doctrine/orm ! This tells us

that we're going to need to make a change to our code - at some point - before upgrading to the

next major version of that package. We're only focused on upgrading Symfony today, so this is

also a deprecation we can ignore.

So... yeah I think we're good. Our app is pretty small, but as I click around, the only

deprecations I see are those that we just looked at.

Deprecation Log on Production

But... how can we be sure that there's not a page we forgot to check or a form submit that

triggers a deprecation? The answer: logging.

In config/packages/monolog.yaml , at the bottom, we have the production logging config.

The main handler is the nested handler: this logs errors on production. This logs them to

stderr, or you could change that to a file.

config/packages/monolog.yaml

 // ... lines 1 - 39

40

41

42

 // ... lines 43 - 48

49

50

51

52

53

 // ... lines 54 - 63

The point is: you're hopefully collecting your production errors somewhere. At the bottom,

there's another handler called deprecation . This logs all deprecation notices to the same

place. So in your production error logs, you should also see deprecations warnings.

config/packages/monolog.yaml

 // ... lines 1 - 39

40

41

42

 // ... lines 43 - 48

49

50

51

52

53

 // ... lines 54 - 57

58

59

60

61

62

So: fix all the deprecations you can find, deploy to production, wait a day or two, then check

your logs to see if there are any deprecations. Once there aren't, you're safe to move to

Symfony 7.0. Let's do that upgrade next!

when@prod:

 monolog:

 handlers:

 nested:

 type: stream

 path: php://stderr

 level: debug

 formatter: monolog.formatter.json

when@prod:

 monolog:

 handlers:

 nested:

 type: stream

 path: php://stderr

 level: debug

 formatter: monolog.formatter.json

 deprecation:

 type: stream

 channels: [deprecation]

 path: php://stderr

 formatter: monolog.formatter.json

Chapter 6: Upgrading to Symfony 7

All the relevant deprecations are gone. So we are ready for Symfony 7.0!

Updating composer.json

Doing the actual upgrade is... almost disappointingly easy. In composer.json replace 6.4.*

with 7.0.* .

composer.json

1

 // ... lines 2 - 4

5

 // ... lines 6 - 16

17

18

19

 // ... line 20

21

22

 // ... line 23

24

25

26

 // ... lines 27 - 28

29

 // ... lines 30 - 31

32

 // ... lines 33 - 80

81

82

 // ... line 83

84

 // ... line 85

86

87

88

 // ... line 89

90

 // ... line 91

92

93

 // ... line 94

95

96

That's it. Spin over and run:

composer up

Finding Blocking Packages

{

 "require": {

 "symfony/asset": "7.0.*",

 "symfony/console": "7.0.*",

 "symfony/dotenv": "7.0.*",

 "symfony/framework-bundle": "7.0.*",

 "symfony/http-client": "7.0.*",

 "symfony/proxy-manager-bridge": "7.0.*",

 "symfony/runtime": "7.0.*",

 "symfony/twig-bundle": "7.0.*",

 "symfony/yaml": "7.0.*",

 },

 "extra": {

 "symfony": {

 "require": "7.0.*",

 }

 },

 "require-dev": {

 "symfony/debug-bundle": "7.0.*",

 "symfony/stopwatch": "7.0.*",

 "symfony/web-profiler-bundle": "7.0.*",

 }

}

Brace yourselves because this might not work. Yup! Something is blocking the update! The first

thing I see is babdev/pagerfanta-bundle . Apparently, it works with Symfony 4, 5 and 6,

but not 7.

There's a good chance that I probably need to upgrade this to a new version that does support

Symfony 7. Run:

composer outdated

Sure enough: there are three pagerfanta packages that all have a new major version. In

composer.json , search for pagerfanta. Change all of these to ^4.0 to get that new major

version.

composer.json

1

 // ... lines 2 - 4

5

 // ... lines 6 - 8

9

 // ... lines 10 - 13

14

15

 // ... lines 16 - 31

32

 // ... lines 33 - 95

96

And because this is a major version upgrade, I won't do it, but you should check the repository

for each package and find the changelog or release notes that talk about any backwards

compatibility breaks between version 3 to 4.

Ok, try the update again:

composer up

And... still no dice! Hmm: it says that the root composer.json - meaning our

composer.json - requires symfony/proxy-manager-bridge 7.0.* but it didn't find a

version 7.

{

 "require": {

 "babdev/pagerfanta-bundle": "^4.0",

 "pagerfanta/doctrine-orm-adapter": "^4.0",

 "pagerfanta/twig": "^4.0",

 },

}

Sure enough, this package lives directly in our composer.json file. Proxies are something

that Doctrine uses behind the scenes to load lazy relationships. Recently, Symfony added its

own version of proxies called "ghost objects". They're spooky cool. Anyway, this proxy package

isn't needed anymore. It was originally added to our app way back when we installed Doctrine: it

used to be part of the orm-pack .

Give it the boot! Then try composer up again:

composer up

This time... it works! Look at all those beautiful Symfony 7 updates! And best of all, when we go

to the site, it works too! Of course it does! We handled the deprecations, so there are no

surprises when we finally get to 7.0.

Any other Packages to Update

At this point, I like to check to see what other, non-Symfony packages are outdated. Run

composer outdated again:

composer outdated

Woh! Just two! doctrine/lexer and a php-parser . To find out why this didn't go to version

3, copy that package name, and run

composer why-not doctrine/lexer 3.0

Hmm: our version of doctrine/orm requires doctrine/lexer version 2. And since we

didn't see doctrine/orm as an outdated package, it means that there simply isn't a version of

doctrine/orm yet that works with doctrine/lexer 3. And that's fine! That's a low-level

package, and we're in no rush.

The other package - php-parser - I can tell you, without even looking, that this is required by

symfony/maker-bundle . In its next release, version 5 will be allowed.

New Version Recipes

Because we just updated some packages, run:

composer recipes

Hey! There are two new recipe updates available! To upgrade, first commit our changes...

complete with an emoji to celebrate... then run:

composer recipes:update

And git diff --cached to see the changes. This is cool: a bunch of lines gone. These

were removed because they are now the default values. The session key no longer needs

this stuff - they're all the default values... and same for php_errors and

handle_all_throwables . It's just a nice config clean up.

Commit that, then run recipes:update one more time:

composer recipes:update

Check the changes. Same thing: it removes a config option that is now the default. Commit that.

Our project is now a little bit cleaner.

So we're on Symfony 7, our app is working and our recipes are updated!

Changing the Namespace for #[Route]!

While we're here, inside a controller, it's highlighting the Route attribute:

“Symfony Annotation namespace will be deprecated in Symfony 6.4 /7.0.”

Look at the use statement: it has Annotation in the namespace! This class isn't yet

deprecated, but it will be soon. And fixing it is simple. Delete the use statement, go down here,

click on the class, hit Alt+Enter, Import Class, then get the one from the Attribute

namespace.

Copy that... then repeat in the other two controller files. This will save us a deprecation in the

future.

Now that we're on Symfony 7, I want to do something optional, but really cool: I want to remove

Webpack Encore and replace it with AssetMapper.

Chapter 7: Migrating Encore -> AssetMapper

Symfony 6.3 came with a new component called AssetMapper... and I love it! Okay, I work on

it... so I'm totally not objective... but trust me it's amazing! It lets us write modern JavaScript and

css with no build system. We have an Asset Mapper tutorial and a more recent LAST Stack

tutorial where we build cool stuff with it.

AssetMapper Vs Webpack Encore?

AssetMapper is a replacement for Webpack Encore. Encore isn't going to die super soon, but I

definitely caught it browsing some retirement brochures!

So I know what you're wondering:

“Should I convert my app from Webpack Encore to AssetMapper?”

The short, but not satisfying answer is... it's up to you. AssetMapper is more modern, it's easier

to use and if you're frustrated with slow builds from Encore, that's a great reason to switch. But

if Encore is working fine, there's no huge reason to do all the work of converting to

AssetMapper. Also, if you use React or Vue, you'll want to stay with Encore because those do

still require a build step.

Removing Webpack Encore

But let's convert! Head over to your terminal and find that tab where yarn watch is doing its

thing. Stop that with Ctrl+C and close that tab. We do not need a build system - so that second

tab is not coming back.

Then run:

composer remove symfony/webpack-encore-bundle

https://symfonycasts.com/screencast/asset-mapper
https://symfonycasts.com/screencast/last-stack
https://symfonycasts.com/screencast/last-stack

This will remove that package... but more important: its recipe will uninstall itself! It feels great:

package.json gone, webpack.config.js gone, the encore_entry_ functions in

base.html.twig gone.

But... it also deleted app.js and app.css . We do want those files, so run

git checkout assets/

to get them back. But everything else looks good! Run:

git diff

In the old package.json , the dependencies here were related to Webpack Encore and we

will not need those. But some of these are for our frontend, and we will re-add those via

AssetMapper.

Ok, lock in those changes with a commit... then throw a party by removing node_modules ,

public/build/ and the yarn error file. Oh, we can also remove yarn.lock . Gorgeous!

Installing AssetMapper

Now let's install AssetMapper:

composer require symfony/asset-mapper

Its recipe does a bunch of interesting things. We won't go too deep into how AssetMapper works

- we have other tutorials for that - but let's explore. In .gitignore :

.gitignore

 // ... lines 1 - 10

11

12

13

14

it ignores the final location of the built assets and where the vendor files live. And in

templates/base.html.twig , it added an importmap() function that will output CSS and

JavaScript.

templates/base.html.twig

 // ... line 1

2

3

 // ... lines 4 - 9

10

11

12

13

14

15

16

 // ... lines 17 - 82

83

It also gave us an importmap.php file.

###> symfony/asset-mapper ###

/public/assets/

/assets/vendor

###

<html>

 <head>

 {% block stylesheets %}

 {% endblock %}

 {% block javascripts %}

{% block importmap %}{{ importmap('app') }}{% endblock %}

 {% endblock %}

 </head>

</html>

importmap.php

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

This is, effectively, the new package.json : the home for 3rd party packages. And hey! It

already added Stimulus and Turbo! Those are two of the packages from package.json that

we do need.

Will this work? Refresh and... kinda? We don't have Bootstrap CSS... which is why it looks

terrible. But I can see that assets/styles/app.css is being loaded: that's giving us some

basic styles. But we need to fix these imports.

<?php

/**

 * Returns the importmap for this application.

 *

 * - "path" is a path inside the asset mapper system. Use the

 * "debug:asset-map" command to see the full list of paths.

 *

 * - "entrypoint" (JavaScript only) set to true for any module that will

 * be used as an "entrypoint" (and passed to the importmap() Twig

function).

 *

 * The "importmap:require" command can be used to add new entries to this

file.

 *

 * This file has been auto-generated by the importmap commands.

 */

return [

 'app' => [

 'path' => './assets/app.js',

 'entrypoint' => true,

],

 '@hotwired/stimulus' => [

 'version' => '3.2.2',

],

 '@symfony/stimulus-bundle' => [

 'path' => './vendor/symfony/stimulus-

bundle/assets/dist/loader.js',

],

 '@hotwired/turbo' => [

 'version' => '7.3.0',

],

];

assets/styles/app.css

1

2

3

 // ... lines 4 - 40

Onwards we go! Let's roll up our sleeves and nail down the last few steps to get AssetMapper

up and running next.

@import '~bootstrap';

@import '~@fortawesome/fontawesome-free/css/all.css';

@import '~@fontsource/roboto-condensed';

Chapter 8: Encore -> AssetMapper Part 2

Getting 3rd party CSS files working is one of the trickier things to do in AssetMapper. Importing

them like this isn't going to work.

Installing Bootstrap CSS

Let's focus on Bootstrap first. This is a third-party package, and we install third-party packages

by saying bin/console importmap:require the package name:

php bin/console importmap:require bootstrap

Bootstrap is especially interesting because it grabs the JavaScript package, a dependency of

the JavaScript package, and it also noticed that this package commonly has a CSS file... so it

grabbed that too. All three things were added to importmap.php .

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 29

30

31

32

33

34

35

36

37

38

39

40

We're not using the bootstrap JavaScript in this project. So we could delete this. But I'll leave it

because it's not hurting anything. The real star, however, is this CSS file. Copy its path. And in

app.css , remove the top line.

return [

 'bootstrap' => [

 'version' => '5.3.2',

],

 '@popperjs/core' => [

 'version' => '2.11.8',

],

 'bootstrap/dist/css/bootstrap.min.css' => [

 'version' => '5.3.2',

 'type' => 'css',

],

];

You can import third party CSS with AssetMapper, but can't do it from inside another CSS file.

Well, you technically can, but life is easier if we do it from app.js . Say import , then paste.

assets/app.js

 // ... lines 1 - 8

9

10

 // ... lines 11 - 16

And now... Bootstrap springs to life!

Adding FontAwesome

Next up is FontAwesome. Notice that we're grabbing a specific CSS file from the package. One

big difference between Encore and AssetMapper is that if you need to import a specific file from

a package, you need to importmap:require that file, not just the package in general. Watch

bin/console importmap:require and paste:

php bin/console importmap:require @fortawesome/fontawesome-free/css/all.css

That grabs this one CSS file, downloads it into the project and adds it to importmap.php right

here. If you're curious, these files are downloaded into an assets/vendor/ directory.

Head into app.css , remove that line and add another import for that path.

assets/app.js

 // ... lines 1 - 8

9

10

11

 // ... lines 12 - 17

And that works! Though, on the topic of FontAwesome, I don't recommend using FontAwesome

like this anymore. Instead, use FontAwesome kits. Or, better, render an inline SVG. Hopefully

we'll have an icon package soon from Symfony UX to make that easier.

Adding CSS Fonts

import 'bootstrap/dist/css/bootstrap.min.css';

import './styles/app.css';

import 'bootstrap/dist/css/bootstrap.min.css';

import '@fortawesome/fontawesome-free/css/all.css';

import './styles/app.css';

The last item in app.css is a font. This is trickier. If we run importmap:require followed by

only a package name - no path - it will always download the package's main JavaScript file. You

only get a CSS file if you importmap:require a path to a CSS file, like we just did.

Ok, I know earlier we ran import:require bootstrap and that did give us a CSS file. So,

let me be more clear. If you run importmap:require packageName , you'll get the

JavaScript for that package. In some cases, like Bootstrap, the package advertises that it has a

CSS file. When that happens, AssetMapper sees that and, effectively, runs

importmap:require bootstrap/dist/css/bootstrap.min.css automatically... just to

be helpful.

Anyway, I know we need a CSS file. With Encore, if you imported a package from inside a CSS

file, Encore would try to find the CSS file in the package and import that. This doesn't happen

with AssetMapper: we need to figure out what the path is to the CSS file then require that.

I like to do this at jsDelivr.com. This is the CDN that AssetMapper uses behind the scenes to

fetch packages. Search for the package. It shows up, but there's one below from

@fontsource-variable . Variable fonts can be a bit more efficient, so let's change to that.

Inside, hey! It advertises the main CSS file! If you wanted a different file, you could click the

Files tab and navigate to find what you need.

Copy this path all the way down to the package name, then spin over and run

importmap:require and paste. But we don't need the version: just the package, then the

path:

php bin/console importmap:require @fontsource-variable/roboto-condensed/index.m

Copy that and hit enter. It downloads the CSS file and adds an entry to importmap.php .

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 43

44

45

46

47

48

return [

 '@fontsource-variable/roboto-condensed/index.min.css' => [

 'version' => '5.0.1',

 'type' => 'css',

],

];

Finally, remove the import from app.css and import it from app.js .

assets/app.js

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 18

Oh, and because we changed to the variable font, in app.css , update the font family to

Roboto Condensed Variable .

Over on the site, watch the font when I refresh. Got it! Grabbing those third party CSS files

might be the trickiest thing you'll do in AssetMapper.

Oh, and if you're using Sass or Tailwind, there are Symfonycasts bundles to support both of

those in AssetMapper.

Adding the .js Extension

Now that styling is working, let's look into our JavaScript. In the console, we have an error: a

404 for something called bootstrap . That's coming from app.js : from this import line. To fix

this, open app.js and add .js to the end.

assets/app.js

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

With Webpack Encore, we're running inside a Node environment. And Node lets you cheat: if

the file you're importing ends in .js , you don't need to include the .js . But in a real

JavaScript environment, like your browser, you can't do that: the .js is needed.

This is probably the biggest change you'll need to make when converting.

stimulus-bridge -> stimulus-bundle

import 'bootstrap/dist/css/bootstrap.min.css';

import '@fortawesome/fontawesome-free/css/all.css';

import '@fontsource-variable/roboto-condensed/index.min.css';

import './styles/app.css';

// start the Stimulus application

import './bootstrap.js';

Try the page now. Next error! And it's important:

“Failed to resolve module specifier @symfony/stimulus-bridge .”

This means that, somewhere, we're importing this package... but the package doesn't exist in

importmap.php .

There are two types of imports. First, if an import starts with ./ or ../ , it's a relative import.

Those are simple: you're importing a file next to this file. The second type is called a bare

import. This is when you're importing a package or a file in a package. For these, the string

inside the import must exactly exist in importmap.php . If it doesn't, you'll see this error.

The source of our error is bootstrap.js . See this @symfony/stimulus-bridge? That

does not exist in importmap.php . The solution, usually, is to install this.

But in this case, the package is specific to Webpack Encore and the fix is related to our

migration. Change this to @symfony/stimulus-bundle .

assets/bootstrap.js

1

 // ... lines 2 - 8

And lo and behold: that string does live inside importmap.php ! Below, the next line simplifies.

assets/bootstrap.js

1

2

3

4

 // ... lines 5 - 8

But it does the same thing as before: starts the Stimulus app and load our controllers. If you

start a new Symfony app, you get all this with the recipe. But since we're converting, we need to

do a bit more work.

Installing Missing Packages

Refresh now. We get the exact same error but with a different package: axios . You know the

drill: somewhere, we're importing this... but it doesn't live in importmap.php . In this case, it's

import { startStimulusApp } from '@symfony/stimulus-bundle';

import { startStimulusApp } from '@symfony/stimulus-bundle';

// Registers Stimulus controllers from controllers.json and in the

controllers/ directory

export const app = startStimulusApp();

coming from song-controls_controller.js .

And this time, the fix is to install this package! Spin over and run

php bin/console importmap:require axios

That adds axios to importmap.php and now... our app is alive! This is powered by

AssetMapper! We have a performant, modern frontend all with no build system.

Downgrading a Dependency

Oh, but look at the footer: the text is darker than it used to be. Before, I was using bootstrap 5.1.

But when we installed bootstrap with AssetMapper, it grabbed the latest 5.3. And apparently

something changed!

I could figure out what changed and fix this... But we can also downgrade. Update the version in

importmap.php to 5.1.3.

importmap.php

 // ... lines 1 - 15

16

 // ... lines 17 - 29

30

31

32

 // ... lines 33 - 35

36

37

38

39

 // ... lines 40 - 50

51

If we just did that and refreshed, nothing would change: the newer version is still downloaded

into assets/vendor/ . To sync that directory with importmap.php , run:

php bin/console importmap:install

return [

 'bootstrap' => [

 'version' => '5.1.3',

],

 'bootstrap/dist/css/bootstrap.min.css' => [

 'version' => '5.1.3',

 'type' => 'css',

],

];

Think of this is as the composer install of the AssetMapper world. It noticed that we

changed two packages and downloaded those. And just like that, we've crossed the finish line!

We're running AssetMapper!

Next up, let's take three minutes to modernize & simplify our JavaScript.

Chapter 9: Modernizing with fetch() and await

This chapter isn't related to upgrading Symfony. But the rest of our code - including JavaScript -

deserves to be modernized too!

Using fetch() instead of axios

Inside song-controls_controller.js , I originally used axios to make Ajax calls.

assets/controllers/song-controls_controller.js

 // ... lines 1 - 11

12

 // ... line 13

14

 // ... lines 15 - 18

19

 // ... lines 20 - 21

22

 // ... lines 23 - 26

27

28

I don't do that anymore. Instead, use the built-in fetch() function.

Remove axios with:

php bin/console importmap:remove axios

It's gone from importmap.php . Then delete the import ... and this comment while we're

here. Replace axios.get() with just fetch() . Then, to see if this is working,

console.log(response) .

import axios from 'axios';

export default class extends Controller {

 play(event) {

 axios.get(this.infoUrlValue)

 }

}

assets/controllers/song-controls_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 10

11

12

13

14

15

16

17

18

Over in browser-land, smash that play button to trigger the method. Cool! The last two lines

aren't working, but we see the response! It did make an Ajax call.

When I originally wrote this, I used .then() to handle the Promise. I don't often use that

anymore to handle asynchronous code. Instead, I use the simpler await .

Using await & async

In front of fetch , say const response = await fetch() . Then copy the inside of the

callback and put it right after.

assets/controllers/song-controls_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

 // ... lines 9 - 10

11

12

13

14

15

16

This says: make the fetch() call, wait for it to finish, and then run this code. It's much simpler

to read and write.

Though, you probably noticed my angry editor:

export default class extends Controller {

 play(event) {

 fetch(this.infoUrlValue)

 .then((response) => {

 console.log(response);

 const audio = new Audio(response.data.url);

 audio.play();

 });

 }

}

export default class extends Controller {

 async play(event) {

 const response = await fetch(this.infoUrlValue);

 console.log(response);

 //const audio = new Audio(response.data.url);

 //audio.play();

 }

}

“the await operator can only be used in an async function.”

To use await , we need to add async before the function that we're directly inside. I won't go

into the details, but this advertises that our function is now asynchronous. If you called it and

wanted the return value, you'd need to await that call as well.

But in our case, Stimulus is calling this method... and it definitely does not care about our return

value. So adding async doesn't change anything.

When we try it... the same result, without the callback.

So let's finish this: const data = await response.json() .

This takes the JSON from the response of our API endpoint and converts it into an object. And

yea, it's also an asynchronous function, so await comes in handy again! Below, pass

data.url to Audio .

assets/controllers/song-controls_controller.js

 // ... lines 1 - 2

3

 // ... lines 4 - 7

8

9

10

11

12

13

14

15

16

Then celebrate, that sweet, sweet Rickroll. Modern code, no build system: life is good.

Now that we're upgraded, let's take a tour into some of my favorite new features, starting with

autowiring goodies that might mean you'll never edit services.yaml again.

export default class extends Controller {

 async play(event) {

 event.preventDefault();

 const response = await fetch(this.infoUrlValue);

 const data = await response.json();

 const audio = new Audio(data.url);

 audio.play();

 }

}

Chapter 10: New Autowiring Attributes

So what's new in Symfony 7? Nothing! The real question is, what's new in Symfony 6.4? Or

maybe, what's new in 6.3 or 6.2 that... maybe we missed?

Quick Tour of New Features

The best place to find this stuff... is the Symfony blog. Javier does a fantastic job with every

release, uncovering the most important features.

I've pulled up a few of my favorites, like the workflow profiler. If you use the workflow

component, you can now see a crazy-cool visualization of your workflow inside the profiler.

There are also some changes to the logout system - just to make life simpler... some new

constraints, like PasswordStrengthConstraint and another that prevents suspicious

characters, like zero width space characters. This can be used to prevent someone from

creating a username that looks like someone else's.

If you're building an API, there's an excellent debug:serializer command to see all the

metadata for a class.

And finally, the new Webhook and RemoteEvent components, which deserve their own

tutorial. So we'll save that for another time.

These are just a few of my favorite features, but you can look at everything by going to the

"Living on the Edge" section of the blog and filtering by the version. A great way to nerd out.

The Autowire Attribute

But I do want to walk through a few new features together, starting with improvements to the

autowiring system. These happened over the last several versions of Symfony and... they do a

lot of things. The overall effect is that you'll probably never need to go into services.yaml

again.

Let's dive in! In an old tutorial, I added this bind for an $isDebug argument.

config/services.yaml

 // ... lines 1 - 12

13

 // ... line 14

15

 // ... lines 16 - 17

18

19

 // ... lines 20 - 32

The reason I did that lives in src/Controller/VinylController.php : I gave this

controller an $isDebug argument... which isn't autowirable.

src/Controller/VinylController.php

 // ... lines 1 - 13

14

15

16

17

18

19

 // ... lines 20 - 56

57

In services.yaml , remove the bind .

When we refresh, error! It says:

“Hey you silly person: you have an $isDebug argument on a service, but I have no idea

what to pass to that.”

Hence, why we had the bind . Starting a few Symfony versions ago, we now have an

Autowire attribute. If you have an argument that can't be autowired, this is your friend. Add it

before the arg and define what you want. This can be a service, an expression, an environment

variable, a parameter, a kitten, whatever. We want a param: kernel.debug .

services:

 _defaults:

 bind:

 'bool $isDebug': '%kernel.debug%'

class VinylController extends AbstractController

{

 public function __construct(

 private bool $isDebug

)

 {}

}

src/Controller/VinylController.php

 // ... lines 1 - 8

9

 // ... lines 10 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 58

59

Inside, dump($this->isDebug) to make sure it's working.

And... it is! Autowire is my new favorite attribute. But if you hold command or control to open this

class... then double-click on the Attribute directory, we see a whole list of cool, dependency-

injection related attributes. Exclude is a way to exclude a class from being auto-registered as

a service. Autoconfigure and AutoconfigureTag are both ways to configure options on

your service. Put this above your class - or even above an interface - and the options will apply

to the service or services that implement that interface.

There's also AutowireIterator and AutowireLocator . If you have a set of services that

implement a tag, you can use AutowireIterator to get those services passed to you as an

iterator, or AutowireLocator to get them passed to you as a locator, basically an associative

array of services.

Trying AutowireIterator

For example, pretend that, in VinylController , we want to get an iterable of every console

command in our app. Say private iterable $commands . And to prove this is working,

foreach over $this->commands as $command ... then dump the object.

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class VinylController extends AbstractController

{

 public function __construct(

 #[Autowire('%kernel.debug%')]

 private bool $isDebug

)

 {}

}

src/Controller/VinylController.php

 // ... lines 1 - 15

16

17

18

 // ... lines 19 - 21

22

23

24

25

26

27

28

 // ... lines 29 - 65

66

If we stopped now, we'd get the classic error that says:

“I have no idea what to pass for this $commands argument!”

We want an iterable of every services that implement a specific tag. Grab those with

#[AutowireIterator] , then the tag we want: console.command .

src/Controller/VinylController.php

 // ... lines 1 - 9

10

 // ... lines 11 - 15

16

17

18

 // ... lines 19 - 20

21

22

23

24

25

26

27

28

 // ... lines 29 - 65

66

And just like that, we got them! We see all 102 console commands in my app. I know, it's a silly

example, but isn't that cool?

class VinylController extends AbstractController

{

 public function __construct(

 private iterable $commands,

)

 {

 foreach ($this->commands as $command) {

 dump($command);

 }

 }

}

use Symfony\Component\DependencyInjection\Attribute\AutowireIterator;

class VinylController extends AbstractController

{

 public function __construct(

 #[AutowireIterator('console.command')]

 private iterable $commands,

)

 {

 foreach ($this->commands as $command) {

 dump($command);

 }

 }

}

Back in the controller, undo that.

src/Controller/VinylController.php

 // ... lines 1 - 14

15

16

17

18

19

20

21

 // ... lines 22 - 58

59

Next up: let's talk about a few subtle, but powerful new ways to fetch request data like query

parameters and the request payload.

class VinylController extends AbstractController

{

 public function __construct(

 #[Autowire('%kernel.debug%')]

 private bool $isDebug,

)

 {}

}

Chapter 11: MapQueryParameter & Request
Payload

The next new stuffs I want to talk about are related to grabbing data from the request. That's

normally... kind of boring work. But the new features are pretty darn cool.

The MapQueryParameter Attribute

For example, add a ?query=banana to the URL. To fetch that in our controller, we would

historically type-hint an argument with Request then grab it from there. And while that still

works, we can now add a ?string $query argument. To tell Symfony that this is something it

should grab from a query parameter, add an attribute in front: #[MapQueryParameter] .

That's it! Dump $query to prove it works.

src/Controller/VinylController.php

 // ... lines 1 - 11

12

 // ... lines 13 - 15

16

17

 // ... lines 18 - 24

25

26

27

28

29

 // ... lines 30 - 42

43

 // ... lines 44 - 62

63

Back in the web browser world, refresh. In the web debug toolbar... got it!

Validation from the Type-Hint

use Symfony\Component\HttpKernel\Attribute\MapQueryParameter;

class VinylController extends AbstractController

{

 public function homepage(

 #[MapQueryParameter] string $query = '',

): Response

 {

 dump($query);

 }

}

The attribute does also have some options. For example, if your query parameter is called

something different from your argument, you could put that here.

And beyond just grabbing the value from the request, this system also performs validation.

Watch: duplicate this and add an int $page = 1 argument. Oh, and I meant to make the

$query argument optional so it doesn't need to be on the URL. Below, dump $page .

src/Controller/VinylController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 24

25

26

27

28

29

30

 // ... lines 31 - 43

44

 // ... lines 45 - 63

64

Ok, if we add ?page=3 to the URL... no surprise: it dumps 3 . But it is nice that we get an

integer 3: not a string. Now try page=banana . A 404! The system sees we have an int type

and performs validation.

The filter_var() Function

This entire system is handled by something called the QueryParameterValueResolver . So

if you really want to dig in, check that class. Internally, it uses a PHP function called

filter_var() to do the validation. This is not a function I'm very familiar with, but it's quite

powerful. You pass it a value, one or more filters... and it tells you whether that value satisfies

those filters. You can also pass options to control the filters.

If you don't do anything extra, the system reads our int type-hint, and passes a filter to

filter_var() that requires it to be an int . That's why this fails.

Validating an int is in a Range

class VinylController extends AbstractController

{

 public function homepage(

 #[MapQueryParameter] string $query = '',

 #[MapQueryParameter] int $page = 1,

): Response

 {

 dump($query, $page);

 }

}

But we can get fancier. Add an argument called $limit that defaults to 10. Dump this below.

But I want the limit to be between 1 and 10. To force that, pass two options special to

filter_var : min_range set to 1 and max_range set to 10.

src/Controller/VinylController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 24

25

26

27

28

29

30

31

 // ... lines 32 - 44

45

 // ... lines 46 - 64

65

Let's try it! Say ?limit=3 . That works like we expect. But when we try limit=13 .

filter_var() fails and we get a 404! I love that!

Grabbing Array Query Parameters

This can even be used to handle arrays. Copy and create one more argument: an array of

$filters that defaults to an empty array. Dump that.

class VinylController extends AbstractController

{

 public function homepage(

 #[MapQueryParameter] string $query = '',

 #[MapQueryParameter] int $page = 1,

 #[MapQueryParameter(options: ['min_range' => 1, 'max_range' =>

10])] int $limit = 10,

): Response

 {

 dump($query, $page, $limit);

 }

}

src/Controller/VinylController.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 24

25

26

27

28

29

30

31

32

 // ... lines 33 - 45

46

 // ... lines 47 - 65

66

At the browser, add ?filters[] equals banana, &filters[] equals apple. Check out that

array in the web debug toolbar! It also works for associative arrays: add foo and bar between

the [] . Yup! An associative array.

It's just a really well-designed feature for fetching query parameters.

Request Body

Also, if you need to fetch the body of a request, in Symfony 6.3, there's a new method called

$request->getPayload() . Building an API? When your client sends JSON in the body, use

$request->getPayload() to decode that into an associative array. That's nice! But also, if

your user submits a normal HTML form, $request->getPayload() works there too. It

detects that an HTML form is being submitted and decodes the $_POST data to an array. So no

matter if you're using an API or a normal form, we have a uniform method to fetch the payload

of the request. Small, but nice.

MapRequestPayload

Speaking of JSON, it's also common to use the serializer to deserialize the payload into an

object. That relates to another new feature called #[MapRequestPayload] .

class VinylController extends AbstractController

{

 public function homepage(

 #[MapQueryParameter] string $query = '',

 #[MapQueryParameter] int $page = 1,

 #[MapQueryParameter(options: ['min_range' => 1, 'max_range' =>

10])] int $limit = 10,

 #[MapQueryParameter] array $filters = [],

): Response

 {

 dump($query, $page, $limit, $filters);

 }

}

In this case, __invoke is the controller action. This says: take the JSON from the request and

deserialize it into a ProductReviewDto , which is the example class above. After sending the

JSON through the serializer, it even performs validation. So another well-thought-out feature.

Ok, that's enough for request stuff! Next up, let's test drive a new feature in 6.4: the ability to

profile console commands.

Chapter 12: Profiling Commands

In the dev environment on our site, we get the web debug toolbar. And more importantly, the

profiler, which is packed full of goodies. Even if our app is entirely an API, we can go directly to

/_profiler to check out the profiler for any API request.

This is one of Symfony's killer features. And for 6.4, Symfony contributor Jules Pietri wondered:

why can't we have this for console commands?

And now, we do! It's meant to be used for your custom console commands that might be big or

complex, but we can also use it with core commands.

Triggering a Profile: --profile

Spin over and run:

php bin/console debug:container

If you run a normal command, it won't activate the profiler system and collect info. To trigger

that, you need to run the command with --profile .

php bin/console debug:container --profile

Nothing looks different, but that did just activate the profiler... which collected info and stored it...

somewhere. But... it's not obvious where we can go to see it!

So what you really want to do is pass -v :

php bin/console debug:container --profile -v

https://twitter.com/julespietri

Now, at the bottom, it includes the unique token that can be used in the profiler URL. But, really,

be lazier and run with -vvv :

php bin/console debug:container --profile -vvv

This time, we get a link - and even details about memory and time. I'll click the link and... it

doesn't work. It's almost the right URL, but my terminal doesn't know what port my local web

server is using. Copy that token, then... go to the profiler for any request, paste the token in the

URL and... so cool!

Exploring the Profiler

We see info about the command, the input, output... and most importantly, we have the normal

profiler sections! One interesting one is events: showing the actual events that were dispatched

and the listeners for each one. These are totally different from the events that are triggered

during a request, so it's cool to see them.

Now, you probably noticed that most of the profiler sections are grayed out. But if you did render

a Twig template... or make an HTTP request or make a database query, these would be

activated.

Even with this simple command, we unlock the performance section. Not a lot here in this case,

but it makes me feel dangerous.

So that's it! Another, cool, well-thought-out feature. I'd love to see how people end up using this.

Ok, on to our final topic: let's experiment with one of Symfony's best new components:

Scheduler.

Chapter 13: New Component: Scheduler

One of the coolest new components is Scheduler, which came from Symfony 6.3. If you need to

trigger a recurring task, like generate a weekly report, send some sort of heartbeat every 10

minutes, perform routine maintenance... or even something custom and weird, this component

is for you. It's really neat! It deserves its own tutorial, but we'll worry about that later. Let's take it

for a test drive.

Installing Scheduler

At your command line, install it with:

composer require symfony/scheduler symfony/messenger

Scheduler relies on Messenger: they work together! The process looks like this. You create a

message class and handler, like you normally would with Messenger. Then you tell Symfony:

“Yo! I want you to send this message to be handled every seven days, or every one hour... or

something weirder.”

Creating the Message Class & Handler

This means that step one is to generate a Messenger message. Run:

php bin/console make:message

Call it LogHello . Cool! Over here, it created the message class - LogHello

src/Message/LogHello.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

and its handler, whose __invoke() method will be called when LogHello is dispatched

through Messenger.

src/MessageHandler/LogHelloHandler.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

In LogHello , give it a constructor with public int $length .

src/Message/LogHello.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

namespace App\Message;

final class LogHello

{

 public function __construct()

 {

 }

}

namespace App\MessageHandler;

use App\Message\LogHello;

use Symfony\Component\Messenger\Attribute\AsMessageHandler;

#[AsMessageHandler]

final class LogHelloHandler

{

 public function __construct()

 {

 }

 public function __invoke(LogHello $message)

 {

 }

}

namespace App\Message;

final class LogHello

{

 public function __construct(public int $length)

 {

 }

}

This will help us figure out which message is being handled and when. In the handler, also add

a constructor so we can autowire LoggerInterface $logger .

src/MessageHandler/LogHelloHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

 // ... lines 15 - 19

20

Down in the method, use $this->logger->warning() - just so these log entries are easy

to see - then str_repeat() to log a guitar icon $message->length times. I'll also log that

number at the end.

src/MessageHandler/LogHelloHandler.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

12

13

14

15

16

17

18

19

20

Message & handler check!

Creating the Schedule

Next up is to create a schedule that tells Symfony:

“Yo, me again. Please dispatch a LogHello message through messenger every 7 days.”

use Psr\Log\LoggerInterface;

final class LogHelloHandler

{

 public function __construct(private LoggerInterface $logger)

 {

 }

}

use Psr\Log\LoggerInterface;

final class LogHelloHandler

{

 public function __construct(private LoggerInterface $logger)

 {

 }

 public function __invoke(LogHello $message)

 {

 $this->logger->warning(str_repeat('🎸', $message->length).'

'.$message->length);

 }

}

Or in our case, every few seconds because I don't think you want to watch this screencast for

the next week!

In src/ , I don't have to do this, but I'll create a Scheduler directory. And inside, a PHP class

called, how about, MainSchedule . Make this implement ScheduleProviderInterface .

src/Scheduler/MainSchedule.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 14

15

You can have multiple of these schedule providers in your system... or you can have one class

that sets up all your recurring messages. Your call.

This class also needs an attribute called #[AsSchedule] . This has one optional argument:

the schedule name, which, creatively, defaults to default . We'll see why that name is

important soon. I'll use default .

src/Scheduler/MainSchedule.php

 // ... lines 1 - 2

3

4

5

 // ... line 6

7

 // ... line 8

9

10

11

 // ... lines 12 - 14

15

Creating the Recurring Messages

Ok, go to Code -> Generate, or command+N on a Mac - to implement the one method we need:

getSchedule() .

namespace App\Scheduler;

use Symfony\Component\Scheduler\ScheduleProviderInterface;

class MainSchedule implements ScheduleProviderInterface

{

}

namespace App\Scheduler;

use Symfony\Component\Scheduler\Attribute\AsSchedule;

use Symfony\Component\Scheduler\ScheduleProviderInterface;

#[AsSchedule]

class MainSchedule implements ScheduleProviderInterface

{

}

src/Scheduler/MainSchedule.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

The code in here is beautifully simple and expressive. Return a new Schedule() , then add

things to this by calling ->add() . Inside, for each "thing" you need to schedule, say

RecurringMessage:: . There are several ways to create these recurring messages. The

easiest is every() , like every 7 days or every 5 minutes . You can also pass a cron

syntax, or call trigger() . In that case, you would define your own logic for exactly when you

want your weird message to be triggered.

Use every() and pass 4 seconds . Every 4 seconds, we want this new LogHello

message to be dispatched to Messenger. Copy that, then create another for every 3 seconds .

src/Scheduler/MainSchedule.php

 // ... lines 1 - 4

5

 // ... line 6

7

 // ... lines 8 - 11

12

13

14

15

16

17

18

19

20

21

We're done!

namespace App\Scheduler;

use Symfony\Component\Scheduler\Attribute\AsSchedule;

use Symfony\Component\Scheduler\Schedule;

use Symfony\Component\Scheduler\ScheduleProviderInterface;

#[AsSchedule]

class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 }

}

use App\Message\LogHello;

use Symfony\Component\Scheduler\RecurringMessage;

class MainSchedule implements ScheduleProviderInterface

{

 public function getSchedule(): Schedule

 {

 return (new Schedule())->add(

 RecurringMessage::every('4 seconds', new LogHello(4)),

 RecurringMessage::every('3 seconds', new LogHello(3)),

);

 }

}

Consuming the Scheduler Transport

The result of creating a schedule provider is that a new Messenger transport is created. To get

your recurring messages to process, you need to have a worker that's running the

messenger:consume command.

At your terminal, run bin/console messenger:consume with a -v so we can see the log

messages from our handler. Then pass the name of the new, automatically-added transport:

scheduler_default ... where default is the name we used in the #[AsSchedule]

attribute.

php bin/console messenger:consume -v scheduler_default

Hit it, wait about 3 seconds... there it is! Four! Then the 3 one comes up again, and four, then

three. After 12 seconds, they should execute, yep, at almost the exact same moment.

Technically, this one was dispatched first, and then that one was dispatched immediately after.

But, let me stop nerding out and back up: it's working! It's beautiful!

How does Scheduler Work?

How is it working? I wondered that same thing. When the worker command starts, it loops over

every RecurringMessage , calculates the next runtime of each, and uses that to create a list -

called the "heap" - of upcoming messages. Then it loops forever. As soon as the current time

matches - or is later than - the scheduled runtime of the next message in the heap, it takes that

message and dispatches it through Messenger. It then asks this recurring message for its next

runtime and puts that inside the heap.

And this process just... continues forever.

Make your Schedule Stateful

Though there is one problem hiding in plain sight: if we restart the command, it creates the

schedule from scratch. That means that it waits a fresh new three seconds and four seconds

before it dispatches the messages.

In a real app, this will be a problem. Imagine you have a message that runs every seven days.

For some reason, after 5 days, your messenger:consume command exits and is restarted.

Because of this, your recurring message will now run seven days after this restart: so it will run

on day 12. If it keeps getting restarted, your message may never run!

This is not workable. And so, in the real world, we always make our schedule stateful. And this

easy. Create a __construct method and autowire a private CacheInterface : the one

from Symfony cache.

src/Scheduler/MainSchedule.php

 // ... lines 1 - 9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

20

 // ... lines 21 - 29

30

Down below, call ->stateful() and pass $this->cache .

use Symfony\Contracts\Cache\CacheInterface;

class MainSchedule implements ScheduleProviderInterface

{

 public function __construct(

 private CacheInterface $cache,

)

 {

 }

}

src/Scheduler/MainSchedule.php

 // ... lines 1 - 9

10

 // ... lines 11 - 12

13

14

15

16

17

18

19

20

 // ... line 21

22

23

24

 // ... lines 25 - 26

27

28

29

30

Also, open services.yaml . In an earlier tutorial, I added some config that effectively disabled

the cache in the dev environment. Remove that so we have a proper cache.

Ok, stop the worker and restart it. The first time we do this, it's going to have the same behavior

as before: wait three seconds and four seconds. There we go.

But now, stop this, wait a few seconds and watch what happens when I restart. It catches up!

Those messages happened immediately!

The state keeps track of the last time Scheduler checked for messages. And so, if your worker

gets turned off for a bit, when it restarts, it reads that time and uses it as its starting time so it

can catch up with all the messages that it missed.

It does mean that you may have some messages that are executed multiple times immediately,

but it won't miss anything.

Multiple Workers: Lock your Schedule

Oh, and if you plan to have multiple workers for your scheduler transport, you'll also need to add

a lock to the schedule. This is easy and covered in the docs: autowire the lock factory, then call

use Symfony\Contracts\Cache\CacheInterface;

class MainSchedule implements ScheduleProviderInterface

{

 public function __construct(

 private CacheInterface $cache,

)

 {

 }

 public function getSchedule(): Schedule

 {

 return (new Schedule())->add(

)

 ->stateful($this->cache);

 }

}

->lock() to pass in a new lock. This will make sure that two workers don't grab the same

recurring message at the same time and both process it.

All right team, that's all I've got! Thanks for hanging out. If you have any questions about

upgrading or hit a problem we didn't mention, we're here for you down in the comments. And let

us know if you have a victory: we love hearing success.

All right, friends. See you next time!

With <3 from SymfonyCasts

