
Write SOLID Code & Impress
your Friends

Chapter 1: SOLID: The Good, The Bad & The Real
World

Hey friends! Welcome to our long awaited tutorial on the principles of SOLID: single

responsibility principle, open closed principle, Liskov substitution principle, interface segregation

principle and, my personal favorite: the donut in face principle. Probably... actually known as the

dependency inversion principle.

I want to thank my coauthor Diego for helping me finally put this tutorial together. And I'm super

sorry if you've been waiting for this!

SOLID Principles: I don't Love Them

So... why did it take us so long to get this tutorial done? The short answer is: I.... kind of don't

like the SOLID principles. Okay, let me rephrase that. The SOLID principles are tough to

understand. And, in my most humble opinion, they're not always good advice! It depends on the

situation. For example, you should write code for your application differently than you would

write code that's meant to be open sourced and shared.

If you want to know a bit more about why SOLID might not always be correct, you can read a

recent blog post written by Dan North called CUPID – THE BACK STORY. Dan North is known

for being the person who first made behavior-driven development famous. You may have heard

of him if you're a Behat user.

Anyways, this tutorial is not going to be yet another tutorial where we read the definition of each

SOLID principle in a monotone voice... and slowly get lost, bored and finally fall asleep. Nope.

We're going to dive into each principle, learn what they really mean - using normal human

words - code some real examples and discuss why and when following these principles makes

sense and does not make sense. But even when the SOLID principles should not be followed,

they have a lot to teach us. So strap in for a wild ride.

Project Setup

https://dannorth.net/2021/03/16/cupid-the-back-story/

Since we're going to be doing some real coding, let's get the project set up and rocking. Do me

a solid by downloading the course code from this page and unzipping it. After you do, you'll find

a start/ directory with the same code you see here. This fancy README.md file has all the

details about how to get the project up and running. The last step will be to find a terminal, move

into the project and start a local web server. I'll use the Symfony binary for this:

symfony serve -d

Once this finishes, copy that URL, spin back over to your browser, paste and... say hello to

"Sasquatch Sightings"! Our latest effort to find the infamous Bigfoot. What this code actually

does is... not too important. It talks to a database, lists some big foot sightings and has some

calculations. It will be our playground for diving into the SOLID principles.

So next, let's start with the first: the single responsibility principle!

Chapter 2: Single-Responsibility Principle: What is
it?

SOLID starts with the Single-Responsibility Principle or SRP. SRP says:

“A module should have only one reason to change.”

Um, huh? This sounds... a little too "fluffy" to be actually useful.

Let's... try again with a... somewhat simpler definition:

“A function or class should be responsible for only one task... or should have only one

"responsibility".”

Better. But... what is a "responsibility" exactly? And why is this rule helpful?

SRP: The Human Definition

On an even simpler level, what SRP is really trying to say is:

“Gather together the things that change for the same reason and separate things that change

for different reasons.”

We'll talk more about this definition later, but keep it in mind.

And what problem is SRP trying to help us solve? In theory, if we organize our code into units

that all change for the same reason, then when we get a new feature or change request, we will

only need to modify one class... instead of making 10 changes to 10 different files... and trying

not to break things along the way.

Sending a Confirmation Email

Enough defining stuff! Let's jump into an example. On your browser, click "Sign Up". As you can

see, our app has a registration form! Open

src/Controller/RegistrationController.php to see the code behind this. Most of

the logic for saving the user is in this UserManager::register() method. Hold Cmd or Ctrl

to jump into this: it lives at src/Manager/UserManager.php .

src/Manager/UserManager.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 19

20

21

22

23

24

25

26

27

28

29

This method hashes the user's password... and then saves the user to the database. Awesome!

But now... we've received a change request! The product manager of Sasquatch Sightings - a

suspiciously hairy person - would like us to send a confirmation email after registration to verify

the user's email address.

To understand SRP, let's implement this the wrong way first. Well "wrong" according to SRP.

Side note: we're going to build a simple email confirmation system by hand. If you have this

need in a real project, check out symfonycasts/verify-email-bundle.

Coding up the Confirmation Email System

Anyways, the easiest way I can see to add this feature is to add the logic right inside

UserManager::register() ... because we will only have to touch one file and it will

guarantee that anything that calls this method will definitely trigger the confirmation email.

At the bottom of this class, I'm going to start by pasting in a private function called

createToken() . You can copy this from the code block on this page. This generates a

class UserManager

{

 public function register(User $user, string $plainPassword): void

 {

 $user->setPassword(

 $this->passwordEncoder->encodePassword($user, $plainPassword)

);

 $this->entityManager->persist($user);

 $this->entityManager->flush();

 }

}

https://github.com/symfonycasts/verify-email-bundle

random string that we will include in the confirmation link.

src/Manager/UserManager.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 29

30

31

32

33

34

Up in register, generate a new token $token = $this->createToken() ... and then set it

on the user: $user->setConfirmationToken($token) .

src/Manager/UserManager.php

 // ... lines 1 - 19

20

21

22

23

 // ... lines 24 - 30

31

 // ... lines 32 - 38

Before I started recording - if you look at the User.php file - I already created a

$confirmationToken property that saves to the database. So thanks to the new code, when

a user registers, they will now have a random confirmation token saved onto their row in the

database.

src/Entity/User.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 60

61

62

63

64

 // ... lines 65 - 223

224

class UserManager

{

 private function createToken(): string

 {

 return rtrim(strtr(base64_encode(random_bytes(32)), '+/', '-_'),

'=');

 }

}

 public function register(User $user, string $plainPassword): void

 {

 $token = $this->createToken();

 $user->setConfirmationToken($token);

 }

class User implements UserInterface

{

 /**

 * @ORM\Column(type="string", unique=true, nullable=true)

 */

 private $confirmationToken;

}

Back in RegistrationController ... if you scroll down a bit, I've also already built a

confirmation action to confirm their email. A user just needs to go to this pre-made route - where

the {token} in the URL matches the confirmationToken that we've set onto their User

record - and... bam! They'll be verified!

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

So back in UserManager , we have two jobs left. First, we need to generate an absolute URL

to the confirmAction that contains their token. And second, we need to send an email to the

user with that URL inside.

Let's generate the URL first. Up in the constructor, autowire RouterInterface $router . I'll

hit Alt + Enter and go to "Initialize properties" to create that property and set it.

class RegistrationController extends AbstractController

{

 /**

 * @Route("/confirm/{token}", name="check_confirmation_link")

 */

 public function confirmAction(string $token, UserRepository

$userRepository, EntityManagerInterface $entityManager)

 {

 $user = $userRepository->findOneBy(['confirmationToken' =>

$token]);

 if (!$user) {

 throw $this->createNotFoundException(sprintf('The user with

confirmation token "%s" does not exist', $token));

 }

 $user->setConfirmationToken(null);

 $entityManager->flush();

 $this->addFlash('success', 'Your email is confirmed! Let\'s go

confirm some Bigfoot!');

 return $this->redirectToRoute('app_homepage');

 }

}

src/Manager/UserManager.php

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 14

15

 // ... line 16

17

18

 // ... lines 19 - 20

21

22

 // ... lines 23 - 44

45

Now, below, say $confirmationLink = $this->router->generate() and... the name

of our route... is check_confirmation_link . Use that. For the second argument, pass

token set to $user->getConfirmationToken() . And because this URL will go into an

email, it needs to be absolute. Pass a third argument to trigger that:

UrlGeneratorInterface::ABSOLUTE_URL .

src/Manager/UserManager.php

 // ... lines 1 - 23

24

25

 // ... lines 26 - 28

29

30

31

 // ... lines 32 - 38

39

 // ... lines 40 - 46

Now, let's send the email! On top, add one more argument - MailerInterface $mailer

and use the same Alt + Enter, "Initialize properties", trick to create that property and set it.

use Symfony\Component\Routing\RouterInterface;

class UserManager

{

 private RouterInterface $router;

 public function __construct(UserPasswordEncoderInterface

$passwordEncoder, EntityManagerInterface $entityManager, RouterInterface

$router)

 {

 $this->router = $router;

 }

}

 public function register(User $user, string $plainPassword): void

 {

 $confirmationLink = $this->router-

>generate('check_confirmation_link', [

 'token' => $user->getConfirmationToken()

], UrlGeneratorInterface::ABSOLUTE_URL);

 }

src/Manager/UserManager.php

 // ... lines 1 - 6

7

 // ... lines 8 - 11

12

13

 // ... lines 14 - 16

17

 // ... line 18

19

20

 // ... lines 21 - 23

24

25

 // ... lines 26 - 47

48

Beautiful! Below, I'll paste in some email generation code. I'll also re-type the l on

TemplatedEmail and hit tab so that PhpStorm adds the use statement on top for me.

src/Manager/UserManager.php

 // ... lines 1 - 6

7

 // ... lines 8 - 12

13

14

 // ... lines 15 - 27

28

29

 // ... lines 30 - 36

37

38

39

40

41

42

43

44

 // ... lines 45 - 51

52

 // ... lines 53 - 57

58

use Symfony\Component\Mailer\MailerInterface;

class UserManager

{

 private MailerInterface $mailer;

 public function __construct(UserPasswordEncoderInterface

$passwordEncoder, EntityManagerInterface $entityManager, RouterInterface

$router, MailerInterface $mailer)

 {

 $this->mailer = $mailer;

 }

}

use Symfony\Bridge\Twig\Mime\TemplatedEmail;

class UserManager

{

 public function register(User $user, string $plainPassword): void

 {

 $confirmationEmail = (new TemplatedEmail())

 ->from('staff@example.com')

 ->to($user->getEmail())

 ->subject('Confirm your account')

 ->htmlTemplate('emails/registration_confirmation.html.twig')

 ->context([

 'confirmationLink' => $confirmationLink

]);

 }

}

This creates an email to this user, from this address... and the template it references already

exists. You can see it in:

templates/emails/registration_confirmation.html.twig .

templates/emails/registration_confirmation.html.twig

1

2

3

 // ... lines 4 - 42

43

44

 // ... lines 45 - 50

51

52

53

54

55

56

57

58

59

 // ... lines 60 - 66

67

68

69

70

We're passing a confirmationLink variable... and that is rendered inside the email.

Finally, all the way at the bottom of register() ... so after we know that the user has saved

successfully, deliver the mail with: $this->mailer->send($confirmationEmail) .

src/Manager/UserManager.php

 // ... lines 1 - 27

28

29

 // ... lines 30 - 52

53

54

 // ... lines 55 - 61

Alright! We did it! And we can even try this! Back at the registration page, register as a new

user... any password, hit enter and... awesome! It looks like it worked!

{% apply inline_css %}

<!doctype html>

<html lang="en">

<body>

<div class="body">

 <div class="content">

 <h1 class="text-center">Nice to meet you %name%!</h1>

 <p class="block">

 Please Confirm your

account.

 </p>

 <p class="block">

 Or go directly to this URL: {{ confirmationLink }}

 </p>

 </div>

</div>

</body>

</html>

{% endapply %}

 public function register(User $user, string $plainPassword): void

 {

 $this->mailer->send($confirmationEmail);

 }

Now, the project is not configured to actually deliver the email. But we can see what that

imaginary email would have looked like by going down to the web debug toolbar, clicking any of

these links to go to the profiler... hitting "last 10"... then clicking to get into the profiler for the

POST request that we just made to the registration form.

On the left, click into the "Email" section. There's our email! You can even look at its HTML. I'm

going to steal the confirmation link... pop it into a new tab and... our email is confirmed! Mission

accomplished!

And, all of our code is centralized into one method. But... we did just violate SRP: our

UserManager class now has too many responsibilities! But what do I mean by the word

"responsibility"? And what are the responsibilities that this class has? And what's the problem

with violating SRP anyways? And does the influence of gravity extend out forever?

Let's answers most of these questions next.

Chapter 3: SRP: Responsibilities

We've just been informed that - gasp - from time to time, our confirmation email doesn't reach

our user's inbox! Ah! And so: we need to implement a resend feature.

SRP: You Shouldn't Need to Change Unrelated Code

This should be easy, right? After all, we've encapsulated all of our logic for sending a

confirmation email into one method. But... hmm. To get this to work, we're probably going to

need to extract part of the register() method into a separate public function so that we can

just resend the email... without also creating a new token and re-hashing the password.

src/Manager/UserManager.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

 // ... lines 55 - 59

60

Isn't it kind of weird... or at least "not ideal"... that in order to add this "email resend" feature,

we're going to be messing with and rearranging code that deals with hashing passwords and

persisting user data? In a perfect world, shouldn't I be able to create this "email resend" feature

without going anywhere near code that's unrelated to this functionality?

This is what SRP is trying to help us with. In that "perfect" SRP world, each time a change is

requested in our project, we would only need to touch code that directly relates to that change:

we wouldn't need to change - or even work near - unrelated code. The fact that we're going to

need to modify a method that also deals with saving users and hashing passwords... in order to

class UserManager

{

 public function register(User $user, string $plainPassword): void

 {

 $token = $this->createToken();

 $user->setConfirmationToken($token);

 $confirmationLink = $this->router-

>generate('check_confirmation_link', [

 'token' => $user->getConfirmationToken()

], UrlGeneratorInterface::ABSOLUTE_URL);

 $confirmationEmail = (new TemplatedEmail())

 ->from('staff@example.com')

 ->to($user->getEmail())

 ->subject('Confirm your account')

 ->htmlTemplate('emails/registration_confirmation.html.twig')

 ->context([

 'confirmationLink' => $confirmationLink

]);

 $user->setPassword(

 $this->passwordEncoder->encodePassword($user, $plainPassword)

);

 $this->entityManager->persist($user);

 $this->entityManager->flush();

 $this->mailer->send($confirmationEmail);

 }

}

add a feature that has nothing to do with that stuff... is a sign that UserManager violates SRP.

Our UserManager class has too many responsibilities.

What is a "Responsibility"?

But what are the responsibilities of this class? I can think of 5 at least: generate a confirmation

link... which also includes creating the confirmation token, create an email, hash a password,

save the user and send an email.

But... hold on a second. And this is a very, very important - and confusing - point about SRP.

Defining responsibilities is not meant to mean:

“Think of all the different, tiny things that your class does.”

Nope! A better way to say this might be:

“Think of all the different reasons that this class might change.”

That's much harder... and it completely depends on your application and business. To help with

this, it's sometimes useful to think of what our class does on a higher level. In my eyes, our

register method does two basic things: (1) it prepares & persists the user and (2) it sends an

email.

Now let's see if we can think of a person in our "totally-not-fake" business that might ask for a

change to one of these two things.

For example, for the "high level job" of "preparing and persisting the user", our database

administrator might, in the future, want to change how users are stored... or our CTO might

want to start using a third party authentication provider instead of storing users in a local

database and managing their passwords. This type of change would affect how we hash

passwords and how we save users. In other words, two of our original, so-called

"responsibilities" - hashing the password and persisting the user - will likely change for the same

reason. And so, they are really part of the same, one responsibility: "preparing and persisting

the user".

The other "high level" thing the method does it send the confirmation email. That will most likely

need to change if a marketing person wants to tweak the subject of an email to be more fun... or

pass in some "featured product" variables to the template to try to sell stuff. This means that 3 of

the other original so-called "responsibilities" - generating the confirmation URL, creating the

email and sending the email - will all most likely change for the same reason. And so, for our

project, they would all be considered one responsibility: "sending the confirmation email".

Organizing Responsibilities is an Art... at Best

Is this perfect? Definitely not! You could easily argue that sending the email would change for

another reason. If someone decides we're going to start sending emails using a different email

provider service... we're already protected from that change: that would just require some

configuration tweaks in a different file. But what if we think that it's likely that we might change

how our email verification system works in the future? In that case, we would have a legitimate

reason to think that the generation of the confirmation token and link would change for a

different reason than our user persistence or email creation.

Identifying the most likely reasons that a function might need to change and then grouping the

functionality into those responsibilities is the hardest part of SRP. Even our grouping looks

imperfect. But honestly, it's good enough! My advice is to do your best and don't over think it.

We're also going to talk about over optimization of SRP later... which can lead to a different

problem.

It's also helpful to keep our original "human" definition for SRP in mind:

“Gather together the things that change for the same reason and separate those things that

change for different reasons.”

Next: now that we've identified the two responsibilities that UserManager currently has, let's

refactor our code to make it more SRP compliant.

Chapter 4: Refactoring for SRP

We've identified that UserManager::register() handles two things that might change for

different reasons. These are its two responsibilities: one, creating and sending a confirmation

email and two, setting up the data for a user and saving it to the database.

We're now going to follow the advice of SRP and "separate those things that change for

different reasons".

Clarifying The Responsibility of UserManager

The first thing I want to do is rename register() to create() ... or you could use

save() ... or even rename the entire class itself. The point is: I want to make its responsibility

more clear: to set all the required data on the user object and save it to the database.

Right click on register() , go to Refactor->Rename and call this create() .

src/Manager/UserManager.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 27

28

29

 // ... lines 30 - 53

54

 // ... lines 55 - 59

60

When I hit enter, over in RegistrationController , PhpStorm renamed the method there

too.

class UserManager

{

 public function create(User $user, string $plainPassword): void

 {

 }

}

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 23

24

 // ... lines 25 - 31

32

 // ... lines 33 - 36

37

 // ... lines 38 - 41

42

 // ... lines 43 - 62

63

Creating the ConfirmationEmailSender Class

Next, let's move the email-related logic into a new class in the Service/ directory... though, it

doesn't matter where this lives. Create a new PHP class called, how about,

ConfirmationEmailSender . This class will need two services: the router so it can generate

the link and mailer. Add a public function __construct() with those two arguments:

MailerInterface $mailer , and RouterInterface $router . Hit Alt + Enter and go to

"Initialize properties" to create both of those properties and set them. We don't need this extra

PHPDoc up here.

class RegistrationController extends AbstractController

{

 public function signup(Request $request, UserManager $userManager)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $userManager->create($user, $plainPassword);

 }

 }

}

src/Service/ConfirmationEmailSender.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Now we can create a public function called, how about, send() , with a User object argument

that will return void .

src/Service/ConfirmationEmailSender.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 21

22

23

 // ... lines 24 - 37

38

39

For the inside of this, let's go steal all of the email-related logic from UserManager . So... copy

the $confirmationLink and $confirmationEmail parts... delete those... and paste. Yes

PhpStorm: I definitely want you to import the use statements for me.

The last line we need to steal is the $mailer->send() line. Paste that into the new class.

use Symfony\Component\Mailer\MailerInterface;

use Symfony\Component\Routing\RouterInterface;

class ConfirmationEmailSender

{

 private MailerInterface $mailer;

 private RouterInterface $router;

 public function __construct(MailerInterface $mailer, RouterInterface

$router)

 {

 $this->mailer = $mailer;

 $this->router = $router;

 }

}

class ConfirmationEmailSender

{

 public function send(User $user): void

 {

 }

}

src/Service/ConfirmationEmailSender.php

 // ... lines 1 - 5

6

 // ... line 7

8

 // ... lines 9 - 10

11

12

 // ... lines 13 - 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Very nice! Let's celebrate by cleaning things up in UserManager : we can remove the last two

arguments of the constructor - $router and $mailer - their properties... and even some

use statements on top.

use Symfony\Bridge\Twig\Mime\TemplatedEmail;

use Symfony\Component\Routing\Generator\UrlGeneratorInterface;

class ConfirmationEmailSender

{

 public function send(User $user): void

 {

 $confirmationLink = $this->router-

>generate('check_confirmation_link', [

 'token' => $user->getConfirmationToken()

], UrlGeneratorInterface::ABSOLUTE_URL);

 $confirmationEmail = (new TemplatedEmail())

 ->from('staff@example.com')

 ->to($user->getEmail())

 ->subject('Confirm your account')

 ->htmlTemplate('emails/registration_confirmation.html.twig')

 ->context([

 'confirmationLink' => $confirmationLink

]);

 $this->mailer->send($confirmationEmail);

 }

}

src/Manager/UserManager.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 17

18

 // ... line 19

20

21

22

23

24

25

26

27

28

29

30

31

 // ... lines 32 - 36

37

Who Should Generate the Confirmation Token?

Done! Now... let's see... who should be responsible for creating and setting the confirmation

token on the User? I'm... not exactly sure. But let's invert that question: who should not be

responsible for creating the token?

That's a bit easier: it probably doesn't make sense for the service whose only responsibility is

creating an email... to also be responsible for generating this cryptographically-secure token

and saving it to the database. Yes, this service does deal with the confirmation link... but it feels

like that logic would change for very different reasons than the email itself.

So if we discard ConfirmationEmailSender from our options, then there's only one logical

place left UserManager::create() . And... it makes sense: this method sets up new User

objects with all the data they need and then saves them. You could also choose to isolate the

confirmation token creation logic into a third class... there's no right or wrong answer, which is

what makes this stuff so darn tricky! But over optimizing, by splitting things into too many

class UserManager

{

 public function __construct(UserPasswordEncoderInterface

$passwordEncoder, EntityManagerInterface $entityManager)

 {

 }

 public function create(User $user, string $plainPassword): void

 {

 $token = $this->createToken();

 $user->setConfirmationToken($token);

 $user->setPassword(

 $this->passwordEncoder->encodePassword($user, $plainPassword)

);

 $this->entityManager->persist($user);

 $this->entityManager->flush();

 }

}

pieces, is also something that we do not want to do. We'll talk more about that in the next

chapter.

Anyways, now that we've split all of our code into two places, over in

RegistrationController , we need to call both methods. Autowire a new argument into the

method: ConfirmationEmailSender $confirmationEmailSender . Then, below, right

after we call $userManager->create() , say $confirmationEmailSender->send()

and pass the $user object.

src/Controller/RegistrationController.php

 // ... lines 1 - 13

14

15

16

 // ... lines 17 - 19

20

21

 // ... lines 22 - 24

25

 // ... lines 26 - 32

33

34

 // ... lines 35 - 38

39

 // ... lines 40 - 43

44

 // ... lines 45 - 64

65

Done! Our original feature - sending a confirmation email - is now implemented in a more SRP-

friendly way.

Creating a "Takes Care of Everything" Service?

By the way, if you don't like that you need to call two methods whenever you're registering a

new user... I kind of agree! And it's no problem: you could extract these two calls into a new

class... maybe called UserRegistrationHandler .

It's one responsibility would be to "orchestrate" all the tasks related to registering a user. This is

just one responsibility - not many - because it's not actually doing any of the real work. So, for

class RegistrationController extends AbstractController

{

 public function signup(Request $request, UserManager $userManager,

ConfirmationEmailSender $confirmationEmailSender)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $userManager->create($user, $plainPassword);

 $confirmationEmailSender->send($user);

 }

 }

}

example, if we needed to make a change to the confirmation email... or change how users are

persisted to the database... neither of those would require us to need to modify this new class.

The new class would only change if we added some new "step" to user registration - like

sending an API call to our newsletter service.

Enjoying SRP: Adding the Resend Feature

Anyways, now that we've refactored to be SRP-compliant, we get to enjoy our hard work by

finally adding the new feature that our team asked for: the ability to resend a confirmation email.

If you downloaded the course code from this page, you should have a tutorial/ directory

with a ResendConfirmationController file inside. Copy this, go up to the Controller/

directory... and paste. This comes with the boilerplate needed for an endpoint that a user could

POST to in order to resend their confirmation email.

src/Controller/ResendConfirmationController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

But... the actual sending of that confirmation email is still a "TODO". Remove that comment,

autowire the ConfirmationEmailSender service... and then say

$confirmationEmailSender->send($user) .

class ResendConfirmationController extends AbstractController

{

 /**

 * @Route("/resend-confirmation", methods={"POST"})

 */

 public function resend()

 {

 $this->denyAccessUnlessGranted('ROLE_USER');

 $user = $this->getUser();

 // TODO: send confirmation email

 return new Response(null, 204);

 }

}

src/Controller/ResendConfirmationController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 19

20

 // ... lines 21 - 22

23

24

It's that easy! I won't bother testing this... but I will repeat the words that every developer loves

to say: "it should work".

The important thing is that, thanks to our new organization, if, for example, a marketing person

did want to tweak the subject on our welcome email, we can make that change without messing

around near code that saves things to the database or hashes passwords.

But... I have more that I want to say about SRP... like the risks of over-optimizing, which violates

a concept called cohesion. I also think that, thanks to inspiration from Dan North, there's an

easier way to think about SRP. I'll explain all of that next.

use App\Service\ConfirmationEmailSender;

class ResendConfirmationController extends AbstractController

{

 public function resend(ConfirmationEmailSender

$confirmationEmailSender)

 {

 $confirmationEmailSender->send($user);

 }

}

Chapter 5: SRP: Takeaways

We decided that the confirmation email functionality and user creation functionality are likely to

change for different reasons. And so, we split these two responsibilities into two separate

classes.

Over-Separation & Cohesion

Now, I have some questions. Should we separate the password-hashing logic from the user-

persistence responsibility? Meaning, should we move it into its own class? And should we treat

the confirmation token generation as its own responsibility and move it somewhere separate?

If you look quickly at SRP, it kinda sounds like the rule is:

“Put every tiny piece of functionality into its own class and method.”

But, thankfully, SRP is not saying that... that would make our code a disaster! There's another

concept called "cohesion". It says:

“Keep things together that are related.”

At first, it seems like cohesion and SRP are opposites. I mean, SRP says "separate things" and

cohesion says "no, keep things together!". But on closer inspection, SRP and cohesion are two

ways of saying the same thing: keep only related things together. This is the push-and-pull of

SRP: separate things that will change for different reasons... but do not separate any further.

Looking at UserManager , we're already somewhat protected from changes to the password-

hashing functionality, because we rely on a service that's behind an interface:

UserPasswordEncoderInterface . How that service works could completely change and

we wouldn't need to update any code in this class. So the risk of that changing in some way that

would cause us to need to change this class is probably very low.

src/Manager/UserManager.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

 // ... line 17

18

 // ... line 19

20

21

 // ... lines 22 - 24

25

26

27

 // ... lines 28 - 30

31

 // ... lines 32 - 36

37

What about the token generation logic? Well, do we think it's very likely that we might change

how our tokens are generated? This... to me feels like a weak candidate to separate. It's already

simple: one line of code down here... and two lines of code up here. And it's unlikely change,

especially for a reason that's different than the other code in this class.

src/Manager/UserManager.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 19

20

21

22

23

 // ... lines 24 - 30

31

 // ... line 32

33

34

35

36

37

class UserManager

{

 public function __construct(UserPasswordEncoderInterface

$passwordEncoder, EntityManagerInterface $entityManager)

 {

 $this->passwordEncoder = $passwordEncoder;

 }

 public function create(User $user, string $plainPassword): void

 {

 $user->setPassword(

 $this->passwordEncoder->encodePassword($user, $plainPassword)

);

 }

}

class UserManager

{

 public function create(User $user, string $plainPassword): void

 {

 $token = $this->createToken();

 $user->setConfirmationToken($token);

 }

 private function createToken(): string

 {

 return rtrim(strtr(base64_encode(random_bytes(32)), '+/', '-_'),

'=');

 }

}

Overall, my advice is this: don't over-anticipate potential future changes.

Write Code that Fits in your Head

At the beginning of this tutorial, I mentioned a blog post by Dan North, the father of behavior-

driven development. He has something delightfully refreshing to say about the single

responsibility principle. Instead of thinking about possible changes... and organizing things into

responsibilities - which is tricky - he suggests something more straightforward: write simple

code.... using the measuring stick of: "does this code fit in my head?".

I love this. If a method or class has too many things in it, then the total logic of that method won't

"fit in your head"... and it will be difficult to think about and work with. So, you should separate it

into smaller pieces that do fit into your head.

On the other hand, if you split the code for registering a user into 10 different classes, that's also

going to become complex to think about. The overall goal is to create units of code that fit in

your head... so that you can have an overall application that also "fits in our head".

If you follow this general advice, I think you'll find that you probably create classes and methods

that follow SRP pretty nicely... without the stress of trying to perfect it.

Okay, it's time to dive into the next solid principle: the open-closed principle.

https://dannorth.net/2021/03/16/cupid-the-back-story/amp/

Chapter 6: Open–Closed Principle

The second SOLID principle is the Open-Closed Principal. Or OCP. Ready for the super

understandable technical definition? Here we go.

Technical and (Less) Technical Definition

“A module should be open for extension, but closed for modification.”

As usual - and hopefully you're a bit quicker than I am - this definition makes no sense to me....

at least at first. Let's try our own definition. OCP says:

“You should be able to change what a class does without actually changing its code.”

If that sounds crazy... or downright impossible, it's actually not! And we'll learn one common

pattern that makes this possible.

But full disclosure, OCP is not my favorite SOLID principle. And later, we'll talk about when it

should be used and when... maybe it shouldn't. But more on that once we've got a good

understanding of what OCP really is.

Updating our Believability Scoring Algorithm

Now, the whole point of Sasquatch Sightings is for people to be able to submit their own

sightings. To help sort through all of these, we've developed a proprietary algorithm to give each

sighting a "believability score". Ooh. How is that implemented?

Open src/Service/SightingScorer.php . After you submit a sighting, we call score() ...

and all the logic lives right in this class. We look at the latitude and longitude, title, and

description for certain keywords. We call each of these "scoring factors".

Now, we've received a change request. We need to add a new scoring factor where we look at

the photos included with the post. The easiest way to implement this would be to go down here,

create a new private method called evaluatePhotos() ... and then call that from up here in

the score() method.

But doing that would violate OCP because we would be changing our existing code in order to

add the new feature. OCP tells us that a class's behavior should be able to be modified without

changing its code. How is that even possible?

The truth is that our class already violated OCP before we got this change request. To be able

to add the new feature without changing our existing code, we needed to write our class

differently from its very beginning. Since it's a little late for that, let's walk through the OCP

mindset and refactor this class so that it does follow the rules.

"Closing" a Class to a Change

First, we need to identify which kind of change we want to "close" this class against. In other

words, what kind of change do we want to allow a future developer to be able to make without

modifying this class. Based on the change request, we need to be able to add more scoring

factors without modifying the score() method itself. Since there's no way to do that right now,

we're going to change this method in order to "close" it to this change. How? By separating

each scoring factor into its own class and injecting them into the SightingScorer service.

Step one is to create an interface that describes what each scoring factor should do. In src/ ,

for organization, create a new directory called Scoring/ . And inside of that, choose "new PHP

class"... then change this to be an interface... called ScoringFactorInterface .

Each factor should need only one method. Let's call it score() . It will accept the

BigFootSighting object that it's going to score.... and will return an integer, which will be the

amount to add to the total score.

src/Scoring/ScoringFactorInterface.php

 // ... lines 1 - 4

5

 // ... line 6

7

8

9

10

use App\Entity\BigFootSighting;

interface ScoringFactorInterface

{

 public function score(BigFootSighting $sighting): int;

}

Perfect! You could also add some documentation above this to describe the method of interface

better: probably a good idea.

Step two is to create a new class for each scoring factor and make it implement the new

interface. For example, copy, evaluateCoordinates() , delete it and then go into the

Scoring directory and create a new class called CoordinatesFactor . We'll make it

implement ScoringFactorInterface ... I'll paste the method - hit okay to add the use

statements - rename this to score() and make it public . It already, correctly, returns an

integer, so this is done!

src/Scoring/CoordinatesFactor.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Let's repeat this for evaluateTitle() . Create a class called TitleFactor , implement the

ScoringFactorInterface , paste, make it public and rename it to score() .

use App\Entity\BigFootSighting;

class CoordinatesFactor implements ScoringFactorInterface

{

 public function score(BigFootSighting $sighting): int

 {

 $score = 0;

 $lat = (float)$sighting->getLatitude();

 $lng = (float)$sighting->getLongitude();

 // California edge to edge coordinates

 if ($lat >= 32.5121 && $lat <= 42.0126

 && $lng >= -114.1315 && $lng <= -124.6509

) {

 $score += 30;

 }

 return $score;

 }

}

src/Scoring/TitleFactor.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

And one more: copy, evaluateDescription() , delete that, create our last factor class for

now, which will be DescriptionFactor , implement ScoringFactorInterface paste in

the logic, clean things up... and rename to score() .

use App\Entity\BigFootSighting;

class TitleFactor implements ScoringFactorInterface

{

 public function score(BigFootSighting $sighting): int

 {

 $score = 0;

 $title = strtolower($sighting->getTitle());

 if (stripos($title, 'hairy') !== false) {

 $score += 10;

 }

 if (stripos($title, 'chased me') !== false) {

 $score += 20;

 }

 return $score;

 }

}

src/Scoring/DescriptionFactor.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

That looks happy! Now we can work our magic in SightingScorer . Add a __construct()

method that will accept an array of scoring factors. I'll hit Alt + Enter and go to "Initialize

properties" to create that property and set it. Above the property, I like to add extra PHPDoc so

my editor knows this isn't just an array of anything, it's an array of

ScoringFactorInterface[] objects.

use App\Entity\BigFootSighting;

class DescriptionFactor implements ScoringFactorInterface

{

 public function score(BigFootSighting $sighting): int

 {

 $score = 0;

 $title = strtolower($sighting->getDescription());

 if (stripos($title, 'hairy') !== false) {

 $score += 10;

 }

 if (stripos($title, 'chased me') !== false) {

 $score += 20;

 }

 if (stripos($title, 'using an iPhone') !== false) {

 $score -= 50;

 }

 return $score;

 }

}

src/Service/SightingScorer.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

 // ... lines 20 - 29

30

Down in score() , instead of calling each method individually, we can now loop over

$this->scoringFactors and say

$score += $scoringFactor->score($sighting) .

src/Service/SightingScorer.php

 // ... lines 1 - 20

21

22

23

24

25

26

27

28

29

 // ... lines 30 - 31

That's it! Our SightingScorer is now closed to one type of change that we may need to make in

the future: adding scoring factors. In other words, we can now add new scoring factors, without

modifying this method.

Wiring the $scoringFactors Argument

Yaaay! But... on a technical level, this won't work yet. At your browser, click to submit a new

sighting. Instant error! Of course. This isn't really related to OCP, but Symfony doesn't know

what to pass for the new $scoringFactors argument.

class SightingScorer

{

 /**

 * @var ScoringFactorInterface[]

 */

 private array $scoringFactors;

 public function __construct(array $scoringFactors)

 {

 $this->scoringFactors = $scoringFactors;

 }

}

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 $score = 0;

 foreach ($this->scoringFactors as $scoringFactor) {

 $score += $scoringFactor->score($sighting);

 }

 return new BigFootSightingScore($score);

 }

Next, let's look at two ways to fix this: the simple way... and the fancier way, which involves a

tagged iterator. After, we'll look at some takeaways for the open-closed principle.

Chapter 7: OCP: Autoconfiguration &
tagged_iterator

When we went to the "submit" page, we got this gigantic error. It's the middle that's most

relevant:

“Cannot autowire service SightingScorer , argument $scoringFactors of method

__construct is type-hinted array. You should configure its value explicitly.”

That makes sense! We haven't told Symfony what to pass to the new argument of

SightingScorer .

Manually Wiring the Argument

What do we want to pass there? An array of all of our "scoring factor" services. The simplest

way to do that is to configure it manually in config/services.yaml . Down at the bottom, we

want to configure the App\Service\SightingScorer ... service and we want to control its

arguments: , specifically this $scoringFactors argument. Copy that, paste, and this will be

an array: I'll use the multi-line syntax. Each entry in the array with be one of the scoring factor

services. So @App\Scoring\TitleFactor , copy that, paste... fix the indentation... then pass

DescriptionFactor and CoordinatesFactor .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 32

33

34

35

36

37

38

This will now pass an array with these three service objects inside.

services:

 App\Service\SightingScorer:

 arguments:

 $scoringFactors:

 - '@App\Scoring\TitleFactor'

 - '@App\Scoring\DescriptionFactor'

 - '@App\Scoring\CoordinatesFactor'

Try it again. Refresh and... the error is gone... and now it kicked us to the log-in page. Copy the

email above, enter the password, hit "sign in" and... beautiful! The page loads. Let's give it a try.

Fill in the details of your most recent interaction with Bigfoot. Oh, but before I submit this, I'm

going to add some keywords to the description that I know our scoring factor is looking for.

Submit and... it works! Ah man, a believability score of only 10!? I really thought that was a

Bigfoot.

Enabling Autoconfiguration

Before we talk more about OCP, on a technical, Symfony level, there is one other way to inject

these services. It's called a "tagged iterator"... and it's a pretty cool idea. It's also commonly

used in the core of Symfony itself.

Open up src/Kernel.php . I know, we almost never open this file. Inside, go to Code ->

Generate, or Command + N on a Mac, and select Override methods. Override one called

build() ... let me find it. There it is.

This is a hook where we can do extra processing on the container while it's being built. The

parent method is empty... but I'll leave the parent call. Add

$container->registerForAutoconfiguration() , pass this

ScoringFactorInterface::class , then ->addTag('scoring.factor') .

src/Kernel.php

 // ... lines 1 - 4

5

 // ... lines 6 - 11

12

13

 // ... lines 14 - 40

41

42

43

44

45

46

47

48

use App\Scoring\ScoringFactorInterface;

class Kernel extends BaseKernel

{

 protected function build(ContainerBuilder $container)

 {

 parent::build($container);

 $container-

>registerForAutoconfiguration(ScoringFactorInterface::class)

 ->addTag('scoring.factor');

 }

}

Thanks to this, any autoconfigurable service, which is all of our services, that implements

ScoringFactorInterface , will automatically be tagged with scoring.factor . That

scoring.factor is a name that I totally just made up.

This line, on its own, won't make any real change. But now, back in services.yaml we can

simplify: set the $scoringFactors argument to a special YAML syntax:

!tagged_iterator scoring.factor .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 32

33

34

35

This says: please inject all services that are tagged with scoring.factor . So

autoconfiguration adds the tag to our scoring factor services... and this handles passing them in.

Pretty cool, right?

The only gotcha is that we need to change the type-hint in SightingScorer to be an

iterable . This won't pass us an array... but it will pass us something that we can foreach

over. As a bonus, it's a "lazy" iterable: the scoring factor services won't be instantiated until and

unless we run the foreach . Oh, and change the property type to iterable also.

src/Service/SightingScorer.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

 // ... line 15

16

 // ... lines 17 - 18

19

 // ... lines 20 - 29

30

Next: now that we understand the type of change that OCP wants us to make to our code, let's

talk about why we should care - or not care - about OCP and when we should and should not

follow it.

services:

 App\Service\SightingScorer:

 arguments:

 $scoringFactors: !tagged_iterator scoring.factor # Inject all

services tagged with "scoring.factor"

class SightingScorer

{

 private iterable $scoringFactors;

 public function __construct(iterable $scoringFactors)

 }

}

Chapter 8: OCP: Takeaways

The big thing that OCP wants us to take away from this conversation is this: try to imagine the

future changes you are most likely to need to make, and architect, your code so that you will be

able to make those changes without modifying existing classes.

OCP Design Patterns

We showed one common pattern to do this: by injecting an array or - iterable - of services

instead of hardcoding all the logic right inside the class. There are also other patterns that you

can use to accomplish OCP, including the "strategy pattern" - which is similar to what we did,

but where you allow just one service to be passed in to handle some work - and the template

method pattern. All of these are different flavors of the same thing: allowing functionality to be

passed into a class, instead of living inside the class.

OCP is Never Fully Achievable

But the truth is, I don't love OCP. And I've got three reasons. First, even Uncle Bob - the father

of the SOLID principles - knows that OCP is a "lie". OCP promises that, if you follow it correctly,

you will never need to mess around with your old code. But a system can't be 100% OCP-

compliant. Our SightingScorer class is "closed" against the change of "adding new scoring

factors". But what would happen if we suddenly needed a scoring factor to be able to multiply

the existing score by a number... instead of just adding to it.

src/Service/SightingScorer.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 20

21

22

23

24

25

26

27

28

29

30

This unexpected change would require us to, yup, modify the code in SightingScorer . If we

had anticipated this change, we could have added an abstraction to SightingScorer to

protect us from this new kind of change. But no one can perfectly predict the future: we can do

our best... but often, we'll be wrong.

Unnecessary Abstractions add Complexity

Of course, just because a principle isn't perfect doesn't meant we should never use it. But that

leads me to the second reason that I don't love OCP: It creates unnecessary abstractions...

which make our code harder to understand.

SightingScorer is now closed against new scoring factors, which means we can add new

scoring factors to our system without modifying the class. But at what cost? I can no longer

open up this class and quickly understand how the believability score is calculated. Now I need

to dig around to figure out which factors are injected... then go look at each individual factor

class.

If you have a large team, being able to separate things into smaller pieces like this becomes

more desirable. But, for example here at SymfonyCasts - with our brave team of about four - we

would probably not make this change. It adds misdirection to our code, with a limited benefit.

Changing Code is... Ok!

class SightingScorer

{

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 $score = 0;

 foreach ($this->scoringFactors as $scoringFactor) {

 $score += $scoringFactor->score($sighting);

 }

 return new BigFootSightingScore($score);

 }

}

And that leads me to my third and final reason for not loving OCP. And this one comes from Dan

North's blog post.

He argues that the open-closed principle comes from an era when changes were expensive

because of the need to compile a code, the fact that we hadn't really mastered the science of

refactoring code yet, and because version control was done with CVS, which according to him,

added to a mentality of wanting to make changes by adding new code, instead of modifying

existing code.

In other words... OCP is a dinosaur! Dan's advice, which I agree with, is quite different than

OCP. He says:

“If you need code to do something else, change the code to make it do something else.”

Quoting Dan, he says:

“Code is not an asset to be carefully shrink-wrapped, and preserved, but a cost, a debt. All

code is cost. So if I can take a big pile of existing code and replace it with smaller, more

specific costs, than I'm winning at code.”

I love that.

So how do I personally navigate OCP in the real world? It's pretty simple. If I'm building an open

source library where the people who use my code will literally not be able to modify it, then I do

follow a pattern like we used in SightingScorer whenever I identify a change that a user

might need to make. This gives my users the ability to make that change... without modifying

the code in the class... which would be impossible for them.

But if I'm coding in a private application, I'm much more likely to keep all the code right inside

the class. But this is not an absolute rule. Separating the code makes it easier to unit test and

can help us follow the advice from SRP: writing code that "fits in your head". Larger teams will

also probably want to split things more readily than smaller teams. As with all the SOLID

principles, do your best to write simple code and... don't overthink it.

Next, let's turn to SOLID principle number three: the Liskov Substitution Principle.

https://dannorth.net/2021/03/16/cupid-the-back-story/amp/
https://dannorth.net/2021/03/16/cupid-the-back-story/amp/

Chapter 9: Liskov Substitution Principle

Solid principle number three is, I think, a pretty cool one. It's the Liskov Substitution Principle,

developed by Barbara Liskov: a researcher at MIT and winner of the Turing award, which is, I've

learned, sort of the Nobel prize for computer science. No biggie.

Liskov Defined

Liskov's principle states:

“Subtypes must be substitutable for their base types.”

That's... actually not a terrible definition. A "subtype" basically means a class: any class that

extends a base class or that implements an interface.

So let me rephrase the definition. I'm going to stick to just talking about classes and parent

classes, but this applies equally to a class that implements an interface. Here it is:

“You should be able to substitute a class for a sub-class without breaking your app or

needing to change any code.”

Dan North refers to this as simply:

“The principle of least surprise, applied to classes that have a parent class or implement an

interface.”

In other words, a class should behave in a way that most users expect: it should behave like its

parent class or interface intended.

Okay, that sounds great! But... what does that mean specifically?

The 4 Aspects that (Mostly) Define Liskov

It means four specific things. Pretend that we have a class that extends a base class or

implements an interface. It also has a protected property and a method, both of which live in

that parent class. Or in the case of the method, it lives on the interface.

Given this setup, Liskov says 4 things.

One: you cannot change the type of a protected property.

Two: you can't narrow the type hint of an argument. Like, if the parent class uses the object

type-hint, you can't make this narrower in your subclass by requiring something more specific,

like a DateTime object.

Three, which is both similar and opposite to the previous rule, you can't widen the return type. If

the parent class says a method returns a DateTime object, you can't change this in the

subclass to suddenly return something wider, like any object.

And finally, four, you should follow your parent class's - or interface's - rules around whether or

not you should throw an exception under certain conditions.

There may be some edge-case things that I've missed with these 4 rules, but this is the basic

idea. By violating any of these rules, you are making your class behave differently than its

parent class or interface intended. That's bad because if part of your code expects an instance

of that interface and you pass in your class, even though it implements the interface, the class's

violations may cause weird stuff to happen. We'll see specific examples of this over the next few

chapters.

Now here's what I really love about this principle. Those first three rules? Yeah, they're

impossible to violate in PHP. If you change the property type on a protected property, narrow the

type-hint on an argument or widen a return type on a method, PHP will give you a syntax error.

Yup, Liskov's principle makes so much sense, that its rules are codified right into the language.

So, we now know the rules of Liskov. But to get a deeper feeling for why these rules exist and -

almost more importantly - what things we are allowed to do in a "subtype", let's jump into two

real-world examples next.

Chapter 10: Liskov: Unexpected Exceptions

Let's jump into our first example where we learn how we can violate the Liskov principle! And...

maybe more importantly, why... that's not such a great idea.

Creating a new Scoring Factor

In the src/Scoring/ directory, create a new scoring factor class called PhotoFactor ... and

make it implement the ScoringFactorInterface . We'll finally fulfill the change request we

received earlier: to add a scoring factor that reads the images for each sighting.

src/Scoring/PhotoFactor.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 21

22

Thanks to our work with the open-closed principle, we can now add this scoring factor without

touching SightingScorer . And to be extra cool, thanks to this tagged_iterator thing in

services.yaml , the new PhotoFactor service will be instantly passed into

SightingScorer . Yay!

In PhotoFactor , go to Code -> Generate - or Command + N on a Mac - and select

"Implement Methods" to generate the score() method. Inside, I'll paste some code.

class PhotoFactor implements ScoringFactorInterface

{

}

src/Scoring/PhotoFactor.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

18

19

20

21

 // ... lines 22 - 23

This is pretty simple: we loop over the images... and pretend that we're analyzing them in some

super advanced way. Shh, don't tell our users. Oh, and if there are no images for this sighting,

we throw an exception.

Cool! Let's try it. Go back to our homepage, click to add a new post and fill in some details. I'll

leave images empty for simplicity. And... ah! A 500 error! That's our new exception! We broke

our app! And it broke because we violated Liskov's principle! She tried to warn us!

Our new scoring factor class - or subtype - to use the more technical word, just did something

unexpected: it threw an exception!

The Ugly Work-Around

One way to fix this, which might seem silly... but there's a reason we're doing this... is to add

some conditional code inside of SightingScorer . If PhotoFactor doesn't like sightings

with zero images, let's just skip that factor when that happens!

Inside the foreach , if ScoringFactor is an instanceof PhotoFactor and count of

$sighting->getImages() equals zero, then continue .

 public function score(BigFootSighting $sighting): int

 {

 if (count($sighting->getImages()) === 0) {

 throw new \InvalidArgumentException('Invalid BigFootSighting,

it should have at least one photo');

 }

 $score = 0;

 foreach ($sighting->getImages() as $image) {

 $score += rand(1, 100); // todo analyze image

 }

 return $score;

 }

src/Service/SightingScorer.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 21

22

23

 // ... line 24

25

26

27

28

29

 // ... lines 30 - 31

32

 // ... lines 33 - 34

35

36

In addition to this not being the best way to fix this - more on that in a minute - this also violates

the open-closed principle. But... it does fix things: if we resubmit the form... our app works

again!

Exceptions are a "Soft" Part of an Interface

But... let's back up. Open ScoringFactorInterface . Unlike argument types and return

types, there's no way in PHP to codify whether or not a method should throw an exception or

which types of exceptions should be used. But this can, at least, be described in the

documentation above the method... which we totally skipped!

Let's fill that in. We don't need the @return or @param because they're redundant... unless

we want to add some more information about their meaning. I'll add a quick description... and

then let's be very clear about the exception behavior we expect:

“This method should not throw an exception for any normal reason.”

use App\Scoring\PhotoFactor;

class SightingScorer

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 foreach ($this->scoringFactors as $scoringFactor) {

 // LSP violation and also OCP violation

 if ($scoringFactor instanceof PhotoFactor && count($sighting-

>getImages()) === 0) {

 continue;

 }

 }

 }

}

src/Scoring/ScoringFactorInterface.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

In the real-world, if a method is allowed to throw an exception when some expected situation

happens, you would typically see an @throws that describes that. And if you don't see that,

you can assume that you are not allowed to throw an exception for any normal situation.

Our Class Behaves Unexpectedly

Anyways, now that we've clarified this, it's easy to see that our PhotoFactor breaks Liskov's

principle: PhotoFactor behaves in a way that the class that uses it - SightingScorer ,

sometimes called the "client class" - was not expecting. That "bad behavior" caused us to need

to hack in this code to get it to work.

Another way to think about it, which explains why this is called Liskov's substitution principle, is

that, if any of our code relies on a ScoringFactorInterface object - like

DescriptionFactor - we could not "replace" or "substitute" that object for our

PhotoFactor without breaking things.

If this substitution aspect doesn't make complete sense yet, don't worry. Our next example will

illustrate it even better.

instanceof Checks Indicate Liskov Violation

So: we violated Liskov's principle by throwing an exception. And then, I lazily worked around the

problem by adding some instanceof code to SightingScorer ... to literally work "around"

the problem.

When you have an instanceof conditional like this, it's often a signal that you're violating

Liskov because it means that you have a specific implementation of a class or interface that is

interface ScoringFactorInterface

{

 /**

 * Return the score that should be added to the overall score.

 *

 * This method should not throw an exception for any normal reason.

 */

 public function score(BigFootSighting $sighting): int;

}

behaving differently than the rest... which you then need to code for.

So let's remove this: take out the if statement and let's even go clean out the extra use

statement on top.

src/Service/SightingScorer.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 20

21

22

23

24

25

26

27

28

29

30

Now that we've clarified that the score() method should not throw an exception in normal

situations, the real fix is... kinda obvious: stop throwing the exception! Replace the exception

with return 0 .

src/Scoring/PhotoFactor.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

 // ... lines 14 - 20

21

22

That's it. The class now acts like we expect: no surprises.

By the way, all of this does does not mean that it is illegal for our score() method to ever

throw an exception. If the method, for example, needed to query a database... and the database

connection was down... then yeah! You should totally throw an exception! That is an unexpected

class SightingScorer

{

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 $score = 0;

 foreach ($this->scoringFactors as $scoringFactor) {

 $score += $scoringFactor->score($sighting);

 }

 return new BigFootSightingScore($score);

 }

}

class PhotoFactor implements ScoringFactorInterface

{

 public function score(BigFootSighting $sighting): int

 {

 if (count($sighting->getImages()) === 0) {

 return 0;

 }

 }

}

situation. But for all the, expected, normal cases, we should follow the rules of our parent class

or interface.

Next let's look at one more example of Liskov's principle where we create a subclass of an

existing class... then secretly substitute it into our system without breaking anything. Liskov

would be so proud!

Chapter 11: Liskov: Substituting a Class

Our highly-advanced, proprietary, believability score system is having some performance

problems. To help debug it, we want to measure how long calculating a score takes. The

simplest way to implement this would be almost entirely inside SightingScorer . We could

set a start time on top, then use that down here to calculate a duration. And then we could pass

that $duration into the BigFootSightingScore class. Hold Command or Ctrl and click to

open it: it's in the src/Model/ directory. Inside here, we could create a new property called

$duration ... with a getter so that we could use that value.

Lets: Substitute a Class!

But... let me undo that. Let's make things more interesting! To keep our application as skinny as

possible on production, I only want to run this new timing code when we're in Symfony's dev

environment. And yes, we could inject some $shouldCalculateDuration value into

SightingScorer based on the environment and use it to determine if we should do that

work.

But, in the spirit of Liskov, instead of changing SightingScorer , I want to create a subclass

that does the timing and substitute that class into our system as the SightingScorer service.

It's gonna be kinda fun! And it's a pattern you'll find inside Symfony itself, like with the

TraceableEventDispatcher : a class that is substituted in for the real event dispatcher only

while developing. It adds debugging info. Well, technically, that class uses decoration instead of

being a subclass. That's a different, and usually better design pattern when you want to replace

an existing class. But, to really understand Liskov, we'll use a subclass.

Creating the Subclass

Let's start by creating that new subclass. Over in the Service/ directory... so that it's right next

to our normal SightingScorer , add a new class called DebuggableSightingScorer .

Make it extend the normal SightingScorer .

src/Service/DebuggableSightingScorer.php

 // ... lines 1 - 4

5

6

7

8

Since our subtype is currently making no changes to the parent class, Liskov would definitely be

happy with it. What I mean is: we should definitely be able to substitute this class into our app in

place of the original, with no problems.

Substituting the Real Class

But where is the normal SightingScorer service actually used? Open

src/Controller/BigFootSightingController.php . This upload() action is the one

that is executed when, from the homepage, we click to submit a sighting. Yep, down here, you

can see that this is the upload() method.

src/Controller/BigFootSightingController.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 19

20

21

22

23

24

25

 // ... lines 26 - 40

41

42

43

44

45

46

 // ... lines 47 - 56

57

One of the arguments that's being autowired to this method is the SightingScorer ... which is

used down here on submit to calculate the score.

class DebuggableSightingScorer extends SightingScorer

{

}

class BigFootSightingController extends AbstractController

{

 public function upload(Request $request, SightingScorer

$sightingScorer, EntityManagerInterface $entityManager)

 {

 $form = $this->createForm(BigFootSightingType::class);

 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {

 }

 return $this->render('main/sighting_new.html.twig', [

 'form' => $form->createView()

]);

 }

}

Now I want to change this service to use our new class: I want to substitute it. How? Open

config/services.yaml . I mentioned earlier that we were going to swap in our

DebuggableSightingScorer only in the dev environment. But to keep things simple, I'm

actually going to do it in all environments. If you did want to have this only affect your dev

environment, you could make the same changes we're about to make in a

services_dev.yaml file.

Anyways, to suddenly start using our new class everywhere that the SightingScorer is

used, add class: and then App\Service\DebuggableSightingScorer .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 32

33

34

 // ... lines 35 - 37

I know, this looks a little funny. This first line is still the service id. But now instead of using that

as the class, Symfony will use DebuggableSightingScorer . The end result is that

whenever someone autowires SightingScorer - like we do in our controller - Symfony will

instantiate an instance of our DebuggableSightingScorer ... and pass the normal

$scoringFactors argument. Yep, we just substituted our subclass into the system!

To prove it, find your terminal and run:

php bin/console debug:container Sighting

I want to look at the SightingScorer service, so I'll hit 5. And... perfect! The service id is

App\Service\SightingScorer , but the class is

App\Service\DebuggableSightingScorer .

Another way to show this would be to go into our BigFootSightingController and

temporarily dd($sightingScorer) .

Back at your browser, refresh and... there it is! DebuggableSightingScorer

services:

 App\Service\SightingScorer:

 class: App\Service\DebuggableSightingScorer

Let's go take that out... then refresh again. The page works and... even though I won't test it, if

we submitted, our DebuggableSightingScorer would correctly calculate the believability

score.

In other words, no surprise: if you create a subclass and change nothing in it, you can substitute

that class for its parent class. It follow's Liskov's principle.

Method Changes that are NOT Allowed

Let's start adding our timing mechanism. In the class, go to Code -> Generate - or Command +

N on a Mac - select "Override methods" and override the score() method. If you override a

method and keep the same argument type hints and return type, this class is still substitutable: I

can refresh and PHP is still happy.

src/Service/DebuggableSightingScorer.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

But if we did change the argument type-hints or return type to something totally different, then

even PHP will tell us to knock it off. For example, let's completely change the return type to

int .

src/Service/DebuggableSightingScorer.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 15

PhpStorm is mad! And if we refresh, PHP is mad too!

use App\Entity\BigFootSighting;

use App\Model\BigFootSightingScore;

class DebuggableSightingScorer extends SightingScorer

{

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 return parent::score($sighting);

 }

}

 public function score(BigFootSighting $sighting): int

 {

 return parent::score($sighting);

 }

“DebuggableSightingScorer::score() must be compatible with the parent score() ,

which returns BigFootSightingScore .”

Our signature is incompatible and, nicely, PHP does not let us violate Liskov's principle in this

way. Go and undo that change.

So does this mean that we can never change the return type or argument type-hints in a

subclass? Actually... no! Remember the rules from earlier: you can change a return type if you

make it more narrow, meaning more specific. And you can also change an argument type-hint...

as long as you make it accept a wider, or less specific type.

Let's see this in action by finishing our timing feature next.

Chapter 12: Liskov: What Changes *Are* Allowed?

Calculating how long it takes for the parent score() method to execute will be easy. But

then... what do we do with that number? This method returns a BigFootSightingScore

instance.... so we can't suddenly change this to return an int for the duration. How can this

method return both the BigFootSightingScore and info about how long it took for the score

to calculate?

Creating a Subclass for the Return Value

The answer is: create another subclass! A subclass of BigFootSightingScore that holds

the extra info. BigFootSightingScore lives in the src/Model/ directory: there it is. Right

next to it, add a new class called, how about, DebuggableBigFootSightingScore . Make it

extend the normal BigFootSightingScore .

src/Model/DebuggableBigFootSightingScore.php

 // ... lines 1 - 4

5

6

7

8

Now we have two subclasses to play with! This time, override the constructor: do that by going

to Code -> Generate - or Command + N on a Mac. Override __construct() .

This calls the parent constructor with the score, which is great! Add a new argument:

float $calculationTime . I'll hit Alt + Enter and go to "Initialize properties"... select just

$calculationTime ... to create that property and set it. To make the $calculationTime

accessible, at the bottom, go back to Code -> Generate and make a "getter" method for this!

class DebuggableBigFootSightingScore extends BigFootSightingScore

{

}

src/Model/DebuggableBigFootSightingScore.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Wait: Does __construct need to Follow Liskov's Rules?

By the way, adding a required argument to a method that you are overriding - like we're doing in

__construct - is normally another way to violate Liskov's principle. Let's think about it using a

different example: SightingScorer . When we use this, we can normally call score() and

pass it a single argument. If we suddenly substituted in a different class whose score()

method required two arguments... well, that would make our code explode. That new class

would not be substitutable for the old one.

However, the constructor does not need to follow Liskov's principle... which took me a minute to

wrap my head around. Why not? Because if you are instantiating a

DebuggableBigFootSightingScore - with new DebuggableBigFootSightingScore -

then you know exactly which class you are instantiating. And so, you can figure out exactly

which arguments you need to pass.

This is different than being passed a BigFootSightingScore object... where the true class

might be a subclass. In that situation, you need any of the methods that you call on that object

to behave like the original class's methods. Since the constructor is never called on an object,

that's not an issue.

Anyways, back in DebuggableSightingScorer , let's return our new

DebuggableBigFootSightingScore class with a dummy duration. Say

class DebuggableBigFootSightingScore extends BigFootSightingScore

{

 private float $calculationTime;

 public function __construct(int $score, float $calculationTime)

 {

 parent::__construct($score);

 $this->calculationTime = $calculationTime;

 }

 public function getCalculationTime(): float

 {

 return $this->calculationTime;

 }

}

$bfScore = parent::score() ... and then return a

new DebuggableBigFootSightingScore passing the int score -

$bfScore->getScore() - and 100 for a fake duration. Let's also advertise that we return

this new class: DebuggableBigFootSightingScore

src/Service/DebuggableSightingScorer.php

 // ... lines 1 - 6

7

 // ... line 8

9

10

11

12

13

14

15

16

17

18

19

20

But wait: we just changed the return-type to something different than our parent class! Is that

allowed?

Narrower Return Types are Allowed

Find your browser, refresh and... PHP totally does allow this! That's because this does follow

Liskov's principle: we are making the return type more narrow... or more specific.

But why is making a return type more narrow allowed? Look at

BigFootSightingController : the class that uses the SightingScorer . This code

requires a SightingScorer instance. And so, when we call the score() method later, we

know that it will return a BigFootSightingScore object. We know that because, if we jump

into the SightingScorer class, yep! The score() method returns a

BigFootSightingScore .

And so, we know the $bfsScore variable is an instance of BigFootSightingScore ... and

we know that that class has a getScore() method on it. I'll, once again, jump into the class.

use App\Model\DebuggableBigFootSightingScore;

class DebuggableSightingScorer extends SightingScorer

{

 public function score(BigFootSighting $sighting):

DebuggableBigFootSightingScore

 {

 $bfsScore = parent::score($sighting);

 return new DebuggableBigFootSightingScore(

 $bfsScore->getScore(),

 100

);

 }

}

This is the original BigFootSightingScore and here is its getScore() method. We use

that in our controller to get the integer score and... everything is happy!

But now we know that we have substituted the SightingScorer for a

DebuggableSightingScorer ... and we know that its score() method returns a

DebuggableBigFootSightingScore . But that's okay! Why? Because

DebuggableBigFootSightingScore extends BigFootSightingScore . So we are still

returning a BigFootSightingScore instance, which, of course, still has a getScore()

method. The fact that we return a subclass... that potentially has extra methods on it, does not

break its substitutability.

But if we had changed its return type to something less specific, like any object, then there

would be no guarantee that what we return from this method has a getScore() method. And

so, that would break Liskov's principle. PHP would be so mad at us, that it would generate a

syntax error. Let's undo that.

We won't talk about it in detail, but the same philosophy can be applied to argument types, but

in the opposite direction. It's okay to change an argument type as long as you support at least

the original type. It's not okay to be more restrictive with the type you allow, but it is okay to be

less specific: I am allowed to say that the score() method supports any object. Well, in this

example, that would be problematic because we're passing the argument to the parent class...

which still does require a BigFootSighting ... but in general, allowing for a less specific, or

wider argument type is allowed by Liskov. And you can see this if we refresh: no syntax error

from PHP.

Let's change that back.

Next: it's time to celebrate our new system by using the new duration value, tweaking a few

things in Symfony's config and listing the takeaways from Liskov's principle.

Chapter 13: Liskov Takeaways & Service Alias

To celebrate our new system, let's see it in action. In BigFootSightingController , after

the addFlash() , let's also add some duration information. But since we don't know for sure if

we're using the "debuggable" version of the service, add if $bfsScore is an instance of

DebuggableBigFootSightingScore , then

$this->addFlash('success', sprintf(...)) with:

“Btw, the scoring took %f milliseconds”

Passing $bfsScore->getCalculationTime() times 1000 to convert from microseconds to

milliseconds.

src/Controller/BigFootSightingController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 14

15

 // ... lines 16 - 20

21

22

 // ... lines 23 - 25

26

 // ... lines 27 - 38

39

40

41

42

43

44

 // ... lines 45 - 48

49

 // ... lines 50 - 53

54

 // ... lines 55 - 64

65

use App\Model\DebuggableBigFootSightingScore;

class BigFootSightingController extends AbstractController

 public function upload(Request $request, SightingScorer

$sightingScorer, EntityManagerInterface $entityManager)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 if ($bfsScore instanceof DebuggableBigFootSightingScore) {

 $this->addFlash('success', sprintf(

 'Btw, the scoring took %f milliseconds',

 $bfsScore->getCalculationTime() * 1000

));

 }

 }

 }

}

Cool! But... wait: didn't I say that instanceof is a signal that we may be breaking Liskov's

principle? Yep! But I'm not too worried about it here, for a few reasons. First, this is my

controller... whose job is to tie all the ugly pieces of my app together. And second, I'm using the

instanceof to detect if I can add functionality... not to work-around a misbehaving subclass.

However, another solution, depending on if you really do need to substitute this class only in

one environment, is to explicitly say that you require the debuggable version of the service. So

instead of saying, "I allow any SightingScorer ", we could say, "I specifically need a

DebuggableSightingScorer ".

If we did that, we wouldn't need the instanceof because we would know that that service

returns a DebuggableBigFootSightingScore , which has the getCalculationTime()

method on it.

src/Controller/BigFootSightingController.php

 // ... lines 1 - 21

22

23

 // ... lines 24 - 26

27

 // ... lines 28 - 39

40

41

42

43

 // ... lines 44 - 47

48

 // ... lines 49 - 52

53

 // ... lines 54 - 65

But... we're missing one tiny config detail in Symfony. Try to refresh the page. It breaks!

“Cannot autowire service DebuggableSightingScorer : argument $scoringFactors is

type-hinted iterable . You should configure its value explicitly.”

Wait... we hit this error when we worked on the open-closed principle. And, in

config/services.yaml , we fixed it by specifically wiring the $scoringFactors

argument. Why isn't that working anymore?

 public function upload(Request $request, DebuggableSightingScorer

$sightingScorer, EntityManagerInterface $entityManager)

 {

 if ($form->isSubmitted() && $form->isValid()) {

 $this->addFlash('success', sprintf(

 'Btw, the scoring took %f milliseconds',

 $bfsScore->getCalculationTime() * 1000

));

 }

 }

Thanks to auto-registration - the feature that automatically registers all classes in src/ as a

service - there is a separate service in our container called DebuggableSightingScorer .

You can see it if you run:

php bin/console debug:container Sighting

Yup! There's a DebuggableSightingScorer service and a separate service for

SightingScorer . This is... not what we want. Really, I want Symfony to pass us the same

service, regardless of whether we type-hint DebuggableSightingScorer or

SightingScorer .

We can do that by adding an alias. Inside services.yaml , say

App\Service\DebuggableSightingScorer , colon, an @ symbol and then

App\Service\SightingScorer .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 32

33

 // ... lines 34 - 39

This says: whenever someone tries to autowire or use the DebuggableSightingScorer

service, you should actually pass them the SightingScorer service... which, I know, is

actually an instance of the DebuggableSightingScorer class. It can be a bit confusing.

Back at your terminal, run debug:container again:

php bin/console debug:container Sighting

It looks like there are still 2 services, but if you hit "6" to look at the "Debuggable" one, on top, it

says:

“This is an alias for the service App\Service\SightingScorer .”

And over in the browser, when we refresh... it works again!

services:

 App\Service\DebuggableSightingScorer: '@App\Service\SightingScorer'

Liskov Principle Takeaways

So the big takeaway from Liskov's principle is this: make sure that when you have a "subtype" -

a class that extends another or that implements an interface - it follows the rules of that parent

type. It doesn't do anything surprising. That's it. And PHP even prevents us from most Liskov

violations.

The most interesting part of Liskov for me is learning about the things that we are allowed to do.

Like, you are allowed to change the return type of a method as long as you make it more

specific. Or, the opposite for argument types: you can change them... as long as you make them

less specific.

Okay, next up is solid principle number 4: the interface segregation principle.

Chapter 14: Interface Segregation Principle

Ready for principle number 4? It's the interface segregation principle - or ISP. It says:

“Clients should not be forced to depend on interfaces that they do not use.”

That's not a bad definition! But I want to clarify that word "interface". It is not necessarily

referring to a literal interface. It's referring to the abstract concept of an interface, which

generally means "the public methods" of a class... even if it doesn't technically implement an

interface. The meaning of interface here is: the "stuff that you can do with an object" when I give

it to you.

The Simpler Definition

So let me try to give this an even simpler definition:

“Build small, focused classes instead of big, giant classes.”

This definition reminds me a lot of the single responsibility principle... and that's true! But the

interface segregation principle kind of looks at this from the other direction: from the perspective

of who uses the class, not from the perspective of the class itself. Again, the original definition

is:

“Clients should not be forced to depend upon interfaces - so basically methods - that they do

not use.”

For example, suppose you've accidentally built a giant class called ProductManager with a

ton of methods on it. Whoops! Then, somewhere in your code, you need to call just one of those

methods. This other class is called the "client" because it is using our giant ProductManager

class. And unfortunately, even though it only needs one method from the ProductManager , it

needs to inject the whole giant object. It's forced to depend on an object whose interface -

whose public methods - are many more than it actually needs.

New Feature: Adjusting a Score

Why is this a problem? Let's answer that question a bit later after we play with a real world

example. Because... management has asked us to make yet another change to our believability

score system! If a sighting receives a score of less than 50 points... but it has three or more

photos, we will give it a boost: 5 extra points per photo. This... was not a change we anticipated!

Darn! Our scoring factors do have the ability to add to the score... but they don't have the ability

to see the final score and then modify it.

Adding another Method to the Interface

No problem: let's add a second method to the interface that has the ability to do that. Call it, how

about, public function adjustScore() . In this case, it's going to receive the

int $finalScore that's just been calculated and the BigFootSighting that we're

scoring. It will return the new int final score. You can add some PHPDoc above this to better

explain the purpose of the method if you want.

src/Scoring/ScoringFactorInterface.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 15

16

17

In a minute, we're going to call this from inside of SightingScorer after the initial scoring is

done. But first, let's open PhotoFactor and add the new bonus logic.

Implementing the new Method

At the bottom, go to Code -> Generate - or Command + N on a Mac - select "Implement

Methods" and implement adjustScore() . Say

$photosCount = $sighting->getImages() - don't forget to count these - then if the

$finalScore is less than 50 and $photosCount is greater than two - the $finalScore

should get plus equals $photosCount * 5 . At the bottom, return $finalScore .

interface ScoringFactorInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int;

}

src/Scoring/PhotoFactor.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 22

23

24

25

26

27

28

29

30

31

32

New logic done! But now... what do we do with all the other classes that implement

ScoringFactorInterface? Unfortunately, for PHP to even run, we do need to add the new

method to each class. But we can just make it return $finalScore .

So at the bottom of CoordinatesFactor , go back to Code -> Generate - select "Implement

Methods", generate adjustScore() , and return $finalScore .

src/Scoring/CoordinatesFactor.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 24

25

26

27

28

29

Copy, this close CoordinatesFactor , go to DescriptionFactor and add it to the bottom.

Do the same thing inside of TitleFactor .

class PhotoFactor implements ScoringFactorInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int

 {

 $photosCount = count($sighting->getImages());

 if ($finalScore < 50 && $photosCount > 2) {

 $finalScore += $photosCount * 5;

 }

 return $finalScore;

 }

}

class CoordinatesFactor implements ScoringFactorInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int

 {

 return $finalScore;

 }

}

src/Scoring/TitleFactor.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 24

25

26

27

28

29

Finally, we can update SightingScorer . Add a second loop after calculating the score: for

each $this->scoringFactors as $scoringFactor , this time say

$score = $scoringFactor->adjustScore() ... and pass in $score and $sighting .

src/Service/SightingScorer.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 20

21

22

 // ... lines 23 - 27

28

29

30

 // ... lines 31 - 32

33

34

Done! By the way, you might argue that the order of scoring factors is now relevant. That's true!

But... we're not going to worry about that for simplicity... and because that isn't relevant to this

principle. But, there is a way to give a tagged service a higher priority in Symfony so that it is

passed earlier or later than other scoring factors.

We Violated OCP!

If, at this point, something is itching you, that might be because we just violated the open-closed

principle! We had to modify the score() method in order to add this new behavior. But that's

okay! It highlights the tricky nature of OCP: we didn't anticipate this kind of change! You can't

class TitleFactor implements ScoringFactorInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int

 {

 return $finalScore;

 }

}

class SightingScorer

{

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 foreach ($this->scoringFactors as $scoringFactor) {

 $score = $scoringFactor->adjustScore($score, $sighting);

 }

 }

}

"close" a class against all kinds of changes: you can only close it against the changes that you

correctly predict.

Looking at our new interface and the classes that implement it, you can probably feel that it's

not... ideal that all of these classes need to implement this method... even though they don't

really care about it. Next: we're going to make this even more obvious, refactor to a better

solution, and finally discuss the key takeaways from the interface segregation principle.

Chapter 15: ISP: Refactoring & Takeaways

We've just finished adding the ability to add a bonus to the score if the score is less than 50 and

there are 3 photos or more on a sighting. And... management is already requesting another

change: we need to make sure that - no matter what - a score never receives more than a 100

points.

No problem! We can create another scoring factor class to check for this. In the Scoring/

directory, add a class called, how about, MaxScoreAdjuster . I'm giving this a slightly different

name, even though it's a scoring factor, because it's real job is going to be to adjust the score.

Make it implement ScoringFactorInterface .

Now go to Code -> Generate - or Command + N on a Mac - and just generate,

adjustScore() to start. For the logic, return the minimum of $finalScore or 100. So if the

$finalScore is over a hundred, this will return 100.

src/Scoring/MaxScoreAdjuster.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

Now, setting the priority of the scoring factors so that this is the final one would be especially

important. But since that doesn't relate to ISP, we won't worry about it.

Of course, in this new class, we also need to implement the other method: score() . We can

just return 0 since we don't care about that.

use App\Entity\BigFootSighting;

class MaxScoreAdjuster implements ScoringFactorInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int

 {

 return min($finalScore, 100);

 }

}

src/Scoring/MaxScoreAdjuster.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 13

14

15

16

17

18

Okay, we've got this working! But we've violated ISP! A lot of the classes that implement

ScoringFactorInterface - like MaxScoreAdjuster and CoordinatesFactor - have

a dummy method... which we added just to satisfy the needs of the interface.

The Signs that You're Violating ISP

When you see something like this, it's a signal that your interface is polluted... or has gotten fat.

But again, even though we're using an interface in our example, this also applies to classes in

general. If you have a class with multiple public methods... and other parts of your code only

use one or some of its methods... that's also a violation of ISP. In fact, that's the main purpose of

ISP. You're requiring clients of your class to depend on interfaces - in other words, methods -

that they do not need.

What's the solution? Categorize the methods based on their purpose and how they're used...

and split them into multiple classes.

For example, if you have a class with 3 methods and 2 of those methods are always called

together, then the class should be split into only two pieces: one class with those 2 methods and

another class with only the third method.

Splitting our Interface

In our example, it's pretty obvious that splitting the interface into two pieces would make the

classes that implement them simpler. So in this Scoring/ directory, create a new class - or

really an interface - and call it ScoreAdjusterInterface . What we'll do is go into

ScoringFactorInterface , steal the adjustScore() method and move it into the new

interface. Hit okay to import that use statement.

class MaxScoreAdjuster implements ScoringFactorInterface

{

 public function score(BigFootSighting $sighting): int

 {

 return 0;

 }

}

src/Scoring/ScoreAdjusterInterface.php

 // ... lines 1 - 4

5

6

7

8

9

10

Thanks to this, we can now go into CoordinatesFactor and remove the dummy

adjustScore() ... and then do the same thing in TitleFactor ... and also in

DescriptionFactor , which feels pretty good! In MaxScoreAdjuster , change this to

implement ScoreAdjusterInterface ... and then we no longer need the dummy score()

method.

src/Scoring/MaxScoreAdjuster.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

Injecting the Collection of Scoring Adjusters

Finally, the PhotoFactor class is interesting: it needs to implement both interfaces, which is

totally allowed. Add ScoreAdjusterInterface .

src/Scoring/PhotoFactor.php

 // ... lines 1 - 6

7

 // ... lines 8 - 33

The last thing to do is make our SightingScorer support using both interfaces by repeating

the trick of injecting a collection of services for ScoreAdjusterInterface . In other words,

we're now going to inject an iterable of scoring factors and a second iterable of scoring

adjusters.

use App\Entity\BigFootSighting;

interface ScoreAdjusterInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int;

}

class MaxScoreAdjuster implements ScoreAdjusterInterface

{

 public function adjustScore(int $finalScore, BigFootSighting

$sighting): int

 {

 return min($finalScore, 100);

 }

}

class PhotoFactor implements ScoringFactorInterface,

ScoreAdjusterInterface

Start in: src/Kernel.php . Copy the registerForAutoConfiguration() ... and we're

going to repeat the same thing, but this time for ScoreAdjusterInterface and call the tag

scoring.adjuster .

src/Kernel.php

 // ... lines 1 - 12

13

14

 // ... lines 15 - 41

42

43

 // ... lines 44 - 48

49

50

51

52

Next, over in services.yaml , down on our service, copy the $scoringFactors argument,

paste, rename to $scoringAdjusters and use the new tag name: scoring.adjuster .

config/services.yaml

 // ... lines 1 - 7

8

 // ... lines 9 - 34

35

36

37

 // ... line 38

39

Copy that argument name and head into SightingScorer . Add this as a second iterable

argument. Then hit Alt + Enter and go to Initialize Properties to create that property and set it. I'll

steal the PHPDoc from above the old property to help my editor know that this will hold an

iterable of ScoreAdjusterInterface objects.

class Kernel extends BaseKernel

{

 protected function build(ContainerBuilder $container)

 {

 $container-

>registerForAutoconfiguration(ScoreAdjusterInterface::class)

 ->addTag('scoring.adjuster');

 }

}

services:

 App\Service\SightingScorer:

 class: App\Service\DebuggableSightingScorer

 arguments:

 $scoreAdjusters: !tagged_iterator scoring.adjuster

src/Service/SightingScorer.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 16

17

18

19

20

21

22

23

 // ... line 24

25

26

 // ... lines 27 - 40

41

Now loop over these instead. You can already see that PhpStorm is not happy because there is

no adjustScore() method on the scoring factors. Change this to $scoringAdjusters ...

and I'll rename the variable to $scoringAdjuster here and here.

src/Service/SightingScorer.php

 // ... lines 1 - 27

28

29

 // ... lines 30 - 34

35

36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 42

Done! We made our interface smaller, which allowed us to remove all of the dummy methods.

Why Should We Care about ISP?

So, other than being forced to create dummy methods just to make an interface happy, why

should we care about ISP? I can think of three reasons.

class SightingScorer

{

 /**

 * @var ScoreAdjusterInterface[]

 */

 private $scoreAdjusters;

 public function __construct(iterable $scoringFactors, iterable

$scoreAdjusters)

 {

 $this->scoreAdjusters = $scoreAdjusters;

 }

}

 public function score(BigFootSighting $sighting): BigFootSightingScore

 {

 foreach ($this->scoreAdjusters as $scoreAdjuster) {

 $score = $scoreAdjuster->adjustScore($score, $sighting);

 }

 }

The first is naming. Whether you have a class that's too big or an interface like in our example,

splitting it into smaller pieces allows you to give each a more descriptive name that fits its

purposes. We can see this in SightingScorer . We're now working with scoring adjusters,

which better describes the purpose of those services than just a "scoring factor"... which does

multiple things.

The second is that ISP is a good signal that you might be violating the single responsibility

principle. If you notice that you often only call one or two methods from a class... but not it's

other public methods, that is a violation of ISP. This forces you to think about the responsibilities

of that class, which may result in organizing into smaller classes based on those

responsibilities.

The third reason we should care about ISP is that it keeps your dependencies lighter. We didn't

see that in this specific example, but we did see it earlier when we talked about SRP. In that

case... let me actually close all of my classes... we split a UserManager class into two pieces:

UserManager and ConfirmationEmailSender . The send() method simply sends the

confirmation email, and we use it both after registration and when requesting a re-send of that

email.

If we had kept these two public function inside of UserManager - then resending the

confirmation would have be a violation of the interface segregation principle. That would have

been a situation where we only needed to call one of the two public methods on the class.

And, in order to resend the email, Symfony would need to instantiate a class which depends on,

for example, the password encoder service. Why is that a problem? Well, it's minor, but this

would force Symfony to instantiate the password encoder so that it could instantiate the

UserManager ... so that we could send a confirmation email... but we would never actually use

the password encoder. That's a waste of resources!

Anyways, the tl;dr on the interface segregation principle is this: when you have an interface with

a method that not all of its classes need... or if you have a class where you routinely use only

some of its public methods... it may be time to split it into smaller pieces. Or, more simply, you

can remember to not build giant classes. But, like everything, it's not an absolute rule. If I had,

for example, a GitHubApiClient that helped me talked to GitHub's API... I might be ok

putting 5 methods in this service, even though I routinely only use one or two of them at a time.

After all, the name of the class is still pretty clear... and having more methods probably doesn't

increase the number of dependencies that I need to inject into that service.

Next: we're on to principle number five! And this one really made my head spin at first. It's: the

dependency inversion principle!

Chapter 16: Dependency Inversion Principle

We've made it to the fifth and final SOLID principle: the dependency inversion principle, or DIP.

This puppy has a two part definition. Ready? One:

“High level modules should not depend on low level modules, both should depend on

abstractions - for example, interfaces.”

And part two says:

“Abstractions should not depend on details. Details - meaning concrete implementations -

should depend on abstractions.”

Uhh... if that makes sense to you, you are awesome! And... I am jealous of you!

Simpler Definition

How would I rephrase this? Um, yikes. How about this. One:

“Classes should depend on interfaces instead of concrete classes.”

And two:

“Those interfaces should be designed by the class that uses them, not by the classes that will

implement them.”

That's probably still fuzzy... but don't sweat it. This requires a real example.

Our Spam Detection System!

Here's our new problem. We've been getting so popular - no surprise - that some of our

sightings are getting a lot of spam comments... like comments that say that Bigfoot is not real.

Those are definitely bots!

So we need a way to determine whether or not a comment is spam based on some business

logic that we've created. If you downloaded the course code from this page, then you should

have a tutorial/ directory with a CommentSpamManager class inside. Copy that, then go

create a new directory in src/ called Comment/ ... and paste the class there.

src/Comment/CommentSpamManager.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 // ... lines 23 - 33

34

This class basically determines if a comment should be flagged as spam by running a regular

expression on the content using a list of predefined spam words. If the content contains two or

more of those words, then we consider the comment as spam and throw an exception.

If you think about the single responsibility principle, you could argue that this class already has

two responsibilities: the low-level regular expression logic that looks for the spam words and a

higher level business logic that decides that two spam words is the limit.

Splitting the Class

Let's pretend that we do think that these are two different responsibilities. And so, we decide to

split this class into two pieces. In the Service/ directory, create a new class called

RegexSpamWordHelper . Let's see: move the private spamWords() method to the new

namespace App\Comment;

class CommentSpamManager

{

 public function validate(Comment $comment): void

 {

 $content = $comment->getContent();

 $badWordsOnComment = [];

 $regex = implode('|', $this->spamWords());

 preg_match_all("/$regex/i", $content, $badWordsOnComment);

 if (count($badWordsOnComment[0]) >= 2) {

 // We could throw a custom exception if needed

 throw new \RuntimeException('Message detected as spam');

 }

 }

}

class... and then create a new public function called getMatchedSpamWords() where we

pass it the string $content and return an array of the matched spam words.

src/Service/RegexSpamWordHelper.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Next, move the regex logic itself into the class. Copy the entire contents of the existing

method.... but leave it... then paste. Let's see... we don't need $comment->getContent()

anymore.... it's just called $content ... and the 0 index of $badWordsOnComment will contain

the matches, so we can return that.

src/Service/RegexSpamWordHelper.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

 // ... lines 17 - 29

Beautiful! Now that this class is ready, let's inject it into CommentSpamManager . Add public

function __construct() with RegexSpamWordHelper $spamWordHelper . I'll press Alt +

class RegexSpamWordHelper

{

 public function getMatchedSpamWords(string $content): array

 {

 }

 private function spamWords(): array

 {

 return [

 'follow me',

 'twitter',

 'facebook',

 'earn money',

 'SymfonyCats',

];

 }

}

 public function getMatchedSpamWords(string $content): array

 {

 $badWordsOnComment = [];

 $regex = implode('|', $this->spamWords());

 preg_match_all("/$regex/i", $content, $badWordsOnComment);

 return $badWordsOnComment[0];

 }

Enter and select "Initialize properties" to create that property and set it.

src/Comment/CommentSpamManager.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 41

42

Below, now we can say

$badWordsOnComment = $this->spamWordHelper->getMatchedSpamWords() and

pass that $content from above. We don't need any of the logic in the middle anymore. Finally,

$badWordsOnComment will contain the array of matches, so we don't need to use the 0 index

anymore: just count that entire variable.

src/Comment/CommentSpamManager.php

 // ... lines 1 - 16

17

18

19

20

21

22

23

24

25

 // ... lines 26 - 27

Done!

High Level and Low Level Modules

At this point, we've separated the high-level business logic - deciding how many spam words

should cause a comment to be marked as spam - from the low level details: matching and

use App\Service\RegexSpamWordHelper;

class CommentSpamManager

{

 private RegexSpamWordHelper $spamWordHelper;

 public function __construct(RegexSpamWordHelper $spamWordHelper)

 {

 $this->spamWordHelper = $spamWordHelper;

 }

}

 public function validate(Comment $comment): void

 {

 $content = $comment->getContent();

 $badWordsOnComment = $this->spamWordHelper-

>getMatchedSpamWords($content);

 if (count($badWordsOnComment) >= 2) {

 throw new \Exception('Message detected as spam');

 }

 }

finding the spam words. The dependency inversion principle doesn't necessarily tell us whether

or not we should split the original logic into two classes like we just did. That's probably more

the concern of the single responsibility principle.

But DIP does teach us to think about our code in terms of "high-level" modules (or classes) like

CommentSpamManager - that depend on "low level" modules (or classes) like

RegexSpamWordHelper . And it gives us concrete rules about how this relationship should be

handled.

Next, let's refactor the relationship between these two classes to be dependency inversion

principle compliant. We'll see, in real terms, exactly what changes each of the two parts of this

principle want us to make.

Chapter 17: Refactoring Towards Dependency
Inversion

Our code, specifically the code in these two classes, does not follow the dependency inversion

principle. Why not? Let's go through the two parts of the definition, one by one.

The first part is:

“High level modules should not depend on low level modules. Both should depend on

abstractions, for example, interfaces.”

This is a fancy way of saying that classes should depend on interfaces instead of concrete

classes. Yep! This part of the rule is that simple. It says that instead of type-hinting - so

"depending on" - the concrete RegexSpamWordHelper , we should type-hint an interface.

Okay! So we just need to create a new interface, make RegexSpamWordHelper implement

the interface, then change the type-hint to use that interface, right? Yes, exactly!

Thinking about the Design of your Interface

But... the second part of DIP tells us something about how we should create and design that

interface. That part says:

“Abstractions should not depend on details. Details - which are concrete implementations -

should depend on abstractions.”

We simplified this to:

“An interface should be designed by the class that will use it, not by the class that will

implement it.”

Let me explain. The most natural way to create the new interface would be to look at the class

that will implement it - so RegexSpamWordHelper - and create an interface that matches it!

So a RegexSpamWordHelperInterface with a getMatchedSpamWords() method. Done!

But by doing this, we are allowing the interface to, sort of, be "owned" by the lower level class,

sometimes known as the "details" class. In other words, the way the interface looks is being

"controlled" by the lower-level RegexSpamWordHelper class.

But DIP says that the higher level class - CommentSpamManager - should be in charge of

creating the interface, allowing it to design its dependency in just the way that it wants.

Creating the Interface

Let's put this into practice. If you look at CommentSpamManager , all it really needs is to be able

to call a method that will return the number of spammy words... because that count is ultimately

all we use: we don't really need the matched words themselves.

So in the Comment/ directory, which I'm using to highlight that this interface is owned by

CommentSpamManager , create a new interface: select PHP class, change to interface and call

it, how about, CommentSpamCounterInterface .

Inside, add one method: public function countSpamWords() , which will accept the

string $content and return an int .

src/Comment/CommentSpamCounterInterface.php

 // ... lines 1 - 4

5

6

7

8

Beautiful! Notice that just by inverting, who we think should be in charge of creating the

interface - or who should "own" it - we ended up with a very different result. Instead of forcing

the interface to look like the low level RegexSpamWordHelper class, that class is now going

to be forced to change itself to implement the interface.

Add implements CommentSpamCounterInterface , then I'll go to Code -> Generate - or

Command + N on a Mac - and select "Implement Methods" to generate countSpamWords() .

Inside, return the count() of $this->getMatchedSpamWords($content) .

interface CommentSpamCounterInterface

{

 public function countSpamWords(string $content): int;

}

src/Service/RegexSpamWordHelper.php

 // ... lines 1 - 6

7

8

9

10

11

12

 // ... lines 13 - 34

35

Back in CommentSpamManager , let's follow the first part of DIP and change this to depend on

the new interface. Change the type-hint to CommentSpamCounterInterface ... change the

type on the property... and let's also rename the property itself to be more clear: call it

$spamWordCounter . Rename the argument too.

src/Comment/CommentSpamManager.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

 // ... lines 15 - 24

25

Down in validate() , change $badWordsOnComment to $badWordsCount . Then, instead

of calling getMatchedSpamWords() , call the new countSpamWords() . Below, we don't

need the count() anymore: just check if $badWordsCount is greater than or equal to 2.

class RegexSpamWordHelper implements CommentSpamCounterInterface

{

 public function countSpamWords(string $content): int

 {

 return count($this->getMatchedSpamWords($content));

 }

}

class CommentSpamManager

{

 private CommentSpamCounterInterface $spamWordCounter;

 public function __construct(CommentSpamCounterInterface

$spamWordCounter)

 {

 $this->spamWordCounter = $spamWordCounter;

 }

}

src/Comment/CommentSpamManager.php

 // ... lines 1 - 15

16

17

 // ... line 18

19

 // ... line 20

21

 // ... line 22

23

24

 // ... lines 25 - 26

Congratulations! Our code now follows the two parts of the dependency inversion principle!

One, our high level class - CommentSpamManager - depends on an interface. And two, that

interface was designed for - and is controlled by - the high-level class, instead of being

designed and controlled by the low level, or "details" class: RegexSpamWordHelper .

How Symfony Autowires Interfaces

Before we talk about the takeaways from the dependency inversion principle, I want to mention

two things.

First, over in RegexSpamWordHelper , you are allowed to have this public function

getMatchedSpamWords() method if you're using it somewhere else in your code. Since

we're not, I'm going to clean things up and make it private .

src/Service/RegexSpamWordHelper.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 13

14

15

 // ... lines 16 - 22

23

 // ... lines 24 - 34

35

Second... well... this is more of a question: will Symfony know which service to autowire when it

sees the CommentSpamCounterInterface type-hint? Will it know that it should actually pass

us the RegexSpamWordHelper service?

 public function validate(Comment $comment): void

 {

 $badWordsCount = $this->spamWordCounter->countSpamWords($content);

 if ($badWordsCount >= 2) {

 }

 }

class RegexSpamWordHelper implements CommentSpamCounterInterface

{

 private function getMatchedSpamWords(string $content): array

 {

 }

}

Actually... it will! Find your terminal and run:

php bin/console debug:autowiring Comment --all

I'm passing --all just so we can see all the results. And... this proves it! As this shows, when

Symfony sees a CommentSpamCounterInterface type-hint, it will autowire the

RegexSpamWordHelper service.

This works thanks to a nice feature inside Symfony's container. If Symfony sees an interface in

our code - like CommentSpamCounterInterface - and only one of our classes implements

it, then it automatically assumes that this class should be autowired for that interface. If you ever

created a second class that implemented the interface, Symfony would throw a clear exception

telling us that we need to choose which one to autowire.

Next: let's talk about the takeaways of the dependency inversion principle, and also... what that

word "inversion" means and doesn't mean.

Chapter 18: DIP: Takeaways

The two rules of the dependency inversion principle give us clear instructions on how two

classes - like CommentSpamManager and RegexSpamWordHelper - should interact.

"Inversion"? What got Inverted?

But before we talk about the pros and cons of DIP... why is this called dependency inversion?

What is the "inversion"?

This took me a long time to wrap my head around. I expected that dependency inversion

somehow meant that the two classes literally started depending on each other in some...

different way. Like suddenly we would inject the CommentSpamManager into

RegexSpamWordHelper ... instead of the other way around, actually "inverting" the

dependency.

But, as you can see... that is not the case. On a high level, these two classes depend on each

other in the exact same way as they always did: the low level, details class -

RegexSpamWordHelper - is injected into the high-level class - CommentSpamManager .

The "inversion" part is... more of an abstract concept. Before we refactored our code to create

and use the interface, I would have said:

“CommentSpamManager depends on RegexSpamWordHelper . If we decide to modify

RegexSpamWordHelper , we will then need to update CommentSpamManager to make it

work with those changes. RegexSpamWordHelper is the boss.”

But after the refactoring, specifically, after we created an interface based on the needs of

CommentSpamManager , I would now say this:

“CommentSpamManager depends on any class that implements

CommentSpamCounterInterface . In reality, this is the RegexSpamWordHelper class.

But if we decided to refactor how RegexSpamWordHelper works, it would still be

responsible for implementing CommentSpamCounterInterface . In other words, when

RegexSpamWordHelper changes, our high level CommentSpamManager class will not

need to change.”

That is the inversion: it's an inversion of control: a "reversal" of who is in charge. Thanks to the

new interface, the high-level class - CommentSpamManager - has taken control over what its

dependency needs to look like.

Pros and Cons of DIP

So now that we understand the dependency inversion principle, what are its benefits?

Simply put: DIP is all about decoupling. CommentSpamManager is now decoupled from

RegexSpamWordHelper . We could even replace it with a different class that implements this

interface without touching any code from the high-level class.

This is one of the core strategies to writing "framework agnostic" code. In this situation,

developers create interfaces in their code and only depend on those interfaces, instead of on

the interfaces or classes from whatever framework they're using.

However, in my code, I rarely follow the dependency inversion principle. Well, let me clarify. If I

were working on an open source, reusable library, like Symfony itself, I would definitely create

interfaces, like we just did. Why? Because I want to allow the users of my code to replace this

service with some other class, like maybe someone wants to replace our simple

RegexSpamWordHelper in their app with a class that uses an API to find these spam words.

But if I were writing this in my own application, I would skip creating the interface: I would make

my code look like it originally did with CommentSpamManager relying directly on

RegexSpamWordHelper with no interface.

Most Dependencies Don't Need Inverting

Why? As Dan North points out in his blog post: not all dependencies need to be inverted. If

something you depend on will truly need to be swapped out for a different class or

implementation later, then that dependency is almost more of an "option". If we had that

situation, we probably would want to apply DIP. By creating and type-hinting an interface, we're

saying:

“Please pass me the "option" that you would like to use for counting spam words.”

But, most of the time, to partially quote Dan:

“Dependencies aren't options: they're just the way we are going to count spam words in this

situation.”

If you followed DIP perfectly, you end up with a code base with a lot of interfaces which are

implemented by only one class each. That adds flexibility... which you likely won't need. The

"cost" is misdirection: your code is harder to follow.

For example, in CommentSpamManager , it now takes a bit more work to figure out which class

counts the spam words and how everything is working. And if you ever do try to change a

dependency to use a different, concrete class, you might discover that, even though you

followed DIP, it's not so easy change!

For example, changing from one database system to another is probably going to be an ugly

job... even if you created an interface to abstract away the differences beforehand. It might still

be worth doing... if you do think your database will change, but it's not a silver bullet that will

make that an easy task.

So my advice is this: unless you're writing code that will be shared across projects, do not

create an interface until you have more than one class that would implement it... which we

actually saw earlier with our scoring factors. This is a perfectly nice use of interfaces.

But! I fully admit that not everyone agrees with my opinion on this! And if you do disagree,

awesome! Do what you think is best. There are plenty of smart people out there that do create

extra interfaces in their code to decouple from whatever frameworks or libraries they're using.

I'm just not one of them.

SOLID in Review

Ok friends, that's it! We are done with the SOLID principles! Let's do a quick recap... using our

simplified definitions.

One: the single responsibility principle says:

“Write classes so that your code "fits in your head".”

Two: the open-closed principle says:

“Design your classes so that you can change their behavior without changing their code.”

This is never entirely possible... and in my app code, I rarely follow this.

Three: the Liskov substitution principle says:

“If a class extends a base class or implements an interface, make your class behave like it is

supposed to.”

PHP protects against most violations of this principle by throwing syntax errors.

Four: the interface segregation principle says:

“If a class has a large interface - so a lot of methods - and you often inject the class and only

use some of these methods - consider splitting your class into smaller pieces.”

And five: the dependency inversion principle says:

“Prefer type-hinting interfaces and allow each interface to be designed for the "high level"

class that will use it, instead of for the low-level class that will implement it.”

In my app, I do type-hint interfaces whenever they exist, usually because services from

Symfony or other libraries provide an interface. But I don't create my own interfaces until I have

multiple classes that need to implement them.

My opinions are, of course, just that: opinions! And I tend to be much more pragmatic than

dogmatic... for better or worse. People will definitely disagree... and that's great! SOLID forces

us to think critically.

Also the SOLID principles aren't the only "game" in town when it comes to writing clean code.

There are design patterns, composition over inheritance, the law of demeter and other

principles to guide your path.

If you have any questions or ideas, as always, we would love to hear from you down in the

comments.

Alright, friends, seeya next time!

With <3 from SymfonyCasts

