
phpspec: Testing... *Designing* with a
Bite

Chapter 1: Installing phpspec

Yo friends! Oh, SO glad you've made it for our phpspec tutorial! You will not regret it. Thing number one to know about

phpspec is: it's... just... fun!

Ok, but what is phpspec? It's a unit testing tool... exactly like phpunit . Wait... that's not totally right. If you watched

our PHPUnit tutorial, then you know that PHPUnit is a perfectly fine tool for unit testing your code. So... why are we

even talking about phpspec?

Here's the truth: yes, phpspec is a tool for unit testing your code. But, that's not its main job. Nope, it's a tool for

helping you design your code in a well-organized, meaningful and maintainable way. You probably already think about

the design and user experience of your front-end. But, have you ever thought about the design and experience of

your PHP classes?

That's phpspec's job. And yes, as a nice by-product, you will get unit tests. And as a nicer by-product, you will also

enjoy the process - coding with phpspec is fun. Oh, and later - we'll talk about how phpspec & PHPUnit fit together -

like should we use both in the same app? Short answer: yes!

Starting Point: Empty Project!

Ok, let's go! Just like in our PHPUnit tutorial, we're going to design & build a dinosaur park - complete with T-Rex,

stegosaurus, enclosures for our dinosaurs and, with any lucky, some security systems that - thanks to our tests -

won't fail as soon as a storm rolls in or a developer leaves early for lunch.

To make sure our dinosaurs don't once again rule the Earth, you should totally code along with me. Download the

course code from this page. When you unzip it, you'll find a start/ directory with the same code that you see here.

But... well... what we have here is... nothing! Just an empty project with a composer.json file that also... has

nothing important inside. This tutorial directory does have a few files that we'll use later - so make sure you have

it.

We're starting with an empty project because phpspec is truly a framework-agnostic library. But don't worry - if you're

a Symfony user, we'll build a structure that will be very familiar to you - with the same directories and namespaces as

a Symfony app.

Installing phpspec

To get phpspec installed, open a terminal, move into the project, close Facebook, and run:

composer require phpspec/phpspec --dev

https://symfonycasts.com/screencast/phpunit

And.... ding! Just like with PHPUnit, installing phpspec means that you get a new, shiny executable! Run:

./vendor/bin/phpspec

The phpspec executable really only has two commands: describe and run . And we'll talk about both of them

very soon.

Configuration autoload in composer.json

But first, we need just a little bit of configuration to get things working. The first piece of configuration... has nothing to

do with phpspec at all! Our app has no PHP classes yet. But when we add some, I want to put them in the src/

directory and prefix each namespace with App . That will be exactly like a Symfony project.

Open composer.json . To make sure Composer's autoloader knows where our classes live, we need to add some

config here. This is code that you normally get automatically when you start, for example, a new Symfony project. But

I want to show how it's done by hand so that we can truly understand what's going on behind the scenes.

Add autoload , then psr-4 , then say that classes starting with App\\ will live in the src/ directory.

composer.json

1

 // ... lines 2 - 6

7

8

9

10

11

12

To make Composer notice this change, find your terminal and run:

composer dump-autoload

Autoloading... done!

Configuring phpspec

Next, one of my favorite things about phpspec is that it generates code for you! But to do that, it also needs to know

that our classes will live in the src/ directory and that each namespace will start with App . Unfortunately, phpspec

can't automatically get all this info from composer.json , but it's no problem.

Create a phpspec.yml file at the root of the project - phpspec automatically knows to look for this. Inside add

suites then default . Like most testing tools, you can organize your tests into multiple groups, or "suites" if you

want. In this tutorial, we'll stick to using the one, "default" suite.

{

 "autoload": {

 "psr-4": {

 "App\\": "src/"

 }

 }

}

phpspec.yml

1

2

 // ... lines 3 - 5

Under this, add namespace: App - because all of our classes will start with the App namespace - and

psr4_prefix: App . Those two lines are enough to help phpspec know where to generate our files.

phpspec.yml

 // ... lines 1 - 2

3

4

And... team, we're ready to go! Next, let's create our first specification... ooOOOOooo. That's the file where we will

describe how a single class should behave by writing examples. Woh.

suites:

 default:

 namespace: App

 psr4_prefix: App

Chapter 2: Buzzwords! Specification & Examples

So if phpspec is all about helping you design your classes - helping you ask: how do I want this class to look and

behave? - how... does it actually do that? The idea is cool: instead of jumping straight into your code and hacking until

something works... or you get sleepy... stop... step back... and instead, first, describe how you want your class to

behave.

We do that by creating a class called a... specification. That's a fancy... or maybe boring word that means that, before

coding, we will first create a class where we simply describe how our future class will work and act.

Generating the Specification

Let's see this in action. Remember the two commands of the phpspec executable? The first is describe - run it with

-h :

./vendor/bin/phpspec describe -h

I'm passing -h to see the help details. Basically, each time you want to create a new class, you should first use this

command to create a corresponding specification class. Oh, notice that forward slashes are used for the

namespaces, that's just to avoid escaping problems.

Anyways, because we're building a dinosaur park, the first class we need is... Dinosaur ! So let's run:

./vendor/bin/phpspec describe App/Entity/Dinosaur

I could have chosen any namespace starting with App - that's up to how you want to organize your code. But, if

you're used to Doctrine in Symfony, this will feel familiar.

What are Examples?

Ok! One new file: DinosaurSpec.php . Let's go check it out! Ok - so phpspec creates a spec/ directory, which is

meant to have the same file structure that our classes will eventually have in src/ .

Open the new file. Ok... these spec classes look a little weird at first - and we're going to talk a lot about them. The

purpose of this class is for us to describe the behavior of our future Dinosaur class. On a philosophical level, we do

this by writing example code: using our Dinosaur class as if it already existed and was finished.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

On a more concrete level: we describe the behavior through examples. Every function in this class that starts with

it_ or its_ will be read by phpspec as an "example". They are the key to phpspec, and also the most complex

part.

There are two very important things to understand about the code inside these example methods. First, and this is

truly magic, you're supposed to use the $this variable as if we were inside of the Dinosaur class itself. Literally:

you treat $this like a Dinosaur object - showing examples of how you want it to work by calling methods on that

class - like $this->getLength() if the Dinosaur class had a getLength() method.

Hello Matchers

In addition to using $this to call methods that exist - or should exist - inside Dinosaur , the second important thing

to know is that you can also call a huge number of methods that start with should or shouldNot . These are called

"matchers" - and they are the way you assert that things are working correctly in phpspec.

In the one generated example function, because we're pretending to be inside the Dinosaur class, we pretend that

$this is a Dinosaur object. When we call ->shouldHaveType(Dinosaur::class) , this asserts that the

object is an instance of that class... which, by the way, doesn't even exist yet! It's a pretty pointless test - but I usually

keep it.

Oh, and the last strange thing about this class is that... it violates coding standards! Did you notice the missing

public before the functions? That's totally legal in php - methods are public by default. And the method names are

written using snake-case instead of camel case. Both of these things are done on purpose for one important reason:

readability. We're writing PHP - but this class is meant to be a human-readable description of our future Dinosaur

class. And right now, our specification says nothing more than a Dinosaur object should be... a Dinosaur object.

Generating the Class with run

Ready to execute the other phpspec command? It's called run - let's show the help details on this one too:

./vendor/bin/phpspec run -h

This is the main command in phpspec. Its job is to look at all of our spec files - just one right now - and all of the

example methods inside - and verify whether or not the actual class behaves like we've described with that example

code.

class DinosaurSpec extends ObjectBehavior

{

 function it_is_initializable()

 {

 $this->shouldHaveType(Dinosaur::class);

 }

}

Now... you might think that's a bit crazy. After all, how can phpspec look to see if our Dinosaur class has the correct

"behavior"? The Dinosaur class doesn't even exist yet! Heck, there's nothing in our src/ directory at all! Well...

let's see what happens:

./vendor/bin/phpspec run

At first, it does fail because App\Entity\Dinosaur does not exist. That's expected. But check this out: it's asking:

do you want me to create it for you? This is what makes phpspec so fun! When it sees that you've described some

behavior that's missing, it can create it for you! Let's choose yes, of course!

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

7

Cool! Go look - in src/ ... there it is! It doesn't do anything, but... actually... our new class now has the behavior

described in our spec. To prove it, re-run phpspec:

./vendor/bin/phpspec run

Woh! It works! That... does make sense. Even though we don't understand much about how the "examples" work yet,

after generating the code, if you try to create an instance of a Dinosaur class..... you do get a Dinosaur object!

Eureka!

Next: let's start creating some meaningful examples of how our class should behave and see how phpspec can help

us build that.

class Dinosaur

{

}

Chapter 3: Matchers, Examples & Generation

We have an empty Dinosaur class. As proud of that empty class as I am, I think we need to start thinking about

what we need this class to actually do - how we want it to behave! This totally depends on your app - and what you

need to use each class for. But... hmm... let's see. I definitely want to be able to set the length on a Dinosaur -

because maybe we need to render that somewhere. Oh, and if the length is not set, it should probably default to be 0.

Our First Example

Wait. Right there. Did you notice? I just described an example of how our Dinosaur class should work! All we need

to do is translate that into a phpspec example! Create a new function, start it with it_ - because that's what phpspec

requires... and also because that helps us create descriptive & readable method names. How about:

it_should_default_to_zero_length() .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

 // ... line 18

19

20

Inside, remember: the goal is to pretend like we're inside the Dinosuar class. When each example is executed,

phpspec will instantiate a Dinosaur object behind the scenes and we can reference it via $this . That's total and

absolute magic... and we'll get to find out exactly how it works a bit later.

Anyways, right now: just imagine that $this is a Dinosaur object. To show an example of how the length should

be 0 by default, we will literally write example code. For our app, I want to be able to call a getLength() method to

get the length. Cool! Write: $this->getLength() as if that method already existed.

And because we want our Dinosaur's length to default to 0, call a matcher function to assert that:

->shouldReturn(0) .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 15

16

17

18

19

 // ... lines 20 - 21

Matchers!

class DinosaurSpec extends ObjectBehavior

{

 function it_should_default_to_zero_length()

 {

 }

}

 function it_should_default_to_zero_length()

 {

 $this->getLength()->shouldReturn(0);

 }

How... weird, but cool is that?! At any point in phpspec, you can say ->should to call one of phpspec's many

"matcher" functions. These are equivalent to the assert() functions in PHPUnit - the difference is purely style.

Instead of saying $this->assertEquals(0, $dinosuar->getLength()) like you would in PHPUnit - boring -

you say $this->getLength()->shouldReturn(0) . The whole line reads like a clear English sentence!

And fortunately, even though phpspec is using some legit sourcery to make this all work, PhpStorm has great support

for auto-completing these matcher functions. Oh, and, by the way, every matcher always starts with should or

shouldNot . That's just a rule - and we'll learn why later.

Find your browser and go to https://phpspec.net. Click into the manual and go to the matchers section. Nice! phpspec

has a huge number of matchers... and someone even thought to document them! Amazing! Right now, we're using

one called the Identity Matcher, which allows you to use shouldBe() , shouldBeEqualTo() shouldReturn()

or shouldEqual() . These are all different ways to compare values using === .

There's also a Comparison Matcher where you can say shouldBeLike() to compare values using == . And there

are many, many, many more to geek out over. We'll learn the most useful ones along the way.

Generating the Missing Method

We now have one new example of how we want the Dinosaur class to work. Will this example already pass? Of

course not! We don't even have a getLength() method yet! But, run phpspec anyways - and prepared to be...

amazed:

./vendor/bin/phpspec run

Yes! I love failure! The getLength() method is not found. Oh, but check it out! Just like before, it realizes that we're

describing some behavior that doesn't exist and asks us if we want it to do our job for us! Of course we do!

Let's go check it out! Not bad! It generates the method but, unless your version of phpspec has become self-aware -

in which case... let me know what version you're using - it has no idea what to put inside the method.

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

And so, after phpspec generated the code, it automatically re-ran itself, but the new example still fails:

“it should default to zero length, expected integer 0 but got null ,”

class Dinosaur

{

 public function getLength()

 {

 // TODO: write logic here

 }

}

https://phpspec.net/

This is the phpspec flow! One: describe behavior with an example. Two: phpspec generates as much as it can.

Three: we fill in the logic. Four: profit!

Filling in the Logic

And... actually, the rules of TDD say that we should fill in the method with as little code as possible to get the test to

pass - including just hardcoding a value if you can! But... more on that craziness later.

Right now, let's fill this in for real. So, hmm... because we know each Dinosaur can have a different length, we will

probably need a $length property. And, ah yes, it needs to default to 0 - that's something we decided during the

"spec" or "description" process. Inside the method, return $this->length . Oh, and to be super-cool, add the

int return type. Viva return types!

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

7

 // ... line 8

9

10

11

12

13

Our class should now behave like our example expects. Let's see if phpspec agrees! Run it:

./vendor/bin/phpspec run

Woohoo! It passes!

Describing setLength()

But... nobody want's to visit a dinosaur park full of dinosaurs with zero length. We need a way to set the length. How

do we want to do that? There's no right answer: it depends on your app. For example, we could make it a constructor

argument. Or, it might make sense in your app to have, for example, some updateSpecs() method where you pass

the length along with a few other things about your dinosaur. Or, you might need a simple setLength() method.

The cool thing is that phpspec forces you to think about this - it forces you to ask: How will this class be used? Do I

really need a setLength() method? Or will the user set a bunch of details all at once, and so a more descriptive

updateSpecs() method is more clear?

Again... there's no right or wrong answer - sorry! For our app, let's create an example showing setLength() :

function it_should_allow_to_set_length() . Inside, pretending that $this is a Dinosaur object, let's

show how this should work: call $this->setLength() and pass it, how about 9. After that, we should be able to

call $this->getLength()->shouldReturn(9) .

class Dinosaur

{

 private $length = 0;

 public function getLength(): int

 {

 return $this->length;

 }

}

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 20

21

22

23

24

25

26

27

Done! Oh, and I want you to notice one cool thing: we now get autocomplete on the getLength() method!

PhpStorm has great phpspec integration and knows that we're allowed to use $this like a Dinosaur object. We

don't have auto-completion for setLength() , because that method doesn't exist yet.

Let's see what phpspec thinks about our new example:

./vendor/bin/phpspec run

Awesome! It hates it! It fails, asks us if it can generate some code, then fails again because that generated

setLength() method is just blank. Go find the new method. Hey! It even noticed that this method should have one

argument. Change it to int $length . Inside, $this->length = $length .

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 13

14

15

16

17

18

Try it again!

./vendor/bin/phpspec run

Yes! All green! This is test-driven-development the phpspec way. Oh, and yea, we'll talk more about TDD, BDD and

what all those buzzwords mean in the context of phpspec a bit later.

Next, instead of relying on the built-in matchers - like shouldReturn() - let's create our own custom matcher.

Why? Because a custom matcher can help us write examples with perfectly natural language.

class DinosaurSpec extends ObjectBehavior

{

 function it_should_allow_to_set_length()

 {

 $this->setLength(9);

 $this->getLength()->shouldReturn(9);

 }

}

class Dinosaur

{

 public function setLength(int $length)

 {

 $this->length = $length;

 }

}

Chapter 4: Custom Inline Matcher

One of the main goals of a spec class is for it to communicate the behavior of our class through readable and natural

language. More important than being a test, this class is meant to be documentation. If the function names or code

inside the functions aren't naturally readable - you're at risk of angering the phpspec gods!

For example, saying $this->getLength()->shouldReturn(9) does read like a normal, English sentence. But

let's pretend for a minute that this language does not sound clear - maybe we're using a matcher that works, but just

feels unnatural. In that case, we can invent our own language. Check it out: create a new example function:

it_should_default_to_zero_length_using_custom_matcher() .

Inside, let's show this same behavior, but in a different way - how about

$this->getLength()->shouldReturnZero() .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 29

30

31

32

33

 // ... lines 34 - 40

41

That's great language! But, as you probably noticed, PhpStorm did not auto-complete that matcher function. That's

because... I just made that up! There is no built-in matcher that allows us to say shouldReturnZero() .

To prove it, run spec!

./vendor/bin/phpspec run

No returnZero matcher found. But, if this is the language that is most natural, we can and should make it work.

How? By creating our own matcher.

Overriding getMatchers()

At the top of your class... or really anywhere, go to the Code -> Generate menu - or Command+N on a Mac - and

override a method called getMatchers() . We don't need to call the parent method because its empty.

This method is... kinda beautiful: just return an array where they keys are the custom matchers you want. Except, the

key is not shouldReturnZero() . Nope, the name of the matcher is that string without the "should" or "shouldNot"

class DinosaurSpec extends ObjectBehavior

{

 function it_should_default_to_zero_length_using_custom_matcher()

 {

 $this->getLength()->shouldReturnZero();

 }

}

part. In other words, add returnZero set to a function with one argument called $subject .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 8

9

10

11

12

13

14

 // ... line 15

16

17

18

 // ... lines 19 - 40

41

The Matcher Subject

Here's how this works: in the example, we call getLength() , which we know returns an integer - hopefully zero. But

thanks to the magic of phpspec, we can call shouldReturnZero() on this value. When we do that, phpspec will

call our function and pass the length returned from getLength() as the $subject . Complete the matcher by

saying return $subject === 0 . Our matcher function should return true if the $subject looks valid, false

otherwise.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 13

14

15

16

 // ... lines 17 - 42

So... let's try this! Go spec go!

./vendor/bin/phpspec run

It passes! Oh, and we can automatically also use shouldNotReturnZero() : every matcher is able to handle both

should and shouldNot .

Better Error Message

To make sure the matcher is really working, in Dinosaur , add a bug by changing the default length to 30.

class DinosaurSpec extends ObjectBehavior

{

 public function getMatchers(): array

 {

 return [

 'returnZero' => function ($subject) {

 },

];

 }

}

 'returnZero' => function ($subject) {

 return $subject === 0;

 },

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 17

18

Now re-run phpspec:

./vendor/bin/phpspec run

Two examples fail - we're working on the second example. Look at the error:

“integer:30 expected to returnZero() , but it is not.”

Wow. That's... kinda bad language. phpspec is trying its best to tell us what went wrong in a way that makes sense...

but it doesn't always work.

No problem: we can control that error. Let's refactor that code a bit: if $subject !== 0 , then, instead of returning

false, throw a new FailureException() with a better message:

“Returned value should be zero got "%s"”

and pass $subject for the wildcard.

Then, at the bottom return true to signal that everything is fine.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 14

15

16

17

18

19

20

21

22

23

24

 // ... lines 25 - 50

Try the tests again:

./vendor/bin/phpspec run

Oh, even with my typo on the word "got", the error is much better. Let's go fix that bug - change 30 back to zero - and

re-run phpspec:

class Dinosaur

{

 private $length = 30;

}

 'returnZero' => function ($subject) {

 if ($subject !== 0) {

 throw new FailureException(sprintf(

 'Returned value should be zero, got "%s"',

 $subject

));

 }

 return true;

 },

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 17

18

./vendor/bin/phpspec run

Nice! Oh, by the way, sometimes when you call a matcher, you may need to pass it an argument... and sometimes we

don't. If we did pass an argument to the matcher function, it would be passed to our callback as the second argument.

And if you pass two arguments to the matcher, these become arguments two and three... and so on - you can make

the matcher as complex as you need.

Because the new matcher lives right inside the spec class, this is called an "inline" matcher. And as nice as it is, it has

one major downside: the returnZero matcher can't be re-used in any other spec classes. So next: let's create

another custom matcher that can be used in our entire app.

class Dinosaur

{

 private $length = 0;

}

Chapter 5: Registering & Autoloading a Custom Matcher

Inline matchers are easy! I love that! But you can't reuse them across multiple spec files - that's a bummer.

Fortunately, phpspec is awesome and so - of course - it does have a way to create a matcher that can be used

anywhere. And... what's even better is that there are a lot of great examples to learn from.

And here's one: go to https://github.com/karriereat/phpspec-matchers - I... probably butchered that username - sorry!

Anyways, this library is cool: it's just a big collection of custom matchers! Well, technically it's a phpspec extension,

which means it's a "plugin" for phpspec.

Unfortunately, this library does not work with the latest version of phpspec at this time. But... who cares!? It is still an

awesome source of inspiration for writing your own custom matchers. Each of these classes represents one matcher.

Describing a Potential Bug

Here's our next goal: our scientists are starting to grow dinosaurs for the park, but have reported a possible bug in the

Dinosaur class! No problem! When you have a bug, the best thing to do is write a test for it: to describe the correct

behavior so we can make sure our class has that.

In this case, someone reported that, when a dinosaur is created with a length of 15, sometimes... it shrinks! We've

talked to our scientists and they say that some shrinking is ok, but a dinosaur should definitely not shrink below a

length of 12. Wow, it turns out that growing a dinosaur is complex!

Let's translate this expected behavior into a new example: function it_should_not_shrink() . Set the length

of the dinosaur to 15 - and notice that we do get auto-completion now that the setLength() method exists.

Then say, $this->getlength() ... but... hmm. In this pretend example, the dinosaur is allowed to shrink some but

not below 12. To reflect that, let's say: ->shouldBeGreaterThan(12)

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 49

50

51

52

53

54

55

56

As you probably saw, that is not a real matcher. So, the tests should fail. Try them:

class DinosaurSpec extends ObjectBehavior

{

 function it_should_not_shrink()

 {

 $this->setLength(15);

 $this->getLength()->shouldBeGreaterThan(12);

 }

}

https://github.com/karriereat/phpspec-matchers

./vendor/bin/phpspec run

They... pass? Hmm... ah! A typo! And this proves that each example must start with it_ or its_ . Try phpspec again:

./vendor/bin/phpspec run

There is the failure we expected.

Creating our Matcher Class

We know that we could create an inline matcher. But... I kinda want to be able to re-use this in other spec classes. To

do that, we can create a matcher class. In the spec/ directory, create a Matcher directory and then a new class:

BeGreaterMatcher ... though this class could live anywhere. The namespace should be spec then the directory

path. So spec\Matcher .

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 2

3

4

5

6

7

8

But, let's keep this class empty for now: I just want to make sure that phpspec can see our new matcher. How? Via its

config! Open phpspec.yml , add a matchers: section and then, very simply, list your matcher:

- spec\Matcher\BeGreaterMatcher .

phpspec.yml

 // ... lines 1 - 5

6

7

That's it! It won't fully work yet of course... but let's see what happens. Run phpspec:

./vendor/bin/phpspec run

Interesting:

“Custom matcher spec\Matcher\BeGreaterMatcher does not exist.”

This is basically a "class not found" error. Copy the namespace. Yeah... that looks correct... I don't see any typos.

So... what's the problem? Autoloading!

namespace spec\Matcher;

class BeGreaterMatcher

{

}

matchers:

 - spec\Matcher\BeGreaterMatcher

Autoloading the phpspec Directory

Open the composer.json file. We configured composer to be able to autoload things from the src/ directory, but

we haven't configured it to be able to autoload things from the spec/ directory. phpspec does not need any

autoloading to be setup to find the spec files - it handles all of that itself. But if you want to put any other, non-spec,

classes in this directory - like a matcher - then we do need to set up autoloading.

No problem: copy the autoload section, paste and change it to autoload-dev . Tell composer to expect the

spec\\ namespace to live in the spec/ directory.

composer.json

1

 // ... lines 2 - 11

12

13

14

15

16

17

To make Composer rebuild its autoloader, run:

composer dump-autoload

Cool! Try phpspec again:

./vendor/bin/phpspec run

Much better! It does see it, and now we get:

“Custom matcher spec\Matcher\BeGreaterMatcher must implement... some Matcher interface.”

Apparently all matcher classes need to implement this interface. That makes sense! Let's do that next - and finish

this!

{

 "autoload-dev": {

 "psr-4": {

 "spec\\": "spec/"

 }

 }

}

Chapter 6: Coding up the Custom Matcher

According to this friendly error, a custom matcher has one important rule: it must implement this Matcher interface.

Cool! To see what these classes normally look like, let's cheat and dig into some of the core matchers themselves!

Peeking at the Core Matchers

Open vendor/phpspec/phpspec/src/PhpSpec and look in the Matcher/ directory. Say hello to all the core

matchers. Check out ThrowMatcher - a matcher we'll use later to help us test exceptions. Yep! It implements that

interface. Let's also look at one we're already using a lot: IdentityMatcher .

Oh - instead of implementing the Matcher interface directly, this extends a BasicMatcher class, which

implements that interface, but handles a lot of the low-level work. Most of the time, you'll probably want to extend this

class - it just makes life easier.

Let's go! I'll close a few other files. Then, make our BeGreaterMatcher extend BasicMatcher . I'm also going to

mark the class as final . There's no reason for that - it's just a general nice practice to mark a class as final unless

you intend for it to be sub-classed. Though, marking a class as final can cause issues if you need to mock it. Either

way - this is not important to get this all working.

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 28

29

Next, go to the Code -> Generate menu or Command+N on a Mac, select "Implement Methods" and implement

all four methods that we need.

final class BeGreaterMatcher extends BasicMatcher

{

}

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 // ... lines 29 - 30

Implementing supports()

The first important method is supports() . Let's var_dump() the arguments to see what we're working with:

$name , $subject and $arguments . Whenever any matcher is used inside of a spec class, phpspec loops over all

of the matcher classes and calls supports() to figure out which one to use.

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 24

25

26

27

28

 // ... lines 29 - 30

Let's see what happens! Run phpspec:

./vendor/bin/phpspec run

Yep! It's dumping out every time any matcher is used - once for haveType , returnZero and down here for

beGreaterThan . That's the $name argument. The $subject is 15 because, in our spec class, getLength()

returns 15 and we're calling the matcher on that value. Finally, $arguments is an array with just one entry: 12 -

because we're passing 12 as the one argument to the shouldBeGreaterThan() matcher.

The supports() method really only needs to check to make sure that the $name is equal to beGreaterThan :

that's enough to tell phpspec that we handle that. But, a lot of times, these are written to be a bit more flexible. For

 protected function matches($subject, array $arguments): bool

 {

 // TODO: Implement matches() method.

 }

 protected function getFailureException(string $name, $subject, array $arguments):

FailureException

 {

 // TODO: Implement getFailureException() method.

 }

 protected function getNegativeFailureException(string $name, $subject, array

$arguments): FailureException

 {

 // TODO: Implement getNegativeFailureException() method.

 }

 public function supports(string $name, $subject, array $arguments): bool

 {

 // TODO: Implement supports() method.

 }

 public function supports(string $name, $subject, array $arguments): bool

 {

 var_dump($name, $subject, $arguments);

 }

example, you could use in_array() to check that $name is one of beGreater or beGreaterThan . Then, if you

want, you can even make sure the types of the subject and arguments are what we expect. We'll say that this

matcher should only be used if is_numeric($subject) and if count($arguments) is exactly one and if that

argument is also numeric and if it's Halloween after midnight. Kidding.

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 24

25

26

27

28

29

30

31

 // ... lines 32 - 33

Implementing Matches

So, when supports() returns true , phpspec will then call the match() function on top. Our job here is to return

true if everything looks good, or false otherwise - just like the inline matcher. Let's var_dump the $subject and

$arguments one more time with a die statement - to make sure it's called like we expect.

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 33

Move over and try phpspec again:

./vendor/bin/phpspec run

Yes! We are called with 15 as the $subject and the same $arguments array with 12 inside. Because we know

there will always be exactly one argument, we can finish this method return $subject > $arguments[0] .

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 41

Implementing the Failure Exception Methods

 public function supports(string $name, $subject, array $arguments): bool

 {

 return in_array($name, ['beGreater', 'beGreaterThan'])

 && is_numeric($subject)

 && count($arguments) === 1

 && is_numeric($arguments[0]);

 }

 protected function matches($subject, array $arguments): bool

 {

 var_dump($subject, $arguments);die;

 }

 protected function matches($subject, array $arguments): bool

 {

 return $subject > $arguments[0];

 }

Done! If the matcher returns false, phpspec will either call getFailureException() or

getNegativeFailureException() - the difference is if we're using shouldBeGreaterThan() or

shouldNotBeGreaterThan() . Our job there is to return that same FailureException - I'll paste one in with a

good message. This is the same type of object that we're throwing from our inline matcher.

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 14

15

16

17

18

19

20

21

22

 // ... lines 23 - 41

For the other method, copy this, paste, and just tweak the language a little bit.

spec/Matcher/BeGreaterMatcher.php

 // ... lines 1 - 23

24

25

26

27

28

29

30

31

 // ... lines 32 - 41

We now have a fully-functional custom matcher that allows us to use this new, natural, language inside of any spec

file. Well... assuming it works - try it out:

./vendor/bin/phpspec run

All green! Next: it's time to talk about how phpspec fits into the entire world of testing. For example, there are

functional tests, integration tests, and unit tests... and multiple tools like PHPUnit and Behat. Let's dive into this big

mess of tools and buzzwords.

 protected function getFailureException(string $name, $subject, array $arguments):

FailureException

 {

 return new FailureException(sprintf(

 'Expected %d to be greater than %d',

 $subject,

 $arguments[0]

));

 }

 protected function getNegativeFailureException(string $name, $subject, array

$arguments): FailureException

 {

 return new FailureException(sprintf(

 'Expected %d to not be greater than %d',

 $subject,

 $arguments[0]

));

 }

Chapter 7: phpspec? PHPUnit? BDD? TDD? Buzzwords?

Theory time! Wait, come back! Um... it's interesting theory... and we'll do something fun when it's over - I promise. Ok,

fine: and I'll buy you all ice cream. Let's do this.

Functional, Integration & Unit Tests

In the world of testing, there are three types, and we cover each of these in our PHPUnit tutorial. The first type - unit

tests - is when you're testing the code directly: you literally call methods like setLength() and getLength() on

objects and assert that the values you get back are correct. The key thing in unit testing is that, if your object depends

on another object - like a database connection, or a mailer object - you mock those dependencies, instead of using

the real object. We'll do this later in the tutorial. Unit tests are the "pure" tests: you're testing the input and output of a

method in complete isolation.

The second type of tests is called integration tests. They look and smell a lot like unit tests: you work directly with

objects, call methods on them, and make sure you get back what you expect... actually exactly like unit tests. The key

difference is how dependencies are treated. Instead of, for example, "mocking" a database connection object that the

class you're testing needs, you use the real database connection! Crazy! And, yea, that means that your code makes

actual database queries!

Integration tests are super useful when you have a lot of pieces working together and want to make sure the whole

system "integrates" correctly. Or if you're making a complex database query and want to make sure you get back

what you expect.

The third type of tests are functional tests. In a functional test, instead of calling methods directly on an object, you

write code that commands a browser to literally go to a page, click on a link, fill out a form, and assert some text

showed up on the next page. Or, if you're testing an API, you would literally make real HTTP requests to your API and

assert that the JSON you get is what you expect. In a functional test, you're basically using your application as if you

were an end user.

So... which tests should you write? None of them! Kidding - probably... all of them! Sometimes the "scary" or

"complex" behavior you want to test lives entirely inside a single class. Use a unit test to crush that situation. Other

times, integration tests are perfect when you want to check what a function does... but what it does involves database

queries or a lot of other little pieces. And a lot of the time, at least for us at SymfonyCasts, we want to make sure the

user experience is exactly what we want. We verify that with functional tests.

PHPUnit, Behat, phpspec?

So... which tools should we use for all of this? Well, PHPUnit can be used to do all three types. Behat - an awesome

library we talk about in another tutorial - can only be used for functional tests. And... what about phpspec? Well, it can

only do unit tests.

https://symfonycasts.com/screencast/behat

So... wait... if PHPUnit can be used for any test... and these other tools are more limited... why the heck are we even

talking about them?

Simply: because tools like Behat and phpspec do a better job for the types of tests they focus on. Well, ok, that's

totally subjective - but let me explain. Instead of "just writing tests and getting them to pass", both Behat & phpspec

help you focus on the quality of your app. Behat forces you to think about the external quality of your app - by

focusing you on the experience of your users first and coding second. That's the key difference between writing

functional tests in Behat versus PHPUnit.

phpspec is the exact same for unit tests. Instead of just writing tests and getting them to pass, phpspec makes you

think about the design, behavior and purpose of your PHP classes first. And as a nice by-product, you get unit tests.

TDD vs BDD

Got it? Great - let's move onto some buzzwords. How does all of this fit in with TDD - test-driven development versus

BDD - behavior driven development. First, both of these aim to accomplish the same thing: creating high-quality

applications. The difference is the language used and the focus. With test-driven development, you are literally

supposed to write the tests first, and then write the code. You allow your tests to drive the code that you need to

develop.

With behavior-driven development, the process is technically the same. But instead of starting with:

“Let's figure out what tests I need to write!”

you start by thinking about the behavior that you want each part of your app to have. phpspec is a tool that promotes

behavior driven development because it forces us to think about the behavior that we want each class to have - not

the test.

Oh, and by the way, Behat is another tool that promotes BDD. The difference is that Behat is used for functional tests.

Behat is "story" BDD: you write "user stories" that describe behavior. phpspec is "spec" BDD: you write specifications

for your classes. Honestly, understanding all this stuff isn't that important - but now, you are fully ready to throw out

these buzzwords at your next party.

The point is this: a tool like phpspec doesn't technically give you anything that PHPUnit can't give you. But it changes

your focus to be the design of your classes instead of just writing the tests.

Next: let's talk a little bit about the super-rewarding red-green-refactor cycle and then... put a dinosaur in our terminal.

You'll see.

Chapter 8: Red, Green, Refactor Cycle + More Dinosaurs

So there's one more little bit of theory. Well, less theory - more a strategy that you get to use with BDD or TDD and...

it's really rewarding. It's called the red, green, refactor cycle. It goes like this: whenever you need to add a feature or

fix a bug, you follow this simple three-step process.

First, write a test! Or, in phpspec, write an "example" showing the behavior you want. Then, run your test to make

sure it's failing - that's the "red" part.

Second, write just enough code to get that test to pass - and no more. This is the green part of the cycle - and it's

more interesting than it seems at first. The key thing with this step is that you're supposed to write just enough code to

get your test to pass... not focus on writing a perfect, pretty or extensible solution.

And then, once the test is green, you're free to do step 3: refactor. My favorite thing about this cycle is that it gives you

permission on step 2 to write bad or duplicated code! I love this! It lets me focus on solving the problem, without over-

thinking the details. And if you do need to refactor, you can do it confidently knowing that you're not going to break

anything.

Theory: Follow some of It

But ultimately... these are all just "recommendations". In the world of testing, there are a lot of philosophical pointers

and best practices that are thrown around. At the end of the day, do whatever is best for you. Just writing any tests will

make your app more robust.

In this tutorial, we're going to do things - more or less - the "right" way - with BDD and the red-green-refactor cycle.

But sometimes I do the opposite! Sometimes I write the code first and then the tests. It depends on the situation and

nobody is perfect. Be pragmatic.

I also don't unit test everything - actually far from it! Earlier, we tested the getLength() and setLength()

methods. Those were great examples - but that code is so simple, I would not normally test it. I unit test a method if it

scares me - and then rely on integration and functional tests to cover how all the little pieces work together.

Output Formatters

Ok, as promised, after all that theory, we're going to do something fun... then keep going. We already know how to

run phpspec:

./vendor/bin/phpspec run

Awesome! You can also pass a format option. This accepts a number of different values, but one of the best is

pretty :

./vendor/bin/phpspec run --format=pretty

Emojis! Since these check marks are super hipster, let's make phpspec use this format by default. Open

phpspec.yml and add formatter.name: pretty .

phpspec.yml

 // ... lines 1 - 8

9

As soon as we do that, we can remove the format option and still get those check marks.

./vendor/bin/phpspec run

The Nyan Cat Formatter

But... come on... this is a dinosaur tutorial! And so, what I really need while practicing BDD and the red-green-refactor

cycle is a dinosaur to tell me if my tests are passing. Fortunately, the authors of phpspec knew this would happen,

and created the phpspec/nyan-formatters repository. Copy the name of the library and run:

composer require phpspec/nyan-formatters:dev-master --dev

We need to use the master branch because it doesn't have a proper release yet that's compatible with phpspec 5,

which is fine. While we're waiting for that, move back to the docs and copy the extensions code. I mentioned earlier

that "extensions" are the word phpspec uses for its plugins. An extension can pretty much do anything: it can give you

custom matchers, custom formatters or even change how the generated code is rendered - like to add more type-

hints for arguments. There's a whole page on phpspec's docs listing some of the most popular extensions.

To activate an extension, open phpspec.yml , add extensions: and then paste the extension class name. That's

it. Let's go check on the terminal... yes! It's done!

phpspec.yml

 // ... lines 1 - 10

11

12

The purpose of this extension is to give us a few new formatters. One of them is called nyan.dino . Ok! Run

phpspec again:

formatter.name: pretty

extensions:

 PhpSpec\NyanFormattersExtension\Extension: ~

phpspec.yml

 // ... lines 1 - 7

8

9

 // ... lines 10 - 13

./vendor/bin/phpspec run

Hello Dino! Ok, ok - time to get back to the real work. Next: let's demystify all the magic behind phpspec by looking

into the ObjectBehavior class. That's the class our spec class extends - and it is responsible for allowing us to use

$this as if we were in a Dinosaur class. Understand how that works and you'll be unstoppable!

formatter.name: nyan.dino

Chapter 9: The ObjectBehavior Magic

The hardest part of phpspec for me was how weird these spec classes look. They're... complete magic! You're

supposed to pretend that the $this variable is a Dinosaur object... even though we're not in that class? And

also... I guess that means that phpspec somehow instantiates a new Dinosaur object before it runs each example?

Then, just when you get used to the weirdness of treating $this like a Dinosaur object and calling real methods

on it... we suddenly call a matcher method - like shouldReturn(0) . What is going on!?

Digging into ObjectBehavior

Let's find out. Because when I finally saw how all this worked behind the scenes, I instantly felt much more

comfortable. All of this magic starts with the base ObjectBehavior class. Hold Command or Ctrl and click to open

that.

Ah, ok: see that protected $object property? Surprise! That is actually the underlying Dinosaur object that

we're testing. Well, that's not 100% true - but imagine it is for a minute. So, at some point, phpspec instantiates a

Dinosaur object and stores it on that property.

Pretty much all of the magic of this class is thanks to the __call() method. If you're not familiar with this method,

that's great! It's a magic PHP method that you should probably not use - but it's perfect for phpspec. If you call a non-

existent method on an object, but that class has an __call() method, instead of freaking out and throwing an error,

PHP will instead execute __call() and pass it the method name and the arguments you were trying to use.

And what does ObjectBehavior do in this method? It basically calls that method on $this->object and passes

it the arguments! This is why, when we say $this->getLength() , it works! The getLength() method does not

exist on ObjectBehavior . But thanks to the __call() method, it forwards that call to the actual Dinosaur

object. ObjectBehavior also has a few other methods, like __get() and __set() to forward setting properties

and other stuff.

The Wrapped Object

Let's see what some of this looks like in the wild. Close that class and, in any of the examples, var_dump($this) .

Go tests go!

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 49

50

51

 // ... lines 52 - 55

56

57

58

./vendor/bin/phpspec run

Interesting... As we expected, $this is really an instance of DinosaurSpec . But check out the $object property.

I lied! It is not an instance of Dinosaur ! Gasp! Nope, it's some Subject object from phpspec. But inside of it is

something called a WrappedObject and inside if it, yep! There is the Dinosaur object.

So, it's a bit more complex than we thought at first, but phpspec did create a Dinosaur object and set it on that

object property... just wrapped inside a few other objects to help the magic.

For the most part, we pretend like we're interacting directly with a Dinosaur object. But, if you did need to get the

actual, underlying Dinosaur object, that's possible! Try $this->getWrappedObject() , then run the test again:

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 49

50

51

 // ... lines 52 - 55

56

57

 // ... lines 58 - 59

./vendor/bin/phpspec run

Cool! That gives us the real Dinosaur object. And it's length is really 15, because when we call

$this->setLength(15) , that eventually is called on the real, underlying object.

Most of the time, you won't need to call getWrappedObject() , though there are a few edge-case exceptions. Like,

imagine if our Dinosaur class had a method on it that started with should , like shouldHandle() . Well... that

won't work. phpspec thinks that when we call anything starting with should or shouldNot , that we're trying to

execute a matcher - not a method. Check it out:

class DinosaurSpec extends ObjectBehavior

{

 function it_should_not_shrink()

 {

 var_dump($this);

 }

}

 function it_should_not_shrink()

 {

 var_dump($this->getWrappedObject());

 }

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 49

50

51

 // ... lines 52 - 55

56

57

 // ... lines 58 - 59

./vendor/bin/phpspec run

There it is: "no handle matcher found". For this edge-case, you can use $this->callOnWrappedObject() with

shouldHandle and an array of arguments you want. Try it now:

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 49

50

51

 // ... lines 52 - 55

56

57

 // ... lines 58 - 59

./vendor/bin/phpspec run

Nice! It fails... but with the correct failure: it sees that there is no shouldHandle() method and, actually, asks us to

generate it. Choose no - we're just messing around.

Next: there's one more piece of magic we haven't talked about: when we call $this->getLength() , that should

return 15. So then... how the heck are we able to call a method on that?

 function it_should_not_shrink()

 {

 $this->shouldHandle(2);

 }

 function it_should_not_shrink()

 {

 $this->callOnWrappedObject('shouldHandle', [2]);

 }

Chapter 10: The Magic of the Subject

We now know that the ObjectBehavior class forwards all method calls to the underlying Dinosaur object thanks

to some magic methods. But, there is still one more big piece of magic. When we call $this->getLength() ,

phpspec will ultimately call getLength() on the Dinosaur object and that will return the integer 15. So then...

what absolute madness is allowing us to call a method on that?! Let's find out!

This time var_dump($this->getLength()) .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 49

50

51

 // ... lines 52 - 55

56

57

58

Will this be the integer 15? An object? An emoji? Let's find out!

./vendor/bin/phpspec run

Ah! It's an instance of a Subject object. Stop! We know that object! That is the exact same class type that is stored

on the $object property of our base ObjectBehavior class! Just like before, Subject is a wrapper object that

gives us some magic. Let's find out how it works: type Shift+Shift and look for the Subject.php file.

Woh! See all these @method things on top? This tells PhpStorm that we can call any of these methods on this object

and they will work. We need this because, if you look, these methods don't actually exist in this class! They work by

magic - we'll see that in a minute.

This class works a lot like ObjectBehavior . Scroll down until you find the all-important __call() method. When

we call getLength() , it gives us a Subject object. And then when we call shouldBeGreaterThan() , it's

handled by __call() . The logic here is awesome: if the method name starts with should , it calls

$this->callExpectation() - which finds and executes the correct "matcher". So, why do all matchers need to

begin with should? Because of this line right here.

Next, if the method name starts with beConstructedThrough or beConstructedWith , it calls some code that

allows us to control how the Dinosaur object is instantiated. We'll use this really soon.

And ultimately, if it is not one of those special cases, it executes code that forwards the call onto the underlying object

and returns that value. Well, it returns the value wrapped in, yet another, Subject class. This is exactly what

class DinosaurSpec extends ObjectBehavior

{

 function it_should_not_shrink()

 {

 var_dump($this->getLength());

 }

}

happens when we call $this->getLength() : this last line calls getLength() on the Dinosaur object and then

wraps it in a Subject object. Thanks to that, we can then call shouldBeGreaterThan to call our matcher.

So, yes, it is all magic - super impressive magic! But it's magic that's done via a couple of wrapper object and the

__call() method.

Let's remove our debug code, and make sure the tests are still passing:

./vendor/bin/phpspec run

Cool! Now, back to testing! Next: let's learn how to "describe" a special part of our object's behavior: how it's

instantiated.

Chapter 11: Describing Object Construction

Let's describe a new behavior that we need for our Dinosaur class. I want to be able to easily get a "description" of

the Dinosaur - a string that will contain the type of dinosaur, whether or not it likes to eat people and its length.

Let's turn that into a new example: function it_should_return_full_description() . For this first

example, we'll describe what the description should look like if we set no data. Let's say that there should be a new

getDescription() method that shouldReturn() :

“The Unknown non-carnivorous dinosaur is 0 meters long”

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 56

57

58

59

60

61

Our Dinosaur doesn't even have any properties on it related to what "type" of Dinosaur it is, or whether it's

carnivorous or non-carnivorous - but those are details for future Ryan to worry about. Let's live in the now! Run the

test:

./vendor/bin/phpspec run

Yay! Failure! And it happily offers to generate that getDescription() method for us. Yes please! When it re-

executes itself, it still fails: that new method is blank.

The Wonderful Lesson of Hardcoding Return Values

Ok, remember the red, green, refactor cycle? For step two, we're technically supposed to make this test green with as

little work as possible. Challenge accepted! Let's copy this string, go into Dinosaur , find the new method, and - yes,

I am about to do this - return that hardcoded string! We are awesome at programming! For extra credit, let's add a

return type.

class DinosaurSpec extends ObjectBehavior

{

 function it_should_return_full_description()

 {

 $this->getDescription()->shouldReturn('The Unknown non-carnivorous dinosaur is 0

meters long');

 }

}

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 18

19

20

21

22

23

Yes, I do realize how silly this is. And no, I don't do this when I'm coding for real. But, there's something... beautiful

about hardcoding this value: it's a reminder to focus on what we truly need to accomplish in this method - and to not

over-complicate things or add extra options we don't need yet. BDD says: if you need your code to be more flexible,

you'll discover that naturally when you describe some new behavior in a new example. The design of your code

"emerges" naturally after writing examples and getting them to pass.

When we try phpspec again:

./vendor/bin/phpspec run

Shocking! It passes!

Describing Constructor Arguments

Head back to our DinosaurSpec class: to fully describe how we want the new getDescription() method to

work, we need a few more examples. Let's see: the description contains details about the "type" or "genus" of the

dinosaur - like Tyrannosaurus or Stegosaurus - and whether or not it wants to eat you. I mean, whether or not it's

carnivorous.

Right now, there is no way to set this type of info on the Dinosaur class. We need to fix that. So... how do we want

to set that info? For the length, we added a setLength() method. But, I think that the type of dinosaur and whether

or not it's carnivorous are so important, that they should be passed via the constructor when instantiating a

Dinosaur .

Let's create an example: it_should_return_full_description_for_tyrannosaurus() . We know that

phpspec handles instantiating a new Dinosaur object for us so that when we call getDescription() , it

eventually calls that method on the real object.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 61

62

63

 // ... lines 64 - 67

68

 // ... lines 69 - 70

class Dinosaur

{

 public function getDescription(): string

 {

 return 'The Unknown non-carnivorous dinosaur is 0 meters long';

 }

}

 function it_should_return_full_description_for_tyrannosaurus()

 {

 }

That's cool, but what's cooler is that we can control how it's instantiated. To do that, say

$this->beConstructedWith() and - quite literally - pass the arguments here that we want to pass to the new

Dinosaur object. Hmm, I think the first argument should be the dinosaur type - tyrannosaurus - and the second a

boolean for whether or not it's carnivorous. Definitely true .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 61

62

63

64

 // ... lines 65 - 67

68

 // ... lines 69 - 70

Now... keep going like normal! Let's set a length - $this->setLength(12) - and then assert that

$this->getDescription()->shouldReturn() the string

“The Tyrannosaurus carnivorous dinosaur should be 12 meters long”

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 61

62

63

 // ... line 64

65

66

67

68

 // ... lines 69 - 70

Perfect! And thanks to this new example... our hardcoded return statement? Yea... that ain't gonna work anymore.

How the Objects are Constructed

Oh, by the way, what if we had two beConstructedWith() lines with different arguments? I know, this looks silly -

but this can happen in some cases when you use a setup function called let() that we'll learn about later.

Anyways, what would happen here? An error? CPU over-heating? Neither! The last call always wins. The reason is

the interesting part. Behind the scenes, phpspec delays instantiating the object as long as it can. In this case, it

doesn't actually instantiate the Dinosaur object until we call a method on it like setLength() . At that moment,

phpspec realizes it needs to instantiate the object and creates it using the arguments that were passed to the last

beConstructedWith() call.

Ok, let's run phpspec and get to the "red" part of the cycle:

./vendor/bin/phpspec run

 function it_should_return_full_description_for_tyrannosaurus()

 {

 $this->beConstructedWith('Tyrannosaurus', true);

 }

 function it_should_return_full_description_for_tyrannosaurus()

 {

 $this->setLength(12);

 $this->getDescription()->shouldReturn('The Tyrannosaurus carnivorous dinosaur is 12

meters long');

 }

Hey! This is cool! It says that the method __construct() was not found! It realizes that we're saying

beConstructedWith() ... but we're missing that method! And of course, it even offers to generate it. Do it!

Next, let's hook up the constructor and work with phpspec to get our examples passing.

Chapter 12: Coding & Debugging

phpspec just generated the __construct() method for us. Thanks buddy! Go check it out! Two cool things here.

First, in Dinosaur , yes, it did add the constructor method. As a bonus, it even put it in the right place: after the

properties, but above all the other public functions. phpspec, are you trying to take my job?

Second, when phpspec re-ran all of the examples, well... they're almost all failing now: too few arguments to

Dinosaur::__construct() . And... that makes sense! We just massively changed the way that our Dinosaur

class is designed. And so, any existing coding using that class will probably be totally borked! This is a great example

of how our tests can give us feedback. They're saying:

“Ryan! Do you realize that you just broke all of the code in your app that creates new Dinosaur objects???”

If we did that on accident... well... that would be a pretty good warning to get.

Implementing the Constructor

Let's get to work: the first argument should be a string $genus and the second bool $isCarnivorous . I'll

press Alt+Enter and select "Initialize Fields"... which is a shortcut to create those two properties and set them.

Remove the TODO.

This is cool. But... I'm going to make both of these arguments optional. Why? Well, it's entirely up to you how you

want your class to work. Look back at DinosaurSpec . According to this example, it looks like it should be legal to

create a Dinosaur object with no information. If you do, the type should be "unknown" and it should default to not

eat you... which is kinda nice. This is "design by spec": we're using our examples to drive how the class is built.

Default $genus to Unknown and $isCarnivorous to false .

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 8

9

 // ... line 10

11

 // ... line 12

13

14

15

16

17

 // ... lines 18 - 37

38

class Dinosaur

{

 private $genus;

 private $isCarnivorous;

 public function __construct(string $genus = 'Unknown', bool $isCarnivorous = false)

 {

 $this->genus = $genus;

 $this->isCarnivorous = $isCarnivorous;

 }

}

Using --verbose

The getDescription() method is still wrong. But, we did just get a step closer, so let's try phpspec again:

./vendor/bin/phpspec run

Yep! The two strings don't match. By the way, see how it truncates the two strings? Sometimes that makes it hard to

figure out what's going on. If you need more info, run phpspec with the --verbose option:

./vendor/bin/phpspec run --verbose

Back in Dinosaur , let's finish the getDescription() method. Wrap the string in sprintf() then add a few

wildcards: one for the genus, one for the non- part and one for the length. Fill these in with $this->genus , a

ternary to print either nothing, or non- , and then $this->length .

src/Entity/Dinosaur.php

 // ... lines 1 - 28

29

30

31

32

33

34

35

36

37

 // ... lines 38 - 39

Oh, and let's make a typo to spice things up! Then, move over, take off the --verbose option and run spec:

./vendor/bin/phpspec run

It does fail... but... it's not exactly obvious why: the truncated strings look identical! This is when running with the

verbose option is handy:

./vendor/bin/phpspec run --verbose

Much better - the typo is super obvious now. Fix that, then try it again:

./vendor/bin/phpspec run --verbose

 public function getDescription(): string

 {

 return sprintf(

 'The %s %scarnivorous dinsaur is %d meters long',

 $this->genus,

 $this->isCarnivorous ? '' : 'non-',

 $this->length

);

 }

Ah! It still fails! Whoops - I made a mistake in the spec file - but it's obvious. I've been using phpspec for so long that I

can't avoid saying "should" in everything I type. Change should be to is : that's the language we want.

src/Entity/Dinosaur.php

 // ... lines 1 - 28

29

30

31

32

 // ... lines 33 - 35

36

37

 // ... lines 38 - 39

Try it one more time:

./vendor/bin/phpspec run

It passes! Next: with production ramping up, we need a factory for our dinosaurs. Let's see how we can describe that

with phpspec.

 public function getDescription(): string

 {

 return sprintf(

 'The %s %scarnivorous dinsaur is %d meters long',

);

 }

Chapter 13: Instantiation with a static Factory Method

Ok people - the whole "dino park" idea - apparently, it's a huge success! Especially the velociraptors. Management

wants us to grow more of them... a lot more. What could go wrong?

And because we're going to need to create velociraptors so often, passing that whole string to the constructor and

then true is too much work... and spelling velociraptor is hard! So, idea time: what if we created a static factory

method on Dinosaur to help us create them? Like a growVelociraptor() method! Hey! I just described some

new behavior! Quick! To the example...mobile!

Telling phpspec to use a Factory Method

Add a new function: it_should_grow_a_large_velociraptor() . Oh, but this is tricky: we know how to control

what arguments phpspec passes to the __construct() method when it creates the Dinosaur . But... in this case,

we don't want phpspec to create the Dinosaur object on its own. Nope! We instead want phpspec to call our new

static method and that will instantiate and return the Dinosaur .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 69

70

71

 // ... lines 72 - 77

78

79

No problem: instead of beConstructedWith() , call

$this->beConstructedThrough('growVelociraptor') - that will be the name of the new method. The

second argument is the array of arguments for the method. What arguments should the growVelociraptor have?

Hmm, probably just one right now: the length. So, array(5) . If you need a second argument, just add another item.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 69

70

71

72

 // ... lines 73 - 77

78

 // ... lines 79 - 80

Ok cool! Now this function will work like any other example - except that $this will be the Dinosaur object that's

returned from growVelociraptor . Well, actually, we should make sure it is a Dinosaur :

$this->shouldBeAnInstanceOf(Dinosaur::class) . Oh, and how about

class DinosaurSpec extends ObjectBehavior

{

 function it_should_grow_a_large_velociraptor()

 {

 }

}

 function it_should_grow_a_large_velociraptor()

 {

 $this->beConstructedThrough('growVelociraptor', [5]);

 }

$this->getGenus()->shouldBeAString() . Ok, I'm just showing you that this function exists. In this case, we

know exactly that $this->getGenus()->shouldBe('Velociraptor') .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 69

70

71

 // ... lines 72 - 73

74

75

76

 // ... line 77

78

 // ... lines 79 - 80

Wait, but why did I use shouldBe() here when we've been using shouldReturn() until now? No reason - they're

identical: use whatever feels good.

Oh, and see how PhpStorm is highlighting getGenus()? That's because that method doesn't exist yet. We just

"discovered" that we need this method. Cool! Let's add one more check: $this->getLength()->shouldBe(5) .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 69

70

71

 // ... lines 72 - 76

77

78

 // ... lines 79 - 80

You know the drill: after writing the example, run phpspec:

./vendor/bin/phpspec run

Honestly, it shouldn't even be a surprise any more when phpspec generates code for us. Choose "yes" so it

generates the missing growVelociraptor() method. And when it re-executes... failure! A

BadMethodCallException() . That comes from the new function. phpspec knows this should return a Dinosaur

object... but it's not sure how. But hey! It did, once again, put this method in just the right place: below the constructor

but above the public functions.

 function it_should_grow_a_large_velociraptor()

 {

 $this->shouldBeAnInstanceOf(Dinosaur::class);

 $this->getGenus()->shouldBeString();

 $this->getGenus()->shouldBe('Velociraptor');

 }

 function it_should_grow_a_large_velociraptor()

 {

 $this->getLength()->shouldBe(5);

 }

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 18

19

20

21

22

 // ... lines 23 - 42

43

Change the argument to int $length , advertise that this will return an instance of self , and create that with

$dinosaur = new static() passing Velociraptor and true for the isCarnivorous argument. Then,

$dinosaur->setLength($length) , return $dinosaur .

src/Entity/Dinosaur.php

 // ... lines 1 - 18

19

20

21

22

23

24

25

 // ... lines 26 - 52

That felt good! Let's make sure the example passes:

./vendor/bin/phpspec run

Allowing Requirements to Emerge

Wait... it failed! Of course! The getGenus() method doesn't exist! That's super cool: instead of planning ahead and

adding this method earlier, we allowed the need for this method to "emerge" naturally. What's especially interesting is

that, so far, the only place we need this method is in our example! What if we don't need this method in our actual

app? Should we still create it? Yes. Well, let me say that differently. The code in our examples are meant to be real

examples of how you want your class to work. If you really don't want a getGenus() method, then should write

example code that doesn't use it. If you do use it, you need it!

So, yes phpspec, please generate that for me. Find the new method, return $this->genus and add the string

return type. Try the tests again:

class Dinosaur

{

 public static function growVelociraptor($argument1)

 {

 throw new \BadMethodCallException("Mismatch between the number of arguments of the

factory method and constructor");

 }

}

 public static function growVelociraptor(int $length): self

 {

 $dinosaur = new static('Velociraptor', true);

 $dinosaur->setLength($length);

 return $dinosaur;

 }

src/Entity/Dinosaur.php

 // ... lines 1 - 46

47

48

49

50

 // ... lines 51 - 52

./vendor/bin/phpspec run

Yes! All green! Next: as cool as this factory method is, we need to level up with a proper, new DinosaurFactory

service class.

 public function getGenus(): string

 {

 return $this->genus;

 }

Chapter 14: Describing the Factory Service

Ok first, we've learned a lot about phpspec so far. But... we've still only described one class - and a pretty simple one!

It's time to dig deeper and add more complexity to our app.

Here's the deal: that new growVelociraptor() factory method has made our life a lot easier because, in our

pretend app, we constantly need to create new velociraptors. But now, we also need to be able to create a few other

popular dinosaurs - like T-rexes and Stegosaurus! We could keep adding more static methods to Dinosaur . But to

keep things organized, I'd rather put all the logic into a new class - how about DinosaurFactory . Or, we might

choose to do this because creating a Dinosaur requires some other services - like a database object - and we can't

access services from simple model classes like Dinosaur .

Describing a new Class

So, hey! We need a new class! Well, to say it better, it's time for us to describe a new class:

./vendor/bin/phpspec describe and, for the name, how about App/Factory/DinosaurFactory .

./vendor/bin/phpspec describe App/Factory/DinosaurFactory

That creates one new file: DinosaurFactorySpec . Let's go check it out! Like last time, we get one super basic

example for free - asserting that $this should be an instance of DinosaurFactory . That's... kinda silly... but it's

enough to force some code generation! Go run phpspec:

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 9

10

11

12

13

14

15

16

./vendor/bin/phpspec run

Why, yes! I would love for you to generate that class for us. Now, the spec passes.

growVelociraptor() Example

class DinosaurFactorySpec extends ObjectBehavior

{

 function it_is_initializable()

 {

 $this->shouldHaveType(DinosaurFactory::class);

 }

}

Our first goal is to move the growVelociraptor() method into DinosaurFactory , but I want to follow the red,

green, refactor cycle. So first, describe that functionality with a new example:

function it_grows_a_large_velociraptor() . Then, call the method:

$dinosaur = $this->growVelociraptor(5) .

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 16

17

18

19

 // ... line 20

21

 // ... lines 22 - 23

The Magic Behind phpspec's Subject

Eventually, after coding all of this up, we know that the $dinosaur variable should be a Dinosaur object. But we

also know that phpspec adds a lot of magic. Check this out: var_dump($dinosaur) . Now, run phpspec:

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 16

17

18

 // ... line 19

20

21

 // ... lines 22 - 23

./vendor/bin/phpspec run

First, it notices that the growVelociraptor() method is missing. Hit enter to generate that. Ok: scroll up to check

out the dumped object. Cool! The $dinosaur variable is actually a Subject object! Right now, the underlying value

is null because the new growVelociraptor() method doesn't return anything.

But more importantly, do you remember where we saw the Subject object earlier? It was in DinosaurSpec ! When

we call $this->getLength() , that returns the length, but wrapped inside of a Subject object. Why do we care?

Because that was the magic layer that allowed us to call ->shouldReturn() .

Inside DinosaurFactorySpec , it's the same thing! growVelociraptor will eventually return a Dinosaur

object, but phpspec wraps that inside a Subject object. Thanks to that, we can call real methods on the Dinosaur

or matcher methods. In other words, the $dinosaur in this class works pretty much exactly like the $this variable

in DinosaurSpec . In fact, let's steal four lines of code from here. Paste these into the new example and change all

of the $this to $dinosaur . Re-type the "r" in Dinosaur and hit tab so PhpStorm adds its use statement.

 function it_grows_a_large_velociraptor()

 {

 $dinosaur = $this->growVelociraptor(5);

 }

 function it_grows_a_large_velociraptor()

 {

 var_dump($dinosaur);

 }

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 16

17

18

 // ... lines 19 - 20

21

22

23

24

25

 // ... lines 26 - 27

Ok! The growVelociraptor() method is still empty, but let's see what phpspec thinks!

./vendor/bin/phpspec run

Implement the Code

And the tests are red! Step 2: make this work with as little work as possible... or at least without over-engineering it.

We can cheat: copy the code from the old growVelociraptor() method. I'll keep this method here just as an

example. Back in DinosaurFactory , paste, change the new static to new Dinosaur , change the argument

to int $length and give this a Dinosaur return type.

src/Factory/DinosaurFactory.php

 // ... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

Try it out:

./vendor/bin/phpspec run

Refactor

Green! So now we get to step 3: refactor. This is our chance to remove duplication or improve things. For example, if I

absolutely know that we will add other methods to this class - like growTyrannosaurus() - it might make sense to

refactor some logic into a new private function called createDinosaur() . Give this 3 arguments:

 function it_grows_a_large_velociraptor()

 {

 $dinosaur->shouldBeAnInstanceOf(Dinosaur::class);

 $dinosaur->getGenus()->shouldBeString();

 $dinosaur->getGenus()->shouldBe('Velociraptor');

 $dinosaur->getLength()->shouldBe(5);

 }

class DinosaurFactory

{

 public function growVelociraptor(int $length): Dinosaur

 {

 $dinosaur = new Dinosaur('Velociraptor', true);

 $dinosaur->setLength($length);

 return $dinosaur;

 }

}

string $genus , bool $isCarnivorous and int $length . Copy the first two lines above and make each part

dynamic.

src/Factory/DinosaurFactory.php

 // ... lines 1 - 13

14

15

16

17

18

 // ... lines 19 - 20

Finally, the first method can be simplified to: return $this->createDinosaur() , passing Velociraptor ,

true , and $length . We could have wrote the code this way initially. But now we can refactor confidently because

our tests will prove we didn't mess anything up:

src/Factory/DinosaurFactory.php

 // ... lines 1 - 8

9

10

11

12

 // ... lines 13 - 20

./vendor/bin/phpspec run

Oh. Except... I messed something up:

“Return value of DinosaurFactory::growVelociraptor() must be an instance of Dinosaur , null

returned.”

Duh! I forgot my return statement! And I should have added a return type too. Try it again:

src/Factory/DinosaurFactory.php

 // ... lines 1 - 13

14

15

 // ... lines 16 - 18

19

20

 // ... lines 21 - 22

./vendor/bin/phpspec run

Now we know it works. To be honest, I love the red, green, refactor cycle, but I also don't always do it. Heck, I don't

even unit test all my code - only the parts that are complex enough to keep me up at night. But I do take one

 private function createDinosaur(string $genus, bool $isCarnivorous, int $length)

 {

 $dinosaur = new Dinosaur($genus, $isCarnivorous);

 $dinosaur->setLength($length);

 }

 public function growVelociraptor(int $length): Dinosaur

 {

 return $this->createDinosaur('Velociraptor', true, $length);

 }

 private function createDinosaur(string $genus, bool $isCarnivorous, int $length):

Dinosaur

 {

 return $dinosaur;

 }

important lesson from it into everything I do: focus on accomplishing the behavior you need and nothing more. Keep

things simple until they can't be. And when you get there, write a test first, then get crazy.

Next: we'll describe a new class that depends on another class. Is it finally time to talk about mocking in phpspec?

Well... not so fast...

Chapter 15: Object Dependencies: To Mock, or Not?

Until now, our examples haven't really needed to involve other objects. For example, in DinosaurSpec , when we

call setLength() , we pass a scalar argument. We haven't had a situation yet where the object that we're describing

depends on another object. That's something that we need to talk a lot more about.

Pending & Skipped Examples

But first, in DinosaurFactory , we have this growVelociraptor() method. Eventually we're going to add other

methods to grow other things. And just to make sure I don't forget to do that, let's create a new

it_grows_a_triceratops() example. But I'm not actually ready to describe this or implement it yet... I don't

know.... maybe there's a big storm coming and I need to get off the island on the last boat or something. So, just leave

it blank and run phpspec:

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 26

27

28

29

30

./vendor/bin/phpspec run

Cool! It shows up as a "todo" pending example! Once we come back after the storm, we won't forget!

One other thing you can do, which is a bit less common in apps, but still neat, is to skip tests if you're missing some

sort of dependency. For example, create it_grows_a_small_velociraptor() .

Let's pretend like we need an outside library that contains a class called Nanny in order to create baby velociraptors.

If that class doesn't exist, we can throw a new SkippingException that says:

“Someone needs to look over dino puppies”

class DinosaurFactorySpec extends ObjectBehavior

{

 function it_grows_a_triceratops()

 {

 }

}

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 31

32

33

34

35

36

 // ... lines 37 - 38

39

 // ... lines 40 - 41

So, no Nanny class? Skip the example. If we do have it, it will run like normal: $this->growVelociraptor(1)

and, how about, ->shouldBeAnInstanceOf(Dinosaur::class) .

spec/Factory/DinosaurFactorySpec.php

 // ... lines 1 - 31

32

33

 // ... lines 34 - 37

38

39

 // ... lines 40 - 41

Since that's just a made-up class, when we run phpspec:

./vendor/bin/phpspec run

Yep! That one got skipped.

Describing the Enclosure

Ok: now that we have so many Dinosaurs, we should probably start thinking about, ya know, keeping them enclosed

in some way: right now they're just wandering around the island and causing all kinds of trouble. I think we need a

new Enclosure class that we can put the dinosaurs inside of. Oh, oh, oh! That means... it's time to describe a new

class! Woo!

./vendor/bin/phpspec describe App/Entity/Enclosure

The idea is that, as we create & persist dinosaurs to the database, we will also create & persist Enclosures and put

Dinosaur objects inside of them. Before even running this spec class, let's add our first real example to make sure

that each Enclosure is empty by default - it would be a bit surprising if a new Enclosure automatically had a dinosaur

hiding inside: it_should_have_no_dinosaurs_by_default() .

And, because we will probably need a way to ask what dinosaurs are inside, let's say:

$this->getDinosaurs()->shoudHaveCount(0) .

 function it_grows_a_small_velociraptor()

 {

 if (!class_exists('Nanny')) {

 throw new SkippingException('Someone needs to look over dino puppies');

 }

 }

 function it_grows_a_small_velociraptor()

 {

 $this->growVelociraptor(1)->shouldBeAnInstanceOf(Dinosaur::class);

 }

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 15

16

17

18

19

20

Ok, good start! Head back over to your terminal and run things:

./vendor/bin/phpspec run

Enter yes to generate that class, and yes to generate the getDinosaurs() method inside of it.

Thanks to that, not only do we have the new Enclosure class, but it already has its first method!

src/Entity/Enclosure.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

Basic Enclosure Implementation

To get started, we probably need a $dinosaurs property, which will hold an array of Dinosaur objects. Add an

array return type to the method and return $this->dinosaurs . Oh, and let's initialize the property to an empty

array - that's exactly the behavior we're describing.

src/Entity/Enclosure.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

We could have just returned a hardcoded empty array... because that is the minimum code we need to get the test to

pass. But as you get more comfortable with phpspec, it's ok to start skipping that step - as long as you stay focused

class EnclosureSpec extends ObjectBehavior

{

 function it_should_have_no_dinosaurs_by_default()

 {

 $this->getDinosaurs()->shouldHaveCount(0);

 }

}

class Enclosure

{

 public function getDinosaurs()

 {

 // TODO: write logic here

 }

}

class Enclosure

{

 /** @var Dinosaur[] */

 private $dinosaurs = [];

 public function getDinosaurs(): array

 {

 return $this->dinosaurs;

 }

}

on the behavior you need and don't allow yourself to get too fancy.

Let's make sure things are passing:

./vendor/bin/phpspec run

Perfect! Just the one, pending example.

Adding Dinosaurs to the Enclosure

Let's think a bit more about the Enclosure . We will definitely need a way to to add dinosaurs to it. Let's describe

that! function it_should_be_able_to_add_dinosaurs() . And because we'll most likely be adding

Dinosaurs one-by-one as they're born, I think an addDinosaur() method will be quite perfect:

$this->addDinosaur() and pass that a Dinosaur object.

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 21

22

23

24

 // ... lines 25 - 27

28

29

Mock the Dinosaur Object?

But wait! This is the first time that we're calling a method on our object and what we need to pass to that method is...

another object! Ok... so what's the big deal? Remember, in unit tests, each class is supposed to be tested in complete

isolation. If you have a class that depends on a database connection, instead of passing the real database connection

object, you're supposed to pass it a mock object so that it doesn't make real database queries and also so we can

fake and control the return value of its methods.

So... question time: should we mock the Dinosaur object? And if so, how do we do that?

The answer is... probably no: we should not mock it. Whenever you need to pass an object to the object you're

testing, you need to decide whether or not to mock it. And the correct answer depends on how difficult it is to

instantiate the object and control its behavior. For example, the Dinosaur object is a simple model object, and it

doesn't really do anything - it just holds data. It's easy to instantiate and, if we want its getLength() method to

return 7 to help us test something, yea, that's super easy! Just set its length to 7!

The point is: the Dinosaur object is so simple, that mocking will work, but it will make your life harder! That's why I

prefer to pass in the real object.

class EnclosureSpec extends ObjectBehavior

{

 function it_should_be_able_to_add_dinosaurs()

 {

 $this->addDinosaur(new Dinosaur());

 }

}

If this were a database connection object, something that sent emails or any other class that did some real work, I

would mock it, and we'll talk about how to mock things in phpspec soon.

Let's copy this line so we can add two dinosaurs. And then say

$this->getDinosaurs()->shouldHaveCount(2) .

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 21

22

23

24

25

26

27

28

 // ... lines 29 - 30

Ok, let's try it!

./vendor/bin/phpspec run

Woo! Sweet phpspec failure - let it generate the new method. Then, flip back and find that new method. Change the

argument to Dinosaur $dinosaur . And inside the method, $this->dinosaurs[] = $dinosaur .

src/Entity/Enclosure.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 14

15

16

17

18

19

Did we mess anything up? Find out:

./vendor/bin/phpspec run

Definitely not... because our tests are green!

Next, let's talk about how we can test exceptions, including exceptions that might happen when your object is being

constructed. Oh, and we'll use a cool ObjectMatcher that lets you test methods that return a boolean in a really

smooth way.

 function it_should_be_able_to_add_dinosaurs()

 {

 $this->addDinosaur(new Dinosaur());

 $this->addDinosaur(new Dinosaur());

 $this->getDinosaurs()->shouldHaveCount(2);

 }

class Enclosure

{

 public function addDinosaur(Dinosaur $dinosaur)

 {

 $this->dinosaurs[] = $dinosaur;

 }

}

Chapter 16: Expecting Exceptions

Sometimes your code will throw an exception... it's just how things are. Actually, sometimes it's super important that

the right exception is thrown at the exact right time. Let's see an example - and then, see how to describe that

behavior in a spec class.

If you downloaded the course code, you should have a tutorial/ directory. Find the Exception/ directory inside

of that and copy that whole darn thing into src/ . This holds two exception classes, and the first one that we're going

to look at is, the very important, NotABuffetException . You see, we've had this problem where sometimes we

accidentally put a veggiesaurus inside an Enclosure with a carnivorous dinosaur. And, well, the results have been...

messy.

src/Exception/NotABuffetException.php

 // ... lines 1 - 4

5

6

7

8

To make sure we stop doing that, we need to throw this exception if we try to mix carnivorous and non-carnivorous

dinosaurs into the same Enclosure. And this is such an important thing, we need to make sure there is a test to

ensure the carnage stops.

Example for an Exception

Open up EnclousreSpec : because we want the exception to be thrown when the addDinosaur() method is

called. Let's say:

function it_should_not_allow_to_add_carnivorous_dinosaurs_to_non_carnivorous_enclosure() .

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 30

31

32

 // ... lines 33 - 37

38

39

Wow! That's a long name - but... ok! It's a great description for this example.

Here's the plan: we're going to add one dinosaur that's a veggie dinosaur and then add a another dinosaur that's

carnivorous. And that should trigger the exception. Start with $this->addDinosaur(new Dinosaur()) and

make this a veggie eater by passing false as the second argument.

class NotABuffetException extends \Exception

{

 protected $message = 'Please do not mix the carnivorous and non-carnivorous dinosaurs.

It will be a massacre!';

}

class EnclosureSpec extends ObjectBehavior

{

 function it_should_not_allow_to_add_carnivorous_dinosaurs_to_non_carnivorous_enclosure()

 {

 }

}

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 30

31

32

33

 // ... lines 34 - 37

38

 // ... lines 39 - 40

Now, here is the important part: before we call addDinosaur() , again, we need to tell phpspec to expect that there

should be an exception. And it's probably no surprise that the language to do this is really natural:

$this->shouldThrow() NotABuffetException::class , ->during() , and then we tell phpspec exactly

what method should trigger this: addDinosaur with an array of the arguments, and we only have one:

new Dinosaur() , Velociraptor and true for the carnivorous argument.

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 30

31

32

 // ... lines 33 - 34

35

36

37

38

 // ... lines 39 - 40

That's it! Let's try it out:

./vendor/bin/phpspec run

Cool! Failure because no exception was thrown.

Implementing the Code

Time for us to get to work! In addDinosaur() , we need to determine whether or not we're allowed to add this

Dinosaur . Let's call a new function: if (!$this->canAddDinosaur()) - we'll create that method in a minute -

then throw new NotABuffetException() .

src/Entity/Enclosure.php

 // ... lines 1 - 16

17

18

19

20

21

 // ... lines 22 - 23

24

 // ... lines 25 - 32

 function it_should_not_allow_to_add_carnivorous_dinosaurs_to_non_carnivorous_enclosure()

 {

 $this->addDinosaur(new Dinosaur('veggie-eater', false));

 }

 function it_should_not_allow_to_add_carnivorous_dinosaurs_to_non_carnivorous_enclosure()

 {

 $this

 ->shouldThrow(NotABuffetException::class)

 ->during('addDinosaur', [new Dinosaur('Velociraptor', true)]);

 }

 public function addDinosaur(Dinosaur $dinosaur)

 {

 if (!$this->canAddDinosaur($dinosaur)) {

 throw new NotABuffetException();

 }

 }

Now I can click back on canAddDinosaur , press Alt + Enter and click "Add Method" to create a new private

method at the bottom. Oh, and I'm just creating this as a private method for code organization: I could have written

the logic right up in the addDinosaur() function. But, it is nice to have a method called canAddDinosaur() - it's

really clear. I'm not making it public because, at least so far, we don't have any need to use it outside of this class.

That also means that we won't write an example for this function: examples are only for public methods.

Anyways, let's add a return type and then say return count($this->dinosaurs) === 0 - because if there are

no dinosaurs in this enclosure, than we can definitely add one - or we can check if the first dinosaur, index 0, has the

same "diet" as the dinosaur being added, it should be allowed. So... hmm, maybe we'll call ->isCarnivorus() .

But, wait... that method does not exist in the Dinosaur class. And actually, the real problem is that the

isCarnivorous information is not available publicly in any way, except as part of the description.

This is cool! We just discovered that we need to enhance the Dinosaur class to get the new feature working. Before

we do that, let's finish the canAddDinosaur() method: you should be able to add the dinosaur if the first dinosaur

->isCarnivorous() value equals $dinosaur->isCarnivorous() . If they are compatible, this dinosaur can be

added to the enclosure... without being eaten... hopefully.

src/Entity/Enclosure.php

 // ... lines 1 - 25

26

27

28

29

30

 // ... lines 31 - 32

We know we're not done yet, but in the spirit of "doing as little work as possible and letting phpspec tell us what to do

next", let's run it now:

./vendor/bin/phpspec run

Failure!

“Call to undefined method Dinosaur::isCarnivorous() .”

We could now go directly into the Dinosaur class and just... implement that! It's a super-easy method. But... don't

we need to write an example first before we add the code? Maybe. So far, we've been testing a lot of simple getter

and setter methods. You can test simple methods like this, but at some point a method is so simple that... in my

opinion, testing them is overkill. Focus on testing what scares you.

But, for our great learning adventure, we will add some examples for this method. Why? Because it will introduce us

to a really cool matcher for boolean methods. Let's check it out next.

 private function canAddDinosaur(Dinosaur $dinosaur): bool

 {

 return count($this->dinosaurs) === 0 ||

 ($this->dinosaurs[0]->isCarnivorous() === $dinosaur->isCarnivorous());

 }

Chapter 17: The ObjectStateMatcher

We're missing the isCarnivorous() method on Dinosaur . It will be a really simple method, but because it will let

me show you a very special match - the ObjectStateMatcher - we're going to write a couple of examples for it.

Find DinosaurSpec and add the first new example: it_should_be_herbivore_by_default() . This example

is meant to show that if we create a new Dinosaur() without passing the isCarnivorous argument, it should

default to an herbivore. Pay careful attention to the language I'm about to use. Behind the scenes, because we

haven't controlled the constructor arguments, we know that phpspec will create a Dinosaur() without any

constructor arguments. So I'm going to say $this->shouldNotBeCarnivorous() .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 79

80

81

82

83

 // ... lines 84 - 90

91

That is not a built-in matcher... right? I mean, that's super specific language, and PhpStorm definitely did not

autocomplete that for me. Well... surprise! That is a real matcher! Say hello to the ObjectStateMatcher ! It's

dynamic: whenever you say shouldBeSOMETHING or shouldNotBeSOMETHING() , the ObjectStateMatcher

is activated. It parses out that "SOMETHING" part - for us the word Carnivorous - looks for a method called

isCarnivorous() , and then checks that it equals true or, in our case, false, because we're using should not.

Let's write one more example before we see this. How about:

it_should_allow_to_check_if_dinosaur_is_carnivorous() . Inside, use

$this->beConstructedWith() . Remember, the Dinosaur class's constructor allows us to control the

$isCarnivorous value via the second argument. So, we'll pass 'Velociraptor' and true . Then we can say

$this->shouldBeCarnivorous() . That's the same thing as above, but without the "not".

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 84

85

86

87

88

89

90

 // ... lines 91 - 92

Let's check it out!

class DinosaurSpec extends ObjectBehavior

{

 function it_should_be_herbivore_by_default()

 {

 $this->shouldNotBeCarnivorous();

 }

}

 function it_should_allow_to_check_if_dinosaur_is_carnivorous()

 {

 $this->beConstructedWith('Velociraptor', true);

 $this->shouldBeCarnivorous();

 }

./vendor/bin/phpspec run

Woh! The error from our two new examples is:

“method [array:2] not found”

Um... cool... so what the heck does that mean? It's not a great error. But, the question at the bottom tells us what is

really going on:

“Do you want me to create Dinosaur::isCarnivorous() for you?”

This is really cool! When we say shouldBeCarnivorous() , the ObjectStateMatcher says:

“Hey! You're describing that your object "should be carnivorous". To figure that out, your class probably needs an

isCarnivorous() method! So, let's create that thing!”

Choose yes to generate it. phpspec re-runs and does fail - something about the ObjectStateMatcher expecting a

boolean, but null given. That's because our new method is empty! Go find it, then return $this->isCarnivorous

and add the bool return type.

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 51

52

53

54

55

56

Find your terminal and run phpspec!

./vendor/bin/phpspec run

Sweet! Everything passes! Which includes both new examples inside DinosaurSpec and the original example in

EnclosureSpec because Enclosure can now use the new isCarnivorous() method.

ObjectStateMatcher with "shouldHave"

Now that our tests are green, we get to think about any refactoring we might want to do. Here's one piece I don't love:

this logic for comparing whether or not the diet of two Dinosaurs is the same - it's just not super clear.

class Dinosaur

{

 public function isCarnivorous(): bool

 {

 return $this->isCarnivorous;

 }

}

So, it might be nice to have a method on the Dinosaur class called hasSameDietAs() : we pass it a Dinosaur

and it returns a boolean.

So... cool! Let's add an example for this:

it_should_allow_to_check_if_two_dinosaurs_have_same_diet . And, check out the language

$this->shouldHaveSameDietAs(new Dinosaur()) .

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 91

92

93

94

95

96

Two important things here. First, the $this object will be a Dinosaur object that's created with no constructor args

- so it will be a veggiesaurus. And so, it should have the same diet as a new Dinosaur() , which will also be non-

carnivorous.

Second, see this language - shouldHaveSameDietAs()? That language will also be handled by the

ObjectStateMatcher . Yep, when you say shouldBeSomething , it looks for an isSomething() method. And

if you say shouldHaveSomething() , it looks for a hasSomething() method.

One of the problems I originally had with the ObjectStateMatcher was that I was thinking about it backwards. I

was thinking:

“Hey! I want to have a method called isCarnivorous() .”

Then, I would try to figure out the correct matcher method to use - like shouldBeCarnivorous() - so that it would

look for this method. But really, we need to think about it the other direction: I shouldn't care what the method name

will be called in Dinosaur . Nope, I can ignore that and focus on using natural language in my example:

$this->shouldBeCarnivorous() and down here $this->shouldHaveSameDietAs() . Use natural

language, and then... don't even think about the method name! Just run phpspec - it'll tell you:

./vendor/bin/phpspec run

There it is! hasSameDietAs() . Generate that, then go find it. This method will return a bool , the argument will be

a Dinosaur object and we can return $dinosaur->isCarnivorous() === $this->isCarnivorous() .

class DinosaurSpec extends ObjectBehavior

{

 function it_should_allow_to_check_if_two_dinosaurs_have_same_diet()

 {

 $this->shouldHaveSameDietAs(new Dinosaur());

 }

}

src/Entity/Dinosaur.php

 // ... lines 1 - 4

5

6

 // ... lines 7 - 56

57

58

59

60

61

Let's try it!

./vendor/bin/phpspec run

We are green! Let's take that as a sign that it's safe to do a bit of refactoring inside Enclosure . Remove all this

complicated stuff and, at the end, just say: || $dinosaur->hasSameDietAs($this->dinosaurs[0]) .

src/Entity/Enclosure.php

 // ... lines 1 - 6

7

8

 // ... lines 9 - 25

26

27

28

29

30

Run phpspec one more time:

./vendor/bin/phpspec run

Got it! Next, let's talk a bit more about testing exceptions and finally add some Security to our dino park.

class Dinosaur

{

 public function hasSameDietAs(Dinosaur $dinosaur): bool

 {

 return $dinosaur->isCarnivorous() === $this->isCarnivorous();

 }

}

class Enclosure

{

 private function canAddDinosaur(Dinosaur $dinosaur): bool

 {

 return count($this->dinosaurs) === 0 || $dinosaur->hasSameDietAs($this-

>dinosaurs[0]);

 }

}

Chapter 18: Describing for Exception Messages

In the Exception/ directory that we copied a few minutes ago, there's another exception class: the

DinosaursAreRunningRampantException .

src/Exception/DinosaursAreRunningRampantException.php

 // ... lines 1 - 4

5

6

7

Here's the problem we're facing: we have these enclosures, but... they don't have any security - no electric fences, no

guard towers, nothing! We need to add that capability to enclosures and throw this new exception if we try to add a

Dinosaur to an Enclosure that has no active security. Because... honestly... we're having a real problem where

people add dinosaurs to an enclosure and then just leave the door wide open.

In EnclosureSpec , let's create a new example to describe this:

it_should_not_allow_to_add_dinosaurs_to_unsecure_enclosures() . I want you to temporarily ignore

all the other examples that we've been working on so far, because this example is going to temporarily break... all of

them.

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 40

41

42

 // ... lines 43 - 45

46

47

First... how does "security" for our enclosures need to be designed? Is it a boolean property on Enclosure so we can

just turn security on or off? Something more complex? Actually, right now, it doesn't matter!

Check it out: in this example, I want to describe that if you simply create a new Enclosure , that is not enough: it's

not secure. Describe that by saying $this->shouldThrow() . And this time, instead of passing the class name of

the exception that should be thrown, I'll say new DinosaursAreRunningRampantException() and pass this a

message: Are you craaazy?!? .

final class DinosaursAreRunningRampantException extends \Exception

{

}

class EnclosureSpec extends ObjectBehavior

{

 function it_should_not_allow_to_add_dinosaurs_to_unsecure_enclosures()

 {

 }

}

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 40

41

42

43

44

 // ... line 45

46

 // ... lines 47 - 48

Why am I doing this differently than before? It's really up to you: you can pass the class name to shouldThrow() if

you only need to make sure the exception is an instance of that class or if you want to make sure that the message is

also correct, you can create the exception object with the message you expect.

Next, the exception should be thrown ->duringAddDinosaur(new Dinosaur()) with Velociraptor and

true .

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 40

41

42

43

 // ... line 44

45

46

 // ... lines 47 - 48

Oh, and this language is also a bit different than before. Earlier, we used during() and passed addDinosaur as

an argument to that method. That's fine, but you can also use this more magical way: duringAddDinosaur() . It's

a bit more natural because you can then pass each argument one-by-one, instead of putting them in an array. They

do the same thing - so it's up to you.

The point is: we now have a test that describes that you can't just create an Enclosure and start putting dinosaurs

into it. Somehow, security needs to be activated... whatever that means.

Let's move over and run phpspec:

./vendor/bin/phpspec run

Awesome! That does fail because it is still possible to add dinosaurs to enclosures without activating security.

Designing the Security

Ok... so how do we need enclosure security to work? The right answer depends on your dinosaur park. But the

process is universal: think about what requirements you have. Is security just something you turn on or off - like with

some activateSecurity() method on Enclosure? Or, is it more complex? Based on talking to our security

experts, I've determined that we need the ability to add different types of security to different Enclosures - electric

 function it_should_not_allow_to_add_dinosaurs_to_unsecure_enclosures()

 {

 $this

 ->shouldThrow(new DinosaursAreRunningRampantException('Are you craaazy?!?'))

 }

 function it_should_not_allow_to_add_dinosaurs_to_unsecure_enclosures()

 {

 $this

 ->duringAddDinosaur(new Dinosaur('Velociraptor', true));

 }

fences around some, guard towers around others and maybe just a sign that says "Please stay inside" if we get really

busy. Oh, and each Enclosure can have 0 or many pieces of security.

Back in the tutorial/ directory, check out the Entity/ directory. See that Security class? Copy that and put

into our src/Entity/ folder. Not spec/Entity , I'm totally messing this up right now... and will pay for it later.

src/Entity/Security.php

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

And, yes, yes, we're going to cheat a bit: we're going to skip the spec process for the Security class and start with

something I've already created.

Each Security has a name - like "electric fence" or "guard tower" and a boolean for whether it's active or not. And

we pass in the Enclosure that this Security will be attached to. For the methods - just one: getIsActive() .

To get the example in EnclosureSpec to pass, somehow, we need a way to attach Security objects to our

Enclosure class. And then, when we add a dinosaur, we can check to make sure the Enclosure has at least one

active Security .

Ok... cool! To hold the securities, let's create a $securities property and set it to an empty array. This will be an

array of Security objects, so let's document that.

src/Entity/Enclosure.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 12

13

14

 // ... lines 15 - 48

49

class Security

{

 private $name;

 private $isActive;

 private $enclosure;

 public function __construct(string $name, bool $isActive, Enclosure $enclosure)

 {

 $this->name = $name;

 $this->isActive = $isActive;

 $this->enclosure = $enclosure;

 }

 public function getIsActive(): bool

 {

 return $this->isActive;

 }

}

class Enclosure

{

 /** @var Security[] */

 private $securities = [];

}

Now, this is interesting. If we're adding a securities property, shouldn't we describe this more directly with some

examples that show... I don't know... some addSecurity() or getSecurities() methods? Well... maybe?

Maybe because... we might not need these methods! Right now, what we do know is that, if there are no active

securities, an exception should be thrown. And of course, we will need to update some of our examples from earlier

once we get this working so that they also have some active security.

Anyways, down in addDinosaur() , let's call another new method if (!$this->isSecurityActive()) we

will throw a new DinosaursAreRunningRampantException() and pass it the same message that we described

in our example - because we're testing for this exact string.

src/Entity/Enclosure.php

 // ... lines 1 - 20

21

22

23

24

25

 // ... lines 26 - 31

32

 // ... lines 33 - 50

In reality, this is a bit silly. In real life, I probably wouldn't care enough to test for that exact message - the class is

enough.

To add the missing method, I'll put my cursor on the method name, hit Alt + Enter and click "Add Method". Cool! This

will return a bool and inside, we can loop over the $securities with $this->securities as $security . If

at least one Security object attached to this enclosure is active, then our enclosure is secure. So

if ($security->getIsActive()) , then return true . And if none of them are active, return false .

src/Entity/Enclosure.php

 // ... lines 1 - 38

39

40

41

42

43

44

45

46

47

48

 // ... lines 49 - 50

Okay, that should work! Move back to the terminal. Oh, see this 41? That means the example lives on line 41 of the

spec class. Re-run phpspec:

./vendor/bin/phpspec run

It works! Sort of. Notice, line 41 is gone - that example is passing! By the way, instead of running all your spec

classes, you can run just one by passing the filename to the command:

 public function addDinosaur(Dinosaur $dinosaur)

 {

 if (!$this->isSecurityActive()) {

 throw new DinosaursAreRunningRampantException('Are you craaazy?!?');

 }

 }

 private function isSecurityActive(): bool

 {

 foreach ($this->securities as $security) {

 if ($security->getIsActive()) {

 return true;

 }

 }

 return false;

 }

./vendor/bin/phpspec run spec/Entity/EnclosureSpec.php

Or, you can run just one example by adding colon then the line number. The example we're working on should be line

41 - yep! There it is. Try it:

./vendor/bin/phpspec run spec/Entity/EnclosureSpec.php:41

Cool! 1 passed. But if we run all of them, we have a few failures.

We made a few changes to our app that broke our existing examples. Next, let's think about the correct way to handle

this and add a few more nice features to our Enclosure ... including testing exceptions that happen during object

construction.

Chapter 19: When Existing Tests Break & Exceptions in
__construct()

The new example we just added is passing... but we totally broke a bunch of our original examples! Lame! For

example, it should be able to add dinosaurs is getting the

DinosaursAreRunningRampantException and that makes sense. Find

it_should_be_able_to_add_dinosaurs . It's testing to make sure that if we add two dinosaurs, then we should

have... 2 dinosaurs.

Existing Tests Broke... now what?

So, hmm: we made a change to our app and then an existing example started to fail. That's... the beauty of tests!

Now we can take in all this information about which tests are failing and why they're failing and determine the best

way forward. For example, we may have just accidentally introduced a bug and we want to fix that bug. Or we may

discover that the tests that are failing are no longer relevant and should be removed. Or, most likely you're in a

situation like this one: where you simply need to update existing tests for some new change.

Describing adding Security

For this example, the enclosure needs some security before we starting adding dinosaurs. To do that, well... we need

some way to add Security to an Enclosure ! And, ya know what? We should probably make it pretty easy to add

security - maybe via a new constructor arg.

Let me show you what I mean - in an example! Instead of creating a totally new example function for this, I'm going to

need to use this new functionality in the example that's current failing. Here's the idea: to add some basic security, say

$this->beConstructedWith(true) . Yep, I want there to be a constructor arg that easily allows you to activate

some type of security.

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 11

12

13

 // ... lines 14 - 23

24

25

26

 // ... lines 27 - 31

32

 // ... lines 33 - 52

53

Let's also add this to the other example that's failing - it's around line 32. Paste! And for the newest example we've

been working on, I'll instantiate with false .

class EnclosureSpec extends ObjectBehavior

{

 function it_should_be_able_to_add_dinosaurs()

 {

 $this->beConstructedWith(true);

 }

}

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 33

34

35

36

 // ... lines 37 - 42

43

 // ... line 44

45

46

47

 // ... lines 48 - 51

52

 // ... lines 53 - 54

Ok, let's try the tests:

./vendor/bin/phpspec run

Nice! It asks us to generate the __construct method - yes please! A whole bunch of examples are failing - but, pfff

- that's probably fine. Find Enclosure . Perfect!

Change the argument to bool $withBasicSecurity and... I don't need to, but let's give this a default value: if

you pass nothing, there is no security. Next, if ($withBasicSecurity) , let's... add some security! I'll call a new

method we haven't created yet: $this->addSecurity() with new Security() passing that fence... or I guess

"fency", whatever that is... true to make it active and $this because it will be attached to this Enclosure.

src/Entity/Enclosure.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

18

19

20

21

 // ... lines 22 - 60

61

For the addSecurity() method, because we're not using this method anywhere outside of this class, we should

technically create it as private. But, I already know that I will need to use it outside this class, so let's make it public:

public function addSecurity(Security $security) . Inside, $this->securities[] = $security .

 function it_should_not_allow_to_add_carnivorous_dinosaurs_to_non_carnivorous_enclosure()

 {

 $this->beConstructedWith(true);

 }

 function it_should_not_allow_to_add_dinosaurs_to_unsecure_enclosures()

 {

 $this->beConstructedWith(false);

 }

class Enclosure

{

 public function __construct(bool $withBasicSecurity = false)

 {

 if ($withBasicSecurity) {

 $this->addSecurity(new Security('Fence', true, $this));

 }

 }

}

src/Entity/Enclosure.php

 // ... lines 1 - 40

41

42

43

44

 // ... lines 45 - 62

Phew! Okay, find your terminal and let's try this!

./vendor/bin/phpspec run

Hmm, not passing yet:

“Class App\Entity\Security not found.”

Let's see, what did I mess up? It's not clear where that error is. To get more info, use the --verbose flag:

./vendor/bin/phpspec run --verbose

And... ah! There it is: Enclosure at line 19. Find that and... ah again! Our spec/ and src/ directories look so

much alike that I copied the Security class into the wrong spot! Move that into src/Entity - good job tests!

Run 'em again:

./vendor/bin/phpspec run

Now they pass.

Exception during Construction???

We're on a roll! Shall we add one more enhancement to Enclosure? It's now easy to create an Enclosure with

basic security. But I also want the ability to pass some initial dinosaurs into the constructor. That's cool - but another

programmer tried to do this last week and... oof, things got ugly. They did allow for initial dinosaurs to be added, but

they forgot to check first to see if any security was active. Oof. Anyways, that programmer is... "unavailable" now.

Let's not make the same mistake: create a new example function:

it_should_fail_if_providing_initial_dinosaurs_without_security() . Start with

$this->beConstructedWith(false) and an array with one new Dinosaur() .

 public function addSecurity(Security $security)

 {

 $this->securities[] = $security;

 }

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 53

54

55

56

 // ... lines 57 - 60

61

 // ... lines 62 - 63

Then, we just need to tell phpspec what method will cause the exception. So... wait! This is a bit different: the

exception will be thrown during instantiation! Not when we call some other method.

How can we tell phpspec about that? It's almost the same: $this->shouldThrow() with

DinosaursAreRunningRampantException::class - I don't care about testing the exact message. Then,

->duringInstantiation() .

spec/Entity/EnclosureSpec.php

 // ... lines 1 - 53

54

55

 // ... lines 56 - 57

58

59

60

61

 // ... lines 62 - 63

That's it. Let's make sure things are failing!

./vendor/bin/phpspec run

Nice and broken: there was no exception thrown. Oh, but notice one thing: this is the first time that we've added an

example where we are passing a second argument to the constructor. But, because that method already exists,

phpspec is not quite smart enough to automatically generate a second argument for us. Ok, then, I guess we'll do it

by hand: add array $initialDinosaurs = [] .

src/Entity/Enclosure.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 15

16

17

 // ... lines 18 - 24

25

 // ... lines 26 - 64

65

Next, foreach over $initialDinosaurs as $dinosaurs and say, this->addDinosaur($dinosaur) . That

was the mistake that other programmer made: I'm using addDinosaur() instead of just setting the $dinosaurs

 function it_should_fail_if_providing_initial_dinosaurs_without_security()

 {

 $this->beConstructedWith(false, [new Dinosaur()]);

 }

 function it_should_fail_if_providing_initial_dinosaurs_without_security()

 {

 $this

 ->shouldThrow(DinosaursAreRunningRampantException::class)

 ->duringInstantiation();

 }

class Enclosure

{

 public function __construct(bool $withBasicSecurity = false, array $initialDinosaurs =

[])

 {

 }

}

property directly because that method contains the security checks.

src/Entity/Enclosure.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 21

22

23

24

25

 // ... lines 26 - 66

So... that should be it! Let's try phpspec:

./vendor/bin/phpspec run

Got it. Next... it's time! It's time to talk about mocking, test doubles and all that fun, testing magic.

 public function __construct(bool $withBasicSecurity = false, array $initialDinosaurs =

[])

 {

 foreach ($initialDinosaurs as $dinosaur) {

 $this->addDinosaur($dinosaur);

 }

 }

Chapter 20: Test Doubles

It's finally time to talk about one of the most critical parts of unit testing: mocking. Oh, and it's kind of the most fun part

too!

To Mock or Not to Mock

Check out EnclosureSpec : we already had at least one situation where we called a method and needed to pass

another object as an argument - a Dinosaur in this case. When the object you're testing has a dependency on

another object like this, you have two options. First, you can just pass the real object, and that's what we've been

doing so far. This is a simple and excellent solution when the object you're passing is easy to instantiate and doesn't

have any side effects - most commonly, objects that just hold data.

The second solution - mocking - is perfect for all the other situations: when the object you're using is a pain to

instantiate, its behavior is complex or its methods do things - like it makes database queries. In those cases, we do

not want to use the real object: we want to mock... or create a test double... or a dummy. These are all terms that

sorta describe the same thing - we'll discuss as we go along.

Creating a Mock Object

Let's see this in action! Create a new example:

function it_should_allow_to_check_if_two_dinosaurs_have_same_diet_using_stub() . Yea, we'll

discuss that word "stub" along the way.

Check this out: instead of creating a new Dinosaur object, add an argument to the example method with a

Dinosaur type-hint. Let's var_dump($dinosaur) and then see what happens when we run phpspec:

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 96

97

98

99

100

101

./vendor/bin/phpspec run

class DinosaurSpec extends ObjectBehavior

{

 function it_should_allow_to_check_if_two_dinosaurs_have_same_diet_using_stub(Dinosaur

$dinosaur)

 {

 var_dump($dinosaur);

 }

}

Oh... interesting! It's some sort of a Collaborator object. But what I really want you to see is that, inside of it, is

something called an ObjectProphecy . Woh, cool name.

Technically speaking, phpspec doesn't have its own mocking system - it uses a totally independent library called

prophecy. Well, the truth is that the phpspec team made and maintains both libraries - but prophecy is its own library,

and can even be used in PHPUnit.

But the point is, this is not a real Dinosaur object, it's a "fake" object that looks and smells like a Dinosaur object

and one that we can completely control. And getting a mock object is easy! Just add an argument type-hinted with the

class or interface you need to mock - phpspec & prophecy take care of the rest. I love that.

Controlling Method Return Values

So... what can we do with this $dinosaur mock? Well, you could take full control over the return value of any of its

methods. Or you can check to make sure that one of its methods was called. We have 100% control over how this

object behaves.

For this example, we're testing that the hasSameDietAs() method behaves correctly. We're basically doing the

same example as before, but with a mock. And so, when our code calls isCarnivorous() on the mocked

Dinosaur , we need that to return false.

Cool - let's tell our mock about this: $dinosaur->isCarnivorous()->willReturn(false) . I like that! It feels a

lot like normal phpspec code! Except instead of getGenus()->shouldBe() to assert a return value, we're instead

training the mock: we're teaching it how it should behave.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 96

97

98

99

 // ... lines 100 - 101

102

 // ... lines 103 - 104

Now we can say $this->shouldHaveSameDietAs($dinosaur) - remembering that $this will not be

carnivorous, because it was constructed with no arguments.

spec/Entity/DinosaurSpec.php

 // ... lines 1 - 96

97

98

 // ... lines 99 - 100

101

102

 // ... lines 103 - 104

Cool! So let's see what phpspec thinks:

 function it_should_allow_to_check_if_two_dinosaurs_have_same_diet_using_stub(Dinosaur

$dinosaur)

 {

 $dinosaur->isCarnivorous()->willReturn(false);

 }

 function it_should_allow_to_check_if_two_dinosaurs_have_same_diet_using_stub(Dinosaur

$dinosaur)

 {

 $this->shouldHaveSameDietAs($dinosaur);

 }

./vendor/bin/phpspec run

Ha! That actually passes!

Mocks, test doubles, spies, stubs, Larry

These fake objects are called test doubles, but you'll hear them called by a number of other names as well, like

stubs , spies , mocks and sometimes even Larry . When you hear these words, they're all basically referring to

the same idea, though technically, each word - like stub or spy refer to different cool "things" that you can do with

these objects.

For example, when you want to control the return value of an object, then suddenly this "fake" object is known as a

stub. So, in our example, $dinosaur is technically a stub. Later, we're going to do things like assert that a certain

method was called. Like, we could say: I want to assert that the isCarnivorous() method was called exactly one

time. When we do that, the test double object will be known as a spy or a mock.

The point is: these terms are all different ways to describe the same idea of getting a fake object from phpspec and

then either training it to have some sort of behavior or asserting that certain methods were called on it. To some

people, this distinction is super important. For me, I can never remember the difference, and I don't care that much.

Though, as we'll see later, prophecy's documentation uses these words a lot - so it's good to know a little bit about

them.

But before we get there, let's add another service to our application - an EnclosureBuilderService . This will let

us build enclosures faster and, more importantly, is going to be a kick-butt example for mocking.

Chapter 21: The EnclosureBuilderService

Because we're creating a lot of dinosaurs and a lot of enclosures, I think it might be a good idea to get organized and

create a new helper service class to do all of this for us! We'll call it EnclosureBuilderService . You know what

that means... time to describe!

./vendor/bin/phpspec describe App/Service/EnclosureBuilderService

That creates the new spec class. And thanks to that new spec class, we can generate the class immediately with:

./vendor/bin/phpspec run

Booya!

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 4

5

6

7

Describing the new Feature

New plan time team! Let's add a method to the service where we can pass it the number of dinosaurs we want, how

much security we want, and... it will take care of the rest! Let's examplify that!

How about function it_builds_enclosure_with_dinosaurs() . Inside, let's see, I'd like to be able to create

a new Enclosure by saying $enclosure = $this->buildEnclosure() . We'll pass that the number of

security systems we want - 1 - and the number of dinosaurs we want: 2. Then we can do some basic checks, like

$enclosure->shouldBeAnInstanceOf() to make sure an Enclosure is returned.

class EnclosureBuilderServiceSpec extends ObjectBehavior

{

 function it_is_initializable()

 {

 $this->shouldHaveType(EnclosureBuilderService::class);

 }

}

class EnclosureBuilderService

{

}

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 15

16

17

18

19

20

 // ... line 21

22

 // ... lines 23 - 24

Oh, and very important! I want to make sure the new Enclosure has active security:

$enclosure->isSecurityActive() . Wait... but that's not auto-completing - I thought we added that method! Oh,

it does exist, but it's private. We'll need to fix that in a minute. Anyways, use

$enclosure->isSecurityActive()->shouldReturn(true) .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 15

16

17

 // ... lines 18 - 20

21

22

 // ... lines 23 - 24

Simple enough! We're not asserting anything about the dinosaurs yet, but it's a good start. In Enclosure , make

isSecurityActive() public: we've discovered that we do need to use this from outside of this class. And because

it's public... and because I like to keep things organized, let's move it up above the private methods.

Much better. Let's try this!

./vendor/bin/phpspec run

It fails, generates the new method for us, then it fails again... because that method is empty. I hope these steps are

boringly routine at this point.

Implementing the Feature

With the tests red, let's write some code! Open EnclosureBuilderService and... fill in the method! I'll break the

arguments onto multiple lines - they're gonna be a bit long - and advertise that this returns an Enclosure . Change

the args to int $numberOfSecuritySystems that defaults to 1... though it's entirely up to you if you want a

default - and int $numberOfDinosaurs = 3 . Then, $enclosure = new Enclosure() and we'll offload the

real work to a private method: $this->addSecuritySystems($numberOfSecuritySystems, $enclosure) .

 function it_builds_enclosure_with_dinosaurs()

 {

 $enclosure = $this->buildEnclosure(1, 2);

 $enclosure->shouldBeAnInstanceOf(Enclosure::class);

 }

 function it_builds_enclosure_with_dinosaurs()

 {

 $enclosure->isSecurityActive()->shouldReturn(true);

 }

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 19

20

 // ... lines 21 - 30

31

At the bottom, return $enclosure - we'll worry about the dinosaurs in a minute. For the addSecuritySystems()

method, I'm going to cheat and paste that in: you can find this function on the code block on this page. Make sure to

re-type the y on Security and hit tab to auto-complete that and get the use statement on top.

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 21

22

23

24

25

26

27

28

29

30

31

32

It's nothing special: it takes in the $numberOfSecuritySystems , does a for loop, chooses a random name and

sets the "is active" flag to true.

We're not adding any dinosaurs yet... which is fine... because we're not asserting anything about them yet either! We'll

worry about that soon. Right now, run phpspec!

./vendor/bin/phpspec run

Green! This wasn't anything new, but now we have an awesome problem. In EnclosureBuilderService , we

need to create some dinosaurs... but we are not going to create them by hand. Nope, we already have this beautiful

DinosaurFactory that's great at growing and hatching Dinosaurs! That means that

EnclosureBuilderService will need DinosaurFactory as a dependency. And that means, in order to finish

the example, we are going to need to mock DinosaurFactory .

class EnclosureBuilderService

{

 public function buildEnclosure(

 int $numberOfSecuritySystems = 1,

 int $numberOfDinosaurs = 3

): Enclosure

 {

 $enclosure = new Enclosure();

 $this->addSecuritySystems($numberOfSecuritySystems, $enclosure);

 }

}

class EnclosureBuilderService

{

 private function addSecuritySystems(int $numberOfSecuritySystems, Enclosure $enclosure)

 {

 $securityNames = ['Fence', 'Electric fence', 'Guard tower'];

 for ($i = 0; $i < $numberOfSecuritySystems; $i++) {

 $securityName = $securityNames[array_rand($securityNames)];

 $security = new Security($securityName, true, $enclosure);

 $enclosure->addSecurity($security);

 }

 }

}

Awesome. It's next.

Chapter 22: Dummies

Our new EnclosureBuilderService is building the security systems and adding them to the Enclosure , but it's

not creating any dinosaurs yet. That's a boring dinosaur park! Fortunately, that should be easy! Heck, we already

have a class that's really great at doing exactly that! The DinosaurFactory .

To Mock or Not?

So, hmm, thinking about the design of EnclosureBuilderService , we now know that it will need the

DinosaurFactory in order to create dinosaurs. And that means EnclosureBuilderService will need a

constructor function so that we can use dependency injection to pass DinosaurFactory into it. Ignore phpspec for

a second: this is pure object-oriented coding: if a service like EnclosureBuilderService needs access to

another service like DinosaurFactory , we will pass that service to it, usually via the constructor.

That is the design we'll use for EnclosureBuilderService . And of course, that's something that we can describe

in our spec class! So far, we haven't said anything about how EnclosureBuilderService is instantiated, so it's

being created with no arguments. Cool! Now use: $this->beConstructedWith() and pass it a

DinosaurFactory object. But... how should we create the DinosaurFactory? Should we create it manually or

mock it?

DinosaurFactory Dummy

In this case, mock it. As a rule of thumb, if the object you're working with is a service object - an object that does work,

but doesn't hold much data, like DinosaurFactory , Doctrine's EntityManager or a class that sends emails,

mock it. That's because these are usually difficult to instantiate and often have side effects, like talking to the

database or sending real emails. Oof, sending emails when you run your tests is no fun. We want our unit tests to be

isolated from all "real" systems likes that.

But if you're working with a simple model object, it's ok to create it directly. For example, in

DinosaurFactorySpec ... I mean in EnclosureSpec , because Dinosaur is so simple, we just created it

ourselves!

Anyways, we need to mock DinosaurFactory and we already know how: add a

DinosaurFactory $dinosaurFactory argument to the method. Thanks to that, prophecy will create a "dummy"

object: one of those many words to describe that this will be an object that looks and smells like

DinosaurFactory ... but isn't actually a DinosaurFactory . Pass this to beConstructedWith() .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 16

17

18

19

 // ... lines 20 - 24

25

26

Cool! Let's not do anything else yet, just run phpspec and see what it thinks:

./vendor/bin/phpspec run

Woohoo! It sees that the constructor is not found and asks if we want to generate it. Of course we do! Go check it out!

Change the argument to DinosaurFactory $dinosaurFactory and then... do nothing... yet.

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 35

36

Because... to be all "technical" about it, all we actually need to do to get the test to pass is have an __construct()

method that takes one DinosaurFactory argument. Try the tests now:

./vendor/bin/phpspec run

Yep, green! Well, there is one failure, it's from line 13. This is the it_is_initializable() example, which is

angry because it's not passing the required first argument. Ignore that for now and focus on running just this example,

which is on line 18. Re-run spec with:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:18

Yep! This example does pass.

Dummy Objects Return Nothing!

class EnclosureBuilderServiceSpec extends ObjectBehavior

{

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $this->beConstructedWith($dinosaurFactory);

 }

}

class EnclosureBuilderService

{

 public function __construct(DinosaurFactory $dinosaurFactory)

 {

 }

}

Ok: now we need to enhance our example to describe the expected behavior for creating Dinosaurs. Basically,

because we're passing "2" as the second argument, we would expect our DinosaurFactory to be called 2 times

and for the final Enclosure to have 2 Dinosaurs. But... we haven't coded that yet.

var_dump($enclosure->getDinosaurs()) . This will be an empty array, right? Try it:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:18

Ah, we were mostly right: it's an instance of the all-important Subject object. But if you look inside, the subject

property is an empty array. Cool! Things are working like we expect... so far.

But here's where things get weird... or cool... or something: even if we added the code to

EnclosureBuilderService to use DinosaurFactory to create the 2 Dinosaurs and add them to the

Enclosure , the test would still fail! What!????

Why? Because, when you create a "dummy" object like DinosaurFactory it's not the real DinosaurFactory .

And, by default, all of its methods return null and do nothing. It's a real... dummy. Right?! So if we did write code

here to use DinosaurFactory to create the dinosaurs... it wouldn't! It would return null and either the test would

fail or, more likely, some code would blow up because it's expecting a Dinosaur object, not null.

Yep, if you simply tell prophecy to create a test double, it's referred to as a "dummy" and... it does nothing. But, there

are two things that we can do to make it more awesome. Let's talk about the first one next: controlling the return value

when a method is called.

Chapter 23: Stubs

There are basically two big things you can do with a test double. First, you can add behavior: you can tell it exactly

what value to return when a certain method is called, instead of returning null. Second, you add expectations. For

example, you can assert that a certain method on DinosaurFactory should be called a certain number of times

and even with some specific arguments.

Controlling Method Return Value

Right now, we need to control the return value of the growVelociraptor() method. Instead of returning null ,

which will probably explode when EnclosureBuilderService tries to add null to an Enclosure , we need it to

return a Dinosaur object.

Check this out: create a $dino1 variable set to new Dinosaur() with Stegosaurus and false . And let's set its

length to, how about, 6. Here is the key part: we want our DinosaurFactory dummy object to return this

Dinosaur when somebody calls growVelociraptor() . I know... that's kind of confusing because this is not a

velociraptor... but that proves my point! We can completely control how this behaves.

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 17

18

19

 // ... line 20

21

22

 // ... lines 23 - 31

32

33

Do it with $dinosaurFactory->growVelociraptor() . So, we pretend like $dinosaurFactory is a real

object and, just like normal with phpspec, we call methods on that object and pass in real arguments. Let's say that,

whenever we use the EnclosureBuildersService , it will always grow a velociraptor of length 5. Then, to control

the return value, say ->willReturn($dino1) .

class EnclosureBuilderServiceSpec extends ObjectBehavior

{

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dino1 = new Dinosaur('Stegosaurus', false);

 $dino1->setLength(6);

 }

}

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 22

23

24

25

 // ... lines 26 - 31

32

 // ... lines 33 - 34

That's it! Actually, we just did both things that I said you could do with a test double. First, by saying

$dinosaurFactory->growVelociraptor(5) , we've added an assertion that if this method is called, it must be

passed the argument 5. If any other value is passed, the test will fail. More on that later. And second, we've controlled

the return value with ->willReturn() .

There are a few other "will" methods you can use to control the return value, and the most useful by far is just to say

->will() and pass that a callback function. That's super useful if a method is called multiple times and you need to

return different values each time. More about that later too.

So... let's run the test!

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:18

Oh! That doesn't work! Because... yea - we're now on line 19. Try it again:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

The test still passes... but we haven't actually added any new assertions yet.

Using the Object in EnclosureBuilderService

Let's get to work! Open EnclosureBuilderService . Here I'll hit Alt + Enter on $dinosaurFactory and select

"Initialize Fields" to create and set that property. Down below, let's call a new method called addDinosaurs() and

pass it the $numberOfDinosaurs argument. To add that new method, I'll put my cursor on addDinosaur() , hit

Alt + Enter and "Add Method".

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(5)->willReturn(

 $dino1

);

 }

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

 // ... line 17

18

 // ... lines 19 - 20

21

22

 // ... lines 23 - 25

26

 // ... lines 27 - 28

29

 // ... lines 30 - 40

41

42

 // ... lines 43 - 47

48

49

Next, copy the inside of addSecuritySystems() , paste it here, then clear out the inside of the loop. Change the

variable to $numberOfDinosaurs and, very nicely, we can say $enclosure->addDinosaur() and pass that

$this->dinosaurFactory->growVelociraptor() . And, remember: in the example we expected this to be

called always with a length of 5 .

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 40

41

42

43

44

45

46

47

48

 // ... lines 49 - 50

Perfect! Move over and run the test again:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

It still passes. And, check out the wrapped object we're dumping: there are now two dinosaurs inside! And...

interesting! They're actually the exact same Dinosaur . That makes sense: each time the growVelociraptor()

method is called, our test double returns that same, one Dinosaur object.

class EnclosureBuilderService

{

 private $dinosaurFactory;

 public function __construct(DinosaurFactory $dinosaurFactory)

 {

 $this->dinosaurFactory = $dinosaurFactory;

 }

 public function buildEnclosure(

): Enclosure

 {

 $this->addDinosaurs($numberOfDinosaurs, $enclosure);

 }

 private function addDinosaurs(int $numberOfDinosaurs, Enclosure $enclosure)

 {

 }

}

 private function addDinosaurs(int $numberOfDinosaurs, Enclosure $enclosure)

 {

 for ($i = 0; $i < $numberOfDinosaurs; $i++) {

 $enclosure->addDinosaur(

 $this->dinosaurFactory->growVelociraptor(5)

);

 }

 }

This is cool because we can add a great assertion down here: $enclosure->getDinosaurs()[0] - to get the

first Dinosaur - ->shouldBe($dino1) . And, it's a little odd, but we can even check that the second Dinosaur is

also this exact $dino1 Dinosaur .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 30

31

32

33

 // ... lines 34 - 35

Try the test again:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Still green! This is the first, great superpower of these test doubles, or dummy objects. By adding behavior to them,

we can help control exactly what happens inside the class we're testing. And, it often allows us to have very specific

assertions.

Returning a Different Object Each Time

To make this a bit more realistic, copy $dino1 and make a new $dino2 - how about a Baby Stegosaurus with

length 2. Adorable. I want to change the $dinosaurFactory test double so that it returns $dino1 the first time

growVelociraptor() is called and $dino2 the second time it's called... which is a bit more how things would

work in the real world. How can we do this? By passing a second argument to willReturn() .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 17

18

19

 // ... lines 20 - 22

23

24

25

 // ... line 26

27

28

 // ... lines 29 - 34

35

36

 // ... lines 37 - 38

That's it! Down below, the second object will now be $dino2 . Try the tests one last time.

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $enclosure->getDinosaurs()[0]->shouldBe($dino1);

 $enclosure->getDinosaurs()[1]->shouldBe($dino1);

 }

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dino2 = new Dinosaur('Baby Stegosaurus', false);

 $dino2->setLength(2);

 $dinosaurFactory->growVelociraptor(5)->willReturn(

 $dino2

);

 $enclosure->getDinosaurs()[1]->shouldBe($dino2);

 }

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Green! Geez - we didn't manage to break anything in this video - we gotta try harder! By the way, when you control

the return value of a test double, it's then called a "Stub"... which is probably not that important to know, except for

impressing other programmers at a party.

Next: let's talk a little bit more about this "5" argument. As it turns out, there are a lot of interesting things you can do

with this argument. Like, what if EnclosureBuilderService always calls this method and passes a random

number? What should we put here? Or, what if it's called multiple times with different arguments each time? Let's

jump on that!

Chapter 24: Promises (control return values) & Arguments

In our spec, we said that, when we call buildEnclosure() , we expect it to call growVelociraptor() on

DinosaurFactory and pass it the exact argument 5 . There was no super cool or secret reason for that: it's just

how we decided to make this method work: all dinosaurs would have this same length. And when it calls

growVelociraptor() with an argument of 5, we said that it should return $dino1 the first time it's called and

$dino2 the second time.

Calling a Stubbed Method with a Different Argument

But... what if it weren't that simple? Go into the service. Making every dinosaur the same size isn't very realistic. No,

let's make it more interesting - let's make the length 5 + $i . So 5, then 6, 7 and so on.

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 40

41

42

43

44

45

46

47

48

 // ... lines 49 - 50

What will phpspec think of this? Our example still says that we expect this method to always be called with the

argument 5. Well... let's find out!

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

It fails! And check this out! It says:

“Unexpected method call on DinosaurFactory , growVelociraptor(6) . Expected was

growVelociraptor(5) ”

The way this fails is the really important part. When you call willReturn() , this is called a method promise. You're

making a promise that the growVelociraptor() method will return this $dino1 value and then this $dino2

value. As soon as you apply even one promise to one method on a dummy object, you must apply a promise to every

single call.

This can be a little tricky to understand at first. When we say

$dinosaurFactory->growVelociprator(5)->willReturn() , we're really saying:

 private function addDinosaurs(int $numberOfDinosaurs, Enclosure $enclosure)

 {

 for ($i = 0; $i < $numberOfDinosaurs; $i++) {

 $enclosure->addDinosaur(

 $this->dinosaurFactory->growVelociraptor(5 + $i)

);

 }

 }

“Hey phpspec! When growVelociraptor() is called and passed 5 as an argument, you should return $dino1

and $dino2 . If any other value is passed, this promise doesn't apply.”

So, when growVelociraptor() is called with 6 as an argument, it looks at this promise and determines it doesn't

apply. But, once you define even one promise, you must define a promise... basically, you must tell phpspec what to

do for every method call and every possible argument.

In other words, the simplest way to fix this would be to add a promise for every argument that we'll pass - like

$dinosaurFactory->growVelociraptor(6)->willReturn() , then 7, 8, 9 - however many you need for that

example. Whenever growVelociraptor() is called, prophecy goes down all of the promises for that method and

finds the one that fits best. If none are found... but at least one is specified... error!

Argument::any()

Of course... creating a promise for every possible argument is... a bit nuts. So what's the real fix? Remove the specific

argument 5 and replace it with a special Argument class from prophecy and pass it any() . Try phpspec again:

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

 // ... lines 27 - 28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 39

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

We're back! This says:

“Yo phpspec! It's me again, Ryan. So, when growVelociraptor() is called with any argument, here's what you

should return.”

Thanks to this, every time we call growVelociraptor() - regardless of the arguments passed to it - this promise

will be matched.

Other ways to Specify Arguments

Oh, and if we were passing growVelociraptor() two arguments, then we would need to also pass two

arguments here. If you don't care, just use Argument::any() . Or, if you had a third argument and wanted this

promise to be used no matter what values were passed, you can use cetera() .

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(Argument::any())->willReturn(

);

 }

But sometimes, I want to be a bit more specific. For example, we don't really want growVelociraptor() to be

called with any argument: it should be an integer at least! If you really want to make sure that's happening correctly,

you can use Argument::type() and pass integer .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 25

26

 // ... lines 27 - 39

This should work for us... so let's try it!

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

All green! But now change this to string . Try it again:

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 25

26

 // ... lines 27 - 39

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Yes! Unexpected method call on growVelociraptor(5) . When the integer 5 is passed, phpspec says:

“Hey, somebody is calling growVelociraptor() with an argument that doesn't match any of the promises for

this method. That's probably not expected, so I'm gonna go ahead and explode. Cheers!”

The most flexible Argument is called that() . I won't show an example, but Argument::that() allows you to

pass a callback function. It passes your callback the argument and then you can do whatever logic you need to

determine if this is something you're expecting or not.

Let's change this back to type('integer') . And here is where things get truly interesting. We know that

growVelociraptor() is going to be called two times. And so, to take super crazy control of things, we can create

two separate method promises to handle each one. If you don't fully understand how this Argument stuff works yet,

you will next.

 $dinosaurFactory->growVelociraptor(Argument::type('integer'))->willReturn(

 $dinosaurFactory->growVelociraptor(Argument::type('string'))->willReturn(

Chapter 25: Advanced Argument Matching

The growVelociraptor() method is called two times. And thanks to the two arguments to willReturn() ,

$dino1 will be returned first, then $dino2 . But we can control this much more than we are now.

Check it out: copy the beginning of the promise and paste it below. Replace the argument with 5. Then say

->willReturn($dino2) . For the first promise, remove $dino2 : this will now return $dino1 every time its

matched.

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

27

28

29

30

31

 // ... lines 32 - 38

39

 // ... lines 40 - 41

So... what do you think will happen now? Down here, I'm saying that when growVelociraptor() is called with

exactly the number 5 , return $dino2 . But up here I'm saying: if growVelociraptor() is called with any

integer , return $dino1 . So... when growVelociraptor() is called with the number 5, what's going to be

returned? $dino1? $dino2? A mystery $dino3 !? Does the order of these promises matter? Or something else? Is

there a 9th planet in the solar system that we haven't discovered yet?

I don't know! Let's find out! Or at least, answer a few of these questions. Try phpspec:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

It fails: expected Dinosaur but got Dinosaur . Wow... umm... that's not very helpful. Re-run with -v :

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19 -v

Ah! Now we can see that, on line 38, so when we're checking the first dinosaur, we expect it to be our big

Stegosaurus, but it was actually our Baby Stegosaurus .

Arguments Matching is by "Most Specific"

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(Argument::type('integer'))->willReturn(

 $dino1

);

 $dinosaurFactory->growVelociraptor(5)->willReturn(

 $dino2

);

 }

This is really cool! Each time we call growVelociraptor() , it looks at all of these method promises and finds the

most specific one. When the argument is 5, it matches both promises: it is 5, but it's also an integer. But because the

second is more specific, that promise is used and it returns $dino2 .

So, the first time we go through the loop, 5 is the argument and we return $dino2 . The second time, the argument is

6 and only matches the first promise. So, $dino1 is returned.

This means that $dino2 is now the first item and $dino1 is the second. How cool is that?! That's full, beautiful

control.

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 36

37

38

39

 // ... lines 40 - 41

Let's take off the -v option and run the tests:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Got it! To prove how this works, we can even re-order the two promises. Yep, makes no difference.

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

So, whenever a method is called on a stub, prophecy will look at all the promises for that method and find the best

one. And if none are found... but at least one exists, error!

Let's change this back to just one promise: we don't really need to be this specific. Delete the more specific call and

make the other one return $dino1 and then $dino2 just like before. Also update the asserts to go back to the

original way. Double-check that phpspec is happy:

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $enclosure->getDinosaurs()[0]->shouldBe($dino2);

 $enclosure->getDinosaurs()[1]->shouldBe($dino1);

 }

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

27

28

29

 // ... lines 30 - 34

35

36

37

 // ... lines 38 - 39

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Woohoo! Arguments are a great way to very specifically control what values are returned based on the input. And to

make sure your methods are being called with the arguments you expect.

Next: instead of controlling the return value of methods, let's talk about adding expectations to our test doubles - like

making sure that a method was called an exact number of times. Yep, it's mocks and spies time!

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(Argument::type('integer'))->willReturn(

 $dino1,

 $dino2

);

 $enclosure->getDinosaurs()[0]->shouldBe($dino1);

 $enclosure->getDinosaurs()[1]->shouldBe($dino2);

 }

Chapter 26: Mocks & Spies - shouldBeCalledTimes()

Hey! We are experts when it comes to controlling the return value of any method on a test double. Here, we told it that

when growVelociraptor() is called with any integer argument, return $dino1 the first time and $dino2 the

second time.

By doing this, we also added some expectations. Because, as soon as you control the return value of one method

call, then you must control the behavior of all method calls. And so if a different method is called or different

arguments are passed to this method, the tests will fail.

But what this does not guarantee is that growVelociraptor() was actually called... or how many times it was

called. Nope, we're saying, if it's called, it must be called with this argument... and here's what to return. But

technically, if it were called zero times, this part would not fail!

And that's what I want to talk about now: sometimes it is super important to make sure a method was called... or was

called exactly three times... or was not called! For example, what if we wanted to be absolutely sure that

growVelociraptor() was called exactly two times? We can do that, and it starts the same way:

$dinosaurFactory->growVelociraptor(Argument::type('integer')) . But then, instead of

willReturn() , use shouldBeCalledTimes(2) .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 29

30

31

 // ... lines 32 - 38

39

 // ... lines 40 - 41

This feels familiar... because it's exactly like what we've been doing! It looks like a matcher! It's identical to

$this->shoudHaveType() , for example.

Now that we're asserting that this method should be called twice, run phpspec:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Nice! It passes! What does it look like to fail? Change this to 3... and try it again:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(Argument::type('integer'))

 ->shouldBeCalledTimes(2);

 }

Perfect: Expected exactly 3 calls that match growVelociraptor() with type integer, but 2 were made.

Re-Using the "Promise" for Stubbing & Mocking

Change this back to 2. But notice: there's some duplication here: we're repeating the

$dinosaurFactory->growVelociraptor(Argument::type('integer')) part when we need to control the

return value and when we want to assert how many times it was called. We can totally remove that. Chain the

->shouldBeCalledTimes() onto the end of the first call.

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

27

28

29

 // ... lines 30 - 36

37

 // ... lines 38 - 39

Try it!

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Nice! It's sort of a low-level detail, but when we call $dinosaurFactory->growVelociraptor() , that returns

what's called a "method prophecy" object... and we can then add "promises" to it - that's the willReturn() stuff - or

predictions - that's the shouldBeCalledTimes() stuff. What's interesting is that, if you call a method on a stub two

times and pass it the same exact Argument stuff, prophecy will return the same MethodProphecy object. In other

words, if you called willReturn() multiple times, the second would override the first.

If that doesn't totally make sense - forget about it - it's just some low-level coolness I wanted to mention while we

were here.

Predicting After (Spies)

Anyways, when you want to add a "prediction"... basically, an expectation that a method should be called an exact

number of times, you can do it in two different ways... and it's just a matter of style. First, you can do it like we just did:

call ->shouldBeCalledTimes() and then execute the code.

Or, you can put the assertion stuff after you run your code. Check this out: remove the

->shouldBeCalledTimes() line. Then, anywhere after we call buildEnclosure() , start with

$dinosaurFactory->growVelociraptor(Argument::any()) and then

->shouldHaveBeenCalledTimes(2) .

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(Argument::type('integer'))->willReturn(

 $dino1,

 $dino2

)->shouldBeCalledTimes(2);

 }

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 18

19

20

 // ... lines 21 - 25

26

27

28

29

 // ... lines 30 - 37

38

39

40

 // ... lines 41 - 42

This does the exact same thing... it's just a different style. Oh, and I used Argument::any() down here instead of

type() , but not for any special reason: I'm just showing how we can make sure that this method is called exactly 2

times, regardless of the arguments.

Let's try this!

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

We're green! Next: let's take a super-quick tour into the phpspec documentation where we'll see test doubles,

dummies, mocks and spies... hiding within its text.

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory)

 {

 $dinosaurFactory->growVelociraptor(Argument::type('integer'))->willReturn(

 $dino1,

 $dino2

);

 $dinosaurFactory->growVelociraptor(Argument::any())

 ->shouldHaveBeenCalledTimes(2);

 }

Chapter 27: Test Doubles, Dummies, Mocks & Spies

Now that we've seen all the things we can do with test doubles... we need to talk a bit more about some words and

language that you'll see with prophecy... otherwise... it all looks a bit crazy.

Google for "php prophecy"... because, remember, this whole test double system in phpspec actually comes from

prophecy.

In their documentation, they talk about four different types of objects! Dummy objects, stub objects, mock objects and

spy objects. Woh! For me... this was... confusing! So let's walk through and see what's actually going on - it's really

nothing new for us. These four different words all different ways to describe test doubles... the "things" that we just

finished learning all about.

Dummies

First, look at dummies. A dummy object is both what I look like if you ask me to remember where I left the car keys...

and also the object you get if you add an argument with a type-hint in phpspec to get a test double... then do

absolutely nothing with it. So if we get a test double and add no behavior and make no assertions on its methods, it's

called a "dummy object".

Oh, and inside of their documentation, you'll see things like $prophecy->reveal() . That's a detail that we don't

need to worry about because phpspec takes care of that for us. Score!

Stubs

As soon as you start controlling even one return value of even one method... boom! This object is suddenly known as

a stub. From the docs: "a stub is an object double" - all of these things are known as test doubles, or object doubles -

that when put in a specific environment, behaves in a specific way. That's a fancy way of saying: as soon as we add

one of these willReturn() things, it becomes a stub.

And actually, most of the documentation is spent talking about stubs and the different ways to control exactly how it

behaves, including the Argument wildcarding that we saw earlier.

Mocks

If you keep reading down, the next thing you'll find are "mocks". An object becomes a mock when you call

shouldBeCalled() . So, if you want to add an assertion that a method is called a certain number of times and you

want to put that assertion before the actual code - using shouldBeCalledTimes() or shouldBeCalled() -

congratulations! Your object is now known as a mock.

Spies

And finally, at the bottom, we have spies. A spy is the exact same thing as a mock, except it's when you add the

expectation after the code - like with shouldHaveBeenCalledTimes() .

Putting it All Together

So there's a lot of language here... but these are all different words to describe the different things you can do with a

test double. Doing nothing? It's a dummy. Controlling the return value? It's a stub. Adding an assertion to make sure a

method was called? It's a mock or a spy, depending on your style. And yes, you can be a stub and a mock or spy at

the same time - that's exactly what we're doing in our example.

I find these terms fun, but a little confusing and I don't think about them when I'm actually coding: I just think about

what I need to get done. But now that you're familiar with them, reading the docs should be a breeze. And also, these

words are used everywhere in the testing world - not just in phpspec - so it's kinda cool to know them. You're now part

of the cool-kids testing club.

Next, let's do some more mocking... cause it's awesome! And we'll say hello to a helper method that we can use

inside our spec class to run some code before every example.

Chapter 28: Let: The Setup Function

Now that this example is executing really well...

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

let's go back and run all of the examples in this spec class.

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php

Ah, oh yea! it_is_initializable() is still failing: too few arguments to the constructor: zero passed, expected

one. That makes sense: we added $this->beConstructedWith() to our

it_builds_enclosures_with_dinosaurs() example, but not to this example.

The easiest solution is just to... ya know... duplicate it! But... it does kind of make me think: it would be nice if we could

call a method before each example was executed - a method that could, sort of, set some things up. After all, we're

going to need to call $this->beConstructedWith() in every single example.

Hello let()

Unfortunately... this is not possible... and the tutorial is now over. Kidding! This is totally possible: by creating a

function called let() . Yep! let() will be called once before each example function is executed. So, let() then

it_is_initializable() , then let() again and it_builds_enclosures_with_dinosaurs() .

Inside let() , we can do the exact same things as our normal methods... meaning, if we need a test double, we can

add a DinosaurFactory $dinosaurFactory argument. And this allows us to move the

beConstructedWith() call up to let() .

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 11

12

13

14

15

16

17

 // ... lines 18 - 44

45

Ok, let's look at this: let() will be called first, and will be passed the $dinosaurFactory test double. But then,

down in the example, we need to make sure that we get that exact same DinosaurFactory test double object

class EnclosureBuilderServiceSpec extends ObjectBehavior

{

 function let(DinosaurFactory $dinosaurFactory)

 {

 $this->beConstructedWith($dinosaurFactory);

 }

}

because that is the object we need to add behavior to.

And that is exactly how this will work. But, it's not just because these are both DinosaurFactory objects. Nope.

phpspec matches by the argument name: because the argument is called $dinosaurFactory in let() and

because it has the same name below, phpspec knows to pass the same object... instead of creating a brand-new test

double.

So... unless we've mucked something up, this should make everything happy! Try it:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php:19

Woohoo!

Using Mocks/Spies to Guarantee Saving to the Database

Let's do one last thing before you all go off and take over the world with your new phpspec knowledge. One of the

things I want my EnclosureBuilderService to do is to save the new EnclosureBuilder to the database after

it finishes building it. Now, obviously, we don't have a database in this application... but who cares? We can fake it!

Open up the tutorial/ directory: you'll have it if you downloaded the course code. In the Service/ directory

there is an EntityManagerInterface.php file. Copy that and put it into your Service/ directory.

src/Service/EntityManagerInterface.php

 // ... lines 1 - 4

5

6

7

8

9

10

If you're a Doctrine user, this will look familiar. But, no, I'm not recommending that you actually create or move the

EntityManagerInterface into your app like this. We're adding this interface as a convenient way to "pretend" like

Doctrine exists in our app. This interface looks just like the one from Doctrine, with the same persist() and

flush() methods.

Guaranteeing the Object is Saved

Back in the example, I want to describe that persist() and flush() should be called on the

EntityManagerInterface when we call buildEnclosure() : I want to guarantee that I didn't forget to save this

to the database. And that means that our EnclosureBuilderService will have a second dependency. In let() ,

add a second argument: EntityManagerInterface $entityManager . Pass that as the second argument to

beConstructedWith() .

interface EntityManagerInterface

{

 public function persist($object);

 public function flush();

}

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 12

13

14

15

16

17

18

 // ... lines 19 - 49

50

Then, down in the actual example, we want to assert that persist() and flush() were called on it. Get that

same test double here by also saying EntityManagerInterface $entityManager .

At this point, we can use the mock or spy functionality... it makes no difference. I'll do it as a spy. Start with

$entityManager->persist() . This should be passed an Enclosure object. So let's say Argument::type()

with Enclosure::class . Then, ->shouldHaveBeenCalled() .

Repeat this with flush() , except that flush() doesn't take any arguments.

spec/Service/EnclosureBuilderServiceSpec.php

 // ... lines 1 - 24

25

26

 // ... lines 27 - 45

46

47

48

49

 // ... lines 50 - 51

This time, we're not giving the test double any behavior: it's a pure spy. Try it:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php

Woo! It fails:

“no calls have been made that match persist() with type Enclosure, but expected at least one.”

Open EnclosureBuilderService and let's code that up. Start by adding the

EntityManagerInterface $entityManager argument. I'll hit Alt + Enter to create that property and set it.

class EnclosureBuilderServiceSpec extends ObjectBehavior

{

 function let(DinosaurFactory $dinosaurFactory, EntityManagerInterface $entityManager)

 {

 $this->beConstructedWith($dinosaurFactory, $entityManager);

 }

}

 function it_builds_enclosure_with_dinosaurs(DinosaurFactory $dinosaurFactory,

EntityManagerInterface $entityManager)

 {

 $entityManager->persist(Argument::type(Enclosure::class))

 ->shouldHaveBeenCalled();

 $entityManager->flush()->shouldHaveBeenCalled();

 }

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 12

13

 // ... line 14

15

16

 // ... line 17

18

19

 // ... lines 20 - 54

55

Finally, at the bottom of the method, $this->entityManager->persist($enclosure) and

$this->entityManager->flush() .

src/Service/EnclosureBuilderService.php

 // ... lines 1 - 20

21

 // ... lines 22 - 23

24

25

 // ... lines 26 - 30

31

32

 // ... lines 33 - 34

35

 // ... lines 36 - 56

This looks great. But let's run phpspec one last time to be sure:

./vendor/bin/phpspec run spec/Service/EnclosureBuilderServiceSpec.php

It passes! Try the entire test suite:

./vendor/bin/phpspec run

Hey! We didn't break anything!

Friends! That's it. phpspec is wonderful tool to help you write unit tests... but really focus on the design of your class.

Yes, you do need to get used to a lot of the magic it does. But once you embrace the magic, the experience is

wonderful... and the code generation isn't too bad either.

One word of warning that I always like to give people is this: just because you have a wonderful testing tool like

phpspec, it doesn't mean you need to test every single thing. For example, in DinosaurSpec , we're doing a lot of

testing on the getter and setter methods. You can do that... but I think it's overkill. Think of testing less as an "all-or-

class EnclosureBuilderService

{

 private $entityManager;

 public function __construct(DinosaurFactory $dinosaurFactory, EntityManagerInterface

$entityManager)

 {

 $this->entityManager = $entityManager;

 }

}

 public function buildEnclosure(

): Enclosure

 {

 $this->entityManager->persist($enclosure);

 $this->entityManager->flush();

 }

nothing" sort of thing, and more of a priority system: make it a high priority to test, or describe the classes that have a

lot of complexity or that scare you.

Ok, get out there, describe some great classes, and we'll seeya next time!

With <3 from SymfonyCasts

